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Complete Classification of Finite Dimensional Estimation Algebras With
State Dimension n, Linear Rank n-1, and Constant Wong Matrix

Hongyu Yu, Xiaopei Jiao

Abstract—Ever since the Lie algebra method was introduced to
construct finite dimensional nonlinear filters by Brockett and Mitter
independently, there has been an intense interest in classifying all
finite dimensional estimation algebras and finding new classes of
finite dimensional recursive filters. The estimation algebra method
has been proven to be an invaluable tool in the nonlinear filter-
ing theory. This article considers the finite dimensional estima-
tion algebras derived from a nonlinear filtering system with state
dimension n, linear rank n-1, and constant Wong matrix. Related
theories of the underdetermined partial differential equations and
the Euler operator are applied to classify the estimation algebras. It
is proved that the Mitter conjecture holds and the dimension of the
finite dimensional estimation algebras must be 2n or 2n+1 with the
abovementioned conditions. Therefore, we can construct the ex-
plicit solution of filtering systems by Wei—-Norman approach. This
result is of great significance because it is the first classification
of nonmaximal rank finite dimensional estimation algebras with
arbitrary state dimension.

Index Terms—Classification, finite dimensional estimation alge-
bras, nonmaximal rank, nonlinear filters, Wong matrix.

|. INTRODUCTION

The filtering problem is a special type of state estimation problem
whose goal is to estimate the present state z; given the observation
history {ys : 0 < s < t}. The problem of the linear filtering system
with Gaussian initial distributions has already been solved by the
well-known Kalman filter proposed by Kalman and Bucy [1], [2].
Thereafter, there have been a lot of interests in studying the nonlinear
filtering problem. Different methods have been put forward to solve this
problem. In the late 1960s and the early 1970s, “innovations method”
was proposed by Kailath and then developed by Fujisaki et al. [3].
However, this method cannot solve the problem explicitly. In the late
1970s, Brockett and Clark [4], Brockett [5], and Mitter [6] estab-
lished a novel method known as Lie algebra method motivated by the
Wei-Norman technique [7], which allows one to express the solutions
of time-varying linear differential equations when corresponding Lie
algebra is finite dimensional. The method introduces the estimation
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algebra of a filtering system. The meaning of the Lie algebra method
is that if the estimation algebra is finite dimensional, its corresponding
filtering system must be a finite dimensional recursive filter. Estimation
algebra method can be widely applied in any filtering systems, such as
engineering and physical models, which include navigation on aircraft
and submarines, radar, tracking problem, trajectory detection, guid-
ance, positioning, orbit determination, etc. The explicit structure of the
estimation algebras is also of great significance. The famous Duncan—
Mortensen—Zakai (DMZ) equation and its robust version describe the
unnormalized probability density function of the state conditioned on
the observation history [8]. By Wei—-Norman technique, if the explicit
basis of the estimations algebras is known, the DMZ equation can be
solved. There are also many other ways to solve the DMZ equation. For
example, Yau and Yau [9] proposed a novel effective method to solve
the “pathwise—robust” DMZ equation. Recently, Chen et al.[10] and
Shi et al. [11] put forward another method to solve the robust DMZ
equation based on the “direct method” and Gaussian approximation.

Estimation algebra plays a critical role in algebraic classification in
nonlinear filtering systems and has several merits. First, Lie algebra
introduces notion of geometry. Second, it can explain why it is easier
to find exact recursive filters for linear system but it is more difficult
for some nonlinear systems, such as cubic sensor. Most importantly,
once estimation algebra of a nonlinear system is finite dimensional,
finite recursive filter can be constructed explicitly and it is univer-
sal in the sense of Maurel and Michel [12]. From the aspect of
computation, the number of sufficient statistics linearly depends on
state dimension n for all known finite dimensional estimation algebra.

For the practical importance of the estimation algebras in solv-
ing nonlinear filtering problems, Brockett [13] proposed the problem
of classifying all finite dimensional estimation algebras. In 1987,
Wong [14] introduced the concept of Wong’s {2 matrix. Since the 1990s,
Yau and Hu[15] completely classified all finite dimensional estimation
algebras with maximal rank with arbitrary state dimension in a series
of papers, and the results can be seen in [15]. The result shows that
for a finite dimensional estimation algebra with maximal rank, the
Wong’s €2 matrix must be constant, the dimension of the estimation
algebra is 2n + 2, and Mitter conjecture holds, i.e., any polynomial
in the estimation algebra is at most degree 1. Since the 2000s, Yau
and his collaborators have started to focus on the finite dimensional
estimation algebras with nonmaximal rank. Wu and Yau [16] classified
all finite dimensional estimation algebras with state dimension 2. Shi
and Yau [17], [18] have proved the linear structure of Wong’s €2
matrix and the Mitter conjecture with state dimension 3 and linear
rank 2. However, for the general classification of estimation algebra
with nonmaximal rank on arbitrary state dimension, it is still an open
and critical problem.

In the abovementioned studies of estimation algebras, the structure
of Wong’s 2 matrix plays an important role. However, a series of
studies have shown that Wong’s 2 matrix may not have simple structure.
Shi et al. [19] constructed a novel class of finite dimensional estimation
algebras with state dimension 3 and linear rank 1 whose Wong’s (2
matrix is not constant. Dong et al. [20] constructed a new class of finite
dimensional estimation algebras with state dimension 4 and linear rank
1 whose Wong’s 2 matrix can be polynomials of any degree. Recently,
Jiao and Yau [21] proved that for finite dimensional estimation algebras
with arbitrary state dimension n and linear rank n — 2, the entries of
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Wong’s €2 matrix are not necessary to be polynomials. The complexity
of Wong’s €2 matrix have obstructed the classification of nonmaximal
finite dimensional estimation algebras.

Therefore, in this article, we consider the structure of estimation
algebras given the conditions that Wong’s {2 matrix is constant. We
will prove that if the Wong’s €2 matrix is constant and the linear rank
r =n — 1, where n is arbitrary state dimension, then Mitter conjecture
holds and the classification can be finished. It is the first classification of
nonmaximal rank finite dimensional estimation algebras with arbitrary
state dimension.

The following are three main theorems of this article.

Theorem 1.1: Let E be a finite dimensional estimation algebra with
arbitrary state dimension n, linear rank n — 1, and constant Wong’s €2
matrix, then any polynomial in £ is at most degree 1, i.e., the Mitter
conjecture holds in this case.

Theorem 1.2: Let I be a finite dimensional estimation algebra
with arbitrary state dimension n, linear rank n — 1, and constant
Wong’s €2 matrix, then dimFE = 2n or dimE = 2n + 1. Moreover,
we have £ =< Lo, 1,z1,...,2y, 1,D1,...,D, 1 >p. 4. or E =<
Lo, 1, x1,..;xn 1,D1,...,Dy_1,D, + cr,, >1 4. in the sense of
isomorphism.

Moreover, we can construct the solution of the robust DMZ equation
(9) with these conditions.

Theorem 1.3: Let E be the estimation algebra of system (3). Suppose
Eis finite dimensional with linear rank n — 1 and constant Wong matrix.
If dimE = 2n + 1, then the robust DMZ (9) has a solution for all ¢ of
the form.

n n
u(t,z) = eT(®) (H e’“i(t)zi) <H eSi(t>Di> etlogy. (1)
1=1

=1

If dimE = 2n, then the robust DMZ (9) has a solution for all ¢ of the
form

n—1
u(t,z) = eT () <H em(ﬂ%) <H esi(t)Di > ooy, (2)

i=1

T, r;,and s; in the formula can be determined by the observation history
Yi-

The rest of this article is organized as follows. In Section II, we
will first recall some basic concepts and the derivation of this problem.
Then, some important preliminary results and fundamental tools will
be introduced. In Section III, we will first prove Theorem 1.1 and then
derive Theorem 1.2 with the help of Theorem 1.1. In Section IV, we
will prove Theorem 1.3 by Wei—Norman technique. Finally, Section V
concludes this article.

Il. BAsic CONCEPTS AND PRELIMINARY RESULTS

A. Basic Concepts

In this article, the set of real numbers is denoted by R. R” refers
to k-dimensional Euclidean space. A = (a;;) denotes a matrix A with
i, j-entry a;;. rank (A) denotes rank of matrix A. d;; denotes Kronecker
symbol, which means §;; = 1if ¢ = j; otherwise, d;; = 0. Let C*(U)
be the set of smooth function defined on U. span{vy, . .., vy } refers to

a linear space spanned by vectors {v1, va, . .., Vg }.
Our study is based on the following continuous signal observation
model:
da(t) = f(a(t))dt + g(x(t))dv(t), 2(0) = 2o 3)
dy(t) = h(z(t))dt + dw(t), y(0) =0

where x(t) is the state of the system at time ¢ in R™ (n is known as state
dimension), y(¢) is the observation at time ¢ in R, and v and w are
independent standard Brownian motions that take valuesin R™ and R™
respectively. Assume f and h are C™ smooth functions and g(z(t)) is
an orthogonal matrix for any ¢.

Define p(t, z)
unnormalized version of p(t,
tion [8] as follows:

{dg(t,x) Loo(t,z)dt+> -, L
o(0,x) = 09

= p(z(t)|y(s),0 < s <t) and let o (¢, z) to be the
x). We have the well-known DMZ equa-

ot ody(®)

where

afz

1< 02 0 1
0=52 7~ 2 igy 2
i=1 g i=1 o

and L; is the operator of multiplication by h;. The term o is the
probability density of the initial state x. It is worth noticing that the
DMZ equation is written in the Stratonovich sense in the Lie algebra
method while the previous filtering system is in the sense of Ito integral.

Filtering system is considered as Ito sense and DMZ equation is
written in the Stratonovich sense.

In order to represent the operator L¢ in a more compact form, we
introduce

=ng+sz+2h?. (6)
i=1 H i=1 i=1

Then,

1 n
—2(ZD?—n>. 0]
=1

Inreal applications, we focus more on the robust state estimator from
the observation history with some properties of robustness. Davis [22]
considered this problem and proposed some robust algorithms. His
basic idea is reduced to consider the following unnormalized density

in our case:
) o(t,x). (8)

Then, we have the following robust DMZ equation:

u(t, x) —exp< Zh

94 (t,x) = Lou + Y.y i(t)[Lo, LiJu

+3 20 vy ([ Lo, Li), Lilu - ©)
u(0,z) = og(x)

where [, ] is the Lie bracket defined as follows.

It is obvious to see that o (t, ) can be solved if we can construct the
solution of the robust DMZ (9).

Definition 2.1: Let V be areal vector space with a dyadic operation
(z,y) — [z,y]. Then, V can be seen as a Lie algebra and the operation
can be called as Lie bracket if the operation satisfies the following three
properties:

1) the operation is bilinear;
2) [z,z] =0forallz € V;
3) [z, [y, 2ll + [y, [#, 2] + [z [z, y]] = Oforallz,y,z € V.

Definition 2.2: Let g and g be two Lie algebras. An isomorphism
f g — gis alinear map and satisfies the following.

1) f is a bijection.
2) f is a homomorphism of Lie algebras,
[f(g1), f(g2)] forany g1, 92 € g.

ie, f(lg1,92]) =
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If there exists an isomorphism, we denote g is isomorphic to g, i.e.,
9=g.

Remark 2.3: 1f two Lie algebras are isomorphic, then they have the
same Lie algebra structure.

Definition 2.4: If X and Y are differential operators, then the Lie
bracket can be defined by [X,Y]¢ = X (Y¢) — Y (X ¢) for any C>
function ¢.

Definition 2.5: The estimation algebra E of a filtering system (3) is
defined as the Lie algebra generated by Lg, L1, ..., L,,. Equivalently,
we denote ¥ =< Lo, Lq,...,L,, > A..

Definition 2.6: The Wong matrix ) =
[D;,D;] = % — 8f; It is obvious to see w;; = —w;.

Deﬁnmon 2.7: Let L(E) C FE be the vector space consisting of all
the homogeneous degree 1 polynomials in E. Then the linear rank of
estimation algebra F is defined by r := dimL(E).

Definition 2.8: Let I = {i1,...,9;} be a subset of {1,...,
Euler operator E;, | ;,(¢) = >, xlg—a‘f’l

Definition 2.9: Let U, be the set of differential operators in the form

>

i1t in <l

where a;, ;. € C*(R™). Define E; := ENU,.
The following notations are used in this article.

1) V is a subspace of E, A, B € E, then we say A = B(mod V) if
A-BeV.

2) pol, (x;y,...x;,,) denotes a polynomial of degree at most k in
Tiy s Zip, . POl (a4, .. .2, ) denotes a polynomial of degree
kin x;,,...,x;,,. const denotes a constant and const denotes a
nonzero constant.

3) If A, B € E, define Ad%\ B = B, Ad, B

(wi;) is defined by w;; =

n}. The

;. Dt Din (10)

Qiy ... in

= [A, Ad{'B].

B. Preliminary Results

In this section, we will introduce some important preliminary results
of estimation algebras and fundamental tools, including the prop-
erties of the Euler operator and underdetermined partial differential
equations.

Theorem 2.10 (See [23]): Let E be a finite dimensional estimation
algebra. If a function ¢ is in F, then ¢ is a polynomial of degree at most
2.

Theorem 2.11 (See [24]): Let E be an estimation algebra of system
(3). Suppose €2 is a constant matrix.

1) If nisapolynomial of degree at most 2, then E is finite dimensional
and has a basis consisting of L, and operators of the form

S D, + 5 (1)
j=1
where «; are constant and 3, are affine in x. Moreover, the
quadratic part of n — >"7" | h? is positive semidefinite.
2) Conversely, if F is finite dimensional, then h; are affine in x for all
4. Furthermore, if the linear rank of E is n, then 7 is a polynomial
of degree at most 2.
Theorem 2.12 (See [24]): Let & = Az + b where A is orthogonal.
Consider the estimation algebra E with

f(@) = Af(z)
h(&) = h(z)
By 9 .
D; oz, fi

12)

Then E is isomorphic to F, i.e., the transformation & = Ax + b main-
tains the Lie structure.

Theorem 2.13 (See [15]): Let E be a finite dimensional estimation
algebra. If [ > 0 and

A= > a;, D .Dir(modU)) € E (13)
li|=l+1
then a;, ... ;,, are polynomials.
Theorem 2.14 (See [16]): Let m be aninteger, I = {iy,...,4;},and

& € C(R™) such that E;, . ;, (&) + m¢ is a polynomial of degree k
inz; ,...,x; with coefficients in C* functions of z;(j ¢ I).
1) If m+k+1> 0, then  is a degree k polynomial in z;,, ..., x;
with coefficients in C* functions of z;(j ¢ I).
2) If m+ k41 <0, then £ is a degree k or degree —m polynomial
inx;,,...,x; with coefficients in C* functions of z;(j ¢ I).
Theorem 2.15 (See [16]): Let F(x1,...,x,) be a C* function on
R™. Suppose that there exists a path ¢: R — R™ and 6 > 0 such
that lim; ., [|c(t)]| = 0o and lim; . SUP g, (o(z)) F' = —00, Where
Bs(c(t)) = {z € R™ : ||z — ¢(t)|| < §}. Then, there are no C™ func-

1

tions f1, ..., f, on R™ satisfying
afz S 2
2 _F 14
53y a9
Corollary 2.16 (See [16]): I = {i1,...,4}. If F(x1,...,2,)i8a

polynomial in z;, , . .
I) satisfying

., z;, with coefficients in C* functions of z; (j ¢

(15)

Sy r=r

i=1

Then, the degree of I with respect to ;, . . ., z;, must be even.

Remark 2.17: We consider the finite dimensional estimation alge-
bras with constant Wong’s 2 matrix. By the definition of 7 and Corollary
2.16, if n — >°" | h? is a polynomial with respect to some variables
from z, ..., x,, then the degree must be even in those variables. By
Theorem 2.11, h; (i = 1,...,m) are affine in z. Therefore, if 1 is a
polynomial with respect to some variables from x4, ..., x,, then the
degree must be even in those variables.

Finally, we provide some practical calculation results.

Lemma 2.18 (See [15]):

1) [9Di, h] = g 5.
[ng,hD}—ghwﬂJrga D; —hy gD
3) [gD7, h] =295 D; +g‘r’2”

4) [D?

hD]_2f’hDD +2hwﬂD +f’2hD +ho

82w,
ji
Oz;0x +

5) [D?,D?] = 4w;; D; D; + 29241 D, + 26;5-77 D; +
j i
2w3;.
Lemma 2.19 (See [16]): Let g,h € C*(R™) and let iy,...,
insJ1,- - -, jn benonnegative integers with ;" i, =7, > | ji = S,
and r 4 s > 2. Let §;; be the Kronecker symbol. Then

[9D}" ..

n Oh o o ) )
_ Z (ilgai *jlhaig) D;H—Jl S Dintin=dni
= L1 L1

(mod U,y s 2).

.Din hDIt. . Din]

(16)
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Lemma 2.20 (See [17]): Suppose i = (i1, ..
Sy i > 2; then,

.i,) and i =

gDit...Din = gD}" ... Dy (mod Uy 2) 17)
where g is a C™ function of xy,...,2, and k = (ki,...,k,) is a

permutation of (1,...,n).

Finally, we recall the classical Baker—Campbell-Hausdorft type
relation.

Lemma 2.21: (See [25]) Let F; and F}; be two elements in a Lie
algebra V/, then

()
er(t)FiFj _ (Z i AleLFJ> eT(t)Fi.

=0

(18)

IIl. CLASSIFICATION

In this section, we consider the finite dimensional estimation algebra
FE arising from system (3) with state dimension n, linear rank n — 1,
and constant Wong’s €2 matrix. By Theorem 2.12, without the loss of
generality, we can assume 1, ...,Z,-1 € E, x, ¢ E.

By Lemma 2.18, fori,5 =1,...,n — 1

[Lo,l’i} =D;eE
[thj} = 6ij eFE

1 0n
Yi = [Lo, Di] - Zwiij = WinDn + 20z, eE. (19
Jj#En
So we have Lo, 1,21,...,2p-1,D1,..,Dp1,Y1,..., Y, 1 € E.

Lemma 3.1: Any polynomial p € E does not contain x;x,, terms
wherez=1,...,n — 1.

Proof: By Theorem 2.10 we know that any polynomial in £ has at
most degree 2. If p € E contain z;x,, terms, then [D;, p] is a degree
1 polynomial that contains z,,. Since 1,21,...,2,-1 € E, we have
Z,, € E, which contradicts with the assumption that x,, ¢ E. |

Lemma I11.2: If there exists a degree 2 polynomial in E, then we
only need to consider the following two cases.

Case (A): There exists p = x2 + (z7, +--- + mfk) cE.

Case (B): There exists p = 7, +--- + 27 € E, where n is not in
L1y eyl

Proof: By Lemma 3.1, we have all degree 2 polynomials in £ should
be of the form

n n
Po = Z const :rf + Z const x; Ty + Z const x; + const.
i=1 1<j<k<n—1 i=1
(20)
By using orthogonal transformation of x4, .., ,_1, we can assume

n
Po = Zconst x? + const z,, € E.

1=1

We still have L(E) = span{z,...,2,_1} since the transformation
is independent of x,,. If the coefficient of mi is not zero, similarly
by using a translation Z,, = x,, + const, we can assume that py =
S const 22 € E and L(E) does not change. If the coefficient
is zero, consider [Lo,po], po] — const = 27" const z2, so we can
assume there is a polynomial only consisting of items x? if Mitter
conjecture does not hold. We assume py = ;| a;22 € E.
Consider

@n

1 n
pr = 7[Lopolipo] = Y _aiat € B
i=1

1 n
p2 = (Lo p]ipo] = Y _alai € B
i=1

n

[[Lo,Pn-1],po] = ZGEHZE? SN

1=1

p= (22)

N

By the invertibility of Vandermonde matrix and similar arguments of
Wu and Yau [16], we can assume a; € {0, 1}, i.e., Lemma 3.2 holds.H

Therefore, in order to prove Mitter conjecture, it suffices to show
that Case (A) and Case (B) are both impossible. In the following
two lemmas, we provide two useful techniques for subsequent main
theorem.

Lemma 3.3: YT = D,, + ¢(x,,) € E where ¢(x,,) is a C> func-
tion, then ¢(z,,) is a polynomial with at most degree 2.

Proof: Consider

lo4et0}
Ty = Ady T = M—mD;”(mod Un-1) € E(m>1). (23)

If ¢ is not a polynomial, then % # 0sodimE = oo, a contradiction.

Therefore, ¢ must be a polynomial.
We assume ¢(x,,) is a degree [ polynomial and % = egxn + €1,

where e; are constant and e is not zero. If [ > 2, consider
Ro=T; 1 = (e0Zn +e1)D5 ! (mod U, 5) € F
Ry =T, =eyD!, (mod U, ;) € E. (24)

By induction and Lemma 2.19, we can create an infinite sequence in £

Ry = [Rl, R()] = le%DiliQ (mod Uglfg) S

Ryi1 = [Rn, Ro] = constD{" 2"+ (mod Ugy_2)n11-1) € E. (25)

It contradicts with dimFE < oo, so ¢ is a polynomial of degree at
most 2. |

Lemma 3.4: Assume there exists an operator 1'= D, +
pol,(x,) € E.Ifpcanbeof the formpol,(x1, ..., z,) + f(z,) where
f is a C* smooth function, then f(z,,) must be a polynomial of degree
less than or equal to 3.

Proof: If T = D,, + pol,(z,) € E and n = poly(z1,...,2,) +
f(x,,), consider
n—1 1
Ay = [Lo,T] — ;mei = if’(acn) + poly(z1, ..., xy)
+ pol, (z,)D,, € E
1 . n
Ay = [Lo, A] = §f () Dy + Zz_:lpoll(xl, ey Ty ) Dy
+ const D? (mod Uy) € E
1
A3 = [Lo,AQ] = Ef(s) (ZCn)DEL + ;COI’ISt DlD]
i<j
(mod Ul) ck
1
A4 = [L07A3] = §f(4)(l’n)Di (rnod U2) S E
A =[Lo, Ay1] € E. (26)

So f must be a polynomial; otherwise, A; is an infinite sequence in F.
Assume f is a degree k polynomial. If £ > 3, then

By: =A;, = [L07Al—1] = COHStD’:;l (mod kag) ek
By: = A1 = (const z,, + const) D2 (mod Uy, _3) € E. (27)
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Therefore, we can create an infinite sequence in £

By = [By, Bo] = constD{ " * ! (mod Uy,_3y144-2) € B
(28)
a contradiction. |
In the following, we will prove all cases of Lemma 3.2 that do not
occur.
Lemma 3.5: p=2x2 ¢ E.
Proof: Ifpe E,let Zy =p

Zy = |Lo, Zo| — const = x,, D, € E. (29)
Fort:=1,...n—1
Therefore, w;,, = 0 since L(E) = span{x1,...,2p_1}. SO
1 0n
Y, == € FE. 31

Consider

1

Zy = |Lo, Z1) = D2 + 5En(n) €E
1

Zs = |22, 7] = 2D?% — 5Eﬁ(n) c€E

1 1
Z=22: ~ 22 = B0 + Bu) = By (5Et0) 40) € .

(32)

By Theorem 2.14, we can conclude that 3, (n) + n is at most
degree 2 in x,,. Apply Theorem 2.14 again and we have 7 is at most
degree 2 in x,,.

By Theorem 2.10, we have % that are at most degree 2 polynomial
fori=1,...,n—1. So n is at most degree 3 in z1,..,z,_1 with
coefficient in C* functions of z,,. From Remark 2.17, the degree of n
inxy,..,T,_1 is actually no more than 2.

In other words, we have the following:

n—1

1= poly(z1, .. @n1) + Y di(wn)w + g(wn)

i=1

(33)

where ¢; and g are at most degree 2.

So n is at most degree 3 in x1,..,x, and, therefore, is at
most degree 2 by Remark 2.17. We can easily check that ' =<
Lo, 1, 21,...,2_1,D1,...,D, 1 > 4., which contradicts with p €
E. |

Lemma 3.6: Let {iy,...,ix} be a subset of {1,..,n — 1}, then
p=a} + (z} +---+a7 )¢ FE, ie, Case (A) in Lemma 3.2 will
not happen.

Proof: Ifpe E,let Zy =p

Zl = [LO7 ZQ] — const = wnDn + (‘ri1Di1 + -+ kale) e F.

(34
Fort:=1,...n—1
[Di, Zl] = Wniln (mod El) S (35)
Therefore, w;, = 0 since L(F) = span{z1,...,Z, 1}.
0
2y, = a; €E(i=1,..,n—1).
Similar to the process in Lemma 3.5, we have
n—1
n=poly(z1,. . @n1) + Y di(@n)z + g(an) (36)
i=1
0
&Z_ = pol, (1, Tn 1) + Gi(n)- (37)

Therefore, the degree of ¢, is less than 3.

If all ¢;(z,) are not degree 2 for ¢=1,...,n—1, then
Y; =poly(z1,...,@,_1). It is not hard to see that E =<
LO: 1,151, e ~7xn717D17 .. -7Dn71 >L.A,P ¢ E.

If there exists ¢;,(z,) that is degree 2 polynomial, ¢;,(x,) +
const x,, € E. By Theorem 2.12, we can assume xi € E, which
contradicts with Lemma 3.5.

Therefore, Case (A) in Lemma 3.2 will not happen. |

Lemma3.7: Letl = {iy,...,i} beasubsetof {1,...,n — 1}, then
p=a; +---+ai ¢ E,ie.,Case(B)inLemma3.2 will not happen.

Proof:

If the lemma is false, then there are degree 2 polynomials in £ and
all of them are independent of z,, by Lemmas 3.1 and 3.6.

Consider the quadratic part of those degree 2 polynomials and each of
them corresponds to a symmetric matrix. For example, given a degree
2 polynomial g, its quadratic part ¢(®) = aT A 2@, where A (2) is
symmetric. Define 7, = max,ep rank(4 2) ).

Let p be a quadratic polynomial with maximal rank of quadratic
part. By Theorem 2.12, we can assume that p = 2% + --- + 22 € E,
where k = r, by doing orthogonal transformationof 1, .., x,,—1. Then,
X4, Ty, ¢ E unless t; < k and to < k; otherwise, we can create a
polynomial corresponding to a symmetric matrix that has rank more
than k = r,. Moreover, for any degree 2 polynomial ¢ € I, Aq(z) =
(@t ty). then ayyy, = Ounless ¢y < kand to < k.

Let ZO =p
Zy = [Lo, Zo) =21 D1 + -+ xx Dy € E. (38)
Forj=1,...,n—1
1 0n
Y;’ —wjnDn'Fiaixj ceFE (39)
1 on
P;=[2,Y;]=ZEi |2~ ) (mod L(E)) € E.  (40)
2 e al']‘

Consider P; where j = 1, .., k, we know that ;T”j is at most degree
2inzq, ..., xx. Therefore, n is at most degree 2 in x4, . . ., 21, since the
degree must be even by Remark 2.17.

In the previous analysis, we conclude that the quadratic part of any
degree 2 polynomial in £ is independent of x, where s > k. So the
coefficient of quadratic part of nin x4, . . ., 2 is actually constant since

By x(PLye Efori=1,...,k.
Therefore,
k
n:polz(xl,...,mk)JrZaixi+u1 1)
i=1
where a; and u; are functions that are independent with x4, . . ., x.
Consider P; when k < j < n, we have
k
da;
iy € B 42)
= 0z,

By the fact that a, are independent with x4, . . ., z;, and the quadratic

part of any degree 2 polynomial in £ is independent of z; where s > k,
da;,

we have -t = const.
Zj
Therefore,
a; = Z const z; + ¢;(z,) (43)
i>k
k
n:p012(:n1,...,33n,1)—|—Z¢i(:cn)xi+u1. (44)

i=1
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Fori,7 =1,...,n — 1, consider
0%n 0%uy
Gy = 2[D; const = — const = SO
i [ v ]} 83}183;‘] 83}183;‘]
(45)
. . . 2
We know w; is independent with xq,...,zg, so ng;j cannot

contain the quadratic part and, therefore, is independent with x,,.

As aresult, uq is at most degree 3 in x4, ..., x,_1, SO 7 is actually
at most degree 2in x4, ..., x,_1 by Remark 2.17 and the degree 2 part
has constant coefficient. In other words, we have

o Tno1) + Z di(zn)x; + uz(xy)

n = poly(z1, .. (46)
i=1
1
Y; :menJr§(P011($17~~~7$n71)+¢i($n)) ek 47)

If w;,, = 0, then ¢; = const. If w;,, # 0, then ¢, is at most degree 2
by Lemma 3.3. Therefore, no matter whether w;,, = 0 or not, ¢, is at
most degree 2.

If w;,, =0fori=1,...,n — 1, then it is obvious to see that

E =< L071,$1,-"7$n717D17“-,Dn71 >L.A. - (49)
If there exists w;,, # 0, then by Lemma 3.4, we have us is at most
degree 3. As a result, 7 must be a degree 2 polynomial in x4, ..., z,.

By Theorem 2.11, we know that there are no degree 2 polynomial in
F, a contradiction.

By Lemma 3.6 and Lemma 3.7, we can conclude that Mitter conjec-
ture holds. It shows that any polynomial in E is at most degree 1.

Finally, we will finish the complete classification of finite dimen-
sional estimation algebras with arbitrary state dimension n, linear rank
n — 1, and constant Wong’s {2 matrix.

Theorem 3.8: Let E be a finite dimensional estimation algebra
with arbitrary state dimension 7, linear rank n — 1, and constant
Wong’s 2 matrix, then dimFE = 2n or dimFE = 2n + 1. Moreover,
we have F =< Lo, 1,[1}1, . -7xn717D17 ey anl >r1. A Or E =<

Lo,1,z1,...,2p_1,D1,...,D,_1,D, + cx, > 4. in the sense of
isomorphism.
Proof: We have 1, Lo, x1,...,Zn1,D1,...,Dp1,Y1,..., Y1 €
FE, where
1 877
If wj, =0forj =1,..,n — 1,itis obvious to see that
E=< L07171:17"'7xn717D17-~~7Dn71 >L.A. (50)

dimE = 2n, so we only consider the case when w;,, are not all 0.
Without the loss of generality, we assume w1, # 0.

Fori,7 =1,...,n — 1, we have
9%n
2[D;,Y;] — const = 9203, c k. (51)
By the Mitter conjecture, any polynomial in £ must be no more than
degree 1, which concludes that 7 is at most degree 2 in x1, ..., 2,1
since the degree needs to be even.
Therefore, we can assume that 7 has the following form:
n—1
77:P012($17~~-7-Tn—1) +Z¢’L(wn)$l +U1($n) (52)
i=1
1
Yj = twjnDn + i(poll(xl, R .Z‘nfl) + ¢j (.Tn)) c (53)
wjnDn + ¢j (xn) S E (54)

It is obvious to see that if w;, = 0, then ¢;(z,,) = 0, and if wj,, #
0, we have ¢, (x,,) is at most a degree 2 polynomial by Lemma 3.3.

By Lemma 3.4, u;(x,) is at most degree 3, so we have n =
poly(x1,...,z,) since the degree should be even. By Theorem 2.11,
E C span{Lg, 1,21,...,Zn,D1,..., Dy }. 2, ¢ EsodimE < 2n +

Con51der Y., wehave T' = D,, + cx,, € E,sodimE > 2n + 1.
Therefore, if there exists wj,, # 0, dimE = 2n + 1 and

FE =< Lo, 1, Llyeo ey -1, Dl, .oy anly Dn +cxrn >r.A. - (55)
The complete classification is finished. |

Remark 3.9: If w;,, =0fori=1,...,n— 1, thendimFE = 2n and
n = poly(z1,...,Tn-1) + ¢(z,). If there exists 7g, s.t. w;,, 7 0, then
dimE = 2n + 1and n = poly(z1, ..., x,).

IV. FINITE DIMENSIONAL FILTER

The structure of estimation algebras can help us solve the nonlinear
filtering system (3). Actually, if the estimation algebra is finite dimen-
sional and its basis is known, we can construct a solution of the robust
DMZ (9), and therefore, we can solve system (3). In detail, we have the
following two results.

Theorem4.1: Let E be the estimation algebra of system (3). Suppose
E is finite dimensional with linear rank n — 1 and constant Wong
matrix. If dimE =2n+1, n =321 _ ai;ziz; + 310, bixi +d,
where a;;,b;,andd are constant, then the robust DMZ equation (9)
has a solution for all ¢ of the form

u(t,xz) = eT(®) (H em(t)wi> <H esi(t)Di> ettog, (56)
i=1

i=1
where r;, s;, and T satisfy the following ordinary differential equation:
53(8)=32720 hyay; () +ri(0)+3257 5 (Hw;s (1 <i<n—1)
8, (1) =7 () +Z]’:1 s (Dwin
ri(t) =3 25—y 85(t)(aij+az) (1 <i<n)
T'(0) = =G (s(8), 7(0)+3 75—y v (s (0) (XA harhie)

(57)
where

Gi(s(t),r(t) =

Zs/j(t) ( )+ Zwﬁsi(t)>

i=1 i=1

n
1
t) (Z wijwjk + i(alk + a;m))
j=1

+ ) sk (D, (58)
Jik=1
(We define the order of the product to be [, A; = A;...A,.)
Proof: By Lemma 2.21, we have
+o0 1
T i r(t) T i
e OEy = (Z i Adr, FJ-) e r, (59)
1=0

Therefore,

n
e iPif, = (Lo —5i(t) ZwijD
j=1

- Siét) (i (aij +azi)x; + bi>

j=1
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s2(t) [ D,
+ # <Z wd — a> esi (D (60)
j=1
e’ OPiD; = (D + wjisi(t))e (VP (61)
2(¢t
eri(t)zi Lo = (LO _ Ti(t)Di + LQ()) eri(D)zi (62)
e”(t):” Dj = (D] — Ti(t)(gij)ew(t)xi. (63)
Then,
8 n n
8—1; - (T’(t) + ZT;(t)am) u+A+> B (64)
i=1 j=1
where
A=l (H e’“i(ﬂ%) (H 6Si(t)Di> LoetLoo-O
=1 =1
n 71
t) (H eri(t)zi> (H esi<t)Di>
i=1 i=1
(s, (t)D;e® (MPi) < [] e " ) etlogy.  (65)
i=j+1

By (60)—(63), we have
n 1 n )
A= <Lo - ;Ti(t)Di + 5 ;Ti (t)

3,j=1

-3 Z (i aij + aji)T; + bi)

j=1

+ % ng(t) (Z wi; — an‘)
i=1 j=1

— Z (t) (Z wijwjk + %(aik + aki))

1<i<k<n

+ Z sp(t)rj(Hwi; | v

(66)
G k=1
B; = s/j(t) < —r;(t z:wﬂsZ t)) (67)
Therefore,
% = (Lo + ; <—Tz‘(t) - ;Sj (t)wji + SQ(U) D;
+Z (Z (t)(as; +aﬂ)+7' (t )) Ty
+T'(8) + G (s(t), m(1))u (68)
where
G1(s(t),r(t)) =

S5 (—r](t) v _Zwﬁsxt))

i=1 =1
- Z (Z WijWjk + azk + akl))
1<i<k<n =
+ Z sk ()7 (1w, (69)
k=1

We know that h; are linear from Theorem 2.11. Suppose h; =
Z;’;i h;jzj + e;. By the robust DMZ (9), we have

au n—1 m
9t (Lo + Z (Z hjiy; (t)> D;
i—1 \j=1

m n—1
1
+5 Z t)y;( )(Z hikhjk>> u (70)
j=1 k=1
Comparing (68) and (70), we know that u is the solution of the robust
DMZ equation if

si(t) = 3270y hyay (8) +ra(t) + 220 s (Hwys (1 < —1)
s (t) = ra(t) + 2571 s5(Hwin
ri(t) = 5 2202 85 () (ai; +aji) (1 <n)
(71)

1 m n—1

5 Z t)y;(t (Z hzkhgk>
(72)

Equation (71) is a proper determined ordinary linear equation so there

exists a unique solution. By (72), we know that 7" is determined by

s(t),r(t), and y(t). As a result, we can construct a solution for the

robust DMZ (9).

Similarly, for the case when dimF = 2n, we have the following
theorem.

Theorem 4.2: Let E be the estimation algebra of system (3).
Suppose E is finite dimensional with linear rank n — 1 and constant
Wong matrix. If dimE = 2n, n = Z:L;il @iy + 30 b +
d+ ¢(x,,), where a;;,b;, and d are constant, then the robust DMZ
(9) has a solution for all ¢ of the form

n—1 n—1
u(t,z) = eT(® <H en‘(i)wz') (H esi(t)Di> etLUUO (73)
i=1 =1

where r;, s;, and 1" satisfy the following equation:

s, (1) =270 hyiys () +ri () +3021 55 (Hwys (1<i<n—1)
ri(t) =% 3021 85(8)(ai+as) (1<i<n—1)
T'(t)=—Ga(s(t),r(t)+5 211 vi (D), ()(

where

Ga(s(t),r(t)) =

n—1
(rj + Zwﬂsl )
1

K21 hahi)
74)

Jj=

1 n—1 1 n—1 1 n—1 n—1
i=1 i=1 i=1 j=1

>

1<i<k<n-1

n—1
1
t) <Z WijWik + 5((111@ + aki))
j=1
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n—-1

+ ) k() (Hws;.

k=1

(75)

Proof: The proof is similar to Theorem 4.1. The only slight differ-
ence is that in this case 17 may not be degree 2 polynomial. However,
¢ will not appear in calculation by (60)—(63). So the whole process of
the proof can be transferred to this theorem. |

Finally, we illustrate a nontrivial finite dimensional recursive filter
that satisfies our conditions to show that the case we focus on really
happens. Let state dimension n = 2d 4 1 and observation dimension
m = 2d, then consider the filtering system

er2i-1

er2i-1 4 e%2i
ev2i

dl’gi,l(t): ($2d+1+ ) dt+d’t}2i,1(t), ’Lzl,vd

daigl(t) - (LEQdJrl + ) dt + dUgi(t), = 1, .. .,d

e*2i-1 4 eT2i
n
dx2g41(t) = Tag41 + —=—— (21 + - + 224) + dvag11 (1)
vn—1

(76)
It is easy to see that the linear rank is n — 1 and the Wong matrix

ﬁ,i;ﬁn,j:n

-1 . .
V-1 L= "] #n
0, otherwise

Q= (wiz) =

is constant. We can further check that

2 (%) (ix) Yy

n= (2d + 1)$§d+1 + T2d+1
NG 2 /2d 2 24
+ | —=—— ] +Y @l +d+1 (77)
(F5) (%) %

and its corresponding estimation algebra is finite dimensional with
following basis:

E =< Lo, ].7 L1yeo oy L1, Dl, .oy Dn—h Dn + \/ﬁl’n >L.A.
(78)
Therefore, this filter is a finite dimensional recursive filter. Given the
observation history y;(t), j = 1,...,2d, we can explicitly write down

the solution of the robust DMZ equation according to Theorem 4.1.

V. CONCLUSION

In this article, we classify all finite dimensional estimation algebras
with linear rank n — 1 and constant Wong’s {2 matrix. The result is that
estimation algebras with these conditions can be divided into two types
in the sense of isomorphism. It is the first classification of nonmaximal
rank estimation algebras. By the classification result, we can construct
all finite dimensional recursive filters that correspond to the estimation
algebras with linear rank n — 1 and constant Wong’s €2 matrix.
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