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a b s t r a c t

Feedback particle filter is a novel Monte Carlo algorithm with identically distributed particles evolving
under feedback control structure, such that the Kullback–Leibler divergence between the actual
posterior of the state and the common posterior of any particle can be minimized. In this work,
we consider the time-varying linear systems and explicitly analyze the errors between the optimal
solution obtained by Kalman filter and the estimates given by feedback particle filter and the
optimal transportation particle filter, respectively. These theoretical analyses are also supported by
the numerical simulation, where we compare the performances of particle filter, feedback particle
filter, optimal transportation particle filter and Kalman filter.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
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1. Introduction

Filtering problems arise in a variety of areas such as control, fi-
ance, aerospace and so on. The general continuous time-varying
iltering system can be modeled as the following stochastic dif-
erential equations (SDEs) on the probability space (Ω, F , P):{
dXt = f (Xt , t)dt + g(Xt , t)dBt ,

dZt = h(Xt , t)dt + dWt ,
(1)

where t ∈ [0, T ], Xt is the n-dimensional state, Zt is the m-
imensional observation with Z0 = 0, {Bt}t≥0 and {Wt}t≥0 are
- and m-dimensional Brownian motions, respectively, with[
dBtdBT

t

]
= Qtdt and E

[
dWtdW T

t

]
= Rtdt . Here, we call (1)

‘time-varying’’ system since the drift term f , diffusion term g ,
bservation term h and the variances of the noises have the
xplicit dependence on time t .
Define the σ -algebra formed by the observations till to time

as Ft := σ {Zs : 0 ≤ s ≤ t} = σ (
⋃

0≤s≤t Z
−1
s (B(Rm))), where

(Rm) is the Borel set of Rm. The state process Xt is indirectly
bserved through the observation process Zt and the goal of the
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standard filtering problem is to seek the optimal estimate of the
state Xt given the observation history Ft . The ‘‘optimality’’ here
refers to minimizing the mean squared error between Xt and its
estimate, and the optimal estimate is E[Xt |Ft ] (Jazwinski, 1970).
Obviously, this problem can be completely solved if we can get
the conditional density function p(Xt |Ft ) of the state Xt given
Ft . When system (1) is linear Gaussian, the density p(Xt |Ft ) is
Gaussian and the optimal solution can be obtained by the famous
Kalman filter (KF) (Kalman & Bucy, 1961).

When system (1) is nonlinear, things get much more compli-
cated to obtain p(Xt |Ft ). In a general sense, one idea is to solve
the Duncan–Mortensen–Zakai (DMZ) equation (Zakai, 1969), whic
is satisfied by the unnormalized conditional density. And this
equation can be efficiently solved by the Yau–Yau algorithm (Luo
& Yau, 2013; Yau & Yau, 2008).

The other one is based on the Monte Carlo methods. Par-
ticle filter (PF) is one of the most famous algorithm (Gordon,
Salmond, & Smith, 1993), which uses the empirical distribution
formed by a large number of particles to approximate the pos-
terior distribution of the state. However, PF suffers from some
disadvantages such as weight degeneracy problem. Recently, an
alternative approach of PF, named feedback particle filter (FPF),
is proposed in Yang, Mehta, and Meyn (2013). Apparently, the
empirical distribution is determined by the number of particles
N and the conditional density p(X i

t |Ft ) of the particles X i
t , 1 ≤

i ≤ N . In FPF, all particles {X i
t}

N
i=1 are identically distributed and

evolve according to the following SDE:

dX t = f (X t , t)dt + g(X t , t)dBt + u(X t , t)dt + K (X t , t)dZt , (2)

where Bt is an independent copy of state noise Bt , p(X0) = p(X0),
he gain functions u(x, t) and K (x, t) are obtained by minimizing
data mining, AI training, and similar technologies.
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he Kullback–Leibler divergence between the actual posterior
(Xt |Ft ) and the posterior p(X t |Ft ) of the particle. And the equa-

tions satisfied by the optimal control input {u(x, t), K (x, t)} for
(2) can be easily obtained following the trivial extension of Yang,
Laugesen, Mehta, and Meyn (2016) from time-invariant system to
time-varying system.

As for the convergence of FPF, Taghvaei and Mehta analyzed
linear FPF in Taghvaei and Mehta (2018b), and analyzed the opti-
mal transport formulation of the linear Gaussian FPF in Taghvaei
and Mehta (2018a), respectively. Later, in Taghvaei and Mehta
(2020), a detailed error analysis was carried out for the de-
terministic form of the optimal FPF. Chen et al. analyzed the
mean squared error of FPF for time-invariant continuous linear
systems in Chen and Yau (2023), and analyzed the Lp error of
FPF for nonlinear systems with continuous states and discrete
observations in Chen, Luo, Shi, and Yau (2022).

However, all the existing discussions about FPF are limited
to time-invariant cases. In the real world, due to the reasons
outside and inside the system, parameter changes are inevitable.
So strictly speaking, almost all systems belong to the category
of time-varying systems. Examples include the time-varying con-
trol in unmanned aerial vehicles (Magree & Johnson, 2016) and
variable interest rate in life cycle permanent income hypothe-
sis (Tanizaki, 1996).

In this paper, we consider the linear Gaussian time-varying
systems. We investigate FPF and also provide another way to
formulate the FPF, which optimally transport the particles from
prior distribution to posterior distribution. In this new formula-
tion, the noise term in the evolution equation is replaced by a
deterministic one and we call this filter optimal transportation
particle filter (OTPF). Furthermore, the estimation errors of two
algorithms have also been explicitly analyzed.

The contributions of this work can be summarized as follows.

• In linear case, we provide the uniform estimates of the state
Xt , sample mean m(N)

t and covariance P (N)
t of FPF, which can

be found in Theorem 3.
• The Lp errors of the estimates provided by the FPF and OTPF

are explicitly provided. Furthermore, it can be seen that the
Lp asymptotic error of OTPF is zero while that of FPF is order
O(1/

√
N) for any p ≥ 1, where N is the number of particles.

And these results are given in Theorems 4 and 5.

Notations: For two positive numbers a and b, the asymptotic
inequality a ≲p,q b means that a ≤ Cp,qb, where Cp,q is a
positive finite parameter depending on p and q. Let ∥·∥ represent
the Euclidean norm of vectors and the 2-norm of matrices. The
Frobenius matrix norm of a given (n1 × n2)-matrix A is defined
by

∥A∥
2
F = Tr

(
ATA

)
with the trace operator Tr(◦).

Besides, ∀ p ≥ 1, we define the Lp norms ∥◦∥2,p := E1/p
[∥◦∥

p
]

nd ∥◦∥F,p := E1/p
[∥◦∥

p
F] for any vectors and matrices satisfying

[∥◦∥
p
] < ∞. For an (n × n)-matrix A, let λmin(A) and λmax(A)

denote the minimal and maximal eigenvalues of A, respectively.
We define the logarithmic norm µ(A) of an (n × n)-square matrix
A by

µ(A) := inf
{
α : ∀ x ∈ Rn×1, xTAx ≤ α ∥x∥2}

= λmax
((
A + AT) /2) .

One thing to note is that µ(·) is not a matrix norm since it is
not positive-valued. It can be seen that

(
A + AT

)
/2 is negative

semidefinite as soon as µ(A) < 0. And we also have

µ(A) ⩾ max{Re(λ) : λ is the eigenvalue of A}, (3)

where Re(λ) stands for the real part of the eigenvalues λ. Let Sn
and S+ represent the sets of all n×n real symmetric matrices and
n

2

real positive definite matrices, respectively. Let A, B be (r × r)-
matrices, ◦i,j denote the (i, j)-th entry of any matrix ◦ with 1 ≤

i, j ≤ r , and ◦(i,k),(j,l) denote the (r(i− 1)+ k, r(j− 1)+ l)-th entry
of an (r2 × r2)-matrix ◦ with 1 ≤ i, j, k, l ≤ r . Then we define the
tensor product A ⊗

♯ B which is an
(
r2 × r2

)
-matrix with entry

computed by

(A ⊗
♯ B)(i,k),(j,l) = Ai,kBj,l, ∀ 1 ≤ i, k, j, l ≤ r.

And we also define the symmetric tensor product A⊗s B which is
an
(
r2 × r2

)
-matrix with entry computed by:

(A ⊗s B)(i,j),(k,l) = Ai,kBj,l + Ai,lBj,k + Aj,lBi,k + Aj,kBi,l,

∀ 1 ≤ i, k, j, l ≤ r . The angle bracket ⟨M⟩ of an r-column-vector
continuous martingale M is the (r × r)-matrix ⟨M⟩ such that
MT

− ⟨M⟩ is a martingale. More generally, the angle bracket
M⟩

♯ of an (r × r)-matrix valued continuous martingale M is the
r2 × r2

)
-matrix ⟨M⟩

♯ such that M ⊗
♯ MT

− ⟨M⟩
♯ is a martingale.

The organization of this paper is as follows. In Section 2, we
hall introduce three filtering algorithms, i.e., KF, FPF and OTPF.
n Section 3, we shall analyze the errors between the optimal
olution provided by KF and the estimates given by FPF and OTPF.
n Section 4, we will use a linear numerical example to verify our
nalyses. The conclusion will be drawn in Section 5.

. Linear filtering algorithms

In the following sections, we will focus on the linear Gaussian
ase of the general system (1), i.e., we consider the following
inear system:{
dXt = AtXtdt + GtdBt ,

dZt = HtXtdt + dWt ,
(4)

where the initial state X0 ∼ N(m0, P0) with P0 > 0 is assumed to
be Gaussian and also independent of Brownian motion processes
{Bt}t≥0 and {Wt}t≥0. Let us denote

Qt := GtQtGT
t , St := HT

t R
−1
t Ht . (5)

We assume that the eigenvalues of Q̃t and St are uniformly
bounded positive throughout the reminder of this paper.

2.1. Kalman filter

It is well known that the conditional distribution of the state Xt
given observation history Ft for (4) is Gaussian. More precisely,
p(Xt |Ft ) = N(mt , Pt ), where mt and Pt are the conditional mean
and covariance of the state Xt given the observation history
Ft , respectively. It is well known that mt and Pt satisfy the
KF (Jazwinski, 1970):

dmt =Atmtdt + PtHT
t R

−1
t (dZt − Htmtdt) , (6)

dPt
dt

= Ricc(Pt ), (7)

where Ricc(·) : S+
n → Sn is the Riccati drift function defined for

any Σ ∈ S+
n by

Ricc(Σ) := AtΣ + ΣAT
t − ΣStΣ + Q̃t .

We make the following assumption w.r.t. system (4).

Assumption 1. The system (4) is uniformly completely observ-
able and uniformly completely controllable (Jazwinski, 1970).

It has been proved that, under Assumption 1, for any P0 ∈ S+
n ,

the time-varying Riccati flow Pt is well defined and a unique
solution exists ∀ t ≥ 0. Furthermore, Pt is uniformly bounded,
see Bishop and Del Moral (2017) for more details.
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.2. Linear FPF

It can be easily checked that, for linear system (4), the explicit
orm of FPF (2) with the optimal gain functions is

X t =AtX tdt + GtdBt + P tHT
t R

−1
t

(
dZt − Ht

X t + mt

2

)
, (8)

which is the conditional Mckean–Vlasov diffusion process, and
mt and P t are the conditional mean and covariance of X t given
Ft , respectively. For diffusion process (8), similar to Taghvaei and
Mehta (2016), we have the following result.

Lemma 1. Consider KF (6)–(7) and Mckean–Vlasov diffusion
process (8). If m0 = m0, P0 = P0, then ∀ t ≥ 0, we have
mt = mt , P t = Pt . Furthermore, if p(X0) = p(X0), then we have
p(X t |Ft ) = p(Xt |Ft ), ∀ t ≥ 0.

In the following contents, we shall write mt = mt , P t = Pt
as we assume p(X0) = p(X0). However, we cannot solve the
ckean–Vlasov SDE (8) because the exact P t and mt cannot be
btained. Instead, we use the following evolution equation for the
particles {X i

t}
N
i=1:

X i
t =AtX i

tdt + GtdBi
t

+ P (N)
t HT

t R
−1
t

(
dZt − Ht

X i
t + m(N)

t

2
dt

)
,

(9)

where m(N)
t and P (N)

t are the sample mean and covariance of
{X i

t}
N
i=1, respectively, which are computed by

mt ≈ m(N)
t :=

1
N

N∑
i=1

X i
t ,

P t ≈ P (N)
t :=

1
N − 1

N∑
i=1

(
X i
t − m(N)

t

)(
X i
t − m(N)

t

)T
.

(10)

The initial particles are generated according to X i
0

i.i.d
∼ N(m0, P0),

nd {Bi
t}

N
i=1 are N independent copies of Bt . The evolution equa-

tions of m(N)
t and P (N)

t are listed in the following lemma.

Lemma 2. The evolutions of m(N)
t and P (N)

t satisfy

dm(N)
t =Atm

(N)
t dt +

1
√
N
dM t

+ P (N)
t HT

t R
−1
t

(
dZt − Htm

(N)
t dt

)
,

dP (N)
t = Ricc(P (N)

t )dt +
1

√
N − 1

dMt ,

(11)

here M t is a vector-valued martingale with d
dt ⟨M⟩t = Q̃t , and M is

matrix-valued continuous martingale with d
dt ⟨M⟩

♯
t = 4P (N)

t ⊗s Q̃t .

The proof can be found in Appendix A.

.3. Linear OTPF

Actually, the optimal control law {u, K } in FPF (2) is not
nique (Taghvaei & Mehta, 2016). To find a unique control law,
ne way to formulate the filtering problem is to use optimal
ransportation. In this way, the particles following the initial
istribution p(X0) can be optimally transported to particles fol-
owing the posterior p(Xt |Ft ). Next, we shall review the optimal
ransportation briefly.
3

Consider two probability measures µX and µY defined on
Rn, both possessing finite second moments. The Monge optimal
transportation problem with a quadratic cost aims to minimize

min
T

E
[
∥T (X) − X∥

2] (12)

ver all measurable maps T : Rn
→ Rn such that

X ∼ µX , T (X) ∼ µY .

The minimizer T ∗ is called the optimal transport map between
µX and µY , if it exists.

Theorem 1 (Optimal Map Between Gaussians Peyré, Cuturi, et al.,
2019). For the optimization problem (12), if µX = N (mX , PX ) and
µY = N (mY , PY ) are Gaussian distributions, with PX , PY > 0, then
the optimal transport map T ∗ between µX and µY is given by

T ∗(x) = mY + P
1
2
Y

(
P

1
2
Y PXP

1
2
Y

)−
1
2

P
1
2
Y (x − mX ) .

Now we aim to construct a stochastic process {̃Xt} with evo-
lution equation

dX̃t = ũ(̃Xt , t)dt + K̃ (̃Xt , t)dZt , (13)

and we hope p(̃Xt |Ft ) is equal to the posterior density p(Xt |Ft )
of the state Xt for all t ≥ 0. The evolution of {̃Xt} is not
unique (Taghvaei & Mehta, 2016) and we want to obtain an
optimal evolution equation by the following time stepping op-
timization procedure:

(1) Divide the time interval [0, T ] into N1 segments equally and
denote the instants 0 = t0 < t1 < · · · < tN1 = T .

(2) Let X̃0 ∼ p(X0), i.e., p(̃X0) = p(X0).
(3) For each time step [tk, tk+1], evolve X̃t according to

X̃tk+1 = T ∗

tk,tk+1
(̃Xtk ), ∀ 0 ≤ k ≤ N1 − 1,

where T ∗
tk,tk+1

is the optimal transport map from p(Xtk |Ftk )
to p(Xtk+1 |Ftk+1 ).

(4) Let N1 → ∞, we obtain a SDE (13) for X̃t with optimal
{ũ, K̃ } which is referred to the OTPF.

The detailed procedures can refer to Taghvaei and Mehta (2016).
Following the similar procedures in Proposition 3 of Taghvaei and
Mehta (2016), we can get the following conclusion.

Proposition 2. Under Assumption 1, for the linear Gaussian system
(4), the SDE in OTPF is

dX̃t =Atmtdt + PtHT
t R

−1
t (dZt − Htmtdt)

+ Θt
(̃
Xt − mt

)
dt,

(14)

where Θt is the solution to

ΘtPt + PtΘt = Ricc(Pt ). (15)

If p(̃X0) = p(X0), then ∀ t ≥ 0, we have p(̃Xt |Ft ) = p(Xt |Ft ).

It is known that (15) is a Lyapunov equation and it admits a
unique solution given Pt > 0. Furthermore, Θt is symmetric and
can be written in the following form:

Θt = At −
1
2
PtSt +

1
2
Q̃tP−1

t + Θ̄tP−1
t , (16)

where Θ̄t is an n × n skew symmetric matrix and is the solution
to

Θ̄tP−1
t + P−1

t Θ̄t

=AT
− At +

1
(PtSt − StPt) +

1 (
P−1Q̃t − Q̃tP−1) .
t 2 2 t t
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imilar to linear FPF, we cannot obtain the exact Pt and mt in
14). Instead, we use the following evolution equation for the N
articles {̃X i

t}
N
i=1:

X̃ i
t =Atm̃

(N)
t dt + P̃ (N)

t HT
t R

−1
t

(
dZt − Htm̃

(N)
t dt

)
+ Θ

(N)
t

(
X̃ i
t − m̃(N)

t

)
dt,

(17)

here m̃(N)
t and P̃ (N)

t are the sample mean and covariance of
X̃ i
t}

N
i=1 similar to (10),

(N)
t :=At −

1
2
P (N)
t St +

1
2
Q̃t

(
P (N)
t

)−1
+ Θ̄

(N)
t

(
P (N)
t

)−1
,

and Θ̄
(N)
t is the solution to

Θ̄
(N)
t

(
P (N)
t

)−1
+

(
P (N)
t

)−1
Θ̄

(N)
t

=AT
t − At +

1
2

(
P (N)
t St − StP

(N)
t

)
+

1
2

[(
P (N)
t

)−1
Q̃t − Q̃t

(
P (N)
t

)−1
]

.

(18)

he initial particles are generated according to X̃ i
0

i.i.d
∼ N(m0, P0).

imilar to Lemma 2, we can obtain the evolution equations of m̃(N)
t

nd P̃ (N)
t .

emma 3. The evolutions of m̃(N)
t and P̃ (N)

t satisfy

m̃(N)
t =Atm̃

(N)
t dt + P̃ (N)

t HT
t R

−1
t

(
dZt − Htm̃

(N)
t dt

)
, (19)

d̃P (N)
t = Ricc(̃P (N)

t )dt. (20)

. Error analysis

In this section, we shall analyze the estimation errors of the
PF and OTPF for linear system (4).

.1. Error analysis of linear FPF

First of all, we need to make two assumptions.

ssumption 2. At in system (4) satisfies supt≥0 µ(At ) < 0.

By (3), it is known that, under this assumption, At is Hurwitz
uniformly w.r.t. time t . In other words, Assumption 2 makes sure
that the linear system (4) is stable.

Assumption 3. St defined in (5) is a scalar matrix, i.e.,

t = ρ(St )I, for some scalar ρ(St ) > 0, (21)

here I is an (n × n)-dimensional identity matrix.

Before we continue, we need to give the uniform estimates
of the real state Xt of the linear system (4), particle state X i

t in
(9), sample mean m(N)

t and sample covariance P (N)
t of linear FPF

defined in (11).

Theorem 3. For all p ≥ 1, We have the following uniform
estimates:

• If Assumptions 1 and 2 are satisfied, then

sup
t≥0

Tr(P (N)
t

)
2,p

≲n,p C, (22)

sup
t≥0

∥Xt∥2,p ≲n,p C, (23)

sup ∥mt∥2,p ≲n,p C; (24)

t≥0

4

• If Assumptions 1–3 are satisfied, then

sup
t≥0

m(N)
t


2,p

≲n,p C, (25)

sup
t≥0

X i
t


2,p ≲n,p C, ∀ 1 ≤ i ≤ N, (26)

where C is a positive constant and n is the dimension of the state.

We postpone the proof to Appendix B to avoid distraction.
Now we are ready to give the estimation error of FPF (9).

Theorem 4. The Frobenius norm of the sample covariance matrix
fluctuations satisfies the diffusion equation

d
P (N)

t − Pt
2
F

=2 Tr
{[

At + AT
t −

1
2

(
P (N)
t + Pt

)
St

−
1
2
St
(
P (N)
t + Pt

)](
P (N)
t − Pt

)2}
dt

+
2

N − 1

[
Tr
(
P (N)
t Q̃t

)
+ Tr

(
P (N)
t

)
Tr
(
Q̃t
)]

dt

+
2

√
N − 1

dMt ,

(27)

here Mt is a martingale with d⟨M⟩t = 4 Tr{P (N)
t (P (N)

t −Pt )Q̃t (P
(N)
t −

t )}dt. And the Euclidean norm of the sample mean vector fluctua-
ions satisfies the diffusion equation

d
m(N)

t − mt

2(
m(N)

t − mt

)T [
At + AT

t − P (N)
t St − StP

(N)
t

] (
m(N)

t − mt

)
dt

+ Tr
(

1
N
Q̃t +

(
P (N)
t − Pt

)
St
(
P (N)
t − Pt

))
dt

+ 2
(
m(N)

t − mt

)T (
P (N)
t − Pt

)
St (Xt − mt) dt + dMt ,

(28)

where Mt is a martingale with d⟨M⟩t = 4
(
m(N)

t − mt

)T
·

1
N Q̃t +

(
P (N)
t − Pt

)
St
(
P (N)
t − Pt

))(
m(N)

t − mt

)
dt. Furthermore,

f Assumptions 1–3 hold, then ∀ p ≥ 1, we have the following error
stimates:P (N)

t − Pt

F,p

≲n,p eαt/2 1
√
N

+
1

√
N

(29)m(N)
t − mt


2,p

≲n,p eαt/8 1
√
N

+
1

√
N

(30)

for all N > 1, t ≥ 0, where α := 2 supt≥0 µ(At ).

roof. Apparently, (29)–(30) hold when t = 0 by Theorem B.3
n Chen and Yau (2023).

Step 1: Define the error matrix Ξt := P (N)
t − Pt . We aim to

rove (27).
According to (7) and (11), we have

Ξt =

[
At −

1
2

(
P (N)
t + Pt

)
St

]
Ξtdt

+ Ξt

[
At −

1 (
P (N)
t + Pt

)
St

]T
dt +

1
√ dMt ,
2 N − 1
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w
Q̃

=

f

◦

u

γ

F

T
(

w

T
T

3

A

t

f

f
f

here Mt is a matrix-valued martingale with d
dt ⟨M⟩

♯
t = 4P (N)

t ⊗s

t . Using Itô’s lemma, we have

dΞ 2
t

Ξt

[
At −

1
2

(
P (N)
t + Pt

)
St

]
Ξtdt

+ Ξ 2
t

[
At −

1
2

(
P (N)
t + Pt

)
St

]T
dt

+

[
At −

1
2

(
P (N)
t + Pt

)
St

]
Ξ 2

t dt

+ Ξt

[
At −

1
2

(
P (N)
t + Pt

)
St

]T
Ξtdt

+
1

N − 1

[
PN
t Q̃t + Q̃tPN

t + Tr
(
Q̃t
)
PN
t + Tr

(
PN
t

)
Q̃t
]
dt

+ dMt
Ξt

√
N − 1

+
Ξt

√
N − 1

dMt ,

rom which we obtain (27) and dMt = Tr (ΞtdMt) =
∑

1≤k,l≤n
Ξt (l, k)dMt (k, l), with ◦(k, l) denoting the (k, l)-th entry of matrix
. Therefore
d
dt

⟨M⟩t =

∑
1≤k,l,k′,l′≤n

Ξt (l, k)Ξt (l′, k′)
[
P (N)
t (k, k′)Q̃t (l, l′)

+ P (N)
t (k, l′)Q̃t (l, k′) + P (N)

t (l, l′)Q̃t (k, k′)

+P (N)
t (l, k′)Q̃t (k, l′)

]
=4 Tr

{
P (N)
t Ξt Q̃tΞt

}
.

Step 2: We shall prove (29) in this step.
Rewrite (27) as d ∥Ξt∥

2
F = Lt ∥Ξt∥

2
F dt +

2
√
N−1

dMt , where

d
dt

⟨M⟩t ≤4µ(Q̃t ) Tr
(
P (N)
t

)
∥Ξt∥

2
F , and

Lt ∥Ξt∥
2
F ≤4 sup

t≥0
µ(At ) ∥Ξt∥

2
F +

4
N − 1

Tr
(
P (N)
t

)
Tr
(
Q̃t
)

sing Assumption 3. Define

α :=2 sup
t≥0

µ(At ), βt :=
4

N − 1
Tr
(
P (N)
t

)
Tr
(
Q̃t
)
,

t :=
16

N − 1
µ(Q̃t ) Tr

(
P (N)
t

)
.

or all p ≥ 1, using (22), we have

sup
t≥0

∥βt∥2,p = sup
t≥0

4
N − 1

Tr
(
Q̃t
) Tr(P (N)

t

)
2,p

≲n,p
1
N

,

sup
t≥0

∥γt∥2,p = sup
t≥0

16
N − 1

µ(Q̃t )
Tr(P (N)

t

)
2,p

≲n,p
1
N

.

hen by Lemma 7.1 in Del Moral and Tugaut (2018), we obtain
29).

Step 3: We aim to prove (28).
Define et := m(N)

t − mt . Comparing (6) and (11), we can get

det =

[(
At − P (N)

t St
)
et + ΞtSt (Xt − mt )

]
dt

+
1

√
N
dM t + ΞtHT

t R
−1
t dWt ,

here M t is defined in (11). Using Itô’s lemma, we obtain (28)
with dMt := 2eTt

(
1

√
N
dM t + ΞtHT

t R
−1
t dWt

)
.

Step 4: We shall prove (30) in this step.
5

Rewrite (28) as d ∥et∥2
= Lt ∥et∥2 dt + dMt , where

d
dt

⟨M⟩t ≤4
(

1
N

Tr(Q̃t ) + µ(St ) ∥Ξt∥
2
F

)
∥et∥2 ≜ γ̄t ∥et∥2 ,

Lt ∥et∥2
≤µ(At ) ∥et∥2

+
1
N

Tr
(
Q̃t
)
+ µ(St ) ∥Ξt∥

2
F

+ 2 |µ(At )|−1
∥Ξt∥

2
F ∥St∥2 (

∥mt∥
2
+ ∥Xt∥

2)
≜µ(At ) ∥et∥2

+ β̄t

using Assumption 3. By (22)–(24) and (29), we have

sup
t≥0

β̄t

2,p ≤ sup

t≥0

{
Tr
(
Q̃t
)
/N + µ(St ) ∥Ξt∥

2
F,2p

+ 2
√
2 |µ(At )|−1

∥Ξt∥
2
F,4p ∥St∥2

·
(
∥mt∥

2
2,4p + ∥Xt∥

2
2,4p

)}
≲n,p

1
N

,

sup
t≥0

∥γ̄t∥2,p ≤4 sup
t≥0

{
1
N

Tr(Q̃t ) + µ(St ) ∥Ξt∥
2
F,2p

}
≲n,p

1
N

.

herefore using Assumption 2 and Lemma 7.1 in Del Moral and
ugaut (2018), we obtain (30). □

.2. Error analysis of linear OTPF

We first need to give an assumption.

ssumption 4. The initial sample covariance P̃ (N)
0 in OTPF (17)

is positive definite almost surely.

Now we can given the estimate of the errors of OTPF.

Theorem 5. If Assumptions 1 and 4 hold, then ∀ p ≥ 1, we have
he following error estimates for OTPF (17):̃P (N)

t − Pt

F,p

≲n,p
1

√
N
e−2ϱt (31)m̃(N)

t − mt


2,p

≲n,p
1

√
N
e−ϱt (32)

or all N > 1, t ≥ 0, where ϱ is a positive constant parameter
depending on the system (4).

Proof. When t = 0, (31)–(32) hold (Chen & Yau, 2023).
Step I: The state transition matrix associated with a smooth

low of any (r × r)-matrix U : τ ↦→ Uτ is denoted by Es,t (U) s.t.
or any s ≤ t ,

d
dt

Es,t (U) = UtEs,t (U) and ∂sEs,t (U) = −Es,t (U)Us

with Es,s = I, the identity matrix. Define Φs,t := Es,t (A − PS) and
Φ

(N)
s,t := Es,t (A − P̃ (N)S). Since both Pt and P̃ (N)

t satisfy the Riccati
equation by (7) and (20), then according to Corollary 4.9 in Bishop
and Del Moral (2017), using Assumptions 1 and 4, it can be known
thatΦs,t

 ≲n e−ϱ(t−s),

Φ(N)
s,t

 ≲n e−ϱ(t−s) a.s., (33)

where ϱ is a positive constant.
Step II: Define Ξ̃t := P̃ (N)

t − Pt . By (7) and (20), we know

dΞ̃t = (At − P̃ (N)
t St )Ξ̃tdt + Ξ̃t (At − PtSt )Tdt, (34)

from which we obtain

Ξ̃t = Φ
(N)
0,t Ξ̃0Φ

T
0,t . (35)

Therefore by (33), we get
Ξ̃t


F ≲n e−2ϱt

Ξ̃0

F a.s., from which

we obtain (31).
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Step III: Define ẽt := m̃(N)
t − mt . By (6) and (19), we get

dẽt =

(
At − P̃ (N)

t St
)
ẽtdt + Ξ̃tHT

t R
−1
t dIt , (36)

where It := Zt −
∫ t
0 Hsmsds is a martingale with d⟨I⟩t = Rtdt . From

(36), we have

ẽt = Φ
(N)
0,t ẽ0 +

∫ t

0
Φ

(N)
s,t Ξ̃sHT

s R
−1
s dIs. (37)

Using (33), we haveΦ(N)
0,t ẽ0


2,p

≤ E1/p
[Φ(N)

0,t

p ẽ0p] ≲n,p
1

√
N
e−ϱt .

Using Burkholder–Davis–Gundy inequality (Rozovsky & Lototsky,
2018), (35), and (33), we get∫ t

0
Φ

(N)
s,t Ξ̃sHT

s R
−1
s dIs


2,p

≲p


⏐⏐⏐⏐∫ t

0
Tr
(

Φ
(N)
s,t Ξ̃sSsΞ̃s

(
Φ

(N)
s,t

)T)
ds
⏐⏐⏐⏐1/2


2,p

≲n,p


(∫ t

0
e−2ϱt−2ϱsds

)1/2 Ξ̃0

F


2,p

≲n,p
1

√
N
e−ϱt .

hen we obtain (32). □

emark 1. Comparing the error bounds in Theorems 4 and 5, it
an be found that, asymptotically, as t → ∞, the Lp error of OTPF
goes to zero, while the Lp error of FPF is of order O(1/

√
N). This

s because we introduce extra noise {Bi
t}

N
i=1 in FPF (9).

4. Simulation

The example we consider here is a linear Gaussian system with
independent noises which is as follows:{
dXt = AtXt + dBt ,

dZt = Xtdt + dWt ,
(38)

here X0 ∼ N(0, In) with the n × n-dimensional identity matrix
n, n = 10, Bt and Wt are standard Brownian motion processes,
nd At = [aij(t)] is an (n × n)-matrix with elements as follows:

ij(t) =

⎧⎨⎩
0.1, if i + 1 = j,
−0.4 + 0.1 cos(t), if i = j,
0, otherwise.

We show the performances of three kinds of PF algorithms,
hich are FPF, OTPF, and PF with different numbers of particles,
nd KF provides the optimal solution. We choose t ∈ [0, 10] as

the whole time interval, use Euler’s method in time discretization
with the same time step ∆t = 0.01 and the number of particles
N is in {10, 20, 50, 100, 500}. In the experiments, in order to
compare the performances of different methods, we introduce
the mean squared error (MSE) based on 100 realizations, which
is defined as follows:

MSE :=
1

100

100∑
i=1

1
K1 + 1

K1∑
k=0

X (i)
k·∆t − X̂ (i)

k·∆t

 , (39)

where X (i)
k·∆t is the real state at discrete time instant k · ∆t in

the i-th experiment and X̂ (i)
k·∆t is the estimation of X (i)

k·∆t , with
0 ≤ k ≤ K1, where K1 = 1000 is the total time step.

In Table 1, KF gives the optimal results ignoring the numerical
errors. It can be seen that OTPF still provides the satisfying result
with only 10 particles which is even better than PF with 500
6

Table 1
The MSE and running time with different particle numbers.
Algorithms KF FPF OTPF PF N

MSE 6.5683 8.67313 7.0985 19.6505 10
Time(s) 0.0809 0.1984 0.4311 0.3251 10

MSE 6.5683 7.5596 6.6001 16.2369 20
Time(s) 0.0809 0.3465 0.6109 0.4514 20

MSE 6.5683 7.1080 6.5718 12.8559 50
Time(s) 0.0809 0.69132 0.9928 0.77378 50

MSE 6.5683 6.7807 6.5436 10.9475 100
Time(s) 0.0809 1.1928 1.5532 1.2347 100

MSE 6.5683 6.5756 6.5394 8.5353 500
Time(s) 0.0809 5.2650 6.0152 4.8276 500

Fig. 1. (a) We fix N = 100, vertical axis denotes MSEKF which is a function of t ,
nd horizontal axis denotes the time t ∈ [0, 10]. (b) We fix t = 10, vertical axis
enotes MSEKF(t = 10) which is a function of N , and horizontal axis denotes
he numbers of particles N ∈ {10, 20, 50, 100, 500}.

articles. OTPF is almost optimal with about 50 particles, but FPF
eeds about 500 particles to achieve the same accuracy.
Next, we shall verify Theorems 4 and 5. We define the MSE

.r.t. the optimal estimate by KF as follows:

SEKF(t) :=
1

100

100∑
i=1

1
K2(t) + 1

K2(t)∑
k=0

X̂ (i)
k·∆t − X̄ (i)

k·∆t

 ,

where X̄ (i)
k·∆t is the estimate of X (i)

k·∆t by KF at discrete time instant

k · ∆t in the i-th experiment, X̂ (i)
k·∆t is the estimate of X (i)

k·∆t by
PF algorithms, K2(t) = ⌊t/∆t⌋ and ⌊·⌋ is the floor function.
Apparently, MSEKF is a function of t and N . We test how MSEKF
varies w.r.t. t and N by three PF algorithms, and the results are
displayed in Fig. 1(a)–1(b).

It can be seen that, with fixed N , the MSEKF of OTPF converges
nearly exponentially fast to 0, and with fixed t , the MSEKF of FPF
is of order O(1/N). These results also verify Theorems 4–5.

5. Conclusion

In this paper, we extended FPF and OTPF to linear Gaussian
time-varying cases. Besides, we proved that, the Lp-errors be-
tween the optimal estimate and the estimates obtained by linear
FPF and OTPF are of order O(1/

√
N) for any p ≥ 1. However, the

error analysis of FPF for nonlinear systems has not been discussed
in this paper and we aim to solve this problem in our future work.

Appendix A. Proof of Lemma 2

Proof. The evolution of m(N)
t can be directly obtained from (9).

Define the error process ζ i
t := X i

t − m(N)
t , then we can get dζ i

t =

At − P (N)
t St/2

)
ζ i
t + dM i

t , where dM i
t := Gt

(
dBi

t −
1 ∑N

j=1 dB
j
t

)
.

N
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U

t

=

∑
T

=

w

2

a

≤

u

2

I

d

sing Itô’s lemma, we have

d
[
ζ i
t

(
ζ i
t

)T]
=

(
At −

P (N)
t St
2

)
ζ i
t

(
ζ i
t

)T
dt + ζ i

t

(
ζ i
t

)T (
At −

P (N)
t St
2

)T

dt

+

(
1 −

1
N

)
Q̃tdt + dM i

t

(
ζ i
t

)T
+ ζ i

t

(
dM i

t

)T
.

It follows that dP (N)
t = Ricc(P (N)

t )dt +
1

√
N−1

dMt , where dMt :=

1
√
N−1

∑N
i=1

[
dM i

t

(
ζ i
t

)T
+ ζ i

t

(
dM i

t

)T]
. Let A(k, l) denote the (k, l)-

h entry of any matrix A and a(k) denote the k-th entry of any vec-
tor a. It can be easily known that dMt (k, l) =

1
√
N−1

∑N
i=1

[
dM i

t (k)
ζ i
t (l) + ζ i

t (k)dM
i
t (l)
]
. Therefore

(N − 1)
d
dt

⟨M(k, l),M(k′, l′)⟩t(
1 −

1
N

) ∑
1≤i≤N

[
ζ i
t (k)ζ

i
t (k

′)Q̃t (l, l′) + ζ i
t (k)ζ

i
t (l

′)Q̃t (l, k′)

+ζ i
t (l)ζ

i
t (l

′)Q̃t (k, k′) + ζ i
t (l)ζ

i
t (k

′)Q̃t (k, l′)
]

−
1
N

∑
1≤i̸=i′≤N

[
ζ i
t (k)ζ

i′
t (k

′)Q̃t (l, l′) + ζ i
t (k)ζ

i′
t (l

′)Q̃t (l, k′)

+ζ i
t (l)ζ

i′
t (l

′)Q̃t (k, k′) + ζ i
t (l)ζ

i′
t (k

′)Q̃t (k, l′)
]
.

Since
∑N

i=1 ζ i
t = 0, we know that, ∀ 1 ≤ k, k′

≤ n,
(∑

1≤i≤N ζ i
t (k)

)(∑
1≤i′≤N ζ i′

t (k
′)
)

= 0, from which we can conclude 1
N−1

1≤i̸=i′≤N ζ i
t (k)ζ

i′
t (k

′) = −
1

N−1

∑
1≤i≤N ζ i

t (k)ζ
i
t (k

′) = −P (N)
t (k, k′).

hen we have
d
dt

⟨M(k, l),M(k′, l′)⟩t(
1 −

1
N

)[
P (N)
t (k, k′)Q̃t (l, l′) + P (N)

t (k, l′)Q̃t (l, k′)

+P (N)
t (l, l′)Q̃t (k, k′) + P (N)

t (l, k′)Q̃t (k, l′)
]

+
1
N

[
P (N)
t (k, k′)Q̃t (l, l′) + P (N)

t (k, l′)Q̃t (l, k′)

+P (N)
t (l, l′)Q̃t (k, k′) + P (N)

t (l, k′)Q̃t (k, l′)
]

=P (N)
t (k, k′)Q̃t (l, l′) + P (N)

t (k, l′)Q̃t (l, k′)

+ P (N)
t (l, l′)Q̃t (k, k′) + P (N)

t (l, k′)Q̃t (k, l′)

=4
(
P (N)
t ⊗s Q̃t

)
(k,l)(k′,l′)

,

which is the desired result. □

Appendix B. Proof of Theorem 3

Proof. The proof is divided into four steps.
Step 1: We shall prove (22). By Lemma 2, we can have

d Tr
(
P (N)
t

)
=Lt Tr

(
P (N)
t

)
dt +

1
√
N − 1

dM1,t ,

here M1,t is a martingale with d
dt ⟨M1⟩t = 2 Tr

(
P (N)
t Q̃t

)
+

Tr
(
P (N)

)
Tr
(
Q̃
)
≲ sup 4µ

(
Q̃
)
Tr
(
P (N)

)
, and
t t n t≥0 t t

7

Lt Tr
(
P (N)
t

)
:= Tr

((
At + AT

t

)
P (N)
t

)
− Tr

(
St
(
P (N)
t

)2)
+ Tr

(
Q̃t
)

≤2 sup
t≥0

µ (At) Tr
(
P (N)
t

)
+ sup

t≥0
Tr
(
Q̃t
)
.

Then, by Assumption 2, Theorem B.3 in Chen and Yau (2023) and
Lemma 7.1 in Del Moral and Tugaut (2018), we obtain (22).

Step 2: We shall prove (23)–(24). By (4) and Itô’s lemma, we
know d ∥Xt∥

2
= Lt ∥Xt∥

2 dt + dM2,t , where M2,t is a martingale
with d

dt ⟨M2⟩t = 4XT
t Q̃tXt ≤ supt≥0 4µ

(
Q̃t
)
∥Xt∥

2 , and

Lt ∥Xt∥
2

:=XT
t

(
At + AT

t

)
Xt + Tr

(
Q̃t
)

≤2 sup
t≥0

µ (At) ∥Xt∥
2
+ sup

t≥0
Tr
(
Q̃t
)
,

Hence, by Assumption 2 and Lemma 7.1 in Del Moral and Tu-
gaut (2018), we obtain (23). Then (24) holds observing that
E
[
∥mt∥

p]
≤ E

[
E
[
∥Xt∥

p
|Ft
]]

= E
[
∥Xt∥

p] .
Step 3: We shall prove (25). By Lemma 2, (4), and Itô’s lemma,

we have d
m(N)

t

2 = Lt

m(N)
t

2 dt + dM3,t , where M3,t is a
martingale. Similarly, we have

d
dt

⟨M3⟩t =4
(
m(N)

t

)T ( 1
N
Q̃t + P (N)

t StP
(N)
t

)
m(N)

t

≤

(
1
N

µ
(
Q̃t
)
+ µ (St) Tr2

(
P (N)
t

))m(N)
t

2
≜γt

m(N)
t

2
nd

Lt

m(N)
t

2
sup
t≥0

µ (At)

m(N)
t

2 + |µ(At )|−1 Tr2
(
P (N)
t

)
∥St∥2

∥Xt∥
2

+
1
N

Tr
(
Q̃t
)
+ n2µ (St) Tr2

(
P (N)
t

)
≜2α

m(N)
t

2 + βt

sing Assumption 3 and the inequality

aTb ≤ |µ(At )| ∥a∥2
+ |µ(At )|−1

∥b∥2 . (B.1)

t can be computed that, ∀ p ≥ 1,

sup
t≥0

∥γt∥2,p ≤ sup
t≥0

(
1
N

µ
(
Q̃t
)
+ µ (St)

Tr(P (N)
t

)2
2,2p

)
≲n,p

1
N

,

sup
t≥0

∥βt∥2,p ≤ sup
t≥0

(
1
N

Tr
(
Q̃t
)
+ n2µ (St)

Tr(P (N)
t

)2
2,2p

|µ(At )|−1
∥St∥2

Tr(P (N)
t

)2
2,4p

∥Xt∥
2
2,4p

)
≲n,p

1
N

,

using Hölder’s inequality and (22)–(24). Then by Assumption 2
and Lemma 7.1 in Del Moral and Tugaut (2018), we obtain (25).

Step 4: We shall prove (26). By (9) and (4), we know that

X i
t =

[(
At −

P (N)
t St
2

)
X i
t + P (N)

t StXt −
P (N)
t St
2

m(N)
t

]
dt

i (N) T −1

+ GtdBt + Pt Ht Rt dWt .
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T

u
s
a

R

B

C

D

G

J

hen by Itô’s lemma, we have d
X i

t

2 = Lt
X i

t

2 dt + dM4,t ,

where M4,t is a martingale. Similarly, we have

d
dt

⟨M4⟩t =4
(
X i
t

)T (
Q̃t + P (N)

t StP
(N)
t

)
X i
t

≤4
[
µ
(
Q̃t
)
+ µ (St) Tr2

(
P (N)
t

)] X i
t

2 and

Lt
X i

t

2 ≤µ (At)
X i

t

2 + Tr
(
Q̃t
)
+ µ (St) Tr2

(
P (N)
t

)
+ 2 |µ(At )|−1 Tr2

(
P (N)
t

)
∥St∥2

(
∥Xt∥

2
+

m(N)
t

2 /4
)

.

sing Assumption 3 and the inequality (B.1). Then following the
imilar procedure as in Step 3, we obtain (26) by Assumption 2
nd Lemma 7.1 in Del Moral and Tugaut (2018). □
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