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STRUCTURE AND CLASSIFICATION THEOREMS
OF FINITE-DIMENSIONAL EXACT

ESTIMATION ALGEBRAS*
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Abstract. Estimation algebra turns out to be a crucial concept in the investigation of finite-dimensional
nonlinear filters. In an earlier paper by the authors, a necessary and sufficient algebraic condition was

derived for an exact estimation algebra to be finite-dimensional. In this paper, the investigation of the
properties of finite-dimensional exact estimation algebras is continued, and some structure and partial
classification theorems for such algebras are proved.
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1. Introduction. In a previous paper [1], we introduced the concept of an exact
estimation algebra. A simple algebraic necessary and sufficient condition was proved
for an exact estimation algebra to be finite-dimensional. We also provided a detailed
examination of the relationship between finite-dimensional exact estimation algebras
and finite-dimensional nonlinear filters. This paper is in essence a continuation of our
earlier study of exact estimation algebra, and we strongly recommend that the readers
familiarize themselves with the results in [1]. However, every effort will be made to
make this paper as self-contained as possible without too much duplication of the
previous paper.

In this paper, we will prove some structure and partial classification theorems of
exact finite-dimensional estimation algebras. The class of nonlinear filtering systems
with an exact estimation algebra can be characterized by the solutions of some family
of Riccati partial differential equations. These equations are the focal point of this
study. We will provide two alternative existence proofs of these equations and examine
their uniqueness properties.

2. Basic concepts. In this section, we will recall some basic concepts and results
from 1 ]. The idea ofusing estimation algebras to construct finite-dimensional nonlinear
filters was first proposed in Brockett and Clark [2], Brockett [3], and Mitter [4]. The
motivation came from the Wei-Norman approach [5] of using Lie algebraic ideas to
solve linear time-varying differential equations.

Consider a filtering problem based on the following signal observation model:

(2.0)
dx( t) =f(x(t)) dt + g(x( t)) dr(t), x(0) Xo,

dy(t)=h(x(t)) dt+dw(t), y(0) 0,

in which x, v, y, and w, are respectively, En, E,, Era, and m-valued processes, and v
and w have components that are independent, standard Brownian processes. We further
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assume that n p, f, h are C smooth, and that g is an orthogonal matrix. We will
refer to x(t) as the state of the system at time and to y(t) as the observation at time t.

Let p(t, x) denote the conditional probability density of the state given the
observation {y(s): 0_-< s =< t}. It is well known (see [6], for example) that p(t, x) is given
by normalizing a function r(t, x), which satisfies the following Duncan-Mortensen-
Zakai equation:

(2.1) act(t, x) Lotr( t, x) at +
i=1

where

1 02 0

i=1 i=1 OXi i=10Xi 2i=1

and for 1,. ., m, Li is the zero-degree differential operator of multiplication by
hi.2 Cro is the probability density of the initial point x0. In this paper, we will assume
that O-o is a C function.

Equation (2.1) is a stochastic partial differential equation. In real applications,
we are interested in constructing state estimators from observed sample paths with
some property of robustness. In [7] Davis studied this problem and proposed some
robust algorithms. In our case, his basic idea reduces to defining a new unnormalized
density

(t, x) exp h(x)iYi(t) ty(t, x).

It is easy to show that :(t, x) satisfies the following time-varying partial differential
equation

(2.2)

d(t, x)__ Lob(t, x) + E yi(t)[Lo, Li](t, x)
dt i=1

+- yi(t)[[Lo, Li], Li](t, X), :(0, x) ro,

where [-,-] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by

[X, Y] X( Y)- Y(X)

for any C function r.
DEFINITION. The estimation algebra E of a filtering problem (2.0), is defined to

be the Lie algebra generated by {Lo, L,..., Lm}, or E=(Lo, L1,"" ", Lm)L.A.. If in
addition there exists a potential function th such that f Och/Ox, for all 1 -< -< n, then
the estimation algebra is called exact.

From now on, unless stated otherwise, we assume the estimation algebra of (2.0)
is exact. We use Vp to denote the column vector (Op/Ox, , Op/Oxn) . Hence, Vb =f

If p is a vector, we use the notation Pi to represent the ith component of p.



868 R. DONG, L. TAM, W. S. WONG, AND S. S.-T. YAU

Define D O/Oxi--fi, and r/= 2i=1 ofi/Oxi "{- 2i=1f+ E,=, h. Then,

(2.3) Lo= ,=,

Recall that f--O)/Oxi. Hence,

(2.4) --A’+IVI+ 2 h2
i"

i=1

In [8] the two matrices [1 and J, were introduced, f is the matrix whose i, j
element is Of/Oxi-Of/Oxj. Note that all exact estimation algebras are characterized
by the fact that f 0. J, [oZrl/Oxi Oxj] is the Hessian matrix of 7.

In [1], we proved the following structure theorems.
THEOREM 1. Let E be afinite-dimensional exact estimation algebra. Then hi, , h,

are polynomials of degree at most one.
THEOREM 2. Let F(xl,. ., xn) be a C function on . Suppose that there exists

apath C :R R" and 6>0 such that lim,_,oo IIC(t)ll =oe and lim,__,oo supu(c(,) F -co,
where Ba(C(t)) {x n IIx c(t)ll < /. Then there is no Coofunction q on satisfying

COROLLARY 1. Let F(Xl, ", Xn) be a polynomial on . Suppose that there exists
a polynomial path C -" such that lim,_.oo C (t)II oo and lim,_.oo F C (t) -oo.
Then there is no Coo function p on satisfying

(2.5) A0 + IV g,]2 F.

THEOREM 3. Suppose E is an exact estimation algebra. Then, E isfinite-dimensional
Tif and only if Vhi J, is a constant for <-i<-m and allj=O, 1,

THEOREM 4. Suppose E is an exact finite-dimensional estimation algebra. Then it

has a basis consisting ofone second-degree differential operator Lo, first-degree differential
operator(s) with constant coefficients for the o/oxi terms, and zero-degree differential
operator(s) affine in x. Moreover, ifX and Y are in E with degree less than or equal to

one, then IX, Y] is a constant.
Theorem 5 follows from Theorem 4.
THEOREM 5. An exact finite-dimensional estimation algebra is solvable.
To show the relevancy of studying finite-dimensional exact estimation algebra in

nonlinear filtering problems, we proved in [1] that a system defined by (2.0) with a
finite-dimensional exact estimation algebra admits a universal finite-dimensional filter
and provided an explicit Lie-algebraic method to construct such a filter.

Given the importance of the estimation algebra, a natural question arises as to
whether we can classify all finite-dimensional exact estimation algebras up to Lie-
algebraic isomorphism. Theorems 4 and 5 provide a starting point for solving this
problem. In Theorem 6, we provide a more explicit structure theorem for an important
subclass of finite-dimensional exact estimation algebras. A second question that arises
naturally is whether we can classify all filtering systems with finite-dimensional exact
estimation algebras up to state-space diffeomorphism. This is apparently a very difficult
problem and requires a careful study of partial differential equations of the type (2.4).

This clarifies the original statement of Theorem 5 of [1].
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The connection between these types of equations and the nonlinear filtering problem
was first noted by Benes (see [9]). The properties of these equations, however, are not
well known. In Theorems 9 and 12, we provide some answers in regard to the existence
and uniqueness of the solutions of these types of equations. Our result here is far from
providing a reasonable classification theory of systems with finite-dimensional exact
estimation algebras, but it may be viewed as a necessary first step.

3. Classification theorems. If E is finite-dimensional, then the matrix

(3.0) m--[Vhl, vhm,Jnvhl, ,Jnvhm,J2vhl, ,J2vhm, "]

is a constant matrix and

are all linear functions in E. If the rank of M is n, we say that the corresponding
estimation algebra has full rank. In this case, it is easy to describe the Lie algebra
structure of the estimation algebra.

THEOREM 6. Suppose E is ofmaximal rank. Then it is a real vector space ofdimension
2n+2 with basis given by 1, Xl, x2,"’, xn, D1,’’’, Dn, and Lo. Moreover, 71 is a

polynomial of degree at most two and the quadratic part of 71-i=1 h is positive

semidefinite.
Proof Since the columns of M represent gradient vectors of functions in E and

M is a constant matrix with rank n, there are constants ci’s such that xi / ci is in E for
1,. ., m. It is easy to show the following relations:

Lo, Xi / Ci] ---- Dj, X / C Di,
j=l

1 if =j,
[D,,x+c]=

0 ifij,

Lo, D,] - D, D, + [D
j=l " 71 2 OXi

071/0x is a polynomial of degree at most one, for all 1 -< -<_ n. Hence E is a real vector
space spanned by 1, xl," ", xn, D1," "’, Dn and L0. The fact that the quadratic part
of 71--2i=1 h2 is positive semidefinite again follows from Theorem 2. [3

Theorem 6 implies that all exact finite-dimensional estimation algebras with
maximal rank come from Benes filters (see [9] for details concerning Benes filters).

For any filtering system defined in (2.0) with an exact estimation algebra, (2.4)
assigns a characteristic 71. Theorem 6 implies that if the estimation algebra is finite-
dimensional with maximal rank, then this mapping maps the given system to a quadratic
polynomial. In order to develop a classification of systems with finite-dimensional
estimation algebras, we need to know the range of this mapping restricted to such
systems. We also need to understand the properties of the inverse of this mapping. In
the following, we will provide some partial results to these questions. The key to these
questions is a complete understanding of the existence and uniqueness properties of
(2.5).

Let q be a C function defined on ". Extend -A + q in the standard way to act
on a closed subspace of LZ([n). It follows from the definition that the first eigenvalue
A1 of the operator -A + q is equal to

,, inf. ]V4,le ax+i q2 dx
(3.1)
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where infimum is taken on all nonzero C functions with compact support. The
following theorem by Fischer-Colbrie and Schoen is well known (see [10]).

THEOREM 7 10]. Let q be a C function defined on [n. Then there exists a positive
function , satisfying the equation A-q 0 on " if and only if the first eigenvalue A1
of --A + q on is nonnegative.

Assume now that the estimation algebra is finite-dimensional and has maximal
rank. Then by Theorem 6, we know that

(3.2) rt 2 h, q,
i=1

where q is a polynomial of degree two with quadratic part positive semidefinite. Recall
that

Putting this into (3.2), we have

(3.3)

=A+IV[2+ 2 h/.
i=1

A6 +lV6lz-- q.

Let u= e. Then Ou/Oxi=(Och/Oxi)ee and 02u/Ox2=(O2ch/Ox2 + (Och/Oxi)2) e 4, hence

(3.4) Au-qu=O.

We observe that (3.3) has a C-solution 4) if and only if (3.4) has a C positive
solution u.

THEOREM 8. Let q be a quadratic polynomial in Xl,’’’, xn. Let I1 be the first
eigenvalue ofthe operator -A + q. Then is nonnegative ifand only ifunder an orthogonal
transformation and a translation, q can be written in the form

aix2i--c,
i=1

where ai and c are constants, ai >= O, and c <-,: x/i.
Proof. Suppose that x (x , xn) r Ay yo, where A is an orthogonal matrix

and Yo is a constant vector. Then Ay Ax, and the first eigenvalue of the operator
-Ax + q is nonnegative if and only if the first eigenvalue of -Ay + is nonnegative
where (l(y) rl(x(y)). Hence after an orthogonal transformation and a translation,
we may assume that

q(x) Y aix2i -t- bix c,
i=1 i=/+1

where ai, bi, and c are constants, ai O, for i- 1,. ., L
By Theorem 7, we know that A >= 0 if and only if (3.4) has C positive solution

if and only if (3.3) has C solution. In view of Theorem 2, this implies that bi 0 and
we have that ai >-0 for i-- 1,. ., n. Hence it remains to prove that the first eigenvalue
of the operator -A + r- c is nonnegative if and only if c <- 2i=1 /, where r i=l aixi
This is equivalent to proving that the first eigenvalue A of the operator -A+ r is
2i:,/.
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Denote Co 2i=1 x//. Let be a C function with compact support. Then

)Waix2 dx
i=1

+ d-2 x,
i=1 i=1

+ x
i=

i ex+co
= kOx

Co g dx.

Hence I’ >= Co. On the other hand,

is an eigenfunction of-+ r with eigenvalue co, so co >= I’ Hence co
ToaM 9. Suppose E is a finiCe estimation algebra of maximal rank. en under

an orchogonal transformation and a translaion, can be wriuen in the form

+ aixi C,
i:1 i:1

where ai and c are constants, ai O, and c i:l.
Proof This result follows from Theorems 7 and 8.

4. Alternative proof. Theorem 9 provides a constraint that the coefficients of (2.0)
must satisfy so that the system has a finite-dimensional estimation algebra of maximal
rank. It is a first step in providing some classification results of all finite-dimensional
exact estimation algebras. In the following, we provide an alternative proof of these
results by applying a technique pioneered by Li and Yau [11]. In fact, Theorem 12
sharpens the results stated in Theorem 9.

THEOREM 10. Consider the following equation:

(4.0) + IVl2
aixix c,

ij=l

where (x, , x,) ", c and the constant matrix A (a) is positive semidefinite.
en for any smooth solution of (4.0) defined on ", has at most linear growth,
namely,

lV(x)lc(+lxl), xeU"

for some constant C.
Proof Let u =-. After oahogonal change of coordinates, (4.0) becomes

{4.) -a, + Iv, a,x .
i=1
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Let v Yi=l 5x/ x i. It is easy to see that

(4.2) -Av + 17 vl2 A,x- Co,
i=1

where Co "=1. Let w u- v. Then subtracting (4.2) from (4.1), we get

+ + IV.[ -IV
(4.3) =-A(u-v)+V(u-v) V(u-v)+2V(u-v) Vv

=-Aw+lVwl2+2Vw
where x.y represents the standard inner product between vectors x and y. Denote
F--[Vw[ 2. Direct computation yields

AF= ZX(Vw Vw)

(4.4) -2 ( 02W 2 +2(yaw). Vw
i,j:l \OXi OXj/

_->-lAw +2V(F+2Vv. Vw+c-co).Vw.
n

If 72V and V2w represent the Hessian of v and w, respectively, then

4V(Vv. Vw)" Vw=4[V2vVw+VZwVv] Vw

(4.5) -> 4IV2wV v] Vw 4[V wV w] V v

=2V(Vw. Vw). Vv=2VF. Vv.

Putting (4.5) into (4.4), we have

2
AF>=-(F+2Vv Vw+c-co)Z+2VF Vw+2VF. Vv

n

2 F2 4
(4.6) >-- +-F(2Vv. Vw+c-co)+2VF. V(v+w)

2 F2 8 F3/2 4(c- Co)=>- ]Vvl +2VF. V(v+w)+F.

2Denote r2=y= x. For a>0, the function (a2-r2)2F achieves its maximum at

Xo e B(0) {x e N" "]xl < a}. At that point,

which implies

(4.7)

Also at the point Xo,

(4.8)

V[(a2- F2)2F] =0,

4rFVr=(a2-r2)VF.

0 A[(a2- r2)2F]

a 2 ra)2AF q- 27(a2 r2)2" VF+ FA(a2 r2)2

(a 2 r2)2AF-8(a2- r2)rVr VF+[8r2-4n(a2- r2)]F.
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Using (4.7), we get

(4.9) (a2- r2)2AF-24r2F-4n(a2- r2)F <=0.

Using (4.6), we have

(4.10)
(a2-r2)2[ FZ-8n F3/IX7vl + 27F. 7(v+w)+

-[24r2+4n(a2- r2)]F-<_0.

4(c- Co)

Dotting (4.7) with 7(v+ w), we get

(4.11)
(aZ-r2)V(v+w) VF=4rFVr. (Vv+Vw)

-4rFlX7 v1-4rF3/2.

Putting (4.11) back into (4.10) and dividing it by F, we have

(4.12)

2
(a r)ZF _8 (a2 r2)2F1/21V vl_ (a2 r2)[8 rl vl + 8rF1/2

+ 4(a r2)
c Co [24r + 4n(a2- r2)] < O.

By denoting M =(a2- ra)F1/2, (4.12) becomes

2 M2- ae- r2)lV vl + 8rlM
+ [4(a2_ rZ)

c-

n
Co 4n( a rZ) 8r( a2- rZ)lx7v1-24r] -<0.

Noting the fact that IVy]-< clr and r =< a, we can see that

M <-_. ca3,

where cl and e are constants. The inequality

M max (a- r2(x))F1/2(x)
Ixl<=a

max (a2-
Ixl<=a/2

>= max F1/2(x)

_-3a2 max IVw4 Ixl<_a/2

yields the estimate

max ]Vwl < C3a.(4.13)
Ixl--<a/2

Combining (4.13) with the relation w= u-v, we can conclude that IVu] has at most
linear growth. [3
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Remark. We can also deduce the above theorem by making use of Theorem 1.3
of [11].

THEOREM 11. If C < x/--, and A > O, then

(4.14) -u"+(u’)2=Ax2-c, u(O)=a, u’(O)= b,

has a global solution for any a and small
Proof. Let v u’. We have

v’= v2- Ax2 + c, v(0) b.

Suppose (A, B) is the maximum open interval containing zero, such that v exists.
Define two auxiliary functions:

v+(x)=ex+k, v_(x)=-x-t.

We have that
2v+ v+ + Ax2 c e ex + k)2 + ,X2

C

( e2)X 2kex + e c k2).
Choose e > 0, such that

A-ez>0 and e-c>O.

This is possible because x/ > c. Choose k > 0 small enough, so that

A e2)X2 2kex + e c k2) > 0,

By the standard comparison theorem [12], we have

v(x) < v+(x) for x [0, B),

as long as v(0) b < k v+(0).

then

x [0, B].

Similarly, we can show that if 8 is sufficiently large, so that

A--t2<0 and 3+c>0,

v’- v_+Ax2-c (A- 62)x2-216x-(6+c+/2) <0
for all xe [0, B].and l=>0.

The comparison theorem again implies that

v(x) > v_(x) for x e [0, B),

if v(0)= b > -l v_(0).
This implies that when -1 < b < k, B oe. Otherwise, as v(B) is bounded, we can

extend v beyond B, a contradiction to the hypothesis that (A, B) is the maximal interval
on which v is defined.

Similar arguments show that A =-oe when ]bl is sufficiently small.
Remark. If A--0, then we can prove by direct integration that there is a global

solution to (4.14) if Ibl is small enough.
THEOREM 12. Consider the following equation:

(4.15) A+IVI:z= aijxixj-c,
i,j=l

where (x , xn) ", c and the constant matrix A (aij) is positive semidefinite.
Let {A,. , An} be the eigenvalues ofA and Co = v/-. Then we have the following"
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(I) (Existence). When c < Co, there is a family of C solution of (4.15) with 2n
parameters such that [VC[ has at most linear growth at , namely,

IV(x)l _-< c(1 + Ixl),
for some constant C.

(II) (Uniqueness). When c Co, there is a quadratic polynomial, uniquely deter-
mined up to a constant, which satisfies (4.15). Moreover, this is the unique
solution up to a constant if either one of the following conditions holds:
(i) rank A 0 (namely, A 0), or

(ii) rank A _-> n 2.
(III) (Nonexistence). When c > Co, there is no smooth solution to (4.15).
Proof. Let u =-. After an orthogonal change of coordinates, (4.15) becomes

(4.16) -Au+lVul2= Aix-c.
i=1

For part (I), let c=i__ 1C with ci <v/. By Theorem 11, there is a 2-parameter
family of solution of the

(4.17) -u"+(u’i /)2 __AiX2i__Ci"
It is easy to see that u(x)--Y.=I Ui(Xi) satisfies (4.15) and that IVul has at most linear
growth at o. To see that there is a 2n-parameter family of such solutions to (4.16),
note that n- 1 parameters come from the different ways of decomposing c into ci’s so
that c--i-- ci, n parameters come from ui(0), and the last parameter comes from the
arbitrary constant added to the whole solution.

For part (II), it is clear that there exists a uniquely determined quadratic polynomial
solution. If in addition the first rank condition is satisfied, we need only to prove that
the only solutions of

(4.18) -Au+lVul2=0
are constants. Taking = e-", (4.18) can be written as

(4.19) A =0.

It is equivalent to prove that (4.19) has no positive solutions other than constants.
However, this is well known to be the case.

Next, assume the second rank condition is satisfied, that is, rank A_-> n-2. Let
v(x) =v/ x. Note that v(x) satisfies

(4.20) -Av --IV/)[2 liX2i_ CO
i=1

Subtracting (4.20) from (4.16) and letting w--u-v, we get

(4.21) -Aw+2Vv.

Define B(r) {x :lxl-< r, 1, 2, , n}. Multiplying by e- and integrating on both
sides of (4.21), we get

0-----fB e-2V(-Aw+2Vv’Vw)+ fR e-2VlVwl2

(r) (,-)

f,, -V’(e-ZVw)+ f,, e-2V[w[2

(r) (r)

B(r) (r)
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where i is the unit outward normal of OB(r). By the Schwartz inequality, we get

fU(r)
(4.22)

e-lV wlZ fo e-2Vw t <= fo e-Z[Vwl
B(r) B(r)

Denoting f(r) Br) e-2}V w] 2, g(r) B(r) e-2, (4.22) becomes

(4.23) (f(r))2<- f’(r) g’(r).

Supposing f(r0) > 0 for some r0, we have

f’ 1
(4.24) >

Integrating (4.24) over (r0, +oe), we have

l lff’ff(oo- ro
(4.25) ar ar.

Jt ro

Other the other hand,

g(r) e-= exp (-x) dxi
(r) i=1

It is easy to see that
(i) If rankA= n, g’(r)O as r.
(ii) IfrankA=n-l,g’(r)c>0as ro.
(iii) If rank A n 2, g’(r) cr as r .

In all of the above three cases, the right-hand side of (4.25) is divergent. The contra-
diction says that f(r) O, namely, w is a constant. So u v+ const.

For pa (III), the statement holds even if A is degenerate. Since eo =l < c,
2we can find 6 small such that Z= (+6)<e. Let v=Z=(+6)x, v satisfies

i=1 i=1

Subtracting (4.26) from (4.16) and letting w u-v, we get

-w+27v.

Using the same argument as before, but without assuming the rank condition on A,
we can show that u--v+const. So u cannot be a solution to (4.16). A contradiction
and no smooth solution to (4.16) exists. [3

Remark. Equation (4.15) may have other solutions in addition to those listed in
part (I). Some examples are given on page 86 of [9].
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