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FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT II:
BROCKETTS PROBLEM ON

CLASSIFICATION OF FINITE-DIMENSIONAL
ESTIMATION ALGEBRAS*

WEN-LIN CHIOU AND STEPHEN S.-T. YAU$

Abstract. The idea of using estimation algebras to construct finite-dimensional nonlinear filters
was first proposed by Brockett and Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finite-dimensional nonlinear filters. In his talk at the
International Congress of Mathematics in 1983, Brockett proposed classifying all finite-dimensional
estimation algebras. In this paper, all finite-dimensional algebras with maximal rank are classified if
the dimension of the state space is less than or equal to two. Therefore, from the Lie algebraic point
of view, all finite-dimensional filters are understood generically in the case where the dimension of
state space is less than three.
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1. Introduction. In a previous paper [Ya], Yau has studied the general class of
nonlinear filtering systems that include both Kalman-Bucy and Benes filtering systems
as special cases. Simple algebraic necessary and sufficient conditions were proved for
an estimation algebra of such filtering system to be finite-dimensional. Using the
Wei-Norman approach, he constructed explicitly finite-dimensional recursive filters
for such nonlinear filtering systems. This paper is, in essence, a continuation of [Ya]
and we strongly recommend that readers familiarize themselves with the results in
[Ya]. However, every effort will be made to make this paper as self-contained as
possible without too much duplication of the previous paper.

The idea of using estimation algebras to construct finite-dimensional nonlinear
filters was first proposed in Brockett and Clark [Br-C1], Brockett [Brl], and Mitter
[Mi]. The concept of estimation algebras has proved to be an invaluable tool in
the study of nonlinear filtering problems. In his famous talk at the International
Congress of Mathematics in 1983, Brockett proposed classifying all finite-dimensional
estimation algebras. There were some interesting results in 1987 due to Wong [Wo]
under the assumptions that the observation h(x) and drift term f(x) are real analytic
functions on Rn, and f satisfies the following growth conditions: for any i, all the first-,
second-, and third-order partial derivatives of fi are bounded functions. Under all
these conditions, Wong provides partial information toward the classification of finite-
dimensional estimation algebra. Namely, he showed that if the estimation algebra is
finite-dimensional, then the degree of h in x is at most one, and the estimation algebra
has a basis consisting of one second-degree differential operator, L0 (see (2.1)), first-
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degree differential operators of the form

i--1

where (i and/i are constants and

i--1 i--1

and zero-degree differential operators affine in x. In IT-W-Y], Tam, Wong, and Yau
have introduced the concept of an estimation algebra with maximal rank. This is one of
the most important general subclass of estimation algebras. Let n be the dimension of
the state space. It turns out that all nontrivial finite-dimensional estimation algebras
are automatically exact with maximal rank if n 1. It follows from the works of
Ocone lOci, Tam, Wong, and Yau IT-W-Y], and Dong et al. [D-T-W-Y] that the
finite-dimensional estimation algebras are completely classified if n 1. In fact, Tam,
Wong, and Yau have classified all finite-dimensional exact estimation algebras with
maximal rank of arbitrary dimension. In this paper, we classify all finite-dimensional
estimation algebras with maximal rank if n 2. The novelty of the problem is
that there is no assumption on the drift term of the nonlinear filtering system. The
following is our main theorem.

MAIN THEOREM. Suppose that the state space of the filtering system (2.0) below
is of dimension two. If E is the finite-dimensional estimation algebra with maximal
rank, then the drift term f must be linear vector field plus gradient vector field, and E
is a real vector space of dimension 6 with basis given by 1, xl, x2, DI, D2, and Lo.

This kind of nonlinear filtering systems was studied by Yau [Ya]. Therefore,
from the Lie algebraic point of view, we have shown that the finite-dimensional filters
considered in [Ya] are the most general finite-dimensional filters.

2. Basic concepts. In this section, we will recall some basic concepts and results
from [Ya]. Consider a filtering problem based on the following signal observation
model:

dx(t) f(x(t))dt + g(x(t))dv(t), x(O) xo,

dy(t) h(x(t))dt + dw(t), y(O) 0

in which x, v, y, and w are, respectively, R’, Rp, Rm, and Rm valued processes, and
v and w have components that are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth and that g is an orthogonal matrix.
We will refer to x(t) as the state of the system at time t and to y(t) as the observation
at time t.

Let p(t, x) denote the conditional density of the state given the observation {y(s)
0 <_ s <_ t}. It is well known (see [Da-Ma], for example) that p(t,x) is given by
normalizing a function, a(t, x), which satisfies the following Duncan-Mortensen-Zakai
equation:

m

(2.1) da(t, x) Loa(t, x)dt +E La(t, x)dyi(t), a(O, x) ao,
i----1



FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT II 299

where

fi-x hL0
i--1

(x/2 i--1 i--1

and for i 1,..., m, Li is the zerdegree differential operator of multiplication by
hi. a0 is the probability density of the initial point x0. In this paper, we will sume

a0 is a C function.
Equation (2.1) is a stochtic partial differential equation. In real applications,

we are interested in constructing state estimators from observed sample paths with
some property of robustness. Davis in IDa] studied this problem and proposed some
robust algorithms. In our ce, his bic idea reduces to defining a new unnormalized
density

((t, ) exp hi()i(t) (t, ).
i=1

It is ey to show that ((t,) satisfies the following time-varying partial differentiM
equation

mO- (t x) Lo(t, x) + E Yi(t)[Lo, Li](t, x)Ot
j=l

m

+ - E yi(t)yj(t)[[Lo, Li], Lj](t, x),
i,j--1

(0, x) ao,

where [. .] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by IX, Y] X(Ycp) Y(X) for any Ca function .
Recall that a real vector space ’, with an operation " " - " denoted (x, y) H

Ix, y] and called the Lie bracket of x and y, is called a Lie algebra if the following axioms
are satisfied:

(1) The Lie bracket operation is bilinear;
(2) [x, y] 0 for all x e ’;
() [, [, z]] + [, [z, ]] + [z, Ix, 1] 0 (x, , z e ).
DEFINITION. The estimation algebra E of a filtering problem (2.0) is defined to

be the Lie algebra generated by {Lo, L1,... ,Lm} or E (Lo, LI,... ,Lm)L.A.. If, in
addition, there exists a potential function such that fi O/Oxi for all 1 _< i _< n,
then the estimation algebra is called exact.

In [Ya], the following proposition is proven.
PROPOSITION 1. Ofj/Oxi --Ofi/OXj cij are constants for all i and j if and

only if (fl,... fn) (,... n) + (O/Ox,... O/Oxn), where 1,... are poly-
nomials of degree one and is a Ca function.

Define
0

Di
Oxi f

and
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Then

)L0 D2
7

We need the following basic results for later discussion.
THEOREM 2 (Ocone). Let E be a finite-dimensional estimation algebra. If a

]unction is in E, then is a polynomial of degree less than or equal to 2.
Ocone’s theorem (lOaf, see [Co] for an extension) says that hi,..., hm in a finite-

dimensional estimation algebra are polynomials of degree less than or equal to 2.
The following theorem proved in [Ya] plays a fundamental role in the classification

of finite-dimensional estimation algebra.
THEOREM 3. Let E be a finite-dimensional estimation algebra of (2.0) satisfying

Ofj/Ox-Of/Oxj cj, where c are constants for all 1 i, j n. Then h,... ,hm
are polynomials of degree at most one.

In ew of the above theorem, we introduce the following definition.
DEFINITION. The estimation algebra E of a filtering problem (2.0) is said to be

the estimation algebra with mimal rank if x + c is in E for all 1 i n where c
is a constant.

In [Ya], the following theorem w also proved.
THEOREM 4. Let F(x,... xn) be a polynomial on Rn. Suppose that there exists

a polynomial path c" R R such that lim ]c(t) and lim F o c(t)
-. Then there is no C nctions f, f2,... fn on Rn satisfying the equation

We recall the following simple lemma proved in [Ya].
LEMMA 5. (i)[XY, Z]-=-X[Y, Z] + IX, Z]Y, where X, Y and Z are differential

operators.
(ii) [gDi, h] g (Oh/Ox,), where Di O/Ox, f, g and h are functions defined

on Rn.
(iii) [gni, hDj] -ghwj +g(Oh/Oxi)Di h(Og/Oxj) ni, where wji IDa, D]

(Of,/Oxj) (Of/Ox,).
(iv) [gD,h] 2g(Oh/Ox,) D + g(O2h/Ox).
(v) [D,hD] 2(Oh/Ox) DD 2hwjD + (02h/Ox) Dj h(Ow/Ox).
LEMMA 6.

(i) IDa, D] 4wjiDDi +2(Ow/Ox)D+(Owj/Ox)Di + (02wj/OxiOxj) +2w.

(ii) D2
k, hDiD] 2 (Oh/Oxk)DDiDi + 2hwjkDDk + 2hwkDkDj

+ (02h/Ox)DiDj + 2h(Owk/Ox)Dk + h(Owjk/OXk)Di
+ h(Owk/Ox)D + h(O2wjk/OxOx).

(iii) [DiDj, hDk] =(Oh/Ox)DiD + (Oh/Oxi)DjDk + hwkjDi + hwkiDy

+ (02h/OxiOx)Dk + h(Ow/Oxi).
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(i)

Proof.

(ii)

(iii) [DDj, hDk] -h[Dk, DDj] [h, DDj]Dk
h[DiD, Dk] + [DiDj, h]Dk
h{D[Dj,Dk] + [Di, Dk]Dj}
+ D[Dj, h]Dk + [Di, h]DjDk

Oh Oh
+ D-x Ok + DjDk

h wjDi + h
Owkj

Oh
+ hwkiD + DiDk
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Oh02h
Dk + DjDk/ OxiOx---. Oxi

Oh Oh
DDk +w:-_ DjDkOx

+ h wkjDi - h wkiDj -
LEMMA 7. Let Rx be an orthogonal change of coordinate, i.e., R is an

orthogonal matrix. Then
(1) f(5)= Rf(x);
(2) Lo n0;
(3) (ji)= R(wek)RT where no n

h(x), () in_=l(Ofi(’)/Oi) -- f(’), f() -- Ei=l h(5), and (Ofi/Obj)

(4) E is isomorphic to E as Lie algebra, where E is the Lie algebra generated
by Lo hi,... h,

Proof. Statement (1) is obvious. For (2), observe that

Let S be the inverse matrix of R. Then x $5 and S-- (sj) RT (rj).

, n
Ofj l

m
2

i--1 j--1 i--1

m

i=l

1
n 02- E sjisi

i,j,k--1
OXjOXk

n n n

i--1 j--1 k=l

1
n 02

j,k=l

n 0, ()
j,k--1

n

Oxk
j,k=l

1
m

2 (x)
i--1

2 Ox
n 0 n

Ofj:s()- .= Ox 1
m

2

i=l
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Statement (3) follows from the following computation:

k:l k:l
n OX Ofk}2

k=l =1

n n OX Ofk}2 Ox;
k=l =1

n

k,t=l k,=l

k,--I
n

E rikrjtWtk
k,=1

Statement (4) is a particular case of Brockett’s result in [Br3].
3. Classification theorems. Let us first recall that the following two theorems

were stated in Ocone lOci.
THEOREM 8 (Ocone). With the notation in 2, let n m p 1, g 1. Then

dimE is finite only if (i)

h(x) ax, and f, + f2 ax2 + bx + c

or

(ii) h(x) ax2 + x, a : 0 and

/, + f2 _h2 + a(2ax + )2 + b + c(2ax +/)-2
or f’ + f -h2 + ax2 + bx + c.

THEOREM 9 (Ocone). If f satisfies (,), f must have a singularity in any un-
bounded interval.

The following theorem follows easily from Ocone’s Theorem 8 and Theorem 9
in the case where m 1. Since Theorem 8 was stated without proof in lOci, it is
interesting to know that Theorem 9 follows from the proof of Theorem A as well. In
fact we do not need to assume m- 1.

THEOREM A. Suppose that the state space of the filtering system (2.0) is of di-
mension one. If the estimation algebra E is finite-dimensional, then one of the fol-
lowing holds: (i) E is a real vector space of dimension 4 with basis given by 1, x,

1(O2 } or (ii) E is a real vector space of dimension 2D=(O/Ox)- f and Lo=
with basis given by 1, and L0 1/2 (02- 7) or (iii) E is a real vector space of dimension

1(O2 /).1 with basis given by Lo -Proof. In view of Theorem 3, all the observation terms hi 1 <_ <_ m are neces-
sarily affine polynomials. So we have only three cases.
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If all the hi for 1 <_ i _< m are actually zero, then obviously we are in case (iii)
above.

If all the hi for 1 <_ i <_ m are at most constants and one of them is nonzero, then
1 E E. By Lemma 5 (iv), we have

1
[L0, 1] [D2 , 1] 0.

Therefore we are in case (ii) above.
Finally we may assume that there is a constant c such that x + c is in E. In view

of Lemma 5, we have

lID2 ,x+c]--D,(3.1) [Lo, x + c] -(3.2) [D,x + c] 1,
1 1 dy

(3.3) [L0, D] [D2 r/, D]
2 dx"

d/dx E implies /is a polynomial of degree at most 3 by Theorem 2. Recall that

m

(3.4) df
i=1

If y is a polynomial of degree 3, then r/- -i=1 h2 is also a polynomial of degree 3.
According to Theorem 4, (3.4) has no Co solution f since

m m

lim (r/-h) =-x) or lim (vi-h2)
i--1 i--1

This leads to a contradiction. Therefore, we have shown that r is a polynomial of
degree 2. In view of (3.1)-(3.3), E is four-dimensional real vector space with basis 1,
x, n (d/dx) f and L0 1/2(D2 y).

THEOREM B. Suppose that the state space of the filtering system (2.0) is of di-
mension two. If E is the finite-dimensional estimation algebra with maximal rank,
then E is a real vector space of dimension 6 with basis given by 1, Xl, x2, D1, D2,
and Lo.

Proof. Since E is a finite-dimensional estimation algebra with maximal rank,
there are constants ci’s such that .xi + ci is in E for 1, 2. In view of Lemma 5, we
have the following

i,xj]=DjEE,(3.5) [Lo x + c] D2
r/,x D2

i--I

(3.6) wji [Di, Dj] E

(3.7)
10
20xj
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(3.9)

1 02r/
20xkOxj

By Theorem 2 and (3.6), wij’s are polynomials of degree less than or equal to 2.
Recall that Wll 0 w22. By (3.8), we have

and 0)12
Ox2

E,

which implies that

E and
Ox

If 0)12 were polynomial of degree 2, then there would be a nonzero polynomial of degree
3 in E, which contradicts Theorem 2. Therefore, we conclude that 0)12 is a polynomial
of degree at most 1. We will prove that 0)12 is actually a constant. From (3.9) and
(3.5), we have

2
1 (27(3.10) Z 0)i0)i 20XkOX

E.
i--1

Since
2

1
0)ji0)ki

20xkOxj
i--1

is a polynomial of degree at most 2 for all 1 < j, k < 2 we deduce easily that r/is
a polynomial of degree at most 4. Assume that 1 aaox + aalx3x2
alaxlx32 + aoax+ degree 3 polynomial and 0)12 axl + bx2 + c. Equation (3.10)
implies that

1 C2Z] 0217 and 0)122
1

0)212 20X21 OXlOX2’ 20X22
are in E. Hence we have

(3.11)

E 9 0)122 102 a2 b2
2 + +

+ +
+ polynomial of degree one

(a2 --6a40)x21 + (2ab- 3a31)xlx2 + (b2 -a22)x22
+ polynomial of degree one.
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(3.12) CX (OX2
3a31x21 - 4a22xlx2 + 3a13x22
+ polynomial of degree one.

1

polynomial of degree one

( -)x +(-)+( -60)x
polynomial of degree one.

Since 1 --[Dl,xl + cl] e E, we have 1, Xl,X2 e E. It follows from (3.11)-(3.13) that

(3.14) (a2 6aa0)x2 + (2ab 3a3)xx2 + (b2 a22)x E E,

(3.15) 3a31x2 T 4a22xx2 + 3a3x E,

(3.16) (a2 a22)x + (2ab 3a13)XlX2 + (b2 6ao4)x22 e E.

We will prove that d12 is a constant. If there is no polynomial of degree 2 in E, then
we have a b a22 0. This implies that w12 is a constant.

Suppose that there is a polynomial of degree 2 in E. Then, by using the affine
transformation Rx, where R is an orthogonal matrix, we may assume that there
exists a degree 2 polynomial in E of the form kx + k2x22+ polynomial of degree one,
where either k 0 or k2 0. This can be seen by using Lemma 7 because 2

2k,t=l r2krltWtk is still a polynomial in xi of degree at most one. As 1, x, x2 E,
we deduce that there exists a polynomial in E of the form klx2 + k2x, where either

kl = 0 or k2 = 0. Without loss of generality we may assume that k = 0. So we have

p(x) x2 + kx22 E where k k2/k.

Case 1. k O.
We observe that

(3.18)

(3.19)

It follows from (3.18) and (3.19) that we have

(3.20) axx2 + bx E,
(3.21) ax21 + bxlx2 E.
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Equations (3.20) and (3.21)imply that

(3.22) a2x21 b2x22 E E.

On the other hand, we have

k+l
xlD1 + kx2D2 + x21 + kx2] 2x + 2k2x22 E.

So we have

(3.23) x21 + k2x2 e E.

Equations (3.17) and (3.23) imply (k2 k)x22 e E. So if k # 1, then both x21 and x22
are in E. If k 1, then it follows from (3.17) and (3.22) that (a2 + b2)x E. If
a2 + b2 0, then w12 is constant as claimed. On the other hand, if a + be # 0, then
we conclude that Xl, x are in E. Therefore in view of Lemma 5, we have

(3.24) 12] 1 1 1
Lo -x1 - D + D2 rl x21] -4 D x22] x D1 + 5 e E,

(3.25) 12] 1 1 1no, X2 - D + D22 1, x2 D22 x x2D2 -4- - e E,

[ 1 1](3.26) xlD1 + -, x2D2 + -XlX20312 ( E.

By Theorem 2, XlX20312 is a polynomial of degree 2. So 0312 is a constant.
Case2. k=0.
By (3.19) we have ax + bxlx2 e E which implies bxlx2 E. If b 0, then

XlX2 E. It follows that

(3.27)

[Lo, XlX2] - D --r/,XlX2 -[D21,XlX2] -}- [D,xlx2]
x2D14c-xlD2 E,

(3.28) [x2Di + xiD2, XlX2] X21 "4- X22 E.
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We deduce from (3.28) that x2 and x22 are in E. Hence (3.24)-(3.26) imply that
must be a constant as claimed.

From now on, we assume that b 0, i.e., w2 axl + c, and p(x) x.
Let Z0 1/2x E E and Zk1/2P(X)= In0, Zk_]. Then by (3.24) Z [L0, Z0]

In view of Lemma 5, we havezID1 +5"

Z2 [L0, Zl D2 + D22 r/, X D +
1 1I

[D xD] + [D XlD1] q- [xlD1
1 0D + XlWl2D2 -+- EI(r/) where E1 Xl 0Xl

Let Uk be the space of differential operators of order up to and including k. Then

Here mode U signifies a member of the affine class of operators obtained by
adding members of Uk to the argument. Suppose a # 0. Then A Za/4a
(x + 3c/4a)DD2 mod U is an element in E. We claim that (-1)+AdAZ2
2 2 k U+I.DID2 mod For k 1,

(-1)AdAZ2 --[Z2, A] D2 mod U, Xl + -a D1D2 mod U

[D12, (Xl+aa) D1D2] modU2
2D2D2 rood U2.

Suppose that it is true for k 1, i.e., (--1)k’AdkA-1Z2 2k-lr)2r)k-l’l2 mod U.
Then

(3.29)
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We show that [DID2, D21Dk2-1] 0 mod Uk+. This can be seen easily by induction
as follows. For k 1, this follows from Lemma 6 (ii)"

[DID2, D2D2-1 -[D12D2k-2D2, DD21
Ft2 FIk--1 [D2, D1D2]-’1 *-’2

[n:nk-2 DD2]D2 0 mod Uk+t*"l *"2

in view of Lemma 6 (iii) and induction hypothesis. Put this into (3.29), and we obtain

This proves our claim. We have shown that if a # 0, then E is infinite-dimensional.
Hence the finite-dimensionality of E implies that a 0, i.e., wl2 is a constant. We
can apply Theorem 6 of [Ya] to deduce our result. [3
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