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FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT IV:
CLASSIFICATION OF FINITE-DIMENSIONAL ESTIMATION
ALGEBRAS OF MAXIMAL RANK WITH STATE-SPACE
DIMENSION 3*

JIE CHENT, STEPHEN S.-T. YAUT, anp CHI-WAH LEUNGH

Abstract. The idea of using estimation algebras to construct finite-dimensional nonlinear filters
was first proposed by Brockett and Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finite-dimensional nonlinear filters. In his talk at
the International Congress of Mathematics in 1983, Brockett proposed a classification of all finite-
dimensional estimation algebras. Chiou and Yau classify all finite-dimensional estimation algebras of
maximal rank with dimension of the state space less than or equal to two. In this paper we succeed
in classifying all finite-dimensional estimation algebras of maximal rank with state-space dimension
equal to three. Thus from the Lie algebraic point of view, we have now understood generically all
finite dimensional filters with state-space dimension less than four.
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1. Introduction. In the sixties and early seventies, the basic approach to non-
linear filtering theory was via the “innovation methods” originally proposed by Kailath
and subsequently rigorously developed by Fujisaki, Kallianpur, and Kunita [FKK] in
1972. As pointed out by Mitter [Mi], the difficulty with this approach is that the
innovations process is not, in general, explicitly computable (except in the well-known
Kalman-Bucy case). In the late seventies, Brockett and Clark [BrCl], Brockett [Br],
and Mitter [Mi] proposed the idea of using estimation algebras to construct finite-
dimensional nonlinear filters. In a previous paper [Ya], Yau has studied the general
class of nonlinear filtering systems which included both Kalman-Bucy and Benes fil-
tering systems as special cases. He gives necessary and sufficient conditions for an
estimation algebra of such filtering systems to be finite dimensional. Using the Wei-
Norman approach, he constructed explicitly finite-dimensional recursive filters for such
nonlinear filtering systems.

In his talk at the International Congress of Mathematics in 1983, Brockett pro-
posed classification of all finite-dimensional estimation algebras. Since then, the con-
cept of estimation algebras has proved to be an invaluable tool in the study of nonlinear
filtering problems. In [ChYa], Chiou and Yau introduced the concept of an estimation
algebra of maximal rank. They were able to classify all finite-dimensional estimation
algebras of maximal rank with state-space dimension less than or equal to two. The
novelty of their theorem is that there is no assumption on the drift term of the non-
linear filtering system. On the other hand, if the drift term has a potential function
(i.e., drift term is a gradient vector field), then the corresponding estimation algebra
is called exact. In [TWY], Tam, Wong, and Yau classified all finite-dimensional ex-
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act estimation algebras of maximal rank with arbitrary state-space dimension. This
paper is a natural continuation of [ChYa]. We shall classify all finite-dimensional esti-
mation algebras of maximal rank with state-space dimension equal to 3 (without any
assumption on the drift term). The following is our main theorem.

THEOREM 1 (main theorem). Suppose that the state space of the filtering system
(2.0) is of dimension three. If E is the finite-dimensional estimation algebra of maxi-
mal rank, then the drift term f must be a linear vector field (i.e., each component is
a polynomial of degree one) plus a gradient vector field, and E is a real vector space
of dimension eight with bases given by 1, x1, x2, 3, D1, D2, D3, and Lo.

This kind of nonlinear filtering system was studied by Yau [Ya]. Therefore, from
the Lie algebraic point of view, we have shown that the finite-dimensional filters
considered in [Ya] are the most general.

Let w;; = %% - gg’%, which was first introduced by Wong [Wo2]. Our strategy
is to prove w;; constant for all 4,j. Then we can apply the result of [Ya] to finish
the proof. This involves two steps. The first step is to prove that w;; is a degree-one
polynomial. The second step is to prove that w;; is a constant. Let n be the dimension
of the state space. Unlike the case n = 2, where there is only one unknown, wis, the
case n = 3 for the treatment of the first step is more difficult because there are three
unknowns: w1z, w1, and wa3, and they cannot be separated and thus they cannot be
treated individually. For the second step, which is the hard part of the paper, we have
to introduce a new concept and technique in addition to the method used in [ChYa]
to overcome the difficulties.

The paper is in essence a continuation of [Ya], [ChYa], and we strongly recommend
that readers familiarize themselves with the results in [Ya], [ChYa]. However, every
effort will be made to make this paper as self-contained as possible with minimal
duplication of the previous papers.

2. Basic concepts. In this section, we shall recall some basic concepts and re-
sults from [Ya]. Consider a filtering problem based on the following signal observation
model:

da(t) = f(x(t))dt + g(2(t))dv(t), 2(0) = zo,

dy(t) = h(z(t))dt + dw(t), y(0) =0,

(2.0)

in which z, v, y, and w are, respectively, R"-, RP-, R™-, and R™-valued processes, and
v and w have components which are independent, standard Brownian processes. We
further assume that n = p, f, h are C* smooth, and that g is an orthogonal matrix.
We shall refer to z(t) as the state of the system at time ¢ and to y(t) as the observation
at time ¢.

Let p(t, z) denote the conditional density of the state given the observation {y(s) :
0 < s <t} It is well known (see [DaMa], for example) that p(t,z) is given by
normalizing a function, o (¢, z), which satisfies the Duncan-Mortensen—Zakai equation.

(2.1) do(t,z) = Loo(t,z)dt + i Lio(t, z)dyi(t), o(0,z) = oo,
i=1

where

1 n af; 1
0=32 5~ L Zax@ 3 2.1
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and for i = 1,...,m, L; is the zero-degree differential operator of multiplication by h;
and oy is the probability density of the initial point zo. In this paper, we will assume
oo is a C*° function.

Equation (2.1) is a stochastic partial differential equation. The stochastic differ-
ential is a Stratonovich one, not an Ito one. In real applications, we are interested
in constructing state estimators from observed sample paths with some property of
robustness. Davis [Da] studied this problem and proposed some robust algorithms. In
our case, his basic idea reduces to defining a new, unnormalized density

é(t.0) = exp - Zh(xyz) 2).

It is easy to show that £(¢,x) satisfies the following time-varying partial differential
equation:

(2:2) % (t,2) =Lot(t,2) + 3. 9l Lo, LiE(t,2)

i=1

52 L HOnOEa L) LieG2)

where [, ] is the Lie bracket defined as follows.

DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,
[X,Y], is defined by [ X,Y]p = X(Y¢) — Y (X @) for any C>® function ¢.

DEFINITION. The estimation algebra E of a filtering problem (2.0) is defined as
the Lie algebra generated by {Lo, L1,...,Lm}. E is said to be an estimation algebra
of mazimal rank if, for any 1 < i < n, there exists a constant c; such that x; + c; is
in E.

Most of the known finite-dimensional estimation algebras are maximal. For ex-
ample, if the equation (2.0) is linear, i.e., f(z) = Az, g(z) = B, and h(z) = Cz, and if
also (A, B, C) is minimal, then the corresponding estimation algebra is maximal [Ha].

In [Ya], the following proposition is proven.

PropOsSITION 1 (Yau). w;ij = gi@ QLf are constant functions for all i and j if

and only if (fi, ..., fn) = (l1,...,In)+(FE,. .., 22), where lr, ..., ln are polynomials
of degree one and ¢ is a C® functzon

We need the following basic result for later discussion.

THEOREM 2 (Ocone). Let E be a finite-dimensional estimation algebra. If a
function € is in E, then £ is a polynomial of degree < 2.

Define 5
Di=—-fi
Ox; f
‘910z - 2 o 2
i=1 i=1
Then

1 n
i=1

The following theorem proved in [Ya] plays a fundamental role in the classification
of finite-dimensional estimation algebras.
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THEOREM 3 (Yau). Let E be a finite-dimensional estimation algebra of (2.0) such
that wj = Bx —i- are constant functions. If E is of mazximal rank, then E is a real
vector space of dzmenszon 2n + 2 with bases given by 1,x1,%2,...,%n, D1, Da,..
and Lo.

For the convenience of readers, we also list the following elementary lemmas
without proof. The lemmas were proven in [Ya] and [ChYa).

LEMMA 4. (i) [XY,Z] = X[Y,Z] + [X,Z]Y where X,Y and Z are differential
operators.

(i) [gDi,h] = 5o where Dy = — — fi,g and h are functions defined on R".

(iii) [gDs, hD; ] = ——ghwm +gah D —h—-"-D,, where wj; = [Dj, D;] = 59% g%.

(iv) [9D}, h] =298 Di+ 934

(v) [D?,hD;)=282D;D; zhwijn + Qfgpj howi

Bzz
. Awj; Awji wjis
(vi) [D?, D3] = 4w;;D;D; + 258D + 252 D5 + me_ + 2w,

(vii) [D%,hD;Dj] = 2 DkD D + 2hw;jkDi Dy, + 2hwix Dy Dj + —TD Dj +
2h %k Dy + h5e D; +h3—wwD +h
(viii) [gD,D], hDy] = gaf D; Dk+gah D; Dy + ghwyj Di+ ghwy; Dj +95§i%h?jDk+
Owpj
gh%t — h 2 D;D;.
LEMMA 5. (i) [Lo,z; + ¢j] = D;, where Lo = (37, D? — n).
(ii) [Di,xj + Cj] = 67;j.
(iii) [Di, Dj] = Wji. s
(iv) Yj:=[Lo, Dj] = Lo, (wjiDi + 3 52) + 3 oL
(v) [¥5wm] = zz;lwﬁ%%%-
. n Bzwji 2
Consider & = Rz, where R is an orthogonal matrix. Then (2.0) becomes

{df() F@@))dt + §(E(t))do(t), #(0) = Zo := Rao,
dy

j(t) = h(E(t))dt + dib(t), §0) =0,

(2.3)

where
f(@) = Rf(z), §(%) = Rg(z),

U= v, W= w,
7=y, h(Z) = h(z).
It was observed for instance in [TWY] and [ChYa] that Lo = 1 37 | 2 W r L fi 3‘—% -

S 3% 3 >, k2, is equal to Lo. Hence the Lie algebra E = <Lo, Li,... ,Em>LAA.
is isomorphic to E <Lo, Li,...;Lm); ,-

Let Q = (w;i;) and Q= (@i;) where w;j = g—% - gﬁj and @;; = g}% - g‘i% It was
shown in [ChYa] that the following lemma is true.

LEMMA 6. () = RQR-1.

3. Proof of the main theorem. In this section, we shall classify all finite-
dimensional estimation algebras with maximal rank for dimension of state space equal
to three. By Lemma 5, we know that w;; is in E and in view of Ocone’s result, w;;
is a polynomial of degree at most two for all ¢,5. The first step is to prove w;; is a
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degree-one polynomial for all 4, . This step was carried out in detail in our Conference
on Decision and Control paper [YaLe]. So we have

w12 ailr a2 ais X1 C12
wiz | = | a21 a22 a23 T2 | + | ci3
w23 asz; az2 ass 3 C23

Now we have to deal with the hard part of the proof. We are going to prove that w;;’s
are constants. For this, we introduce an invariant ryax of the estimation algebra E as
follows.

DEFINITION. Let p(x) be a quadratic polynomial. The rank of p(x),r(p) is defined
as the rank of the Hessian matriz (E—w@i—zg’x—j).

Denote

@ = space of homogeneous polynomials of degree 2,
P; = space of polynomials of degree at most 1,
Uy = space of differential operators with order at most k.

LEMMA 7. Let E be a finite-dimensional estimation algebra of mazimal rank.
Then Py C E. If p(z) is a polynomial of degree two in E, then the homogeneous
degree-two part of p(z) is also in E.

Proof. This follows immediately from Lemma 5 and the definition of maximal
rank. ]

DEFINITION. Let Eg = ENQ. Define rmax = Max{rank p(z) : p(z) € Eg}.

Remark. Observe that rmax is invariant under orthogonal change of coordinates
and 0 < rmax < 3 in this paper.

3.1. Case Tmax = 3. There exists homogeneous p(z) € E with rank (p(z)) = 3.
By applying an orthogonal change of coordinates, if necessary, we may assume without
loss of generality that
p(z) = k122 + kox3 + k33,

where k; # 0 for 7 = 1,2,3. There are three possibilities.
Case I: all k;’s are distinct. By Lemmas 4 and 5,

[D?, 23] = 6i;(4z; D; +2),

3 3
1
[Lo, p(2)] = 5 > [D2,p(z)] = Y (2k;z;D; +1).
i=1 j=1
So 23=1 kjz;D; € E and
3 1 3
{Z kiziDs, '2'17(9”)] = Z kiz? € E.
=1 i=1

Replacing p(z) by Yo, k222, we deduce that 3>, k322 € E. Since the matrix

ki ko k3

k? k2 k2

KRk
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is nonsingular, we conclude that z2,z%,22 € E. Now for i # j,

[[Lo,.’l:%], [Lo, :1)3] = [2$¢Di +1, 231ij + 1]]
= —4$i$jwij €F.

Since x;x;w;; is a polynomial of degree at most 2 by Ocone’s result, we deduce that
w;j is constant.

Case II: two of the k;’s are equal. In this case we may take p(z) = kiz? +
ko(z3 + z3). By evaluating [[Lo,p(z)], p(x)], we can obtain k?z? + k2(x3 + z32) € E.
It follows that 22 € E and 23 + 2z € E. Since [Lo,z?] = 2z;D; + 1, we have
x1D1,292D9 + z3D3 € E. So we have

— [#1D1,z2D2 + 3 D3] = z1zT2W012 + T1Z3W13

= anzize + 021233 + a122123 + a23x123 + (013 + aze)z1x223  mod Py

€ FE.
By Ocone’s result, [z1D1,22D2 + 23D3] € P2. We deduce immediately that
a11 =az1 =a12=a23 =0, aiz3+ap=0.

Furthermore, from the cyclic relation %‘1’;32 + %‘%’fﬁ + %“% =0, we have a13+azi—azs =0
and

0 0 —az
A= 0 a29 0
2022 a32 ass

Recall that

Y1 = [Lo, D1] = w12D2 + w13 D3 mod Uy,
Y2 = [Lo, D2] = w1 D1 +we3D3  mod Up,
Y3 = [Lo, D3] = w31 D1 + w32 D2 mod Up.

Then

1
Z[Ya, 2 + 2] = wosrs = a31Z1%3 + a3222x3 + a332 mod P,
5 3+ 3 3
1 2, .2 2
- §[Y3,w2 + 23] = wasx2 = az1T122 + a3273 + azzr2xs  mod Py,

1
z1D, ‘2‘[Y2,x§ + 23] | = as1z173 mod Uy,

a31(z1D3 + z3D1), az1z123] = a%l (:L‘% + x%) mod Pp.

Choose k such that k # +a2,,0. Then a%,(z? + %) + k(22 + 22) = a?,2% + k22 +
(a%l + k)z% is in E. If a31 # 0, then we are back in Case I and we are done. So we
have a3z = 0 = a13 = ag2 and

0 O 0
A=10 0 0
0 a3z as3
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as1 = 0 implies ag2x273 + az3z3 and az2x3 + assraxs are in E.

[Lo, as2zaz3 + as3xl] = asa(x2Ds + x3D2) + ass(2z3Ds + 1)
= aszox3 Dy + (asz2xe + 2a33x3)D3 € E,
[Lo, azex3 + asszazs] = as2(222D2 + 1) + asz(z2Ds + x3D2)
= (2a32z2 + a33z3)D2 + asszzeD3 € E,
las2x3 D2 + (azex2 + 2a33x3) D3, agax23 + a33x3]
= a2,22 + azaw2(asew2 + 2a3373) + 2a3373(as2x2 + 2a33T3)
(3.1) = a3,7% + daseaszzozs + (a3, + 4a3;)72 € E,
[(2(132.772 + a33m3)D2 + assz2 D3, aggxg + a33x2$3]
= (2a3272 + a3373)? + a2y 72
(3.2) = (a3; + 4a2,)z% + 4asrasszozs + ad,z2 € E.

From (3.1) and (3.2), we have
(—a3; — 3a3,)23 + (a3, + 3a3;)z] € E.

Recall that z3 + 22 € E. If

1 1
det = 4(a3, + a?
(vt bty otyag,) =it

is nonzero, then z3 and 2 are in E. So w;; = constant for all 7, in view of the
argument in Case 1. On the other hand if the determinant above is zero, then a2, +
a%; = 0, which implies ag2 = ass = 0. So A = 0, which means that w;;’s are constants.

Case I1L: all k;’s are the same. In this case, we may take p(z) = 22+ 23+ 232 € E.
If there exists quadratic form g(z) with 0 < rank(g(z)) < 3, we can find an orthogonal
transformation R such that

so that E contains either #2,%2 + 22 or #2 + #2,42, for which the proof in Case II
works. Therefore we shall assume without loss of generality that Eg = (2% + 22 +22).
Recall from Lemma 5, Y; = Z?=1 wj; Dy mod Up is in E.

[Y1,p(2)] = [wi2D2 + w13 D3, p(z)] = 2(zowi2 + z3wi3)
= 2(an12122 + 01273 + a13T223 + A21Z1%3 + a22T2T3 + ap3z3) mod Pr.

So a11Z122 + a1223 + (a13 + a22)T2x3 + a217123 + a233 is in Eg and hence equal to
c1(z? + 23+ z2). Comparing coefficients of 22 allows us to conclude that ¢; = 0. Thus
a11 = @21 = a12 = a3 = 0,a13 + a2z = 0, and
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Similarly,

(Y2, p(z)] = (w21 D1 + wasDs, p(z)] = 2(—z1wi2 + T3was)
= 2(—a112? — 122172 — 137123 + a3171T3 + a32T2T3 + azzxr:) mod Py
= 2((a31 — a13)173 + a32x2x3 + agszl) mod P.

So (a31 — a13)x123 + aszx2x3 + ass3z? is in Eg and hence equal to ca(z? + 23 + z2).
Thus c2 = 0 and asg2 = azz = 0,a31 = a13.

0 0 1
A=a13|0 -1 O
1 0 O

Finally, the cyclic relation %—“n’g + %‘-‘;213 + %“;3; = 0 allows us to conclude that a3 = 0.

Therefore A is a zero matrix and we are done.

3.2, Case Tmax = 2. There exists homogeneous polynomial p(z) € E with
rank(p(z)) = 2. Without loss of generality, we shall assume that

p(z) = k122 + koxd,

where k1ko # 0. We remark that £ cannot contain z3 since rmax = 2.

Case I: k1 # ko. By evaluating [[Lo, p(z)], p(z)], we can obtain k?z? + k322 in E.
It follows that 22,22 are in E.

[Lo,w%] =2x1D1+1 and [Lo,x%] =2x02D9 + 1
=>x1D; € FE and z2Do € E

= L1Towig = —[(E1D1,x2D2] e FE

= w12 = €12 = constant by Ocone’s result.

LEMMA 8. Suppose that z1D1,z2D2 are in E. If q(z) = quiz? + qiaz172 +

q13T1T3 + q22T3 + q23T2T3 + q33x3 is in E, then each individual q;jxix; is in E.
Proof.

3}
[z1D1,q(x)] = xl—a—fl- = 2q112% + quaz172 + 37123

[z1D1, [1D1, q(z)]] = 4q112? + qr27122 + q137173.
These imply q112? € E and g127172 + q137123 € E.
[x2D2, 127122 + q137173] = qr27122 € E.
This implies qi3z123 € E.

[£2D2, 2273 + gqo3z2x3 + g337% = 2q2273 + gazzor3 € E
[£2D2, 2q207% + qo3zaz3] = 4g2273 + qoszoxs € E.

These imply g202% € E, q23z2x3 € E and go3z% € E. o
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We now claim that z1z3 € F. If 123 € E, then

1
[Lo,.’Bl.’L‘g] = §[D% + D% + D%,:cm:g] =gx3D1+x1D3 e E

= [21D3 + z3D1,z123) =22 + 23 € F
= z2+zi+23€FE  and  rank(z? + 2% +23) = 3.

This gives a contradiction. So we conclude that 123 € E. Similarly we conclude that
zoz3 € E. Clearly 2% ¢ E. In view of Lemma 8, we have

(mf’x@ - EQ - <x%’x%’wlx2>'
By Lemma 5,
—[z1D1, D3] = z1w13 = 2122 + ag2T122 + a23r123 € E.
In view of Lemma 8, we have agsx1x3 € E, which implies ags = 0. Similarly,
[x2D2, D3] = Towss = as1T172 + a32x3 + asszrezs € E
implies az3 = 0. Then
0 0 0

A=|axn a2 0
as1 azz O

Let Z1 = z1Ds,

3
Za :=|Lo, Z1] = 52(2%&01 - 2w1wi1Di) mod Up
i=1 *

= D? + c1a21D2 + z1w13Ds  mod Uy,

3
1
Zs = Lo, 7] = 5 > [D?,D? + c121 D2 + z1w13Ds]  mod Uy
i=1

3
= Z(zquiDl + 6(61—2321)-131'D2 + MDzD;?,) mod U1
po ox; ox;

0
=2w12D2D; + 2w13D3D; + c12D1D2 + <w13 + 11 5;13 > D1 D3
1

Owas
8:::2
=3c12D1 D3 + (4a2121 + 3az2z2 + 3¢13) D1 D3 + agax1 D2 D3 mod Uy,

[Z3, Z1] = [3c12D1 D2 + (4a21z1 + 3azexa + 3¢13) D1 D3 + azax1 D2 D3, x1 D1
mod U1
=3c12D1 D3 + (4da2121 + 3a22z2 + 3¢13) D1 D3 — 4ag121D1 D3 — azex1 D2 D3
mod U;
=3c12D1 Dy + 3agsxo + 3C13)D1D3 —azax1D2D3 mod Uy

+ 1 DsD3  mod Uy

1 1
Zy = 5[23, Zh) + §Z3 = 3c12D1 D2 + (2a2121 + 3a22z2 + 3¢13)D1 D3 mod U,
[Z4, Zl] = [3612D1D2 + (2(121331 + 3ag2x2 + 3013)D1D3,:L‘1D1] mod Uz
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=3c12D1D2 + (2(1212?1 + 3ag2x2 + 3613)D1D3 — 2a9121D1D3 mod U;
=3c12D1D35 + (3a22x2 +3c13)D1 D3 mod Uy,

1
75 = -2-(Z4 - [Z4, Z1]) = az1x101D3 mod Uy,

1
[Lo, Z5] = §[D% + D% + Dg, a21x1D1D3] mod Us

:ang%D(g mod U2,

([Lo, Z5), Z5) = [a21D3D3,a2121 D1 D3] mod Us

=a%,D2D3% mod Us.

By induction, we get infinite elements in F of the form

(=1)Ad%, (Lo) = a5, D}DY  mod Uny1.

Since F is finite dimensional, we conclude that

(3.3)

(3.4)

ag1 = 0.

W1 = x2D2 e FE

3
1
W2 = [LO»WI] = —2- Z[Dz,([}zDQ] mod UO

i=1

3
1 ox
=3 S j<2a—ij,~Dg - 2x1wi2D¢) mod Up

i=1
= D3 — z1c12D1 4 z1w23 D3 mod Up,
W3 = [LO,W2]

3
1
=3 Z[D?,D% —c1221D1 4+ z1we3 D3] mod Uy

i=1

3
= Z(mm,ﬂz _deem)pop, —3(”3“"23)Di03> mod U
i=1

ox; ox;
9 Owa3
= 2w21D1 D2 + 2w23D3D2 — c12D7 + | w23 + 1 . D1Ds3
+ z1 Owas DsD3s mod Uy
0xs

= (—2a22x2) D1 D2 + (2a3171 + 2a3222) D2 D3 — c12D?
+ (2a3171 + a32x2)D1D3 + az2x1D2D3  mod Uy

= (—2a2272) D1 D2 + [(2a31 + as2)z1 + 2a32x2)D2 D3 — c12D?
+ (2a3121 + az2x2)D1D3  mod Ui,

(W3, Wi] = [(—2a22z2) D1 D2 + ((2as1 + as2)x1 + 2a3222) D2 D3 — ¢12D?

+ (2a3121 + as32x2) D1 D3, x2D2] mod Uy

= —2a2x2D1 D3 + ((2a31 + a32)z1 + 2a32x2) D2 D3 + 2a2022D1 Do
- 2a32x2D2D3 — a32:c2D1D3 mod U1

= (2a31 + a32)x1D2D3 — azpz2 D1 D3 mod Uy,
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(W3, Wh], Z1] = [(2a31 + asex1D2 D3 — agaxe D1 D3, 21 D1] mod Uy
= —az2x2D1 D3 — (2a31 + az2)z1D2D3 mod Uy

1
(3.5) — 5([W3,W1] +'[[W3,W1], Z1]) = agox2D1 D3 mod Uj.

1
(3.6) —2*([W3,W1] - [[Wg, W1], Z1]) = (2031 -+ a32)x1D2D3 mod Uj.

It follows from (3.4), (3.5), and (3.6) that

Wy := —2a20192D1 D2 + 2a32152D2 D3 — ClzD% + 2a3121D1D3 mod Uy,
(W4, Z1] = [~2a2232D1 D2 + 2a32x2 D2 D3 — c12D? + 2a3131 D1 D3, 21D
mod Uy
= —2a2272D1 Dy — 2¢12D? mod Uy,

1
W5 = —§[W4,Z1] mod U1
= agez2D1D2 + c12D? mod Uy,
1
(Lo, W5] = 5[Df + D} + D}, a2222D1 D2 + c12D3]  mod U

= a22D1D? mod Uy,
[[Lo, Ws], Ws] = [ag2D1D3, agzxo D1 D2 + c12D3] mod Us
= 2a3,D?D? mod Us.

By induction, we have
(1) Adyy, (Lo) = 27~1a3,DFD3 mod Uny1.
Since F is finite dimensional, we conclude that
(3.7 aze = 0.
By the cyclic relation %“—;’f + %}f‘ + %ﬁ; =0, we get
a13 +a31 —aze = 0.
From (3.3) and (3.7), we get az1 = 0. It follows that
Wy = 2a3222D2D3 — ¢12D?  mod Us,
[Lo, %W4] = % [D% + D% + D%, azax2 D2 D3 — %ClzD%:I mod Uz
= a32D2D3s mod Uy,
HLO, ';"sz] ) -21-W4] = [aszD%Dza,aszszzDa - %cme] mod Us

=2a%,D2D% mod Us,
(—1)”Ad’gw4(Lo) =2n~1¢2, D2D? mod Up41.

Since E is finite dimensional, we have a3za = 0. Therefore, the w;;’s are constants for
all 4, 7.
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Case II: k1 = ko. Without loss of generality, we may take p(z) = z2 + 3. In view
of Case I, we shall assume that E does not contain z?, z2.
LEMMA 9. Under the Case II assumption, (z? + 22) C Eq C (22, 2%, z172).

Proof. Let q(z) € Eg. Then
q(x) = qu12? + g2 + ¢33z} + Q22122 + Q3TIT3 + 3 T2T3.
Recall that z1D; + x2Ds is in E. By applying x1 D1 + z2D2 repeatedly to g(z), we

see immediately that 1122 + 2272 + 127172, q137123 + 237273,q337% € E. These
imply gs3 = 0 (since Tmax = 2) and 3(«? + 23) + (q137123 + g23zazs) € E.

1 1 0 g
Hess -2-(.'13% + x%) + (qu3z123 + gosxoxs)| = 0 1 qo3
3 @3 0

The determinant of the above matrix is —(g#; + g%;). Since rmax = 2 < 3, we have
¢ + g2, = 0 which implies q13 = 0 = gos.

We deduce from Lemma 9 that 1 < dimFEg < 3.

If dimEqg = 3, then Eq = (22,22, z172) and we are in Case L

If dimFEg = 2, then we may take Eg = (x% + x%,qmb‘% + qiez1z2). If g2 = 0,
then Eq contains both z? and z2 and we are back in Case I. Therefore we can assume
that gi2 # 0. Furthermore if ¢11 = 0, then Eg is actually (x% +:c%, x1x2). We consider
the following particular orthogonal transformation:

A _1 9
i-Re R=|2 1
T = nx =l = 0],
V2 o2
0 0 1
such that it gives rise to
z=RT%
m%+x§:——>§:?+i%
212y s 7} + 23 - + 23 _ —a} + 43
V2 V2 2
3 o o —E1H 3 =2 =2
Eq — Eq = T+ 2o —5 = (21, Z3).

Thus, E contains 3 and #3. By Case I, the &;;s are constants and so are the w;;’s as
Q = RTQR. Hence we may also assume that g11 # 0. So Eg = (2} + 3, 2% + 2kz122)
for k # 0. Observe that if we can find a quadratic form po € Eg with r(po) = 1,
then there exists an orthogonal transformation such that Eg is mapped into EQ,
which contains both #? and %, and we are done. So we try to find such a po below.
Consider

po = A(z? + 23) + (2% + 2kz172).

Its underlying symmetric matrix is

(10 1 k) _ (A+o ok
Am"\(o 1>+"(k 0)‘( ok ,\)
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and detAp, = A2 4+ oA — 02k2. Fix 0 # 0 (say o = k) and choose

-1+ 1+ 4k2
/\=a———2————.

Then r(po) = 1. We are done for dimEg = 2.

IfdimEg = 1, then Eg = (z?+x3). Recall from Lemma 5 that Y;’s are in E where
Y1 = wi2D2 + w13 D3 mod Uy, Y2 = wa1.D1 + w23 D3 mod Uy, and Y3 = w31 D1 +w32 Do
mod Uo.

1
§[Yl % + 23] = zowi2 = a117172 + 41274 + a137173 mod Py

= ansie + a2} + asrixs € Eg = (23 + z3)
= a1 =ai2=a13=0,

1
—E[Yg,x% + 23] = T1wi3 + Tows

= ag1z? + (a22 + a31)T172 + 323 + a23T173 + asszer3 mod Py
= anz? + (a2 + a31)z122 + a3273 + a237173 + assr2x3 € (T? + 23)
= a1 = asz,a22 +a31 = 0,a23 =azz =0.

By the cyclic relation %“’-5132 + %}f + %’j;‘- =0, we have a13 + as1 — a2z = 0. It follows
that ass = a3z; =0 and
0 0 O
A= a1 1 00
010

In order to prove that a1 = 0, we consider the following sequence of elements in E.

Ki:=z1D + z2Dg,
1 1
D - 2 2 2
Ky :=[Lo,Ki] = 5 ;[Di,wlDl] +3 ;[Di,szz] mod Uy
= D? + z1w12D2 + z1w13D3 + D3 + 2ow21 D1 + TawesDs  mod Uy
= D} + D + zaw21 D1 + z1w12D2 + (z1wi3 + Tawes) D3 mod U,
K3 L= [Lo,Kz]

3
1
=3 E [D?, D? + D2 + zow21 D1 + z1w12D2 + (T1w13 + Tawez) D3]
i=1

mod U1

= 2(w12D1D2 + w13D1 D3 + w21 D2 D1 + wa3 D2 D3)

—c12D2D1 + c12D1 D2

+ (w13D1D3 + ag121D1 D3 + wes D2 D3 + azpz2D2D3) mod Uy
= (3w13 + a2121) D1 D3 + (3was + a2122)D2D3  mod Uy
= 4a21(m1D1 + xzDz)Dg mod U1,

(—1)Adk,(K2) = (K2, K3]

= [D% + D%,4a21(m1D1 + :I:zDz)Ds] mod Us
= 4a21([D%,:121D1] + [D%,szz])Dg mod Us
= 8as1 (D% + D%)D;; mod Us.
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Inductively, we have
(—1)AdTIL(3(K2) = (8a21)"(D% + Dg)Dg mod Up41.

Since dimE < 00, a2; = 0 and we have A = 0. So w;;’s are constant for all 4, j.

3.3. Case rmax = 1. In this case, we may assume that p(z) = w% € FE and
Eg = (z%).
Q 1

[Yz,p(w)] = [w21D1 +WQ3D3,Z‘%] = 2w91x1 € EQ
(Y3, p(z)] = [ws1 D1 +w32D2,x%] = 2wz1z1 € Eq.

Thus, wi2 and w13 depend only on z; because Eg = (z?). So

a;i; O 0
A = agi 0 0 .
asi as2 ass

The cyclic relation %%12 %2;3 + %5 Qﬂl = 0 implies a3; = 0 and implies az; = 0 and

ai; 0 O
A=|lan 0 O
0 00

Now z? € FE implies z1D1 € E. Let

Xy :=x1Ds,

p—

3
Xy :=[Lo, X1] = 52_: 2 21D1) mod Uy

= %;(2%%171171 — 271w D + ;x;D ) mod Uy
= D? + z1w12D3 + z1w13D3  mod Uy
= D% + (CIIIICE% + 0121?1)D2 + ((12123% + Cl3$1)D3 mod Uy
= D% mod U1,

X3 = [Lo,Xz]

=3 Z[D2 D% + (a112% + c1221) D2 + (a2122 + c1321)D3]  mod Uy

2 2
= Z(?qulDi + a(auwla: cmxl)D@Dg + a(a21z(19: 013031) D1D3> mod Uy
i—1 % i

= 2(a1121 + ¢c12)D1 D2 + 2(a2121 + c13)D1D3 + (2a1121 + c12)D1Ds
+ (2a2121 4+ c13)D1 D3 mod U
= (4a11331 + 3012)D1D2 + (4a21w1 + 3013)D1D3 mod U;.

We are going to show that ai1 = 0. Suppose a11 # 0. Denote a = %ﬁ and define

3c12

3c1
Q= ——-—-Xg = ( 1+ —-)DlDz + <ax1 + ——)Dng mod Us.
4a11 011 a1
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LEMMA 10. Ifai1 #0, let a := 1=X3,a = 2. Then for j > 1
(—1)7 Adf (X2)

27
Proof. We shall prove this by induction.

(— )Ada(XZ) 1
2

= D%(Dz + aD;;)j mod Uj+1.

5[X2,0]

{Dl, (w1 + §L>DID2 + (m + 3—>D1D3] mod U,
ail aili
9 1 + Sciz D2D2 -+ —-(2- ary + §£1-§ D2D3 mod Us
6:8 0z al
D% D2 + aDg) mod Uy,
(=11 AN (Xa) _ (—1)i Ad%,(X2)
Ada

27+1 27

g

= 5 [D%(Dz + aD3)j, (a)1 -+ §—-—>D102 + <ax1 -+ @>D1D3:|
a1 aii
mod Uj+2
= D?(D2 + aDs)iDy + aD%(D2 + aD3)iD3  mod Ujt2
= D% (D2 + aDg)j (Dz + aD3) mod Uj+2
= D%(Dz + aD3)j+1 mod Uj+2. 0

The above lemma implies that E is infinite dimensional, contradicting the finite-
dimensionality of £. Hence a11 = 0. Then

0 0 0
A= az1 0 0 s
0 a3z ass

X = D% + c1221D2 + (a212% + c1371)Ds  mod Uy,
X3 = 3c12D1 D3 + (4a2121 + 3c13)D1 D3 mod Us.

Next we shall see that az;1 = 0. Suppose a21 # 0. Consider

i 1 _ 3ci12 3ci3
8= Tom X3 = 1an, D1Dy + (:111 + 10, >D1D3 mod Ui,
5 3c12 3ci13
(—1)Adg(X2) == [Xz,ﬁ] = 1, a3 D1D2 +{x1+ Z(;—— D1 D3 mod Us

= 2D%D3 mod Us.
We claim that (—1)J Ad{g(Xz) = 2 D2D} mod Uj+1. This can be seen by induction.
(~1)i+1Adg (X2) = (~1)Adg((~1)Adj(X2))
= [(-1)7 Adj(X2), 8]
[mD?Dg, ?’-‘EDIDQ + (x1 + %‘“’1—3> Dng] mod Uj 42

=2+1D2DIT mod Ujo.
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Then F contains an infinite-dimensional subspace, which is impossible. Hence a1 = 0

and
o o o

A=10 0 0
0 a3 as3
Consider the expression of [Yj, Di] in Lemma 5(vi). Noting that w;;’s are linear,
the following elements belong to E:

3
1 9%
i=1

K is symmetric about j,k (Table 1) and is a polynomial of degree at most two,
which in turn forces 7 to be a polynomial of degree at most four.

TABLE 1.

(3,k) K

2 2 192
(L,1) wip +wiz — 55??
182
(1,2) | wizwzs — 557;2577;;
1.0
(1,3) | wiowsz - 5;9—;;%;
2 2 _ 198
(2:2) wy twWaz ~ 3 55%
102
(23) | wawsi =~ 53555
(33) | witwdh-33

z3
Recall our notation:
w12 T1 c12 0 0 0
wis | =A|l x|+ cas |, A={0 0 0
w23 x3 c23 0 a3 ass

Since K, € P; and Eg = (z?) in this case rmax = 1, we have
Kjx =kz? mod P.

So we can form the following relationships:

102

53—3:27 = a3,z% + 2a32a337273 + a33z3 + az? mod Py,
2

10%n 9 o ) )

20922 48272 + 2a32a337273 + a3s3xs +bxr{ mod P,
3

1 02
L = ca? mod P1.

2 8x2013 .t

2
Observe that the term assz? in %-g—;g must come from the z3z% term in 7. Let n
contain the term az3z2. Since

1 02azx3x? , 102aza? , 18202222

PR 2 R, ST Sk~ S, — =2
2 0z3 o3 3 oz3 T2 3 Ox20x3 QT2T3,)
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by comparing coefficients we obtain
a=a3;, a=ad%, 2a=0.
So, a3z = a3z = 0 and accordingly
Q = Os3x3 mod Fy.

Hence Case rmax = 1 is done.

3.4. Case Tmax = 0. In this case Eg = ¢. All functions in E are automatically
linear.
Recall that .
1 9%y
Mik = — Y WjiwWki + =7—=— € Eo.
ik ; ik 2 Bmkaxj Q

This expression is written in element form. It’s more insightful to view it in matrix
form.
Let M = (mjk)3x3 and note that the  matrix is antisymmetric. Then we have

M = -QQT + -;—Hess(n)

=02+ -;—Hess(n),

where Hess(n) = (3—%25”5;)3 x3 is the Hessian matrix of 7.

Let Q@ = Dz + Bza + Cz3 (mod Po), where D = (aij)3x3, B = (8ij)3x3,C =
(vij)3x3 are skew-symmetric matrices. We make use of Q2 + JHess(n) = 0 mod P,
to infer that D = B = C = (0)3x3 as follows. Writing

H=0
= H112% + Ho273 + H33z% + Hizx122 + Hisz123 + Hoszoxzs
= D2z? + B2z% + C22% + (DB + BD)z1z2 + (DC + CD)z123

+ (BC + C'B).’L‘zxs,
we have
0 a2 Q13
Hyy = D?=-DDT, where D= | —aj2 0 93
~o13 ~—azz 0
So
o?, +a?;  ouzas —aizons
Hii=—| osaes oy +0ad; apais
—a12a23 12013 a?s + (1%3

The other H;; matrices can be obtained similarly and they are listed explicitly at the
end of this section.

We consider terms in 7 and relationships derived from Q2 + 1 Hess(n) = 0 mod
Py in terms of entries in H;; matrices. The coefficient of z?z% in —n = H11(2,2] =
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sz[l,l] = %H12[1,2]. Similarly, H11[3,3] = H33[1,1] = %H13[1,3] and H22[3,3] =
H33(2,2] = Ha3(2, 3] (Hij[p,q] means the (p, q)-entry of matrix H;;). We have

1
(3.8) oy +ads =02+ 0% = -2-(a13ﬁ23 + a23f13),
1
(3.9) s+ 03y =7+ = —5(0112723 + a23v12),
1
(3.10) B3+ 03 =11 + 735 = -2'(512713 + B13m2).

Together with the simple majorization relationship between any two real numbers,
2ab < a2 + b2, we can rewrite (3.8), (3.9) and (3.10) to obtain
2(a2, + s + B2, + BE;) = 2(cusfes + az3fis) < oy + B3 + ad4 + B,
2(ad;5 + 03 + v, + 7vis) = —2(eu27v23 + 023712) < 0Fy + 735 + a3 + Vi,
2(8%; + BZ; + v2 + 7Z3) = 2(Br2m13 + Pismiz) < B + 35 + B + 5,
Summing these three inequalities and simplifying, we have
oy + oy + 2035 + BT, + 28%; + B35 + 29%; + 75 +33 <0,
which implies that
a1z =13 = agz = P12 = (13 = P23 = Y12 = 113 = Y23 = 0,
ie.,
D = B = C = O3xs.

Hence
Q =3 03>(3 IIlOd Po‘

Case Tmax = 0 is done.
For reference we list the H;; matrices below:

ofy+ady  cuzazs —aizaos
Hiu=—| oazass  aly+03; ooz |;
—Q12023 120013 a%:; + a%;;

B% + 6%  Pisfs —[i2fs
Hy=—| pisfes  B%+PB% Bi2biz |;
—Pr2B2s  Pr2Bis B+ B

Y3 +35 M3y —Y12723

Hzz=—| 73723 Y+ mems |
—Y127Y23 MMz Y+
2012P12 + 2013813 cu3fes +azsbia  —ai12023 — B23P12
Hio = — | 013fe3 +a23fi3  2a12012 + 2023023 12013 +a13fiz |
—a12023 — agsfiz a12f13 + csfiz 2013013 + 2003023
2012712 + 2013713 013723 + 2313 —Or127Y23 — (23712
Hyz =— | oaizves + a2sviz  2a127mi2 + 2023723 a12m13 + @izvi2 |

—@12723 — Q23Y12 Q12713 + 13712 20013713 + 2023723

2012712 + 2013713 B13ves + Besvizs —Pi2y2s — B2sviz
Hoz = — | [i3ves +B23vis 2B12712 + 2023723 P23 + Fizvie
—B12v23 — B23vi2 Piemiz + B13vie 2B13m3 + 2023723
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