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FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT IV:
CLASSIFICATION OF FINITE-DIMENSIONAL ESTIMATION
ALGEBRAS OF MAXIMAL RANK WITH STATE-SPACE

DIMENSION 3*

JIE CHEN, STEPHEN S.-T. YAU, AND CHI-WAH LEUNG$

Abstract. The idea of using estimation algebras to construct finite-dimensional nonlinear filters
was first proposed by Brockett and Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finite-dimensional nonlinear filters. In his talk at
the International Congress of Mathematics in 1983, Brockett proposed a classification of all finite-
dimensional estimation algebras. Chiou and Yau classify all finite-dimensional estimation algebras of
maximal rank with dimension of the state space less than or equal to two. In this paper we succeed
in classifying all finite-dimensional estimation algebras of maximal rank with state-space dimension
equal to three. Thus from the Lie algebraic point of view, we have now understood generically all
finite dimensional filters with state-space dimension less than four.
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1. Introduction. In the sixties and early seventies, the basic approach to non-
linear filtering theory was via the "innovation methods" originally proposed by Kailath
and subsequently rigorously developed by Fujisaki, Kallianpur, and Kunita [FKK] in
1972. As pointed out by Mitter [Mi], the difficulty with this approach is that the
innovations process is not, in general, explicitly computable (except in the well-known
Kalman-Bucy case). In the late seventies, Brockett and Clark [BrCi], Brockett [Br],
and Mitter [Mi] proposed the idea of using estimation algebras to construct finite-
dimensional nonlinear filters. In a previous paper [Ya], Yau has studied the general
class of nonlinear filtering systems which included both Kalman-Bucy and Benes fil-
tering systems as special cases. He gives necessary and sufficient conditions for an
estimation algebra of such filtering systems to be finite dimensional. Using the Wei-
Norman approach, he constructed explicitly finite-dimensional recursive filters for such
nonlinear filtering systems.

In his talk at the International Congress of Mathematics in 1983, Brockett pro-
posed classification of all finite-dimensional estimation algebras. Since then, the con-
cept of estimation algebras has proved to be an invaluable tool in the study of nonlinear
filtering problems. In [ChYa], Chiou and Yau introduced the concept of an estimation
algebra of maximal rank. They were able to classify all finite-dimensional estimation
algebras of maximal rank with state-space dimension less than or equal to two. The
novelty of their theorem is that there is no assumption on the drift term of the non-
linear filtering system. On the other hand, if the drift term has a potential function
(i.e., drift term is a gradient vector field), then the corresponding estimation algebra
is called exact. In [TWY], Tam, Wong, and Yau classified all finite-dimensional ex-
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act estimation algebras of maximal rank with arbitrary state-space dimension. This
paper is a natural continuation of [ChYa]. We shall classify all finite-dimensional esti-
mation algebras of maximal rank with state-space dimension equal to 3 (without any
assumption on the drift term). The following is our main theorem.

THEOREM 1 (main theorem). Suppose that the state space of the filtering system
(2.0) is of dimension three. If E is the finite-dimensional estimation algebra of m.axi-
real rank, then the drift term f must be a linear vector field (i.e., each component is
a polynomial of degree one) plus a gradient vector field, and E is a real vector space
of dimension eight with bases given by 1, xl, x2, x3, DI, D2, D3, and Lo.

This kind of nonlinear filtering system was studied by Yau [Ya]. Therefore, from
the Lie algebraic point of view, we have shown that the finite-dimensional filters
considered in [Ya] are the most general.

Let wij ox oxj, which was first introduced by Wong [Wo2]. Our strategy
is to prove wij constant for all i, j. Then we can apply the result of [Ya] to finish
the proof. This involves two steps. The first step is to prove that wj is a degree-one
polynomial. The second step is to prove that wiy is a constant. Let n be the dimension
of the state space. Unlike the case n 2, where there is only one unknown, w12, the
case n 3 for the treatment of the first step is more difficult because there are three
unknowns: w12, d13, and d23, and they cannot be separated and thus they cannot be
treated individually. For the second step, which is the hard part of the paper, we have
to introduce a new concept and technique in addition to the method used in [ChYa]
to overcome the difficulties.

The paper is in essence a continuation of [Ya], [ChYa], and we strongly recommend
that readers familiarize themselves with the results in [Ya], [ChYa]. However, every
effort will be made to make this paper as self-contained as possible with minimal
duplication of the previous papers.

2. Basic concepts. In this section, we shall recall some basic concepts and re-
sults from [Ya]. Consider a filtering problem based on the following signal observation
model:

dx(t) f(x(t))dt + g(x(t))dv(t),

dy(t) h(x(t))dt + dw(t),

x(O) xo,

=0,

in which x, v, y, and w are, respectively, Rn-, Rp-, am-, and Rm-valued processes, and
v and w have components which are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth, and that g is an orthogonal matrix.
We shall refer to x(t) as the state of the system at time t and to y(t) as the observation
at time t.

Let p(t, x) denote the conditional density of the state given the observation {y(s)
0 <_ s <_ t}. It is well known (see [DaMa], for example) that p(t.,x) is given by
normalizing a function, a(t, x), which satisfies the Duncan-Mortensen-Zakai equation.

m

(2.1) dcr(t,x) Loa(t,x)dt + E Licr(t,x)dy(t), a(0, x) a0,

i--1

where

fi 0- Oxi 2 hLo - = Ox = = =
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and for 1,..., rn, L is the zero-degree differential operator of multiplication by hi
and a0 is the probability density of the initial point x0. In this paper, we will assume

a0 is a C function.
Equation (2.1) is a stochastic partial differential equation. The stochastic differ-

ential is a Stratonovich one, not an Ito one. In real applications, we are interested
in constructing state estimators from observed sample paths with some property of
robustness. Davis IDa] studied this problem and proposed some robust algorithms. In
our case, his basic idea reduces to defining a new, unnormalized density

x) exp x).
i--1

It is easy to show that (t,x) satisfies the following time-varying partial differential
equation:

mO- (t x) Lo(t, x) + E y(t)[Lo, L](t, x)Ot
i=1

1
m m- EEy(t)yj(t)[[L’ L]’ Lj](t’ x)
=1 j=

where [., .] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by IX, Y] X(Y) Y(X) for any C function .
DEFINITION. The estimation algebra E of a filtering problem (2.0) is defined as

the Lie algebra generated by {Lo, L,...,Lm}. E is said to be an estimation algebra
of maximal rank if, for any 1 <_ <_ n, there exists a constant c such that x + c is
in E.

Most of the known finite-dimensional estimation algebras are maximal. For ex-
ample, if the equation (2.0) is linear, i.e., f(x) Ax, g(x) B, and h(x) Cx, and if
also (A, B, C) is minimal, then the corresponding estimation algebra is maximal [Ha].

In [Ya], the following proposition is proven.
o_ are constant functions for all and j ifPROPOSITION 1 (Yau).

and only if (fl fn) (/1 ln)"’( 0 0) where 11 In are polynomials
of degree one and is a C function.

We need the following basic result for later discussion.
THEOREM 2 (Ocone). Let E be a finite-dimensional estimation algebra. If a

function is in E, then is a polynomial of degree < 2.
Define

0
D Ox f

m

i--1 i=1 i--1

Then

1(_ )L0 D2
r/

The following theorem proved in [Ya] plays a fundamental role in the classification
of finite-dimensional estimation algebras.
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THEOREM 3 (Yau). Let E be a finite-dimensional estimation algebra of (2.0) such
o_ are constant functions, if E is of maximal rank, then E is a realthat wj ox oxj

vector space of dimension 2n + 2 with bases given by 1, xl,x2,... ,xn, D1,D2,... ,Dn,
and Lo.

For the convenience of readers, we also list the following elementary lemmas
without proof. The lemmas were proven in [Ya] and [ChYa].

LEMMA 4. (i) [XY, Z] X[Y, Z] + IX, Z]Y where X, Y and Z are differential
operators.

Oh where D(ii) [gD, hi g-5-, f, g and h are functions defined on R.
(iii) [gDi hDi] -ghwii + g Ox Ox"
(iv) [gD hi 2 Oh OhyD +g.

Di h(v) [D hDy] 2 Oh ninj 2hwijni +
(vi) [D Dy] 4wjiDjDi + 2Di + 2Dj + 2

Oxj Oxi OxiOxj 2ji"
Oh DiDjOh DkDiDj(vii) [D,hDiDj] 2

2hDk +hDi Dj +ox Ox + h ox oxox"
gOh DiDk +g Oh DjDk +ghwkjDi +ghwkiDj + oxOx(viii) [gDiDj hDk] g

gh hDDjOx Ox
nLEMMA 5. (i) [Lo,xj + cj] Dj, where Lo (=D -).

(ii) [Di, xj + cj] 5ij.
(iii) [Di, Dj] wji.

(iv) := [Lo + Oxi 20xj

(v)
(vi) Oxk i=10xkOxi 20xkOx
Consider Rx, where R is an orthogonal matrix. Then (2.0) becomes

d2(t) ](Sc(t))dt + O(Sc(t))dO(t),

d](t) h(2(t))dt + d(t),

2(0) 20 := Rxo,

=0,

where
](c) Rf(x), [7(c) ng(x),

V, (V W,

f] y, () h(x).
n 0 nIt was observed for instance in [TWY] and [ChYa] that o 1/2 }-’i=1 gf(-.i=1 fi o

n -.m 2m is equal to Lo Hence the Lie algebra/ (Lo, Ll, Zm)L A.,--.,i= 0i i=

is isomorphic to E (L0, L1,..., Lm}L.A..
0x 0A0xj and wj- It wasLet gt (wij) and t (&ij) where wij o o"

shown in [ChYa] that the following lemma is true.
LEMMA 6. --RR-1.

3. Proof of the main theorem, in this section, we shall classify all finite-
dimensional estimation algebras with maximal rank for dimension of state space equal
to three. By Lemma 5, we know that wj is in E and in view of Ocone’s result, wj
is a polynomial of degree at most two for all i, j. The first step is to prove wj is a
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degree-one polynomial for all i, j. This step was carried out in detail in our Conference
on Decision and Control paper [YaLe]. So we have

d13 a21 a22 a23 x2 -- c13

d23 a31 a32 a33 x3 c23

Now we have to deal with the hard part of the proof. We are going to prove that wj’s
are constants. For this, we introduce an invariant rmax of the estimation algebra E as
follows.

DEFINITION. Let p(x) be a quadratic polynomial. The rank ofp(x), r(p) is defined
as the rank of the Hessian matrix oZoxj )"

Denote

Q space of homogeneous polynomials of degree 2,

P space of polynomials of degree at most i,

Uk space of differential operators with order at most k.

LEMMA 7. Let E be a finite-dimensional estimation algebra of maximal rank.
Then P1 C_ E. If p(x) is a polynomial of degree two in E, then the homogeneous
degree-two part of p(x) is also in E.

Proof. This follows immediately from Lemma 5 and the definition of maximal
rank.

DEFINITION. Let EQ E N . Define rmax Max(rank p(x) p(x) E EQ.
Remark. Observe that rmax is invariant under orthogonal change of coordinates

and 0 <_ rmax _< 3 in this paper.

3.1. Case rmax 3. There exists homogeneous p(x) E with rank (p(x)) 3.
By applying an orthogonal change of coordinates, if necessary, we may assume without
loss of generality that

p(x) + +
where ki # 0 for 1, 2, 3. There are three possibilities.

Case I: all ki’s are distinct. By Lemmas 4 and 5,

e)[D,xj] 5ij(4xjDj +
3 3

1
[Lo,p(x)] - E[D,p(x)] E(2kjxDj + 1).

i--1 j--1

So= kjxjDj E and

[ 1] 3]ixi6E.kxD,-p(x) E 2 2

i--1 i=1

Replacing p(x) by }-i3__ kx, we deduce that Ei3=1 ]gx/2 E. Since the matrix

kl k2 k3)
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is nonsingular, we conclude that x, x22, x e E. Now for j,

2] [Lo, x] [2xiDi + 1,2xjDj + 1]][[Lo, xi
-4xixjaij E E.

Since xixjwij is a polynomial of degree at most 2 by Ocone’s result, we deduce that
wj is constant.

Case II: two of the ki’s are equal. In this case we may take p(x) klx2 +
2 2k2(x2 + x). By evaluating [[Lo,p(x)],p(x)], we can obtain klx + k(x2 + x) e E.

It follows that x2 e E and x2 +x] e E. Since [Lo, x2] 2xiDi+ 1, we have
xD1, x2D2 + x3D3 E. So we have

[xD,x2D2 + x3D3] xlx2w2 + xx3w3
allX21X2 + a21x21x3 + al2XlX + a23xlx + (a13 + a22)XlX2X3

E.
mod P

By Ocone’s result, [xD, x2D2 + x3D3] E P2. We deduce immediately that

all a21 a12 a23 0, a13 + a22 0.

Furthermore, from the cyclic relation++ 0, we have a13+a31-a22 0Ox3 oxl Ox.
and

A 0 a 0
2a22 a32 a33

Recall that

Y [Lo, D] w12D2 + w3D3
Y2 [Lo, D2] w21D + w23D3
Y [Lo, D] w31D + w2D

mod Uo,
mod Uo,
mod Uo.

Then

1[Y2 x22 + x32] w23x3 a31xlx3 + a32x2x3 + a33x]2

+ x]] + +2

IXl D1, 1 [Y2, x22 t-x]]:a31xlx3 mod Uo,

a3 (x03 + x3D), alxx3] a(x + x]) mod Po.

rood P

mod P,

Choose k such that k # +/-al, 0. Then a(x2 + x) + k(x2 + x) a32 x2 + kx22 +
(al + k)x is in E. If a3 # 0, then we are back in Case I and we are done. So we
have a31 0 a3 a22 and

0 0
A= 0 0 0

0 a32 a33
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a31 0 implies a32x2x3 + a33x and a32x22 + a33x2x3 are in E.

[Lo, a32x2x3 -+- a33x32] a32(x2D3 + x3D2) -+- a33(2x3D3 -+- 1)
:: a32x3D2 A- (a32x2 -+- 2a33x3)D3 E E,

[Lo, a32x2 + a33x2x3] a3(2x2D2 + 1) + a33(x203 + x3D)
==> (2a39.x + a33x3)D2 + a33x2D3 E,

[a32x3D2 + (a32x + 2a33x3)D3, a32x2x3 + a33x]
a32x322 + a32x2 (a32x2 -+- 2a33x3) -4- 2a33x3(a32x2 + 2a33x3)
2 2 + + + e Z,

[(2a32x2 + a33x3)D2 + aa3x2D3, a32x22 -4- a33x2x3]
2 2(2a32x2 -+- a33x3) 2 -f- a33x2

2 2(a323 + 4a322)x22 + 4a32a33x2x3 + a33x3 e E.

From (3.1) and (3.2), we have

(_a33 3a32)x2 + (a322 + 2 23a33)x3 E.

Recall that x + x32 E. If

1
det _a3 3a]2

1 )a322 + 3a3 4(a322 + a33)

is nonzero, then x and x are in E. So ogij constant for all i, j in view of the
argument in Case I. On the other hand if the determinant above is zero, then a2 +

’Sa3 0, which implies a32 a33 0. So A 0, which means that 0 are constants.
Case III" all ki’s are the same. In this case, we may take p(x) Xl-+ x2 +x E.

If there exists quadratic form q(x) with 0 < rank(q(x)) < 3, we can find an orthogonal
transformation R such that

or

p(x) + +

so that E contains either 21, 22 + 23 or 21 + 222, 23, for which the proof in Case II
works. Therefore we shall assume without loss of generality that EQ (x +x + x}.

Recall from Lemma 5, Yj 3__1 jD mod Uo is in E.

[YI,p(x)]--[&12D2 -t-13D3,p(x)]- 2(X2W12 q- X3Cdl3)
2(allXlX2 -+- a12x22 -4- a13x2x3 -4- a21xx3 -+- a22x2x3 -+- a23x) mod P.

So alxx2 + al2x2 + (a13 + a2)x2x3 + a2lXlX3 + a23x is in EQ and hence equal to
Cl(Xl2 +x2 + x). Comparing coefficients of x2 allows us to conclude that Cl 0. Thus
all a21 a2 a23 0, a13 + a22 0, and

0 0 a13 )A 0 -a13 0
a31 a32 a33
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Similarly,

mod P1

So (a31 a3)xlx3 + a32x2x3 + a33x is in EQ and hence equal to c2(x + x + x]).
Thus c2 0 and a32 a33 0, a31 a13.

A a13

0 0 1)0 -1 0
1 0 0

Finally, the cyclic relation / + 0 allows us to conclude that a13 0.0X3 0Xl 0X2
Therefore A is a zero matrix and we are done.

3.2. Case rmax 2. There exists homogeneous polynomial p(x) E E with
rank(p(x)) 2. Without loss of generality, we shall assume that

+

where klk2 O. We remark that E cannot contain x32 since rmax 2.
22 22Case, I: 1 g2. By evaluating [[Lo, p(x)], p(x)], we can obtain klx + k2x2 in E.

It follows that x, x2 are in E.

[Lo, x2] 2xlD + 1 and [Lo, x] 2x2D2 + 1

xD E and x202 E
xx2w2 -[xID,x2D2] E

= w12 c2 constant by Ocone’s result.

LEMMA 8. Suppose that xD1, x2D2 are in E. If q(x) qllXl2 / ql2XlX2 /

ql3XlX3 / q22x22 / q23x2x3 / q33x23 is in E, then each individual qijxixj is in E.
Proof.

Oq
[xD1, q(x)] Xl -Xl 2qllX / ql2XlX2 / ql3XlX3

[xlD, [xlD, q(x)]] 4qlx2 + ql2XlX2 / ql3XlX3.

These imply qx21 E and ql2XlX2 / ql3XlX3 E.

[x2D2, ql2XlX2 / q13xlx3] q2xx2 E.

This implies q13xlx3 E.

[x2D2, q22x22 + q23x2x3 + q33x] 2q22x / q23x2x3 E
[x2D2, 2q22x22 + q23x2x3] 4q22x22 / q23x2x3 E.

These imply q22x E, q23x2x3 E and q23x] E. rl
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We now claim that XlX3 E. If xlx3 E E, then

1
[Lo, XlX3] -[D + D2 + D,xlx3] x3D1 + xlD3 E

[xlD3 + x3Dl,xlx3]- x + x E

== Xl
2 + x + x] E and rank(x2 + x22 + x32) 3.

This gives a contradiction. So we conclude that xlx3 E. Similarly we conclude that
x2x3

_
E. Clearly x E. In view of Lemma 8, we have

By Lemma 5,

-[xlD1,D3] xlw3 a2lxl + a22xx2 + a23xlx3 E.

In view of Lemma 8, we have a23xlx3 E, which implies a23 O. Similarly,

[xD2, D3] x2w3 a31xlx2 -+-a32x22 + a33x2x3 E

implies a33 0. Then

Let Z1 xlD1,

0 0 0 /A- a21 a2e 0
a31 a32 0

1

2-zDiD1 2XlWiDiZ2 [L0, Z1]
i=1

rood Uo

D + c12x1D2 + XlW13D3 mod Uo,

1
3

Z3 "--[Lo, Z2] [D,D + c12xlD2 @ Xla)13D3]
i-I

mod UI

mod U1
=3c12D1D2 + (4a2xl + 3a22x2 + 3c13)D1D3 -4a21xlDiD3 -a3xD2D3

mod U1
=3c12D1D2 + 3a22x2 + 3c13)DID3 -a32x1D2D3 mod U1

1Z4=l[z3,Z1]- + Z3 3c12DID2 + (2a21x1 + 3a22x2 + 3c13)DID3

[Z4, Z1] =[3c12DID2 + (2a21x1 + 3a22x2 + 3c13)DID3,x1D1] mod U1

mod U1,
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=3c12D1D2 + (2a21x1 + 3a22x2 + 3c13)DID3 2a2x1DiD3
=3c2DID2 + (3a22x2 + 3c3)DD3 rood U1,

1
(Z4 [Z4, Z1]) a2xlD1D3 rood U1,Z

1
[L0, Zs] [D12 -+- D -+- D, a21xlD1D3] mod U2

a2D12D3 mod U2,
[[Lo, Z5],Z5] [a21D21D3,a21xID1D3] mod U3

22=aDD3 mod U3.

By induction, we get infinite elements in E of the form

DID3(-1)nAd7(L0) al 2 n

Since E is finite dimensional, we conclude that

mod Un+l.

(3.3) a2 0.

mod U

(3.4)
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[[W3, W1], Z1] [(2a3 + a32xD2D3 a32x2DD3,xD1] mod U1
=-a32x2DiD3- (2a31 + a32)xlD2D3 mod U1

1
(3.5) ([W3, W] +’[[W3,W],Z1]) a32x20103 mod U.

1
(3.6) ([W3, W1] [[W3, W1], Z1]) (2a3 + a32)xlD203 mod U.

It follows from (3.4), (3.5), and (3.6) that

W4 :-- -2a22x2D1D2 + 2a32x2D2D3 12D12 / 2a31xlDiD3 mod U1,

[W4, Z] [-2a22x2DiD. + 2a32x2D2D3 -c2D + 2a3xxDD3,xD1]
mod U1

-2a22x2DiD2 2c2D2 mod U,
1
[W4, Z1] mod U1w.=-

a22x2DID2 + c12D mod U,
1

[Lo, W5] -[D + D + D,a22x2D102 + c12D2] mod U2

a22DID22 mod U2,
[[Lo, Ws], W5] [a22D022, a22x2D02 + c2D] mod Ua

2 22a22D1D22 mod U3.

By induction, we have

n n(-1) Adws (Lo 2n-l’’n rn r2 mod Un+t22Ll J2

Since E is finite dimensional, we conclude that

(3.7) a22 0.

By the cyclic relation / / 0, we get0X3 0Xl 0X2

a3 / a31 a22 0.

From (3.3) and (3.7), we get a31 --0. It follows that

W4 2a32x2D2D3 c2D2 mod U1,

I111[D +D + D,a32xD2D3-a32DD3 mod U2,

Lo,-W4 W4 a32DD3, a32x2D2D3 cl2D12
2a322 2 2D2D3 mod U3,

n 2(-1)’Adw4
(Lo) 2’-1a3202D mod U+.

mod -U

mod Ua

Since E is finite dimensional, we have a32 0. Therefore, the COij’S are constants for
all i, j.
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Case II: kl k2. Without loss of generality, we may take p(x) x21 + x22. in view
of Case I, we shall assume that E does not contain x2, x22.

LEMMA 9. Under the Case II assumption, (x + x22} C_ EQ C_ (x21,x22,xlx2).
Proof. Let q(x) E EQ. Then

q(x) qllX21 + q22x -+- q33x q- ql2XlX2 + ql3XlX3 -Jr- q23x2x3.

Recall that xlD + x2D2 is in E. By applying xlD1 + x2D2 repeatedly to q(x), we
see immediately that qx21 + q22x + q2xlx2, q3xlx3 + q23x2x3, q33x E. These
imply q33 0 (since rmax 2) and 1/2(x + x22) + (q3xx3 + q23x2x3) e E.

Hess
1
(x21 + x2) + (ql3XlX3 -[- q23X2X3)

1 0 q13 10 1 q23

q13 q23 0

The determinant of the above matrix is -(q123 + q3). Since rmax 2 <: 3, we have
q123 -+- q223 0 which implies q13 0 q23. [’1

We deduce from Lemma 9 that 1 _< dimEQ _< 3.
2If dimEQ 3, then EQ (x,x2,xlx2 and we are in Case i.

If dimEQ 2, then we may take EQ (x21 + x22, qllX nc ql2XlX2). If q12 0,
then EQ contains both x2 and x22 and we are back in Case I. Therefore we can assume
that q12 = 0. Furthermore if q 0, then EQ is actually (x21 +x,xx2). We consider
the following particular orthogonal transformation"

2-- Rx (1 o
R-- 0

such that it gives rise to

x RT2

Thus,/ contains 212 and 22. By Case I, the w{j’s are constants and so are the wj as
RTtR. Hence we may also assume that q 0. So EQ <x2 + x22,x + 2kxlx21

for k : 0. Observe that if we can find a quadratic form po EQ with r(po) 1,
then there exists an orthogonal transformation such that EQ is mapped into
which contains both 22 and 2, and we are done. So we try to find such a po below.
Consider

Po A(x + x) + a(x + 2kxlx2).

Its underlying symmetric matrix is

(1 0)(1 k) (A+a ak)Apo A
0 1 + a

k 0 ak A
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and detApo ,k2 + a) a2k2. Fix a 0 (say a k) and choose

-1 + v/1 + 4k2

2

Then r(po) 1. We are done for dimEQ 2.
If dimEQ 1, then EQ @21+x2}. Recall from Lemma 5 that Y’s are in E where

Y w2D2 +w3D3 rood Uo, Y w2D +w23D3 rood Uo, and Y3 w3D +w32D2
mod Uo.

1
[Yl,x + x] X2a212 a.lXlX2 + a12x22 + a.3XlX3 mod P12

=: allXlX2 .-t-- al2x + a13xlx3 e EQ {x21 +
all a12 a13 0

1
[Z3,x + x] XlWl3 + x223

2
+ + + + + mod P

a21x -+- (a22 -b a31)XlX2 q- a32x + a23xlx3 + a33x2x3 E (x21 q-- x222}
a21 a32 a22 + a31 0 a23 a33 0.

By the cyclic relation + + 0, we have a13 q-a31 --a22 0. It followsOx3 Oxl
that a22 --a31 --0 and

(ooo)A a2 1 0 0
0 1 0

In order to prove that a21 0, we consider the following sequence of elements in E.

K1 xlD1 -}- xD,
1

3
1

3

K2"= [Lo, K] E[D,xlD] + - E[D2,x2D2] mod Uo
i=1 i=1

D21 + xw2D2 + XlWl3D3 + D + x2w2D + x2w23D3 mod Uo
D21 + D + x2w21D1 "[" XlWl2D2 + (XlWl3 -}" x2w23)V3 mod Uo,

g3" = [Lo, K2]
1

3- [D,D +D + x2w21D1 q" Xlw12D2 "[- (Xltdl3 -[" x2w23)D3]
i=1

mod U1
2(w12D1D2 + w13DID3 + w21D2D1 + w23D2D3)
c12D2D1 + c2DID2

+ (w13DD3 + a21x1DiD3 + w23D2D3 + a32x2D2D3) mod U1
(3w3 + a2xl)DD3 + (3w23 + a2x2)D2D3 mod U1
4a2(xiD1 + x2D2)D3 mod U1,

(-1)Adg3 (g) [K:, K3]
[D2 + D, 4a21(x101 + x202)D3] mod U2
4a2([D,xD] + [D,x2D2])D3 mod U2
8a2(D2 + D)D3 mod U2.
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Inductively, we have

D2)D3 mod Vn+l.(-1)Ad3(K2) (Sa21)n(D + 2 n

Since dimE < , a21 0 and we have A 0. So wij’s are constant for all i,j.

3.3. Case rmax 1. In this case, we may assume that p(x) x E E and

[Y2,p(x)] =-[w21D1 +w23D3,x2] 2w21xl e EQ
[Y3,p(x)] [w31D1 + w32D2, x] 2w31xl e EQ.

Thus, w2 and w3 depend onl on xl because EQ (x}. So

all 0 0 )A a2 0 0
a31 a32 a33

The cyclic relation + + 0 implies a31 0 and implies aa 0 and0X3 (Xl 0X2

aii 0
A= a2i 0 0

0 0 0

Now x2 E implies xlD1 E. Let

mod U

We are going to show that al 0. Suppose al # 0. Denote a a_ and define
all

1 (3c12)(3c13)a:= aal-:-iX3 x +all DD2 + ax +-----al DID3 mod U.
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X3,a= --. Then for j> 1LEMMA 10. If all 0, let a
all

(-1)JAdJ(z2) D2 (D2 + aD3)J mod Uj+I.
2J

Proof. We shall prove this by induction.

(-1)Ad(X2)
2

_--1 D x + DD2 + ax + DID3 modU2
2 all all

Ox--- x+al DD2+ ax+al DD3 modU

D(D2 + aD3) mod U2,

I[(-I)JAd(X)2J

D(D2 +aDa)j, Zl + /D1D2 + aZl + all DIDa
mod U+
D(D + aDa)D + aD(D + aDa)Da mod U+
D(D + aDa)(D + aDa) mod U+
D(D + aDa)+ mod U+.

The above lemma implies that E is infinite dimensional, contradicting the finite-
dimensionality of E. Hence a 0. Then

(0 0 0)A a 0 0
0 a32 a33

X2 D + c12x1D2 + (a2x + cl3xl)D3 mod Uo,
X3 3c12DD2 + (4a21x1 + 3c13)DID3 mod U1.

Next we shall see that a21 0. Suppose a21 0. Consider

1 c1:=Xa=DD+ z+ DDa modUs,

(-1)Ad(X) [X,] D,DD+ z + DDa mod U

=2DDa modUs.

We claim that (- 1)Ad(X) 2DDa mod U+. This can be seen by induction.

DDa,DD+ z+ DDa modU+
2j+12nJ+l
13 mod U+.
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Then E contains an infinite-dimensional subspace, which is impossible. Hence a21 0
and

A= 0 0 0
0 a32 a33

Consider the expression of [Yj, Dk] in Lemma 5(vi). Noting that wj’s are linear,
the following elements belong to E:

3 1

OxOxj
i--1

Kjk is symmetric about j,k (Table 1) and is a polynomial of degree at most two,
which in turn forces to be a polynomial of degree at most four.

TABLE 1.

(j,k) Kyk

Recall our notation:

13 A x2 + C13 A 0 0 0
C023 X3 C23 0 a32 a33

Since Kjk E P2 and EQ (Xl2} in this case rmax 1, we have

Kjk kx mod Pi.

So we can form the following relationships:

1 02r/ 2 2

20x a32x2 + 2a32a33x2x3 -t-- a33x + ax2 mod P1,

1 027 2 2

20x] a32x2 + 2a32a33x2x3 + a33x + bx2 mod Pi,

1 Orl cx mod Pi.20xOxs
02

X2X3 term in r/. Let /Observe that the term a33x] in must come from the 2 2

contain the term ax2x]. Since

102axx] ax 102ax2x] ax2 102axx 2ax2x3,
2 Ox 2 Ox 20xOx
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by comparing coefficients we obtain

a=a], a=a], 2a=0.

So, a32 --a33 ---0 and accordingly

=O33 modP0.

Hence Case rmax 1 is done.

3.4. Case rmax = 0. In this case EQ . All functions in E are automatically
linear.

Recall that
3

mjk = _ECdjiOJki nt_
027]

OXkOXj
E EQ.

i--1

This expression is written in element form. It’s more insightful to view it in matrix
form.

Let M (mjk)33 and note that the gt matrix is antisymmetric. Then we have

1

1
Hess(7]),=f+

where Hess(7]) (okoj)33 is the Hessian matrix of 7].

Let gt Dxl + Bx2 + Cx3 (mod Po), where D (aij)33, B (ij)33, C
(%y)33 are skew-symmetric matrices. We make use of gt2 + 1/2Hess(7]) 0 mod P1
to infer that D B C (0)33 as follows. Writing

H =gt2

Hx + g22x + H33x + H2xx2 + g3xx3 + H23x2x3
D2x2 + B2x + C2x] + (DB + BD)xx2 + (DC + CD)xx3
+ (BC + CB)x2x3,

we have

HI D2=-DDT, where
0 o12 o13 /D -o12 0 o23

So

Hll 013a23 a122 + 03 012c13

-a2a23 a12a13 a23 + a223
The other Hij matrices can be obtained similarly and they are listed explicitly at the
end of this section.

We consider terms in 7] and relationships derived from gt2 + 1/2Hess(7]) 0 rood
P in terms of entries in Hij matrices. The coefficient of xx in -7] H1[2, 2]
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H22[1, 1] 1/2H12[1, 2]. Similarly, Hl113, 3] H33[1, 1] 1/2H13[1, 3] and H2213, 31
H3312, 2] H2312, 3] (Hj[p, q] means the (p, q)-entry of matrix Hj). We have

(a.s)

(3.9)

(3.10)

Together with the simple majorization relationship between any two real numbers,
2ab <_ a2 + b2, we can rewrite (3.8), (3.9) and (3.10) to obtain

2(O122 Jr- O3 t_ 122 _}_ 123) 2(O13fl23 " O23fl13) O123 - 223 - O223 -" /123,
13) --2(OZ12")’23 nu OZ23’)’12)

_
O2 nu 3 nu OZ223 nt- ’)’122,

e(Zla +Z +- +) e(Zl-,a + Z-) _< Zl + "la + Z + "1.
Summing these three inequalities and simplifying, we have

which implies that

O12 Oz13 O23 12 =/13 /23 12 ’)’13 23 0,

Hence

Case ?max ---0 is done.

D B C O3x3.

f/= 03 x 3 mod Po.

For reference we list the Hij matrices below:
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