
Complete Solution to the Most General Nonlinear
Filtering Problems with the Capability of
Overcoming the Curse of Dimensionality

Stephen S.-T. Yau

Department of Mathematical Sciences,
Tsinghua University, Beijing, China.

&
Yanqi Lake Beijing Institute of Mathematical Sciences

and Applications, Beijing, China.

Pujiang Innovation Forum of Advances of Basic Science, 2023
Joint work with Xiuqiong Chen and Zeju Sun



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Abstract

The famous filtering problem of estimating the state of a stochastic
dynamical system from noisy observations is of central importance in
engineering, and high-dimensional nonlinear filtering is still a challenging
problem. This problem is reduced to solving the Duncan-Mortensen-Zakai
(DMZ) equation which is satisfied by the unnormalized conditional
density of the state given the observation history. For general nonlinear
filtering problems, we leverage on the representation ability of recurrent
neural network and provide a computationally efficient and optimal
framework for nonlinear filter design based on Yau-Yau algorithm and
recurrent neural network. Theoretically, it can be proved that the size of
the neural network required in this algorithm only increases in polynomial
(rather than exponentially) with respect to the dimension, which implies
that the Yau-Yau algorithm based on recurrent neural network has the
capability to overcome the curse of dimensionality. This solves a century
old nonlinear filtering problem.

2 / 54



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Table Contents

1 Filtering problems
Goal of filterings
History
Model and Duncan-Mortensen-Zakai (DMZ) equation

2 Finite dimensional filter
Kalman-Bucy filter
Estimation algebra

3 RNN based Yau-Yau filter
Yau-Yau framework
Recurrent neural network (RNN)
RNN based Yau-Yau filter

3 / 54



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Goal of filterings
History
Model and Duncan-Mortensen-Zakai (DMZ) equation

Goal of filterings

Goal: to form the
”best estimate” for
the true value of
some system, given
only some
potentially noisy
observations of that
system.

4 / 54



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Goal of filterings
History
Model and Duncan-Mortensen-Zakai (DMZ) equation

Kalman filter and its applications

R. E. Kalman, 1960: Kalman filter – Optimal linear filter

Application:

in the navigation of Apollo 13 – by providing the estimates of
its trajectory to guide it to the Moon and back;

in the navigation systems of U.S. Navy nuclear ballistic missile
submarine;

in the guidance and navigation systems of cruise missiles, such
as the U.S. Navy’s Tomahawk missile and the U.S. Air Force’s
Air Launched Cruise Missile;

in the guidance and navigation systems of the NASA Space
Shuttle and the International Space Station.

Award: Because of Kalman filter, R. E. Kalman is awarded Charles
Stark Draper Prize – one of three prizes that constitute the ”Nobel
Prizes of Engineering”.
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Drawbacks of Kalman filter and its derivatives

R. E. Kalman and R. S. Bucy, 1961:
Kalman-Bucy filter – continuous time version of the Kalman filter

”They try all sorts of fixes, but basically the problem is such that
the linear theory does not apply”

– R. S. Bucy, SIAM News 26, Aug 1993

Failures of Kalman filter may due to

Nonlinearity: the outputs are not a linear function of the
inputs;

Non-Gaussian of the initial states.

Even its derivatives, such as Extended Kalman filter, Unscented
Kalman filter, Ensemble Kalman filter, etc can NOT avoid these
two dead spots completely.
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Nonlinear filterings (NLF)

Office of Naval Research (around 1995)

Given the noisy observation of the real states, can we give the
“accurate” estimates of the states instantaneously, provided as
much computational resources as one needs?

It has been an OPEN question for more than 50 years. It is finally
SOLVED theoretically in this talk.
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Attempts

Attempts without much success:

V. E. Beneš, 1981: derives an exact filter for a special class of
nonlinear problems, so-called Beneš filter;

– Does not include all linear problems.

Around 1980, S. Mitter and R. Brockett proposed to use Lie
algebra method to solve NLF. Finite dimensional Lie algebra
will give finite dimensional filter. In a series of papers, Yau
with his various collaborators classify all finite dimensional
nonlinear filters of maximal rank.
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Popular NLFs

Widely used NLFs nowadays:

Existing filters Shortcomings

Assumed-density filter Nonlinearity
(extended Kalman filter) Gaussian assumption of initial

state

Sequential Monte Carlo
methods (particle filter)

Can’t be implemented in real
time
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Signal based model

We consider the following signal based model:{
dxt = f(xt)dt+Gdvt,

dyt = h(xt)dt+ dwt,
(1)

where

xt: states, n-vector;

f : drift term, n-vector;

G: diffusion term, n× r matrix;

yt: observation path, m-vector;

h: observation term, m-vector;

vt: r-vector Brownian motion with E[dvtdv
T
t ] = Qdt;

wt: m-vector Brownian motion with E[dwtdw
T
t ] = Sdt and

S > 0.

Assume y0 = 0 and x0, {vt, t ≥ 0}, {wt, t ≥ 0} are independent.
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Duncan-Mortensen-Zakai (DMZ) equation

1960s, Duncan, Mortensen and Zakai:
σ(x, t): unnormalized density function of xt conditioned on the
observation history Yt = {ys : 0 ≤ s ≤ t}.
It satisfies the DMZ equation:{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x)S−1(t)dyt

σ(x, 0) = σ0(x),
(2)

where σ0(x) is the probability density of the initial state x0, and

L(∗) ≡ 1

2

n∑
i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

n∑
i=1

∂(fi∗)
∂xi

. (3)
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“Pathwise-robust” DMZ equation

Construct robust state estimators from any observed sample paths:

For each “given” observation yt, let (Rozovsky, 1972)

σ(x, t) = exp [hT (x)S−1yt]ρ(x, t),

it yields the “pathwise-robust” DMZ equation:
∂ρ

∂t
(x, t) +

∂

∂t
(hTS−1)T ytρ(x, t)

= exp (−hTS−1yt)

[
L − 1

2
hTS−1h

]
[exp (hTS−1yt)ρ(x, t)]

ρ(x, 0) = σ0(x).
(4)
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“Pathwise-robust” DMZ equation

we shall assume that the observations arrive at discrete time
τk = i∆t, i = 0, 1, · · · , NT and ∆t = T/NT . Let ρi be the
solution of the “pathwise-robust” DMZ equation with yt freezed at
t = τi−1, for τi−1 ≤ t ≤ τi, i = 1, 2, · · · , NT , i.e.,

∂ρi
∂t

(x, t) +
∂

∂t

(
hTS−1

)T
yτi−1ρi(x, t)

= exp
(
−hTS−1yτi−1

) [
L − 1

2
hTS−1h

] [
exp

(
hTS−1yτi−1

)
ρi(x, t)

]
ρ1(x, 0) = σ0(x)

ρi (x, τi−1) = ρi−1 (x, τi−1) , for i = 2, 3, · · · , NT .
(5)
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It is proved in that 1, in both pointwise and L2 sense,

lim
∆t→0

NT∑
i=1

1[τi−1,τi](t)ρi(x, t) → ρ(x, t). (6)

Therefore ρi(x, t) is a good approximation of ρ(x, t).

1Yau and Yau, SIAM J. Control Optim., 2008
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Kalman-Bucy filter

When system (1) is linear, i.e.,{
dxt = Fxtdt+Gdvt,

dyt = Hxtdt+ dwt,
(7)

where the initial state x0 is Gaussian, it can be checked that the
conditional density function p(xt|Yt) is Gaussian which is totally
determined by its conditional mean and covariance matrix.
Let mt = E[xt|Yt], Pt = E[(xt −mt)(xt −mt)

T |Yt] and their
evolution equations are given by Kalman-Bucy filter:{

dmt = Fmtdt+ PtM
TS−1(dyt −Hmtdt),

dPt/dt = FPt + PtF
T +GQGT − PtH

TS−1HPt.
(8)

The number of the sufficient statistics which determine p(xt|Yt) is
quadratic w.r.t. the state dimension n.
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Introduction to estimation algebra

1970s: Brockett and Clark, Brockett, and Mitter proposed
estimation algebras method
1983 (International Congress of Mathematics): Brockett proposed
the problem of classifying finite dimensional estimation algebras
(FDEA).
Advantages:

It takes into account of geometrical aspects of the situation.

As long as the estimation algebra is finite dimensional, the
finite dimensional recursive filter can be constructed explicitly.

Lie algebraic methods are highly useful for classifying
equivalence of finite dimensional filters.

The number of sufficient statistics in the Lie algebra method
linearly depends on state space dimension.
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Basic concept

If noises in state and observation equations are independent
standard Brownian motions, then we define operator:

L0 :=
1

2

n∑
i=1

∂2

∂x2i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi

− 1

2

m∑
i=1

h2i . (9)

For i = 1, · · · ,m, Li is defined as zero degree differential operator
of multiplication by hi. Let η :=

∑n
i=1

∂fi
∂xi

+
∑n

i=1 f
2
i +

∑m
i=1 h

2
i

and Di :=
∂
∂xi

− fi, 1 ≤ i ≤ n.

Definition 1

The estimation algebra E of a filtering system (1) is defined to be
the Lie algebra generated by {L0, L1, · · · , Lm}, i.e.,
E = ⟨L0, h1, · · · , hm⟩L.A.. Furthermore, if f = ∇ϕ for some
ϕ ∈ C∞(Rn), E is called exact.
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Basic concept

Definition 2

Let L(E) ⊂ E be the vector space consisting of all the
homogeneous degree 1 polynomials in E. Then the linear rank of
estimation algebra E is defined by r := dimL(E). Especially, if
r = n, we call E has maximal rank.

Based on the structure of linear rank, classifications of estimation
algebra have always been a research hotspot. Especially, from 1990
to 1997, in the series work of Yau and coworkers234, complete
classification of maximal rank estimation algebra has been
finished5,.

2Chen and Yau, Math. Control Signals Systems, 1996
3Chiou and Yau, SIAM J. Control Optim., 1994
4Yau, J. Math. Systems Estim. Control, 1994
5Yau, Internat. J. Control, 2003
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Classification of maximal rank estimation algebra

More precisely, Yau and his coworkers have proved the following
theorem6.

Theorem 3 (Complete classification)

Suppose that the state space of the filtering system is of dimension
n. If E is the finite dimensional estimation algebra with maximal
rank, then f = (α1, · · · , αn) +∇ϕ, where ϕ is a smooth function
and αi, 1 ≤ i ≤ n, are affine functions and E is a real vector space
of dimension 2n+ 2 with basis given by
1, x1, · · · , xn, D1, · · · , Dn, L0.

As an immediate result, Mitter conjecture holds for maximal rank
FDEA, which states any function in E is an affine function.

6Yau, Internat. J. Control, 2003
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Finite dimensional filter

In fact, finite dimensional filters can be constructed from finite
dimensional estimation algebra. Followed by complete
classification, the robust DMZ equation admits a solution for all
t ≥ 0 of the form:

ρ(t, x) = eT (t)ern(t)xn · · · er1(t)x1esn(t)Dn · · · es1(t)D1etL0σ0, (10)

where T (t), ri(t), sj(t) satisfy a system of ordinary differential
equations (ODEs). The solvability of this set of ODEs for t ≥ 0 is
implied by solvability of estimation algebra. The following corollary
is immediately obtained:

Corollary 4 (Sufficient statistics)

Suppose E is maximal rank finite dimensional estimation algebra
on state dimension n. Then the number of sufficient statistics in
order to compute the conditional density by Lie algebraic method
is 2n.
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Progress of classification of non-maximal rank case

At the beginning of 20th century, classification of non-maximal
rank estimation algebras becomes a very important and difficult
open problem.

2006: Classification of estimation algebra with state
dimension 2 (Wu and Yau)7;

2018: Linear structure of Ω and Mitter conjecture of state
dimension 3, rank 2 case (Shi and Yau)8;

2020: Existence of novel finite dimensional filters (Jiao and
Yau)9.

2022: Classification with state dimension n, linear rank n− 1
and constant Ω (Yu, Jiao and Yau).10

7Wu and Yau, SIAM J. Control Optim., 2006
8Shi and Yau, Internat. J. Control, 2020
9Jiao and Yau, SIAM J. Control Optim., 2020

10Yu, Jiao and Yau, IEEE Trans. Automat. Contr., 2023
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Introduction

In 2008 1, Yau and Yau show that the DMZ equation (4)
admits a unique nonnegative weak solution ρ which can be
approximated by a solution ρR of the DMZ equation on the
ball BR with ρR|∂BR

= 0. The error of this approximation is
bounded by a function of R which tends to zero as R goes to
infinity. The solution ρR can in turn be approximated
efficiently by an algorithm depending only on solving the
observation-independent Kolmogorov equation on BR.
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In 2013 11, Luo and Yau extend the algorithm developed
previously by Yau and Yau to the most general setting of
nonlinear filterings, where the explicit time-dependence is in
the drift term, observation term, and the variance of the noises
could be a matrix of functions of both time and the states.

There are some works investigating Hermite spectral method
12, proper orthogonal decomposition method 13 and Legendre
spectral method 14, to numerically solve the forward
Kolmogorov equation which help to solve the DMZ equation.

11Luo and Yau, IEEE Trans. Automat. Contr., 2013a
12Luo and Yau, IEEE Trans. Automat. Contr., 2013b
13Wang, Luo, Yau and Zhang, IEEE Trans. Automat. Contr., 2020
14Dong, Luo and Yau, IEEE Trans. Automat. Contr., 2013
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Kolmogorov forward equation

Proposition 1

1 For each τi−1 ≤ t < τi, i = 1, · · · , NT , ρi(x, t) satisfies (5) if
and only if

ui(x, t) = exp
[
hT (x)S−1yτi−1

]
ρi(x, t) (11)

satisfies the Kolmogorov forward equation (KFE)

∂ui
∂t

(x, t) =

(
L − 1

2
hTS−1h

)
ui(x, t), (12)

where L is defined in (3).
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Yau-Yau algorithm

Step 1 (Off-line) ui(x, τi−1) → ui (x, τi): Solve the KFE
(12) at the time interval [τi−1, τi] with initial value ui(x, τi−1).
Let us denote by U the semi-group associated with the KFE
(12), then the solution of (12) can be expressed as

ui (x, τi) = U (∆t)ui (x, τi−1) (13)

which can be computed off-line and stored.
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Step 2 (On-line) ui(x, τi) → ui+1 (x, τi): When the new
observation yτi arrives at time τi, we need to update the
initial value of ui+1(x, t) in the time interval [τi, τi+1). For
t ∈ [0, τ1), the initial value is u1(x, 0) = σ0(x). At time
t = τi, when the latest observation yτi is available,

ui+1 (x, τi)
(11)
= exp

[
hT (x)S−1yτi

]
ρi+1 (x, τi)

(5)(11)
= exp

[
hT (x)S−1

(
yτi − yτi−1

)]
· ui (x, τi) ,

(14)

since y0 = 0. And ui(x, τi) is pre-computed in the step 1.
Now we obtain the initial value of ui+1(x, τi) in the time
interval [τi, τi+1), for each i = 0, 1, · · · , NT .
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Uniform framework of Yau-Yau algorithm

With chosen complete basis {ϕl(x)}∞l=1, ui+1(x, τi) is uniquely
determined by its coordinate (ai+1,l)

∞
l=1, and can be approximated

by
ui+1(x, τi) ≈

N∑
l=1

ai+1,lϕl(x), (15)

with N large enough. For test function φ : Rn → R, E[φ(xτi)|Yτi ]
can be approximately represented by a function of
ai+1 = (ai+1,1, · · · , ai+1,N ):

E[φ(xτi)|Yτi ] =
a⊤i+1βφ

a⊤i+1β1
, (16)

where βφ = (βφ,1, · · · , βφ,N )⊤ and β1 = (β1,1, · · · , β1,N )⊤ are
constant vectors with

βφ,l =

∫
Rn

φ(x)ϕl(x)dx, β1,l =

∫
Rn

ϕldx, l = 1, · · · , N.
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The evolution of ui+1(x, τi) can also be described by the evolution
of the coordinates ai+1 and can be computed recursively. In fact,
let us denote by U the semi-group associated with the FKE (12),
then

ui+1(x, τi)

= exp
[
h⊤S−1(yτi − yτi−1)

]
ui(x, τi)

= exp
[
h⊤S−1(yτi − yτi−1)

]
U(∆t)ui(x, τi−1).

(17)
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If we project all the computations onto the vector space spanned
by {ϕl}Nl=1, then

ui+1(x, τi) ≈
N∑
j=1

ai+1,jϕj(x),

U(∆t)ϕl(x) ≈
N∑
j=1

dl,j(∆t)ϕj(x),

exp

[
h⊤(x)S−1(yτi − yτi−1)

]
ϕl(x) ≈

N∑
j=1

rl,j(yτi − yτi−1)ϕj(x).

where dl,j(∆t) and rl,j(yτi − yτi−1) are coefficients determined by
∆t and yτi − yτi−1 , respectively.
According to (17), the evolution of the coordinates ai+1 is given by

ai+1,l =

N∑
j=1

N∑
k=1

ai,jdj,k(∆t)rk,l(yτi − yτi−1), l = 1, · · · , N.

(18)
With (16) and (18), the conditional expectations E[φ(xτi)|Yτi ]
can be computed recursively, and we refer to this algorithm as the
uniform framework of Yau-Yau algorithm and the whole procedure
is summarized in Algorithm 1.
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Algorithm 1 The Uniform Framework of Yau-Yau Algorithm

1: Off-line Computation

2: Compute dl,j (∆t) for each 1 ≤ l, j ≤ N , and βN
φ , βN

1 .
3: Initialization
4: Compute

(
aN1

)T
by u1(x, τ0) = σ0(x).

5: On-line Computation
6: for i = 1 to NT do
7: Compute rl,j

(
yτi − yτi−1

)
, for each 1 ≤ l, j ≤ N .

8: Compute

ai+1,l =

N∑
j=1

N∑
k=1

ai,jdj,k(∆t)rk,l(yτi − yτi−1), l = 1, · · · , N.

9: Compute φ̂(xτi) = E[φ(xτi)|Yτi ] =
a⊤i+1βφ

a⊤i+1β1
.

10: end for
30 / 54
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How to choose basis?

Choose the optimal basis {ϕl(x)}
⇕

Choose the optimal coordinate {ai,l(x)}

In the existing numerical implementations of Yau-Yau algorithm,
they first determine basis {ϕl(x)}, and then compute coordinate
{ai,l(x)}. If we can choose optimal basis, then we can certainly
obtain better results. And this idea can be achieved by using deep
learning. Instead of directly pursue optimal basis functions directly,
we aim to obtain optimal coordinate {ai,l(x)}, which is totally
determined by the system and basis functions.
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Feedforward neural networks

Let Σr,N (κ) be the class of functions

{ζ̄ = (ζ̄1, · · · , ζ̄N )T : Rr → RN : ζ̄l(x) =

q∑
j=1

βl,jκ(Aj(x)),

x ∈ Rr, βl,j ∈ R, Aj ∈ Ar, 1 ≤ l ≤ N, q = 1, 2, · · · } ,

where κ : R → [0, 1] is the activation function and Aj is affine
function. Apparently, ζ̄ represents the standard three-layered
feedforward network with r input-neurons, q hidden-neurons and N
output-neuron, which is shown in Fig. 1. It is well-known that this
class of feedforward network functions are capable to approximate
any continuous function over a compact set to any desired degree
of accuracy15.

15Hornik, Stinchcombe and White, Neural Netw. 1989
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…

…

…

input layer
output layer

hidden layer

Figure 1: Three-layered feedforward network with r input-neurons, q
hidden-neurons and N output-neuron.
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Recurrent neural network (RNN)

Mathematically, recurrent neural network (RNN) is a class of
functions defined as follows.

Definition 5

For any r1, r2, r3 ∈ N, the recurrent neural network
RNN r1,r2,r3(κ) is a class of functions with the following state
space model form: {

s̃i+1 = η̃(s̃i, αi+1),

β̃i = ξ̃(s̃i),
(19)

where αi ∈ Rr1 is the input, s̃i ∈ Rr2 is the hidden state, β̃i ∈ Rr3

is the output, and η̄ : Rr2 × Rr1 → Rr2 , ξ̄ : Rr2 → Rr3 are
feedforward neural networks with squashing function κ.
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Universal Approximation Theorem for RNN

Theorem 6

Let η(·) : Rr2 × Rr1 → Rr2 and ξ(·) : Rr2 → Rr3 be continuous,
the external inputs αi ∈ Rr1 , the inner state si ∈ Rr2 , and the
output βi ∈ Rr3 , i = 1, 2, · · ·NT . Assume that (si, αi) are
contained in a compact set K ⊂ Rr2 × Rr1 , for all i = 1, · · · , NT .
Then, any open dynamical system of the form{

si+1 = η(si, αi+1),

βi = ξ(si),
(20)

can be approximated by a function in RNN r1,r2,r3(κ) with an
arbitrary accuracy,
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i.e., for ∀ ε > 0, there exist functions η̃ and ξ̃, which determine the
RNN system (19) with the same input {αi, 1 ≤ i ≤ NT } of (20),
such that

|si − s̃i| < ε,

|βi − β̃i| < ε,
(21)

for all 1 ≤ i ≤ NT , where s̃i and β̃i are the state and output of the
RNN system (19), respectively.a

aSchäfer and Zimmermann Int. J. Neural Syst. 2007
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RNN and Yau-Yau algorithm

The uniform framework of Yau-Yau algorithm is also illustrated in
the left half of Fig. 2. Comparing the left half of Fig. 2 with the
framework of RNN which is shown in the right half of Fig. 2, one
natural idea is that we can use RNN to approximate the evolution
of the coordinates ai. Now rewrite (16) and (18) as the following
dynamical system:{

ai+1 = η̄
(
ai, yτi − yτi−1

)
, coordinate transition

φ̂(xτi) = ξ̄ (ai+1) , output equation
(22)

The filtering algorithm based on RNN and this new framework
(22) of the Yau-Yau algorithm is called RNN based Yau-Yau filter
(RNNYYF).
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RNN and Yau-Yau algorithm

Figure 2: The connection between Yau-Yau framework and RNN
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Change of measure

The reference probability measure P̃ is given by

dP̃

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
h(xs)

⊤S−1dws

− 1

2

∫ t

0
h(xs)

⊤S−1h(xs)ds

)
,

(23)

and it has been shown that the unnormalized probability density
function σ(x, t) is the density of the measure ρt, defined by

ρt(φ) = E

[
φ(Xt)

dP̃

dP

∣∣∣∣Yt

]
, (24)

for all smooth functions φ defined on Rd with bounded derivatives.
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Overcome the curse of dimensionality

Theorem 7

Consider the functions ui+1(x, τi), i = 0, 1, · · · , NT defined in the
Yau-Yau algorithm. There exists a set of N normalized
square-integrable functions, {ϕj}Nj=1 ⊂ L2(BR), which are
orthogonal to each other, such that for each i = 0, · · · , NT , we
can find a function ṽi(x) in the N -dimensional vector space
spanned by {ϕj}Nj=1, which satisfies

Ẽ

∫
BR

|ṽi(x)− ui+1(x, τi)|dx ≤ CT

√
∆t,

∀i = 0, 1, · · · , NT .

(25)
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where CT is a constant which depends on T , R, and the
coefficients in the filtering system, but does not depend directly on
the dimension of the filtering system, n, m, or the time
discretization step ∆t. Here, the notation Ẽ means that the
expectation is taken with respect to the reference probability
measure P̃ which is defined by (23).
Next, if we represent ṽi by

ṽi(x) =

N∑
j=1

ai+1,jϕj(x), (26)
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then the evolution of ai+1 = (ai+1,1, · · · , ai+1,N )⊤ ∈ RN satisfies
an open dynamical system

ai+1 = η(ai, yτi − yτi−1), i = 1, · · · , NT , (27)

with a given initial value a1, where η : RN × Rm → RN is a
continuous function with respect to ai ∈ RN and yτi − yτi−1 ∈ Rm,
and is time-invariant.
Moreover, the number N of the functions in the set {ϕj}Nj=1 can
be selected to be of at most polynomial growth with respect to the
dimension m, which shows the capability of this framework of the
Yau-Yau algorithm to overcome the curse of dimensionality.
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Error of RNN based Yau-Yau filter

Corollary 8

Consider the dynamical system (22) derived from the uniform
framework of Yau-Yau algorithm. Let M1 > 0 be a given constant
and

Ω1,M1 = {ω : sup
0≤t≤T

|yt| < M1} (28)

Then, for any ϵ > 0, there exists a recurrent neural network system
given by {

ãi+1 = η̃(ãi, yτi − yτi−1),

φ̃i = ξ̃(ãi+1),
i = 1, · · · , NT , (29)

such that
Ẽ

[
1Ω1,M1

sup
1≤i≤NT

|φ̂i − φ̃i|
]
< ϵ. (30)

That is to say, the open dynamical system (22) can be
approximated by an RNN system with arbitrary accuracy.

43 / 54



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Yau-Yau framework
Recurrent neural network (RNN)
RNN based Yau-Yau filter

Algorithm

Let θ denote all parameters we need to train in the RNNYYF
which contains two parts:{

ãi+1 = Φ
(
ãi, yτi − yτi−1 ; θ1

)
,

φ̂(xτi) = Γ (ãi+1; θ2) ,
(31)

where θ = [θ1, θ2] represents all the trainable parameters in
RNNYYF, Φ represents single-layered feedforward network with l
hidden layer neurons with hyperparameter l to be determined, Γ is
a linear function with input dimension l and output dimension is 1.
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Naturally, we aim to minimize

L0(θ) :=
1

K1 + 1
E

[
K1∑
i=0

|φ̂(xτi)− E [φ(xτi) |Yτi ]|
2

]
, (32)

where K1 ∈ N is the total time step in training. Observing that

E
[
|φ(xτi)− φ̂(xτi)|

2
]

=E
[
|φ(xτi)− E [φ(xτi) |Yτi ]|

2
]
+ E

[
|E [φ(xτi) |Yτi ]− φ̂(xτi)|

2
]
,

it follows that

argminθL0(θ) = argminθL(θ), (33)

where

L(θ) :=
1

K1 + 1
E

[
K1∑
i=0

|φ̂(xτi)− φ(xτi)|
2

]
. (34)

45 / 54



Filtering problems
Finite dimensional filter

RNN based Yau-Yau filter

Yau-Yau framework
Recurrent neural network (RNN)
RNN based Yau-Yau filter

Therefore, instead of data {yτi , E[φ(xτi) |Yτi ]}i≥0 where
E[φ(xτi) |Yτi ] cannot be obtained in most cases, we only need
data {yτi , φ(xτi)}i≥0 which can be easily generated from the
system (1). We need to remark that this step is crucial since it
allows us to get accessible data.
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Simulation

we introduce the mean of the squared error (MSE) and the mean
of the relative error (MRE) based on 100 realizations, which are
defined as follows:

MSE :=
1

100

100∑
l=1

1

K2 + 1

K2∑
i=0

∣∣∣x(l)τi − x̂(l)τi

∣∣∣2 ,

MRE :=

100∑
l=1

K2∑
i=0

∣∣∣x(l)τi − x̂
(l)
τi

∣∣∣
100∑
l=1

K2∑
i=0

∣∣∣x(l)τi ∣∣∣ ,

(35)

where x
(l)
τi is the real state at time instant τi in the l-th experiment

and x̂
(l)
τi is the estimation of x

(l)
τi , with 0 ≤ i ≤ K2, where K2 ∈ N

is the total time step.
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We consider the following cubic sensor filtering system:{
dxt = (Anxt + cos(xt))dt+ dvt,

dyt = x3tdt+ dwt,
(36)

where x0 ∼ N (0, In) with identity matrix In ∈ Rn, n = 10, vt and
wt are Brownian motion processes with E

[
dvtdv

T
t

]
= Indt and

E
[
dwtdw

T
t

]
= 0.01Indt, and An = [aij ] is a matrix with elements

as follows:

aij =


0.1, if i+ 1 = j,

−0.5, if i = j,

0, otherwise.
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For the sake of investigating the curse of dimensionality, we choose
the state dimension n = 1, 3, 5, 7, 9, 11, 12, 13, 15, and choose
proper number of particles in PF and hidden neurons in RNNYYF
such that the MREs are the same in different dimensional cases.
The results are displayed in Fig. 3. It can be seen that the number
of the particles in PF grows exponentially with the dimension
which implies that PF suffers from the curse of dimensionality. On
the contrary, the number of the hidden neurons grows linearly with
the dimension and this certainly verifies our theoretical result in
Theorem 7.
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Figure 3: The relationship between the number of hidden layer nodes or
particles and the dimension of the state. Here, n is the dimension of the
state and vertical axis represents the number of hidden layer nodes in
RNNYYF or particles in PF. In all systems with different state dimension,
the average relative errors of RNNYYF and PF are the same and
MRE = 0.22.
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When the dimension of the state is n = 15, the performance of
EKF, PF with N = 50000 particles and RNNYYF with l = 105
hidden neurons in one experiment for (36) are shown in Figure 4,
and the average performance of different methods based on 100
simulations are shown in Table 1. It can be seen that all these
algorithms can track the real state while RNNYYF outperforms PF
in costing time and outperforms EKF both in accuracy and costing
time.

Table 1: The average performance of different methods based on 100
simulations for system (36).

Method MSE Running time (s)

RNNYYF 1.03 0.0004
EKF 1.19 0.0483

PF 1.03 118.3698
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Figure 4: The estimation results of EKF, PF and RNNYYF in one
experiment.
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Summary

In this report, we investigate the curse of dimensionality problem in
most existing filtering methods. It can be found that finite
dimensional filters including Kalman-Bucy filter do not suffer from
this problem. For the general filtering problems, we construct a
novel filtering algorithm based on RNN and Yau-Yau filtering
framework, and prove that the size of the neural network required
in this algorithm only increases in polynomial (rather than
exponentially) with respect to the dimension, which implies the
proposed filtering algorithm has the capability to overcome the
curse of dimensionality.
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THANKS!
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