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ON MAXIMALLY ELLIPTIC SINGULARITIES
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ABSTRACT. Let p be the unique singularity of a normal two-dimensional
Stein space V. Let m be the maximal ideal in ,,8,,, the local ring of germs of
holomorphic functions at p. We first define the maximal ideal cycle which
serves to identify the maximal ideal. We give an “upper” estimate for
maximal ideal cycle in terms of the canonical divisor which is computable
via the topological information, i.e., the weighted dual graph of the singu-
larity. Let M — ¥ be a resolution of V. It is known that /& = dim HY(M, )
is independent of resolution. Rational singularities in the sense of M. Artin
are equivalent to k = 0. Minimally elliptic singularity in the sense of Laufer
is equivalent to saying that # = 1 and 0, is Gorenstein. In this paper we
develop a theory for a general class of weakly elliptic singularities which
satisfy a maximality condition. Maximally elliptic singularities may have h
arbitrarily large. Also minimally elliptic singlarities are maximally elliptic
singularities. We prove that maximally elliptic singularities are Gorenstein .
singularities. We are able to identify the maximal ideal. Therefore, the
important invariants of the singularities (such as multiplicity) are extracted
from the topological information. For weakly elliptic singularities we intro-
duce a new concept called “elliptic sequence”. This elliptic sequence is
defined purely topologically, ie., it can be computed explicitly via the
intersection matrix. We prove that — K, where X is the canonical divisor, is
equal to the summation of the elliptic sequence. Moreover, the analytic data
dim H'(M, 0) is bounded by the topological data, the length of elliptic
sequence. We also prove that kh = 2 and €, Gorenstein implies that the
singularity is weakly elliptic. '

0. Introduction. Let p be a singularity of a normal two-dimensional analytic
space V. In [2], M. Artin introduced a definition for p to be rational. Rational
singularities have also been studied by, for instance, DuVal, Tyurina, Laufer
and Lipman. In [37], Wagreich introduced a definition for p to be weakly
elliptic (see Definition 1.6). Weakly elliptic singularities have occurred
naturally in papers by Grauert [7], Hirzebruch [12], Laufer [22], Orlik and
Wagreich [27], [28] and Wagreich [37], [38]. Karras and Saito have studied
some of these particular elliptic singularities. Recently, Laufer [24] developed
a theory for a general class of weakly elliptic singularities which satisfy a
minimality condition. These are the so-called minimally elliptic singularities.
Suppose V is a Stein space and p is its only singularity. Let 7 M- Vbea
resolution of V. It is known that h = dim H (M, 0) is independent of
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resolution. One might classify singularities by A. Rational singularity is
equivalent to £ = 0. Minimally elliptic singularity is equivalent to saying that
h =1and ,0, is Gorenstein. In this paper, we develop a theory for a general
class of weakly elliptic singularities which satisfy a maximality condition.
Maximally elliptic singularities may have # = dim H'(M, 0) arbitrarily large.
Also minimally elliptic singularities in the sense of Laufer [24] are maximally
elliptic singularities. It is clear that maximally elliptic singularities should play
an important role in the theory of normal two-dimensional singularities,
especially from the point of view of classification of normal two-dimensional
singularities. Our main results are the following.

THEOREM A. Let m: M — V be a resolution of a normal two-dimensional
Stein space with p as its only singular point. Suppose dim H'(M, 0) > 1 and
v0, is Gorenstein; then the maximal ideal cycle cannot be greater than or equal
to —K'. '

THEOREM B. Let m: M — V be a resolution of the normal two-dimensional
Stein space with p as its only singularity. Suppose VGP is Gorenstein and
H'(M, 0) = C2. Then p is a weakly elliptic singularity.

THEOREM C. Use the notation of Definition 3.3. Suppose p is not a minimally
elliptic singularity and K’ exists. Then the elliptic sequence is of the following
form:

Zy=ZZpyr 25 25 =Zg, 1 >0

Moreover, — K’ = Ef-=OZBr_ + E and dim HY(M, 0) < [ + 2 = the length of
the elliptic sequence.

- THEOREM D. Use the notation of Definition 3.3. Suppose p is a maximally
elliptic singularity. If Zg-Zg < —2, then mQ = O(—2), in particular, the
multiplicity of O, isequalto —Z-Z. If Zp- Zg < —3, then

H°(M,0(=Z))®c H°(M, 0(—nZ))—> H°(M, O(—(n + 1)Z))

is surjective for all n > 1. If we assume | Jurther that the length of the elliptic
sequence is equal to two, then the above map is surjective for all n > 1. In this
case

m"~ H°(A, O(—-nZ)) foralln>1
where A = =~ (p).

THEOREM E. If p is a maximally elliptic singularity, then p is a Gorenstein
singularity.

One important question in the theory of normal two-dimensional
singularities is “the identification of the maximal ideal m of ,0,”. In §2.4 we
first define the maximal ideal cycle which partially serves to identify the
maximal ideal. In [2], the argument of M. Artin gave a lower estimate for
maximal ideal cycle in terms of the fundamental cycle. Our Theorem A gives
an “upper” estimate for maximal ideal cycle in terms of the canonical divisor



MAXIMALLY ELLIPTIC SINGULARITIES 271

which is computable via the topological information, i.e., the weighted dual
graph. Theorem B permits us to develop a theory. for those Gorenstein
singularities with dim H'(M, ©) = 2. In §3.1, we introduce a new concept
called “elliptic sequence”. It turns out that weakly elliptic singularities can be
effectively studied by the method of elliptic sequence. For instance, it allows
us to give a complete topological classification of elliptic double points. In -
order to compute the canonical divisor, one has to solve a system of linear
equations, which is very painful. Theorem C provides us a quick and easy
method to compute the canonical divisor. Moreover, it tells us that the
analytic data dim H'(M, 0) is bounded by the topological data, the length of
the elliptic sequence. We remark that the elliptic sequence is defined purely
topologically, i.e., it can be computed easily via the intersection matrix. In
Theorem D, we are able to identify the maximal ideal. Therefore, the
important invariants of the singularities (such as the multiplicity) are ex-
tracted from the topological information. Theorem D can also be used to
compute the Hilbert function for the ring ;,(‘)p. All complete intersection and
hypersurface singularities are Gorenstein. Theorem E explains the reason why
maximally elliptic singularities play an important role in the theory of normal
two-dimensional singularities. We can also give a topological classification of
maximally elliptic hypersurface singularities. However, the list is too long to
be included. -

We shall adopt Laufer’s terminology [24] throughout this paper. Our
presentation goes as follows: - : - '

In Chapter I we provide the necessary basic knowledge to read this paper.
Most of it can be found in [24]. In Chapter II, we examine the structure of the
exceptional set of weakly elliptic singularities and prove Laufer-type
vanishing theorem. '

We gratefully acknowledge the encouragement and help of Professor
Henry B. Laufer during the investigation of these results. We would also like
to thank Professors Bennett, Kuga, Sah, Siu and Wagreich for their
encouragement and discussion of mathematics.

CHAPTER I. PRELIMINARIES
Let 7: M — V be a resolution of normal two-dimensional Stein space V.
We assume that p is the only singularity of V. Let

w“(p)=A=UA,-, 1<i<n,

be the decomposition of the exceptional set 4 into irreducible components.
Suppose 7 is the minimal good resolution. The topological nature of the
embedding of 4 in M is described by the weighted dual graph I' [14], [19].
The vertices of T correspond to the 4,. The edge of T' connecting the vertices
corresponding to 4; and A;, i # j, corresponds to the points of 4, N 4;.
Finally, associated to each 4; is its genus, g;, as a Riemann surface, and its
weight, A4, A4;, the topological self-intersection number. T will denote the
graph, along with the genera and the weights.
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DEFINITION 1.1. deg 4; = 34;- 4,,) # i.

A cycle (or d1v1sor1a1 cycle) D on A is an integral combmatlon of the A4,.
D =3dA;, 1< i< n,with d; an integer. In this paper, “cycle” will always
mean a cycle on A. There is a natural partial ordering, denoted by <,
between cycles defined by comparing the coefficients. We shall only be
considering cycles D > 0. We let supp D= |D| U A4,, d. # 0, denote the
support of D.

Let O be the sheaf of germs of holomorphic functions on M. Let O(— D)
be the sheaf of germs of holomorphic functions on M which vanish to order d;
on 4;. Let O, denote O /0(— D). We use “dim” to denote dimension over C.

x(D) = dim H*(M, 0,) — dim H' (M, Op). (1.1

Some authors work instead with the arithmetic genus P,(D) = 1 — x(D). The
Riemann-Roch Theorem [31, p. 75] says

x(P)=—1(D-D + D-K). (1.2)

In (1.2), K is the canonical divisor on M. D - K may be defined as follows. Let
w be a meromorphic 2-form on M, i.e. a meromorphic section of K. Let (w) be
the divisor of w. Then D - K = D - (w) and this number is independent of the
choice of w. In fact, let g; be the geometric genus of 4,, i.e. the genus of the
desingularization of 4;. Then [31, p. 75] :
A-K=—A;-A4; +2g, — 2 + 2§, : (1.3)

where §; is the “number” of nodes and cusps on A4,. Each singular point on 4;
other than a node or cusp counts as at least two nodes. Fortunately, such
more complicated singularities will not occur in this paper.

The minimal resolution of V is characterized by there being no A4; which is
-a nonsingular rational curve with 4;- 4, = —1 [7, p. 364]. The intersection
matrix (4; - A;) is negative definite [26] so by (1.3) we see the following.

PROPOSITION 1.2. 7 is the minimal resolution of V if and only if A;- K > 0
for all A,.

It follows immediately from (1.2) that if B and C are cycles then
x(B+ C)=x(B)+x(C)— B-C. (1.4)

Associated to 7 is a unique fundamental cycle Z [2, pp. 131-132] such that
Z > 0,4;-Z < 0all 4, and such that Z is minimal with respect to those two
properties. Z may be computed from the intersection matrix as follows [20, p
607] via what is called a computation sequence (in the sense of Laufer) for Z:

ZO=0’ZI=AEI’22=ZI+Ai2""’ '
Zj = Z- + A- Z = Z[_l + Ai = Z,
where 4, is arbitrary and 4,-Z,_, >0, 1 <j </ (9( Z,_)/0(—

represents the sheaf of germs of sectlons of a line bundle over A of Chern
class —4,-Z; ;.50
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- H°(M,0(-%_,)/0(-2)) =0 forj>1
0 0(—21)/8(~Z) = 05, 05 =0 (1.5)

is an exact sequence. From the long exact homology sequence for (1.5), it
follows by induction that

H°(M,0,)=C, 1<k<] (1.6)
~dim H'(M, 0,) =3 dim H' (M, 0(—Z,_,)/6(- 2Z)),
| 1<j<k (L7
Since M is two dimensional and not corhpact,
‘ H*(M,%)=0 (1.8)
for any coherent sheaf ¥ on M [33].

LEMMA 1.3. Let Z, be part of a cémputation sequence for Z and such that
x(Z,) = 0. Then dim H'(M, O,,) < 1 for all cycles D such that 0 < D < Z;.
Also, x(D) > 0.

DEFINITION 14. A cycle E > 0 is minimally elliptic if x(E) =0 and’
x(D) > 0 for all cycles D such that 0 < D < E.

PROPOSITION 1.5..Let Z, >0 be part of a computation sequence for the
fundamental cycle and such that x(Z;) = 0. Let B = Zb,A; and C =2 ¢4,
1< i< n,beany cycles such that 0 < B, C < Z, and x(B) = x(C) = 0. Let
M =3 min(b, ¢)4,, 1 < i < n. Then M > 0 and x(M) = 0. In particular,
there exists a unique minimally elliptic cycle E with E < Z,. -

Wagreich [37] defined the singularity p to be elliptic if x(D) > 0 for all
cycles D > 0 and x(F) =0 for some cycles F > 0. He proved that this
definition is independent of the resolution. It is easy to see that under this
hypothesis, x(Z) = 0. The converse is also true [37], [24]. Henceforth, we will
adopt the following definition.

DEFINITION 1.6. p is said to be weakly elliptic if x(Z) = 0.

The following analogue to Proposition 1.5 holds for weakly elliptic singu-
larity.

PROPOSITION 1.7. Suppose that x(D) > 0 for all cycles D > 0. Let B =
S bA, and C=3c¢A;, 1 < i< n, be any cycles such that 0 < B, C and
x(B) = x(C) =0. Let M =3 min(b, c)A;, 1<i<n Then M >0 and
x(M) = 0. In particular, there exists a unique minimally elliptic cycle E.

LemMA 1.8. Let E be a minimally elliptic cycle. Then for A; C supp E,
A, - E = — A;- K. Suppose additionally that = is thé minimal resolution. Then E
is the fundamental cycle for the singularity having supp E as its exceptional set.
Also, if E, is part of a computation sequence for E as a fundamental cycle and
A; C supp(E — E)), then the computation sequence may be continued past E; so

as to terminate at E = E, with A, = A4;.
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THEOREM 1.9. Let m: M — V be the minimal solution of the normal two-
dimensional variety V with one singular point p. Let Z be the fundamental cycle
on the exceptional set A = &~ '(p). Then the following are equivalent:

(1) Z is a minimally elliptic cycle,

(@ A,- Z = — A, K for all irreducible components A; in A,

) x(Z) = 0 and any connected proper subvariety of A is the exceptional set
~ for a rational singularity.

DEerNiTION 1.10. Let p be a normal two-dimensiona; singularity. p is
minimally elliptic if the minimal resolution 7: M — ¥ of a neighborhood of p
satisfies the conditions of Theorem 1.9.

CHAPTER II. Basic THEORY FOR WEAKLY ELLIPTIC
SINGULARITIES AND MAXIMAL IDEAL CYCLE
1. Minimal good resolution of weakly elliptic singularities. In this section, we
study the minimal good resolution of weakly elliptic singularities. We want to
understand the nature of the computation sequence for the fundamental cycle
Z and what kind of curves can be in the exceptional fibre.

LEMMA 2.1. Let m: M — V be a resolution of the normal two-dimensional
space V with p as its only singularity. Let 1Y (p) = A = UA, 1< i< n,be
the decompesition of the exceptional set A into irreducible components. Suppose
there exists a minimally elliptic cycle E on A. Then suppE = A,, if and only if
either A, is a nonsingular elliptic curve or A, is a singular rational curve with
node or cusp singularity. If supp E= UA, 1< i<k, and k > 2, then
x(A)=---=x(4,)=1and A,, ..., A, are nonsingular rational curves.

Let Z be the fundamental cycle on A. If x(Z) = 0 and n > 2, then x(Ay,)
= ... = x(4,) = 1. In particular, if supp E consists of more than one irre-

“ducible component, then all A,, 1 < i < n, are nonsingular rational curves. If
supp E = A,, then all A;,2 < i < n, are nonsingular rational curves.

ProoF. We claim that supp E = A, if, and only if, x(4,) = 0. Suppose
supp E = A,. Then E = nd, for some positive integer n.
x(nd,) = x(4)) + x((n — DN4,) — (n — 1A~ 4,
= nx(4y) — zn(n — DA, 4,
Since x(E) = 0, x(4,) = 2(n — 1)4, - A,. By definition of minimally elliptic
cycle (Definition 1.10), x(A4,) =%(n — 1A, -4, > 0. However, x(4, =

1(n — 1)4,- 4, < 0. Therefore x(4,) = 0. Conversely, if x(4,) =0, then
E = A,. This completes the proof of our claim. By (1.2) and (1.3),

x(4;) = —3(4,-4,+ A4,-K),  where X is the canonical
| divisor on M,
= —3(4, 4, — A,- 4, +2g,—2+28;), whered,isthe
7 “number” of nodes and cusps on 4,
=1—g -6,
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Therefore,
x(Al)“‘_—O, 1_g1_61=0,
* (1)g,=1andé§, =0, or
(2) g, =0and §, = 1.

So supp E = A, if either 4, is a nonsingular elliptic curve or 4, is a singular
rational curve with node or cusp singularity. If supp E = 4, U * * * U 4,
k > 2, then x(4;) > 0 for 4; C supp E by the definition of minimally elliptic
cycle. On the other hand, x(4;) < 1 by (1.1) and (1.6). S0 x(4;) =1 and,
hence, 1 — g, — 6, = 1 for 1 < i < k. This implies that g; =0 = §,, i.e. 4, -
1 € i € k, are nonsingular rational curves.
To prove the rest of the lemma, it suffices to show that if x(Z) = 0, then
x(4,) = 1 for A, Z supp E. x(Z) = 0 implies that x(D) > 0 for D > 0 [24,
Corollary 4.3]. By (1.1) and (1.6), we know that x(4,) < 1. So 0<x(4) <1
However, x(4,) cannot be equal to zero by Proposition 1.7. Therefore

x(4,) = 1 for A; Z supp E, i.e., A; Z supp E are nonsingular rational curves.

PROPOSITION 2.2. Let m: M — V be the minimal resolution for a weakly
elliptic singularity p. Let w': M’ — V be the minimal resolution such that A; are’
nonsingular and have normal crossings, i.e. the A; meet transversely and no
three meet at a point. Then m = w’ and all the A; are rational curves except for
ithe following cases. _

(1) A, is a nonsingular elliptic curve. A,, . .., A, are nonsingular rational
curves. In this case, w = w'. In fact,0 < A;- A; < 1 for i # J.

(2) A, is a rational curve with a node singularity. Ay, . . . , A, are nonsingular
rational curves and have normal crossings. In fact,0 < A, A; < 1 for i # j.

(3) A, is a rational curve with a cusp singularity. 4,, . . ., A, are nonsingular
rational curves and have normal crossings. In fact 0 < A;- 4; < 1 for i # j.

(4) All A; are nonsingular rational curves and have normal crossings except
A, and A, having first order tangential contact at one point. Infact A,-A, =2
and 0 < A4;- A4; < 1fori = j,(i,))# (1,2) and (i, ) # (2, 1).

(5) All A, are nonsingular rational curves and have normal crossings except
A,, A,, A; all meeting transversely at the same point. In fact, if n > 4, then
0< 4 A <1for1<i<mj>4i#jand A -Ay =145 (4 +4)=
2.

In case (2), ' has the following weighted dual graph as its subgraph:

O with w, 2= 5.

—W, -1
In cases (3)-(5), @' has the following weighted dual graph as its subgraph:

-w,
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The proof is long but straightforward with many cases.

COROLLARY 2.3. Let # be the minimal resolution with nonsingular A, and
normal crossings for a weakly elliptic singularity. Let E be the minimally elliptic
cycle, E < Z, the fundamental cycle. Then E may be chosen as part of a
computation sequence for Z and E = Z,. Moreover, if Z; < E is part of a
computation sequence for Z and A, C supp(E — Z;), then the computation
sequence may be continued past Z; so that A, = A,,.

ProoF. The proof is the same as Corollary 3.6 of [24].

PROPOSITION 2.4. Let m be the minimal good resolution for a minimally
elliptic singularity. Suppose w is not the minimal resolution. Then the fundamen-
tal cycle is one of the following forms

. 1 W2 withw, >5
22 %
O > Z=24, +4,,
4, 4,
w3, 43
(I1) with w; = 2,
W, -1 “WYa 2<ik4

()IfAy A, < —3,45-A; < =3, 4, A, < —3, then
Z =34+ A, + A, + A,
Q) IfAy-Ay= —2,A;- Ay = —3, A, A, < —6, then
Z =64, + 34, + 24, + A,
Q) IfAy- Ay = =2,4;-A; < —4, Ay Ay < —4, then
| Z =44, + 24, + A, + A,
PROOF. An easy case by case checking.

PROPOSITION 2.5. Let w: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singular point.

Case 1. If supp E has at least two irreducible components, then for any
computation sequence of the form

ZO=0’ZI=A"""Zk=E"‘."ZI=Z’

we have A, - Z,_, = 1forj#k and A, - Z;_, = 2. If supp Z — supp E+Q,
then for any A; Csupp Z — supp E we can choose a computation sequence of
the form

Z,=10,2 =A,-l,...,Z,,Z,+1,...’,Z,+,c=E+Z,,.'..,Z,=Z
such that supp Z, Csupp Z —supp Eand Z, ., — Z,, ..., Z, ., — Z, = E is
part of a computation sequence for Z. Moreover, any computation sequence of
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the above form has the following properties: Ay Z,_y=1jforj#r+ k and

AI,+k Zr+k 1 =2. »
Case 2. If supp E has only one irreducible component, then for any
computation sequence of the form

Zy=0,2Z,=A4, =E,....,Z, =2, |

we have A, Z;_, =1 for all j. If supp Z — supp E# &, then for any A; C
'supp Z — supp E we can choose a computation sequence of the form
Zy=0,Z,=4,,....2,Z,,,=Z, + A, L4 =Z

o "
where A, = E. Moreover, any computation sequence of the above form has
A,-j-Zj_l = 1 for all j.

PRrROOF. Case 1.
0< 4, Zkl—A (E - 4,)
=—A, K- 4, A by Lemma 1.8
= —2g, +2.

Sog =0and 4, -Z,_, = 2. Since x(Z) =0, H'(M, 0;) = C by (1.1) and
(1.6). As all 4; ‘are nonsingular rational curves, therefore (1.7) and the
Riemann-Roch Theorem will show that 4, - Z;,_; = 1 forj # k.

From the above proof, we know that flor any A; C supp E such that there
exist A; Z supp E and 4;- 4; > 0, then ¢, = 1 and 4;- 4, = 1, where ¢, is the
coeff1c1ent of 4, in E. Tt is easy to see that the computatlon sequence in Case
1 of the proposition can be chosen. Now we are going to prove the last
statement of Case 1. By the above argument, we know 4; (Z, .-, -Z)=
2 and, hence, 4, - Z .;_ ; > 2 because A, C supp £ and
Z, Csupp Z — supp E. Since H (M, 0,)=C, by (1 7) *and the Riemann-
Roch Theorem, there is at most one 4, - Z_=2504,, L= 2 and
4,-Z_ = 1forj#r+k ’

"Case 2. Since x(E) = x(Z) = 0, (1.1) and (1.6) imply that H'(M, 0;) = C
= HY(M, 0;). So by (1.7) and the Riemann-Roch Theorem, it follows
immediately that 4, - Z;_, = 1, for all j.

Now let us prove . the last statement of Case 2. By Lemma 2.1 we know that
4, is a nonsingular elliptic curve. Moreover, for any 4, 4, , 4; is a
nonsmgular rational curve. By 1.7y and H'(M, 0,) = C, we have

dim H'(M, 0(—Z,)/9(-Z, - 4,,))) < L
The Chern class of the line bundle associated to O(—Z,)/0(—Z, — 4, ) on
A; is —A, -Z < —1. By the Serre duality theorem and the Riemann-

U]

Roch Theorem,
dim H' (M, 8(=Z,)/0(—-2,— 4, ) =28, —2+ 4, 2, =4, -2
So

A, -Z =1=dmH' (M, 8(-Z)/8(-2 - 4,,))

LU=
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By (1.7), the Serre duality theorem and the Riemann-Roch Theorem, we
know that A,} +Z;_y =1 for all j. Moreover, A,} are nonsingular rational
curves forj 5= r + 1.

COROLLARY 2.6. Let w: M — V be the minimal good resolution of a normal
two-dimensional Stein space V with p as its only weakly elliptic singular point.
Suppose supp E = A,. Let Z = 3 z,A,. Then z, = 1.

Proor. This is contained in the proof of Case 2 of the above proposition.
2. Laufer-type vanishing theorem.

PROPOSITION 2.7. Let p be a weakly elliptic singularity. Let w: M — V be the
minimal good resolution of a Stein neighborhood V of p having p as its only
singular point. Let Y > 0 be a cycle on the exceptional set A such that
A;- Y < 0 for all irreducible components A, of A. Let Z be the fundamental
cycle and E the minimally elliptic cycle. Let 0 = Z,,, . .., Z, = Z be a compu-
tation sequence for Z with E = Z, and A, such that 4, -Y <O. Then
H\(M,0(-Y—-2Z))=0for0< j< 1

PRrOOF. The proof is similar to the proof of Lemma 3.11 in [24].

ProrosITION 2.8. Let p, w, M, V, Y, Z and E be as in Proposition 2.7. Let
E = 3. A, Suppose E- Y < 0. Let A, be an arbitrary A; C supp E. Then

p: H(M,0(-Y)) > H* (M, 8(-Y)/0(-Y — 4,))

is surjective if A, is an elliptic curve or if there exists A; C supp E, A; # A,
with A;- Y < Oorif e, > 1. If A, is a rational curve, A;- Y = 0 for A; # A,,
A; C supp E, and e, = 1, then the image of p is a subspace S of codimension 1
in H(M, O(=Y)/0(—=Y — A)). If iim S > 2, then the elements of S have
no common zeros as sections of line bundle L on A, associated to
O(=Y)/0(—Y — 4). If dim S = 1, then there is one common zero at a point
q € Awithqg & A; where A;- Y = 0and A; C supp E.

Proor. The proof is similar to the proof of Lemma 3.12 inr[24].

3. Structure theorem for weighted dual graphs of weakly elliptic singularities.
For weighted dual graphs of weakly elliptic singularities, we can obtain some
information from the following two propositions. Much more complete
information is given in Chapter III.

PROPOSITION 2.9. Let m: M — V be a resolution of a normal 2-dimensional
Stein space V with p as its only weakly elliptic singularity. Let E be the
minimally elliptic cycle on A = 7~ '(p). Suppose B is a connected subvariety of
A such that B 2 supp E. Then B is the exceptional set of a rational singularity.

PROOF. The fact that B is exceptional in M follows from [19, Lemma 5.11,
p. 89]. Let Z; denote the fundamental cycle on B. It follows by [2, Theorem
3, p. 132] that x(Z;) < 1. On the other hand, since p is a weakly elliptic
singular point, x(Zz) > 0, x(Z5) cannot be equal to zero. Otherwise it will
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contradict the minimality of the minimally elliptic cycle by Proposition 1.7
since B Z supp E. Therefore x(Zg) = 1. Applying Theorem 3 of [2], our
result follows. :

PropOSITION 2.10. Let w2 M —>V be a resolution of a normal two-
dimensional Stein space with p as its only weakly elliptic singular point. Let E
be the minimally elliptic cycle on the exceptional set A = 7~ '(p). Suppose B is
a connected subvariety of A containing \E|. Then B is the exceptional set for
weakly elliptic singularity. In particular, if B=supp E, then B is a minimally
elliptic singularity.

PROOF. As in Proposition 2.10, we know that B is exceptional in M. Let Zg
be the fundamental cycle on B. Then x(Zp) < 1 by Theorem 3 of [2]. Since p
is a weakly elliptic singularity, so x(Zp) > 0. Hence, 0 < x(Z5) < 1. x(Zp)
cannot be equal to one. Otherwise it will imply that B is an exceptional set of
rational singularity by Theorem 3 of [2]). Since-B D |E|, Theorem 1 of [2] says
that x(E) > 1. This is a contradiction, so x(Zp) = 0 and B is the exceptional
set for a weakly elliptic singularity.

4. Maximal ideal cycle. Let m: M — V be the resolution of a normal
two-dimensional space V' with p as its only singularity. Let m be the maximal
ideal in. ,0,. One important question in normal two-dimensional singularity
is the “identification of m”. In this setion, we define the maximal ideal cycle
which serves partially to identify the maximal ideal.

DEFINITION 2.11. Let A be the exceptional set in the resolution m: M — V
of a 2-dimensional space ¥ with p as its only singularity. Suppose that
{4;}1<i<n are the irreducible components of 4. Let m be the maximal ideal in
vO,- L f Em, then the divisor of f, (f) = [f]1 + D, where [f] = =mA; and D
does not involve any of 4. Let Y be the positive cycle such that ¥ =
inf; [ f]. Then Y is called the maximal ideal cycle. :

PROPOSITION 2.12. Use the notation of Definition 2.11. The maximal ideal
cycle is a positive cycle s.t. Y - A; < Oforall A; C A. In particular, Y > Z. In
fact if fis ..., f, € msuchthatfy, . . . , /. generate m, then Y = inf, ., , HAS

PrOOF. Easy.

PROPOSITION 2.13. Use the notation of Definition 2.11. Let Y be the maximal
ideal cycle, then m® C ©(—Y). Moreover, if mQ is locally principal, i.e.
m® = O(— D) for some positive divisor D, thenD = Yand m0 = 0(—Y).

ProoF. Easy. ‘

DEFINITION 2.14. Let 6: M’ — M be a monoidal transformation with center
g € M. We associate with the curve C C M, g & C, the curve C*, the proper
transform of C in M’. If g is a point of multiplicity » of the curve C, we
associate with this curve the curve C* + nL C M’ where L = o~ '(g). With
the divisor Z = 3k,C,, we associate the divisor o¥(Z) = Zk,Ct + knnL,

where n, is the multiplicity of the point g on the curve C;.
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LEMMA 2.15. Let m: M — V be a resolution of a normal two-dimensional
analytic space with p as its only singularity. Let A = 7 Y p) = U A; be the
decomposition of A into irreducible components. Suppose W is a Dpositive cycle on
A such that W- 4; < 0 for all A; C A. For any positive cycle X on A such that
X > W, X2< W2 Also, X? = W2 if and only if X = W.

PROOF. Let X = W + 3n A4, where n, > 0. Then

X2=W 423 n(d,- W) +3 nn(4;-4).
iy

Now 4; - W < 0 by the hypothesis. The last expression is nonpositive since
(4; - 4;) is negative definite. Moreover, this expression is zero if and only if
n; = 0 for all i by the definiteness.

LEMMA 2.16. Let w: M — V be a normal two-dimensional analytic space with
p as its only singularity. Let A = 7~ (p) = U!_,4, be the decomposition of A
into irreducible components. Let 6: M’ — M be a monoidal transformation with
point q as center. Let D = 7w Y(q) and A; be the proper transform of A] by .
Then

(z-0) (p)=D U ( L_JI A.-’)'

Suppose X is a positive cycle on A such that A;- X < 0 for all A; C A. Then
D-o*(X)=0and A]-6*(X) < Oforall1 < i < t.

ProoF. Since 4, is linearly equivalent to some divisor not passing through
g, hence X is also linearly equivalent to some divisor not passing through g. It
follows that 7*(X)- D = 0. By p. 421 of [37], X- 4, = 6*(X)- 0*(4,). So
0 > X - A4, implies that

0> 0*(X)-0*(4;) = o*(X)(4] + mD) = o*(X)- A4].

THEOREM 2.17. Let w: M — V be a normal two-dimensional analytic space
with p as its only singularity. Let A = n7(p) = U i—14; be the decomposition
of A into irreducible components. Let Y be the maximal ideal cycle associated to
7. Then the multiplicity of y0, > — Y- Y. If mO is locally principal, then the
multiplicity of v, =—-Y-7Y.

PROOF. If mQ is locally principal, then m® = @ (-Y) by Proposition 2.13.
In this case Theorem 2.7 of [37] says that multiplicity of v0, is equal to
-Y Y. 3

In the general case, let 7’: M’ — M be the monoidal transformation with
center m0O. The map =’ is a composition of monoidal transformations ¢ with
points as center (see [42, lemma, p. 538]). Let 4! = (7 - w’)fl(p) = U j_4].
Then Lemma 2.16 says that 4/- #'*(Y) < Oforall 1 < i < 5. Let O be the
structure sheaf on M'. Let ¥’ be the maximal ideal cycle relative to = - #’.
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Then m0O’ = 0'(— Y’). But m0’ C 0'(—#'*(Y)). So Y’ > «'*(Y). Theorem
2.7 of [37] and Lemma 2.15 will show that the multiplicity GO)y=-Y'Y
> —[7*(Y)P. However, for any proper modification ¢ and divisor L, we
know that [e*(L)* = L2 So (#'*(L))* = L In particular, (7*(Y)P? = Y2
Therefore multiplicity of ,,0, > — Y2

DEFINITION 2.18. Let p be the only singularity of the normal two-dimen-
sional space V. Let 71 M — V be the resolution of V. Let A= UA4,
1 < i < n, be the decomposition of 4 = =~ '(p) into irreducible components.
Let K be the canonical divisor on M. We define the negative cycle K’ =
SkA, on A where k; €Z, the set of integers, to be a cycle such that
A4, K’ = A;- Kforall 4, C A. (K’ does not always exist.)

The following theorem gives a “nonlower” estimate of the maximal ideal
cycle in terms of the cycle K.

TueoreM 2.19. Let m: M — V be the minimal resolution of a normal
two-dimensional Stein space with p as its only singular point. Suppose K " exists
and dim H'(M, ) > 2; then the maximal ideal cycle Y relative to w cannot be
greater than or equal to — K.

ProOF. By Theorem 3.2, p. 603 of [20], we know that H M, 0(K)) =0.
The following cohomology exact sequence,

HY(M, O(K")) > H' (M, 0) > H'(M, 0_x)—0,
shows that H (M, O_.) = H'(M, 0). Since
x(—K) = =3[(-K) K+ (-K)- (-K))]
= —3[(-K)- K + (-K)(-K)] =0
by (1.2), hence (1.1) says that
~dim H°(M, 0_) =dim H'(M, O_g) = dim H'(M,0)>2

Suppose on the contrary that ¥ > — K'. Since « is the minimal resolution,
A.-K' > Oforall 4, so — K’ > Z by the definition of the fundamental cycle
Z. It follows that there is a natural injective map

H°(M, O(K")) - H°(M, O(— Z)).

We claim that this map is actually surjective. Given any g € H(M, 0(—Z)),
we know that g is actually a function on V¥ which vanishes at p. By
Proposition 2.13, g € HY(M, O(—Y)). However, Y > — K’ implies that
HYM, 0(—=Y)) C HYM, O(K")). So g can also be considered as an element
in H%(M, ©(K")). This proves our claim. Look at the following commutative
diagram with exact rows.

0 HO(M, O(K")) — H*(M, 0) > H°(M, 0_x) > H' (M, 0(K")) =0

t
0 HY(M, O(-Z)) > H°(M, 0) > H*(M, 0;) =~ C—» H'(M, 0(— Z)).

Since HO(M; 0,) =~ C by (1.6), so H(M, 0) — H%M, 0z) is sujective.
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We have HOM, O_,) is isomorphic to HYM, 0;). However,
dim H 0(M, 0,) =1 < dim H%(M, O_,). This leads to a contradiction.
Q.E.D.

If 0, is a Gorenstein ring, i.e. there is some neighborhood Q of p in ¥ and
a holomorphlc 2-form @ on Q — p such that w has no zeros on Q — p, then
- K’ exists.

THEOREM 2.20. If we assume V@é is Gorenstein in Theorem 2.19, then the
same result holds even if w is not necessarily the minimal resolution.

PrOOF. As .0, is Gorenstein, there exists w € H %M — A4, Q) having no
zeros near A. Serre duality gives H (M, 0) as dual to H}(M, ), where  is
the canonical sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By
Theorem 3.4, p. 604 of [20], for suitable M, which can be chosen to be
arbitrarily small neighborhoods of 4 = 7~ '(p), H,(M, ) may be identified
with HY(M — 4, )/ HYM, Q). So

dim H°(M — 4, Q)/H°(M, Q) =n > 2.

There exist w,, ..., w, in HM — A4, Q).such that the image of
@, @y, - . ., @, in HOM — A, )/ HY(M, Q) forms a basis. Since « is nonzero
in a neighborhood of 4, we may assume that w; = fw, 2 < i < n, where
f, € HM, 0). Moreover we can assume that f; are vanishing at p, ie.,
f, € HY(M, m0). Otherwise we simply replace f; by f; — fi(p),2 < i < n.

Suppose our theorem is false. Then the ‘maximal ideal cycle ¥ > [w]. Since
mO C O(—Y) by Proposition 2.13, we have w, = fw, 2<i<n, all n

H% M, Q). This contradicts the fact that the image of W, Wy . .., w, forms a
basis for HY(M — A, @)/ HY(M, Q).

CHAPTER II1. ELLIPTIC SEQUENCES AND
MAXIMALLY ELLIPTIC SINGULARITIES
One might classify hypersurface singularities by A = dim H'(M, 0). If
" h =0, then the singularity is rational [20). If # = 1, then the singularity is
minimally elliptic [24]. Let us consider the condition # = 2. All hypersurface
singularities, as well as complete intersection, are Gorenstein, so the following
theorem applies.

THEOREM 3.1. Let w: M — V be a resolution of the normal two-dimensional
Stein space V with p as its only singularity. Suppose 0, is Gorenstein and
H'Y(M, 0) = C% Then p is a weakly elliptic singularity.

PrROOF. Let 77 1(p) = 4 = U4, 1 < i < n, be the decomposition of the
‘exceptional set 4 into irreducible components and Z be the fundamental
cycle on A. Since H'(M, 0) is independent of the choice of the resolution
[20, Lemma 3.1, p. 599], [2, p. 124], we may assume that = is the minimal good
resolution. By (1.6), H%(M, 0;) =C. So we have the following exact

cohomology sequence:

0> H'(M,0(-2))>H'(M,0)->H' (M 0,)—0.
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Since HY(M, 0) = C?, dim H'(M, O3) is either O, 1 or 2. If HY(M, 9,)=0,
then x(Z) = dim HY(M, 6,) — dim H'(M, 0;) = 1, ie. p(Z) =1- x(Z)
= 0. By Theorem 3 of [2], p is a rational singularity. However, as H'(M, 0)
= 2, the first direct image R 'w*0, is not zero by Lemma 3.1 of [20]. This
leads to a contradiction. If H'(M, 0,) = C?, then H'(M, 0(-Z)) =0. As
»0, is Gorenstein, there exists w € H %M — A, Q) having no zeros near 4,
where § is the canonical sheaf, i.e. the sheaf of germs of holomorphic
2-forms. By Theorem 3.4, p. 604 of [20), for suitable M, which can be chosen
to be arbitrarily small neighborhoods of 4 = =~ '(p), Hl(M, Q) may be
identified with HY(M — A, Q)/H(M, Q). So dim HY(M — 4, Q)/H (M, Q)
=2 and there exists ' € HY(M — A, Q) such that the image of w, &' in
H(M — A, Q)/H°(M, Q) forms a basis. Since w is nonzero in a neigh-
borhood of 4, we may assume that o’ = fw where f € H %M, ). Further-
more, replacing f by f— f(p), if necessary, we can assume that f €
HO(M, m0). Let w, be the order of the pole of @ on 4,. Consider a cover as in
Lemma 3.8 of [24]. On P,
w = (@ (xp,y1)/y1") dx; N\ &,

where w,(x;,»,) is a holomorphic function, w(x;, 0)=0. There is a
holomorphic function f(x,), r < x; < R, such that

w; (X, Y
ft |v Rylw'_lf(xl) '1( l—'l') dx, \ dy; # 0.
X1|1=

n
I»iI=R

Let Ag; = »1" Y (x;) and A; = 0 for 2 < j < . Then by Lemma 3.8 of [24],
clsfA] # 0in H'(M, 0). Let Z = £z4,, 1 < i < n, be the fundamental cycle.
If w, — 1> z,, then A may be thought of as also a cocycle in H (N (),
0(=2)). So clsj\] = 0 in H'(M’, O(—Z)) and necessarily in H'(M’, 0).
Thus w, — 1 > z, is impossible, i.e. w; < z;. AsmO C 0(—Z), p. 133 of [2],
we have o = fw € HY(M, Q), ie., w,  cannot form a basis for H(M —
A, Q)/HM, Q). This is a contradiction. So the only possible case is
HY(M, 0,) = C. Hence x(Z) = dim H(M, 0,) — dim H'(M, 0;) = 0, ie.
p is a weakly elliptic singularity. Q.E.D.

However, that dim H'(M, ©) = 3 and 0, is Gorenstein do not imply p is
a weakly elliptic singularity.

ExaMPLE. Let ¥V be the locus in C* of 2> = x®+ y®. Then the dual
weighted graph is

g=2

-1
It can be calculated by [23] that dim H (M, 0) = 3.

THEOREM 3.2. Let V be a normal two-dimensional Stein space with p as its
only singularity. Suppose 0, is Gorenstein, i.e. there is some neighborhood Q of
p in V and a holomorphic 2-form w on Q — p such that w has no zeros on
Q — p. If there exists f € 0, such that o, fw, f*e, ..., f*"'w is a basis for
HX(M, Q), then p is a weakly elliptic singular point.
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ProOF. Replacing f by f — f(p), if necessary, we may assume that f &
H%M, m0). By (1.6), H%M, 0;) = C. So we have the following exact
cohomology sequence.

0>H'(M,0(—-2Z))>H'(M,0)- H'(M, 0,)-0.

By Theorem 3.1, we need only consider the case n > 3. It is easy to see that
- dim H'(M, 0,) > 0. Otherwise, as observed in the proof of Theorem 3.1, p
will be a rational singular point. To prove that p is a weakly elliptic singular
point, it suffices to show that H'(M, 8,) = C. Suppose on the contrary that
dim H'(M, ©,) > 2. Then dim H'(M, O(— Z)) < n — 2. Let the notation
be as in the proof of Theorem 3.1. We know that there exists 4, C 4 such
that on P,

w(xy,
flo = —@‘+—y‘) o ANd, wo—ig>00<i<n—1 (31)
ypa
where w,(x,, ,) is a holomorphic function, w,(x,, 0) 2 0. (&) = —3w;4; and

(N =Z2aA, + D=[f]+ D. D does not involve any A, There are
holomorphic functions g;(x,), 7 < x; < R, such that

we—ia w; (x 1’J’1)
f| LT ) IS dn Ay 0.
=R
Let A, =yt~ 'g,(x,) and Ag; = 0 for 2 < j < ¢. Then by Lemma 3.8 of

[24], clsfA’} = 0 in HI(M 0). In fact, {A"} forms a basis for H'(M, 0)
because (A\°, fw) = 0 fori # j. Since

dim H(M, ©) — dim H' (M, O(—Z)) = dim H' (M, 05) > 2

there are at least two A, A2 which are not in HY(M, O(— Z)). Hence,
wy— g, — 1<z and wy — i,a; — 1<z, 16, w <z, +ia, w <z +
i,a;. Since i, # i, and 1 < i, i < n — 1, we may assume that w, < z; + (n
© — 2)a;. But [f]- 4, < 0 for all 4, C 4 by p. 133 of {2]. So [f] > Z, by the
definition of fundamental cycle Z. In particular, z;, < a;. So, w, < (n — Da,.
This contradicts (3.1). Q.E.D. '

A partial converse of Theorem 3.2 will be proved later. Weakly elliptic
singularities can be effectively studied by the following method of elliptic
sequences.

DEerFINITION 3.3. Let A be the exceptional set of the minimal good resolution

7: M — V where ¥V is a normal two-dimensional Stein space with p as its only
‘weakly elliptic singularity. If E-Z < 0, we say that the elliptic sequence is
{Z} and the length of elliptic sequence is equal to one. Suppose E - Z = 0. Let
B, be the maximal connected subvariety of 4 such that B, D supp F and
A,+Z =0 YA, C B,. Since A is an exceptional set, Z-Z < 0. So B, is
properly contamed in A. Suppose Zp - E =0. Let B, be the maximal
connected subvariety of B, such that B, D |E|and 4;- Z, = 0 V4, C B,. By
the same argument as above, B, is properly contained in B,. Contmumg this
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 -E<0. We call {Zp, = Z,
Zps--os Zj } the elliptic sequence and the length of elliptic sequence is m + 1.

"ExaMmPLE 1. Let p be a weakly elliptic singularity whose weighted dual
graph is of the following form:

process, we finally obtain B, with Z,

22 232293 2222
1
2

Z=1 11123 21 1111
1
2

Zz,=0 1 1 123211110
1
2

Zz,=0 0 1 123211100
1
2

Zg,=0 0 0123211000
1
2

E=0 0 01 2 3 210000

The elliptic sequence is {Z = Zp, Zp, Zg, Zp,} and the length of elliptic
sequence is 4.
REMARK 3.4. The elliptic sequence is defined purely topologically.
ExaMPLE 2. Let p be a weakly elliptic singularity whose weighted dual
graph is of the following form:
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The elliptic sequence is {Z = Zpy Zp, Zy, Zp, = Zg} and the length of the
elliptic sequence is 4. . .

PROPOSITION 3.5. Let m: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity. Then

Jor any A, Z |E|, A, are nonsingular rational curves with self-intersection
number less than or equal to ~?

PROOF. The fact that 4;  |E| are nonsingular rational curves follows from
Lemma 2.1. Suppose there exists A; Z |E| such that 4;- 4, = —1. It follows
easily from Proposition 2.2 that A; is a “star” in the dual weighted graph I' of

exceptional set 7 !(p) = 4, 1.e., there exist Ay, Ay, A3 C A such that T has
the following graph as its subgraph:

or there exist A; C A4 such that T has the following graph as its subgraph:

Then x(4; + 4, + 4; + 24)) = 0 in the former case, and x(4,+24) =0
in the latter case. These are impossible by Proposition 1.7 and that A Z
supp E.

LEMMA 3.6. Let T be a weighted dual graph including genera for the vertices
associated to the minimal good resolution of the normal two-dimensional weakly
elliptic singularity p. Suppose p is not a minimally elliptic singularity; then
=K' > Z + E whenever K’ exists. If E-Z <0 and |E|C A, then K’ does
not exist. :

PROOF. If 7 is the minimal resolution, then 4,- K’ > 0 for all A; C A by
Proposition 1.2. So ~ K’ > Z > E by the definition of fundamental cycle.
Suppose # is not the minimal resolution. Then the corresponding dual
weighted graph T consists of either

‘ ~w, -1
4, 4,
or
| W, 4,
(b) W1 W3
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as its proper subgraph. In case (a), E = A4, + 4,. We claim that k;.?& 0 where
K’ = Sk!A;. For if k| = 0, then 4;- K’ < 0 since K" is a negative cycle. On
the other hand,
A-K' =A-K=—A,-4,+2g—2>3>0.
This is a contradiction. Hence k| # 0. We claim that k cannot also be zero..
For:if k; = 0, then 4, K’ < —2since 4, 4, = 2.0On the other hand,
Ay K = Ay K= Ay Ay +2g—2=1-2=-1
This is a contradiction. Hence, kj 7 0. It follows that — K’ > E. In case (b),
E=A, + A, + Ay + 24, We claim that one of k/, 1 < i <3, cannot equal
zero. For if k| = k;, = k; = 0, then 4,- K’ > 0. This is because there exists
no A, 2 |E|, 4, - A4 > 0 by the proof of Proposition 3.5. However,
A K =AgK=—A4;- A, +2g,—2=1-2=—L
This is a contradiction. So we may assume k| # 0. If k5 = 0, then 4, - K’ <
0. On the other hand, '
A, K =A,-K=—A4,-4,-2> 0.
Hence, A,- K’ =0 and 4, -4, = —2. If kj also equals 0, then a similar
argument will show 4, - A; = —2. The intersection matrix cannot be negative -
definite. So we may assume that kj 7 0. We claim that kj # 0. For if kj = 0,
then A,- (K*) < —2. On the other hand,
A K = A, K=A, A, +28,—-2=—1
This is a contradiction. So kj # 0. We claim that k5 # 0. For if k3 = 0, then
A, (K") € —1. On the other hand,
Ay K =A,-K=A4,-4,+2g, 2> 0.
This is a contradiction. We claim that kj < —2. For if k; = —1, then
Ay K =k + ky+ k3 +1 < —2.On the other hand,
A, K =A,- K= —A, A, +2g,—2=—1
This is a contradiction. So kj < —2. We have proved in both cases (a) and
(b) — K’ > E. We claim that actually -K’ > E. Since p is not a minimally
elliptic singularity, there exists 4; Z |E|, 4; N E #@. It suffices to prove
k! # 0. For if k/ = 0, then 4, - K’ < 0. On the other hand,
A-K =4, -K=—A,-A, +2g —2=—4,-4,-2> 0.
This is a contradiction. Therefore — K’ = E + D where D is a nonzero
positive cycle. We claim that 4, D < 0 for all 4; C 4. If A4, C |E|, then
A(—K)=A(—K)=A4;- Eby Lemma 18.804,-D =0.1f 4, |E|, then
A;- 4, < —2 and; hence, |
A(—K)=A(-K)=4;- 4, +2<0.
However, A, Z |E|, so 4;- E > 0. It follows that 4,- D = 4(— K') — A,E <
0. This proves our claim. By definition of the fundamental cycle, D > Z. So,
in particular, — K’ > Z + E.
Suppose E - Z <0, we want to prove K’ does not exist. Suppose on the
contrary that K’ exists. By the above proof, —K’ = Z + D where D is a
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positive cycle. By (1.2), ' ,
X(=K)==3[(-K)- K+ (=K (-K")]

= —3[(-K)- (k) + K- K] =0,
500 = x(Z + D) = x(Z) + x(D) — Z- D. Since p is a weakly elliptic singu-
larity, x(Z) > 0 and x(D) > 0. Also Z- D < 0 because Z is the fundamental
cycle and D is a positive cycle. It follows easily that x(D)=0and Z-D = (.

Since Z- E < 0, [D| 2 |E|. By Proposition 1.7, we conclude that D = 0. But
then Z = — K’ > Z + E, which is absurd.

THEOREM 3.7. Let m: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose p is not a minimally elliptic singularity and K’ exists. Then the elliptic
sequence is of the following form:

ZBO = Z, ZBI’ c e ey ZB[’ ZBI+I = ZE’ l > 0.
Moreover, — K’ = 3/ _Z, + E.

PrROOF. Lemma 3.6 says that length of the elliptic sequence is greater than
orequalto2and —K' > Z + E.So —K’' = Z + D, where D, is a nonzero
positive cycle on A. By (1.2), x(—K) =0. So 0 = x(Z+ D) =x(1Z) +
x(Dy) — Z- D,. Since p is a weakly elliptic singularity, x(Z)=0,x(D, > 0.
Because Z is the fundamental cycle and D, is a positive cycle, so Z- D, < 0.
Consequently, x(D;) =0 and Z-D, =0. By Proposition L7, x(D) =0
implies that |D,| is connected and contains |E|. We claim that |D,| = B,.
Since D, - Z = 0 and |D,| is connected and contains |E|, we have |D,| C B,.
Suppose |Dy| # B). Then there exists 4; ¢ |D||, 4; C B, and A;n |D,| #2.
Hence, 4,(— K') = A(Z + D)) = 4,- D, > 0. On the other hand, since 4, g
|E|, 4;- (-K") = A;- A; + 2 < 0, by Proposition 3.5. This is a contradiction.
Hence, |B,| = |D,|. Let U; be a holomorphically convex neighborhood of B,
such that ®,: U, — ¥V, represents B, as exceptional set where V) is a normal
two-dimensional Stein space with ®,(B,) as its only singularity. We claim that
the K’ cycle on U, which is denoted by Ky, exists and K;;, = — D,. In fact
for any 4 C B,

Ai- (=Dy)=4;-(-Z - Dy)
= A;- K where K is the canonical divisor on M
= —A;- A4, +2g -2
= A;- Ky, where K, is the canonical divisor on U -

So —D, = Kj,. By induction on the length of elliptic sequence, the proof
reduces to the following proposition.

- PROPOSITION 3.8. Let m: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose p is not a minimally elliptic singularity and K’ exists. If the length of
the elliptic sequence is equal to two, then the elliptic sequence is {Z, Zg}.
Moreover —~K' = Z + E. ' '
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PrOOF. Lemma 3.6 says that —K’ > Z. So —K’' = Z + D where D is a
nonzero positive cycleon 4. By (1.2), x(—K") = 0.S00 = x(Z + D) = x(Z)
+ x(D)— Z-D. Since p is a weakly elliptic singularity, x(Z) =0 and
x(D) > 0. As Z is the fundamental cycle and D is a positive cycle, we have
Z- D < 0. Consequently, x{(D) =0 and Z- D = 0. Arguing as above, we
know that |B)| = |D|. Moreover K, exists and K/, = — D where U, is a_
holomorphic convex neighborhood of B,. By Lemma 3.6, B, # |E| cannot
occur since the length of the elliptic sequence is equal to two. So |D| = B, =
|E|. We claim that D = E. Since x(D) =0, we have D > E,ie, D= E +
D', where D’ is a positive cycle with |D’| C |E|. Since 4;- D = 4;- (— Ky)
= A,- E for all 4; C|E|, so A4;- D' =0 for all 4, C|E|. It follows that
D’- D’ =0. Therefore D' =0 and D = E. We have proved the elliptic
sequenceis {Z, Z;}and —K'=Z + E. QE.D.

Let p be the only singularity of the two-dimensional hypersurface Stein
space V. Let #: M — V be a resolution of V. Let A = U;4,, 1 < i < n, be
the decomposition of 4 = 7~ !(p) into irreducible components. Let p be the
Milnor number of p. Then Laufer [23] proved that

g=n+K K —dim H'(4; C) + 2dim H' (M, 0).  (32)

(3.2) has various applications. One is that it gives a means of calculating
dim H'(M, 0) for hypersurface singularities. This calculation is very difficult,
if not impossible, in general. However, given a weighted dual graph corre-
sponding to a singularity, we have to solve a system of linear equations in
order to find K’. For weakly elliptic singularities, Theorem 3.7 provides us a
quick method to find K'.

2. Maximally elliptic singularities. The length of the elhptlc sequence gives
information about # = dim H(M, 0).

THEOREM 3.9. Let w: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity. Then
dim H'(M, O) is less than or equal to the length of the elliptic sequence if K’
exists.

ProoF. If the length of the elliptic sequence is equal to 1, i.e. the elliptic
sequence consists of the fundamental cycle Z only, then Z-E < 0. By
Theorem 4.1 of [24], H'(M, 0) = C. So from now on, we may assume that
the elliptic sequence is of the following form:

ZBO = Z, ZBI’ v ey ZB,’ ZBH-I = ZE" l 2 0,

“ and K’ = —(25-=OZB,_ + E) by Theorem 3.7. Choose a computation sequence
for the fundamental eycle Z of the following form:

Zy=0,Z,...,2,=E,...,Z, =Zg,...,
Z,=Zy o2y, =Zy=Z

41
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Consider the following sheaf exact sequence:
0-50(-2)/0(-Z-2Z,)> Oz4z, — 6, -0

0-0(-Z2-2,_,)/0(—Z - E)__>®Z+E_)®Z+Zk—l_)0

0->0(-2 — zZ,_,)/9(-Z- Z,)— Gz{z,,l‘_’ ®Z+Z,,_. -0

i=0

J o d
‘ 0—>(9(—2 ZB,)/G(_E ZBi—Zl)—a(‘)zjl;_ozﬁﬁzl—)@g‘;_bza_—ao
i=0 ! !

i=0 i=0

‘ J J ‘
0> (9(— > Zy — Zk_l)/(‘)(— 2 Zy — E)'—)GZJ;_OZB’__FE

i GE".:-OZBi"'Zk—l -0

J J
04(9(—2 z&—zh_j_l)/e(— ZBi—ZBjH)
=0 i=0

i

- GE’}-oZB,-'*'ZB_,-H - ®2§-ozsi+zr,_j-1 -0

i

!
0—)@(_ ZB‘)/@(_Z Z&_Zl)-—)ezli-ozn-"'zl
; i=0 ‘ '

i=0

b d @21'_023 _>0

0—>®(—

I

i=0

i=0

ZB,- - Zk—l)/(c)(_ é ZB, - E)

g QEG-OZBF+E - 92'2-028;+Z;—1.;> 0. (33)
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Let Zg = 2, pz;4;. We remark that if E= 4, is an elliptic curve, then
gZ; = 1 for alli by Corollary 2.6. The usual long cohomology exact sequence
or (3.3), (1.6) and Reimann-Roch Theorem will show that

dim H'! (M, Os:_z, +£) < I + 2 = length of the elliptic sequence

because

9(_2{=OZB, - Zh—l)
9(_2{:-023; - Zh)

9(— 2{=OZBi - Zh—])
O(=20Zs — Z,)

H° (M, and H'!

M,

are nonzero only if 4 = k. Since

= H'(M, 9(K")) =0

H' [M, @(— s Zy - E)

i=0

by Corollary 3.3 of [20], the exact sequence

I |
H! [M, ®(~ >z, - E) —H'(M, 0) > H'(M,05_5, .z)—>0

i=0

shows that

dim H'(M, 0) = dim H'(M, O5;_z,.£) <I+2. QED.

The following example, which is due to Laufer, shows that dim H'(M, 0)
can be strictly less than the length of the elliptic sequence even for hypersur-
face singularities. As far as the author’s knowledge is concerned, this is the
first known example for double-point singularity with maximal ideal cycle
strictly greater than the fundamental cycle.

ExaMpLE 3 (LAUFER). Let ¥ be the locus in C of z2 = y(x* + »%). Then
the dual weighted graph is

torus

This is a weakly elliptic singualrity and the length of the elliptic sequence is
equal to three. It can be calculated that p = 22, where p is the Milnor
number. By Theorem 3.7, ‘

~K' =2Z, +2Z3 +E, K -K'=2Z} +Z; +E>=-3.
By (3.2), we know dim H(M, 0) = 2.

The following two examples show that dim H'(M, 0) can actually equal
the length of thé elliptic sequence.
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EXAMPLE 4. Let V be the locus in C? of z2 = y3 + x°*9 Then the dual
weighted graph is

-2
1>0
Srrrrteren
2 =2/ 3 =2 -2
-2

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to / + 1. It can be calculated that the Milnor number g = 16 + 12/. By
Theorem 3.7,

-1 -1

—K'=3 Zz+E K?=3 Z2+ E*= —(I+1).

i=0 i=0
By (3.2), we know that dim H'(M, 9) =1+ 1=length of the elliptic
sequence.

EXAMPLE 5. Let ¥ be the locus in C* of z2 = y* 4+ x!"*% Then the dual

weighted graph is

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to / + 1. It can be calculated that the Milnor number g = 20 + 12/. By
- Theorem 3.7,

-1 -1
—K'=3 Z,+E K?=3 Z2+E’=—(I+1).
i=0 i=0
By (3.2), we know that dim H'(M, ©) =1+ 1 =1length of the elliptic
sequence.
EXAMPLE 6 (WAGREICH). Let ¥ be the locus in C? of z% = x* + y¥*! Then
the dual graph is

_2:
211
_2'
-4
=1 -1
— PN Y T
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This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to l. It can be calculated that the Milnor number p = 12/. By Theorem
37, -K'=3204Z, + E, K? = -Gl +1). By (32) we know that
dim H(M, O) = I = length of the elliptic sequence.

ExampLE 7 (WAGREICH). Let ¥ be the locus in C? of 2° = x* + y* *2_Then
the dual weighted graph is

-1
=2
=3
-2
f o S R

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to /. It can be calculated that the Milnor number p = 12/ + 4. By -
Theorem 3.7, —K'=3/_1Z, + E, K?= -3l. By (3.2) we know that
dm H'(M,0)=1= length of the elliptic sequence.

DEFINITION 3.10. Let ¥ be a normal 2-dimensional Stein space with p as its
only weakly elliptic singularity. Let #: M — ¥V be the minimal good
resolution. Suppose K’ exists. If dim H!(M, 0) = length of the elliptic
sequence, then p is called a maximally elliptic singularity.

THEOREM 3.11. Lét a. M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only maximally elliptic singular point.
Then 0, is Gorenstein.

Proor. If length of the elhptlc sequence is equal to one, then Lemma 3. 6
says that p is a minimally elliptic singularity. By Theorem 3.10 of [24], .0
Gorenstein. Therefore we may suppose that the length of the elliptic sequence
is greater than or equal to two. By Theorem 3.7, we know that the elliptic
sequence is of the following form:

'1
Zy=Z,24,...,25,Z5 =Zg, 1>0 and —K =2 Zy+E.
A i=0
Serre duality gives H'(M, 0) as dual to H(M, Q) where £ is the canonical
sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By Theorem 3.4, p. 604
of [20], for suitable M, which can be arbitrarily small neighborhoods of
A = a7 Y(p), H(M, @) may be identified with HO(M — 4, Q)/H (M, Q).



294 S. 8.-T. YAU

Let U; be a holomorphically convex neighborhood of B, such that ®,:
U, — V; represents B, as an exceptional set where ¥V, is a normal two-
dimensional Stein space with ®,(B,) as its only weakly elliptic smgulanty We
claim that Ky, the K’ cycle on U,, exists. In fact-

- Kl’]l = ZBI + ZB, + ’E,
because for all 4, C B,,

o4 )(2 “

=4,-(K')=2g, -2 — 4;- 4,

So the length of the elliptic sequence relative to ®;is / + 1. Let w,, . . . , w45
E HY%M — A, Q) such that its images form a basis for HY(M —

A, )/ H%(M, Q). Suppose, on the contrary, that O, is not Gorenstein. We
claim that the pole sets of «;, 1 < i < / + 2, are contained in B,. For if there
exists w;, say w;, having a pole set which is not contained in B,, then the

divisor of w, has the following form:

(wn)——z @A+ 2 bA+Z 4X, a>0b>04d >0,

i=1 J=it+1

where t > 1, X, 2 A, X, N 4 #D, V1 <r< n,,andtheree)usts 1<i<t
such that 4, ¢ B,. Forany 4, C A4,

Ay (K) =4, (), 4 ((w)— K)=0
Let

[@] = — 2 aA;+ 2 b,A,.
Jj=t+1

Then 4, « ([w,] — K') < Ofor all 4, C A. Since 0, is not a Gorenstein ring,
either there exists 0 < b, t + 1< j <'n, or there emsts d.>0,0< k< n,
by Lemma 3.6. If the former case occurs, then [w;] — K’ % 0 because K’ is a
negative cycle. If the latter case occurs, we claim that [w,] — K’ % 0 also. For
let 0 < r < n; such that 4, > 0. There exists 4, C 4 such that 4,- X, > 0.
Then oo

A ([w] —K)=A4,-[w] —‘A,-K’ =4, [w] =4, (w)
=A - [w] - 4,- ([w,] +kn2;0 dek)

n
= _Ar‘ 2 dek< _dr < 0.
k=0 ,
Therefore [w;] — K’ is not zero in any cases. Notice that some coefficient of
A; € B, in [w,] — K" is strictly less than the corresponding coefficient of that
component in the fundamental cycle Z because — K’ = 2’,._0231 + E. If

AN
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[w] — K’ is a positive cycle, we let Z ' = inf(lw,] — K, Z). It follows from
M. Artin’s argument, pp. 131-132 of [2] that Z! is also a positive cycle and
Z'-A, < Oforall 4, C A. However, Z' < Z. This contradicts the definition
of the fundamental cycle Z. So [w,] — K’ cannot be a positive cycle. Let
s n .
Zo‘=[w1] — K= hA;,— 2 G4, h>0,¢>0s5<n.
i=1 J=s+1

Without loss of generality, we may assume that ¢,,; = max(¢), s + 1 < j <
n. Consider

_ ' _ 1
Z, =\ Z + 2,4, Zy= 2 z; 4,

where Z = 3"_,z,A,. Since Z, - 4; < 0 for all 4, C A, we have 4;- Z, < O for
all4, C 4. Alsoz >0for1<i<sandz),, =0. Bychangmgthemdexﬂ‘
necessary, we may assume z',, =min(z'), s +2 < i <n. If z zl, > 0, then
Z, is a positive cycle with supp Z; C 4 because z;,; =0. If zl,, <0,
consider
n
Z,= —zZ + 2,7, = > A

i=1
then 4,-Z, <0 for all 4, C A, z2>0for 1<i<s+1 and 22,,=0.
Continuing this process, we finally get a positive cycle D on 4 with supp D
C A and A4,-D <0 for all 4, C A. But this is impossible by previous
argument. We conclude that the pole set of «;, 1 < i < / + 2, is contained in
B,. It follows that «,/ U,, the restriction of w; to Uy, is in HYU, — B,, Q) for
all 1 < i < I + 2. Since the length of the elliptic sequence on U, is / + 1, by
Theorem 3.9, dim H'(U,, ©) < I + 1. Hence

dim H°(U, — B, Q)/H* (U, Q) < [+ 1
and there exist A, . . ., A, , € C, not all A, = 0, such that
M /Uy + - - + N/ Uy € HO(U,, 9),
where w;/ U, is the restriction of «; on Uj. It follows that
Aw; + ¢ 00+ Aoy, € HY(M, Q),
which contradicts our assumption that'imziges of wy, ..., w,, form a basis
for HO(M — A4, Q)/ H (M, Q).

THEOREM 3.12. Let m: M — V be the minimal good resolution of a normal

two-dimensional Stein space with p as its only maximally elliptic singularity. If
Zp-Zg < —=2,thenm0 = 0(—2Z).

ProoF. If the length of the elliptic sequence is equal to one, then Lemma
3.6 says that p is a minimally elliptic singularity. By [24] we have m0 =
O(— Z). From now on, we assume that the length of the elliptic sequence is
greater than one. By Theorem 3.7, the elliptic sequence is of the form
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. A
Zp,=Z,Zp,...,25,Zp =25 , 120, and —K'= .20 Zy+ E.
1=

Sﬁppose A, C B,. We want to prove that
HO(M, O(~Z)/8(~Z — 4,)) = €
and |
HO(M, 0(~Z)) » H*(M, 0(~ Z)/0(~ Z — 4,))
is surjective. We know that the Chern class of the line bundle associated to
0(-Z)/0(—Z — 4,)is —A4,- Z = 0. By the Riemann-Roch Theorem,
dim H°(M, O(~Z)/0(-Z — 4))) < 1. 7

In fact, H%(M, O(—Z)/0(—Z — 4,)) = O only if 4, is an elliptic curve and
0(=2Z)/0(—Z — 4,) is a sheaf of germs of sections of a nontrivial line

bundle over 4;. Suppose, on the contrary, that HY(M, 8(—Z)/0(-Z -
A})) is not isomorphic to C or

H®(M, O(—Z)) > H(M, O(— Z)/0(~ Z — 4,))
is not surjective. Then
HO(M,0(—Z — 4,))> H°(M, 0(-2))
is an isomorphism. Choose a computation sequence for Z as follows:
Zy=0,Z2, =4, =4,,....Z,=24,...,Z, =2.

Consider the following sheaf exact sequences.
0-0(-2Z - Z,)-»0(-2-2,)-09(-2~-2)/9(-Z- Z,)>0

05 0(=Z~2,)>0(—Z— 2,)>O(~Z — 2,)/9(—Z — Z3) >0

0 O(~Z~ A3)>0(~Z~4, )>O(~Z-2, )/0(-Z— Z,) >0.
(34

The Chern classes of the line bundles associated to O(—Z — Z)/0(-Z -
Z, ) for 1 < i < r,— 1 are strictly less than zero. By the Riemann-Roch
Theorem,

H°(M,0(-Z—-Z)/0(-Z~ Z,,))=0 forl<i<r—L
The corresponding long coholomogy exact sequences of (3.4) will show that
H°(M,0(—=Z — Z,,,)) > H(M,0(-Z - Z)))
-are isomorphisms, for 1 < i < r, — 1. By composing the maps, we get .
H°(M, 8(—Z - Z3)) > H*(M, 0(— Z))
is an isomorphism. However, by [2], m0 c O(— 2Z). Thérefore, if ge

H%(M, mB), theng € HY(M, O(—Z — Z)). Since ,0, is Gorenstein, there
exists w € HY(M —~ A4, Q) having no zeros near 4. Serre duality gives
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H'(M, 0) as dual to H}(M, Q), where Q is the canonical sheaf, i.e., the sheaf
of germs of holomorphic 2-forms. By Theorem 3.4, p. 604 of [20], for suitable
M, which can be chosen to be arbitrarily small neighborhoods of 4 =
7~ (p), HX(M, Q) may be identified with HO(M — 4, @)/ HY(M, Q). Since p
is the maximally elliptic singularity,

dim HO(M — A, Q)/HO(M, Q) = I +2

and there exist wp, ..., w,; € H(M — A, Q) such that images of
@y - .., W4 @ form a basis of HA(M — A, @)/H(M, ). As « is nonzero
in a neighborhood of 4, we may assume that w, = fiw, where f, € HY(M, 0).
Moreover, we can assume that f, are vanishing at p; otherwise we need only
replace f, by f; — f.(p). Let U, be a holomorphic convex neighborhood of B,
such that ®: U, — V, represents B, as an exceptional set where ¥V, is a
normal two-dimensional Stein space with ®(B,) as its only weakly elliptic
singular point. Observe that the K’ cycle on U; which is denoted by K7, is
equal to Z/_, Z, + E. Since in this case, the length of the elliptic sequence is
I by Theorem 3.9, dim H'(U,, ©) < /. On the other hand, as (w) = 2{‘=OZB,- +
E and HYM, m0) C HAM, O(—Z — Zp)), we can restrict w; =
£i®, oo oy @y = fio@ to U, and get {w,/U,, . . ., w4,/ Uy} which is linearly
independent in HYU, — B,, @)/ H%(U,, Q). But this is impossible since
dim H)(M, O) < I So we conclude that

HO(M,0(—Z)/8(~Z — 4,)) = C
and
HO(M,0(—Z))—> H*(M,0(—2Z)/0(—Z — 4)))

is surjective. Given a point a € 4, let
feH" (M, 0(-2)/0(-Z - 4y)

be nonzero near a as a section of the line bundle. f € HY(M, 6(—2))
projecting onto f will generate O(— Z) near a since it must vanish to the
prescribed order on 4, near a and will have no other zeros near a.

In order to prove O(—Z) C m, it remains to prove O(—Z) C m0O near
A — B,. There are two subcases.’

Case (i). There exists A, C supp Esuchthat E-Z; + 1 < 4,-Zz < —lor
E = A, is a nonsingular elliptic curve. For any A, Z supp E, choose a
computation sequence for the fundamental cycle Z of the following form:

Z,=0,Z, =4, =Ay....Z,Z,p1,--- 2 =Z,+ E,..., 2, =Z,

r T1+1

in whichsupp Z, CsuppZ —suppEand Z, ., — Z,,..., 2, — Z, = Eis
part of a computation sequence for Z. If suppE has at least two irreducible
components, then our hypothesis guarantees that the computation sequence
can be so chosen such that 4, -Zg <0 by Proposition 2.5. Consider the
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following sheaf exact sequence for n > 0:
‘Diagram A (page 299).
We claim that

‘1 .
(2 ZB‘+ZE)-A,-<O forall 4, C A.
j=0
It is obvious that
i
A,.-(E ZBj+ZE) <0 forAd, CsuppE.
j=0
If A, Z supp E, then 4;- Zp = A, - E by Proposition 2.5. Hence
! I '
A,.-(E ZB_+ZE)=A,.-(2 ZB_+E)
=0 =0
=A4;-(—K')=—A4,-K=2+ A4;-4, <0 for A, Zsupp E.
This proves our claim. ' '
! i
(9(-— > ZBE—ZE—nZ—Zj_l)/("')(-— > Zy — Zp— nZ - zj)
] i=0 ' i=0

is the sheaf of germs of sections of a line bundle over A, of Chérn class
—4,- G, Zy + Zpg + nZ + Z;_,)). If supp E has at least two irreducible
components, from Proposition 2.5,

4, (Zir-1)=2 and 4,-Z; ;=1 forj#r+k
So

1 ,
A, - (2 Zp + Zg +nZ + Zj_l) <1 foralljand all n.
i=0 .
Thus

I ; S .
HI(M,G(—EO ZB', - ZE"' nZ_ZJ_l)/O(_ 20 ZB, _ZE—nZ_Z_])) =0
i=

and the maps

{ !
Hr(M,a(— > Zg —zE—nz—zj))_)H'(M,e(m EZBI—ZE—nZ—Zj_l))

i=0 Li=0
in (3.5) are surjective. Composing_ the maps, we see that
. ! . ! -
p:H'(M,B(— > Zy — Zg— nZ ~ Zj))—>Hl(M, 6(— > Zy — Zp - Zj)) )
i=0 im0

is surjective for aH n > 0. For sufficiently large n, p is the zero map by [7, §4
Satz 1, p. 355). Hence ' -

; .
H! [M, (9(— 2 Zy — Zp - Zj) =0.
i=0
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If supp E = 4; is a nonsingular elliptic curve, then 4;-4; < —2. By
Corollary 2.6, we know that ¢, = z; = 1, where E = 2¢4,;, Z = 2z,4,. From
Proposition 2.5, A,} + Z;_, = 1for all j. Therefore

I ‘
A,}-(E ZBI_+ZE+nZ+Zj_1)<1 forallj#r+ 1
i=0

and

!
Ai,+,' (20 ZB'. + ZE + nZ + Zr) < —1.
i= .

Thus the Riemann-Roch Theorem will show that

. , /
HI[M’ @(_2 Zy — Zp — nZ — Zj_l)/(‘)(—-.EOZB'_ —Zg —nZ — ZJ) =0
i=0 i=

for all j and n. A similar argument will show that

)
H'[M,@(—~2 ZB‘_—ZE—ZJ.) = 0.
i=0
In particular,
I
H! M,@(— Zy — Zg — 4, =0
i=0

" Therefore

- I
H°(M, 0(— é Zy — ZE))—>H°(M, 9(— éo Zg — ZE)/®(— .20 Zp — Zp— A:))
i=0 i= i= »

is surjective. We remark that the above argument is also applicable to the
following situation. With notation as above, there exists 4; C supp E, 4, #
A, ,suchthatd;-Zp <O. -

Case (ii). Supp E has at least two irreducible components and there exists
A; C |E| such that g, = 1, 4, Z; < 0 and 4;- Z; = 0 for all 4; C | E| where
A; # A,. The proof of Case (i) fails only because A"r“‘ #* A, ie, A, Zp <
0. Suppose first that

A NA, =40 4,+3

" Choose a computation sequence for Z with E = Z,, A, = 4, 4
Proposition 2.7,

=.A4,. By

41

I
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Hence

HO(M, 9(— é Zy — ZE))_>H0(M, e(— éo Zy — ZE)/G)(— éﬂ Zp — Zg — Zk+1))
i=0 i= : jm=

is surjective. It follows that

B (M, 0(— éo Zg — ZE)) and HO (M O(~She0Zs, — Z5) )

’ O(~Zia0Zs — Zg —>Zk+l)

have the same image R in

HD(M, e(— s Zy — z,._-)/e(— éo Zp — Zg - A,)).

i=0

O0(—ZicoZp — 2~ Z 0(-2uoZs — Z
0> H| M, ( o7 £ k) - H°| M, (1 oZs, E)
9(—2’,._,0231, - ZE - zk+l) 9(_2.'-023, —Zg — Zk+l)
0(—20Zs — Z,
— H° M, ( OZB" E) -0
G(_EII=OZB, - ZE - Zk)

is an exact sequence. Thus the image of
1
ZB,- — Zg — Zyy ,

i=0

Ao [M, @(- S 7, -2, - zk)/e)(—
i=0

which is injected into

H° [M,(‘)(—é zBi—zE)/e(— é ZB‘_—ZE—A,)
=~ <

i= i=0

via the natural map is contained in R. If

HO [M, @(— S 2z, -z, - zk)/ﬁ(—
i=0

[
ZBi —Zg — Zk+l) # 0,
=0 .

then the elements of R have no common zeros on 4; — (4, N A4,) as sections
of the line bundle L on 4, associated to O (—2!_oZ5 — Z5)/O0(—Zi_oZs —
Z,—A).If

HO = 0,

! 1
M, @(_ 20 Zy — Zg — Zk)/ﬁ(_ 2 Zy — Zg — Zk+1)

i=0

thenAl; (ELOZBi + Z;) = 0. Hence

!
0o

=

! I C
=0 i=0
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We claim that

R L R A T

is surjective. It suffices to prove that the map is not a zero map. Suppose 7 is
the minimal resolution; then Z, = E and hence 4, - Z, < —2. So

!
A,.-(Z z,,i+zE)< -2
i=0

and

> 3.

H"[M,@(— El) Zy — ZE)/(‘)(— 21 Zg — ZE—A,.)
i=0 i

i=0

The image of

p: H”(M, e(—éo Zp — ZE))

S P )

i=

is a subspace S of codimension 1 in

HO

% @(_ $ 7, - zE)/@(_ S z, - zE_A,.) .
i=0

i=0

Hence the elements of S have no common zeros as sections of the line bundle
L, on A; associated to

! 1
(9(— > Zy — ZE)/(‘)(— > Zy— Zp - A,.)
i=0 i=0

by Proposition 2.8. If # is not the minimal resolution, we still get that the
elements of S have no common zeros as sections of the line bundle Z; on4;
associated to

(9(— 21 Zp — ZE)/G(— 21‘, zB‘.’— Z; —A,.)
i=0 i=0

by an easy case-by-case check using Proposition 2.8 with ¥ = 3}_,Z, + Z;.
It follows that

HO(M, o(l—éo ZB, - zE)) —>H°(M, 0(—20 Zy — ZE)/@(—EI0 Zy — Zg ) A.l))

is not a zero map and, hence, a surjective map.

To finish the proof of Case (ii), it remains to consider those 4, Z |E| such
that A, N 4; =& and the computation sequence for Z starting from 4, in
order to reach |E| must first reach A4;. Choose a computation sequence for Z
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with E= Z,, A, = A, A, NA,#D, A, = A, A, Z|Z,,, || and 4,,
k + 1< j< k+ 1t are distinct to each other such that 4, C |E|. By Propo-
sition 2.7, :

!
H! M,@(— ZB,-—ZE_Zj) =0 forall;.
=0

i

Hence

HO(M, e(— éo Zy — ZE)) —>H°(M, 0(—20 Zg — ZE_)/9(~ é Zy ~ Zg - Zk+t))

i i=

is surjective. It follows that

HO(M’G(_-EI" ZBE—ZE)) and HO(M, (= ZimeZs ~ Zs) )

i=0 0(‘25=OZB,» —Zp - Zk+z)

have the same image R in

H“(M, e(~ é Zy — ZE)/G(—EIO Zy — Zg — Al)).

i=0

O(—ZicoZs — Zr — Ziss- O(~2imoZs ~ 2
OﬁHO(M’ é zzo; ; ;ﬂ l))“QHO M. (1 %)
(~2ieoZs = Ze = Zi4.) 0(—_20 Zy, — ZE_Zk+t)
=
O(—Zi-0Zs — Z
- HO{ M, ( 7 — E) —0
@(—2,-.=()ZB,. - Zk+r—l)

is an exact sequence. Thus the image of

! I
H° [M9 6(— ‘go ZBi — Zg — Zk+t—l)/®(_ .EOZB, —Zg — Zk+t)

1

which is injected into

H® [M, @(-ZI) Z5 — ZE)/(9(— ‘2 Zy — Zp — A,)

i=0

via the natural map is contained in R. If -

i I
H° [M’ (9(_ 2 ZB,- - ZE - Zk+t—l)/®(_ 2 ZB,- - Z.E - Zk+t) # 0,
i=0 i=0
then the elements of R have no common zeros on A, — (4, N 4, ) as

sections of the line bundle L, on A4, associated to

(9(" 21 ZB,- - ZE)/Q(_ EI: ZB,- - ZE - Al)'
. i=0 i=0
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If

HO = 0,

M,(f)( é Zk+,1)/@( é Zk+t)

i=0

then 4, - (2,.=OZBI + Z;) = 0. Hence

o4 7203 707 a)
i=0

i=0

= C.

But by induction, we know that the elements of the image of

ol L)

i !
—)HO(M,O(_‘EO ZBI—ZE)/G(_‘EO ZBJ—ZE_Aik+I—1))
= =

have no common zeros on 4, = —(4;,
bundle L, onA,  associated to
k+e—1 k+t—1

I !
‘9(— 2 ZB~ - ZE)/@(_ 2 ZB,- - ZE’ - Aik+,_,)'
i=0 : i=0
It follows that

HO(M,(‘)(— i Zs, - zE))_,HO(M,@(— é Zy — ZE)/G(— 210 Zp — zE—A,))
i=0 i=0 i=

is again surjective. So far we have proved O(—Z) € m0. But m0 C O(—2Z)
by [2]. This completes our proof of the theorem.

A, ..) as sections of the line

PROPOSITION 3.13. Let m: M — V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only maximally elliptic singularity. Let

Zp,=Z,2Zp,.... 25, Zp =2y,

be the elliptic sequence. Then for any 0 < h < I, there exists f €

HOM, O(=3%_0Z3)) such that f & HOM, O(—24%,Z;)). In fact the
vanishing order of f on A; is precisely Sh_o 5z Where Zp =3, g2, 4, and
A4; C By

PrROOF. By the definition of maximally elliptic singularity, dim H (M, ©)
= the length of the elliptic sequence. By the proof of Theorem 3.9, we know
that maximal ellipticity implies

H (M, GE’I!-OZB<) = Ch+l fOI'allO < h < l.
Moreover,
H°(M, Og107,) > H® (M, O3y_z,)
are surjective. Consider the following commutative diagram with exact rows:

Diagram B (page 305).
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Since H'(M, O(—Z2{_yZ — Zg)) = 0 by Proposition 2.8,
H'(M, 0) > H*(M, O5;_z, +z,)
is surjective. It follows that . '
H(M, 0) —» HY(M, Og_ ozs,-)

are surjective for all 0 < A < I. An easy diagram chase will show that there
exists f € HY(M, O(~Z_,Z;)) but f & HO(M, 0(=Z12:Z,)). Let 4, C
B, +1- Choose a computation sequence for Z, of the following form:

Zy=0,Z,=4,...,Z, , =Z .
Look at the sheaf exact sequence:
Diagram C (page 305).

If the vanishing order of f on 4; is larger than ={_, zz, then the usual
cohomology exact sequence argument will show that f €
HO(M, 0(—Z2%3Zy)), which is a contradiction. Q.E.D. '

The following corollary is a partial converse of Theorem 3.2.

COROLLARY 3.14. Let V be a normal two-dimensional Stein space with p as
its only maximally elliptic singular point. Let

ZBO = Z, ZB,’ et ZB:’ ZBI+I = ZE

be the elliptic sequence. If there exists A, C |E| such that the coefficients of A,
in Zp, 0 < i< I, are equal, then there exist f € H(M, 0), w € H(M —
A, Q) such that w, fu, . . ., {0 forms a basis of H{M, 0).

PROOF. An easy consequence of Theorems 3.7, 3.11 and Proposition 3.13.
The following theorem will be useful in calculating the Hilbert function
dim m”/m"*1. :

THEOREM 3.15. Let m: M — V be the minimal good resolution of a normal
2-dimensional Stein space with p as its only maximally elliptic singularity. If
Zp-Zg < —3, then '

H°(M, 0(—2)) ®c H°(M, O(—nZ)) > H° (M, O(—(n + 1)Z))
is surjective for all n > 1. If we assume further that the length of the elliptic
sequence is equal to two, then the above map is surjective for all n > 1. In this
case,
m" >~ H%(4, 0(—nZ)) foralln >0
where A = 7 Y(p).

ProoF. It is true that H%(A, O(— Z)) = proj lim H(U, O(—2Z)),. U a

neighborhood of 4. Since Z is minimal, H%A4, O(— Z)) = m. By Theorem

3.7, the elliptic sequence is of the form

; .
Zy,=2,Z4,...,25,Zp and K= — 2 Z,— E.
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Step 1. We are going to show

; i
i=0 i=1

iI=

!
- H° [M, (9(—(n +1)Z-23 Z - ZZE)
i=1

is surjective for all n > 1. It suffices to show

O(—=teZp — Z O(-nz-321Zy - 2Z
2 M ( 04B E) ®cH0 M, ( 148, E)
0(-2Z - 31125 — Z5) o(—(n+ 1NZ - =/_,Zp — Zg)

e (M o(—(rn+ 1)Z - 22}_,Z5 — 2Z;) ) 36)

" o(—(n+2)Z - 23.,Z5 — 2Z;)

is surjective for all n > 1.
Let us first demonstrate this fact. We first show that the image of

1=

{
HO [M, @(— > Zy — ZE)
i=0

contains

’ !
j=1

!
Hﬂ[M, @(—mz -2 Zy - 2zE)

i=1

for some m. Let

Jiooo s LEH®

!
M, 6(—nz -2 Zy - ZE)

i=1

generate O(—nZ — S4_,Z, — Zy) as an O-module. Proposition 2.8 and the
proof of Theorem 3.12 guarantee that such f’s do exist. The 0 -module map

! !
p: D (9(—2"2 ZBi—-ZE)—>®(—(n+1)Z—22 ZB,,—ZZE)
s i=1 3

i=1

i=

givenby (8, ...,8)—> 2 _ﬁ-g,- is then surjective. Let K = ker p.

i I
0->K—E o(—z— 2 Zg - zE) 5 0(—(n +1)z-22 zB,-zzE)-)o
s i=1 i=1
is exact. Multiplying by 0 (—kZ), we get
Diagram D (page 308).

with the vertical maps the inclusion maps, is commutative. The verification
that the first line is exact is the same as the verification that [19, (5.5)] was
exact.

Diagram E (page 308)
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is commutative with exact rows. By [7, §4 Satz 1, p. 355], 6, is the zero map
for sufficiently large k. Then given

s

Ii=

]
heHO[M,G(—(n+k+1)Z—22 ZBJ—2ZE)
i=1

Ay (h) = p,(g) for some g, by exactness. Letting m = n + k + 1, we have that
the image of

!
H° [M, G(—z— > Zy - zE)

i=1

l
R H® [M, G(—nZ -2 Zy - ZE)
=1

i=

contains

i
H° [M, @(—mz -2 Z - ZZE)
i=1

[

as required.
If m > n + 1> 2, we shall show that the image of

HO

{
M, @(— 2 Zy - ZE)
i=0

contains

' I

i=

H [M, @(—(m -1z —221 Zy —zz,g)

i=1

By induction argument, we will be done. Look at the diagram:
Diagram‘F {(page 309).
Since m > 2,

!
H! [M, @(—mz -2 Zy — 2ZE) =0
“

1

by Proposition 2.7. Hence the vertical sequence is exact. We also notice that
the maps

O(-z-3.2, - Zy)
> H | M,
0(-2Z-3_,Z; - Z;)

5

7
HC M,@('—z— > Zy - ZE)

[
H° | M, (9(—(m -Z -

H

/ -
=1

(‘)(—(m -2z -3z, - zE)
M

HO | M,
- O(~(m— 1)Z — 3!_,Z, — Z;)
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are surjective because

{
H! [M, o(—zz - Zy — ZE)
i=1

= H! [M, @(—(m -1)Z - é Zy — ZE)
i=1

by Proposition 2.7. The horizontal map in (3.7) is surjective by hypothesis. It
follows easily that the image of

i
H° [M, @(—z — > Zy — ZE” ® H°

i=1

!
M,@(—nz— > Zp— ZE)

contains

H° [M, @(—(m -1z - 2i Zy — 2ZE) .
i=1

It remains to prove (3.6) is surjective for all n. The proof breaks up into.
three subcases.

(i) There is an A, callit A, such that Z; - Zp + 1 < 4, - Zg < -2

(ii) There is an 4;, call it A}, such that 4, Zg = Z - Z.

(ili) 4, - Zz = —1 or 0; all 4, C supp E. Take 4, Z; = — 1.

In case (i), all irreducible components are nonsingular rational curves.
Choose a computatlon sequence for Z with E = Z,, Z, = Z and 4, = A,.
Consider

0(-Z-B-Z O(-nZ-B-2Z;-Z_,)
'rj:H“(M, ( 5) )MO(M, £ )

(-2 - B—Zg - 4) 0(-nZ—-B—Z; - Z;)

(3.8)

o O(m+1)Z—-2B—-2Z;—- Z;_,
- * O(—(n + DZ - 2B-2Z; - Z))

where B = 3 _,Z;.
To show that r in (3.6) in surjective, it will suffice to show that 7; in (3.8) is
surjective for all j. Indeed, since all of the first cohomology groups

!
H‘[M,@(—nZ—Z ZBE—ZE—ZJ-) =0 forallj,

i=1

by Proposition 2.7,

H° [M, G(—nz— é Zy — ZE)/G)(—(n+ 1)Z - é Zy — ZE)
o i=1

i=1
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can be written via successive quotients as

O(-nZ—-B—-2Z,-Z,) |
0 H® | M, ( . 2
O(—(n+ 1)Z — B= Z,)
Lol a O(-nZ—-B—-Z;—-Z_,)
T O(-(n+1)Z-B-Z)
O(—-nZ -B—- 2, - Z,_
> H|M, ( = %) =0, 1<j<r,, -1,
O(-nZ—-B—2Z; - Z) -

where we denote B = X/_,Z,.

H° (M, ®(—(n +1)Z -2

H

!
' zB‘—zzE)/e( —n+2Z-22 zB,_—zzE))
=1 im=]

also can be written via similar successive quotients. Moreover,

!
H! [M, (9(—.2 Zy — Zg — A,}) =0
i=0

by Proposition 2.8 and the proof of Theorem 3.12. Now consider the
commutative diagrams:

Diagram G (page 309),

1 < j < 14y, where we denote 25_(Z, = G and /_,Z, = B. Thus if (3.8)
is surjective for all j, (3.6) is also surjective.
‘Suppose that the target space in (3.8) is nonzero, i.e.,

il
—A,}_-((n+1)Z+22 zBi+2zE+zj_1)>o.

i=1

We need

1
—Ag-(Z+2 zB‘_+zE)>0

i=1

and
!
—A,}-(nZ+2 Zy +Zg+Z_,|>0.
i=1

Forj # k, A, Z_y = LI — A4, - (B_Z + Z) > 0, then

l
—A,}_(nZ+ 2 Zy+Zp+ z,._l) > 0.
i=1

1=
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1.
—A,}(nZ+ D Zg+ Zp+ zj_l)

i=1

I
= —4,- ((n+ DZ+22 Zz +2Z; + zj_l) > 0.
i=1
For j =k, 4, - Z,_, = 2. By construction 4, - Zp < —2 and so (3.8) is
surjective for all j.

Let us now do case (ii). Suppose supp E has more than one irreducible
component. The proof of case (i) fails only because the maps

{
H° [M, @(—2 Zy — ZE)
i=0

! {
— H° [M, @(— > Zy — ZE)/G(— > Zp— Zp - A,.k)
i=0

i=0

and

{
H® [M, @(— X Zp - ZE)
i=0

!
— H°

M, @(— S z, - zE)/e(—
i=0

- i

Zy, — Zg — Ai.+k)]
0

need not be surjective, where 4, & |E| and the computation sequencé
starting from 4; , in order to reach | E | must first reach 4,. In (3.8),

9(—2{-_02& - ZE) 0(—_211'—028» - ZE)
H°| M, = H°| M, :
0(_21,,.023' - ZE - A”‘) 0(_21"_()25‘ - ZE - A’l)

must be replaced by the subspace S of Proposition 2.8.

i
i=0

Also,

: 1 I '
dimH"(M, e(—nz— 2 Zpy—Zp— z,c_])/a(—nz— 2 Zpy - Zp— zk))
i=1 i=1

i=

i
= —Al(nZ+ 2 ZB;+ZE+Zk—l)+l= _AI‘ZE_2+1>2'

i=1
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Under these conditions

o @(—nz_25‘=1ZB'._ZE_Zk—l)
Tk:S ®CH Ms
9("’72 - 211'=IZB,- — Zg — Zk)
O(—(n+1)Z — 2%\_,Z5 — 22 — Z,_,)
—)HO M,

O(—(n+ 1)Z - 28,2, —2Z; - Z;)

is still surjective. Namely, consider the subspace T of S of sections which
vanish at some given point, say a € A,. T has codimension 1 in §. If all the
elements of 7 have a common zero at some point b # a € A4, or if all have a
second order zero at a, then T, having codimension 2 in

HO

3

i=0 i=0

M, (9(-— é ZB,- - ZE)/(L)(— i ZB,- - ZE_Aik)

represents all sections of a suitable line bundle over 4,. Then 7, is readily

seen to be surjective, as in the proof of [19, Lemma 7.9, pp. 144-146], but

more easily. If the elements of T" have no common zeros, then think of T as

codimension 1 subspace of the sections of a line bundle and replace S by T in

the previous case. Eventually we see that 7, is surjective when dim 7' = 1.
Also in (3.8),

! I
HO [M, @(_ > Zy - ZE)/@(— > Zy— Zg —A,.Hk)
- i=0

i=0

must be replaced by subspace R, , which is the image of

!
Qp: H® {M’ 6(— _20 Zy — ZE)

!
Zy,— Zp — A:'Hk)

i=0

- H° [M, (‘).(— é Zy - ZE)/Q(—
i=0

if @, is not surjective. By the proof of Theorem 3.12, case (ii), we know that
R, , has at most codimension 1 in

i=0

H° [M,(‘)(— s Zs — ZE)/G(— é Zy -z, ——A,.Hk) :
i=0

Moreover, the elements of R, , have no common zeros as sections of the line
bundle on 4, , associated to

(9(“ é ZB,- - ZE)/G(— ZI -ZB,- - Zg _.Ai,+,;)'
i=0 i=0

=
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We claim that if g, , is not surjective, then
‘ ! !
dij°(M, o(—nz -2 Zy —Zp— Z,+k_1)/0(—nZ -2 Zy—Zg— z,+k)) > 2.
=1 i=1

i=

Since ¢, is not surjective, it follows from the proof of case (ii) of Theorem
3.12 that

I .
—Aik+¢. (2 ZBi + ZE) > 1.

i=0

We will prove that actually
i
— A,.H,( > Zg + ZE) # 1.
i=0

Forif —4, - (Zi—oZs + Zg) = 1, then

H® = C2

M, e(— S z, - zE)/®(— S 7, - 7 —A,-,H,)
i=0

i=0

An inductive argument, as in the proof of case (if) of Theorem 3.12, will show
that there exists f € HY(M, O(—Z!_¢Z5 — Zp)) such that the image of fin

! !
H° [M,@(— > ZE_ZE)/G(— ZB.‘ZE—A:‘H,)}
i=0 i=0

as section of the line bundle associated to

(9(— i Zg — ZE)/G(_ é Zp, —Zp— Aiw)
; i=0

i=0

has no zeroon 4; N 4, . Hence, the image of f cannot be in the image of

! !
H° [M, (9(_ 'go ZB,. —Zg - Zk'+z—1)/®(“ '20 ZB,~ — Zg — Zk+t) =C

which is injected into

H® [M, @(— é ZB,. - ZE)/Q(_ é ZB,- - Zg — Aik+l)
i=0

i=0

via the natural map and which is contained in R, ,. Hence ¢, is surjective.
This contradicts our assumption. We conclude that

{
- A,.H,( > Zy + ZE) > 1
i=0 :

and, hence,

i= i=ml

! ) {
dimHO(M, 0(-"2 - ~§l ZB, - ZE - Z,+k_1)/e(_nz— 2 ZB, - ZE - Zt+k)) > 2.
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Now repeating the argument above, we get

@(—nZ — 312y — Zp — Zt+k—l)

T : R ® Ho M’
t+k M+k CC 9(—nZ - 25—=1ZB,~ —Zg — Z:+k)

: @(—(n + 1)Z — 22’~= Zg B 2Z; — Zt+k—l)

- H° | M,
O(—(n+1)Z — 28, Zp —2Z; — Z,.;)

is surjective.
In case E = A, = Z is an elliptic curve, we know that

0(—2t_oZs, — Zg) O(—nZ — =i.,Zp — Zg)
H°| M, ® H°| M,
O(—Zia0Zs — Zg — 4y) T O(~nZ -2 \Zp - Zp — Zy)

0 (M O(—(n+ DZ - 25,25 — 2Z;) )
d H

is surjective. This is shown in [30]. The result follows from the proof above
and the proof of case (i).
in case (iii), the proof of case (i) fails only because

i=1 i=1

HO(M, 0(—nZ— 2 ZB; -ZE— Zk_l)/e(—nZ" 2 ZB;_ZE_ Zk)) =0
We can still get

i
(—(n+1)z—22 z,,l—zz,,;—z,,_l)
o[ M et

I
0(—(n +DZ-23 Zy —2Z; - zk)
i=1

as an image as follows: There are two subcases. First, suppose that 4, can be
chosen so that 4, - Z; < 0 and ¢; > 1 in E = Ze,4;. In this subcase Z, = E.
Then choose a computation sequence for Z with 4; - Z; <0, E=Z,
A, = 4, and with Z, g < k, such that A,.q =A, A, Zsupp(E — 4, — Z)
and 4,-Z,_, < 0,i +# 1, 4; C supp E. Such a computation sequence can be:
formed by letting 4, = 4, only when 4, C |E| cannot be chosen otherwise.
Then also 0, Z, — Z,_\, Z,oy — Z,_y, - - - » 2y — Z,_, is part of a compu-
tation sequence for ZE = Z,, which, by Corollary 2 3, can be contmued to
terminate at 4, . Recall that 4; - Z; < 0 by construction. Hence

i=1

; .
Hl ,'M, (9(—]12—' 2 ZB;' - ZE - (Zk_ qu-l)) =0
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and also
) !
H!'|M, @(— D Zy — Zp - zq) = (.
i=0
In place of (3.8), we use
H® M, 0(_25"024' - Zg - Q'l)
O(—Ei._oZBl - Zg - Zq) .
® H"(M, 0(-nz - 25‘-:125, —Zg — (Zk—l - qwl)))
O(-nZ — Ziu1Zp — Z; ~ (2, ~Z, 1))

—> f .
O(—(n+1Z-23_,Z, -22Z; ~ Z,))

Look at the following commutative diagram:

Diagram H (page 318)
with the vertical column on the right exact. Our result follows easily.

In the other subcase, there must be 4,, 4, and A4, all distinct, such that
A+ Zp <0, 1<i<3 and ¢ =1, 1 <i<3 Choose a computation
sequence for Z; with E = Z, such that 4, - 4, > 0, 4, = 4,, and such that
when Z, with ¢ < k, A, = A,isreached, 4,-Z,_, <Ofori#1,2. We may
suppose A; C supp Z,__,, for otherwise we reverse the roles of 4, and 4.
Since 4; -4, > 0and e; =1, Z,_, + A4, is part of a computation sequence
forZ;.0,Z, - Z, ,,...,2, — Z,_, is also part of a computation sequence
for Z. Therefore

]
H! [M, @(—' . Zy = Z5 = 2, - Al)

=0

and

H

!
H! [M, @(—nz -2 Zy—Zp — (2, - zq_,))] =0
i=1
by Proposition 2.7. In place of (3.8), we use

o 0(-G-2;-2,_,) o 0(-nZ -~ B—2Zg — (Z_, - ~q—1))
il b N(-6G-2z-2,_,-4,) ® M, 0(-nZ-B-2Z;— (%, - 2,,))

HO o(-(n+1DZ—-2B-2Z. - Z,_;)
- T e(—-(n+1DZ-2B-2Z.-Z,)

where G = 3_,Z; and B = $|_,Z,.
Look at the following commutative diagram:

Diagram I (page 319)
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with the vertical column on the right exact. The results follow readily. This
completes the proof of Step 1.

Step 2. We are going to show that

(3.9) We can get

I
H° [M, O(—(n+ 1)Z)/®(—(n +1)Z -2 Z, - ZZE)
i=1
as an image for alln > 1.
The proof of (3.9) breaks up into two subcases.
(1) supp E has more than one irreducible component.
(ii) supp E is a nonsingular elliptic curve.
In case (i), choose a computation sequence for Z of the following form.
ZO—_'O,Zl:A,-I' ‘ 'Zk=zk_1+A,—k=E,...,

Z,=Zg ... Z, = Zgy.. s 2= Z5,..., 7,

T 1 T+t

where 4, = A, and 4,- Z; < 0. Consider

‘_HO(M o(~2) )®CH0(M, e(—nz_z',f-.zn—z,--l))

=Z, =Z,

TBo---. Bl ' 0(-z - 4,) 0(—nz — 2,25 - Z))

(-n+DZ-%t 125, -2, ,)
> H°| M, ’
(—(n+DZ - 24,2, - Z)
' 0K j<rep-l<h<I-1,
0(-2)
V... 0 H"(M, m)
i
O(—nZ — 2ho1Zp — Zg ~ 2hanZp, — Z;,)
®c H°| M,
O(—nZ — Z}a1Zg, — Zg - h1Zp—Z,)

ol 2 (- (n+1)Z -2 1Zg — Zz ~2i1Zg, — Z; )
— s } ’
0<j<r,,+1,—1<h<1—l. (3.10)

To show that (3.9) is true, it will suffice to show that YB,,.... B YBo.... By OT€
surjective for all 0 < j < y,,, —1 < b < I— 1. Consider the following

sheaf exact sequences:

0(-n2-G,~2) 0(-nZ2-G,-%_,) O(-nZ-G,-2_,)

0 — =0,
T 0(-nZ —26G,—2Z;)  6(-nZ -2G,-2Z;)  O(-nZ - G; - Z,)
o O(—nZ~G~-2.-G,~-2) O(-nZ-G—-2-G,—Z_,)
C T 8(=nz - 2G,-22;) 0(—nZ — 2G, — 22;)
O(~nZ—-G —-2Z:—G,~ Z;_;)
e B B LN ¥ 1< h<I-1L1<j<rp

(—nZ- G —-Zz -G, - Z;)
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where we denote G_, =0, Z;, =0, G, = 2"‘1=IZB.-' We claim that

ok !
H° [M, (9(—;_12— D Zy - zj_l)/(ﬂ)(—nz—zz Zy —ZZE)
¢ i i=1

i=1

h

: . Y
- H° [M, @(—nz —~ 2 Zg — zj_l)/(f_-)('—nz— 21 Zy — zj)

i=

1

} .
are surjective for all —1 < A </ —1and 0 < j < r,,,. The Chern class of
line bundle associated to

h h
i=1 i=1"
1s
h
—Aé(nZ+ 2 Zy + zj._l) =~4,-Z_,

i=1

which is less than zero for j > 1 and O for j = 1. Therefore for j > 1, the
claim is trivially true because

H° [M, (9(;nz— $ Z, - zj_,)/e(—nz— $ zZ, - zj) =0.
: =1 i=1

Ii=

Forj =0,

HO[M,G(—nz—i zBi)/e(—nz—é zBi—z,) =C.
< “

i i=1

By Proposition 3.13, we know that there exists

M, @(—nz = ﬁl ZB._)]

feH

such that the image of fin

i=1 i

Ho[M,G(—nZ—é z&)/e(—nz— é ZB,_ZI)
= <

is nonzero. It follows that

0(=nZ - =h_yZ, o(-nZ - 3'_,Z
HS M, ( " ¢ Bf) - H® M, ( ! IBJ)
0(—nZ - 25,25, — 22, ) O(—nZ - 21e\Z5 — Z1)

is surjective. We next prove that

O(-nz -2z, — Z; —3h. 2, - Z,_))

J

O(-nZ — 2i.1Z5 — Zg ~ 2125 — Z))

J

H'\M =0

for -1 <h<!I—-1and0< j< 1y,
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i h ! K '
e(—nz - El Zy — Zg — El Zg - zj_,)/e(—nz- D Zy—Zg— X Zg - Z,)
= i= i=1 i=]
is the sheaf of germs of sections of a line bundle over 4, of Chern class
—4,- (nZ + S\ Zy + Zp + 20 Zy + Z;_)). Recall that by construction

A - Zg< — 1. Therefore,

! h
- Ay‘ (nZ + 2 ZB,- + 2 ZBI + Zj—l) > —1.
. j i=1 '

i=1

By the Riemann-Roch Theorem, we have
e(_nz - 2€=IZB, - ZE - 2,;=1 ZB, - Zj—l)

H! .
@(_nz - Eli=l ZB,- - ZE - 2’;=l ZB,- - Z})

M, = 0.

Now the usual long cohomology exact sequence argument will show that

O(=nZ — B, Zy - Zg — s 25, — Z1)

HO
O(—nZ — 25!, Z5 — 2Z;)

M,

— H°

M,

9(—'12 -3 Zy - Zg — 2?=1 Zp, — Zk)

is surjective for all —1 < A< /-1 and 0 < j < ryyy. S0 far we have
proved

H® [M, @(—nZ)/@(—nz—z i Zy — 2ZE)

i=1
can be written via successive quotients.

0(—nZ - G, — Z;) ) H°( 9(""Z_Gh‘zj-l))
) -

M,
0(—nZ — 26, — 2Zg)

0
M,
0~>H ( 0(-nZ — 2G, — 2Zz

0(-nZ - Gy~ 1) )
-0,

- H| M,
. 0(-nZ - G, - Z))

o Ho(e(—nZ—GI—ZE—Gh—Z,-)) Ho(M 9(—nZ-G,—zE—G,,—zj_,))
- - ’

9(—nZ—2G,—2ZE) 9(—nZ—2G,~—ZZE)

0(=nZ—-G,—Zz— Gy, — Z;_,)
—)HO(M, ( [} E h =1 )_)0’

0(—nZ - G - Zg — G, — %)

—1<h<I-1,1<j< r,_, Where we denote G_, ;0, Zy,=0, G, =
2ia1Zs, |
By the proof of Theorem 3.12, we know that

H°(M, 0(=Z)) - H°(M, 0(-2)/8(-Z - A,;f)_)
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is suljectiVe for all A, C B,. Since n > 2,

H'(M_,@(;nz— i z,,,-zj)) =0

i=1

jm]

- H‘(M, (')(—nZw- > Z, - Zp —é Zp, - z,))

by Proposition 2.8. Now look at the following commutative diagrams:
Diagram J (page 324),

—1<h<I-1,1<j<r_, where we denote G, = 2%_,Z,, G_, =0,
Zy=0.Thus if vy, p.,and yp, . 5, aresurective V—-1<h</l-1,
0 < j< ry, then 3.9)is true.

By the Riemann-Roch Theorem, the target space of vz g . is nonzero
only if j=1. In that case —4,-Z =0 and —4, - (nZ + 2_,Z3) =0.
Hence yp, .., 5,, is surjective for all k and j. Suppose that the target space of
s, ..., By, is nonzero, i.e.,

1

1 h
_A,;_-((n+1)z+2 ZII,-+ZE+ ZB,-+Zj—I)>O-
i=1 =1

We need

i h
~A4,-Z >0 and —A,}-(nZ+EZBi+ZE+

i=1 i=

Zy + zj_l) > 0.
1

‘But this is obvious because 4, - Z = 0 for 4, C B,.
In case (ii), E = Z; = A, 1s a nonsingular elliptic curve. We first show that

O(-7 O(—nz - 3_,2Z,
HO(M, _(___2___)®H0 M, ( ! B‘)
6(_2_‘4]) (9(—”2—2?_123i— Zl)
o(- NZ -3z}
S HY M (- (n+DZ-30.2,) (3.11)

TO(—(n+1DZ -2t Z, - 2Z,)

is surjective. The Chern classes of the line bundles associated to

0(-2)/0(-2Z - 4,)), (9(-nZ—— i ZB‘,)/(E)(—nZ— i Zy — Z,)

and

(9(—(1 +n)Z — ﬁ zﬂ,)/@(—(n +1)Z - ﬁ Zy - zl),
- i=1 i=1
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respectively, are equal to zero. By Proposition 3.13, there exist

>

fo € HO(M, O(~Z)), f,, € H° [M,G(-nz— > ZBI)
i=0

’

h
fos1s EHO [M, (9(—-(n +1H)Z -3 ZB,,)
i=1 -

the images of fy, f, , and f,, , , in

H°(M, 0(—2)/0(-Z — 4))), H°(M, 0(—nz— i z,,,)/e(—nz— _él Zy - zl))

fex]

and

]

H° [M, 9(—(n +1)Z — ﬁ ZBi)/(‘)(—(n + 1)Z - é Zy — Zl)
i=1 i=1

respectively, are nonzero. It follows from the Riemann-Roch Theorem that

H°(M, 0(-2)/0(-Z - 4,))~C,

2

C

4

=

HO [M,(‘)(—nzuﬁ ZB'_)/(‘)(-—nZ—ﬁ Zy - zl)

and
HO(M, 0(—(:: +1DZ- ﬁ ZB‘,)/G(—-(n +1)Z - i Zp - Z}))zc.
i=1 j=]

Hence the maps (3.11) are surjective. We next show that

- O(-nZ-3l12Zy — Z, -2k ,2Z
HO(M, o )®H° w, L )
0(-z - 4, O(—nZ - 2lo1Z5 — Zg ~ 212, - Z,)

ol gy O+ DZ ~FiZy — Zp - B2,
- 3
O(-(n+1DZ-2/_,Z5 - Z; - 3t \Z5 - Z,)

) (3.12)

is surjective. The Chern class of the line bundie associated to

9(—nZ— é Zp — Zg - Eh‘, Z&)/O(—nZ— é Zp — Zgp — Eh: Zs - z,)

i=] im=] i=]1 im]

is equal to

i h

i= i=1
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The Chern class of the line bundle associated to

0(—(n+1)z— ZI‘, Zp — Zg — i z&)/e(_:(nﬂ)z-ﬁl Zy — Zg — i z',,—z.)

i=] i=1 fm]

is equal to

i=1

! h
—A,((n+ DZ+ D Zy+ Z; + 3, Z&)= —A4,-Z; > 3.
i=1

Therefore
(—n7 — S - _ Sk
dim 119 |31, — "2~ By~ 25~ 21 12)
O(-nz - 51,2, — 2, - 3"_,Z, ~ Z,)
O(—-(n+DZ-3_,2, — Z -3k 7,
=dim H° | M ( ) — - : B‘)

T O(—(n+1)Z - 312y — 25 ~ 242, - Z,)

By what we have already proved, the line bundle associated to
0(-2Z)/0(—Z — A,) is a trivial line bundle. Hence the maps in (3.12) are
surjective. The rest of the proof is the same as case (j).

Step 3. Consider the commutative diagram:

Diagram K (page 326)
with the column sequence on the right exact. The map of the first row is
surjective by Step 1. It follows that the map of second row is also surjective,
Let us make the following observation. The only thing that we need #n > 1
in the proof of the map

H°(M,0(-Z))® H*(M, O(—nZ)) - H(M, O(—(n + 1)Z))

being surjective is to get vanishing first cohomology

i=1 i=1

! R
HI[M,(fJ(—nz—E Zy — Zp— ), z,,,_—zj),
_1<h<1_1,0<j<rh+l.

If the length of the elliptic sequence is equal to two, this is automatically
satisfied by Proposition 2.7. Q.E.D.
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