Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998), pp. 357-381

Intersection Lattices and Topological Structures of
Complements of Arrangements in CP?

TAN JIANG - STEPHEN S.-T. YAU

1. - Introduction

An arrangement of hyperplanes A is a finite collection of C -linear sub-
spaces of dimension (d — 1) in C4. Associated with the arrangemant A is an
open real 2d-manifold the complement M(A) = C¢—-U{H : H € A}. The
central problem in this area is to decide to what extent the topology or differ-
entiable structure of M(A) is determined by the combinatorial geometry of A
and vice versa.

The theory was first initiated in 1969 by V. I. Arnol’d [1], who calculated
the Poincaré polynomial of the pure braid space M, and the cohomology ring
structure of H*(M;), where M, is the complement of the complexified braid
arrangement A, defined by

H (zi — 2j)-

I<i<j<t

In general, for an arbitrary arrangement A, define holomorphic differential forms

# d;‘: , where ay is the linear form defining the hyperplane H for h € A,

and let [wgy] denote the corresponding cohomology class. Let

wHg =

4
R(A) =R,
p=0

be the graded C-algebra of holomorphic differential forms on M (A) generated
by the wy and 1. Arnol’d conjectured that the natural map n —> [n] of
R(A) —> H*(M(A),C) is an isomorphism of graded algebras. This was
proved by Brieskorn [2] in 1971, who showed that the Z-subalgebra of R(A)
generated by the forms wy and 1 is isomorphic to the singular cohomology

A.M.S. CrassiFicaTION: 05B35, 14B03, 14F45, 57N20
Research was partially supported by an NSF grant.

Pervenuto alla Redazione il 5 novembre 1996 e in forma definitiva il 3 settembre 1997.



358 TAN JIANG - STEPHEN S.-T. YAU

H* (M (A), 7). Although Brieskorn proved the Arnol’d conjecture that R(A) is
isomorphic to H*(M (A),C) as a graded algebra for the arbitrary arrangement
A, it was not known whether the algebra R is determined by the combinatorial
data of A, since the linear forms enter the definition of R(A). In 1980, Orlik
and Solomon [16] introduced a graded algebra A(A) to an arbitrary arrangement
A. A(A) is a combinatorial invariant of 4. The beautiful result of Orlik and
Solomon asserts that there is an isomorphism of algebra A(A) >~ R(A). This
together with the Brieskorn’s solution to the Amnol’d conjecture implies that the
cohomological ring H* (M (A), C) is a combinatorial invariant of A.

Let A be an arrangement of hyperplanes in C* and let A* be the corre-
sponding arrangement of lines in CP2. Then we have M(A) = M(A*) x C*
(cf. [18]), where M(A*) = CP? — UA*. Topology and differentiable struc-
ture of M(A*) are important in the theory of hypergeometric functions (see
the work of Gel’fand [8] and his subsequent papers, the work of Deligne and
Mostow [3], and subsequent papers by Mostow). Moreover, they play a role in
some interesting problems in algebraic geometry (see especially the works of
Hirzebruch [9] and Moishezon [13]). Although the conjecture that the homo-
topic type of M(A*) is a combinatorial invariant of the projective arrangement
of A* seems disproved by G. Rybnikov [20] in 1994, we have shown [11] that
for a very large class of projective arrangements in CP?, the diffeomorphic type
of M(A*) is indeed a combinatorial invariant of A*.

DErFINITION. Let A* be a projective arrangement of lines in CP?, The set
of all intersections of elements of A* partially ordered by reverse inclusion is
denoted as L(A*).

It is natural to ask whether the combinatorial data L(A*) of the projective
arrangement are determined by the homotopic type, topological type, or diffeo-
morphic type of M(A*). For the first question: Falk has written a series of
papers [5], [6], and [7] on whether there are combinatoriably distinct arrange-
ments that have homotopic equivalent complements. In [6], Falk constructed
two projective arrangements in CP2?, each of which has two triple points and
nine double points. The homotopic equivalence of their complements was shown
in [7]. In view of this example, one would like to know whether L(AY) is
determined by the topological type of M(A*). The following theorem answers
this question affirmatively.

MAIN THEOREM. Let A} and A% be two projective arrangements in CP2. If
M (AY) is homeomorphic to M(A3), then L(A}) is isomorphic to L(A3).

In view of Falk’s example mentioned above, we have the following corollary.

CorOLLARY. There exist two projective arrangements A} and A3 in CP? such
that M(AY) and M(A3) have the same homotopic type, but they do not have the
same topological type.

In Section 2 we recall some necessary definitions and results in three-
manifolds that are due to Waldhausen [22]. In Section 3 we study the boundary
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of a regular neighborhood of an arrangement .A* in CP?, using Waldhausen’s
theory on graphed manifolds [21]. By restricting ourselves to nonexceptional
projective arrangements in CP?, we show in Section 4 that if two such arrange-
ments have the same topological types, then they have the same graph structures
(again in the sense of Waldhausen). In Section 5 we prove the main theorem
for nonexceptional arrangements. In Section 6 and Section 7 we finish the proof
of the remaining part of our main theorem for the exceptional arrangements.

The second author learned this important open problem during P. Orlik’s
interesting lectures at CBMS conference on arrangements at Flagstaff in 1988.
The main theorem of this paper was announced in [12].

Acknowledgment. We gratefully acknowledge both referees for their careful
reading of this paper and especially for providing us many useful comments.

2. — Definitions and preliminaries

In this section we recall some necessary definitions and important results
on three-manifolds due to Waldhausen [22].

Throughout this section, by a manifold, we mean an orientable compact
three-dimensional manifold with or without boundary.

A surface is a connected two-manifold. It is compact and orientable, unless
the contrary is stated explicitly. A surface F in the manifold M is properly
embedded (i.e., F NOM = dF, where 3 denotes boundary). A surface in oM
is a submanifold of dM. A system of surfaces in M or M consists of finitely
many, mutually disjoint components of the above two types.

Let F be a subspace of M. U(F) denotes a regular neighborhood of F.
A regular neighborhood is always compact and sufficiently small. A typical
construction is as follows. Choose a finite triangulation in which F is a sub-
complex. The closed star of F in the second bary center subdivision of this
triangulation is then a regular neighborhood of F.

An isotopy deformation of M is a level preserving map h : M x1 — M x 1,
I = [0, 1], such that from each level h| Mx: = h: is a homeomorphism from
M onto itself and ho = Identity. We often abbreviate “isotopy deformation” as
“deformation.”

Subspaces Ni and N, in M are called isotopic in M if there is an isotopy
deformation of M : hy, t € I, such that h{(N;) = N,.

DEerFINITION 2.1. Let M be a manifold. Let F be a system of surfaces in M
or dM. F is compressible in M if either one of the following two cases hold.

(a) There is a noncontractible simple closed curve k in Int(F), and a disk D
in M, Int(D) C Int(M), such that DNF = 3D = k.
(b) There is a ball £ in M such that EN F = JE.

F is incompressible in M if and only if it is not compressible in M.
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DEFINITION 2.2. A manifold M is called irreducible if every two-sphere
in M is compressible.

Thus M is irreducible if and only if each two-sphere in M bounds a three-
cell in M. (Remember: If M is irreducible, and dM # , then either M is a
ball, or else genus(dM) > 0, and hence H;(M) is infinite.)

DermniTION 2.3. A manifold M is called boundary-irreducible if dM is
incompressible.

The following lemma is a well-known corollary of the sphere theorem.

LEmMA 2.1. Suppose M is irreducible and (M) is not finite. Then M is
aspherical, that is, m; (M) = 0, for j > 2.

Lemma 2.2 below seems to be widely known.” A proof is given in [23].

LeMMA 2.2. Let M be an irreducible manifold.

(@) If oM # B, and M is not a ball, then there exists in M an incompressible
surface F such that 0 # [0F] € H  (0M).

(b) IfOM = @, then there exists in M an incompressible surface if and only if either
Hi(M) is not finite or w1 (M) is a nontrivial free product with amalgamation
(or both).

If F is a separating incompressible surface in M, dM = J, then 7 (M) is a
nontrivial free product with amalgamation, (M) >~ Axc B, where C =~ m(F),
in a natural way.

DEFINITION 2.4. Let M be an irreducible manifold that kis not a ball. M is
sufficiently large if and only if there exists an incompressible surface in M.

ReEMARK 2.1. There exist irreducible manifolds with infinite fundamental
group, which are not sufficiently large [23].

Let T=T;U---UT,(n > 0) be a system of tori in Int(M), and U(T) be
a regular neighborhood of T in M.

DEeFINITION 2.5. If each component of M — Int(U(T)) is homeomorphic
to a fiber bundle with S! as fiber, then T is called a graph structure of M. A
manifold with a graph structure is called a graph manifold.

Let T; be an arbitrary fixed component of 7. U(77) 2 T} is a component
of U(T). So U(Ty) is homeomorphic to T3 x I. Let T’ and T” be the boundary
surfaces of U(T;). The component of M — Int(U(T)) which is pasted along
T’ (respectively, T”) is denoted by M; (respectively, M,). We can compare the
homology class of curves in 7’ and T” by the natural isomorphism

H\(T") < H,(U(Ty)) < H\(T").

Hence we can talk about intersection of homology classes of curves on T’
and T”.
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DEFINITION 2.6. A graph structure T of a manifold M is called reduced if
none of the following ten situations occur. A manifold with a reduced graph
structure is called a reduced graph manifold.

(W1) My # M, and M, is a S'-bundle over the annulus.

(W2) A fiber of M; is homologous in T} to a fiber of M,.

(W3) M; = S' x D? (D? = 2-cell) is a solid torus, and a meridian curve
{p} x S' € 3M, has intersection number {+1} with a fiber of M, in T;.

(Wd) M; ~ ST x D? (D? = 2- cell) is a solid torus and a meridian curve
{p} x S € dM; is homologous to a fiber of M, in T}.

(W5) M; is a S'-bundle over the Mobius band, and the homology class 4
in 9M; = T’ of the boundary of a section of M; is homologous to a
fiber of M, in T3.

(W6) M; and M, are S'-bundles over the Mobius band, and (1 is homologous
to w2, where u; is defined as in (W5).

WhH M —Int( U (T)) has two components. One of them is a graph manifold Q,
defined in Section 3 of [21], which is homeomorphic to an S Lbundle
with orientable total space over the Mdobius band. The other is not a
solid torus.

(W8) My =M, ~ A x S'(A = annulus) ~ J x S! x §! and the pasting map
S! x 8T — 8! x 8! is given by a matrix of trace =+2.

(W9) M; and M, are solid tori.

(W10) T =0, and M is a S'-bundle over S2 or RP? (real projective plane).

3. — The boundary of a regular neighborhood of an arrangement A* in CP?

Let A* be an arrangement in CP? and N(A*) = {J,c 4« £. Suppose that A*
has xi, ... , x(k > 0) as multiple intersection points (i.e., multiplicity #(x;) > 3).
We blow up CP? at {x1,...,xc}. We get a set A* of lines that includes the
proper transforms of the x; in a blown-up surface CP2. A* is called an associate
arrangement in CP? induced by A*. Suppose that A* = {¢1, ..., €n}. Each pair
of lines of A* intersects at most at one point. Let N(A*) = Ue <ix Li, which

is connected. Let U (.A*) be a regular neighborhood of N (.A*) and K (A*) =
(U (A*)) Thus K (A*) is a plumbed three-manifold which is homeomorphic
to K(A*), the boundary of a regular neighborhood of N(A*) in CP2,

K (A*) can be also obtained by pasting some S'-bundles together. Consider
the boundary of regular neighborhood of a line ¢; € A* as a S'-bundle E; — ¢;.
If two lines £; and £, of A* intersect at a point x, let D; be a disc in £; such
that x € Int(D;)(i = 1,2). Define E} := E;|s;_myp;), and glue Ej and E’ along
Eilsp;. In other words, we choose a trivialization of E;|p, which is § Ix Sl We
then glue them together according to the map f ~ (1)(1)) : ST x ST — ST x St

which switches the base of Ej|yp, with the fiber of E;|sp,. More generally, if
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£; intersects n; number of times in A — {£;}, then we consider the restriction
of the S'-bundle over ¢; to n;-punctured sphere. The boundary of its total
space is a disjoint union of n; tori, each of which is pasted along with another
S'-bundle. Let T(A*) =Ti[[...1] T be the disjoint union of all such tori in
K (A*). Thus K(A*) is a graph manifold with graph structure T(A*)

From this graph manifold K (A*) and its graph structure T (A*), we define
a weighted graph G(A*) as follows. For each ¢; of A*, one vertex ex v; with

weight (¢; - £;) correspods to the self-intersection number of ¢; in CP2. Each
torus in the graph structure T (A*) corresponds to an edge of G(A*). If lines ¥;
and £; of A* intersect at a point, then an edge of G(A*) is defined to have v;
and v; as its adjacent vertices. Thus G(A*) consists of n vertices vy, ..., v,
and m edges ej, ..., éen.

Now let us consider the case when the graph manifold K (A*) with graph
structure 7(A*) is irreducible. First we have the following lemma.

Lemma 3.1. If A* is an arrangement such that each £ € A* has at least three
intersection points with other lines of A*, then K (A*) is a reduced graph manifold
with reduced graph structure T (A*).

PROOF. Suppose that the arrangement A* in CP? satisfies the condition in
Lemma 2.1. Then A* induced by A* satisfies the same condition, since each
added exceptional line CP' from blowing up of N(A*) must intersect at least
three original lines in A*.

Let M = K(A*) — Int(U (T (A*))), where U (T(A*)) is a regular neigh-
borhood of T(A*) in K(A*). We can see that each component M; of M
corresponds to a line ¢; in A* and M; is an S'-bundle over an n;-punctured
sphere B; (n; > 3 by our assumption). So M; is not homeomorphic to a
solid torus (S! x D?), an S'-bundle over the annulus, or an § _bundle over the
Mobius band for each i = 1,...,n. Thus the situations from (W1) to (W9)
except (W2) are excluded. (WlO) is obviously not true here. With regard to
the exclusion of (W2) by looking at the glue map f, one can see that fibers
of M; and M, are representative of the two generators of H;(7}), respectively,
when M; and M, are glued together along 8(U (TI)). O

On the other hand, if there is a line £ in .A* that contains at most two
intersection points, then we have only the following cases.

(Case 2a) £ contains no intersection point. It follows that A* = {£}. Then
KA*) = K (/I*) is an S!'-bundle over the two-sphere, which is
precisely case (W10) of Definition 2.6. So K (A*) is not a reduced
graph manifold.

(Case 2b) £ contains only one intersection point. Thus A* is a pencil. The
component of M = K(A*) — Int(U((A))) that corresponds to £
is homeomorphic to S' x D? and its meridian curve {p} x S' in
9(S! x D?) is homologous to a fiber of an adjacent component of
M by the glue map f. So (W4) of Definition 2.6 is true, and
K (A*) is not a reduced graph manifold.
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(Case 2c) £ contains exactly two intersection points y; and y,. So their
multiplicities #(y;) and t(y,) are at least two. There are two further
subcases.

(Case 2¢-i) t(y;) = t(y;) = 2. Then A* is a triangle; that is, A* has ex-
actly three lines £, £;, £3 and three intersection points y;, Y2, ¥3.
Clearly we have K (A*) = K(A*) with graph structure T(A*) =
N7 and M = M [[ Mo [I Ms(= K(A*) — U(T(A))).
Their relations are as follows: £; < My, €, < M,, €3 < Ms;
ilt=bLnt, (=60, B =6NhL, T <y (=1,2,3).
So My, M, and M3 are S'-bundle over the annulus (e, T x I),
which means that (W1), of Definition 2.6 is satisfied here. Hence
K (A*) is not a reduced graph manifold.

(Case 2c-ii) f(y;) or t(y2) > 2. To fix our notation, we shall assume that
t(y1) > 2. Then the exceptional line £; obtained by blowing up y;
contains at least three intersection points. Let M (respectlvely, M)
be the component of M that corresponds to £ (respec‘uvely, £y).
Thus M is an S'-bundle over the annulus, and M; is an S'-bundle
over ni-punctured sphere (r; > 3). So (W1) of Definition 2.6 is
valid ‘here.

Thus we have the following proposition.

PROPOSITION 3.2. Suppose that A* is an arrangement in~(C]P’2. Then K (A*) is
a reduced graph manifold with a reduced graph structure T (A*) if and only if each
line of A* contains at least three intersection points.

Recall the following theorem and lemma in Section 7 of [21].
THEOREM 3.3. A reduced graph manifold is irreducible.

LemMMA 3.4. Let M be a reduced graph manifold with the graph structure
T IhU...UT, Then T, is compressible if and only if one component of
— Int(U (T)) which is pasted along U (T1) is a solid torus.

From these results we have the following corollary.

CorOLLARY 3.5. If A* is an arrangement with at least three intersection points
on each of its line or A* is a triangle arrangement, then K (A*) is irreducible and
T (A*) is an mcompresszble surface system in K (A*).

4. - Two arrangements .4* and B* in CP? with the same topological type

Throughout this section, let A* and B* be two arrangements in CP2,
M(A*) = CP* — N(A*), M(B*) = CP? — N(B*), and let ¢ M(A*) > M(B*)
be a homeomorphism.
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PROPOSITION 4.1. Let U(A*) and U (B*) be two regular neighborhoods of A*,
and B* respectively. Then U(A*) — N(A*) is homotopic equivalent to U(B*) —
N(B*).

Proor. Let U;(B*) be an arbitrary regular neighborhood of N(B*). Then
K = (¢~ [(U1(B*)“])" is a neighborhood of N(A"). There is a regular neigh-
borhood U (A*) of N(A*) such that U(A*) C K. So e((UAH)) 2 oK),
ie, Vi= (p[(UUAN]) < (p(K))* = U (B*). Since V is a neighborhood
of N(B*), we can choose a regular neighborhood U,(B*) of N(B*) such that
Uy(B*) C V. Thus we get

U>(BY) — N(B*) €V — N(B") € Ui(B") — N(BY).

Observe that V — N(B*) is exactly <p(U (A =N (.A*)). So we have

Ux(B*) — N(B*) 3 ¢ (U(A") — N(AM) & Uy(BY - NBY),

where i; and iy are inclusion maps. Since U;(B*) (i = 1,2) are regular
neighborhoods of N(B*) in CP? and U,(B*) can be contracted to U>(B%),
the inclusion map i = ij o iy : Ua(B*) — N(B*) — U, (B*) — N(B*) induces
an isomorphism i, : 7; (U2(B*) — N(B*)) — m;(Ui(B*) — N(B*)). Consider
(iy0o@) o (¢! oiy) =i. We have the following induced maps

(@~ oin)x (i1op) )
75 (Un(B*) — N(B) Y25 1, (U(A%) = N(AD) ——5 7; (T (B) = N(B"))

for j > 1. Since iy = (i1 0 )s 0 (9! 0 i)y, (i1 0 ®)s is onto and (7l o)y is
one-to-one.

Similarly, we can show that (¢ oiy), is onto and (ij o@), is one-to-one. It
follows that 7; (U (B*) — N(B8*)) ~ ;(U(A*) =N (A*)). In view of Whitehead
theorem, U;(B*) — N(B*) is homotopic equivalent to U(A*) — N(A*). Since
any two regular neighborhoods of N(B*) (or N(A")) are homotopic equivalent,
the proposition follows immediately. : 7 O

REMARK 4.1. More generally, by the same proof, the above proposition
is still true for any pairs (X, K), (¥, H) of complexes, such that X — K is
homeomorphic to ¥ — H.

Observe that K (A*), the boundary of an arbitrary regular neighborhood
U(A*) of N(A*), is homotopic equivalent to U(A*) — N (A*). So we have the
following corollary.

CorOLLARY 4.2. If K(A*) and K (B*) are boundaries of regular neighbor-
hoods U (A*) and U (B*) of N (A*) and N (B*) respectively, then K(A*) = K (B*)
homotopically. )

COROLLARY 4.3. Let A* (respectively lf*) be the induced arrangement from A*
(respectively B*) by blowing up. Then K (A*) = K (B*) homotopically.
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Before we can proceed, we need to recall a result of Waldhausen.

DerINITION 4.1. Let M and N be compact orientable 3-manifolds. An
isomorphism v of 7;1(N) onto w1 (M) is said to respect the peripheral structure
if for each boundary surface F of N there is a boundary surface G of M such
that ¥ (i (71(F))) C R and R is conjugate in 71(M) to ix(71(G)), where i
denotes inclusion homomorphism.

THEOREM 4.4 (6.5 of [22]). If M and N are irreducible and boundary-
irreducible compact orientable three-manifolds and  is an isomorphism from
1 (N) onto m1(M) which respects the peripheral structure and M is sufficiently
large, then there exists a homeomorphism f : N — M that induces .

LEMMA 4.5. K (A*) and K (3*) are boundary irreducible, and ¢, : m (K (ﬂ*))
— 11 (K (B*)) respects the peripheral structure.

ProoF. The lemma follows immediately from the fact that 9K (A*) = ¢ =
K (B%). O

LemmA 4.6. If A* is an arrangement with at least three intersection points
on each of its line, then K (A*) is reduced, irreducible, boundary irreducible and,
sufficiently large.

ProoF. By Proposition 3.2 and Corollary 3.5, we need only to show that
K (A*) is sufficiently large. In view of a result of D. Mumford [14], we know
that the first Betti number of K(A*) is at least p if A* is p-connected (ie., p

is the minimal number such that there exist some points P, ..., P, € N(A*)
making N —{Py, ... , Py} a tree). By Lemma 2.2 (b), K (A*) is sufficient
large. O

From Corollary 4.3 and Theorem 4.4 of Waldhausen we have the following
proposition.

PROPOSITION 4.7. If A* and B* are two arrangements in CP? such that each
of their lines contains at least three intersection points and if M(A*) and M (B*)
are homeomorphic, then for K (A*) and K (B*), the boundaries of arbitrary reg-
ular neighborhoods U (A*) and U(B*) of N (A*) and N (B*), respectively, there
is an isomorphism ¢ from w1 (K (A*)) onto m; (K (B*)) and a homeomorphism
f: K (A*) > K (B*) that induces P.

Now we need to review some results of Waldhausen [21] before we can
prove our theorem.

DerFINITION 4.2. Let M be a reduced graph manifold. We say that M has
the Waldhausen property if none of the following three cases occurs.
(El) M — Int(U (T)) consists of the bundle over the two-sphere with three-
punctures and three solid tori,
(B2) M — Int(U(T)) consists of the bundle over the M6bius band and one
solid torus. :
(E3) T #¢ and M — Int(U(T)) is torus x interval.
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LEMMA 4.8. If A* is an arrangement with at least three intersection points
on each of its lines, then K (A*) is a reduced graph manifold with the Waldhausen

property.

Proor. This follows from Lemma 4.6 and Definition 4.2. | O

In Section 9 of [21], for a reduced ‘graph manifold M that satisfies the Wald-
hausen property, a weighted graph G(M) was introduced. It can be described
axiomatically as follow.

(GD)

(G2)

(G3)

(G4)

(G5)

(G6)

(G7)

G (M) has only finitely many weighted vertices 1, ft2, . .. and finitely
many directed edges 1y, 72, .... For each edge, each of its end point
is incident with one vertex. G(M) is connected.

Each vertex p; is assigned a triple of integers (g;,r;,s;). Here 7j
is nonnegative. When rj = 0, s; is arbitrary. When if r; > 0, s; is
replaced by a dash (or is omitted). g; is arbitrary. (As for the graph
manifolds discussed in our paper, each vertex u; corresponds to a
component M; of M — Int(U(T)) with weight given by (g;, 7}, s;).
Here g; is the genus of the base of M;, r; is the number of boundary
surfaces that are not connected to any component of 7', and s; is the
cross-section obstruction when r; is zero).

If a vertex of degree one is assigned the triple (0, 0, 5;), it is replaced
by a dash.

(a) If G(M) has only two vertices, both two vertices are not weighted
by a dash.

(b) A vertex of degree zero is not assigned the triple (0,0, sj) or
(=1,0,s;).

(c) A vertex of degree two is not assigned the triple (0, 0, s;).

(d) A vertex of degree one is not assigned the triple (0, 1, —).

(e) If G(M) has three vertices that are weighted by dashes, and only
three edges, then the fourth vertex is not assigned (0, 0, s).

(f) If G(M) has one vertex that is weighted by a dash, and only one
edge, then the second vertex cannot be weighted (—1, 0, ;).

If edge 7; is incident with a vertex weighted by a dash, then t; is
directed to this vertex and is weighted by a pair of integers (o, i),
where «;, f; are co-prime and 1 < B; < ;.

If the vertices that are incident with 7; are not weighted by dashes,
then the edge 7; is weighted with a pair of integers (o;, B;), where
o; and B; are co-prime and 0 < 8; < o;.

The following graphs or subgraphs are not considered.
) (_17 Os 0) (_170’ 0) (1$0)
L L J ..

©,0,s) (a, 1) - (=1,0,0)
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(G8) Let G* (possibly disconnected) be the subgraph of G (M) where all the
vertices with g; < 0 and adjacent edges are removed. The homology
group H;(G*) is weighted by a homomorphism to Z,.

Suppose that the arrangement A* in CP? is chosen such that each line
of A* contains at least three intersection points. Recall that for each ¢; of A*
there is a corresponding vertex u; szith weight (0, 0, s;), where s; = ¢; - ¢;, the
self-intersection number of £; in CP2. In G(A*) each vertex u; has degree at
least three. There is no dash for any vertex in G(A*). So the definition of
G(./I*) has no conflict with (G3), (G4), and (G7). For (G5) and (G6), first we
describe the direction of weight of ;.

Let U(T;) be a component of U(T) containing 7;. The boundary sur-
faces are 7,7 and 7;" with their orientation induced by inclusion T,” <>
M — Int(U(T)) and T;" < M — Int(U(T)). The direction and weight of
edge 7; are decided by the gluing homeomorphism from 7~ to 7;'. Let the
direction of 7; be from 7;” to T;". From the orientation of 7,” and T;* we
choose bases {ay, b1} and {ay, by} (b; is represented by a fiber of M;, j =1,2,
T;” € My, T € My) for H\(T;") and Hi(T;"). The gluiing homeomorphism
induces an isomorphism from H;(7;”) to H;(T;"), which is expressed by

az i &\ (a4
(bz) =€ (Oli ﬁi) (bl) ’
where ¢; =1 or —1, det Z gl,) =-1,0=<B <o, (;, 8;) = 1.
Then t; is weighted by (a;, 8;).
In our situation, we have simply o; =68; =1, B; =y =0.

For (G8) the definition of assigning H;(G*) a weight that is a homo-
morphism to Z, is as follows. Let M* be a (possibly disconnected) sub-
manifold of M obtained by taking away all those S!-bundle over nonori-
entable surfaces together with those U(T;) which pasted along on them from
M=UT)UMU...UM,. H(M*) - H(G*) is surjective. The kernel is
generated by Hy(M;) for M; € M*. For a closed path £ in M*, we define
p'(t) = 3,0, T)e; where o(£,T;) is the intersection number of ¢ and T;
module 2, € € Zy,

’ ; { 1 if € = -1
€ =

0 ife= 1.

Then p : Hi(G*) — Z, is the desired homomorphism such that the following

diagram commutes.
H(M*) — Hi(G")

PN\ ' P
Z,
DEFINITION 4.3. Let G; and G, be two graphs with properties (G1) to (G8).
G and G are said to be equivalent if there is 1 — 1 incidence preserving map
¢ : G1 = G with the following properties. '

(a) ¢ carries one vertex to a vertex with same weight
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(b) ¢ carries one weighted edge with (¢, 8) to a edge with weight (¢, ),
where @ = 4+ or — 1 according to the edge orientation being preserved or
not. ! is the standard representative of the coset (mod &) of the inverse
coset of 8. We use the convention that 07! =0, -

(¢) The induced homeomorphism ¢ G* - G} by ¢ induces a commutative
diagram.

Hi(G})) — H(G3)

Y v
Zy

{d) Each of the following pair of graphs is equivalent.

() @, 1) 2,1) =e-11-)

(Os 1’ _)

(i)

_RemARk 4.2. Condition (d) above does not occur in our graphs G(A~*) or
(G (B*), since they are not weighted by dashes.

We are ready to state the main theorem of [21] (cf. (9.4) of [21]), which
is essential to the proof of our theorem.

THEOREM 4.9. An oriented reduced graph manifold that satisfies the Wald-
hausen property (Definition 4.2) determines and is determined by its weighted graph
with the properties (G1)-(G8).

Thus, two oriented reduced graph manifolds are homeomorphic if and only if
the corresponding graphs are equivalent.

COROLLARY 4.10. Let A* and B* be two arrangements in CB? such that each
of their lines contains at least three intersection points. If M (A*) is homeomorphic
to M(B*), then G{A*) is equivalent to G(B").

Proor. This follows from Proposition 4.7, Lemma 4.8, and Theorem 4.9. O

5. — Proof of the main theorem for non-exceptional arrangements in cP?

In this section we shall prove a weak form (Theorem 5.4) of our mail
theorem.

THEOREM 5.1. Let A* and B* be two arrangements in CP2. By blowing 4P
their multiple points (multiplicity > 3), we obtain two associated arrangements
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and B* in some blownup surfaces @\Pi Let L(A*) and L(A*) be the set of all
intersections of elements of A* and A*, respectively, which are partially ordered by
X <Y &Y C X. Then L(A*) = L(B*) if and only if L(A*) = L(B*), which
preserves weights (self-intersection numbers) of lines in A* and B*.

PrOOF. Obviously L(A*) & L(B*) = L(A*) = L(B%).

To prove the converse, for the sake of convenience but without loss of
generality, we simply assume that A* = B*. Let A, = A*, A, = B* and
¢ : A* — A; be a blowing up map (i = 1,2). An element of A* that
corresponds to an element of A; by ¢; is called regular with respect to ¢;.
The set of all regular elements of A* with respect to ¢; is denoted by R;.
The remaining elements of 4* that are blown down to points by ¢; are called
exceptional with respect to ¢;. The set that consists of all such elements is
denoted by E;. :

For fixed i (i =1 or 2), we list the following three basic properties for
elements in A*.

(P1) For each e € E;, it has the self intersection number e* = —1; for
reR, r*=1—|{ecE;:enr +# ¢}|. Here |S| denotes the cardinal
number of the set S.

(P2) Either two elements in R; intersect with exactly one exceptional el-
ement in E; without intersecting to each other themselves, or they
intersect exactly at one double point.

(P3) For each e € E;, (star(e) — {e}) € R; and |star(e) — {e}| > 3, where
star(e) is the set consists of all elements in A* that intersect with e.

LEMMA 5.2. Foranf € A*, if £> # —1, then £ € Ry N Ry. If ¢ = —1 and at
most one element in star(€) — {£} has the same self intersection, then £ € E1 N E;
and Star(£) — {£} € Ry N R,.

ProOF. By (P1), £ ¢ E{ U E, if £> # —1. Hence £ € A* — (E, U E,) =
RiNR,. If £2 = —1, then £ € E; N E, by (P1) and (star(@) - {Z}) CRINR,y
by (P3). ]

Clearly we have A* = (R{VRy) U (R; N Ry) U (E; N E) as the union of
three disjoint sets. (Recall R{VR; = (R; — R;) U (R, — R;)). We also have
Ri—Ry=E;—Ei, Ry— Ry =E| — E>, RiVRy = E{VE,, etc.

If R]VRz = ¢ (i.e., E1VE2 = ¢), then E1 = Ez, ¢1 = ¢2 and .Al = Az.
So in this case, we have nothing to prove. If RjVR, # ¢, then we wish to
find out what it looks like.

Define a set K(£) = ((Star(£) — {£}) N (R VRy) for each £ € A*

LemMA 5.3. () If£ € Ey N E,, K(£) = ¢.

(i) If £ € RiN Ry, then |K(£) N E{| = |K(£) N E3].

(iii) If £ € R{VRy, then |[K({)| = 2. K({) € Ry — Ry if £ € R, — Ry and
KU{) SR, —Riift € Ry — Ry,

(iv) K (L) is discrete for each £ € A* in the sense that any two elements of K (£) do
not intersect to each other in A*.
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Proor. (i) It is clear because E; N E; is disjoint from R VR; (P3).
(ii) In view of (P1), we have

-7 =|{e€ Er:ent # ¢}

| (star(£) — {£}) N Ey]

|[(star(e) — {£}) N E\ N Ez] U [(star(€) — {£}) N (E) — E2)]|
| [(star(€) — {£}) N E\ N E2) U (K (&) N Ey))|

| (star(€) — {€}) N E1 N Ez| + |[K (&) N E,].

I

Similarly .
1 — £ = |(star(€) — {€}) N E1 N Ez| + | K(£) N Ey.

Thus we have |K(£) N E;| = |K(£) N Ey|
(iii) When £ € R{VR,, we have £2 = —1 by Lemma 52. If £ € E; — E; =
Ry — Ry, then we have —1 =2 =1~ |{e € E3 : e £ 5 ¢}| by (P1); that is,
|{e e Ey:enNiF# ¢}| == 2. On the other hand, by (P3) we know that £ does
not intersect with any element in E,. So

|K(£)| = |(Star(£) — {£}) N(E| — E2)|+|(Star(£) — {€}) N (E2 — E1)| = 0+2 =2

and K{{) C E; ~ E; = R| — R,. Similarly, one can show that if { € E; — E},
then |[K(¢)| =2 and K(¢) S Ry — Ry

(iv) Since E; is discrete by (P3), K(£) = (K(£) N E;) U (K(€) N E3) and
K@) NE; =¢ for £ ¢ E; by (P3), we need only to show that if £ € RiN K,
and £; € K(£)NE; (fori =1,2), then £, N €, = ¢. However, since £;,£ € K
intersect and £ intersects with £ € E2, we have £; N3 = ¢ in view of (P2). O

Now we shall continue the proof of Theorem 5.1. In view of (iii} of
Lemma 5.3, we have |R|VRy| = 2|Ry — R)| = 2|R; — R3] = 4, and RiVR:
must consist of some cycles. In fact, the elements of Ry — R» and R, — R; form
the edges of each cycle alternately. But by (P2), any two elements in R; — Rz
must either intersect at exactly one double point or intersect with exactly one
element in R, — R; without intersecting each other themselves. Thus RlVR_z
must consist of only one hexagon (fig. 1). Let us label the edges of this:
hexagon by a; <> €3 <> a3 < €1 < a3 < es(< a;), where a; € R — RZ
gj € E|— Eg(j = 1,2,3).

[ o\

Fig. 1. Hexagon
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For £ € Ry N Ry, consider £ as a line in A;. If £ passes through the
intersection points of a; Nay, (axNas or_a Naz) in A; € CP?, then clearly ¢
intersects with e3, (e; or ep) in A* € CP2. On the other hand, if £ does not
pass through the intersection points of a; Nay, a; Nas or a; Nasz in A; € CP?,
then clearly ¢ must intersect with a;, ay, and a3 in A; € CP2. It follows
that, if we consider £ as a line in A, £ passes through e; Ney, ey Nes, and
e3Ne; in A, € CP?, which is impossible because these three points are not
colinear. So only the first situation is allowed. By (ii) and (iv) of Lemma 5.3,
we conclude that ]K (Z)| = 2. In fact, £ must intersect with R;VR, on exactly
two opposite edges namely, [£Naj| =1=[Ne | or [£Naz| =1=|€Ney| or
|¢Nas| =1=|€Nes|. Thus we can define

¢ (E1NE)U(RNRy) Ulay, a2, a3} —> (E1 N E2) U (R; N Ry) U ey, 2, €3}

by @le;ne, = Identity, @|g,nr, = Identity, ¢(a;) = e; for j = 1,2,3. It is
clear that ¢ induces an isomorphism from L(A;) to L(A,). Thus the theorem
is proved. A configuration for illustration of ¢, o ¢1—1 : L(A)) - L(Ay) can
be shown as in figure 2. Ry N Ry = {£1,42,...,49}, Ry — Ry = {ey, er, €3},
Ry — Ry ={ay, a2, a3}, E1 N E, = exceptional sets obtained by blowing up three
points £; N €g N Ly, £2 N Ls N Lo, £4 N L N Lg. O

Fig. 2. Rational map
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THEOREM 5.4. Let A* and B* be two arrangements in CP? such that each of
their lines contains at least three intersection points. If M (A*) is homeomorphic to

M (B*), then L(A*) is isomorphic to L(B*).

Proor. In view of Corollary 4.10 we know that G(A*) is equlvalent to
G (B*). It means that each £ of A* with weight (€ - £) (self-intersection num-
ber) is one-to-one correspondent to a line of B* with the same weight and
L(A*) is equivalent to L(B*). Thus Theorem 5.4 follows immediately from
Theorem 5.1. |

6. — Exceptional arrangements in CP?

An arrangement in CP? is called exceptional if one of its lines has at most
two intersection points. We have shown in Section 4 that the topological type of
the complement of a nonexceptional arrangement in CP? determines the lattice
of this arrangement. In this section we shall study the cohomology rings as
well as the fundamental groups of complements of exceptional arrangements.

We shall first study the cohomology algebra of arrangement in C3. In
general, let A be an arrangement in C*. Recall that the cohomology of its é
complement M (A) as an algebra is isomorphic to Orhk—Solomon algebra over i
C which is defined as follows. i

Let E = E(A) = A(E1) be the exterior algebra of E := @y 4Cen. |
Write uv = uAv for u, v e E. If |A| =n, then E, as a graded algebra, can be
written as E = @) _ E,, where Eg = C, E, is spanned by all ey, . -em, With
Hi € A. Define amap d:E — E by 9(1) =0, d(eg) =1 and a(eyl .eq,) =
S (=D ley .y ...em, (p=2) forall Hy,..., H, € A

Consider a p-tuple of hyperplanes § = (Hl,... ,Hp). Write |S| =
es=¢ep, ...em, € E and NS = HyN...N H, € L(A) (Lattice of A).

DEFINITION 5.1. Let § = (Hy, ..., Hp), r(NS) = codimension of NS. §
is said to be independent if r(NS) = p and dependent if r(NS) < p. Let S,
be the set of all p-tuple and S = (J,5(S,. Let I = I(A) be the ideal of
E generated by de; for all dependent s € S. Orlik-Solomon algebra of A is
defined as A = A(A) =E/I.

I is also a graded ideal. If we let [, = I N E,, then I = @)1, and
81 Cl,1 (p>1). Let ¢ : E — A be the natural homomorphism. Let
Ap =¢(E,), ag = ¢p(ey) for H € A and a; = ¢(e;) for s € S.
Now let n = 3, A be an arrangement in Cc3 corresponding to an exceptional
arrangement A* in CP?. Write

A= {Ho, Hy,...,Hu, Hyi1,...  Huin}>
A*={Lo, 81, ... by Lntts -+ > Lmtn |

where (VL& # ¢ and (2, ¢ N& # ¢. Thus any three hyperplanes
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in {Hy, ..., H,} (or {Hy, m+1»--- , H,.,}) are dependent. Such A is an
exceptional arrangement in C3.

LEMMA 6.1. Let A be an exceptional arrangement in C* as above. Then the co-
homology algebra of the complement of A is isomorphic to A(A) = @p —o Ap where
Ao=C, A; =@ Ca; (wherea; =am,), A»= (B Caoar) D (@l§z§m<]§m+n
Caia;) and Ay = @< <m < j<min Ca0Gia;.

ProOF. Ag = C follows from Iy =0 and Ey = C.

Since any two distinct hyperplanes are independent, (H;, H;) are the only
dependent elements in S,. But d(e;e;) = 0. So I =0 and A; = E, that is,
Al — @ern (Ca,

For A,, we know that it is spanned by ag;a; for 0 <i < j <m +n. Let
eg=ep,i=0,... m+n Forl<i<j<morm<i<j=<m+n, we
have e;e; + ejeq + ege; = d(ejejep) € I. So

(6.1) aja; = ajap+apa; in A for 1<i<j<m or m<i<j<m+n.

Thus A, is spanned by apa, 0 <€ <m+n and gia;, 1 <i <m < j<m+n.
Next we need to show that if there are ¢;,, I <€ <m+nandc¢; 1 <i<m<
j <m+n in C such that

m+n
6.2) Z ceoag + Z cijaa; =0,
1<i<m
m<j<m+n

then all ¢, c;; are zero. From equation 6.2 we have Ez ceeper +Y 1<i<m
m<j<m-+n

cijeiej € I,. Remember that I is spanned by {a(eiejek) 0<i<j<k<
m or m<i<j<k<m-+n-+1}, where we set e, o1 = €. There are
¢rst € C such that

m+n
E Crsi0{erese;) = E ceepep + E cijese;,
O<r<s<t<m =1 I<i<m
or m<r<s<t<m+n+l1 m<j<m+n
which is equivalent to
m+n
Ev crst(eser — eqe; + ereg) — E Ccrepep = E cijeie;.
O<r<s<t<m £=1 I<izm
or m<r<s<t<m4n+l m<j<m+n

Since {eiej, 0 <i < j<m+n}is a base of E,, the above equation implies
immediately ¢;; =0 for 1 <i <m < j <m+n. So

m+n
E ceepeg = 0 > Crst€r€s€;
£=1 O<r<s<t<m

or m<r<s<t<m-+tn+1
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As 8% =0, we have

m+n m-n
0=0 (Z celegee) | = Z ce(eg — eo).
=1 =1

It follows that ¢, = 0.

We next prove that A3 = 1<i<m Caoa;a;. Since any four hyperplanes
m+1<j <m+n

in C? are linearly dependent, we have
ejeey — ejexen + ejejey — ejejey = B(eiejekeo) el
So in A, we have
(6.3) a;aja; = AoQ;ax + a;a,ax + a;a;a,.
On the other hand,
e,-a(el-ejek) = ¢; (ejek —e;e, + e,-ej) = ejejey.

If (H;, H;, Hy) is dependent, then eiejey € I3, which means a;ajay = 0. In
view of this statement and equation 6.3, we see that A3 is spanned by {a,a;q; :
l1<i<m<j<m+n}

We have left to check that if there are ¢;; € C such that Y j<i<n

m<j<m+n

cijaoa;a; = 0, then ¢;; = 0.

Lct us denote eaepeyes and e;ejer by eqp,s and e,,k, respectively. By the
definition of I, we have

I3 = (3(eupys), edlejr) :0<a<pB<y<d<m+n,
O<i<j<k=<m or m<i<j<k<m-+n+1),

where we still use the convention eyi,+1 = €,. The relation Y 1<i<m

m<j<m+n

cijasaia; = 0 means ), i<i<m Cije,; € I, which implies.there are cqygys
m<j<m+n

and c;;;, € C such that

/
E Cij€oij = E Caﬁyga(eaﬁya)-f- E cijkgela(eijk)'
1<i<m O<y<B<y<é<m+n 0<f<m+n
m<j<m-+n O<i<j<k<m

or m<i<j<k<m+n+l

Applying 0 on both sides of the above equation, we have

. Ui
E cijeij +ejo+ey) = E c;ix0(eiji),
1<i<m O<i<j<k<m
m<j<m+n or m<i<j<k<m+n+1

o . .
where ¢ = =Y el jke- The above equation can be written as

/" .o
Z Cijeij = Z cijeio +e5j) + Z Ciix(ejk + ki + eij).
1<i<m Cl<i<m O<i<j<k<m
m<j<m-+n m<j<m+n or m<i<j<k<m+n+l
Since the terms ¢;; for 1 <i <m < j <m+n do not appear in the right hand
side of this equation, we conclude that ¢;; =0 for 1 <i <m < j=m +n.

Thus A3 =@ 1<i<m Ca,a;a;. o

m<j<m-+n
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In fact, from the proof of Lemma 6.1, we see that for any given arrangement
A= {H,..., H} in C, the ideal of exterior algebra E(A) is I = LD I
where I, is spanned by the set of de;j; with dependent (H;, Hj, Hy) € S and I3
is spanned by the set of all 3(e;jx¢) and the set of all es9(eqp,) with dependent
(Hy, Hg, Hy,) € S. Thus we have the following proposition.

PROPOSITION 6.2. Let A = {H,,..., Hy} be a central arrangement in C3.
Then the cohomology algebra of the complement of A in C3 is isomorphic to A(A) =
AcDAI DA P Aswhere Ag =C, A = @Ll Ca;, Aj is spanned by the set of all
a;a;(i < j)withrelations ayag+aga, +a,a, = 0 for dependent (Hy, Hg, H)) €S
and Aj is spanned by ayaga, (@ < B < y) subject to the relations agaga, =
asaga, + asasa, + asagas and the relations ay(a,a, + aya, + aya,) = 0 with
dependent (H,, H,, H,)) € S.

LEMMA 6.3. Let A be a central arrangement in C3. Let A* = (€1, £, ... , £,)
be the corresponding projective arrangement in CP2. Suppose that n = [A*| > 3.
If A* is not a pencil, then b; (M (A)), the third Betti number of M(A), is nonzero.

Proor. We need only to show that A3(A) is nonzero, where A3(A) is the
third graded piece of the Orlik-Solomon algebra. Choose three lines £;, £5, €3
in general position from A*. So £;, £, ¢35 do not form a pencil. Then we
claim that ajp3 # 0 in A3(A). If a3 = 0, that is, €123 € I3 where I = 69?:0 I;
is the ideal generated by de; for dependent s, then we would have some Cijke
and cugys € C such that

e = Y cijued(ejre) + > Capysesd(€apy)-
I<i<j<k<f<n 8, dependent (e, 8,y)

By acting d on each side of the above equation, we get

ez + e +e3 = Z Capyd(€apy),
(,B,y) dependent

where cugy, = D 5 capys. Observe that each dependent (v, S, y) corresponds to
a vertex P,py) = €a N€pN L, in A* and that if Pygp,) # P pr 1y, then
{*eqs, Teuy, Teg,} is disjoint from {Leqp, +eyr,, teg, ). Therefore we have

en = Z Capyd(€apy).

dependent («, 8,y)
Lo ﬂeﬁ Ny =LyNEy

By taking 3 on both sides of the above equation, we get e, — e; = 0, which is
absurd. 0
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7. — End of the proof of the main theorem

Let A} and A3 be two arrangements in CP? and let at least one of them
be exceptional. In this section we shall finish the proof of the main theorem.
In view of Theorem 5.4, it remains to prove that under the above hypothesis, if
L(A,;) is not isomorphic to L(A), then M (A7) is not homeomorphic to M (A3).

Case 7.1. Both A7 and A5 are exceptional. Write

AT = {Ho, Hy, ... ,Hp’ Hp+17"' 9HP+‘I}’
A; = {Go, €A AP N € S ’GH‘Z}’

where Hy (respectively Go) intersects with Hjy,. .. , H, (respectively, Gy, ..., Gy)
at one point and intersects with Hp, 1, ..., Hpy, (tespectively, Gyi1, ... , Gsir)
at another point.

If M(A7) is homeomorphic to M(A3), then M(A;) is homeomorphic to
M(A;). By Lemma 6.1, we have p+ g = s +t and pg = st which imply
either (p,q) = (s,¢t) or (p,q) = (¢t,5). Thus L(A;) is isomorphic to L(A).

Casg 7.2. Af is exceptional but A3 is not. In this case we shall show that
M (A}) is not homeomorphic to M(A3) by considering the following subcases.

Case 7.2.a A} consists of at most three lines.

Case 7.2.b A} is a pencil, and |A;] > 4 (fig. 3).
H

1

H

2

H
7 ”
Fig. 3. Pencil

Case 7.2.c A} consists of a pencil and a line in general position, and
ATl = 4 (fig. 4).

Fig. 4. Pencil and a line
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Case 7.2.d A} = {Ho, Hi,... ,Hy, Hyy1, ..., Hypy) where (\V_, H; and
1 P p p+q i=0

HyN (ﬂf’:ﬁ 1 H,') are two different nonempty intersections, p >
1, g > 1 (fig. 35).

Fig. 5. Double pencils

From Proposition 6.2 we know that the first Betti number of M (A) in C3
is precisely |A|, the number of elements in A. In case of (7.2.a), we have
|ATl <3 < |A3]. Thus M (A7) is not homeomorphic to M(A2).

In case (7.2.b), we have the third Betti number of M (A4;) = 0 by Lemma 6.1
while the third Betti number of M (A,) is nonzero by Lemma 6.3. Thus M (AD
is not homeomorphic to M (A3).

For Case (7.2.c), let A} = {Hy, Hy, ... ,Hy} p > 3, where Hy,..., H,
form a pencil and Hj is in general position. Let G (A7) be the weighted graph of

1> and K (A7) be the manifold that is the boundary of a tubular neighborhood
of Af in CP%. G(A}) is obtained by blowing up (2, H; as an exceptional
line E. We denote the vertices by G(AY) v, v, v1,..., v, corresponding to
E, Hy, Hy, ..., Hy, respectively. The pictures of ,1*1‘ and G(AJ) are shown as
in figure 6 and the left-hand side of figure 7, where (gi, ri, s;) is the weight
of the vertex v; which is defined in Section 4. By the Neuman’s calculus of
plumbing in Section 2 of [15], we can reduce G(A]) to G’ and then to a single
vertex graph G” with certain weight (g, 0,0) (fig. 8). Notice that if we apply
R4 or RS in the ith step, the weight of V + V, will change from (g;, 0,0) to

E(-1) H (1)

Fig. 6. Blown-up pencil
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V,(0,0,0)

V,(0,0,0) V,(0,0,0)

Fig. 7. G(A*) to G’

-/

R, or R
_+ s °

V+ Vy(9,0,0)

V,(0,0,0)

Fig.8.G' to G”

(gi#(—2),0,0) (for R4) or (g;#1,0,0) (for R5), where

-2 ifgi=0 1 1fg,=0
gi#(=2) = { —2g;—2 if g >0 gi#l = { g+1 if gg>0

gi—2 if g <0 gi—2 if gi<O.
(R4) (R5)

So if we use only step RS, then we have g > 2, since p > 3. On the other hand,
R4 will bring any g; down to a number < —2. Once g; is negative, both step
R4 and R5 will bring g; to a smaller number less than —2. Thus we conclude
that |g| > 2. The plumbed three-manifold M (V + Vp) corresponding to V + Vo
is diffeomorphic to K (.A%) by Proposition 2.1 of [15]. Observe that M(V + Vo)
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E(-1) H,,0) H,,0 -.. H, (1)
H,(0)
H,(0)
H.(0)
] Ho(_ 1)
W} E2(‘ 1)

Fig. 9. Blown-up pencils

E,(0) H,_(0) H _,0) --- H_ (1)

Pt+a

H,(0)

E,(0)

Fig. 10. Blow-down Hj

is a reduced graph manifold with reduced graph structure 7' = ¢ (one needs to
check only the last condition of the definition of reduced graph manifold). and
it has the Waldhausen property (cf. Definition 4.2). Now by Theorem 3.12 of
Waldhausen (cf. (9.4) of [21]), K (A7) homeomorphic to K (A3) will imply that
G(A3) is equivalent to G”. Since G(A$) is not equivalent to G”, we conclude
that M (A7) is not homeomorphic to M (AD).

For the last case (7.2.d), we blow up the points NF., H; and ﬂjpi g +1 Hj and
get exceptional line £ and E,, respectively (fig. 9). Number in the parentheses
is the self-intersection number. We blow down H, to a point and get figure 10.
The graph manifold is then reduced with respect to the graph G (fig. 11), since
P =2 and g >2 in view of Lemma 4.6. Notice that G has weights (0, 0, 0)
for all its vertices. If M (A7) were homeomorphic to M (A3), this would imply -

K (A7) homeomorphic to K (A3) in view of Proposition 4.7, which in turn would
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TAN JIANG - STEPHEN S.-T. YAU
1 § f—: 2
vp +1 1}1

p+1 2

p+a

Fig. 11. Graph G

imply G equivalent to G(A%). The last assertion is not possible because G(A3)
has nonzero weights. Therefore we conclude that M (A}) is not homeomorphic
to M(A3). This finishes the proof of our main theorem.

(1]

2]

(3]

(4]
(5]

(6]

(7]
(8]

(9]

[10]
(11]
{12]

[13]

REFERENCES -

V. 1. ARNOL’D, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969),
227-231; Math. Notes 5 (1969), 138-140.

E. BRIESKORN, Sur les groups de tresses, In: “Séminaire Bourbaki 1971/73”, Lecture Notes
in Math. 317, Springer-Verlag, Berlin, 1973, pp. 21-44.

P. DELIGNE — G. D. Mostow, Monodromy of hypergeometric functions and non-lattice
integral monodromy, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 5-89.

M. FALK, Arrangement and cohomology, preprint, 1996.

M. FaLk, The cohomology and fundamental group of a hyperplane complement, Contemp.
Math. 90 (1989), 55-72.

M. FALK, On the algebra associated with a geometric lattice, Adv. Math. 80 (1990), 152-
163.

M. FaLk, Homotopy types of line arrangements, Invent. Math. 111 (1993), 139-150.

1. M. GEL’FAND, General theory of hypergeometric functions, Soviet. Math. Doklady 33
(1986), 573-577.

F. HIRZEBRUCH, Arrangements of lines and algebraic surfaces, In: “Arithmetic and Geom-
etry,” Vol. II, Progress in Math. 36, Birkhauser, Boston, 1983, pp. 113-140.

T. JiaNG — S. S.-T. Yau, Topological and differential structures of the complement of an
arrangement of hyperplanes, Proc. Sympos. Pure Math. 54 (1993) Part2, 337-357.

T. JIANG — S. S.-T. YAuU, Diffeomorphic type of the complement of arrangement of hyper-
planes, Compositio Math. 92 (1994) 133-155.

T. JianG — S. S.-T. Yau, Topological invariance of intersection lattices of arrangements
in CP2, Bull. Amer. Math. Soc. 39 (1993), 88-93.

B. MOISHEZON, Simply connected algebraic surfaces of general type, Invent. Math. 89
(1987), 601-643.



[14]
[15]
[16]
{17]
[18]
[19]
[20]
[21]

[22]

(23]

INTERSECTION LATTICES AND TOPOLOGICAL STRUCTURES 381

D. MUMFORD, The topology of normal singularities of an algebraic surfaces and a criterion
for simplicity, Inst. Hautes Etudes Sci. Publ. Math. 9 (1961).

W. NEUMANN, A calculus for plumbing applied to the topology of complex surface singu-
larities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299-344.
P. OrRuk — L. SoLoMoN, Combinatorics and topology of complements of hyperplanes,
Invent. Math. 56 (1980), 167-189.

P. OrLIK — L. SoLOMON, Unitary reflection groups and cohomology, Invent. Math. 59
(1980), 77-94.

P. Oruik — H. TErRAO, Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992.

L. Rose — H. TERAO0, private communication, 1988.

G. RyYBNIKOV, On the fundamantal group of the complement of a complex hyperplane
arrangement, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 13 (1994).

F. WALDHAUSEN, Ein Klasse von 3-dimensionalen Mannigfaltigkeiten, Invent. Math. 3
(1967), 308-333; 4 (1967), 87-117.

F. WALDHAUSEN, On irreducible 3-manifolds that are sufficiently large, Ann. Math. 87
(1968), 56-88.

F. WALDHAUSEN, Gruppen mit Zentrum and 3-dimensionale Mannigfaltien, Topology 6
(1967), 505-517.

2606 Estero Pkwy

Valparaiso, IN

46383

E-mail: tjiang@aoc-resins.com

Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago

M/C 249 Chicago, IL 60607-7045, USA

E-mail: u32790@uicvm.bitnet



	空白页面


 
 
    
   HistoryItem_V1
   ReversePageOrder
        
      

        
     1
     0
            
       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 当前页
     胶带坐标： 相对水平位置：-64.95，相对垂直位置：-2.96，胶带宽：679.81，胶带高121.79（单位：points）
     来源： 底左
      

        
     1
     0
     BL
            
                
         Both
         34
         CurrentPage
         38
              

       CurrentAVDoc
          

     -64.955 -2.9597 679.8141 121.7908 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     25
     26
     25
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第3页 到第22页; 仅奇数页
     胶带坐标： 相对水平位置：-15.01，相对垂直位置：-3.00，胶带宽：488.46，胶带高25.51（单位：points）
     来源： 底左
      

        
     1
     0
     BL
            
                
         Odd
         3
         SubDoc
         22
              

       CurrentAVDoc
          

     -15.0066 -3.0022 488.4643 25.5112 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     2
     27
     20
     10
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第3页 到第22页; 仅偶数页
     胶带坐标： 相对水平位置：-6.00，相对垂直位置：688.80，胶带宽：474.96，胶带高-22.51（单位：points）
     来源： 底左
      

        
     1
     0
     BL
            
                
         Even
         3
         SubDoc
         22
              

       CurrentAVDoc
          

     -6.0026 688.8013 474.9584 -22.5099 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     3
     27
     21
     10
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第27页 到第27页
     胶带坐标： 左下角 (641.42 380.54) 右上角 (661.35 420.40) points
      

        
     0
     641.4243 380.5411 661.3538 420.3999 
            
                
         27
         SubDoc
         27
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     26
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第26页 到第26页
     胶带坐标： 左下角 (-2.21 445.09) 右上角 (677.60 644.38) points
      

        
     0
     -2.2144 445.09 677.5997 644.384 
            
                
         26
         SubDoc
         26
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     25
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第25页 到第25页
     胶带坐标： 左下角 (16.23 445.50) 右上角 (152.78 488.31) points
      

        
     0
     16.2316 445.4962 152.7849 488.3075 
            
                
         25
         SubDoc
         25
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第25页 到第25页
     胶带坐标： 左下角 (302.62 401.95) 右上角 (674.64 471.33) points
      

        
     0
     302.6245 401.9467 674.64 471.3306 
            
                
         25
         SubDoc
         25
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第24页 到第24页
     胶带坐标： 左下角 (515.95 429.59) 右上角 (677.60 527.76) points
      

        
     0
     515.9501 429.5894 677.5997 527.7601 
            
                
         24
         SubDoc
         24
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     23
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第24页 到第24页
     胶带坐标： 左下角 (0.74 440.66) 右上角 (677.60 636.26) points
      

        
     0
     0.7381 440.6613 677.5997 636.2646 
            
                
         24
         SubDoc
         24
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     23
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第23页 到第23页
     胶带坐标： 左下角 (101.85 433.69) 右上角 (676.12 472.07) points
      

        
     0
     101.8542 433.6862 676.1163 472.0687 
            
                
         23
         SubDoc
         23
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第22页 到第22页
     胶带坐标： 左下角 (532.93 394.90) 右上角 (677.60 562.45) points
      

        
     0
     532.927 394.8974 677.5997 562.452 
            
                
         22
         SubDoc
         22
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第22页 到第22页
     胶带坐标： 左下角 (448.04 431.80) 右上角 (677.60 596.41) points
      

        
     0
     448.0425 431.8037 677.5997 596.4058 
            
                
         22
         SubDoc
         22
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第22页 到第22页
     胶带坐标： 左下角 (2.95 435.49) 右上角 (677.60 653.24) points
      

        
     0
     2.9525 435.4944 677.5997 653.2415 
            
                
         22
         SubDoc
         22
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第21页 到第21页
     胶带坐标： 左下角 (9.00 435.98) 右上角 (685.05 456.99) points
      

        
     0
     9.0031 435.9825 685.0497 456.9917 
            
                
         21
         SubDoc
         21
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     20
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第20页 到第20页
     胶带坐标： 左下角 (642.28 375.91) 右上角 (688.80 502.72) points
      

        
     0
     642.2818 375.9149 688.8022 502.7206 
            
                
         20
         SubDoc
         20
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第20页 到第20页
     胶带坐标： 左下角 (347.40 428.44) 右上角 (688.80 581.51) points
      

        
     0
     347.4024 428.438 688.8022 581.5051 
            
                
         20
         SubDoc
         20
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第20页 到第20页
     胶带坐标： 左下角 (10.50 435.94) 右上角 (688.80 656.54) points
      

        
     0
     10.5046 435.9413 688.8022 656.538 
            
                
         20
         SubDoc
         20
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第19页 到第19页
     胶带坐标： 左下角 (-3.00 429.98) 右上角 (682.80 459.99) points
      

        
     0
     -3.0022 429.9798 682.7986 459.993 
            
                
         19
         SubDoc
         19
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第18页 到第18页
     胶带坐标： 左下角 (613.02 428.44) 右上角 (655.79 474.96) points
      

        
     0
     613.019 428.438 655.7877 474.9584 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第18页 到第18页
     胶带坐标： 左下角 (650.54 336.15) 右上角 (688.80 476.46) points
      

        
     0
     650.5354 336.1475 688.8022 476.459 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第18页 到第18页
     胶带坐标： 左下角 (637.78 380.42) 右上角 (688.80 607.02) points
      

        
     0
     637.7798 380.4169 688.8022 607.0163 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第18页 到第18页
     胶带坐标： 左下角 (365.41 430.69) 右上角 (688.80 595.01) points
      

        
     0
     365.4103 430.689 688.8022 595.011 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第18页 到第18页
     胶带坐标： 左下角 (17.26 435.19) 右上角 (688.80 590.51) points
      

        
     0
     17.2576 435.1909 688.8022 590.5091 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第17页 到第17页
     胶带坐标： 左下角 (164.32 430.73) 右上角 (485.46 462.99) points
      

        
     0
     164.3212 430.7301 485.4621 462.9943 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第16页 到第16页
     胶带坐标： 左下角 (493.46 421.46) 右上角 (688.44 604.45) points
      

        
     0
     493.4567 421.463 688.4396 604.447 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第16页 到第16页
     胶带坐标： 左下角 (13.50 434.21) 右上角 (688.44 617.20) points
      

        
     0
     13.4988 434.2119 688.4396 617.1959 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第15页 到第15页
     胶带坐标： 左下角 (-3.00 429.98) 右上角 (369.16 476.50) points
      

        
     0
     -3.0022 429.9798 369.1611 476.5002 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第15页 到第15页
     胶带坐标： 左下角 (488.46 432.23) 右上角 (623.52 470.50) points
      

        
     0
     488.4634 432.2308 623.5226 470.4976 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第14页 到第14页
     胶带坐标： 左下角 (656.62 417.18) 右上角 (682.65 472.95) points
      

        
     0
     656.6241 417.1757 682.6511 472.9478 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第14页 到第14页
     胶带坐标： 左下角 (10.41 432.79) 右上角 (682.65 563.67) points
      

        
     0
     10.4108 432.7919 682.6511 563.6705 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第13页 到第13页
     胶带坐标： 左下角 (0.75 438.98) 右上角 (684.30 456.99) points
      

        
     0
     0.7494 438.9838 684.2993 456.9917 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第12页 到第12页
     胶带坐标： 左下角 (498.97 -9.00) 右上角 (540.99 44.27) points
      

        
     0
     498.9689 -9.004 540.9874 44.2694 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第12页 到第12页
     胶带坐标： 左下角 (662.54 426.19) 右上角 (688.80 464.45) points
      

        
     0
     662.5407 426.187 688.8022 464.4538 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     范围： 从第12页 到第12页
     胶带坐标： 左下角 (222.85 440.44) 右上角 (688.80 586.76) points
      

        
     0
     222.8478 440.4432 688.8022 586.7574 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     26
     27
     11
     1
      

   1
  

 HistoryList_V1
 qi2base





