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DEFORMATIONS AND EQUITOPOLOGICAL DEFORMATIONS
OF STRONGLY PSEUDOCONVEX MANIFOLDS

STEPHEN S. T. YAU

§ 1. Introduction
One of the main problems in complex analysis has been to determine

when two open sets Du D2 in Cn are biholomorphically equivalent. In [26]
Poincare studied perturbations of the unit ball B2 in C2 of a particular kind,
and found necessary and sufficient conditions on a first order perturbation
that the perturbed domain be biholomorphically equivalent to JB2. Recently
Burns, Shnider and Wells [7] (cf. also Chern Moser [9]) have studied the
deformations of strongly pseudoconvex manifolds. They proved that there
is no finite dimensional deformation theory for M if one keeps track of
the boundary.

In view of this, we have the following definition.

DEFINITION. Let M and Mf be two strongly pseudoconvex manifolds
with A and A! as its maximal compact analytic set. M is said to be
holomorphically equivalent to Mf if there exist open neighborhoods U and
U' of A and A! respectively and biholomorphic map ψ\  U >U' such that
φ(A) =  A'.

The natural question one can raise is to determine geometric condi 
tions which imply that M and M' are holomorphically equivalent.

Let M be a strongly pseudoconvex manifold with a one dimensional
exceptional set A. Let Θ be the holomorphic tangent sheaf to M. The
general Kodaira Spencer [18] theory shows that H\M, Θ) corresponds to
first order infinitesimal deformations of M and that H\M, Θ) represents the
obstructions to formally extending deformations to higher order. H\M, Θ)
is finite dimensional since M is strongly pseudoconvex. H2(M, Θ) =  0 since
A is one dimensional. Because of the result of Burns, Schneider and Wells
we mentioned above, given a deformation of M and a compact K in M,
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we shall only worry about the deformation near K. Then in [23] Laufer
proved that M has a versal deformation ω: Wl  » Q with Q a manifold of
dimension dim H\M, Θ) in case either (i) M is of arbitrary dimension and
a sufficiently small neighborhood of A [23, Theorem 2.2 and Theorem 2.5]
or (ii) M is of dimension two [23, Theorem 2.8].

Let U be a compact complex submanifold of a complex manifold w.
Recall that U is a stable submanifold of W  in the sense of Kodaira (cf.
[17]) if and only if for any complex fibre manifold p: iΓ  > B such that
p'\o) =  W  for a point oe B, there exist a neighborhood 2V of o in B and
a fibre submanifold % with compact fibres of the complex fibre manifold
if\N  such that <%ΠW=U. This means that no small deformation of the
complex structure of W  makes U disappear. In [16], [17] stability of
compact submanifolds of complex manifolds and other related topics are
studied.

We now restrict exclusively to dimension two strongly pseudoconvex
manifold M. We will assume that irreducible components A/ s of the
maximal compact analytic set A are nonsingular and have normal crossing
M. F urthermore there is no CP1 in M with self intersection number —1
such that blowing down this curve will not destroy the above properties
of the maximal compact analytic set. In [23] (see also [15]), it was proved
that there exists a semi universal deformation of M = τ~\o) τ:  l'—> Qr

such that all irreducible components of A are stable under τ (cf. § 2.2). Let
$f be the sheaf of germs of vector fields which are tangential to A. Then
dim H\M, £f) is the number of moduli of equitopological deformation of
M. (cf. § 2. 2). I t is a natural question to ask for formulas for dim H\M, Θ)
and dim H\M, &*). In this paper, we obtain interesting formulae for both
dim H\M, Θ) and dim H\M, &) 

M AI N THEOREM. Let M be a 2 dimensional strongly pseudoconvex mani 
fold as above (i.e., M is a minimal good resolution of normal surface sin 
gularity). Suppose the maximal compact analytic set A can be blown down
to a hypersurface singularity o e {/ =  0} c c 3 . Then

dim H\M, Θ) =     R ~ 5 χ r ( A ) +  τ   A( i +  µ)
6 6

dim W(M, SO=  1 R l ~a
5χΛA) + τ   1( 1 +  µ)   £ dim H\At, NAt)
   

where K =  canonical divisor of M with support on A
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χτ(A) — topological Euler number of A
µ =  Milnor number of V at the origin

τ = number of moduli of V at o,

fffdx dy dz
NΛ. =  normal bundle of At in M.

The difficulty in obtaining formulae for dim H\M, Θ) or dim H\M, Sf)
is that they do not depend entirely on the topological data. Actually
Example 3.9 below says that even though Milnor numbers (analytic in 
variants) for the associated singularities are the same, dim H\M, Θ) can
still be different. Our main observation is that the number of moduli cor 
responding to the associated singularities are different in this case. The
crucial point in the proof of our main Theorem is to consider dim H\M, Θ)
and dim W(M, £f) simultaneously. As a corollary to the proof of our
Theorem, we have the following

COROLLARY. Let M be a two dimensional manifold. Let A =  \ jAi9

i = l? . . . 9 n be the maximal compact analytic set in M. Suppose the inter 
section matrix [At Aj] is negative definite, p(A): =  1 — dim H°(A, ΦA) +
dim H\A, ΘA) =  0 and A  A =  1 . Then

dim H\M, ©) =  2(τι   1)

=  Sn   2 +  Σ A. , .

Deformations of resolutions of two dimensional singularities have been
studied by several authors including Artin [2], Brieskorn [6], Karras [14],
[15], Laufer [20], [21], [23], Riemenschneider [27], [29], Schlessinger, and
Wahl [34], [35]). A start on the higher dimensional theory was made by
Riemenschneider [29], Lieberman and Rossi [38], Our result in this paper
can be easily generalized to arbitrary dimension. However we can only
get the formula for Y^zl ( —1)* dim H%M, θ). We finally remark that our
result is true for complete intersection singularities and the proof is exactly
the same.

We would like to thank Professors Hironaka, Laufer and Siu for useful
and stimulating conversation about this work. We thank them and also
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Professor Griffiths and Professor Kazhdan for their immediate interests in
our formulas. We thank referee for careful reading of this paper and some
useful suggestions.

§ 2. Deformations of strongly pseudoconvex manifolds and Milnor's
fibration

(2.1) Let M be a strongly pseudoconvex two dimensional manifold
with maximal compact analytic set A. Let A = U  Au 1 < i < n be the
decomposition of A into irreducible components. We shall assume that
Ai's are nonsingular and have only normal crossings. We may further
assume without loss of generality that A is connected. Let S be a reduced
complex space with distinguished point o. A deformation of M is a flat
holomorphic map φ: 3ft » S such that the fiber Mo =  φ~\o) is isomorphic
to M. We are in fact only interested in deformations near the maximal
compact analytic set A of M. According to Riemenschneider [29] we may
assume therefore that φ is 1 convex.

Let Θ be the tangent sheaf of M. In [23], Laufer constructed a defor 
mation ω: 3ft  > Q of M with smooth parameter space Q of dimension equal
to dim H\M9 Θ). He also proved that ω: 9ft  > Q is in fact a semi universal
deformation of ikf.

(2.2) Let ψ: 9ft >S be a 1 convex deformation of M =  ψ"1^) with S
a reduced complex space, ψ is an equitopological deformation of M if all
irreducible components Ai9 1 < i < n of the maximal compact analytic set
A lift to ψ, that is, there are subspaces J/€, 1 < i < n, of 3ft such that ^
: = ψ/ s/ i: j&i—>S are flat deformations of At for all i. Associated to A is
a weighted dual graph Γ (cf. [12], [19]) which completely determines the
topology of A and the differentiate nature of the embedding of A into M
Observe that equitopological deformations of M do not change Γ.

(2.3) Let 0 be the sheaf of germs of holomorphic functions on M.
Considering the composition

Θ > 0 Θ Θ 0M •  0 (9Ai{Az) •  0
i i

following Kodaira [17], Laufer [23] and Wahl [34], we have the following
exact sequence

o —+ ^—^ Uθ
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where Sf is a locally free sheaf of rank two. The map

#i(M, Θ)  ^  

determines the obstruction to lift At infinitesimally, see [17]. Since H°(M,
0Λt(At)) =  0 for all i, H\M, $f) = Ker ( r # ) and H\M, SO is the space of
first order deformations of M to which all At lift. Therefore, Image (p0:
T0S >H\M, Θ)) is contained in W(M, Sf) for equitopological deformations
of M.

In [20], Laufer has developed a deformation theory for infinitesimal
neighborhoods of A in M. Let D =  Σ n^, nt > 1, be a cycle on A. Let
Θ(—D) be the sheaf of germs of holomorphic functions on M which vanish
at least to order nt on At. By Θ  we denote the quotient sheaf Θ/Θ(—D).
Then the non reduced complex space A(D): =  (A, ΘD) is called an infini 
tesimal neighborhood of A of order n = (nu , nr). Let now ψ: Wl  > β
be an equitopological deformation over a smooth parameter space J5. Then,
by multiplying the equations for the deformations of the Ai9 ψ gives a
deformation of any infinitesimal neighborhood A(D). Let ΘD be the sheaf
of germs of vector fields on A(D) in the sense of G rauert [10]. Observe
that θD =  &'IΘ(—D)&'. The following lemma can be found in [23], [15].

LEMMA 2.4. Let M be a two dimensional strongly pseudoconvex mani 
fold. Then the map β: H\M, £f)  > H ι(M, ΘD) is surjective for all positive
cycles D on the exceptional set of M. For all sufficiently large cycles D, β
is an isomorphism.

Proof. H\M, (9( D)^) ^ >Hl(M, S0 ^+ H\M, ΘD) >0 is exact since
H\M, Φ(—D)SO =  0. By [10] σ is the zero map for all sufficiently large D.

(2.5) Let A(D) be a sufficiently large infinitesimal neighborhood of
A such that the analytic type of the embedding of A in M is determined
by A(D) and such that W(M, SO =  H\M, ΘD). Then Laufer [23] (see also
Karras [15]) construct a 1 convex equitopological deformation τ: Sft'  > Q/

of M = T'XO), with Q' a manifold, such that the Kodaira Spencer map p0:
T0Q'  > H\M, SO i s a n isomorphism. As an easy consequence of [23, Theo 
rem 2.5], they proved the following theorem.

THEOREM 2.6. Let M be a strongly pseudoconvex two manifold. Let
τ:W +Qf be the 1 convex equitopological deformation of M as in (2.5).
Then τ is semi universal for equitopological deformations with reduced para 
meter spaces.
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From the above discussion, it is clear that why it is interesting to get
formulae for dim H\M, Sf) and dim H\M, Θ).

(2.7) Now we recall Milnor's results on the topology of hypersurface
singularities (cf. [24], [25]).

Let / : t / c : Cn+1  > C be an analytic function on an open neighborhood
U of o in Cn+1. We denote

Bε = {zeC^:\ \ z\ \<ε}

Sε = dBε = {zeCn+i:\ \ z\ \  = ε}.

Then:

THEOREM 2.8. For ε small enough the mapping φε: Sε — {/ =  0}  > S1

defined by φε =  f(z)l\ f(z)\  is a smooth fibration.

THEOREM 2.9. For ε > 0 small enough and ε > η > 0 the mapping ψε,v:
( I n t£ £ ) Γi f KdD,) » S1 defined by ψε,v(z) = f(z)/ \ f(z)\ , where dDη = {zeC:
I z I ==  η}9 is a smooth fibration isomorphic to φε by an isomorphism which
preserves the argument. We call the fibrations of Theorem 2.8 and 2.9 the
Milnor fibrations of f at o.

COROLLARY 2.10. The fibers of φε have the homotopy type of an n 
dίmensίonal finite CW complex.

THEOREM 2.11. Let Vo: f = 0. For ε > 0 small enough, Se cuts the
smooth part of the algebraic set Vo transversally. If o is an isolated critical
point of f, then the pairs (Sε, Sε Γ  Vo)for any ε small enough are diffeomorphίc,
and (Bε, Bε Π Vo) is homeomorphic to (Bε, C(Sε Π Vo)), where C(Se Π Vo) is the
cone which is the union of real line segments joining o and points of Sε Π
Vo.

§ 3. F o rm u lae for dim H\M, Θ) and dim H\M, Sf)

Given a 2 dimensional strongly pseudoconvex manifold M it is easy
to see that dim H\M, Θ) depends not only on the C°° structure of M but
also on the complex structure of M. In this section we shall prove that
dim H\M, Θ) depends only on the C°° structure of M and numerical in 
variants of the isolated singularity associated to M.

THEOREM 3.1. Let f(x, y, z) be holomorphic in N, a Stein neighborhood
of (0, 0, 0) with / (0, 0, 0) =  0. Let V =  NΠf 'iO) have the origin as its only
singular point. Let π: M +V be the minimal resolution of V such that the
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irreducible components of A = π~\0, 0, 0) =  U?= i^« are nonsingular with
normal crossings. Let Θ be the tangent sheaf of M. Let Sf be the sheaf of
germs of vector fields that are tangential along A. Then

(3.1) d i m i f W , θ ) =     K% " a
5χΛA) + v  * ( l + µ)
   

(3.2) dim H\M, ̂ ) =    1 K ~ 5 χ r ( A ) +  τ   —{I + µ)
6 6

 ±  dim H\Ai,NA{)

where K = canonical divisor of M with support on A
χT(A) — topologίcal Euler characteristic of A

µ =  Mίlnor number of V at the origin

r =  number of moduli of V =  dimC{x,y9 z] / ( / ,  J 9 —'—,  ί \
I \  dx dy dz /

NAi — normal bundle of At in M.

Proof. Any holomorphic function which agrees with /  to sufficiently
high order defines a holomorphically equivalent singularity at (0, 0, 0), [3].
So we may take /  to be a polynomial. Compactify C 3 to P\  Let Vt be
the closure in P3 of

Vt = {(x,y,z)eC*:f(x,y,z) = t} .

By adding a suitably general high order homogeneous term of degree e to
the polynomial / , we may additionally assume that Vo has (0, 0, 0) e C 3 as
its only singularity and that Vt is non singular for small t Φ 0. We may
also assume that the highest order terms of /  define, in homogeneous co 
ordinates, a nonsingular hypersurface of order e in P2 =  P 3 — C 3. Vt is
then necessarily irreducible for all small t. Without loss of generality, we
take N = C\  Then V = Vo.

Let J> t be the ideal sheaf of Vt in P 3. We denote Θt and Θpz the
tangent sheaves of Vt and P 3 respectively. From the second fundamental
exact sequence

(3.3) J0\ f\  > ΩUV0 > Ω\ o •  0 ,

we get
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(3.4) o >Θ0 > ΘP*IV0 •  NVo >TVo > 0

where NΫ0 is t h e n orm al sheaf of Vo in P 3 an d TγQ is t h e set of isomorphism
classes of first order infin itesimal deformations of Vo a t t h e origin (cf. [30]).
I t is well kn own t h a t

τv s o a / (f,  ̂ , —,  ̂ ) .
/  \  ' dx' dy' dz/  '

I t follows that

(3.5) χ(V0, Θo) = χ(V0, ΘP,IV0)   χ(V0, N?) +  τ
where χ(χ, IF) =  2]t ( — I)4 dim iϊ^X, J^) for any coherent sheaf SF over the
compact complex space X.

From the exact sequence

we have

" , ΘP3/ VO) =  χ(P 3, βP 3)   χ(P, θP . (  e ) )(3.6)

Let V be the hypersurface defined by

vef( , Λ  )   tw° =  0we

in P 3 X Dβ where Ds is a disk of radius ε in C. Since the normal sheaf
of V in P 3 X ΰ β is locally free, Nv is torsion free and in particular a ττ flat
coherent analytic sheaf where π: V >De is the natural projection. There 
fore

(3.7) χ(V0, NVo) =  χ(Vt, Nr) for tΦ 0 .

On t h e other h an d V, is smooth for t Φ 0, so t h e exact sequence

0 >θt •  ΘPyVt >NVt •  0

gives

(3.8) χ(yt, Θt) = x(Vt, Θp s/ F t )   χ(Vt, Nr,)

Putting (3.11) (3.14) together, we have

(3.9) χ ( V 0 , Θo) =  χ ( V t , Θt) + τ, t φ O .
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Let M be the resolution of Vo which has M as an open subset. Let
£f be the sheaf of germs of vector fields on M which are tangential along
each Ai cz A. As in (2.3), we have

(3.10) 0 >y >Θ >®NAi >0
i =  l

where NA. is the normal bundle of At in M. If A is given by xy = 0, where
(x, y) is a local coordinate system of M, then <9* is generated by x{djdx)
any y(d/ dy); if A is given by x =  0, then £f is generated by x{djdx) and d/ dy.
From (3.10), since the normal bundle of At are negative,

(3.11) Γ(M, ^ ) r ^ Γ(M, Θ)

(3.12) dim H\M, Θ)   dim H\M, £f) = © dim ff1^, J ^ t ) .
i =  l

In [11], H ironaka has proved that every normal singularity Vo admits
an equivariant π: M +Vo, i.e., one for which π*ΘM =  ΘVo. For a proof in
dimension two, see [8], 1.2; [34], 4.2; and also [31]. Moreover in this case
a minimal good resolution in equivariant (cf. [34], 4.2). By Leray spectral
sequence, we have

(3.13) d i m H W, Θ) = χ(V, ΘΫ)   χ(M, θ , ) =  τ + χ(V£, ΘFt)   χ(M, Θ) *= ^0.

I t is easy to see that

(3.14) χT(M) = Xτ(V0) +  χτ(A)   1

where χτ(X) denote the topological Euler characteristic of X.
Recall from Theorem 2.9 that the intersection of Vt with the open ε ball

is diffeomorphic with the fiber Fo, So the manifold with boundary Vt Π Be

is connected, with 2nd Betti number equal to µ, and with Euler number

Xτ(Vt Γ  Bε) = 1 +  µ .

Since the two manifolds Vt Π Bε and Vt — In t Be have union Vt and intersec 
tion Kt, we have the Euler number of Vt

Xτ(Vt) =  χτ(Vt Π Bs) +jτ(Vt   In t B.)   χ(Kt)
=  1 +  µ + χτ(V0   I n t Bc)   χτ(V0 Π S.)

by the differentiable triviality of the family {Vt} away from (0, 0, 0) e C 3.
Hence



122 STEPHEN S. T. YAU

Xτ(Vt) = l + µ + χτ(π \V0   Int Be)) + x^M Π J3.»
  xΛVo n s.)   χτ(π κv0 n B.»

=  1   µ + χτ(M)   χτ(A)

since TΓ'^VQ Π Be) contracts to A. Thus we have

(3.15) χτ(Vt)   χτ(M) =  1 +  µ   χΓ(A), ί =̂  0 .

Let

= dx Λ dy _ dy Λ da: = ^ Λ dy
3//32ί df/ dx df/ dy

is a non zero holomorphic 2 form on Vo—{o}. ττ*(cy) extends to a meromorphic
2 form on M with a pole set contained in A. K, the divisor of ω and also
called the canonical divisor, may be characterized topologically by the ad 
junction formula [32]

A, K =   A4 A, +  2gt   2 +  234

where At is an irreducible component of A, gf is the genus of Ai9 and δt

is the ^number" of nodes and cusps on At.
ω9 defined above, is a non zero holomorphic 2 form on Vt, t Φ 0, and

on Vo — {o}. Let iίoo^ be the part of the divisor of ω on Vt which is sup 
ported on Vt — Vt, for t small. KWftK^tt is independent of t since the
family {Vt} is diίferentiably trivial away from (0, 0, 0) eC 3 . Let K^  K^
denote this constant value for K^t K^. Riemann Roch Theorem [13] says

χ(Vt,Θt) χ(M,Θ)
K.   5χτ(Vt))   tfIK. K. + 7K K  5χτ(M))

(3.16)

Put this in to (3.13), and we have

dim£Γ(Λf, Θ) =   1K*

H ence from (3.12)
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dim H\M, <?)=  1K} ~ δχΛA) +  r    |(1 +  ^   Σ dim H\At, NAi)

Q.E.D.

We recall a proposition by Laufer [23, Proposition 4.14].

LEMMA 3.2 (Laufer). Let M be a strongly pseudoconvex two dimensional
manifold with exceptional set A. Let π: M' —• M  be a quadratic transfor 
mation of M at a singular point p of A. Then there is a canonical map
πx: H\M\  &)  > H\M, Θ). πλ is onto with kernel of dimension 2. The ca 
nonical map π2: Γ(M', £ff)  » Γ(M, £?) is an isomorphism.

From Theorem 3.1 and Lemma 3.2, we have the following Theorem 3.3.

THEOREM 3.3. Let f(x, y, z) be holomorphic in N, a Stein neighborhood
of (0, 0, 0) with / (0, 0, 0) =  0. Let V =  N  Π f~\o) have the origin as its only
point. Let π: M > V be any resolution of V which is obtained as follows:
let π0: Mo +V be the minimal resolutions of V, let πx\  Mx > Mo be a quadratic
transformation of M at a singular point pλ of the exceptional set in Mo, ,
let πr: Mr ^Mr_x be a quadratic transformation of Mr_1 at a singular point
pr of the exceptional set in Mr_x. Then M — Mr and π = π0 o πt o πr. Let
Θ be the tangent sheaf of M. Then

dim 2F(M, Θ) =   1R2 ~  5 χ r ( A ) +  τ   —(I + µ) .
6 6

If the irreducible components of A = π'^O, 0, 0) =  U?=i At are nonsingular
with normal crossings, then

dim£Γ(M, SO=   1 K ~ 5 χ r ( A ) +  τ   —(1 +  µ)
6 6

 ±άimH\Aι,NA()
ί =  l

= number of moduli of equitopological deforma 
tion of M.

THEOREM 3.4. Let M be a two dimensional manifold. Let A = {jAi9

i — 1, , n be the maximal compact analytic set in M. Suppose the inter 
section matrix [A^Aj] is negative definite,

p(A): =  1   dim H°(A, ΘA) +  dim H\A, ΘA) =  0, and A  A =  1 .
Then

dim H ι(M, θ) = 2(n   1)
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dim H\M, <f) = %jι   1) +  Σ Λ A + n
ΐ =  l

=  3τz  2 +  ΣAi At .
ί =  l

Proof. By Artin 's result, we know that A is an exceptional curve of
the first kind. So π: M +C2 is just a point modification of C 2 at origin.
I t is easy to see th at K2 = —n and χτ(A) =  n + 1. By the proof of Theorem
3.1, we get

(3.17) dim H\M, Θ) =    7 g > ~  5χ^A)   A   dim coker p
6 6

and

(3.18) dim H\M, y) =     K* ~  5 % r ( A )   A   dim coker p
6 6

where p: π*ΘM >ΘC2 is the inclusion (cf. (1.2) of [8]) and JV̂  is the normal
bundle of At. Easy computation shows that the image of p is those sheaf
of germs of vector fields on C 2 which vanish at origin. Hence coker p
has dimension 2. From (3.17), we have

d im i ϊW.Θ) =    ? (  / * )  5 ( n + l ) _ A _ 2 =  2n   2
6 6

dim H'(M, y) = 2n 2 ±  H\A, NA()
ί l

= 3n  2 + ΣAfAi .
i =  l

The following corollary is first proved by Laufer [23, Corollary 2.6].

COROLLARY 3.5. Let M be a two dimensional manifold. Let A be a
submanifold of M which is a compact Riemann surface of genus 0 with
A A =  —1. Let λ: WI +S be a deformation of M =  λ~\o). Then in a
neighborhood of A in 9JΪ, λ is the trivial deformation.

Let M be a strongly pseudoconvex manifold. In [37], we introduce a
bunch of numerical invariants associated to M. In the following we in 
troduce the γ invariant for M.
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DEFINITION 3.6. Let M be a strongly pseudoconvex manifold of di 
mension 2. Suppose the irreducible components of the maximal compact
analytic set A in M are nonsingular and have normal crossings. Let π:
M +V be the bimeromorphic morphism such that π blows down A to an
isolated singularity. Let ΘMi Θv be tangent sheaves of M and V respectively.
Then γ is defined to be dimcoker/> where p: π*ΘM >Θv is the natural
inclusion, (cf. (1.2) of [8]).

The proof of the following theorem is the same as Theorem 3.1.

THEOREM 3.7. Let M be a strongly pseudoconvex manifold of dimension
2. Suppose the irreducible components of the maximal compact analytic set
A in M are nonsingular and have normal crossings. Let π: M +V be the
bimeromorphic morphism, such that π blows down A to an isolated hyper 
surface singularity. Then

άimH\M, θ) =    7R2 "~ 5 χ r ( A ) +  τ   —(I +  µ)   γ
6 6

+  τ _ 5 (i +  µ) _  r6

The following example was suggested to us by Laufer.

EXAMPLE 3.9. Consider the singularities given at (0, 0, 0) by

V={(x,y,z): s 8 +  *» +  /  =  <)}
V ==  {(x,y, z): z2+ x3 + y7 + kxf =  0, k Φ 0} .

Both V and Vf resolve to have exceptional sets A and A' which have the
same weighted dual graph.

•   2

 7  1  3

The genera of the compact Riemann surfaces are zero.
K2 =  4 K'2 =  4

χτ(A) =  5 χτ(A') = 5
µ =  12 µ' = 12
r =  12 t' =  11

dim i ϊW, θ) =  10 dim H\W, Θ) = 9
W, y) =  1
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This example says that dim H\M, Θ) and dim H\M, £f) depend not only
on the topological structure of the strongly pseudoconvex manifold but
also on the complex structure of the manifold.

PROPOSITION 3.9. Let M be a strongly pseudoconvex two dimensional
manifold with exceptional set A. Let p: Mf  +M be a quadratic transfor 
mation of M at any point p of A. Then

dim H ι(M', Θ)   dim H\M, Θ) = 2   dim coker i

where ί: Γ(M, Θo)  > Γ(M, Θ) and Θo =  sheaf of germs of tangent vector fields
which vanish at p.

Let Ax =  ρ~\p) an d N  be t h e n o rm al bun dle of A1 in M'.
T h en we h ave N  ^ ΘAl(—ΐ), Ax ^ CP1 an d a n exact sequen ce

0 >ΘM •  P*θM >N* > 0

The associated cohomology sequence

0 •  Γ(M', ΘM.) > Γ(M', P*ΘM) > Γ(M, N*)

Γ(M,ΘM)

H\Mf, ΘM.) •  H\M', p*θM.) •  H\M, N*) =  0

ff(M, ΘM)

then gives the proposition immediately.

COROLLARY 3.10. Let M be a strongly pseudoconvex two manifold with
exceptional set A. Let p: M1  > M be a quadratic transformation of M at
any smooth point p of A. Suppose p is in Au an irreducible component of
A. If one of the following conditions holds,

(1) Aί is a compact Riemann surface of genus zero, and Ax intersects
with the other irreducible components of A in at least three points.

(2) Ai is a compact Riemann surface of genus one and Ax intersects
with the other irreducible components of A in at least one point.

(3) Ax is a compact Riemann surface of genus > 2.
<*> The above simplified proof was suggested to us by the referee.
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Then dim IP(M', Θ) =  dim fP(M, Θ) +  2 .

Proof. Since the global vector fields of M must be tangential to the
exceptional set, the automorphism given by integrating along a vector field
must map any singular point q of A into itself. Since automorphism of
compact Riemann surface of genus one fixing three points must be an
identity, statement (1) above follows from Proposition 3.9. As the tangent
bundle of compact Riemann surface of genus 1 is trivial, statement (2)
follows also from Proposition 3.9. The statement (3) above is trivial be 
cause there are no global vector fields on compact Riemann surface of
genus > 2. Q.E.D.
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