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Kohn-Rossi cohomology and its 
application to the complex 

Plateau problem, I* 
By STEPHEN S.-T. YAU 

1. introduction 

It seems that one of the natural fundamental questions of complex 
geometry is the classical complex Plateau problem. Specifically the problem 
asks which odd-dimensional, real submanifolds of C` are boundaries of 
complex submanifolds in CI. 

With regard to this problem, Harvey and Lawson [121 have recently 
developed a very interesting theory. Their theorems are important and 
very general, and the paper is a fundamental contribution to complex 
geometry. In order to state their main theorem precisely, we need some 
preliminary remarks. In [121, they first observed the following necessary 
condition for the problem to be solvable: Let X be a real, C' submanifold of 
a complex manifold W which is a C' boundary of a complex submanifold. 
If dimX 2n - 1, then at each point z C X we must have 

(1.1) dimR (TZX n J(TX)) = 2n - 2 

where J is the almost complex structure (i.e., scalar multiplication by i) in 
T,( W). The condition (1.1) asserts that the complex linear subspace of TZX 
is as large as possible (i.e., of real codimension one). Therefore, a submani- 
fold M of dimension 2n -1 which satisfies (1.1) at all points will be called 
maximally complex. 

Of course, maximal complexity only imposes a condition on X if the 
real dimension of X is greater than one. However, there is a natural 
replacement for (1.1) which is necessary for the real compact oriented curve 
V in W to be the boundary of a complex curve V. Suppose V = d V and let 
w) be a holomorphic 1-form on W. Then by Stoke's theorem, 

d A.-' V,~)-| 

since d = a + a and &o 0. From simple considerations, the restriction of 
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a (2, 0)-form to a holomorphic curve is identically zero. Therefore the 
following moment condition is necessary: 

(1.2) (o = 0 for all holomorphic 1-forms w . 

Suppose now that X is a compact oriented submanifold in a Stein 
manifold W. Let [XI denote that (2n - 1)-dimensional current in W given 
by integration over X. Similarly, if V is a piece of n-dimensional complex 
subvariety of W, we let [VI denote the 2p-dimensional current given by 
integration over the manifold points of V with the canonical orientation. 
The current X is the boundary of [VI in the sense of currents (written 
d[ VI X) if [X](a) = [V](da) for all Co (2p - 1)-forms a on W. By a 
holomorphic p-chain on a complex manifold W we mean a locally finite sum 
T = Inj Vil, where ni c Z - {0} and Vi is an irreducible, complex n-dimen- 
sional subvariety supp T = U V. 

THEOREM (Harvey-Lawson). Let X be a compact, oriented submanifold 
of real dimension 2n --1 and of class C1 in a Stein manifold W. Or, more 
generally, allow X to have a small scar set S. (That is, suppose that S is a 
compact set of Hausdorff (2n - 1)-measure zero, which is contained in X, 
and that X is a compact subset of W such that X - S is an oriented sub- 
manifold of W - S of class C' with finite volume and d[XI = 0. Actually 
it suffices to assume that X - S is an oriented immersed submanifold of 
W - S instead of an embedded submanifold.) 

Suppose that X is maximally complex, or if n = 1, suppose X satisfies 
the moment condition. Then there exists a unique holomorpic p-chain T in 
W - X with supp T C W and with finite mass, such that 

(1.3) dT = [X] in W. 

Furthermore, there is a compact nowhere dense subset A c X such that each 
point of X - A, near which X is of class Ck, 1 < k < oo, has a neighborhood 
in which (supp T) U X is a regular Ck submanifold with boundary (if k > 2 
then A can be chosen to have Hausdorff (2n - 1)-measure zero). 

In particular, if X is connected, then there exists a unique precompact 
irreducible complex n-dimensional subvariety of W - X such that d[ VI 
+ [XI with boundary regularity as above. 

For p = 1, the theorem can be deduced from the work of Wermer [331, 
Bishop, Alexander and others on the polynomial hull of a curve in C7 (cf. 
Gamelin [8]). This function algebraic approach encounters some difficulties 
in generalization, whereas Harvey-Lawson's proof works uniformly in all 



KOHN-ROSSI COHOMOLOGY 69 

dimensions. After four years of laborious work attempting to understand 
the deep work of Harvey-Lawson, we have come up with a somewhat 
simpler proof for the case when the Levi form of X is not identically zero 
at every point of X. We produce a variety V such that the boundary of V 
is exactly X. For the definition of Levi form, partially complex structure 
etc., we refer to Section 2. 

THEOREM A. Let X be a compact, orientable, real manifold of dimension 
2n -1, n > 2, with partially complex structure in a Stein manifold W. 
Suppose the Levi form of X is not identically zero at every point of X. 
Then there exists a complex analytic subvariety V of dimension n of W- X 
such that the boundary of V is X in the sense of point-set topology. Moreover 
outside a set of (2n - 1)-measure zero in X, V has boundary regularity. 

The idea of the proof of Theorem A for W= C' goes as follows. We 
first extend X to a "strip" of a variety in C' by H. Lewy's theorem. Then 
we apply the deep theorem of Rothstein and Sperling (cf. [231, [241, [251, [261 
and [31-1). Their results [Theorem 1, p. 547 of 201 provide us a normal variety 
V' over C' such that Theorem A is true. When we project this back to C', 
we may get an extra component of a variety coming from the interior of V'. 
This extra component of a variety intersects the original strip of a variety 
in a complex codimension one subvariety, hence real codimension one in X 
which is of (2n - 1)-measure zero. Therefore Theorem A is true only in the 
sense of point-set topology and hence also in the sense of distribution. We 
should emphasize that when the Levi form is zero at some point, the method 
we use breaks down completely. Indeed there are examples of this kind 
such that one cannot find V as in Theorem A. This explains why Harvey- 
Lawson's result is interesting and important. 

The problem of nonexistence of singularities inside V has not been 
solved. In [61, Donnelly has found a necessary condition depending on eta- 
invariants of Atiyah and Singer. In this paper we will find a necessary and 
sufficient condition which depends only on the C-R structure of the boundary. 
However, it seems very difficult to get the right condition as shown in the 
following example: Let V= {(z., .., zr): f(z) 0 0} be a hypersurface with 
the origin as its only singularity in C7+'. Let S(O; 8) and B(O; 8) be the sphere 
and ball respectively in C7+'. Let X, =S(o; 8) n V, where V= {(z., * ., z) 

f(z) = t}. Then X. bounds the variety B(O; 8) n V with singularity at the 
origin and X, bounds the complex submanif old B(O; 8) n V,, t # 0 and t small. 
However X. is diffeomorphic to X,. 

It seems to us that the first fundamental invariant of this kind was 
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first introduced by Kohn and Rossi ([181, [171 and [71), the so-called Kohn- 
Rossi a6-cohomology groups HP (') (cf. S 2). They proved the finite dimen- 
sionality of their cohomology groups under certain natural conditions. (Cf. 
Proposition 2.14.) Of course it would be of interest to compute the dimen- 
sions of these ab-cohomology groups. In general, a strongly pseudoconvex 
manifold M is a modification of a Stein space V with isolated singularities. 
In [181, Kohn-Rossi made the following conjecture: In general, either there 
is no boundary cohomology of the boundary of M (or V) in degree (p, q) 
p ? 0, n - 1, or it must result from the interior singularities of V. The 
following theorem answers the above questions affirmatively. 

THEOREM B. Let M be a strongly pseudoconvex manifold M of dimen- 
sion n (n > 3) which is a modification of a Stein space V at the isolated 
singularities x1, **. , Xm. Then 

dim HP q(3) = 1bpq+l 1 ? q n - 2 

where HP .() is the Kohn-Rossi Ab-cohomology group of type (p, q) and 
bpiq+l is the Brieskorn invariant of type (p, q + 1) at xi which is a local 
invariant of the singularity xi (cf. S 3). 

Suppose x,, * X, are hypersurface singularities. Then 

0 O. pp+ qnn-2, 1 q n-2, 

dm q((.) z+ ** +. p+q=n-1, 1< q n-2, dim HP (I ~ {?rn 
Z'1 + ... + zm p + q n, 1?q < n-2, 

0, p + q > n + l q < n-2 , 

where zi is the number of moduli of V at xi (cf. Remark 3.3). 

As a result of Theorem A and Theorem B, we can answer the classical 
complex Plateau problem in the affirmative sense. 

THEOREM C. Let X be a compact, orientable, real manifold of dimension 
2n - 1, n > 3 with partially complex structure in a Stein manifold W of 
dimension n + 1. Suppose that X is strongly pseudoconvex. Then X is a 
boundary of the complex submanifold V c W - X if and only if Kohn- 
Rossi's ab-cohomology groups HP (') are zero for 1 ? q ? n-2. 

Proof. This is an easy consequence of the proofs of Theorem A and 
Theorem B and the fact that the local moduli for isolated hypersurface 
singularity are never zero. 

We remark that the last part of Theorem B remains true if xi is a local 
complete intersection singularity for all i. Actually Theorem B and Theorem 
C remain true if one replaces strong pseudoconvexity of the boundary by 
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some other Levi-convexity condition. In Section 2, following Folland and 
Kohn [71, we collect all the definitions and theorems we need later on. From 
this section, the reader can figure out what Levi condition we need in order 
to solve the complex Plateau problem affirmatively. In Section 4, we prove 
the duality theorem (cf. Theorem 4.1) for certain 1-convex manifolds. This 
sharpens the result we had in 1341 although the idea was already there. 

H. Lewy 1211 first studied ab, and his work was extended by Kohn and 
Rossi 1181, who first formalized the notion of boundary complex. It is a 
general method to reduce questions about boundary value problems on M to 
the study of operators on the boundary of M, which is a compact manifold 
without boundary. Much progress in this area and others has recently been 
made by M. Kuranishi. 

We gratefully acknowledge Y.-T. Siu for his numerous helpful discus- 
sions. In fact it was Professor Siu who pointed out to us the work of 
Rothstein which is very useful in this work. We thank Professors P. 
Griffiths, H. Hironaka, H. B. Laufer and D. Mumford for their constant 
encouragement. Our indebtedness to Harvey-Lawson [121 is obvious. Actually 
Professors Harvey, Lawson and Rossi pointed out a difficulty of our original 
argument in Theorem A based on Hartog's technique. We appreciate their 
interest in our work as well as some discussion. Finally, we would like to 
thank Professor Lawson once more for his useful suggestions in rewriting 
this paper. 

2. Kohn-Rossi's ab-complex 

In this section we recall Kohn-Rossi's theory for the ab-complex and fix 
our notations. The reference for this section is [7j. Let M be a Hermitian 
complex manifold M of complex dimension n with smooth boundary bM such 
that M M U bM is compact. We shall assume, without loss of generality, 
that M is imbedded in a slightly large open manifold M' and that bM is 
defined by the equation r = 0 where r is a real CO function with r- < 0 
inside M, ? > 0 outside M, and dr I = 1 on bM. Let C(P q(M) be the space 
of Co (p, q)-forms on M. C(4P q)(M) is the subspace of C(Ppq(M) whose elements 
can be extended smoothly to M'. Cfp q(M) is the subspace of UP q(M) whose 
elements have compact support disjoint from bM. Recall that a Hermitian 
metric on an almost-complex manifold M is a Hermitian inner product <, >x 
on each wno(CTM) varying smoothly in x, where wo,0: CTxM--, T1,,M is the 
natural projection from the complexified tangent bundle to the subbundle 
consisting of the (1, 0) vectors. For Y, e E CTxM., we set 

<is K0 >-,0 7>x + <WlOt Wl.o_>x 
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The inner product <, >, then extends naturally to all the spaces AP qCT*M. 
If w0, *.*, a is an orthonormal basis for A1'0CT*M, then cv, A 61i A ... 
A (on A (On= Y is the volume element on M at x. We define global scalar 
products for forms by 

(vs, A~) = | 5i, >y for C5, e fP, q(M) 
, 

The formal adjoint a of a is the differential operator from fp, q(M) to 
(P q-l(M) defined by (-, o)g (0, 9) for all Ge UP q-l(M) with compact 
support. The operator [R = + 0 is called the complex Laplacian. Let 
HjP'q be the space of square integrable (p, q)-forms on M. We shall hence- 
forth use the symbol a to mean the closure of 8/C(P (M) with respect to HoP 
in other words, the operator whose graph is the closure of the graph 
of /IdP q(M) in Hop'q x Hpq+l' The following proposition is obtained by 
integration by parts. 

PROPOSITION 2.1. For all 5 e G U~q(M) 0 e GjdPq+l(M), *G e (fpq-l(M), 

(ao, 0) -(0, 'e&) + | <aq dr)0, a 
bM 

( '0 ) = aIr) + | dr)o, A>, 
bM 

where a(Q, dr) and a(Y, dr) are the symbols of the differential operators a 
and a at dr respectively. The relation between the Hilbert space adjoint D* 
of a and its formal adjoint a is given by the following proposition. Recall 
that the Hilbert space adjoint 8* of a is defined on the domain Dom(a*) 
consisting of all 0 e HP such that for some constant c > 0, '(09, ) < c r 

for all * e HP q-l(M). For such a a, / --- (a, 8r) extends to a bounded func- 
tional on Ho" q and aft its dual vector. 

PROPOSITION 2.2. Let 9@pq Dom(0*) n (fP q(M). Then 
pq { e CfPpq(M): a(iY, dr>o - 0 on bM} 

and 
-0 on 'Dp, q 

For each p e bM, the Levi form at p is the Hermitian form on the 
(n - 1)-dimensional space (7r1,0CTPM) n CTPbM given by 

(L1, L2) - 2<~ar, L, A L2> a 

(It is Hermitian because a8 =-8a =-a8.) We shall be working in special 
boundary charts U, with the special basis, {1ci}, 1 <i < n o, V= 2 ar for 
C1f0(U). Let L1, ... , L. be the dual vector fields. Then {(L)P}, 1 <i < n-1 

is an orthonormal basis of the space (w1,0 CTPM) n CTPbM and the Levi form, 
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which is defined with respect to this basis, is given by the matrix coefficients 
of the Levi form, cuj = 2Kair, Li A Lj>. The following proposition shows 
that this form depends only on the outward normal dr to bM and is there- 
fore intrinsically defined. 

PROPOSITION 2.3. 

ij d2 <(son< [Li, Lj]> 

In other words, cij is the coefficient of L% in the basis expansion of 
1i/V 2 [Li, Lj]. 

Definition 2.4. (a) M is said to be pseudoconvex (pseudoconcave) if the 
Levi form is positive (negative) semi-definite at each point of bM and 
strongly pseudoconvex (pseudoconcave) if it is positive (negative) definite at 
each point of bM. 

(b) We say that M satisfies condition Z(q) if the Levi form has at least 
n - q positive eigenvalues or at least q + 1 negative eigenvalues at each 
point of bM. (Thus a strongly pseudoconvex manifold satisfies condition Z(q) 
for all q > 0.) 

Suppose H is a Hilbert space and Q is a Hermitian form defined on a 
dense subspace D of H satisfying Q(O5, A) > I I 'I2 for 0 e D. Suppose further 
that D is a Hilbert space under the inner product Q. Then there is a canonical 
self-adjoint operator F on H associated with Q as follows. For each a e H, 

- > (a, *) is a Q-bounded functional on D. Thus there is a unique 0 e D 
such that Q( ) (a, A) for all e D. Define T: H -Dc H by Ta 
Then T is bounded, self-adjoint and infective. Set F = T-'. We have the 
following famous Friedrichs Extension Theorem. 

PROPOSITION 2.5. F is the unique self-adjoint operator with Dom (F) C D 
satisfying Q(O, A) (F5, A) for all 0 e Dom (F) and -9 e D. 

In our case, we define the form Q on gipq by 

Q(9, A) - (a05, 4) + (09n, ?) + (0, 9) 

and let ITPq be the completion of Wpq under Q. The inclusion jp q>HP q 

extends uniquely to a norm-decreasing map 4ppq __ Hopq. This map is infective. 
Hence we can identify 9pq with a subspace of Hop q and apply the Friedrichs 
construction. We denote the Friedrichs operator associated to Q by F. 
Since for 0, * e (CPcq(M), Q(0s, 9) ((CI + I)ss, ), we see that F is a self- 
adjoint extension of the Hermitian operator (D] + I) I ap q(M). The smooth 
elements of (9Pq are described by the boundary condition a(tY, dr)? = 0 on 
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bM; the smooth elements of Dom (F) are characterized by a further first- 
order boundary condition (the so-called "free boundary condition"). 

PROPOSITION 2.6. If 0 Ge 9P qq then 0 e Dom(F) if and only if 50 e 9P ? 

in which case F0 - (El + I)O. 

Let CJ F - I and let the harmonic space ;3P~q- 7(DF) be the 
nullspace of the operator Ei]. In [7, p. 51], Kohn proved that the harmonic 
space .CP q is a finite-dimensional subspace of (1P q(M) provided M satisfies 
condition Z(q). As a consequence of his beautiful solution of the 8-Neumann 
problem, Kohn proved the following: 

THEOREM 2.7. If M satisfies condition Z(q), then H(P (M)-JPJJ(M) 

K' where 

HPq(M) - {it'd e~p~( ')(M 0} 
-p~q(M)-t ,2 M p i 
JfP~(M) - {9 Cfp'q(M): ~5 0} 

HP q(M) - {q e Hop q n Don(a): 5h = 0} F1 p~q(M) 
(HaP q+1 n Dom (5)) 

On the other hand, the Dolbeault theorem asserts that HPq(M) 

Hq(M, QP) where QP is the sheaf of germs of holomorphic (p, 0)-forms. The 
relationship between these important groups and the preceding one is due 
to Hormander [141. 

THEOREM 2.8. If Msatisfies condition Z(q) and Z(q + 1) then Hq(M, QP) 
JJ{'p,q 

Let Cpq {= GQ (Ppq(M): 5r Ar 0 on bM}. Since U(a, de) = ? A (), 
we may also write 

(Cpq = { e (fP q(I). a(a, di )4 = 0 on bM} 

Recall that the Hodge star operator *: (fP q(M) >PC(w- ̂--q(M) is defined 
by the equation >r A *v =<, > where V is the volume form on M. It is 
riot hard to prove that ** (-1)p~q, *Q =* and eY -*a*. There is a 

duality of the space (pq and (-:P," and the spaces (pq form a complex under a. 

PROPOSITION 2.9. 

(p,q - * (pn-pn-q 

epPq C (pqj-I 

We may therefore form the cohomology 
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In 1181, Kohn-Rossi introduced the zero-boundary-value cohomology, 

-paq(O) _ {9 e Cp qP(M): - 0 O. 0} P, 
e C0)P 

y 
l(M): 

= 

l, l00,85|~ 1 ?} 

PROPOSITION 2.10. 

HP (C) -HP q(O). 

They also proved the following important Kohn-Rossi duality on pseudo- 
convex manifolds. 

PROPOSITION 2.11. If M satisfies condition Z(q), HP"(M) is naturally 
dual to Hf-P 7-q(C); in particular, HnPn-(0) -(H (M))*. 

Following Folland and Kohn [71, we now introduce space 9Jpq of forms 
on bM according to the following equivalent definitions: 

( 1 ) cppq is the space of (smooth) sections of the vector bundle 
Ap qC T*MnSAP+qC T *bM on bM. 

(2) 91pq is the space of (p, q)-forms restricted to bM which are pointwise 
orthogonal to the ideal generated by ar (i.e., to all forms of the type or A 0). 

( 3 ) (pjq is the space of restrictions of elements of 9)pq to bM. 
( 1 ) says that (Ipq is the space of tangential (p, q)-forms on bM. Using 

the language of sheaves, there is another way to express pjA, which is 
clearly equivalent to (2). 

(4 ) Let CfP q and (Pq denote the sheaves of germs of C'fp q and Cp,q on 
respectively. Then there is a natural injection 0 -__ cp,q --_> CUP . The quotient 
sheaf 'Ap =(fP q/1p q is a locally free sheaf supported on bM, and Jp,q is its 
space of sections. 

In view of Proposition 2.9, we have the following commutative diagram: 

0 , pq+l pq+1 -,q+l > 0 

0 ------ ,4cp,q p, i qA , 6p,q > 0 

where ab is the quotient map which is induced by a. Db may be explicitly 
described on sections as follows: if v e ' choose 2' G (TP q such that a' b,, 
Then ab, is the projection of l bM onto (AP q It is easy to check that this is 
independent of the choice of a'. 

Since 2 =, 0it follows that 0 0, so we have the boundary complex 

0 --> C 1 . . ., 

(Note that 1pq - 0.) 
Definition 2.12. The cohomology of the above boundary complex is 

called Kohn-Rossi cohomology and is denoted by HP (%. 
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We recall the f ollowing two propositions. 

PROPOSITION 2.13. If pqthen ~s 0 if and only if Kd*Y cO-P 
for any smooth extension ~'of 03. 

PROPOSITION 2.14. If M satisfies conditions Z(q) and Z(n - q - 1) then 
HP ( t)'s finite-dimenslional, and the range of Ib 3~- Itp~ iclosed in 
the Coo topology. (Actually the range of the Hilbert space operator a, is also 
closed.) 

We remark that conditions Z(q) and Z(n - q - 1) mean together: 
max (q + 1, n - q) eigenvalues of the Levi f orm have the same sign, or 
there are min (q + 1, n - q) pairs of eigenvalues with opposite signs. 

3. Computation of Kohn-Rossi's ah-cohomologY 

In this section, we will compute Kohn-Rossi's a,-cohomology explicitly. 
Let us first adopt the f ollowing convention. 

Definition 3.1. Let X be a complex analytic space of dimension n with 
xas its isolated singularity. Then bPq dim Hq'Z~(Xt QP), p ,:: n and 1 ? q < n, 

will be called the Brieskorn numbers of type (p, q) at the singular point x. 
It is well known that a strongly pseudoconvex manifold M is a modifica- 

tion of a Stein space V with isolated singularities. According to Kohn-Rossi, 
it would be of very much interest to compute &b cohomology in this general 
case. 

THEOREM 3.2. Let M be a strongly pseudoconvex manifold M of dimen- 
sion n which is a modification of a Stein space V at the isolated hyper- 
surface singularities x1, .. ,xm,. Then 

(3.1) dim HP~~3 

o p +q <n -1 1?<q:~n - 2 

Z~j+ z', p +q -n -1 1?<q n - 2 
Z~j+ Z",p +q =n 1?<q n - 2 

o p +q >n +1 1?<q <n -2, 

where z-i is the number of moduli of V at xi. 

Remark 3.3. Let fbe a holomorphic f unction in C"+1. Suppose V= If O} 
has an isolated singularity at the origin. Then the number of moduli Z- of 
V at 0 is given by the following: 

-dim CQz., z1, z,1/(f , IL, .. f) 
az 3 Zn 
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Proof of Theorem 3.2. We first calculate bxP. Since bp;q is a local 
invariant, we may assume that xi is the origin of C7+'. Let f be a defining 
function of V in a neighborhood of 0 in Cud'. Recall that on p. 91, (2.4) of 
1341, we gave an explicit resolution of QP as follows: 

(3.2) 

On- I Qcn I I Qcni t flQcn t) @@ QcUn-+ V E Qcn+1 Qcn 41 Qc 

)Qc p C 1>QPn + I Q Qn n, I QCn A I >c Q.I 

is exact at 0 in C-1-1 where 

o((a, /3) f a + df A /3, (a, 3) G Qcn+(D Qcn+ 

6i(a, /3) (df A a, df A /3 + (-1)if a) , (a, /3) e Qcn+i(D Q jn +i7 
1?i~p -1 

6P(a) = (df A a, (- 1)Pf a) , a G Qcn+1 

E = the natural quotient map 

are C-linear. By local duality 

(3.3) b -dim H0)(V, QP) 
- dim Ext$n+iq 0(QP sO, 0Cn+1'o) 

Dualizing (3.3) and abbreviating Qcn4- as QP, we get 

(3.4) 

Hom (QP, Q?) Hom (QP & Qp--lt Q0) Hom (QP-1 & Qp-2 QO) 

... * +Hom (QP-it l QP-t, QO) > Hom (QP-tG QP-j-1 Q) -+ 

Hom Homn(Q1ED Q0 Q0) Hom (Q0, Q0) Q> 0 

where &' is the transpose of 6i, 0 ? i ? p. Before we can continue the proof 
of Theorem 3.2, we need some facts about the Koszul complex as well as 
Serre's beautiful theory of "algebriques locales multipicites". For the sake 
of convenience to the reader, we recall briefly what they are. 

Let A be a commutative ring and M an A-module. Let xi, * * xr be 
elements in A. We denote K (x1, * * *, xr; M) to be the Koszul complex for 
elements x1, *, Xr. If M = A, we simply denote K(x1, * *, xr) for K(x1, ... 

xr; A). 

Definition 3.4. Let A be a ring and M an A-module. A sequence 
a1, a2, , ar of elements of A is said to be M-regular if, for each 1 ? i < r, 
ai is not a zero divisor on M/(ajM + * * * + ai-1M). When all ai belong to an 
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ideal I we say al, *.., ar is an M-eregular sequence in I. If, moreover, there 
is no b E I such that al, ., ar, b is M-regular, then a,, *, a, is said to be 
a maximal M-regular sequence in I. 

Remark 3.5. In general, the definition of an M-regular sequence depends 
on the order of elements. However, if A is a noetherian ring, M a finite 
A-module and I' rad(A), then the definition of an M-regular sequence in I 
is independent of the permutation of al, ., ar. Also, since A is noetherian, 
every M-sequence in I can be extended to a maximal M-sequence in I. 

Let us now recall a theorem due to Auslander and Buchsbaum (cf. 
Theorem 1.7 of 131). 

THEOREM 3.6. Let I be an ideal in A, a noether ian r ing, and M a finite 
A-module such that IM # M. Let xt, ***, xs be a maximal M-sequence in I, 
and let J= (y, ***, yj) be an ideal contained in I, such that J + Ann(M) 
contains Ik for some integer k > 0 where Ann (M) is the annihilator of M. 
Then s + q = n wher e q is the largest integer, such that Hq(y,, *, yn; M) 0. 

In particular, let L = K(a1, *.., as) and let q be the largest integer such 
that Hq(L) X 0. Let s be the number of elements in a maximal A-sequence 
in (a, , an). Then s + q = n. 

Let A - 1,0. Consider the Koszul complex of the elements (&f /&zo .. 

afl/z", (-1)Pf) in A: 

(n) n+2) a' In) n+1 2 ~ l ?1 A ) (3.5) 0 ( IA A ) _~A 

We claim that (3.4) is a complex which is isomorphic to a part of the Koszul 
complex in (3.5). 

For this, it suffices to observe the following more general, well-known 
statement. A Koszul complex is self-dual in the sense that, if all terms are 
replaced by their duals and all arrows by their adjoints, then the new 
complex is isomorphic to the original one. 

The Koszul complex for elements gl, k, g in a ring A can be viewed 

as follows: Identify an element (ai of with a 
aj,....i dx% A ... A dx'p and with dxt, 1 < i < k, as an indeterminate. Let 

-g gdx The map dp: A A( is given by a - g A a. 
Using the identification (a, h3) e Qq 3 Qq-l with a + /3 A dz+jl in A q 

one can see that the complex (3.2), after the arrow a is removed, is isomor- 
phic to a part of the Koszul complex for af/z,,, . , afaZn--1, (_ 1)pf. 

One can also see that a Koszul complex is self-dual in the following way: 
Define (*): A > A(kP) by the equation b A * a K <b, a>dxl A ... A dxk where 
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Kb, a> = J . b i i ai ... i 

The transpose tdkpl of dkP,-, is simply (-l)P*dp*-', because 

Kb, tdk-p l(*a)> - <dk pb, *a> 
- dk-p-,b A **a 

= ( )P(k- P) dk-p-1 b A a 
=(_1)PkP)g A b A a 

- ( 1)p(k-p)+(k-p-1) b A g A a 
( 1)p(k-p)+(k-p-1)+(p+l)(k-p--1) b A **(g A a) 

- (-l)p<b, *(g A a)> 
=(-l)P<b, *dpa>. 

By (3.2), (3.3) and (3.4), it follows that 

(3.6) b if n + 1-q > p + 2, i.e., p + q n-1, 
and 

dim Ext"J j0 (Q, 0, Cn-I 1, ) 

= dim ker 05r + 1q/Im 'n-q 

Hence 
(3.7) bp~ q = dim ker ap Fq-njm apA q-nd I 

= Hp-lq-ff af af, ..., af t(- 1)Pf;A 
azo taZl 

t 
azn 

for n-q > 1, i.e., q n-1 
where Hi denotes the ith homology of the Koszul complex of the elements 
(a2flao - aflazn, (-1)Pf). Since the number of elements in a maximal 
A-sequence in (af/&zo, ...* afflaz/ (-1)Pf) is n 4- 1, then 

(3.8) HqQ(f af (-l)Pf; A = 0 for q > 1 

by Theorem 3.6. Hence 

(3.9) bp~q- for p+q n+2 and q!n-1n . 

It remains to compute bPn-P and bPn-P+l. 
(3.10) b dim ExtP+1 (Qlot cn-X i) 

- dim Hom (Q0 Q?)/Im ,t p > 1 

= dim A/Im a, p > 1 

= dim Ho( af , ** ,(-1)Pf; A) 

- dim C [z0, zj, ..., zn] (f L a * f) t p 
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(3 . 11) - dim Ext O (QQ Ocn-F10,) 

dim ker 6'/Im 4-i 
= dim ker a//Im ,a for p > 2, 

=dimH1(,f .. af 1(-)Pf;A), for p>2 

Now let us recall the following interesting theorem of Serre. Suppose 
E is a module of finite type over a Noetherian local ring A. Let q (x1 **x*, Xr) 

be an ideal of definition; i.e., q contains some power of the maximal ideal m. 
Then the multiplicity eq(E, r-) is by definition equal to the coefficient of nfr/T! 

in the characteristic polynomial 1,(E/q"hE). (We denote lA(F) as the length 
of an A-module F.) Serre 128] proved that 

(3.12) eq(E, V) = (-1) lA(Hi(xl, , xr: E)) 
where Hi(xl, *. . , xr; E) denotes the ith homology of the Koszul complex of 
the elements (x1, * , Xr). 

Apply Serre's result in our case where E = A and q =(Df /&zo, **.*, I flazn 

(-1)Pf). Now eq(A, n + 2) -0 since dimA -n + 1 < n + 2. By (3.8) and 
(3.12), we have 

(3.13) dim H(- , f, * I , az, ( 

(af af . af (-A)Pf;A 
Dzo aZ1 azn 

It follows from (3.10), (3.11) and (3.12) that 

(3.14) b -P ffP+" = dim C[zo, z., zj a/(f tf .. 'f f) for p > 2 . 

Consider the following local cohomology exact sequence: 
Hz' P) >H1V QP) >H(-.QP) >... > Hzn-2( V QP) 

> Hn-2( V, QP) > Hn-2( V - Z, QP) > Hn-V( V, QP) > Hn-'( V, QP) 

where Z {x1, **j, Xm}. By Cartan's Theorem B, we have 

(3.15) H (V-Z, QP) H/+1(V, QP) for q >1 

It follows that from (3.6), (3.9), (3.10), (3.14) and (3.15) that j 0 p + q < n-2 1 < q < n-2 

(3.16) Hq(V Z QP) + +7m p+q~n-1 1?qan-2 
Z'i+ + +zm p+q=n 1<q n-2 

0 p+q n+1 1?q n-2. 

Let r: M > V be the modification of V at the points x1, , Xm. Let A = U Ai, 
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1 < i < m, where Ai = w-'(xi). Then (3.16) is equivalent to the following: 

(3.17) Hq(M - A, QP) 

f 0 p + q < n --2 1< q < n-2 

= 7i+ * + zm p + q = n-1 1 < q !En-2 

7zi + A +zm p +q=n 1<q n-2 

0 p + q > n + 1< q < n-2. 

Following Laufer 1201, we consider the sheaf cohomology with support at 
infinity. Let us recall briefly the definition. Let {f O(E) be the sheaf of 
germs of sections of a holomorphic vector bundle E over M; then Hjo(M, 0(E)) 
is by definition the cohomology of the quotient complex C-(M, E ? A0',)/ 
C-(M, E? A0 *). Here C"(M, E?& AO*) is the C"-Dolbeault complex, and 
CC(M, E? A',*) the subcomplex of smooth compactly supported E-valued 
(0, q) forms. Take a 1-convex exhaustion function q' on M such that q' > 0 
on M and (y) = 0 if and only if y e A. Put Mr = {y G M: (y) < ?}. Then 
by Laufer 1201, lim H'(M - Mr QP)- H0(M, QP). On the other hand, by 

r 

Andreotti and Grauert (Theoreme 15 of 111), Ht(M - A, QP) is isomorphic to 
Hi(M - Mr, QP) for i < n - 2 and H7-1(M - A, QP) -> H7-'(M - Mr, QP) is 

infective. By (3.17), we have 
0 p + q < n 2 1 < q < n- 2 

(3.18) Hoq(M , QP) J1 - ..+ p + q = 1 1 < q < n-2 
Zj + * +m ZM p+q n 1<q n-2 

0 p+q>n+1 1<q n-2. 

Consider the following commutative diagram: 

0 CicP * , (tP *(M) , -P* 
- 

E 
UP I (M I 

? *M 
It follows from Theorem 2.7, Theorem 2.8 and the five lemma that 

(3.19) Hq((tP*) - IIU( 00 *, q ? 1 

We claim that the natural inclusion map i from CP * to CP * induces isomor- 
phisms from Hq((Ip,*) to Hq((P,*) for 1 < q < n - 1. To see this, recall that 
Hq((f P *) is Serre dual to H7-q(M, Q-P) by integration pairing. On the other 
hand, Hq(eP,*) is Kohn-Rossi dual to H7-q(M, Qn-P) and hence to H -q(M9 Qn-p) 

for q < n - 1, again by integration pairing (cf. Proposition 2.10 and 2.11). 
Since i is compatible with these integration pairings, our claim follows 
easily. Now the following commutative diagram with exact rows 
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o - C1'P* , (*(M) C I) 0 

o >CP >C~'f(M) -SA* 0? 

gives 

(3.20) Hq(Q)P *) -H(C3P *) for 1 < q < n-2 

by the five lemma. Finally (3.1) follows from (3.20), (3.19) and (3.18). 
As a corollary to the proof of Theorem 3.2, we have the following: 

COROLLARY 3.7. Let M be a strongly pseudoconvex manifold M of 
dimension n (n ? 3) which is a modification of a Stein space V at the 
isolated singularities xl, , Xm. Then 

dmpwq('J.1)_ La p,q+l dim HP I~ - Ei=b,;b?l 

Example 3.8. Let V - {zao + zat + + z n O} C Cn+1 where ai are 
positive integers. Let X =V n S2'+l where S2""' is a sphere centered at 
the origin. Then the dimension of Kohn-Rossi's a,-cohomology group is given 
by the following formula: 

dim HP q(.9) 

0 p+q<n+2 1<q n-2 

J(ao 1) (a,-)* (an-l p + q =n- 1 < q < n 2 
(a. )(a1-) ...(a.-1) p+q n- 1<q n-2 

0 p + q n +1 1? q n-2. 

1. Brieskorn numbers and Serre duality for strongly 
pseudoconvex manifolds 

Duality theorems for compact complex manifolds (such as Serre duality) 
are well-known. Serre duality is still true for open manifolds but one has to 
use cohomology with compact support. It is natural to ask for a duality 
theorem for 1-convex manifolds without using cohomology with compact 
support. A partial result was obtained in our previous paper 134]. In 
Section 3 we introduced Brieskorn invariants for the singularities which 
are obtained by blowing down the exceptional set in the strongly pseudo- 
convex manifold. These numerical invariants for the isolated singularities 
turn out to be exactly the obstructions for the Serre duality to be true in 
1-convex manifolds. 

THEOREM 4.1. Let M be a 1-convex manifold M of dimension n which 
is a modification of a Stein space V at the isolated hypersurface singulari- 
ties x1, *, Xm. Then 
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(a) bP"= 0 fo? p + q < n-1, q>1 1 < < m; 
(b) b -'- i fo? P > 11 < < m; 
(c) bP, '-P = z-i fo? p > 2, < i < Mm; 
(d) b"'= 0 for p + q > n + 2, q < n, 1< i < m. 

(2) 
(a) h "= h~tl-Pt--ql for p + q < n-2, q > 1, and n>3; 

o? p + q > n + 2, q <n-1, and n > 3; 
(b) (i) hPt-l--P - hp n- + hPI I = - (h n-p - h?&-PP + hn-pp-I) 

fo? 2 < p < n-2 and n > 4, 
(i i) hl - -hl + hn- -hn Z : + ...+ Zm - sn 

for n>4 

where z-i is the numbe? of moduli of V at xi, where 

hPq - =dim Hq(M, QP) , and Sln- l = dim H?(M - A, Q?-1)/IH(M, Q-) . 

Proof. Statement (1) follows from (3.6), (3.9), (3.10) and (3.14). Now 
by Laufer 1201, we have the following exact sequence: 

0 -> HC0(M, QP) > H?(M, QP) H?(M, QP) > H'(M, QP) 

H H'(M, QP) - H Th(Mg QP) H P 

oH"-,(M, QP) 

Arguing as in the proof of Theorem 3.2, we know that the following 
sequence is exact: 

0 -> HCH(M, QP) H?(M, QP) - H?(M - A, QP) -H,(M, QP) 

H'(M, QP) H'(M - A, QP) -...-> H, <(M, QP) 

> Hn-1(M QP) 
> H"-1(M - A, QP). 

Recall that in Theorem 2.7 of L34I, we proved H?( V, QP) H?(V - Z, QP) is 
surjective for p < n - 2 where Z = {x,, , xm} and hence a: H?(M, QP) 
H?(M - A, QP) is surjective for p < n - 2. The map H1-l(M, QP)--> 
Hn-(M, QP) is surjective as the Serre dual of the injective map H'(M, Qn-P) 
H'(M, Q-P) for n - p ? n - 2. From these and from (3.17) together with 
Serre duality, we obtain the statement (2) (a) in the theorem. By (3.17), 
we also have the exact sequence 

0 - HC '(M, QP) H>MQP) H--P(M - A, QP) 

H-P(M, QP) Hn-P(M, QP) > Hn-P(M - A, QP) 

->HnP1(M> QP) HnP+l(M QP) 0 for 2 < p < n - 2. 

From this and from (3.17) together with Serre duality, we obtain 
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I - 1~~-pI n- p I I n- p, p - , - hn V,/ -?---11 + hPn-)- = (h-pi_ hum + hn~s 
for 2 < p < n-2 . 

Finally from (3.17), we have the exact sequence 

0 - HO(M, Qn-') -- H(M -A Q'n-) - H'(M, Qn-l) H'(M, Qn-l) 

> H'(M- A, Q'n-) 1 H2(M, Qn-1) ) H2(M, Qn- ) - O 

for n>4. 

Statement (2) (b) (ii) follows from the above exact sequence and Serre 
duality. 

Remark 4.2. After this paper was completed, A. Fujiki informed us 
that he had proved independently parts of Theorem 4.1, namely (1) (a), (1) 
(d), (2) (a) and (2) (b) (i). J. Wahl informed us that they also proved (1) (a), 
(2) (a) and (2) (b) (i) in an algebraic category. His proof of (2) (b) (i) also 
depends on our previous result, Theorem A of 1341. 

5. The complex Plateau problem 

In 1171, Kohn first considered the a, complex intrinsically on a compact 
manifold of real dimension 2n - 1 which satisfies the maximal complex 
condition. Unfortunately, his definition of the ab complex is different from 
Kohn-Rossi's ab complex which we considered in Section 2. Following Tanaka 
1321, we reformulate the 3b complex in a way independent of the interior 
manifold M. 

Definition 5.1. Let X be a compact, orientable, real manifold of 
dimension 2n - 1. A paratially complex structure on X is an (n - 1)-dimen- 
sional subbundle S of CTX such that 

(1) s n l{O}; 
( 2 ) If L, L' are local sections of S, then so is [L, L']. 
In particular, if X bM where M is a complex manifold, then S- 

(1, oC TM) n (CTX) defines a partially complex structure on X. 

Let X be a partially complex manifold with structure S for a complex 
valued Co function u defined on X. We define d"u e F(S*) by 

(d "u)(L) = Lu , L e S, . 

The differential operator d" is called the (tangential) Cauchy-Riemann 
operator, and a solution u of the equation d"u - 0 is called a holomorphic 
function. 

Definition 5.2. A complex vector bundle E over X is said to be holomor- 
phic if there is a differential operator 
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a,.: F (E) - (E & S* 

satisfying the following conditions: 
(a) L,(f u) = LJf u + f L1u, 
(b) IL, Llu = LLu - L2Lu 

where u e r(E), f is a complex valued function on X, L,, Lo e r(S) and we 
put Zu (Thu)(Z), Z e F(S). The operator , is called the Cauchy-Riemann 
operator, and a solution u of the equation D,.u = 0 is called a holomorphic 
cross section. It is clear that the trivial vector bundle X x C is holomorphic 
with respect to the operator d" defined above. 

Remark 5.3. In the case where X is a complex manifold, our definition 
of a holomorphic vector bundle is equivalent to the usual one in terms of 
holomorphic transition functions. We can see this fact, for example, by use 
of Newlander-Nirenberg's theorem. 

We now show that the vector bundle T(X): CT(X)/S is a holomorphic 
vector bundle with respect to the operator a = aT , defined as follows: Let 
wt be the projection: CT(X) T(X). Take any u e F(T(X)) and express it 
as u = w(Z), Z e F(C T(X)). For any L E (S), define a cross section (au) (L) 
of T(X) by 

(0u)(L) = W(OL, Z j) 

Then we see easily that (au)(L) does not depend on the choice of Z and that 
au gives a cross section of T(X) ? S*. Furthermore we can show that the 
operator u X Au satisfies (a) and (b) of Definition 5.2, using the Jacobi 
identity in the Lie algebra I(CT(X)). The holomorphic vector bundle T(X), 
thus defined, will be called the holomorphic tangent bundle of X. 

Remark 5.4. Consider the case where X is a real hypersurface in a 
complex manifold M. First we note that T(M) may be regarded as the 
holomorphic vector bundle S, of tangent vectors of type (1, 0) to M. Let 
E be the restriction of T(M) to X. Then the natural map: C T(X) > C T(M) 
induces a injective homomorphism of T(X) to E as homomorphic vector 
bundles. (Recall that a bundle homomorphism A: E -> F between two 
holomorphic bundles is called holomorphic if L(9(u)) =(L(u)), u E r(E) 
L e S.) 

Let E be a holomorphic vector bundle over X. We put 

C '(X, E) EgA qS*, 

(-(X, E) (Cq(X, E)) 
and define differential operators 
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a": C"(X, E) ,1 I- t-(X, E) 
by 

(aq9)(L1, , Lp+1) = (-1)i-FLjP(L1, I L, , LP+i) 

+ Li,sj(-lyi-Fi(POLi, Lil Li, Li,. Lp+) 
for all 9 E Cq(X, E) and L1, , L ,, e F(S). Just as in the case of exterior 
differentiation d, we can show that Aq uagives an element of >'(X, E) and 
that 5qJ+1 ' 5q = 0. Thus the collection {Cq(X, E), 5q } gives a complex and we 
denote by Hq(X, E) the cohomology groups of this complex. 

Let {UTN(X), d} be the de Rham complex of X with complex coefficients, 
and Hk(X) the cohomology groups of this complex, the de Rham cohomology 
groups. If we put Ak(X) = Ak(CT(X))*, we have (C(k(X) = F(Ak(X)). For any 
integers p and Ik, we denote by FP(Ak(X)) the subbundle of Ak(X) consisting 
of all qp e Ak(X) which satisfy the equality: 

w( Y1, , Yp,, Z1 , Zk-pal) = 0 

for all Y1, ,* Y*, e CT(X)X and Z1, , Zk-p- I Sx, x being the origin of p. 
Then we have 

FP(Ak(X)) D FP-l(Ak(X)) 

F k(Ak(X)) Ak(X), FP q 
(Aq(X)) 0 

Furthermore putting FP(Cik(X)) F(FP(Ak(X)), we easily find that 
dFP(Cfk(X)) c FP(Cek+?(X)). Thus the collection {FP((fk(X))} gives a filtration 
of the de Rham complex. Let {E1pq(X)} denote the spectral sequence 
associated with this filtration. 

The groups ElP q(X) are of particular importance; they will be denoted 
by HP q(X). We define 

Ap q(X): = FP(AP+q(X)), Cfp q(X) = IF(Ap q(X)), 
CP,q(X): = AP,q(X)IAP+I~q-,(X) , Cp~q(X) = rF(Cp q(X)) 

Then the groups HP q(X) are the cohomology groups of the complex 
{eP q(X), d"}, where the operator d": (p q(X) -> tpq-,- (X) is naturally induced 
from the operator d: CjPpq(X) ( CfP q+I(X). 

Now EP AP(T(X))* is a holomorphic vector bundle by the rule: 

(Ycp)(u, ~., Up) = Y(cp(u, **, up)) + L.-l)it(Yui, ul, UP, U), * , Up) 

where 
9 E F(EP), u1, Up u F(iT(X)), Y e S 

and 
Yu= ..naf YA YU, a^z..1..f 
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PROPOSITION 5.5 (Tanaka). CGq(X) may be identified with C0(X, E,) in 
a natural manner and we have 

dot = (-I )a~p , TpCP,(X). 

Proof. Define a map cl: AP,"(X) GC(X, EP) by 

(C P}(J?Y1)9 - tax WYP); Z1P S Zq) 9p Y1f Y YP ZP gi Ze) 
for all g' e A "q(XX, Yl, *. *, Y, e CT(X) and Z1, *-, Zq e So. (It is clear that 
el is well defined.) Then we have the exact sequence of vector bundles: 

0 - P AAP+'-(X)-, A','(X) -P-- C(X, Eq) - 0 

whence CP.e(X)_C(X, EK). Furthermore we can easily verify the equalities: 

9.gg~p = (-ly)Pecdq 1)'dt'eq' p e Ut"'(X) , 
proving the proposition. 

Remark 5.6. Consider the case when X = bM where M is a complex 
manifold. Let IC'P,, d") be the complex in the sheaf category, associated 
with the complex {CP.e(X), d"}. Then it is easy to see that the complex 
QPq I d") coincides with the boundary complex { d4 5j introduced by Kohn- 
Rossi (cf. 1181, p. 465). As a consequence, HP. (X) is isomorphic to HI'I^(,). 

Definition 5.7. Let L,, ** - L.-, be the local basis for a section of S 
over U c X so that L,, . ., Lj 1 is a local basis for sections of S. Since 
S 03 has complex codimension one in CTX, we may choose a local section 
N of CTX such that L,, ..., L%,,_, L1, *--, L,,_ N span CTX. We may 
assume that N is purely imaginary. Then the matrix (ca1) defined by 

[Li, Li] = Eak Lk + Lb" Lk + cfjN, 

is Hermitian, and is called the Levi form. 
The Levi form is non-invariant; however its essential features are 

invariant. 

PROPOSITION 5.8. The number of non-zero eigenvalues and the absolute 
value of the signature of (cii) at each point are independent of the choice of 
L1,P *, L,_1, N. 

Definition 5.9. In view of Proposition 5.8, it makes sense to require 
that the Levi form have max (q + 1, n - q) eigenvalues of the same sign or 
min (q + 1, n - q) pairs of eigenvalues with opposite signs at each point. 
If this is true, we say that X satisfies condition Y(q). 

Remark 5.10. If X = bM, then the new and old Levi forms coincide up 
to sign and normalization, and X satisfies condition Y(q) if and only if M 
satisfies conditions Z(q) and Z(n - q - 1). 
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LEMMA 5.11 (The invariance of the Levi form). Let f: Q --+Q' be a 
holomorphic map between complex manifolds so that fir (where X is a 
partially complex manifold in Q) is an embedding. Then the number of 
positive (or negative) eigenvalues of the Levi form of X at x is equal to the 
number of positive (or negative) eigenvalues of the Levi form of f(X) at f(x). 

Recall that any Stein manifold can be embedded in CN for N large. By 
using the maximum principle, it is easy to see that in order to prove 
Theorem A in Section 1, it suffices to prove the following. 

THEOREM 5.12. Let XC: CN be a compact, orientable, real manifold of 
dimension 2n - 1, n > 2, with partially complex structure. Suppose the 
Levi form of X is not identically zero at every point of x. Then there exists 
a complex analytic subvariety V of dimension n in C' - X such that the 
boundary of V is X. 

Sketch of the Proof. We first extend X to a strip of a variety. For 
x e X, consider a linear projection from CG onto any complex linear space 
H. of complex dimension n such that the restriction of the projection to a 
neighborhood B(X; x, s) in X gives an embedding. For instance, we can 
project along a complex linear space, of complex dimension N - n, which 
is a direct summand of the real tangent space T of X at x. 

Let Y, be the hypersurface which represents the image of the projec- 
tion restricted to B(X; x, s) in H,. Then B(X; x, s) represents the graph of 
a smooth function f: Y' -__ C'r-, since the graph of f is maximally complex 
if and only if dbf 0 by a theorem of Bochner (cf. [41 or Theorem 5.1 of 
[12]). (Here ah is relative to Y. in H. = C".) If s is small enough, we can 
assume B(X; x, s) is connected. Hence Y, is a smooth connected hypersurf ace 
in B(C"; y, s), an s-ball in C". Let UY denote B(CL; y, s) - Y,. Then U1 has 
two components Us and U;. Here we denote U,1 to be the component such 
that the usual Levi form of Y, with respect to it has the same number of 
positive eigenvalues and the same number of negative eigenvalues as the 
Levi form induced on Y, from X by the projection 7r: C '-> C". Suppose the 
Levi form has at least one positive (respectively, one negative) eigenvalue. 
Then there exists 0 <Kel < s and a unique smooth function F-1- (respectively 
F-) on U., n B(C"; y, El) (respectively on U; n B(C"; y, e,)) such that 

F+ e O(wU n B(C"; y, sD) and F-/YZ. nB(C"; y, es) = f 
and respectively, 

F- e O(U,; n B(C"; y, ,s)) and F-/Yr n B(C"; y, s,) = f 

by the Lewy theorem (cf. Theorem 2.6.13, pp. 51-52, 1151). 
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We denote by W: the graph of Fe over Un n B(C"; y, 3), whenever Wi? 
exists; We claim that these W., x e X patch together to give a strip of a 
variety. Since the restriction of almost all linear projections will give local 
embedding, by a compactness argument, for s > 0 small enough, we may 
assume that for any xl, x2 e X, W,1 nA W2 ? 0, there exists a linear projec- 
tion ir: C`'v C- such that both W,, and W,2 represent graphs of holomorphic 
functions. If the projections of W,1 and W,2 are on the same side of Y in 
C%, then one sees easily that they patch together to give a strip of a variety 
W. If the projections of W,, and W,2 are on the different sides of Y in C1, 
then the following Cauchy theorem tells us that W., and W,, still can patch 
together to give a strip of a variety. 

CAUCHY THEOREM. Let f be a continuous function on an open set U in 
C'sn Suppose f is holomorphic outside a smooth real hypersurface. Then f 
is holomorphic on U. 

Proof. By the Osgood lemma (cf. Theorem I.A. 2 of [91), it suffices to 
prove the theorem for n = 1. In this case, the standard proof for the Cauchy 
theorem for one variable works; that is, by using the continuity of f on U, 
one can prove easily that the line integral of f over any closed loop is zero. 

Q.E.D. 
In order to finish the proof of Theorem 5.12 we still need to extend the 

strip of the variety W. At this point, we have to apply the deep theorem 
of Rothstein and Sperling. Their result (Theorem I, p. 547 of [271) provides 
us a normal variety V' over CN such that Theorem 5.12 is true. The image 
V of V' in CU is the variety we want. One should be a little bit careful 
here. When we project V' back to CN, we may get an extra component of 
a variety coming from the interior of V'. This extra component may inter- 
sect the original strip of the variety in a complex codimension one sub- 
variety, hence real codimension one in X, which is of (2n - 1)-measure zero. 
Therefore we cannot hope to have boundary regularity at every point, but 
instead we only get boundary regularity outside a set of (2n - 1)-measure 
zero. 

Remark 5.13. The last part of the proof of Theorem 5.12 is more or 
less well-known. It has been discussed in a series of papers by Rothstein 
[23], [24], [25] and [26]. Rothstein and Sperling [27], and Sperling [31]. For 
the sake of convenience to the readers, we discuss the theory of extension 
of a strip of variety in Section 6. 

Definition 5.14. Let X be an orientable real manifold of odd dimension 
with a partially complex structure. Then X is strongly pseudoconvex if 
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the hermitian matrix (cj) obtained in Definition 5.7 is always nonsingular 
and its eigenvalues are of the same sign. 

THEOREM 5.14. Let X be a compact, orientable, real manifold of dimen- 
sion 2n -1, n > 3, with partially complex structure in a Stein manifold 
W of dimension n + 1. Suppose that X is strongly pseudoconvex. Then X 
is a boundary of a complex submanifold V c W -X if and only if Kohn- 
Rossi's A,-cohomology groups HP q(91) are zero for 1 < q < n - 2. 

Proof. This is an easy consequence of Theorem 3.2, Theorem 5.12, a 
result of Rossi 122], and the fact that the number of local moduli for isolated 
hypersurface singularity is never zero. 

6. Extension of an analytic surface-piece 

In a series of papers 1231, [241, [251, [261, 1271 and 1311, Rothstein and 
Sperling have developed a beautiful theory of extension of an analytic 
surface-piece. The basic theorem which makes this theory work beautifully 
is the so-called "local extension theorem" of Rothstein 1261 (cf. Theorem 6.7). 
Here we follow Siu's proof of Rothstein's theorem (cf. [29]). The proof 
uses projections, special analytic polyhedra, analytic covers, elementary 
symmetric polynomials and the extension of holomorphic functions. The 
general theorem concerning the continuation of analytic surfaces over Cn 
(which are, roughly speaking, spaces whose points are prime germs of 
analytic sets in Cn) was first proved by Sperling in his Marburg dissertation 
1311. The proof uses the "local extension theorem" and Hartogs-type argu- 
ments. There are many further consequences due to Rothstein [231. Lemma 
6.17 is a function-theoretic result. Lemmas 6.19, 6.22 and 6.23 are prepara- 
tions for Hartogs-type arguments. Here we shall follow Rothstein and 
Sperling's treatment [27]. For further consequences of continuation of 
analytic spaces, we refer the readers to [23], [24], [25], [26], [271 and [31]. 

LEMMA 6.1. Suppose G is an open subset of CA, K is a compact subset 
of G, D is an open subset of Cr, and E is a closed subset of D x G. Suppose 
one of the following two conditions (i), (ii) is satisfied: 

(i) There exist holomorphic functions fi on D x G (i e I) such that 
E= {xeD x G: If,(x)I < lfor all ieI}. 

(ii) There exist holomorphic functions gj on D x G (j e J) such that 
E = {x e D x G: Re gj(x) = O for all j e J}. 
Then the following conclusions hold: 

(a) If A is a subvariety in (D x G) - E such that A c D x K, then 
dim A < n. 
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(b) If Al is a subvariety in (D x G) - E whose every branch has 
dimension > n + 1 (i 1, 2), such that 

A, n (D x (G -K))= A, o (D x (G - K)) 
then A, A_. 

Proof. Condition (i) follows from condition (ii) by setting 

Ifi E I} = legi, e Hi jf,, 

so we can assume that we have condition (i). 
(a) By considering the subvariety A n ({t} x G) of ({t} x G) - E for 

every t e D, we can reduce the general case to the special case n = 0. 
Suppose dim A > n = 0. We are going to derive a contradiction. We 

can assume that A is irreducible. Take x e A. Then Ifi(x) > 1 for some 
i e I. The sup of Ifi f on A is assumed at some point of A; it equals the sup 
of If, I on the compact set, 

A no {f, > Ifw 1I 
By the maximum modulus principle, f, = f,(x) on A. It follows that A is 
compact, contradicting dim A > 0. 

(b) Let A' be a branch of A. By (a), A, n (D x (G - K)) # 0. Hence 
a nonempty open subset of A' is contained in A2. It follows that A' C A,. 
Likewise every branch A' of A, is contained in Al. Consequently Al A2. 

Q.E.D. 
We introduce the following notations: For a e RN, we denote by al, ... , 

the coordinates of a. For a, b e RX we say that a < b (respectively a ? b) if 
al < b, for 1 ? i < N (respectively ai < bi for 1 < i < N). For O < b in R', 
denote by A-`(b) the polydisc 

{(z1, *. , z)eC": zij < bi for 1I < < N} . 

For 0 < a < b denote by G'(a, b) the set 

*(z * , zV) E A'(b): zi > al for some 1 < i < N} . 

When a,- = a, = r and b,- = b, = s, we write AN(s), GN'(r, s) 
instead of 5'(a), G''(a, b). When N= 1, AN(s) is simply denoted by a(s); 
also A"(1) is simply denoted by A. 

THEOREM 6.2. Suppose D is a connected open subset of Cn. Suppose 
0 < a < b in R' and V is a subvariety of D x GN(a, b) whose every branch 
has dimension >n + 1. Suppose A is a thick set in D such that, for every 
t e A, V n ({t} x G-(a, b)) can be extended to a subvariety in {t} x AN(b). Then 
V can be extended uniquely to a subvariety V in D X AN(b) such that every 
branch of V has dimension >n + 1. 
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(Recall that a subset A of an open subset D of C' is called a thin set if 
A c U. 1A, and A, is a subvariety of codimension ?1 in some open subset 
of D. A subset of D is called thick if it is not thin.) 

Proof. The uniqueness of V follows from Lemma 6.1 (b). 
To prove the existence of V, we introduce the following notations: 

Suppose E is a subset of CG x C', H is a subset of Cn, and 0 < c < d in R'. 
E(H) denotes E n (H x C'). When H {t}, we write E(t) instead of E({t}). 
E(.,d), El,dI, and El,,,) denote respectively E n (C 7 x Gc( , d)), E n (cam x 
G'(c, d)), and E n (Ce x (Gn(c, d) n 5'(d))). 

Let A' be the set of all t e A such that, for every open neighborhood 
U of t in D, U n A is thick. It is clear that A' is thick. 

(a) We make the following additional assumptions: 

V is of pure dimension d, 
dim V(t) < d- n for t E A'. 

We are going to prove that for every t E A' there exists an open neighbor- 
hood W of t in D such that V(W) can be extended to a subvariety in 
W x &`(b). For t e A', let V(t)- be the pure-dimensional subvariety in 
{t} x A'(b) which extends V(t). Fix t0 E A'. Take a < a' <b' < b in RX . If 

V(tO) = 0, then (W x C-A) n Vra',h'V = 0 for some open neighborhood W of 
t in D, and, by Lemma 6.1 (a), W n V(ab = 0, which implies that V(W) 
is a subvariety of W x 5'(b). Hence we can assume that V(tO) has pure 
dimension d - n. By the theorem on the existence of special analytic 
polyhedra (see the appendix of Chapter 2 of [291) there exist holomorphic 
functions f, , fk on Cn x zA)(b) (where k d- n) and an open neighbor- 
hood U of {t0} X A'a') in D x AA(b') such that 

V(t0) ca'Q U n V(to)- n F--l(Ak) U n V(to)- 
where F: C7' x C' > Ck is defined by f, ., Ak. There exists a relatively 
compact open neighborhood B of {to} x &-(a') in U with 

B n V(t)y U rn V(to)- n F-l(Ak) 

Choose 0 < a < 1 such that 

V(tr)n, a'l C U n V(to)- n F -(k(a)) . 

Take a < / < 1. There exists an open neighborhood W' of t0 in D such that 

(i) WI' x A (a') c B; 
(ii) v n (w' x D(AAv(aP))) c F-1 (Ak (a)); 
(iii) Un V [a', b) F(2 jk(,j) is disjoint from (DB)(W'). 

The map q' from X: V n B(WI)(a', b) n F-'(Gk(a, /3)) to W' x Gk(a, /3) 
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defined by (t, , t,, -f, -, fk) (where t,, *, to are the coordinates of Cn) 
is proper, because, if K is a compact subset of W' and ca <a' < 3' < ,3, then 
the inverse image of K x Gk(a', ,3') under q is 

B n Vha',bI](K) n F-j(Gk(a, ,3)), 

which is compact. For t e w nA' the map At from 

V(t)*: = B n V(t)- n F -1(A0v(,/)) 
to {t} x Sk(^) is proper, because, if 0 < /3' < /3, then the inverse image of 
{t} x Ak(/3') under At is 

B q V(t)- n F-'(Sk(/3')), 
which is compact. 

Now let us recall the following lemma which can be found in 1291. 

LEMMA 6.3. Suppose Q is a Stein open subset of CO and qA: Q Ck is 
a holomorphic map. Suppose U is a connected open subset of Ck, Q' is an 
open subset of Q, and X is a subvariety in Q' such that 9/X makes X an 
analytic cover over U. Suppose U is a connected open subset of Ck containing 
U. 

(A) If Xi* is a subvariety in an open neighborhood Q* of Q' in Q such 
that Xi* n Q' =X and cp/Xi* makes Xi* an analytic cover over U (i = 1, 2), 
then Xl* = X28. 

(B) Suppose one of the following three conditions (a), (b) and (c) is 
satisfied. 

(a) (i) There exists K c Q such that Kn --'(CU) > U, induced by q', is 
proper; 

(i)X c- K n Tw-1 ); 
(iii) Every holomorphic function on U which is locally bounded on 

U can be extended to a holomorphic function on U. 
(b) Every holomorphic function on U can be extended to a holomorphic 

function on U. 
(c) (i) There exist a connected open subset D of Ck-l and 0 < a < h3 such 

that U = D x (A(/3) - A(a)) and U = D x A(^3). 
(ii) There exists a thick set A in D satisfying the following pro- 

perty: for t e A, Xt: X qn (-({t} x C) can be extended to a 
subvariety Xt in some open neighborhood Qt of Q' in Q such that 
qI X, makes Xt an analytic cover over {t} x A(/3). 

Then X can be extended to a subvariety X in Q n q-1( U) such that q' X 
makes X an analytic cover over U. 

By Lemma 6.3 (B) (b) (c) applied to the analytic cover 
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: X-, W' x Gk(a, a) 

X can be extended to a subvariety X in 

(WI x AN(b')) n F-1(k(13)) 

such that the map 
"I X ) 

Wf X Ak(a3) 

defined by (t, , f1, , fk) makes X an analytic cover over W' x Ak(/3). 

By Lemma 6.3 (A), X(t') V(t')r. Hence 

X(t')[Oa'] C: F-I(Ak(a)) 

Take a < h3* < h3. There exists an open neighborhood W" of to in W such 
that 

(t) X( W")[o a'] n F-1(Ak(3*)) c F-l(Ak(a)) . 

Since X o F-(Ak(B*)) is disjoint from (aI)(t'), there exists an open neighbor- 
hood W of t0 in W" such that 

(tt) X n F-1(, (/*)) is disjoint from (DB)(W) . 

Let V' be the union of 
x n B(w) n F-1(Ak(,6*)) 

and 
v n B(W)(a',b) n F-'(Ck- k(a)) 

As the union of two locally closed subvarieties in B(W), V' is a local 
subvariety in B(W). Take a < ' < Ad' < hi*. Since X is the intersection 
of X and 

B(W V)(a',b') n F l(Gk(a, /3)) 

it follows from (ii) and (t) that V' is the union of 

x n B(w) n F-1(5() 
and 

v n B(W)[a'b) n F-j(Ck -_ k(a')) 

which are both closed subsets of B(W). Hence V' is a subvariety of B(W). 
Let 

V* = V' u ((V - B)(W)) 

We claim that V* is a subvariety of Wx A-(b). Take x e (DB)( W) arbitrarily. 
Because of (i), (iii) and (tt), we can choose an open neighborhood Q of x in 
U which is disjoint from W x A'(a'), 

u nV[a',b) n F-0 ( 

and X n F1(5k(,*)). Then Q n v* = Q n v. It follows that V* is a sub- 
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variety of W x AN(b). The claim is proved. Since V',bl - V(W)(b'b), by 
Lemma 6.1 (b), VI* b) -V(W). Hence we have proved that for every t E A' 
there exists an open neighborhood W of t in D such that V(W) can be 
extended to a subvariety in W x AN(b). 

(b) Let D' be the largest open subset of D such that V(D') can be 
extended to a subvariety in D' x AN(b). It follows from (a) that, under the 
following additional assumptions: I V is of pure dimension d, 

dim V(t) < d-n for teD, 

D' is a nonempty closed subset of D. Hence D' = D. 

(c) Let wu: V-* D be induced by the natural projection D x G`(a, b) -D. 

Let S be the closure of the set of points of V where the rank of wc is <n. 
Take a < a' <b' < b. Then WU(S[a',b']) is a closed thin set in D. Let D' 
D - WU(S[a',b']). 

Let V = Ui VI') be the decomposition of V into pure-dimensional 
components. Let C be the set of all t E D such that, for some i # j, some 
nonempty open subset of Vt')(t) is contained in V'j'. Then C is thin in D. 
This is a consequence of the following proposition (appendix of Chapter 2 
of [291): 

PROPOSITION 6.4. Suppose D is an open subset of Ck, G is an open subset 
of Cl, and V, W are subvarieties of D x G such that V is irreducible. 
Suppose A is a thick set in D and for every t e A some nonempty open subset 
of V n ({t} x G) is contained in W. Then V c W. 

For t e A - C, V'(t) can be extended to a subvariety of {t} x `'(b) for 
i e I. By applying (b) to the subvariety V (D')(a',b) of D' x G'(a', b') and 
to the thick set A - W(S[a',]) - C in D', we conclude that V'(D')(a',b' can be 
extended to a subvariety in D' x A-'(b') for i E I. By Lemma 6.1 (b), VI'(D') 
can be extended to a subvariety in D' x &-`(b) for i E I. 

Let L be an arbitrary relatively compact open subset of D. Then there 
exists an N-dimensional plane T in Cn x C' such that for some nonempty 
open subset Q of D' and for some open neighborhood R of L in D we have 

(i) (Q + T) n (cn x A(b)) Q D' x &-`(b), 
(ii) L x &-'(b) c (R + T) n (Cn x A\(b)) c D x &`(b), 
(iii) dim (x + T) n V( < dim V'i - n for x e VI'i and i e I, where 

Q + T {x + y:xeQ, ye T}, 
x + T = {x + y: y e T} . 

This follows from the next lemma which can be found in 1291. 
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LEMMA 6.5. Suppose A is a subvariety of dimension <k in an open 
subset Q of Cn and 1 ? I < k. Let G. l(Cn) be the Grassmannian of all 
(n - 1)-dimensional planes in C- passing through 0. Let R be the set of all 
TeGn 1(Cn) such that dimA n (x + T) > k-I + 1 for some xA. Then R 
is thin in G.1 (Cn). 

By (b) there exists a subvariety V") in 

(R + T) n (cn x AN(b)) 
such that 

n (R + T) n (Cn x GN'(a, b)) = v 0i' n (R + T) n (Cn x G N(a, b)) 
(i E I) . 

n (L x AN'(b)) is a subvariety in L x A-'(b) extending V ')(L) for i E I. 
Since L is a subvariety of a relatively compact open subset of D, V can be 
extended to a subvariety in D x A&(b). Q.E.D. 

COROLLARY 6.6. Suppose 0 < a < b in RN, D is a connected open subset 
of Cn, D' is a nonempty open subset of D, and V is a subvariety in 
(D x GN(a, b)) U (D' x AN(b)) whose every branch has dimension >n + 1. 
Then V can be extended uniquely to a subvariety in D x AN(b) whose every 
branch has dimension ? n + 1. 

We shall employ the following notation in the remainder of our discus- 
sion. Let 

97 =(i + 2 ZZ- ; i r> 0; a 1, * S** s 

and Vf flX1 (9. K 0); A =D(; 'F= U (qp > 0). Further let p be a point of 
'k and U be a neighborhood of p. 

The following two theorems on the local extension of analytic sets which 
we are going to use are slight variation of Lemma 6.1 and Theorem 6.2 (cf. 
[261, page 125, Theorem 2 and Theorem D). 

THEOREM 6.7. Let M be a pure k-dimensional analytic subset in U n 9( 
and k > s + 1. Then M admits unique extension across p. That is there 
exist arbitrarily small neighborhoods V of p and a pure k-dimensional 
analytic set M, in V with the following properties: 

(l) mv n 9= mn V. 
(2) The germs (Mv)p are all the same. 
( 3 ) Mv is the union of finitely many components which all contain p. 
(4) Mv n0 9 has only finitely many components. 
( 5 ) If m represents a prime germ of Mv at a point q e ?R, then m 0 o # 0; 

hence mMn vn qt. 
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In addition: every holomorphic (meromorphic) function on the normali- 
zation of M has unique extension to the normalization of M,. 

The uniqueness of the extension follows directly from the next theorem. 

THEOREM 6.8. Let M1, M, be a pure k-dimensional analytic set in U and 
k ? s. Suppose M, n Set = m, n Se. Then the germs of M1, and M2 are equal 
at p. Further, for each neighborhood V of p: M1 v vi : # 0, M2 v V n ato 0. 

An important consequence of Theorem 6.7 is the following theorem. 

THEOREM 6.9. Let M be an analytic and pure k-dimensional set in U 
with k > s + 1. Further let M be irreducible at p. Then there are arbitrary 
small neighborhoods V at p so that M v v n 9f is also irreducible. 

Proof. Because of (4) of Theorem 6.7, we can assume that M v v n vt 
has only finitely many components. Then V can also be chosen so that each 
of these components has p as boundary point. Let Ml and M2 be such com- 
ponents. Each of them is an analytic set in V n VI and by Theorem 6.7 has 
a uniquely determined extension at p which is contained in M. The germs 
generated by the extension at p must coincide with germs of M since M is 
irreducible at p. Then M, and M2 must be equal. 

Following Rothstein, by an analytic surface-piece (or surface) F of 
dimension k over Cn, we mean F is a normalization of a local analytic set 
in Cn. We shall use the following convention. By a real analytic point set 
R, we mean a closed set with the property: each point has a neighborhood 
U, so that U n R is described by finitely many real analytic equations and 
inequalities. In this case then each point p of R has an arbitrary small open 
connected neighborhood U so that 1) U n R is path-connected and U n R 
u n R. Here we use M for the closure of M. 2) U - R has finitely many 
connected components. Each of them has p as a boundary point. 

Connectedness always means path-connectedness unless otherwise 
specified. 

We now prove the following extension theorem of analytic surface 
pieces which will play a fundamental role in the sequel. 

Let F be an analytic surface-piece over Cn. Then j: F-- Cn is an 
embedding which associates at each p E F its coordinates in C". 

THEOREM 6.10. Assumptions: (1) F, F' are subs paces of a k-dimensional 
analytic surface F over C"; k > s + 1. 

( 2 ) F' C F. 
(3) {F'0n9iR}D{F'0,2}. 
(4) aFn IcF'. 
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(5) j(F) A = 0 
( 6) If p,. is a sequence of points of F without a limiting point in 

F U F', then the limiting points of j(pm) are in kR. 
Conclusion: there exists a surface-piece F* with the following proper- 

ties: 
1) F* n 9( = (F' U F) n vit. 
2) FcF*. 
3) For R: = F* - SF', then j(R) c Tf. 
4) F* n A9t n R contains F* n AR. 
Moreover, each holomorphic (meromorphic) function on F U F' can be 

extended to a holomorphic (meromorphic) function on F U F' U F*. 

In fact, we can write F* = F U F' U M* where M* is a neighborhood 
of those boundary points of F which do not lie in F'. All boundary points of 
M* n (Wt U A) lie inside F U F'. So R = aM*- (aM * A (F U F')). M* can 
be made arbitrarily small. 

Remark 6.12. For surfaces over C", we write Fn Ai instead of 
j-'(j(F) Aisi). fr is the complement of sit U adl. 

Before proving Theorem 6.10, we first prove the following lemma. 

LEMMA 6.13. Under the assumption of Theorem 6.10: If p,,, e F and 
j(pm) converges to q e ~R, then there exists a neighborhood U of q and an 
analytic set M in U (that is, M analytic in U* z U) with the properties: 

(1) {Unj(FUF')}D {Mn Un9}D{Unj(F)}; 
(2 ) M has only finitely many components and each of them contains q. 
(3 ) If m is a representative of a prime germ of M n U at p e Rk, then 

m has points in 91. 
( 4 ) If m is a prime germ of Mn U at p e R, then m is a boundary 

point of F or m is an interior point of F' or else both are true. 

Proof. Since aF n 9w lies completely in F', there exist at most finitely 
many q, in aF n VT with j(qj) = q. Therefore there exist a neighborhood V" 
of q and a neighborhood U, of qj with the properties: 

(a) U c F'; 
(f3) j(Ui) is an analytic set in V*; 
(y) If p e aF n S2 and j(p) e V*, then p lies in one of the Uj. 

(a) through (y) are always realized because of the assumptions of Theorem 
6.10. We claim: 
(*) The union N of all j( Ui) n SN with j(F) n V* is an analytic set in 

v* n 9S. 
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For the proof, let s be a point in V. n (. The boundary points of F 
situated above s are interior points of F' (Assumption (4)). Then above s, 
there exist only finitely many interior points pk and finitely many boundary 
points ys of F. The J, belong to the union of Uj because of (^). In a neigh- 
borhood of s, N is therefore the union of finitely many analytic subsets. 
It follows that N is locally analytic there. It follows further that N is 
closed in V* A a4. Hence (*) follows. 

Since both F and F' are purely k-dimensional, N is purely k-dimensional. 
By the construction we have further, 

(**) {j(F U F') nv*A D NV {j(F) n v*} 

Because of Theorem 6.7, N extends across q. There are arbitrarily 
small neighborhoods V of q and an analytic subset M, of V with the pro- 
perties in Theorem 6.7. We choose U so that U ( V and set M: = M,. 
Then M is the set we want. (1) is clear. (2) and (3) are given in Theorem 
6.7. Finally (4) follows, because if m e M n U n 'R, then m lies on the 
boundary of F or in F' because of (3). In the second case, it follows that 
me Uj(Ui), i.e., m e F' and m E SF'. 

Proof of Theorem 6.10. Let H be the set of limit points q of j(F) in tR. 
H is closed. For each q given as in Lemma 6.13, there exist a neighborhood 
U(q) and an analytic set M(q) in U(q) with the properties (1)-(4). Let m(q) 
be the union of an analytic surface-piece above M(q) whose points are the 
prime germs of M(q). Further, let F(q): = F U F' U m(q). Obviously F(q) 
is an analytic surface-piece because of properties (1)-(3) of Lemma 6.13. 
Condition (1) is satisfied: F(q) n s2( n U(q) = (F U F') n s~i n U(q). Moreover, 
the following is obvious: 

(*) For each neighborhood U(q) c U(q), the part of F lying over 
U is relative compact in F(q). 

Under U(q), q E H, there exist finitely many U(qi) with the associated 
U(q1), m(qi) and F(qD): = F U F' U M(qi), so that H c U U(qi). Now let F * be 
the union of the F(qi). This F* satisfies the claim. Because of (*), the part 
F, of F lying over U U(qi) is relatively compact in F*. F - F1 is a compact 
subset of (F U F') n a( because of assumption (6). Hence 2), which states 
FcF*, follows. From the construction, 1) follows immediately. From 
Lemma 6.13, 4), we have: if r E sR is a boundary point of some m(qj), then 
i' is an interior point of F' or boundary point of F. In both cases, r is an 
interior point of F*. Since the boundary points of m(q1) lying over 9( are 
interior points of F U F', 3) follows. Finally to obtain 4), let p be a point 
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of F* n R. It is required to show: p e S: = F* n fl n Lj. If p is a boundary 
point of F*, then p must be a boundary point of F' because of 3). By assump- 
tion (3), it follows that p e S. Thus let p be an interior point of F*. If 
p e F', then p e S. If p is not in F', then p is an interior point of m(qi). 
Then by Lemma 6.13, 3), it follows that p e S. Therefore the existence of 
F* is proved. 

At the same time because of Theorem 6.7, the function extends to F*. 

THEOREM 6.14. Let F be an analytic k-dimensional surface; k > s + 1. 
Further let Mbe a closed, connected (i.e., if M- M U Al2; M1, M, closed and 
mA n m2 = 0, then Ml = M or M2 = M) set of interior points of F and 
Mc F n .(. Finally let U(M) c F be a connected open neighborhood of M, 
which satisfies the following condition: Each connected component of 
U(M) n 1 has a boundary point of M. Then U(M) n 9t is connected. 

Proof. Let the U1 with ui n M= R, be the connected components of 
U(M) n 9. Then M= -UR1; Ri- R. Suppose that there are several Uj. 
Since M is connected, there exist U., U2 and a point r e M so that r@ c R1 n Re. 
By Theorem 6.9, r has an arbitrary small neighborhood V(r) c F, for which 
V(r) n w is connected. U1 and U2 must therefore be connected to each other; 
so U1 = U2. 

Before we can continue, we have to introduce the new concepts of 
cycles and arcs on an analytic surface. 

Following the terminology of Rothstein and Sperling, by a cycle Z of 
the analytic surface F, we mean here that Z is a closed, connected set of 
the interior of F, which satisfies the following conditions. 

a) There exists an arbitrarily small neighborhood U of Z in F such 
that Z separates U into two open parts U , U- with 

1) u+nU-=0, 2) U=U+ UZUU-, 3) z=au+nau-. 
b) If p, q are points in U -Z and w c U is any path from p to q, then 

there exists in every neighborhood of w, a path iv- from p to q, which is 
divided by the cycle Z into finitely many parts, belonging alternatively to 
Us and U -. (Hence the path goes from Ut through the intersection point 
iv- n Z towards U- or vice versa.) 

c) Z is "piecewise smooth"; i.e. Z is the union of finitely many Z, in 
such a way that j(Zi) is a closed real analytic point set of topological dimen- 
sion 2k - 1 and such that the embedding j: Zi --> j(Zi) is topological. 

Remark 6.15. We do not demand that U 1 or U- be connected. This 
assumption will not simplify the proof. In case F is a manifold, one can 
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naturally assume that U+ and U- are connected. From c) it follows that 
every intersection of Z with a real-analytic point set has only finitely many 
connected components. This we shall often use without special note. 

Definition 6.16. Let F be an analytic surface over Pn; dim F k. The 
point set N in F is called bounded, if there exists an analytic plane E of 
dimension q in PI with q + & = n + 1, so that En N 0. 

Following Rothstein and Sperling, we now introduce the notion of arc. 
We first fix our notation. The set VI (r): = nfl(q,, < o), s = n - q, q + k = 
n + 1, with q'0: zaiz(l + 1/r2) - jz;- 1 is a neighborhood of the plane 
z= z_ = 0 in PI. Further, let 'R(r) =a~?(r) and 'F(r) be the com- 
plement of Vt (r) U AR(r). We write also VI instead of Vt (r) if there is 
no confusion. Let Z be a bounded cycle in F, dim F =k > s + 1, so that 
z n 9((r,) = 0 for some r,. 

There exists an w such that Z n v,(w) = 0 and Z n 91(w) # 0. If 
z n (' (r) : 0, then Z n v-(r) decomposes into finitely many connected com- 
ponents A(r), called "A-arcs". Also Z n 91(r) decomposes into finitely many 
connected components K,, called "K-arcs". The latter ones are closed; on 
the other hand A-arcs are not. All boundary points of A-arcs lie on K-arcs. 
But there exist K-arcs which contain no boundary points of A-arcs. This 
is the case for all K(w). These K-arcs, which contain no boundary points 
of A-arcs, are called T-arcs and will be denoted by T(r). 

LEMMA 6.17 (embedding of K-arcs in strips). For each K-arc K, there 
exists an arbitrarily small neighborhood S(K) c F with the properties: 

1) S(K) is open and connected; K c S(K); 
2) S(K) n se is connected. 

Moreover 
3) a) S(K) n OR is connected, b) S(K) n .'J = S(K) n UA. 
4) a) Z n S(K) is connected, b) S(K) n z = S(K) n z. 

c) K-=U nS(K)nz= UR nS(K)nz. 
5) S(K) n vi n UR contains S(K) n (R. 
Remark 6.18. Neighborhoods with these properties are called strips. 

That strips with property 2) exist is a function theoretic result. 
Proof of Lemma 6.17. Since 'R, F, Z, K are real-analytic sets, then at 

each point p in K, there exists an arbitrarily small open neighborhood 
U(p) c F, so that 3) and 4) a), b) with U(p) in place of S(K) are fulfilled and 
in place of 4) c) we have: U(p) n K is connected and U(p) n K = '2 n U(p) n z= 
.R n u(p) n Z. Further, every component of U(p) n Elf has p as a boundary 
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point. Let S(K): U U(pi) be a finite covering of K. Then for S(K), 1), 3) 
and 4) hold. Also 5) is fulfilled. For by Theorem 6.8, it follows p e S(K) n At 

if p e S(K) n 'R. Now p e S(K) n R., so by 3) b), also p e S(K) n 'R. 
Finally we assert that 2) is also fulfilled. By Theorem 6.14 it suffices 

to show that every component S of S(K) n at has boundary points on K. 
This is now clear since every component of U(pi) n St should have the 
boundary point pi. 

Now we are going to deduce some consequences for T-arcs. T: = T(r) 
is embedded into a strip S(T) according to Lemma .6.17. As T by definition 
contains no boundary points of A-arcs and Z n S(T) is connected by 4), 
Lemma 6.17, so Z n S(T) n vt is empty. However S(T) n st is not empty 
(Theorem 6.8). We can assume S(T) c U, where U is a neighborhood of Z 
introduced before Remark 6.15. Let S+: = U+ n S(T) and S-: = U- n S(T). 
As Z n S(T) n se is empty and S(T) n Se( is connected, exactly one of the 
following two cases occurs: (+) S- n S~i ? 0; s+ n S -0 or (-) S+ n 0; 
S- n St = 0. Assume (+) holds. We claim that then (*) T = 9_- n A R. 

For the proof, let t be a point of T. Then t lies in the interior of S(T) 
and on Z. Hence t is also in S' n tR. Secondly, let t eS+ n R. Since 
s+ n Of( = 0, then S(T) n Wt = s- n af. Because of 5), Lemma 6.17, t is then 
in s- n OR. Hence t is in Z. It follows that t e S(T) n Z. According to 4), 
c), Lemma 6.17, it follows finally that t e T. 

Now let R be the set of these boundary points of S- which do not lie 
in Z. Then j(R) CT. 

Suppose r e R, then r e aS(T); hence r does not lie in T. Because of 
r does not lie in S+ n AR. As S+ n s?( is empty it follows that j(R) C T. 

Therefore the following lemma is proved. 

LEMMA 6.19. For every T-arc, there exists a strip S(T) such that either 
for the piece of surface F(T): - S+ or for F(T): = S, we have 

a) F(T) c 'JF, 
b) znS(T)c&F'(T), 
c) aF(T) -(znS(T))cir. 

Next we are going to deduce two important results for A-arcs. In the 
following, let V be a neighborhood of Z, which is separated into the parts 
V+, V- by Z. Further, let the set of A(r')-arcs a1, which satisfy the fol- 
lowing conditions, be given: 

( 1 ) To each aj, we associate a piece of surface ]I (not necessarily 
connected) so that 
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1. a, c afi and every connected component of fi has boundary point 
in a,. 

1.2 ai lies neither on the boundary nor in the interior of Ik ? f, 
1.3 f, lies either on the positive or on the negative bank of ai. This 

means that one of the following statements hold. 
(?) For every p e aj, there exists a neighborhood U(p) ci V, so that 

fi D U(p) n v+; U(ft n U(p) n v-) =0 or 
(-) For every p e a, there exists a neighborhood U(p) c V so that 

fi:) U(p) n v-; U(f1 n u(p) n v+) = 0. 
(2) j(f ci C 1(r'). The boundary points of fA lie either on U a, or above 

{'R(r'). 

Remark 6.20. The ai's are naturally disjoint. Now because of (2) 
af, n sx c Uja,, it follows from 1.1 and 1.2 that either fi = fki or f, A f1c = 0. 
It is explicitly allowed that different a can be assigned to the same f. In 
the proof of Theorem 6.24, we shall show in p. 108 (d) that the f are 
uniquely determined by a. We shall not use this temporarily. 

Definition 6.21 (Statement E). If a1, ft satisfy the conditions (1), (2), 
we shall say: "Uai bounds Uft in 9t". 

Assumption for Lemma 6.22 and Lemma 6.23. Let A; be a connected 
component of zn {J9(r') n .iR(r')}. Then UA2 - Uai U UK, with ai an 
A-arc and Kj a K-arc. Suppose AA n9-(r') # 0 so that on each K there 
are boundary points of a. No K is also a T-arc. For each a,, let fi be 
assigned as above so that for aj, fi, Statement E holds. Finally we assume 
here that Uft U U Al is connected. 

Now the following lemma is of decisive significance. 

LEMMA 6.22. Let A = Ua' U Uk' be a connected component of zn 
{I1(r') U 9k(r')}. Then either for all these ai's the statement (+) is satisfied or 
for all these ai's the statement (-) is correct. Suppose (+) holds. Then for 
those K, there exist arbitrarily small strips S(K) (cf. Lemma 6.17), so that 
S(K) n z n9(c Usa, S-(K) n (uf,) =0, S (K) nAl c Ufj and S+(K) n 
(UfP 0. 

Proof. (1) We show that if a, U K U a2 is connected, then f1, f2 lie on 
the same side of Z. Embed K according to Lemma 6.17 in a strip S(K) c V 
in such a way that S(K) n 9t is connected. U a, separates S(K) n V into 
connected subspaces of a surface-piece of V. There exist points p1 in 
A n S(K) n 9( and p2 in f2 n S(K) n 9l. There exists also a path w from p, 
to p2 with the properties: 1) w U S(K) n V(; 2) w intersects U ai only in 
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finitely many points s, and runs from V' through s, to V- or vice versa 
(cf. b) in the proof of Theorem 6.14). It follows now that as the boundary 
points of fi lie either on U ai or above 'R, the open piece of the path wJ 
between s, and sl+, either lies completely in fi or no points of it lie in fi. 
Further it follows from the assumption that if WA C Ufi, then wA+i n (Uft) = 0 
and conversely that if w; n (Uf) = 0, then w2,, c Ufi. So we have finally 
that if p, G V+, then also p2 e V+. Therefore the first part is proved. 

(2) Suppose (+) holds. Then obviously S+(K) n (uf+) 0. By Lemma 
6.17 S(K) n Z is connected and S(K) n z n 'R = K. Thence p e S(K) n z n vt 
can be connected to K through a path in vi n S(K) n Z. Therefore S(K) n 
Z n S c U a'. Further, since S(K) n V( is connected, it follows as in (1) that 
S+(K) nAW c Uf, and S-(K) n Uf, = 0. 

We repeat the assumption for Lemma 6.23: The A4 are connected com- 
ponents of Z n { u(r') U (R(r,)}; UA = U ai U U Ki. On each of the K there 
lies a boundary point of a. The ai, fj satisfy Statement E. Finally let 
Uft U UA, be connected. 

LEMMA 6.23. There exist a neighborhood F' of UA2, r* > r' and a 
piece of surface F* so that for all ? r'*, the following is true: the com- 
ponents A., B0 of F' A Z An W(r) together with the components of F* n g(4) 
satisfy the Statement E. The AP arise from A2 "by continuation". The B. 
are the other components. 

Proof. (1) Take a component Al = U a' U UK, and use Lemma 6.22. 
For the ct, suppose (+) is valid. Then there exist arbitrarily small disjoint 
strips S(K) c V with the properties: {S(K') n zn At} c Ua'; S-(K') n 
(Ufi) = 0; {S+(K') n s211 c Ufj and S+(K') n (Ufi) ? 0. For the union S, 
of S(Kj) the corresponding statements hold. 

To a' - (SA n a'), we associate a neighborhood Us c V with j(U,) cWV(r') 
so that Ui n V+ is contained in Ufi. Now let S,: = S, U U U. In our case, 
we have again SR n (Uf,) = 0 and So n 91(r') c Uft 

We can do this for all components of A and require at the same time 
that the closure of S2 is disjoint. At first we must assume that both case 
(+) and case (-) can occur for A. Therefore we establish that S* = ST 
when (+) occurs, and S*: = S when (-) occurs. 

(2) Now let F': = USA. For a fixed fi, we set F: = fi and then F' 
satisfies the assumptions of Theorem 6.10 (we set F: = V U Ufi). Con- 
sequently there exists a piece of surface Fi with the properties 

1) ficFi; 
2) (F' U fi) n 9(r') is equal to Fi n 9(r'); 
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3) Fi n )f,(?R) f LR(?r') contains F, n 'k(r'); 
4) Fi = F' U f, U M, where M, is a neighborhood (which can be chosen 

arbitrarily small) of those boundary points of fi which do not lie in F'; 
5) Let Ri: = (aMi - aMi n (F' U fi)). Then j(Ri) C cf(r'). 
(3 ) Let Mi be so chosen thatM, nF'lZ = 0 andmi n(F-USi> 0. 

For F' n Z n Ak -UK consists of only interior points of F'. For Li: - 

af-(fi nF'), thenLi nF'nZ= 0. HencealsoMi nFnzZ= 0, if M 
is sufficiently small. Now assume p e Li n (F'- US*); then fi n (F'- US* )# 0. 
Because p must be on &R and an interior point of Mi, there is a neighbor- 
hood U(p) with connected U(p) n A. The whole U(p) n W must therefore 
belong to fi. Thenfi n (F' - US*l) 0 since {Ffntnl Wn}D{F' n ff n J} 
and also (F' - U Sfl) n u(p) n 9f cannot be empty. This contradicts however 
the definition of SZ . For example, S* = S+ is precisely true when S- n 
(Ufi) = 0. So it follows that Li n (Ff - US*) is empty. If we take Mi 
sufficiently small, then Mi n (F' - US ) is also empty. 

(4) Finally let F: US* U Uf, U UM, and L be the set of those 
boundary points of F, which do not lie on F' n z. We claim that j(L) c 
'T(r'). For the proof, notice that j(Ln mi) cM (>(r') (cf. (2), 5) above). Further, 
since the boundary points of fi are either in Mi or on U ai or lie in Fi, we 
still need only to investigate L n U S: = L*. Assume there exists a point 
p in L* n AR. Then there is a K so that p e S(k) n S2, because of 5), Lemma 
6.17. Therefore p is also in S(k) n SW. Further {S*(K) n i} c Ufi and by 
construction Fn (F' - US S 0 (cf. (3)). Consequently p must be a 
boundary point of an fi. Since p does not lie in F' n Z, it follows that 
p e U Mi. This means p is not a boundary point of F. Contradiction! On 
VI there cannot be any point of L*. For by construction, US* n vi c Uf'. 
Hence j(L) c ,f(r') is proved. 

( 5 ) Now fix r * > ri' so small that j(L) c Tf(r*). Define F*: = F n S(r*). 
By construction the boundary points of F* either lie above 'R(r*) or they 
are boundary points of F, whicn are contained in F' n Z. The latter form 
the arcs A., B0. The Ap contain AA. The B, are now arcs. 

By construction, it follows at once that A., B. and the component of 
F* satisfy Statement E, if to each arc ai there is associated the surface- 
piece Vi consisting of the union of all the components C, of F where a, 
meets aC,. 

1.1 ai c a Vi and each component of Vi has a boundary point of ai 
(clear). 

1.2 ai lies neither on the boundary nor in the interior of Vk # Vi. 
This is also clear from the construction of S* and Mi (it is Mi n 
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F'nZ= 0). 
1.3 V, lies either on the positive side of ai or on the negative side of 

ai. This is obviously true by construction for Vi n (US*) and for 
v, n (U'). By (3) it is also true for V, n (UMJ. Hence it is true 
for all of V,. 

2. j(Vi) c SN(r*). The boundary points of Vi lie either on ai or above 
y(R?*). This is clear. 

(6 ) That the corresponding statement remains true for all i < ??* is 
obvious. Therefore Lemma 6.23 is completely proved. 

Finally we come to prove the main theorem of this section. 

THEOREM 6.24. Let Z be a bounded cycle on a surface F; dim F-k, 
over PI (k > 2) and A be an A(c)-arc, hence a connected component of Zfn Vi((c). 
Then there exists a connected piece of surface F, j(F) c '9((c) so that A 
8F n a((c), j(aF - A) c FR (c). 

Remark 6.25. In particular the following is valid: For every p e A 
there exists a neighborhood U(p), so that (let V be a neighborhood of Z 
introduced in a), the proof of Theorem 6.14) either 

(+) u(p) nV+cF; U(p) nV- FF=0 for all p or 
(-) U(p)nV- cF; u(p)RnVAnFO- 0 forallp. 

Proof. Let N be the set of all r, for which the following weaker state- 
ment holds. Let A, be a connected component of A n 9S(r) hence an 
A(r)-curve. To each Ai, a unique (not necessarily connected) piece of surface 

fi is assigned, so that for A, fi,, Statement E is valid; that is, U Ai 
a(Uf,) nf St(r). 

(a) N is not empty. 
For the proof, let c be so defined that A n V((w) is empty; however 

A n AZ(w) is not empty. This is possible because Z is bounded. Then A n 9R(W) 
consists of finitely many T(w)-arcs T. Every T can be embedded into a 
strip S(T) by Lemma 6.19 so that either for F(T): S- or for F(T): = S+, 
the following hold: 

;) F(T) C 'I-(c), 
ii) z nS(T) c dF(T), 
iii) {aF(T) - (Z n S(T))} C 

Take S(T) sufficiently small, so that they are disjoint. We now fix r' > wo 
so small that the boundary points not situated on A of every F(T) lie over 
.f(r'). Thereupon, set F*(T): = F(T) n 'Qt(r'). By construction F*(T) lies 
either entirely in V ' or entirely in V-. We denote now the component of 
A n intro) by A' and assign JtY to A', where f/ is the union of all those com- 
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ponents of F*(T) which have boundary points on A'. Hence Statement E 
holds for A', fl; i.e., U A' = a(Uf[') n SN(r'). Therefore (a) is proved. 

(b) If r' > r" and r' e N, then also r" e N. Because if A', fi' are the 
arcs and surfaces corresponding to r', then we have to take, for ?r", only 
the components of A' n 9t(r-") and fit n s~(r"). 

(c) N is open in c < r < c. 

Proof. (1) Let r' < c and r' e N. Further let ai be the component of 
A n V(r') and fi the associated surface-piece, so that U ai = a(Ufi) n 9t((r). 
The closure of (A n SW(r')) U Uf, would in general not be connected. We 
consider one of its connected components L, and denote the arcs and surfaces 
on it again with a,, f. For these and components A, of L, n A n (V(r') U 
fk(r')), the assumptions of Lemma 6.23 are satisfied. Hence there exist a 
neighborhood U, of U A, further an r* > r and a surface-piece fk*, so that 
for the component A* (the B's of Lemma 6.23 belong here as well) of 
U, U A n 9f(r*) and the fk*, Statement E is valid: U Ak = a(ufk) n *((r*). 
For the other L,,, the corresponding statement holds. We choose U,, to be 
pairwise disjoint. 

(2 ) If now A n 9((*) is equal to the union of components of U, A A n 
91(r*), then we will be done. This is the case, if A n (r') does not contain 
any T-arcs and r* is sufficiently near r'. 

Suppose however that An AR(r') contains T-arcs Tj; then by Lemma 
6.19 there are strips S(Tj); furthermore there exist r, > r' and surface- 
pieces Fj, so that S(Tj) n A A SNl(ro) bounds the surface-pieces F, nA 9f(r,) in 

91(r.) (more precisely: S(Tj) n A A V(r,) is equal to aFi n sAt(o*)). 
We can now assume: r* = ro, because instead of r* we can take any 

r < r* and instead of r, we can take any r < r,. Finally if r* is sufficiently 
near r', then A n s((r*) is the union of the components of U U,, A n 9((r*) 
and the components of U S(Tj) n A n s9(r*). 

( 3 ) Case 1. T, does not lie in U L,. Choose U,, different from S(Tj). 
Now add the components of S(Tj) n A n t(r*) and the components of 
Fj nA (r*) to the ones already at hand. 

Case 2. To lies in L,. Obviously T, must lie in the boundary of some 

fj. Let fj c fl* (cf. (1)). First of all we keep r* fixed and make r0, so small 
that by (2) the surface-piece F, associated to T, and r-, is contained entirely 
in f,*. Let r* approach ro; it follows that for r'* = ro, Fo c f,j*. 

Set fi: = fib - F.. The boundary of fj differs from the boundary of f,* 
precisely by the facts that 1) the new components of W: = S(T) n A A o-(r*) 
occur in fA, and 2) the boundary points of F, which are not contained in W 



108 STEPHEN S.-T. YAU 

(and because of this lie over 'k(r*)) disappear when one forms fIj. W lies 
neither in the interior nor on the boundary of fk* different from f7*, because 
the fi* are pairwise disjoint. 

Perform the above process for all T from U LJO and replace the fJ*, which 
contains T, by fj. We can always take r. = r*. Add the new curves and 
surfaces from the T arcs, which do not lie in U L, (case I); then we get a 
set of A(r*)-arcs and the associated surfaces which satisfy Statement E. 
The set of these A(r*)-arcs is by construction equal to A nC V(r*). Con- 
sequently r* belongs to N and then also all r ? r*. Therefore c) is proved. 

(d) N is closed in co < r < c. 
Next we establish the following statement: For a fixed r, if Statement 

E holds for a set of curves Ai and surfaces fi, then it cannot hold for the 
same Ai and other surface Fi. The surfaces Fi are therefore uniquely 
determined by the arcs. It suffices to show this for the connected compo- 
nents of Uf. Suppose therefore that UfL is connected. Suppose for some 
i, f, # F1. Then f, F, = 0 and Ai consists of interior points of fi U Fi, as 
we can see immediately. Further it follows that fk # F, for all A, which are 
points of boundary of fi. Since Ufi is connected, for all j, f1 L Fj and A, 
lies in the interior of U (fi U Fi). Then U (fi U Fi) is a piece of surface G 
over St, whose boundary lies over RK. It follows that there exists an ir with 
the property: G n Sqt(r) = 0 and G n (R(r) # 0. This contradicts Theorem 
6.8. 

Let No = maximal open set in N and re its upper bound. Furthermore 
for r', r" in N let i' < r"; finally A', fiJ' and AS, fj" are the corresponding A 
and f. By the proof above, the components of A', fi' are components of 
U (An' n'Q((r")) and U (fi'r n w(r')). We take now for r. the A' as components 
of Ur'<r0A' and the components of f, as components of Ur'<rof. For the 
Al, fk thus defined, Statement E obviously holds. Thus ro C N. 

(e) From a)-b), c is in N. But this is simply the statement of the 
theorem. 

An immediate consequence is the following. 

THEOREM 6.26. Every bounded cycle Z on F bounds. In other words: 

There exists a surface-piece F(Z), so that Z = aF(Z). Moreover F(Z) is also 

bounded. All holomorphic (meromorphic) functions on U(Z) extend to 
holomorphic (meromorphic) functions on F(Z). 

(F is assumed to be a surface over Pn with dimF k > 2. The set M 
is said to be bounded if there exists an analytic plane E c Pn, dim E 

n - k + 1 and a neighborhood U(E) of E such thatm nf U(E) is empty.) 
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Proof. It follows from Theorem 6.24 that for every positive r, the 
components of Z n 9(r) are boundaries of bounded surface-pieces. Now only 
the points p1 - (1, 0, , 0); p; p8 (0, **., 1, 0, ***, 0) (homogeneous 
coordinates) stay outside all W(r). We obtain a surface-piece F such that Z 
lies on the boundary of F. The critical points p which lie on Z are obviously 
harmless and those other "boundary points" all lie above P1, ***, P8. For 
each i, the set j(F) is analytic in U(pi) with the exception of point pi alone. 
Then the closure of j(F) is also analytic at Pi. It follows that Z aF. 
This is what we have proved. Moreover, all the functions holomorphic 
(meromorphic) on Z extend to F(Z). 

Finally let us again use the notation we had before in Theorem 5.12. 
Take a cycle Z in W and a surface-piece F(Z) such that aF(Z) = Z. By the 
proofs of Lemmas 6.17, 6.19, 6.22 and 6.23, Theorems 6.24 and 6.26, we have 
V equal to the image of V' in CN, which is a subspace of the analytic surface- 
piece WU F(Z). 

HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 
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