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Abstract For any arrangement of hyperplanes in CP?, we introduce the soul of this arrangement.
The soul, which is a pseudo-complex, is determined by the combinatorics of the arrangement of hyper-
planes. In this paper, we give a sufficient combinatoric condition for two arrangements of hyperplanes
to be diffeomorphic to each other. In particular we have found sufficient conditions on combinatorics
for the arrangement of hyperplanes whose moduli space is connected. This generalizes our previous
result on hyperplane point arrangements in CP3.

Keywords: arrangement of hyperplanes, soul of arrangement, combinational geometry of ar-
rangement, differential and topological structure of complement of arrangement

MSC(2000): 32822, 57R50, 57TR52, 05B35, 14N20

1 Introduction
An arrangement of hyperplanes A* in CP" is a finite collection of hyperplanes of dimension
n — 1 in CP". Associated with A* is an open real 2n-manifold, the complement M(A*) =
CP"™ — Ug~e4- H*. One of the central problems in this area is to decide to what extent the
topology or differentiable structure of M(A*) is determined by the combinatorial geometry of
A* and vice versa. It is well-known that the combinatorial data of A* are coded by L{.A*)
which is the set of all intersections of elements of .A* partially ordered by reverse inclusion. In a
series of papers!!~3!, Falk studied the question whether L(.4*) is a homotopic invariant. In [3],
Falk constructed two arrangements of hyperplanes in CP?, each of which has two triple points
and nine double points, but their combinatorial data are different. The homotopic equivalence
of their complements was shown in [3]. Therefore L(A*) is not a homotopic invariant. In 1993,
Jiang and Yau [ 9] proved that L(.4*) is indeed a topological invariant if A* is an arrangement of
hyperplanes in CP?. In their proof, they made use of some deep results of Waldhausen on three-
manifolds. Indeed L(A*) is no longer a topological invariant for arrangement of hyperplanes
A* in CP", n > 3 (cf. [6]).

The difficult and still unsolved problem is whether the topological or diffeomorphic type
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of complement M(A*) of an arrangement is combinatorial in nature. In a famous preprint,
Rybnikov!”) announced the existence of two line arrangements A; and A} in CP* which have
the same combinatorics but whose complements M(A}) and M(A}) are not homeomorphic.
Unfortunately there is no detail proof of the above result. Recently Bartolo, Ruber, Agustin
and Buzunariz/® prove the existence of complexified real arrangements with same combinatorics
but different topology for complements of arrangements. The first step towards finding such
pairs of arrangements involves finding combinatorics whose moduli space is not connected. On
the other hand, if an arrangement .A* whose moduli space is connected, then Randell’s lattice-
isotopic theorem(? implies that there is only one differentiable structure for any arrangement
lying in this moduli space. For a central arrangement of hyperplanes A in C"*!, one can
define the underlying matroid G(A) of A (see for example [10]). Recall that the moduli space
of arrangements is the same as the realization space of the underlying matroid (cf. [10]). In
view of the result of Randelll®!, the moduli space of Rybnikov arrangements”l and the moduli
space of Bartolo, Ruber, Agustin and Buzunariz!® arrangements are nonconnected. Therefore
there is enormous interest of finding combinatorics for which the moduli space is connected.
In 1994, Jiang and Yaul'¥} first successfully described a large class of line arrangements in CP?
whose moduli spaces are connected. In 2005 wel'?l have described a much larger class of line
arrangements in CP? whose moduli spaces are still connected. Recently wel13] introduced the
concept of point arrangements of hyperplanes in CP® and proved the following theorem.

Theorem 1.1. Let A* be a nice point arrangement of hyperplanes in CP3. The moduli space
of A* with fired combinatorics L(A*) is connected.

In this paper we generalize the above theorem to a class of nice arrangement of hyperplanes
in CP®. In general, for any arrangement A* of hyperplanes in CP®, we introduce a soul G(A*)
which is a pseudo-complex completely determined by the combinatoric data of the arrangement.
If the soul consists of G(1) (a set of lines or 1-simplices) and G(2) (a set of planes or 2-simplices),
then the arrangement is called a line arrangement. A line arrangement is called a nice arrange-
ment if after removing disjoint stars of G, the remaining pseudo-complex contains no loop (cf.
Definition 2.7). We prove that the theorem above still holds for the nice line arrangements in

CP3.
Theorem A. Let A3 and A% be two nice arrangements of hyperplanes in CP2. If L(A3) and
L(A}) are isomorphic, then M(Af) and M(A}) are diffeomorphic to each other.

In the course of proving Theorem A, we have proved the following Theorem.

Theorem B. Let A* be a nice arrangement of hyperplanes in CP2. The moduli space of A*
with fized combinatorics L(A*) is connected.

Our paper is organized as follows. In Section 2, for any arrangement A* in CP?, we introduce a
pseudo-complex G(A*) which is called the soul of A*. G(A*) is determined by the combinatorial
data L(A*). We also introduce the definition of the nice arrangement of hyperplanes. In
Section 3, we prove Theorem A and Theorem B for nice line arrangements. In the final section,
we prove Theorem A and Theorem B for nice arrangements of hyperplanes in CP3.

2 Nice arrangements of hyperplanes in CP*
In this paper we denote .A* arrangement of hyperplanes in CP?. Let L(A*) be the set of all
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intersections of subsets of A*, partially ordered by reverse inclusion.
We give some definitions and examples of nice arrangements of hyperplanes in CP? for the
following sections.

Definition 2.1. A point p in CP? is of multiplicity k, denoted by m(p), in A* if p is the
intersection of ezactly k hyperplanes in A*. A line | in CP? is of multiplicity k, denoted by
m(l), in A* if | is the intersection of ezactly k hyperplanes in A*.

To study the combinatorial properties of .A*, we need to consider all intersections (lines and
points) of A* in CP®. For an arrangement in CP?, any two planes must meet at a line. We only
need to consider those intersection lines whose multiplicity is not less than 3. For any plane
and line, if the line does not lie on the plane, they must intersect at a point with multiplicity
3 in the arrangement. We also know that a point may be an intersection of two lines. So, we
need to consider those intersection points whose multiplicity is not less than 4. To get rid of
the trivial situation that a point has multiplicity at least 4 which is obtained by a plan and a
line with multiplicity at least 3, we need to add a condition for the intersection points: there
are four planes passing through this point in the arrangement A* such that every three of them
are in general position. Now we can give the following definition naturally.

Definition 2.2. Let pr(A*) be the number of points of multiplicity k(> 4) each of which
has the property that there are four planes passing through this point in the arrangement A*
such that every three of them are in general position. Let 1x(A*) be the number of lines of
multiplicity k (> 3) in the arrangement A*. Then the complezity c(A*) of A* is defined to be
2kza(k = 3)Pe(A*) + 30455 (k — 2)le(A%).

Definition 2.3. A soul G of an arrangement A* of hyperplanes in CP3 is a pseudo-complex
which is defined as follows:

Let G(0) be the set of 0-simplices of G defined by {p € L(A*) is a point |/m(p) > 4 and there
are four planes passing through p in A* from which any three of them are in general position}.
An element of G(0) is called a point.

Let G(1) be the set of 1-simplices of G which is the set of lines of L(A*) with multiplicity
m(l) 2 3. An element of G(1) is called a line.

Let G(2) be the set of 2-simplices of G. Each element of G(2) is a hyperplane of A* that passes
through an element of G(0) UG(1). This means that it contains a point or line of G(0) UG(1).
An element of G(2) is called a plane.

We say that two different simplices of G intersect to each other in G if and only if they contain
a same element of G(0) UG(1) (See Example 2.8 below).

A path in G is defined to be a finite sequence of simplices ag, h1, a1, b, . .., Gk—1, hg, ax (kK > 0)
of G where a; and a;4; are distinct elements in G(0) UG(1), hi+1 € G(2), which contains both
a; and a;4; for i =0,1,...,k — 1 and h; are distinct for j = 1,...,k. k is called the length of
the path from ag to ax. When ag = ag, k > 3, we call this path a loop.

For two elements a; and a2 € G(0) UG(1), the distance from a; to ap is the minimum length
of the path among all paths from a; to as.

Say a; to be a k-element of ag if the distance from a; to ag is k. If a; is a point, we call a;
as a k-point of ay. If a; is a line, we call a; as a k-line of as.

-
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Remark 2.4. From the discussion and definitions above, we know that in CP?, each two
planes must meet at a line and each plane and a line must intersect at a point. Hence we do
not need to consider these trivial cases in our definition of the pseudo-complex soul G. Thus,
it is easy to see that for two souls G; and Go, if G; is isomorphic to G2 and [A}| = |.A%|, then
A7 is isomorphic to 43.
Definition 2.5.  For an arbitrary u € G(0) UG(1), a star St(u) of u is {u} U {2-simplices of
G which contain u}.

A point v € G(0) (# u) is called an end point of the star St(u) if St(v) has a 2-simplex which
contains v.

A line l € G(1)(# u) is called an end line of the star St(u) if St(u) has a 2-simplex which
contains [.

The end points and end lines of the star St(u) are all called the end elements of the star
St(u).

For the stars St(ui),...,St(um) in G (m > 0), let G’ = G — {St(w) U --- U St(um)}.
St(u1),...,St(um) are said to be simple joint in G if

(1) any end element of St(uy),...,St(um) can connect to at most one another end element
by a path in G’,
(2) any two end elements of St(u,),...,St(um) can be connected by at most one path in G'.

Definition 2.6. An arrangement A* of hyperplanes in CP® is said to be nice if the soul G
from A* has the following properties:

(1) 6(0) and G(1) are disjoint, i.e. for any p € G(0) and any q € G(1), p is not contained
in g;

(2) all lines € G(1) lie on one plane;

(3) G has no loop; or

(4) there are simple joint stars St(u1),...,St(um) which are pairwise disjoint in G such that
G =G — {St(u1)U---USt(um)} contains no loop where uy,...,um in G(0) UG(1).
Definition 2.7. An arrangement A* of hyperplanes in CP?® is called a point arrangement
of hyperplanes if the G(1) of A* is empty. This means that G consists of the set of the points
(0-simplices) and the set of the planes (2-simplices).

If a point arrangement is nice it is called a nice point arrangement.

An arrangement A* of hyperplanes in CP® is called a line arrangement of hyperplanes if the
G(0) of A* is empty. This means that G consists of the set of the lines (1-simplices) and the
set of the planes (2-simplices).

If a line arrangement is nice it is called a nice line arrangement.

In the following we give some examples to show the nice line arrangement and the nice point
arrangement in CP3.

Example 2.8. Let A be an arrangement of hyperplanes in C* consisting of the elements
H;:{(z,y,z,w) € C*: 2 =0}, Hy:{(z,y,2,w) €C*:y=0},
Hs: {(z,y,z,w) € C*: 2=0}, Hy:{(z,y,2,w) € C*:w=0},
Hs: {(z,y,2,w) €C':z =y}
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The corresponding projective arrangement A* is a nice arrangement in CP?. As shown in
Figure 1, the pseudo-complex soul G of A* consists of five 2-simplices ABD, AED, ACD,ABC
and DBC, and one 1-simplices AD. We can see that AD incidents with ABD, AED and
ACD. Also, we can see, two 2-simplices ABD and ADC intersect at a 1-simplex AD. Notice,
there is no 0-simplices because no point in the Figure 1 satisfies the condition that any three
of planes are in general position in Definition 2.3. G contains no loop. Hence, it is a nice line

arrangement.
A

N

E

B

Figure 1. A nice line arrangement in CP?

Example 2.8 is an example of a line arrangement and it is a nice arrangement. We give
another example of nice arrangement as follows:

Example 2.9. Let A be a central arrangement of hyperplanes in C* and A* the associated
arrangement in CP? which is obtained by adding four more planes HJI, HLK, MNO and
MQP to the projective arrangement A* in Example 2.8. The two new planes, HJI and
HLK, pass through H and the other two new planes, MNO and MQP, pass through M (see
Figure 2). There is a loop: AD,ABD,H,ABC, M, ADC, AD. This is also a nice arrangement
since deleting St(H) gives a sub-pseudo-complex with no loop, where St(H) has no any end
element. So, it is simple joint.

B

Figure 2. A nice arrangement in CP3
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Here,

G(0) = {H,M}, (1) = {AD},

6(2) = {ABD, AED, ACD, ABC, DBC, HJI, HLK, MNO, MQP},
St(H) = {H,ABD, ABC, HIJ,HKL} (see Figure 3),

G - St(H) = {AED, ACD, DBC, MNO, MQP, AD, M} (see Figure 4).

A

B B

Figure 8. The pseudo-complexes St(H) in CP? Figure 4. The pseudo-complexes § — St(H) in CP3

3 Diffeomorphic types of nice line arrangement in CP*

In this section, we shall state and prove the theorem about nice line arrangement of hyperplanes.
First, we give some definitions and lemmas as follows:

Definition 3.1,  Let (z: : wi), (2; : v5), (%% : k) € (CPY)3. (z; : w) is called irregular for
the following equation

QYT Tk + bTiyTr + ey + dTiy;yr + eyiTiyr + fyiyiTe = 0, (3.1)

where abedef # 0. if (ayi)z;zi + (b2i + fyi)y;zn + (cxi + eyi)z;yk + (dz:)y;yx s a reducible
polynomial of the other two variables (x; : y;) and (zx : yx). Otherwise we call (z; : y;) regular
for the egquation (3.1).
Definition 3.2, Let {Fy,Fy,...,F,} be the planes in CP? where F; may be represented by
an eguation fi1x + fiou + fizz + fuw = 0, i = 1,2,...,n. This equation is determined by
its coefficients, which is a tetrad of homogeneous plane-coordinates. We call (fiy, fi2, fi3, fia) @
normal vector of the plane. Since the plane and its normal vector are one-to-one correspondence,
we will identify the plane with its normal vector and write F; = (fi1, fi2, fis, fis), i=1,2,...,n.
Let CP3 denote the space of all hyperplanes in CP3. Under the above identification, CP3 is
naturally isomorphic to CP®.
if the equation

arFy+aFy+ -+ anfn =0, a;€C, i=12,...,n

has only the zero solution a; =0, i = 1,2,...,n, then {F, F,..., F,,} are called independent.
Lemma 3.3. Assume ((z; : y1), (22 : ¥2), (%3 : y3)) € (CP")® is a solution of (3.1). If
(z1 : y1) is irregular, then either (zy : y2) or (z3 : ys) ts trregular for (3.1). If (z1 : 1) is
regular, then (z3 : y2) and (z3 : y3) are either both regular or both irregular for (3.1).

Proof. When y; =0, (3.1) becomes
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byaz3 + cz2ys + dy2ys = 0, (32)

which is irreducible. Hence, if (z; : y1) is irregular, then z; # 0 and y; # 0.
Write (3.1) as polynomial of (z3 : y2) and (z3 : y3)

(ay1)z2zs + (bzy + fy1)yezs + (cx1 + eyr)z2ys + (dz1)y2ys = 0. (8.3)
It is reducible if and only if
(bz1 + fy1)(czr + eyr) = adziyn (3.4)

or
bea + (be + fc — ad)ziy1 + efyf =0, (3.5)

which has at most two roots of (z; : ¥1). When (z; : y1) is a root of the equation above, from
(3.4) we get

bz + fn _ dz;
ay1 ez +eyr
Thus, (3.3) becomes
[(ay1)z3 + (cz1 + eyr) ]x+—ﬂl— ]—0 (3.6)
Y1)Z3 1 Y1)Ys3| | T2 o1 +ey1y2 = .

from which we have the solution either (z3 : y2) = (—d=z1 : cx1 +ey1) or (23 : y3) = (—(cz1 +
ey1) : ay1)-

In the first case, we have %ll = —a:—_ﬁ’—l;.

Putting these into (3.5) yields

e?x3

c €9
(C(B2 + dy2)2

~ (be + fc — da) ———(cm T )

+ef=0. (3.7)
Combining the like terms we get

beex? — (be + fc — da)(ca? + dxays) + (fctad + 2cdf Toys + fd%y%) =0,
caz? + (ad + fc — be)zays + fdyZ = 0. (3.8)

The last equation (3.8) is a necessary and sufficient condition for (z3 : y2) being irregular of
(3.1).

For the second case, we have the same conclusion for (z3 : y3).

From the argument above we also have

Lemma 3.4. Assume ((z; : i), (zj : ¥;), (% : yx)) € (CP)? is a solution of (3.1). For each
m = 1,j,k, there are at most two irregular (z,, : ym) of (3.1). Therefore, the set of irregular of
(3.1) is finite. (0:1) and (1:0) are regular of (3.1).

Proof. Assume ¢ = 1. From the proof above, the necessary and sufficient conditions that
(z1 : y1) is irregular of (3.1) is that equation (3.5) holds, which have at most two solutions.
Similarly, we can consider (z; : yi), (%; : ¥;), (®x : yx) and (z1 : y1).
It is clear that (0 : 1) and (1 : 0) do not satisfy (3.5). Hence, (0 : 1) and (1 : 0) are regular
of (3.1).
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Lemma 3.5. For each fized regular (z1 : y1) of (3.1), the following relation produces an
automorphism of CP*

T —ey; — —dzx
( 3):1{( n-en 1 )(”), KeC*, (3.9)
y3 ay: br1 + fy Y2

which sends regular values to regular values of (3.1). In particular (z1 : y1)=(z2 : y2)=(0:1)
(respectively, (1:0)) corresponds to (z3 : y3) = (0 : 1) (respectively, (1 : 0)).

Proof. Consider

—etyy — —dz
’ Y1 — Cr1 1 — —bcxf — (be + fc— da)ziy — feyf'

ay, bz1 + fin
Since (z1 : y1) is a regular value, the above expression is nonzero by (3.5). Hence (3.9) is an
automorphism of CP. Clearly (3.9) satisfies equation (3.1). By Lemma 3.3, the mapping (3.9)
sends regular values of (3.1) to regular values of (3.1). The last statement of the lemma is
obvious.

Remark 3.6. Equation (3.9) is equivalent to equation (3.1).

If we write (3.1) as (ay172 +bZ1y2+ fy1y2)Z3 + (dT Y2 +ey1 T2 +cx122)ys = 0, then (z3,y3) =
K(—dz1ys — ey122 — cx1T2, ay1Z2 + bx1y2 + fy1y2) which is (3.9). Hence, if (z; : 31) and
(z2 : y2) are regular of (3.1), then there is a unique regular (z3 : ys) solved in terms of
(1 : 1) and (x2 : y2). We call such procedure “fixing two variables to solve the other” and
call (z1 : 1), (z2:y2), (z3: y3) “solved variables”.

Lemma 3.7. Let Fy, F, F3, F be planes in CP2. If F is not a linear combination of Iy, F», Fs,
then Fy, Fy, F3, F are independent if and only if Fy, Fs, F3 are independent.

In particular, det (Fy, F», F3,F) =0 if and only if rank (F, F», F3) < 3.

Proof. Assume that Fy, Fy, F3, F are independent, and it implies directly that Fy, Fy, F3 are
independent.

On the other hand, assume that Fy, Fp, F3 are independent. If a1 Fy + a2F2 +agFs +aF =0,
because F is not a linear combination of Fy, Fy, F3, we have a=0 and it implies a; F1 + a2 F3 +
a3 F3 = 0. Hence, a;=ay=a3=0 because F}, F», F; are independent. It implies that Fy, Fy, F3, F
are independent.

Lemma 3.8. Let Gy,Ga,G3 € CP? pass through a line Ly, Hy, Ha, Hy € CP? pass through
a line Ly. If Ly and L, lie in a plane, then, the dimension of space of all F1, F3, F3 in @ is
less than 3, where F; = z;G; + yiH; and (z; : y;) varies in CP! fori=1,2,3.
Proof. Let P, and P be the 2-dimension planes passing through the origin in C* which
correspond to the projective lines L1 and Ly in CP® respectively. Clearly 1 < dim (PiNP;) < 2.
If dim (P, NP) =2,ie. P, =P, Ly = La, let F = a1 Fy + axF> + a3F3. Then
F = ay(21G1 + y1H1) + a2(22G2 + y2 Ha) + a3(z3Gs + ya H3)
= (a121G1 + a222G2 + a3z3Gs) + (a1y1 Hy + az2y2Hs + aszyaHj).

The first part of the above expression is a hyperplane containing P, while the second part is a
hyperplane containing P,. Therefore F is a hyperplane containing a plane P;. Hence the linear
combination of Fy, F;, F3 has a dimension less than 3.
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If dim (P, N P) = 1, i.e. P; and P, intersect at a line L in C%, and L, and L. intersect
at & point Q) in CP3, then we choose the coordinates such that the line L is z-axis, Py is zy-
plane and P; is zz-plane. Then the planes G; passing through L, can be written as z + Qiw =
0, with normal vector (0,0,1,6;), i = 1,2,3, and the planes H; passing through Ly can be
written as y + ¢;w = 0, with normal vector (0,1,0,¢;), ¢ = 1,2,3. Hence,

F; = 2;G; + y:H; = £:(0,0,1,6;) + %:(0,1,0, ¢:) = (0, %1, T, T:0; + yii)

. . T .
=Y (O, 1, ﬁ, ﬂ0-; + ¢,) = y;(O, 1,8, 6:0; + ¢1‘), where t; = “e C, i=1,23.
Yi Y Yi

So, the space of all Fy, F, F3 has dimension less than 3 in CP3.

Lemma 3.9. Let A* be a line arrangement of hyperplanes. Then for each two lines of
G = G(A"), there is at most one plane containing both of them.

Proof. It is obvious because these two lines decide at most one plane in CP3.

Lemma 3.10. Let G be a pseudo-complex, St(L1),...,St(Ly) be simple joint stars of G and
G =G -, St(L:). If L is a line of G', then L cannot connect to more than two end lines
of St(Ly),...,St(Lm) by path in G'. If L connects two end lines of St(Ly),...,St(Lm) by two
paths in G’ respectively, then the two paths are unique.

Proof. Assume L connects to three end lines w;, we and ws of St(L1),...,St(Ly,) by paths
in G’. Then w; connects to other two end points w and ws through L. It is a contradiction
because St(L1),...,St(Ly,) are simple joint.

If L connects two end lines of St(L1),...,St(Lm,) by more than two paths in G’, say, P; and
P, connect L to an end line w;, P3 connects L to another end line wy, then there are two paths:

'lUl,Pl,L,Pa,’lUQ and w11p2’L7P3aw21

which connect w and ws. It is also a contradiction because St(L:),...,St(Ly,) are simple
joint.
Corollary 3.11. Let G be a pseudo-complez, St(v1),...,St(vm) be simple joint stars of G
and ¢’ =G -, St(L:). If L is a line in G’ connecting to St(L1),...,St(Lm), then only one
of the followring cases occurs:

(1) L connects to only one end line of St(L1),...,St(Ly) in G'.

(2) L connects to two end lines wy and wy of St(L1),...,St(Ly). Moreover, the path in G’
from L to w;, i = 1,2 is unique.
Proof. It is obvious from Lemma 3.10.

Lemma 3.12. Let G be a pseudo-complez, L1, Lo and L3 be three lines of G. If L1, L2 and
L3 are pairwise connected to each other by the paths, each of which does not contain all three
lines, then there is a loop in G.

Proof.  Assume that L, and Lg are connected by the path P;, Lo and L3 are connected by the
path Ps, and L3 and L; are connected by the path P;. Then there is a loop: Ly, Py, Lo, Ps, L3,
P, L.

Corollary 3.13. Let G be a pseudo-complex. If G has no loop, then any three lines in G can
not be pairwise connected each other by the paths, each of which does not contain all three lines.
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Proof.

Lemma 3.14 (Lattice-Isotopy Theorem)®l. If two arrangements are connected by a one-
parameter family of arrangements { A(t)} which have the same L(A), then the complements are
diffeomorphic, hence of the same homotopy type.

Theorem 3.15.  Let Aj and A} be two nice line projective arrangements in CP2. If L(A3)
and L(A}) are isomorphic, then the complements M(A3) and M(A}) in CP? are diffeomorphic
to each other.

It is obvious from Lemma 3.12.

Proof.  Similar to the proof of Theorem Al'3, we represent the two arrangements as A} =
{Hl, Hg, ceey Hn} and Aa = {Gl, Gz, ey Gn} where H,' = (hil,hig, h;’3, h,’4) and G,' = (.9:'1;91’2,
9i3, gia) are in CP>. We shall construct a one-parameter family of arrangements .A*(t) such that
A*(0) = A3, A*(1) = A7 and L(A(t)) = L(Ap) for all t € [0, 1].

Let A* = {F, Fy,...,F,} where F; = z;G; + y;H; for some z;,y;: € C,i=1,2,...,n. Let
I={(i,j5,k):1<i<j<k<n} So|I|=(3). Consider any triple {F;, Fj, Fk}, (¢,5,k) € I.
Denote the matrix

Tigi + Yihin  Tigi2 +yihia  Tigis + yihis  Tigia + Yihig
zigin +yihin  Tigi2 +yihje  Tigis +yihjs  zigia + Yshia
TkGk1 + Yehkr  Tegk2 + Ykhkz  Tkgrs + Yrhks  Trgra + Ykhka

by (Fi, Fj, Fx). Since each of the two planes in CP? meets on one line, to get L(A) = L(Ay), it
is sufficient to have the following conclusion. For any (i, j, k) € I, rank (F;, Fj, Fi) < 3 if and
only if rank (G;, G;,Gk) < 3.

Since A§ is a nice line arrangement all lines € G(1) lie on one plane. Similarly, all lines
€ G(1) of A} also lie on one plane. Without loss of generality we assume that all those lines
€ G(1) lie in a same plane. By Lemma 3.8, for each (i, j, k) € I, the dimension of the space of
all Fj, Fj, Fy is less than 3 in CP3. Hence, there is a plane F which is not a linear combination
of F;, F; and Fi. Moreover, notice that there are finite planes in .A§ and Aj, we can choose
the plane F such that F is not the linear combinations of each three planes of Fj, F}, Fj. for
each (i,7,k) € I. Furthermore, we can change the coordinates such that F is represented as
(0,0,0, 1).

By Lemma 3.7, rank (F;, Fj, Fi) < 3 if and only if det (F;, F;, Fi, F) = 0. Here

det (F;F;FiF)

zign +yihin  Tigio +yihi2  ZTigia +Yihia  Tigia + Yihis
zign +Yshjt %952 +Yshiz  Tigis +yshss  Zigia +yshia
Trgr1 + Yrhry  Tkgra + Ykhkz  Tkgka + Ykhks  TkGka + Yrhia
0 0 0 1
Tigin + yiha  Tigiz + Yk Tigis + yihis
zigin + yiki1  Tigi2 +yikiz  Z5953 +yihss
Trgr1 + ykher  Tegrz + Yehkz  Thgrs + Yrhas

= D3(G.-G1-Gk)a:,-zj:ck + D3(H¢Gij)yil'j$k + D3(G¢Hij)a:,-yjzk
+ D3(GiG; H)zizjyre + D3(GiHjHy)ziyiyr + D3(HiGiHi)yiz;yx
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+ D3(H;H;Gr)y:yjax + Da(HiHj Hie )yiy;yr, (3.10)

where D3(G;G;Gy) is the left upper 3-subdeterminate of (G;, G;, Gk ), and so on.
Hence, to get L(A) = L(Ap), it is sufficient to have the following: for any (i, j, k) € I,

det (EF}'F)@F) =0, if and only if D3(G;G;Gx) = 0. (3.11)
Letl=3 53 (3)t;(A8). To prove (3.11), we need to consider ! equations and () —{ inequalities

P, =0,...,P =0, (3.12)
Qu#0,-..,Qmy_ #0. (3.13)

Both P, and Q; have the forms like (3.10). But for P;, the first term and last term are
zero since D3(GiG;Gy) = D3(HiH;Hi) = 0 by (3.11). Among Py,..., P, at most c(Aj) =
> >3 — 2)t;(Ag) of them are independent. To see this, we consider a j-tuple line v (j > 3).
Let Fy,...,F; be the planes of A* containing v. We have (g) equations D3(F;F;F;) =0,...,
etc. Since {Fi,...,F;} can be linearly generated by Fy and F3, the (g) equations are reduced
equivalently to j — 2 equations D3(F1FoFy) =0 for i = 3,...,j. Now consider all j-tuple lines
(7 = 3). We have a system of c(Aj) equations, say {P1 =0, ..., Py45) = 0} which is equivalent
to {P1 =0,...,131 =0}.
As we observed before, each P, can be written as

P, = a,y;, 25, Tk, + brZi Yj, Tk, + CrTi Tj, Yk, + ArTi Yj, Yk,

+ er¥i, 5, Yk, + fr¥i Y5, Tk, = 0, (3.14)

where a, = D3(H; G; .Gk, ) etc. Replaying A* by ¢(A*) if necessary where ¢ : CP* — CP?
is a complex analytic automorphism, we assume without loss of generality that any one (two)
plane(s) in A§ and any two (one) plane(s) in A} do not intersect at a line. This means that
arbrerdrerfr #0 for all r =1,...,c(Af).

Note that P, is viewed as a polynomial in ((z1 : y1),---,(Tn : yn)) € (CP!)". For each
r, indices i, jr, k, are pairwise distinct and (i,,jr,kr) # (is,7s,ks) for r # s where 1 <
tryJry Kryisy Jos ks <moand 1 < 7,8 < c(A).

Since A} is a nice line arrangement of hyperplane in CP?, if G has no loop, it is clear
that we can solve all variables. Hence, we consider that there are simple joint stars, say
St(L1),...,St(Lm) in G such that they are disjoint and G’ = G — (J;_, St(L:) has no loop.

We shall prove that all variables can be solved in terms of some variables (in the sense of
Remark 3.6) without ambiguity. Here we shall use the notation in Definition 2.3.

Case 1. s=1and L, is a line of multiplicity & in Aj.

Since k& > 3 by the definition of G, there are k variables appearing in k — 2 equations of
(3.14). Without loss of generality we suppose that these variables are (z; : y1),...,(zk : Yk)
and (z; : y1) and (z2 : y2) appear in each of these £ — 2 equations. Thus, we can fix(z; : ¥1)
and (z2 : y2) to solve (z3 : y3),...,(zk : yx). Hence, we can solve all variables about the star
St(Ly).

We know that at each line there are k variables appearing in k — 2 equations of (3.14). If
at most two variables are solved at this point, then we can use these two variables to solve all
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others. Hence, in the following discussion, we only need to show that at most two variables are
solved at each line.

The rest of the unsolved variables and equations in (3.14) correspond to the pseudo-complex
G’ which has no loop and is a set of some stars.

We use induction on the distance from the lines to L;.

First, we consider the end lines of St(L,), they are 1-lines of L;. Then we consider 2-lines of
L1, and so on.

Case 1.1. If each of two end lines of St(L,) is not connected by the path in G’ = G — St(v;),
we can pick each end line of St(L,) separately. Assume we first pick an end line of St(L;), u1,1.
By Lemma 3.9 there is only one plane in the star St(L1) containing u;,1, which means that only
one variable corresponding to the plane is solved. We choose another variable corresponding to
another plane containing 4,1, and then fix these two variables and solve all other variables at
u1,1. Next we pick another end line, u; 2, which does not connect to u;,; by a path in G’. Hence
we can solve all variables at u; 2 by using same method of solving variables at u;,;. Continuing
this procedure, we can solve all variables at all end lines of St(L;) which are 1-lines of L;.

Case 1.2. If there are two end lines of St(L;) which are connected by a path in G’, we can
choose an end line of St(L;), say u1,1, such that u;,; connects to one end line u, 5 of St(vi). By
Lemma 3.9 there is only one plane, say P;, in the star St(L;) containing u;:. We can use the
variable corresponding to P; and choose another variable, and then solve all variables at u; ;.
Since St(L,) is simple joint, there is only one path which connects u; 1 and u; 2. Assume the
plane containing u, o in the path is P;. By Lemma 3.9 there is only one plane, say Ps, in the
star St(L;) containing u; 2. Then we can fix these two variables corresponding to P, and P,
and solve other variables at u; . Then consider another end line u; 3. Similarly, since St(L,)
is simple joint, only one of u;,; and u; 2 can connect to u; 3 by a path in G’. Hence at most
two variables at u; 3 are solved. Using these two variables we can solve all other variables at
uy,3. Continuing this procedure, we can solve all variables at all end lines of St(L,) which are
1-lines of L,.

Assume we can solve all variables at the (k-1)-lines of Ly ug—1,1,...,Uk—1,m- Then consider
the k-lines of L;. Without loss of the generality we assume that k-line ux; is an end line
of St(ug—1,1) which connects to an end line u;; of St(L,). From induction assumption, all
variables at ux—1,1 are solved. For u ;, there is only one plane containing ux; and ug_1,, by
Lemma 3.9, ug,; cannot connect to another line that connects to u;,; by Corollary 3.13, and
ug,1 cannot connect to other two j-point (j < k) by the path in G’ by Corollary 3.11. Hence at
most two variables are solved at ug,;. Thus, we can solve all variables at uk,1. Similarly, using
this procedure, we can solve other variables at all k-lines.

By induction, we can solve all variables at all lines of G.

Case 2. s = 2. By the same procedure above we can solve all variables at L; and L. If
St(L1) and St(L3) are not connected by a path in G’, we can solve all variables from them
separately. Hence, we only need to consider the case when they are connected.

We choose an end line of St(Ly), say ui1,1. It is 1-line of L. By Lemma 3.9 there is only
one plane in St(L;) passing through u, ;. Hence, we can solve the all variables at ;. For the
other end lines of St(L;), we can solve the variables by the same method as in Case 1.
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Now we consider an end line of St(L3), say w11, which connects to an end line of St(L,),
say u1,1. We know from Definition 2.6 that w1 only connects to u1,3 by one path. Assume the
plane containing w;,; in the path is P;. Also, by Lemma 3.9, there is only one plane, say P,
in St(L2) which containing wy,1. Then we use these two solved variables corresponding to P
and P, and solve other variables at wy ;. l

Next, we pick another end line, say w; 2. Because w2 connects to at most one end line of
St(L1) or St(Lz) by Definition 2.6, and at most one plane in St(L3) passes L2 and its end line
by Lemma 3.9, we know that there are at most two solved variables at w, 2. Hence we can use
these two solved variables to solve other variables at w; 2. Continuing the same procedure, we
can solve all variables at the end lines of St(L1) or St(Ly).

Since G’ has no loop any three lines can not connected pairwise by Corollary 3.13 and any
line can connect to only one end line or connect to two end lines of St(L;) and St(Ls2) by two
unique paths in ¢’ from Corollary 3.11, we can continue this procedure and solve all variables
without ambiguity.

Similarly, we can consider the case of s > 2.

Thus we can solve all variables in terms of some variables without ambiguity since G’ has no
loop.

Now, all variables are presented as ((z1 : ¥1),--,(@n : Yn)) = f((z1 : ¥1),-- -, (Zp : Yp)),
where each component of f is a composition by some maps as (3.9). So they are homogeneous
polynomial of (z1 : 1),...,(zp : ¥p).

Let U := (CPY)? — {((x1 : %1),...,(@p : ¥yp)) : for some 1 < i < p,(x; : yi) is irregular
of some equation of (3.14)}. By Lemma 3.4, U is an open connected set of (CP')?. By
Lemma 3.5, f defines an embedding from U C (CP')P to (CP')". Since U is irreducible, so is
f(U) irreducible. Observe that (0:1)* = ((0:1),...,(0:1)) and (1:0)* = ((1:0),...,(1:0))
are contained in f(U). We deduce that (0 : 1)* and (1 : 0)" are in the same irreducible
component of {Py = 0,...,Py4;) = 0}. In fact, put (1 : 0)" ((0 : 1)", respectively) to
(3.14), and we can see by (3.11), P, =0 for all » = 1,...,c(A}), and Qs = D3(GsiGs;Gor)
(D3(HqyiH,ojHei), Tespectively) # 0 for all s=1,..., (3) — c(AQ).

Recall that irreducible variety minus a subvariety is still a connected set. Therefore, the
irreducible component of {P, = 0,..., P4 = 0} — Si)l_c(A;’){Qs = 0} is a connected
set which contains ((1 : 0),...,{1 : 0)) and ((0 : 1),...,(0 : 1)). So there is a curve from
((1:0),...,(1:0)) to ((0:1),...,(0 : 1)) such that(3.12) and (3.13) are satisfied for any
point lying in the curve. This means that we have constructed a one-parameter family of
arrangements A*(t) such that 4*(0) = A5, A*(1) = A} and L(A(t)) = L(Ap) for all t € [0,1].

Now we can apply Lemma 3.14 and finish the proof of Theorem 1.1.

In the course of proving Theorem 3.15, we have proved the following theorem.

Theorem 3.16. Let A* be a nice line arrangement of hyperplanes in CP®. The moduli space
of A* with fized combinatorics L(A*) is connected.

Proof.  For given two nice line arrangements A% and A} of hyperplanes in CP® with fixed
combinatorics L(.A*), in the proof of Theorem 3.15, we have constructed a one-parameter

family .A*(t) of hyperplanes in CP® with fixed combinatorics L(A*) connecting A% and A}.
Therefore the moduli space of .A* with fixed combinatorics L(A*) is connected.
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Theorem 3.17.  The homotopy groups of the complement M(A*) of a nice line arrangement
of hyperplanes in CP* depend only on L(A*) (or the lattice L(A)).

Proof.  Since the topology of M(A*) is determined by L(.A*), by Theorem 3.15, the homotopy
groups of the complement M (A*) are determined by L{A*).

4 Main theorem

We have proved

Theorem A3,  Let A} and A% be two nice point arrangements of hyperplanes in CP?.
If L(A§) and L(A}) are isomorphic, then the complements M(A%) and M(A}) in CP? are
diffeomorphic to each other.

In Section 3 we proved Theorem 3.15, which states that Theorem A still holds for nice line
arrangements of hyperplanes in CP2. Now, we will prove the main Theorem, which means that
for nice arrangements of hyperplanes in CP?, Theorem A still holds. We give some lemmas
first.

Lemma 4.1. Let A* be a nice arrangement of hyperplanes in CP®. Then

(1) for each two points of G = G(A"), there are at most two planes passing through both of
them;

(2) for each two lines of G = G(A"), there is at most one plane containing both of them;

(3) for each point and line of G = G(A"), there is at most one plane containing both of them.

Proof. Because A* is a nice arrangement, G(0) and G(1) are disjoint from Definition 2.6.

If two points @; and @ are connected by three planes Py, P> and P;, then the line L
passing through @) and Q- is an intersection of three planes P;, P, and Ps;. It implies that
L has multiplicity great than 3 and L € A*. But Q; and Q2 are on the line L, which is a
contradiction to that G(0) and G(1) are disjoint. Hence (1) holds.

It is obvious that the two lines at most decide one plane. For a point @ and a line L in G,
the point @ can not be on the line L. Otherwise, G(0) and G(1) are not disjoint. We also know
that a point and a line only determine a plane. Hence, for each two lines or each point and line
of G, there is at most one plane containing both of them.

Lemma 4.2. Let G be a pseudo-complex, St(Uy),...,St(Un) be simple joint stars of G and
G =G - UL, St(U:). IfU be a point or a line of G', then U cannot connect to more than
two end elements of St(Uir),...,St(Un) by path in G'. If U connects two end elements of
St(Uy),...,St(Un) by two paths in G’ respectively, then the two paths are unique.

Proof. Assume U connects to three end elements w;, we and w3 of St(Uh),...,St(Un) by
paths in G’. Then w; connects to other two end elements w; and wz through U. It is a
contradiction because St(U,), ..., St(U,,) are simple joint.

If U connects two end elements of St(U1),...,St(Uy,) by more than two paths in G', say P;
and P, connect U to an end element w;, P3 connects U to another end element ws, then there
are two paths:

wi, 'P], U, P3, wa, and wiy, 'Pz, U, Ps, wae,

which connect w; and ws. It is also a contradiction because St(U),...,St(Unx) are simple

joint.
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Corollary 4.3. Let G be a pseudo-complex, St(Ui),...,St(Un) be simple joint stars of G
and ' = G — -, St(Us). If U is a point or a line in G’ connecting to St(U1), ..., St(Um),
then only one of the following cases occurs:

(1) U connects to only one end element of St(U),...,St(Un) in G';

(2) U connects to two end elements wy and wy of St(U1),...,St(Un). Moreover, the path in
G from U to w;, i = 1,2 is unique.
Proof. It is obvious from Lemma 4.2.

Lemma 4.4. Let A* be a nice arrangement in CP? and G be a pseudo-complez, Uy, Uy and
Us be three elements of G. If Uy, Uz and Us are pairwise connected each other by the paths,
each of which does not pass all three Uy, U and Us, then there is a loop in G.

Proof.  Assume that U, and U; are connected by the path Py, Us and Us are connected by the
path Ps, and Uz and U, are connected by the path P3;. Then there is a loop: Uy, P1, Uz, Pa, Us,
P3, Ul .

Corollary 4.5. Let A* be a nice arrangement in CP® and G be a pseudo-complex. If G has
no loop, then any three elements in G cannot be pairwise connected each other by the paths,
each of which does not pass all three elements.
Proof. 1t is obvious from Lemma 4.4.

Now we can state and prove our main Theorem 4.6.
Theorem 4.6. Let A} and A} be two nice projective arrangements of hyperplanes in CP°.

If L(A3) and L(A}) are isomorphic, then the complements M(A}) and M(A%) in CP? are
diffeomorphic to each other.

Proof.  Similar to the proof of Theorem Al'3 and Theorem 3.15, we represent the two arrange-
ments as .A’{ = {Hl, H,,..., Hn} and AS = {Gl,Gz, vy Gn} where H; = (hila hiz, hiz, h,’4) and
Gi = (gi1, 92, 9i3, gia) are in CP?. We shall construct a one-parameter family of arrangements
A*(t) such that 4*(0) = A§, A*(1) = A} and L(A(t)) = L(Ap) for all ¢t € [0,1].
Let A* = {F, F,...,F,} where F; = 2;G; + y;H; for some z;,y; € C such that F; is in
CP% i=1,2,...,n.
The point of .A} is an intersection of {G;, G;, Gk, Gi}. Similar to the proof of Theorem Al!3],
we need to consider quaternion { F;, F;, Fi, Fi} and solve the variables of the following equations:
ArYir Tjr Thy Tty + br i, Y5, Tk, T1, + CrTi, Tj, Yk, Ti, + QrTi T, Tk, Y1, + ArZi T, Yk, Y1,
+ Brzi, Y4, Tk, Y1, + CrZi, Y5, Yk, Tt + Dryi, 5,2k, Y1, + Evyi, T5,. Yk, 71, + Fryi ¥, Tk, T1,
+ erxir y]rykrylr + fryirwjv‘ykrylr + gryiryjrxkrylr + hryiryjrykrzlr = O’ (4'1)
where a, = |H; G;, Gk, G|, by = |G; H; Gi, G, |, etc. and arbrc,d, A B,.C.D,E.Fyre,frgrhyr
#0foralr=1,...,c(AY).

For the line of A3, which is an intersection of {G;, Gj, Gx}. Same as the proof of Theorem 3.15
we need to consider triple {F;, Fj, Fi} and solve the variables of the following equations:

arYi, Tj, Tk, + brZi, Yj, Tk, + CrTi T, Yk, + ArZi Y5, Yk, + €r¥i, Tj Yk, + fr¥i, Y. Tk, =0, (4.2)

where a, = D3(H;,G;,G,) etc. and arbrcrdre fr #0 for all r =1,...,¢c(AQ).
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If we can prove that all variables of (4.1) and (4.2) about the points and lines of G can be
solved in terms of some variables, similar to the proof of Theorem Al'3 and Theorem 3.15, we
can show the Main Theorem is true.

Since A} is a nice arrangement in CP?, if G has no loop, it is clear that we are able to solve
all variables of (4.1) and (4.2). Without loss of the generality, we assume that there are simple
joint stars, say St(U1),...,St(U,) in G such that they are disjoint and G’ = G — |J;_, St(U;)
has no loop, where all U; € G(0) UG(1).

Similar to the proof of Theorem Al'3l and Theorem 3.15, we can solve all variables at
U,...,Us.

Case 1. s =1, this means that there is only one star St(U;).

We use induction on the distance from the elements to U;. We consider the end elements of
the stars St(U1),...,St(U,), which are 1-elements of U;. Then we consider 2-elements of Ui,
and so on.

Case 1.1. Let U; be a point. If we pick one end point u;,1 of St(U;). By Lemma 4.1, at
most two planes in St(U;) pass through U; and u,,;. By Definition 2.6, u;,; can connect to
at most one more end element of St(U;). This means that at most three variables at u; ; are
solved. Hence we can use these three variables and solve all others at u;,;. If we pick one end
line uy 2 of St(U;), by Lemma 4.1, there is at most one plane in St(U;) containing U; and u, 2.
By Definition 2.6, u; 2 can connect to at most one more end element of St(U;). This means
that at most two variables at u; 2 are solved. Hence we can use these two variables and solve
all others at u;,2. Continuing this procedure, we can solve all variables at all end elements of
St(U;) which are 1-elements of U;.

Case 1.2. Let U be a line. If we pick one end point u;,; of St(U;). By Lemma 4.1, at most
one plane in St(U;) contains U; and u;,;. By Definition 2.6, u1,; can connect to at most one
more end element of St(U;). This means that at most two variables at u;,; are solved. Hence
we can use these two variables and solve all others at u;;. If we pick one end line u; 2 of St(Uy),
by Lemma 4.1, there is at most one plane in St(U) containing U; and u, 2. By Definition 2.6,

" uy,2 can connect to at most one more end element of St(U;). This means that at most two
variables at u; 2 are solved. Hence we can use these two variables and solve all others at u; 2.
Continuing this procedure, we can solve all variables at all end elements of St(U;) which are
1-elements of U;.

Assume we can solve all variables at the (k — 1)-elements of Uy ug—_1,1,...,Uk—1,m. Then
consider the k-elements of U;. Without loss of the generality we assume that k-element ug; is
an end element of St(ux—_1,1) which connects to an end element v ; of St(U1). From induction
assumption, all variables at ux_1,1 are solved. For wug, if uk, is a point, there is at most
two planes containing uy ; and uk-1,1 by Lemma 4.1. If u; is a line, there is only one plane
containing ug,; and ug—1,1 by Lemma 4.1. ug,; cannot connect to another point or line that
connects to u;,1 by Corollary 4.5, and uk,; cannot connect to other two j-point (j < k) by the
path in G’ by Corollary 4.3. Hence at most three variables are solved at u,; if ux,; is a point
or at most two variables are solved at ug,; if ug,1 is a line. Thus, we can solve all variables at
Uk,1- Similarly, using this procedure, we can solve other variables at all k-elements of U;.

By induction, we can solve all variables at all elements of G.



The diffeomorphic types of the complements of arrangements in CP3 II 801

Case 2. s = 2. By the same procedure above we can solve all variables at Uy and Us. If
St(U,) and St(Uz) are not connected by a path in G’, we can solve all variables from them
separately. Hence, we only need to consider the case that they are connected.

We choose an end element of St(U,), say u1,1. It is a 1-element of u; .

Case 2.1. If U, is a line, by Lemma 4.1 there is only one plane in St(U;) containing u; ;.
Since A} is a nice arrangement of hyperplanes, St(U;) and St(Uz) are simple joint, u;; can
connect to at most one end element, hence, at most two variables at u;,; are solved. We use
these two solved variables to solve all variables at uy,.

Case 2.2. If U, is a point and u;; is a line, by Lemma 4.1 there is only one plane in St(U,)
containing u1,1. If U; is a point and u;,; is also a point, by Lemma 4.1 there are only two
planes in St(U;) passing through u;,;. Similar to Case 2.1, u;,; can connect to at most one end
element. Hence, if w1 is a point, then at most three variables at u;; are solved. If u;; is a
line, then at most two variables at u,,; are solved. For both cases, we can solve the all variables
at uy11.

For other end elements of St(U,), we can solve the variables by the same method as in
Case 1.

Now we consider an end element of St(U2), say w1, which connects to an end element of
St(U1), say u1,1. We know from Definition 2.6 that w,; only connects to u;,; by one path.
Assume the plane containing ws,; in the path is P;. If w; is a line, by Lemma 4.1, there is
only one plane, say P, in St(U;) which contains w; ;. If w1 is a point, by Lemma 4.1, there
are at most two planes, say P3 and Py, in St(Uz) which passes through w; ;. Then for both
cases, we use these two solved variables corresponding to P, and P, or these three variables
corresponding to Py, P; and Py and solve other variables at wy,1.

Next, we pick another end element, say wy 2. Because w2 connects to at most one end
element of St(U;) or St(U;) from Definition 2.6, and at most one plane in St(Usz) contains Us
and w2 if w2 is an end line or at most two planes in St(Uz) pass Uz and w2 if w2 is an
end point by Lemma 4.1, we know that there are at most two or three solved variables at w; 2.
Hence we can use these solved variables to solve other variables at w; 2. Continuing the same
procedure, we can solve all variables at the end elements of St(U1) or St(Us).

Since G’ has no loop any three elements can not connected pairwise by Corollary 4.5 and any
point or element can connect to only one end element or connect to two end elements of St(U,)
and St(Uz) by two unique paths in G’ from Corollary 4.3, we can continue this procedure and
solve all variables without ambiguity.

Similarly, we can consider the case of s > 2.

We can solve all variables in terms of some variables without ambiguity since G’ has no loop.

Similar to the proof of Theorem A[*3 and Theorem 3.15, we can apply Lemma 4.13 and
finish the proof of the Main Theorem.

In the course of proving Theorem 4.6, we have proved the following Theorems.

Theorem B. Let A* be a nice arrangement of hyperplanes in CP3. The moduli space of A*
with fized combinatorics L(A*) is connected.

Proof.  For given two nice arrangements A% and A} of hyperplanes in CP? with fixed combi-
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natorics L(A*), in the proof of Theorem 4.6, we have constructed a one-parameter family A*(t)
of hyperplanes in CP?® with fixed combinatorics L(A*) connecting .Aj and A}. Therefore the
moduli space of A* with fixed combinatorics L(A*) is connected.

Theorem C. The homotopy groups of the complement M(A*) of a nice arrangement of
hyperplanes in CP® depend only on L(A*) (or the lattice L(A)).

Proof.  Since the topology of M(.A*) is determined by L({.A*), by Theorem 4.6, the homotopy
groups of the complement M (A*) are determined by L(A*).
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