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Local holomorphic De Rham cohomology
Rong Du and Stephen Yau

Local holomorphic De Rham cohomology introduced in this paper
and punctured local holomorphic De Rham cohomology introduced
by Huang–Luk–Yau are two important local invariants for varieties
with isolated singularities. We find some relations between these
two invariants and the invariants defined by Steenbrink on sur-
face singularities, and from which we use these two invariants to
describe when a Gorenstein singularity is quasi-homogeneous.

1. Introduction

Let M be a complex manifold. The qth holomorphic De Rham cohomology of
M , Hq

h(M), is defined to be the d-closed holomorphic q-forms modulo the d-
exact holomorphic q-forms. Holomorphic De Rham cohomology was studied
by Hörmander [4]. In the paper [5], the authors introduce the notion of qth
punctured local holomorphic De Rham cohomology Hq

h(V, x) as the direct
limit of Hq

h(U − {x}) where U runs over strongly pseudoconvex neighbor-
hoods of isolated singularity x in a complex variety V . This is an important
local invariant which can be used to tell when the hypersurface singularity
is quasi-homogeneous (see Section 2). The purpose of this paper is to gen-
eralize the result in [5] to Gorenstein surface singularities, i.e., the following
theorem.

Main Theorem. Let (V, x) be an isolated Gorenstein surface singular-
ity. For a given smoothing, let μ and τ be the generalized Milnor number
and Tjurina number of (V, x), respectively. Then

dim H2
h(V, x) − dim H1

h(V, x) = μ − τ.

In particular, the singularity is quasi-homogeneous if and only if

dim H1
h(V, x) = dimH2

h(V, x).
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In Section 2, we recall the basic notions and results that are needed for
the proof of our main theorem. We also introduce the notion local holomor-
phic De Rham cohomology. In Section 3, we establish some relations between
our new invariant and the invariants defined by Steenbrink. We also prove
our main theorem in this section.

2. Preliminary

Let V be an n-dimensional complex analytic subvariety in C
N with only

isolated singularities. There are two kinds of sheaves of germs of holomorphic
p-forms defined on V (cf.[12]):

(1) Ω̄p
V := π∗Ω

p
M , where π : M −→ V is a resolution of singularities of V .

(2) ¯̄Ωp
V := θ∗Ω

p
V \Vsing

where θ : V \Vsing −→ V is the inclusion map and
Vsing is the singular set of V .

Clearly Ω̄p
V is a coherent sheaf because π is a proper map. ¯̄Ωp

V is also a
coherent sheaf by a Theorem of Siu [7]. In case V is a normal variety, the
dualizing sheaf ωV of Grothendieck is actually the sheaf ¯̄Ωn

V .

Definition 2.1. The Siu complex is a complex of coherent sheaves J• sup-
ported on the singular points of V which is defined by the following exact
sequence:

(2.1) 0 −→ Ω̄• −→ ¯̄Ω• −→ J• −→ 0.

Definition 2.2. Let V be an n-dimensional Stein space with x as its only
singular point. Let π : (M, A) → (V, x) be a resolution of the singularity with
A as exceptional set. The geometric genus pg and the irregularity q of the
singularity are defined as follows (cf.[8, 13]):

pg := dim Γ(M\A, Ωn)/Γ(M, Ωn),(2.2)

q := dim Γ(M\A, Ωn−1)/Γ(M, Ωn−1),(2.3)

The s-invariant of the singularity is defined as follows:

(2.4) s := dim Γ(M\A, Ωn)/[Γ(M, Ωn) + dΓ(M\A, Ωn−1)].

Lemma 2.1 [6]. Let V be an n-dimensional Stein space with x as its only
singular point. Let J• be the Siu complex of coherent sheaves supported on
x. Then
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(1) dimJn = pg,

(2) dimJn−1 = q,

(3) dimJ i = 0, for 1 ≤ i ≤ n − 2,

(4) s = dimHn(J•) = pg − q and dim Hn−1(J•) = 0.

In analogous to the definition of the qth punctured local holomorphic
De Rham cohomology, we can similarly define local holomorphic De Rham
cohomology Hq

h(V )x to be the direct limit of Hq
h(U) where U runs over

strongly pseudoconvex neighborhoods of x in V .

Definition 2.3. Let x be a singularity of V . Consider the complexes

0 −→ C −→ OV,x
d̄0

−→ Ω̄1
V,x

d̄1

−→ Ω̄2
V,x

d2

−→ · · · .(2.5)

0 −→ C −→ OV,x

¯̄d0

−→ ¯̄Ω1
V,x

¯̄d1

−→ ¯̄Ω2
V,x

¯̄d2

−→ · · · .(2.6)

Then the generalized Poincaré number p̄
(i)
x , ¯̄p(i)

x are defined by dim ker d̄i/Im d̄i−1

and dim ker ¯̄di/Im ¯̄di−1, respectively.

Lemma 2.2. Let (V, x) be an isolated singularity. The the local holomorphic
De Rham cohomology Hq

h(V )x and punctured local holomorphic De Rham
cohomology Hq

h(V, x) are isomorphic to qth cohomology of the following
complex:

(2.7) 0 −→ C −→ OV,x
d̄0

−→ Ω̄1
V,x

d̄1

−→ Ω̄2
V,x

d2

−→ · · · ,

and

(2.8) 0 −→ C −→ OV,x

¯̄d0

−→ ¯̄Ω1
V,x

¯̄d1

−→ ¯̄Ω2
V,x

¯̄d2

−→ · · · ,

respectively.

The main theorem in [5] is

Theorem 2.1 [5]. Let (V, x) = {(z0, . . . , zn) ∈ C
n+1 : f(z0, . . . , zn) = 0} be

a hypersurface with origin as isolated singularity. Then

(1) dimHq
h(V, x) = 0 for q ≤ n − 2,
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(2) dimHn
h (V, x) − dim Hn−1

h (V, x) = μ − τ , where

μ = dim C{z0, . . . , zn}/(∂f/∂z0, . . . , ∂f/∂zn)

is the Milnor number and

τ = dim C{z0, . . . , zn}/(f, ∂f/∂z0, . . . , ∂f/∂zn)

is the Tjurina number of the singularity (V, x), respectively.

For isolated surface singularities, we can generalize above theorem to
Gorenstein case. Before doing that, we recall some basic notions.

Let (V, x) be a normal surface singularity. Let π : M −→ V be a good res-
olution of singularity. Let π−1(x) = A = ∪Ai, 1 ≤ i ≤ n, be the irreducible
decomposition of the exceptional set A into irreducible components. Let gi

be the genus of Ai, g =
∑

gi and denote by Ã the disjoint union of Ai. Let
Γ be the dual graph of A and b is the number of loops in Γ.

The sheaf of germs of logarithmic one-forms Ω1
M (log A) is defined by the

kernel of the restriction map.

(2.9) 0 −→ Ω1
M (log A)(−A) −→ Ω1

M −→ Ω1
˜A

−→ 0.

It follows that ∧2Ω1
M (log A) = Ω2

M (A), and there is an exact sequence

(2.10) 0 −→ Ω1
M −→ Ω1

M (log A) −→ O1
˜A

−→ 0.

The following lemma can be found in [10].

Lemma 2.3. (1) The composition H0(O
˜A) → H1(Ω1

M ) → H1(Ω1
˜A
) is an

isomorphism.

(2) H0(Ω1
M )→̃H0(Ω1

M (log A)).

Recall that n is the number of the components of A.
Since H0

A(O
˜A)→̃H0(O

˜A), the map H0(O
˜A) → H1(Ω1

M ) factors via
H1

A(Ω1
M ). Therefore, by Lemma 2.3, Steenbrink define an nonnegative integer

(2.11) γ := rk(H1
A(Ω1

M ) → H1(Ω1
M )) − n.

Besides γ, Steenbrink introduces two other invariants

α := dimH0(Ω2
M )/dH0(Ω1

M (log A)(−A)),(2.12)

β := dimH0(Ω1
˜A
)/Im H0(Ω1

M ).(2.13)
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Next let us recall the definition of smoothable singularities, generalized
Milnor number and Tjurina number.

Definition 2.4. If there exists a flat morphism π : V → T of local analytic
spaces such that π−1(t0) � V and π−1(t) � Vt is nonsingular for t �= t0, then
the singularity (V, x) is called smoothable.

More generally, let (V, x) be a local analytic variety with isolated
singularity of pure dimension n. To any smoothing π : V → T of V , one
can attach a Milnor fibre F := Bε ∩ π−1(t), where Bε is a ball in some C

N

containing V and t ∈ T (cf.[9]). F is a 2n-manifold with boundary, with the
homotopy type of a finite complex of dimension n. We define Milnor number
μ = rkHn(F ).

As is well known, any complex analytic germ (V, x) with isolated singu-
larity admits a semi-universal deformation

(V, x) ↪→ (Y , y) F−→ (S, s)

(cf.[1, 2]). Given a semi-universal deformation of (V, x), we call an irreducible
component (S′, s) of (S, s) a smooth component if the general fiber of F
over this component is smooth. In general, however, the germ (S, s) is not
smooth and indeed, it may have irreducible components of various dimen-
sions. Any smooth component has dimension between dimC T 1

V − dimC T 2
V

and dimC T 1
V , where T 1

V , T 2
V are, respectively, the first order deformation

and obstruction spaces.
For a smoothing, π : V → T of (V, x) and a smooth component (S′, s)

on which π : V → T lies, Wahl had a conjecture in [11]:

dimC(S′, s) = dimC Coker(ΘV/T ⊗ OV → ΘV ).

Wahl himself verified his conjecture for special cases. Later Greuel and Looi-
jenga [3] proved this conjecture completely.

We define τ = dimC T 1
V . If (V, x) has no obstructed deformations (e.g.,

(V, x) is a complete intersection), then (S, s) is nonsingular and

dimC(S, s) = dimC T 1
V .

So τ generalizes the usual Tjurina number.
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3. Proof of Main Theorem

Denote

hi
h(M) = dimH i

h(M), hi(M, F ) = dimH i(M, F ), hi(M) = dimH i(M, C),

where M is a manifold, F is a sheaf on M .

Proposition 3.1. Let (V, x) be a normal surface singularity. Then

dim H2
h(V )x − dim H1

h(V )x = α + β − g.

Proof. Let π : M −→ V be a good resolution of singularity. Let π−1(x) =
A = ∪Ai, 1 ≤ i ≤ n, be the irreducible decomposition of the exceptional set
A into irreducible components. Since dimH2

h(V )x and dimH1
h(V )x are local

invariants, we can suppose that V is sufficiently small and is contractible to
the singular point without loss of generality.

We have the spectral sequence

(3.1) Ep,q
1 = Hq(M, Ωp

M ) ⇒ Hp+q(M, Ω•
M ) ∼= Hp+q(M, C).

The spectral sequence induces an exact sequence of small order terms
(3.2)

0 → H1
h(M) → H1(M, C) → E0,1

2 → H2
h(M) → H2(M, C) → E1,1

2 → 0,

where

(3.3) E0,1
2 = ker(H1(M, OM ) → H1(M, Ω1

M )),

(3.4) E1,1
2 = coker(H1(M, OM ) → H1(M, Ω1

M )).

So

(3.5) h1
h(M) − h1(M) + dimE0,1

2 − h2
h(M) + h2(M) − dim E1,1

2 = 0.

Since

(3.6) dimE0,1
2 − dim E1,1

2 = h1(M, OM ) − h1(M, Ω1
M ),

we have

(3.7) h1
h(M) − h1(M) − h2

h(M) + h2(M) + h1(M, OM ) − h1(M, Ω1
M ) = 0.
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From [10], we know

h1(M, Ω1
M ) = γ + q + n

= pg − g − b − α − β + n.
(3.8)

And

h1(M) = dimH1(A, C) = 2g + b, h2(M) = n, h1(M, OM ) = pg.

So
h2

h(M) − h1
h(M) = α + β − g.

Since dimH2
h(V )x and dimH1

h(V )x are independent on the choice of the
pseudoconvex domains containing the singularity,

dim H2
h(V )x − dim H1

h(V )x = p̄(2)
x − p̄(1)

x

= h2
h(M) − h1

h(M)
= α + β − g.

(3.9)

�

Proposition 3.2. Let (V, x) be an isolated normal surface singularity. Then

¯̄p(1)
x = p̄(1)

x , ¯̄p(2)
x = p̄(2)

x + s.

Proof. Let π : M −→ V be a good resolution of singularity. Let π−1(x) = A,
be the exceptional set. Since dim H i

h(V )x and H i
h(V, x), i = 1, 2, are local

invariants, we can suppose that V is sufficiently small and is contractible to
the singular point without loss of generality.

According to the short exact sequence (2.1) and Cartan Theorem A, we
have the following exact sequence of complexes:

(3.10) 0 −→ Γ(V, Ω̄•) −→ Γ(V, ¯̄Ω•) −→ Γ(V, J•) −→ 0.

In view of Lemma 2.1(4), (3.10) gives

0 −→ H1(Γ(V, Ω̄•)) −→ H1(Γ(V, ¯̄Ω•)) −→ H1(Γ(V, J•))

−→ H2(Γ(V, Ω̄•)) −→ H2(Γ(V, ¯̄Ω•)) −→ H2(Γ(V, J•)) −→ 0.
(3.11)

Since J• is supported on x, we have

(3.12) H2(Γ(V, J•)) = H2(J•), H1(Γ(V, J•)) = H1(J•).
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So from Lemma 2.1(4), we get

H1
h(M) ∼= H1

h(M\A)

and

(3.13) 0 −→ H2(Γ(V, Ω̄•)) −→ H2(Γ(V, ¯̄Ω•)) −→ H2(Γ(V, J•)) −→ 0.

Observe that

H2(Γ(V, Ω̄•)) = H2(Γ(M, Ω•
M )) = H2

h(M),

H2(Γ(V, ¯̄Ω•)) = H2(Γ(M\A, Ω•
M )) = H2

h(M\A).

It follows from (3.13) and Lemma 2.1(4) that

h2
h(M\A) = h2

h(M) + s.

Since dimH i
h(V )x and dimH i

h(V, x), i = 1, 2, are independent on the choice
of the pseudoconvex domains containing the singularity,

¯̄p(1)
x = p̄(1)

x , ¯̄p(2)
x = p̄(2)

x + s.

�

Proposition 3.3. Let (V, x) be an isolated normal surface singularity. Then

dim H2
h(V, x) − dim H1

h(V, x) = ¯̄p(2)
x − ¯̄p(1)

x = 2α + 2β + γ + b ≥ 0.

Proof. From Propositions 3.1 and 3.2, and

(3.14) s = α + β + γ + g + b

from Steenbrink (cf.[10]), we can get the result. �

Theorem 3.1 [10]. Let (V, x) be an isolated Gorenstein surface singularity.
For a given smoothing, let μ and τ be the generalized Milnor number and
Tjurina number of (V, x), respectively. Then

μ − τ = 2α + 2β + γ + b.
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Theorem 3.2. Let (V, x) be an isolated Gorenstein surface singularity. For
a given smoothing, let μ and τ be the generalized Milnor number and Tjurina
number of (V, x), respectively. Then

dim H2
h(V, x) − dim H1

h(V, x) = μ − τ.

In particular, the singularity is quasi-homogeneous if and only if

dim H1
h(V, x) = dimH2

h(V, x).

Proof. The theorem follows from Proposition 3.3 and Theorem 3.1. �
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