
 SINGULARITIES DEFINED BY se(2, C) INVARIANT
 POLYNOMIALS AND SOLVABILITY OF LIE ALGEBRAS

 ARISING FROM ISOLATED SINGULARITIES

 By STEPHEN S.-T. YAU*

 1. Introduction. Let (V, 0) be an isolated singularity in (C", 0)

 defined by the zero set of a holomorphic function f. The moduli alge-

 bra A(V) of (V, 0) is C{xI, x2, . . ., x,, }/(f, af/axa, . . ., aflk,). It is
 easy to see that A(V) is an invariant of (V, 0). In [1], Mather and the

 author proved that the complex analytic structure of (V, 0) is deter-

 mined also by A(V). Thus, the above construction gives an injection

 map from the space of isolated singularities in (C", 0) to the space of

 commutative local Artinian algebras. This raises a natural and impor-

 tant problem, the so called recognition problem: Give a necessary and

 sufficient condition for a commutative local Artinian algebra to be a

 moduli algebra. In [3], we define L(V) to be the algebra of derivations

 of A(V). Clearly L(V) is a finite dimensional Lie algebra. The main

 purpose of this paper is to prove that L(V) is solvable for n ' 5. Nat-

 urally one expects that a necessary condition for a commutative local

 Artinian algebra to be a moduli algebra is that its algebra of deriva-

 tions is a solvable Lie algebra. In this paper we have used the main

 theorem which is available in preprint form in [4] for n ' 5. Assume

 that the results in [4] remain valid as expected for n ' 6. Then the

 proof given in this article also applies smoothly to arbitrary n. In Sec-

 tion 2, we classify the actions of sQ(2, C) on C[[x1, x2, . . ., x,,J] via
 derivations preserving the m-adic filtration. The main point here is to

 get rid of the "higher order operator" (i.e., E; ai(a/ax;) with multiplic-
 ity of a; > 2) by means of the vanishing theorem for semisimple Lie

 algebra cohomology. It seems to us that the material here is not avail-

 able in literature form. I would like to thank Professor H. Sah for
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 1216 STEPHEN S.-T. YAU

 many useful discussions. In Section 3 we prove that the singular set of

 sQ(2, C) invariant polynomials of degree at least 3 in five variables is at

 least one dimensional. Similar results can be generalized to higher di-

 mension without difficulty. In Section 4, we prove our main theorem

 that L(V) is solvable for n c 5.

 We thank the University of Illinois at Chicago and Yale Univer-

 sity for generous support and Professor G. D. Mostow for stimulating

 an excellent research atmosphere.

 2. Classification of se(2, C) in Der C[[x1, x2, .. ., x"]] preserving

 the m-adic filtration.

 PROPOSITION 2.1. Let L = sQ(2, C) act on C[[x1, . . ., xj] via
 derivations preserving the m-adic filtration i.e., L(mk) C mk where m

 is the maximal ideal in C[[x1, . . ., x,j]. Then there exists a coordi-
 nate change Yl' . ., y,, with respect to which sQ(2, C) is spanned by

 11 a
 h = S ali-

 a",

 a
 e = S a2,

 .i= I 'ayi

 11 a
 f =d Sa3i

 where a,j is a linear function in Yi' . . ., y,, variables for all 1 c i ' 3
 and 1 < j < n. Here {h, e, f} is a standard basis for sQ(2, C) i.e.,
 [h, e] = 2e, [h,f] = -2f and [e,f] = h.

 Proof. Let a be an element of L. Let U(1)(g) be the matrix repre-

 sentation of a on mr/mr2 and U(1)(a) be the matrix representation of a
 on m2/m3. Since a preserves the m-adic filtration, the matrix represen-

 tation of a on m/mr3 is given as follows

 /u(l)(a) 0
 W(1I(a) = l

 wo)('g (l2(a =2)()

This content downloaded from 166.111.25.54 on Wed, 06 Jul 2016 03:18:19 UTC
All use subject to http://about.jstor.org/terms



 SINGULARITIES AND SOLVABILITY 1217

 where T(9)(a) represents an element in Homc(m/m2, m2/m3). Observe
 that

 W" r([u, TI) = W(1)(u)W(1)(T) - W(1)(T)W(1)(g)

 ( 1(u) 0 \1(U1kT) 0

 ( U1(or) 0 I( 0 T A)(o) U 1)(o) + T( 2)(oT) U2( )((T)

 (Ti(T)U ( + U(1)TA) U )

 (T(U)((T) 2U12(T)- Ui(or) U(2V)(o)0

 / U(l~~I)('g)U(11)('T) O

 - T(X)(g)U(1)(T) + U(21)(g)T(l)(T) U2(0()U2(T) -

 Ul )(T)U( 1 )(,) O

 VT(')(,T)U(l )(or) + U(2 1)(T)T(l2)(g) U('l)(,T)U('l)(or)

 U(,)(or)U(,)(,T)- u (1) (,T)U(1)(0r) 0

 = T( l)(,g)U(1')(,T) + U('1)(,g)T(1')(,T) U(,1)(,g)u(,l)(r) - u(i) )(-r)u(,)(or)

 - T(2)(T)U(1)(g) - U(uu)(T)T())(g)

 T")([or, TI) = T(1)(g)U(')(T) + U(21)(o)T(12)(T)

 - T(.2)(T)U(1)(g) - U(1) (T)T(li)(o).

 Observe also that Homc(m/m2, m2/m3) is a L-module. The action

 of L on Homc(m/m2, m2/m3) is given as follows. Let a E L, s? E

 Homc(rn/m2, m2/m3) and ul E M/M2

 (U()(ul) = -o(U(ul) + U((p(Ul)).

 We now claim that T('): L Homc(m/m2, m2/m3) is a 1-cocycle of L
 with coefficient in Homc(m/m2, m2/m3). To see this, consider

 6T(j2)(o, T) = o * T(9(T)-T T(1) - T(12([, TI)
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 1218 STEPHEN S.-T. YAU

 For any v e M/Mr2, we have

 [6TU?(g, T)](v) = [o- T")(-)](v)- [T T-T2)(g)](v) - T")([g, T])(v)

 = -T(12)(T)(o(v)) + o(T(T1i)(T)(v)) + T( )(,g)(T(v)) - T(T(12)()(V))

 -T( 1)(,g)U( 1)(,T)(v) - U('1)(or)T( 1)(T)(v)

 + T(2)(T)U(1)(g)(v) + U(21)(T)T(12(o)(v)

 =0.

 Therefore T(') is a 1-cocycle as claimed. Since L is simple, H1(L,
 Homc(m/m2, mr2/M3)) = 0. We conclude that T(2) is a 1-coboundary.
 There exists f(2) E Hom(M/M2, M2/M3) a 0-cochain of L with coeffi-
 cients in Hom(m/mr2, m2/M3) such that

 T(2)(,g) = (65(2))(g) Va e L

 = Of3(2)

 > T(2)(g)(v) = go(2)(v) Vv E M/Mr2

 = u(1(2)(V)) - 3(2)(u(V)).

 Let S(2) be the matrix representation of 3(2). Thus we have

 T(u()(v) = U(-)(U)S(2)(V) - S )UM(g)(v).

 This is equivalent to say that

 I(1) ~ 0 0
 /I /UI (or) O 0 /uI(or) o I T

 (2) 2(a) U(1)(U)) O U(U1 (U)/k\S(2) 1/

 I (1 ) I( (Uo) 0 I()( I - (u I(or) ?)

 S(2) IJSl2(1) U(1() (2) OXV? u2)a

This content downloaded from 166.111.25.54 on Wed, 06 Jul 2016 03:18:19 UTC
All use subject to http://about.jstor.org/terms



 SINGULARITIES AND SOLVABILITY 1219

 The above equation means that we can make a change of variable in
 the following form

 (2) = q .
 Yi Xi + q I)(X2,X2, . . . x,, )
 (2) 2

 Y2 = X2 + q2 (xl, x2, . . ., x,,)

 y(2) = x + q (2)(x , x2, . . ., x,,)

 where q 2) is a homogeneous polynomial of degree 2 for 1 c i c n,

 such that with respect to such coordinate, the matrix representation of
 a on ni/In3 is given by

 (U 2I(o) 0 ) (UV)(o) U 0

 0 u~?(uo) )(r

 V o U(22)(a)/ V ? u~~~(2l) (2)

 i.e., with respect to the coordinate system yl 9 . . ., y/2 sQ(2, C) is
 spanned by

 h a a2 a ayb(2
 ,1 ay~~~2~~J+ ay1

 (2) a2 a

 e j-Ll a3 a 2- + b2j

 J= j 3I ayi(2) J+ IS 3 ayj2

 where a(i7) is a linear function in yli2, . . (l2) and b$,j2) is a polynomial
 in (2) (2) at~~~~~() b(2

 Yin ,l2 * , y,,2 with multiplicity atleast three.
 By induction, we shall assume that there exists coordinates yl21 q(k(2(k) y(2-) (k1

 2 (2k) = y(k-) + q(k)(ykl) y(k-1)

 -(k) = y(k- 1) + q(k)(y(k- 1) y(2k-1) y.(k-1) ),
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 1220 STEPHEN S.-T. YAU

 where qik) is a homogeneous polynomial of degree for 1 c i c n such

 that with respect to such coordinate, the matrix representation of a on

 m/mk+l is given by

 U 1k (or)O
 u(k)(

 u (k) (or

 where Uik)(r) is the matrix representation of a on mi/mi+l. This means

 that with respect to the coordinate system y k), , y(k) si?(2, C) is
 spanned by

 h a(k) + a (k)
 a1=,E a2/) /(k) + a(k)

 eE ~~~~~ a ii a

 e a(k) + a a, a(k) + b k
 ay N ~~~ay(k

 where a ,k) is a linear function in y(k), ., y and W) is a polynomial
 in y(1k) , y(k) with multiplicity at least k + 1. The matrix represen-
 tations of a on m/mk?2 with respect to the coordinate system y(lk),
 (k) is given by y1l

 u(k)(ur 0

 W(k )(oa) =

 U(k(a)

 T l,k + I (or) k* Uk T(a)
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 SINGULARITIES AND SOLVABILITY 1221

 where T (k)+,(u) represents an element in Homc(m/m2, mk+l/mk+2).
 Observe that

 W(k)([j TI) = W(k)(a)W(k)(T) - W(k)(T)W(k)(a)

 U I)(a) 0 r u(T) 0I1

 = E ~~u(k(aI U(k?r

 Uk ( a) j)(T)

 T( )+1(u) * . .. * Ulk1(a) wT, +1(T) * . * Uk T

 0U?k(T) 0 0U, ) 0 1 U(2?(r) 1k (aU( k)(T

 ul(T) 0)()Uk(a)

 2* *T * U)(ar(T)) _T(,?(a) * ... * Ul+,(a)

 = O a22

 0 ..

 where aii = -k,U ) U~k)(T)Ulk)(u) andkak

 T(, k?I(u)U(k)(T) + Uk+,(u)T(k?+(T) - T| ?+(T)U|k)(u) -

 Ujl+4(T)T( k+?(u). We now claim that T( k+l L -~Homc(m/m2, mk?I/

 171k +2) iS a l-cocycle. To see this, consider

 T(k) 1(uI T) = UT(?1(T) - T.T (k) I(r) - TUk,([k, TI)

 For any v e rn/rn2, we have

 [6 Tk,~? k+(u,T)](v) = [u Tlkl+I(T)](v) - [T T( k+?(uX)](v)

 -Tkk T k + I ([])(V)

 -T|1(T)((v)) + ( T t I(T)(v))
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 1222 STEPHEN S.-T. YAU

 + TI,k+ I (o)(T(v)) - T(Tlkk?I(U)(V))

 - T(k)+l()U(jk)(T)(V) - UkIl(g)T(k +l(T)(V)

 + T(k+?l(T)U(jk)(g)(v) + U(k) (T)T (u I(g)(V)

 =0.

 Therefore T(kj 1 is a 1-cocycle as claimed. Since L is simple

 H1(L, Homc(m/m2, mk?l/mk?2)) = 0. We conclude that T(?k+1 is a
 1-coboundary. There exists f3(k+1) E Hom(m/m2, mk+l/mk+2) a 0-co-

 chain of L with coefficient in Hom(m/m2, mk+l/mk+2) such that

 T|k)+l (O) = (6L(k+0)(O) E L

 = Oro(k+ 1)

 T (k)+,()(V) = f(k+I)(V) VV E M/M2

 = u(f3(k+l)(V)) - f3(k+l)()u(V))

 Let S(k+?) be the matrix representation of 1(k+1). Then we have

 lk)+ (g)(V) = U(k+1(u)S(k+l)(V) - S(k+1)U(k)(g)(V)

 This is equivalent to say that

 0 . 0 U(2k)(a

 S(Il u(k k)a
 S (k?+1l ) * . . . * I T?( + I (0) *(k + U l) (ou)
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 SINGULARITIES AND SOLVABILITY 1223

 U 1)(k) 0 0

 = I Ua (I) I

 UU((k) I

 0 0 U.. U (k ) S(k?) *k * J *

 This means that we can make a change of variable in the following
 form

 (k + l k)= + q(k + )(y(k) ) Yi Y i(k + , Y ... .Y/

 (k?+ 1) =(k) + qkl)(y( k) . k) Y 2 Y2q 2 Y+ *, '9yt)

 (k + 1) =(k) + (k + 1)(y(k) (k)
 (k+ y1) .

 where qik+l) is a homogeneous polynomial of degree k + 1 for 1 ? i
 < n such that with respect to such coordinate, the matrix representa-
 tion of a on m/mk+2 is given by

 UUk 1 (())
 u(k~~~( + 1 (s

 u(k~~~U( + 1)(sr)
 0

 u(k + 1))((r

 U U 1 (()) k+00
 U(k))0r)

 u(k))or)

 In particular with respect to the coordinate system y(k+?1), ., y(?k+l)
 si?(2, C) is spanned by
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 1224 STEPHEN S.-T. YAU

 h = a(k d '1 + Eb(kl) a
 j1 ay(?1) _ 1 ay1(k?+1)

 a +
 e = a ay(?l) + bk al

 k = j-E a3i )ay(* +y( +-S b3+ 1 ) (k+1) k + E a

 where a,?+I) is a linear function in yk?+ 1) j(k+l) and bV+') is a
 function in ((kk? 1, ., 1 with multiplicity at least k + 2.

 By construction, for each ( E N, we have y(+ 1) - e ? I+

 where in is the maximal ideal of C[[x, X2, x,]]. Then the limit

 of the coordinate system { y?), Y(2? + , y5 + } with respect to the
 mi-adic topology is a coordinate system {YI, Y2, ., y,I} in C[[xi, x2,
 . x,,J] with the property that

 y -y' +1) e me+2 for all 1 c i c n.

 By chain rule, we know that for 1 ? i c n

 a _ ay a aY2 a ay a

 ayl+l= ay(('+1) ay + ay(''+" ay2 I+ ayl+'+ ay,,
 __ aa a a l

 =- + operators of orders at least e + 1
 ayi

 (2)

 where operator of order e + 1 means operator of the form E.7
 5+1 (a/ay,) with pi' +I a homogeneous polynomial of degree e + 1 in

 YI, . . ., y,, variables. Now we claim that h, e and f can be written as

 operator of order 1 with respect to the coordinate system Yi, . . *, Y,,
 Write

 h = D 1y + D2y + D3 y + *

 where Diy is an operator of order i with respect to the coordinate sys-
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 SINGULARITIES AND SOLVABILITY 1225

 tem y . . ., y,,. Suppose Di, = 0 for 2 c ? c - 1. We are go-
 ing to prove D,,, = 0. In the coordinate system y(C+1) Y2f+l),
 y(ll), h can be written in the form

 h a (j's+1) a + a ("+ (3) h JEat + Eb (l,

 where a('j?) is a linear function inyl) Y( ' + ?), , ( +1) and b(lt+') is a
 function in y(' + l ),?YI2' + l ), .*. ., y( +?I ) with multiplicity at least e + 2. Put ( 1 )

 and (2) in (3), we see that

 h = D)11, + D?+2,v + D?+31,v+

 where D,1, is an operator of orderj in Y 1, Y2, ., y,, coordinate. This im-
 plies

 0 (Dj,p D- ii) + Dg!, + Di'+I,,, + (Dl>+21v -D6'+2.i,)

 + (D? +3!, D6+3!,) +

 Thus Dl,), = DL)+ ,,, = 0. By induction, we have shown Diy 0 O for all j
 2. Hence h is an operator of first order with respect to Y1, Y2' ., y,, coor-
 dinate. Similarly we can prove that e andf are operators of first order with

 respect to Y1, Y2, . . , y,, coordinate. Q.E.D.

 THEOREM 2.2. Let s((2, C) act on the formal power series ring C[[xl,
 x,,i] preserving the m-adicfiltration where m is the maximal ideal in

 C[[xi, .x,,]]. Then there exists a coordinate system

 XI , X2, . . ., xl , x'l?+I, X ?'l+2, . . .,9 Xt'1?+'2, * * *'

 Xi'l1+'2+'- +I'S-1+1 9 . . .,9 X'l'+1'2+ +I's

 such that

 h = D,,I + * + Dj + * + Dh,.

 e = DD(1 + + Delj + + De.r

 f = D -,I + *- D,,j + * + Df,r
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 1226 STEPHEN S.-T. YAU

 where r c s and

 + (C1 3)xe,+...+?i1j+2

 + ..+ (_(C1- 3))xe1?. x+ +e,- i

 ? + i(-( - 1))Xle9+ .....?... +l'j_+i.. '1 -

 Dax1? ,+ +f +

 + +(- j)x1? +1.1+l ax+. a

 *x1+,.
 + ***+ Xe1+. + l'j'-

 Proof. According to Proposition 2.1, we can choose a coordinate

 system { y y, . . ., yn} such that the coefficient of a/ayi, 1 c i ? n, of every

 element in sC(2, C) are linear functions in yl, . . ., y,, variables. In view of

 the proof of complete classification of representations of sC(2, C) represen-

 tations, by further change of coordinate we obtain a coordinate system

 {xI, x2, . . ., x,,} such that sC(2, C) takes the form as stated in the
 theorem. Q.E.D.
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 SINGULARITIES AND SOLVABILITY 1227

 3. Singular sets of s (2, C) invariants polynomials.

 LEMMA 3.1. Suppose sf(2, C) acts on Mk the space of homogeneous

 polynomlials of degree k 2 2 in xI, X2, X3, X4 and x5 variables via

 T =4x 1 + 2X2 2X4 -4x5
 ax, aX2 aX4 aX5

 a a a a
 X+ =4xl + 6x2 +6x3 +4x4

 aX2 aX3 aX4 aX5

 a a a a
 X- = X2 + X3 + X4 + X5

 ax aX2 aX3 aX4

 Let I be the complex vector subspace spanned by af/axl, af/ax2, af/ax3,
 af/ax4 and Af/ax5 wheref is a homogeneous polynomial of degree k + 1. If

 I is ti sfQ(2, C)-submnodule, then the singular set off contains the xl axis and

 X. axis.

 Proof. By Theorem 4 of Section 1 in [4], f is necessarily an invariant

 sf(2, C) polynomial in xl, X2, X3, X4, x5 variables. Suppose the weight of xi

 is given by the corresponding coefficient in the expression of T above i.e.,

 wt(x1) = 4, wt(x2) = 2, wt(x3) = 0,

 wt(x4) = -2, wt(x5) = -4.

 Thenf is a polynomial of weight 0. Let us assume on the contrary that xi
 axis does not lie in the singular set off. Clearly the monomial xk appears in

 af/axi for some I c i c 5. Thus the monomial xikxi appears inf. However,
 since k 2 2, weight of xlkxi is strictly bigger than zero. This gives a contra-
 diction. Hence xl axis is contained in the singular set of f.

 Similarly we can prove that x5 axis is contained in the singular set

 off. Q.E.D.

 LEMMA 3.2. Suppose sf(2, C) acts on M5 the space of homogeneous

 polynomials of degree k 2 2 in xI, X2, X3, x4 and x5 variables via

 T = 2x1 -2x3 + x4 x5
 ax aX3 ax4 ax5
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 1228 STEPHEN S.-T. YAU

 a a a
 X+ = 2x1 + 2x2 + x4

 aX2 aX3 aX5

 a a a
 X- = X2 + x3 + x5

 ax, aX2 aX4

 Let I be the complex vector subspace spanned by af/lax, af/ax2, af/ax3,

 At/ax4 anid af/ax5, wheref is a homogeneous polynomial of degree k + 1.

 If I is a sQ (2, C)-submodule then the singular set off contains the set

 (XI, X2, X3, X4, X5): X2 - 2xx3 = 0 = X4 = X5}

 Proof. By Theorem 4 of Section 1 in [4], we may assume thatf is an

 invariant sQf(2, C) polynomial in xl , X2, x3, X4 and x5 variables. Suppose the

 weight of xi is given by the corresponding coefficient in the expression of T
 as above i.e.,

 wt(x1) = 2, wt(x2) = 0, wt(x3) = -2,

 wt(x4) = 1, wt(x5) = -1.

 Thenf is a polynomial of weight 0. Write

 f S g( ,3)(xI, x2, X3)x4ax53.

 Since weight of g(,O)(x , X2, X3) is even, we conclude thatg(1 0)(xl , x2, X3) =
 0 = g(o,I)(XI, X2, X3). Therefore our lemma will follow if we can show that

 g(0,)(xI, X2, X3) is divisible by (x2 - 2xIx3)2 whenever g(0,0)(xI, X2, X3) is
 nonzero. Observe that g(oo)(xI, X2, x3) is a polynomial of weight 0. Asf is
 an invariant polynomial, we have X_f = X+f = 0. It follows that

 X_g(0,0)(xI, X2, X3) = X+g(0,0)(xl, X2, X3) = 0. Hence g(o,o)(xl, X2, X3) is
 also an invariant polynomial in xl , x2 and X3 variables of degree k + 1 2 3.

 Recall that the invariant polynomial in xl , x2 and X3 variables must be even

 degree of the form (x2- 2xIx3)" (cf. [3]). Therefore g(0,0)(xI, X2, X3) is
 divisible by (x2- 2xIx3)2 as claimed. Q.E.D.

 LEMMA 3.3. Suppose sQ (2, C) acts on Mk the space of homogeneous

 polynomials of degree k 2 2 in xl, X2, X3, X4 and x5 variables via

 T =3x1 + X2 X3 -3x4
 ax, aX2 aX3 aX4
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 SINGULARITIES AND SOLVABILITY 1229

 a a a
 X+ =3x- + 4x2 + 3x3

 aX2 aX3 aX4

 X_- a a +- a X_ = X2 + x3 +x4
 ax I ax2 aX3

 Let I be the complex vector subspace spanned by af/axl, af/ax2, af/aX3,
 af/ax4 and af/ax5, wheref is a homogeneous polynomial of degree k + 1.

 If I is a sQ (2, C)-submodule then the singular set off contains the set xI axis
 and X4 axis.

 Proof. By Theorem 4 of Section 1 in [41, f is necessary an invariant

 sQf(2, C) polynomial in xl, X2, x3, X4 and x5 variables. Suppose the weight xi
 is given by the corresponding coefficient in the expression of T above i.e.,

 wt(x ) = 3, wt(x2) = 1, wt(x3) = -1,

 wt(x4) = -3, wt(x5) = 0.

 Then f is a polynomial of weight 0. Let us assume on the contrary that

 xl-axis does not lie in the singular set of f. Clearly the monomial xlk ap-
 pears in af/axi for some 1 c i c 5. Thus the monomial xlkxi appears inf.
 However, since k > 2, weight of xlkxi is strictly bigger than zero. This gives

 a contradiction. Hence xl axis is contained in the singular set of f.

 Similarly we can prove that X4 axis is contained in the singular set
 of f. Q.E.D.

 LEMMA 3.4. Suppose sf(2, C) acts on Mk the space of homogeneous

 polynomials of degree k 2 2 in xl, X2, x3 and X4 variables via

 d a a a
 T = Xl - X2 + X3 X4

 ax, ax2 aX3 ax4

 a a
 X+= xl + x3

 ax2 ax4

 a a
 X_ X2 + X4

 ax, ax3
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 1230 STEPHEN S.-T. YAU

 Supposef is a s((2, C) invariant homogeneous polynomial of degree k + 1

 in xi, X2, X3 andX4 variables. Then k + 1 = 22 is an even integer andf =
 c(x X4 - X2X3Y) for some constant c.

 Proof. Suppose the weight of xi is given by the corresponding coeffi-
 cient in the expression of T above i.e.,

 wt(x1 ) = 1, Wt(X2) = -1, wt(x3) = 1, wt(x4) = -1.

 Thenf is a homogeneous polynomial of degree k + 1 and weight 0. Let

 xialX202x3j?x402 be a monomial appearing inf. Then

 (4.1) a + U2 + 1 + 2 =k + 1

 (4.2) I - U2 + 01-02 = ?

 (4.3) 2(al + ,) = k + I

 Therefore k + 1 is an even integer 2Q. From (4.3) and (4.2) we have j1 = Q

 - a, and 12 = Y- U2* We can writef in the following form

 f = , ae Ia( 2)2)x la1X2 a2X3 1-e X4 a2

 X-(f ) = a(o, 1 ia2)X-(X1 1X2e2X3 1 - cX4 ) - 2
 a1 .02=?

 E; ola((l1x2)xlel-lx2a2+2x3f-alx44-c2
 oeI=I Oe2=0

 a1-1 P

 + E E (f xl)a(al,a2)Xla1X2a2X3 f e-lX4t-a2+1
 el-O Oe2=O

 = 2; 2E (a1 + 1)a(,+lla,2-l)Xla1x2'a2x3e-cllx4f-a2+l
 cel=O (X2=1

 g-i e

 + S S (2 - Cl)a(c,l,a2)xl Iax22X3e-ial- X4f -Oe2+
 oa1= Oec2=0

This content downloaded from 166.111.25.54 on Wed, 06 Jul 2016 03:18:19 UTC
All use subject to http://about.jstor.org/terms



 SINGULARITIES AND SOLVABILITY 1231

 r-i e

 = S r [(ol + 1)a(,1+?i12-1)
 Ce1-= Ce2-1

 + (f - a,)a(,, 1 2)]X,ce 2X31-OeI-IX4V -Oe2 +

 C-1

 + S (oa + 1)a(,+i1J)x1c'1x2?+lx3-e1
 Ckl =O

 ,- I

 + a (Q-oex)a(,1 0)xl'X3 i{-'xl-lx4 +1

 Since Xf = 0, we have

 (4.4) a(i,j) = 0 = a(2,f) = a(,,,,

 (4.5) a(o0) = 0-a( ,o) = * a((, -0)

 (4.6) (oa, + 1)a(x1+? IX2-I) + (f- al)a(cxIe2) = 0 0 < ?Xi ? Q 1

 1 < ?2 < e

 (4.4) and (4.6) imply a(c, I (2)= 0 for all (oel, Oe2) such that Q + 1 ? ol + cU2
 < 2f, 0 c a, c f, and 0 ' U2 C Q. On the other hand, (4.5) and (4.6)

 implya(c IX,2) 0forall(oe1,oe2)suchthat0 : 5U + cU2 < Q- 1,0 ' ?l _
 f and 0 ' ?2 ? Q?.

 Therefore we conclude that the only possible nonzero ti((,f y2) has the

 property that (xi + U2 = . We shall denote U1(a Il>, fu) by bu1. Then (4.6)
 becomes

 (a I + I)bh, +I + (C - ax)b,, 0 for 0 < ae c Q - 1

 => b =- Qbo

 b2 =(1)2 )bo
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 b -(-)i()b

 b= (-1)bo.

 It follows that

 f = b1xI"x44" + b1_xX1'-x2x3x4''I + + bjx1i1x2iX3ix4i
 + + boX2jX31

 = boX2'x3 -()boxi x2l X3t -1X4 + + (- ()bOx iX2-iX31iX4i

 + + (-1)'boxi1x4 C

 = bo(X2X3 - XIX4)I Q.E.D.

 LEMMA 3.5. Suppose sf(2, C) acts on Mk the space of homogeneous
 polynomials of degree k 2 2 in x1, x2, X3, X4 and x5 variables via

 T X- XI X2 + X3 X4
 ax I ax2 aX3 aX4

 a a
 X+ =XI + X3

 'X 2 aX4

 _ _ a
 X = X2 + X4

 ax, aX3

 Supposef is a sf(2, C) invariant homogeneous polynomial of degree k + 1

 in xI, X2, X3, X4, and x5 variables. Then f can be written in the following
 form

 f - aox5 + a2X5 (X1X4 - X2X3) + a4x5 (XIX4 - X2x3)2 +

This content downloaded from 166.111.25.54 on Wed, 06 Jul 2016 03:18:19 UTC
All use subject to http://about.jstor.org/terms



 SINGULARITIES AND SOLVABILITY 1233

 Proof. Write

 k+1

 f Ed gk+1-i(X1, X2, x3, X4)X5
 i=O

 wheregk+Ii(XI , X2, X3, X4) is a homogeneous polynomial of degree k + 1
 - i in xi, X2, X3 and X4 variables.

 k+1

 0 X-(f) = S x5X-(gk+l-i(XI, X2, x3, X4))
 0=O

 X-(gk+1I-i(X1, X2, x3, X4)) = 0

 By Lemma 4, k + 1-i is an even integer 2( andgk+lIi(x1, x2, X3, X4) is a
 constant multiple of (xIX4 - X2X3)1'. Q. E. D.

 LEMMA 3.6. Suppose s((2, C) acts on Ms the space of homogeneous
 polynomials of degree k - 2 in xi, X2, X3, X4 and x5 variables via

 a a a a
 T =X X2 + X3 X4

 axI ax2 ax3 ax4

 a a
 X+ x + X3

 ax2 ax4

 a a
 X_ = X2 ~+ x4

 axI ax3

 Let I be the complex vector subspace spanned by af/ax1, af/ax2, af/x3,
 af/ax4 a.nd af/ax5, wheref is a homogeneous polynomial of degree k + 1.
 If I is a s((2, C)-submodule, then the singular set of f contains the set

 {(XL, X2, x3, X4, X):X,X4 -X2X3 = O = X5}.

 Proof. By Theorem 4 of Section 1 in [4], f is one of the following.

 Case (i). f is sQ (2, C) invariant polynomial in xI, X2, X3, X4 and x5
 variables and I = (2) (D (2) (D (1). In view of Lemma 5f is of the form

 f = aoxj + a2x (XIX4 - X2X3) + a4x5 (X1X4 - X2X3)2 ? * 3
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 Since k 2 2, it is easy to see that af/axI, af/ax2, af/ax3, af/ax4 and af/ax5
 vanish on the set {(xl, X2, X3, X4, X5):X1X4-X2X3 0= O x5}.

 Case (ii). f is a s((2, C) invariant polynomial in xi, X2, X3 and X4
 variables and I = (2) (? (2). In view of Lemma 4, there exists a nonzero

 constant c such that

 f(x I, X2, X3, x4) = c(xIX4 -X2X3Y

 where P 2 2. It is clear that af/ax1, af/ax2, af/ax3, if/8x4 and af/ax5 van-

 ish on the set {(xl, X2, X3, X4, X5):X1X4 - X2X3 O}.

 Case (iii). f = cxk+1 where c is a nonzero constant. Clearly the sin-
 gular set off is {(xl, X2, X3, X4, x5):x5 O}. Q.E.D.

 LEMMA 3.7. Suppose s((2, C) acts oiz Mk the space of honmogeneous

 polyntomials of degree k 2 2 in xI, x2, X3, X4 and x5 variables via

 T 2x I 2x33
 ax, ax3

 a a
 X = 2xI + 2X2

 ax2 ax3

 a a
 X_ = x2 + x3

 ax, aX2

 Let I be the complex vector subspace spanned by af/ax1, af/ax2, af/ax3,

 atvax4, anid a//ax5, wheref is a homogeneous polynomial of degree k + 1.
 IJI is a sP(2, C) submizodule, theni the singular set off contains the set { (xl,

 X2, X3, X4, X5):X22 - 2x1x3 = 0 = X4 = x5}.

 Proof' By Theorem 4 of Section I in [4], we may assume thatf is an

 invariant sP(2, C) polynomial. Arguing similarly as in the proof of Lemma

 5, we know that in view of Corollary 4.17 in [3], if k + 1 is even, say k + 1

 - 2f, then

 f co(x2 -2xlX3)' ? (42- 2x l x3Y)'9g2(x4, x5)

 ? (x2- 2x1x3)'92g4(x4, x5)
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 + * * + g2((X4, x5)

 and if k + 1 is odd, say k + 1- 2 + 1, then

 I (X2- 2XIX3)tgI (X4, X5) + (X2_- 2IX3)1 - 19g3 (X4, X5)

 + (X2- 2x1X3) 2g5(X4, X5)

 + + g2' +l(X4, X5)

 where gi(x4, x5) is a homogeneous polynomial of degree i in X4 and x5 vari-
 ables.

 It is clear that the singular set of f contains the set { (xI, X2, X3, X4,
 X5):X2 -22XX3 0 = X4 = X5}. Q.E.D.

 LEMMA 3.8. Suppose s((2, C) acts onz Mk the space of homogenieous

 polyynomials of degree k 2 2 in xi, X2, X3, X4, and X5 variables via

 a a
 XX aX2

 a

 ax,

 Let I be the complex vector subspace spanned by af/ax1, af/ax2, af/ax3,

 af/ax4, and af/ax5, wheref is a homogeneous polynomial of degree k + 1.

 If I is a s((2, C) submodule, then the singular set off contains the set { (xl,

 X2, X3, X4, X5) E C5:X3 = X4 = X5 = 0}.

 Proof. In view of Theorem 4 of Section 1 in [4], f is a polynomial in

 X3, X4 and X5 variables. Our lemma follows immediately. Q.E.D.

 4. Solvability of the Lie algebras L( V). In [3], we first established a
 connection between the set of isolated hypersurface singularities and the

 set of finite dimensional Lie algebras. Let (V, 0) be an isolated singularity

 in (C", 0) defined by the zero set of a holomorphic function off. The mo-
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 duli algebra A(V) of (V, 0) is C{xI, x2, . . ., x,, }/(f, af/axI, af/ax2, * * *
 af/axj,). We define L(V) to be the algebra of derivations of A(V). A(V) is
 finite dimensional as a C vector space and L(V) is contained in the endo-

 morphism algebra of A(V); consequently L(V) is a finite dimensional Lie

 algebra. In [3], we proved that L(V) is solvable for n ' 3. It is the purpose

 of this section to prove L(V) solvable for n ? 5. In order to avoid the repe-

 tition, we shall only concentrate on the case n = 5.

 Remark. In general, in order to prove L(V) is solvable, it suffices to

 prove the statement with an additional assumption that multiplicity off is

 bigger than two. Because if the multiplicity off is two, then after a biholo-

 morphic change of coordinates, we can assume thatf 4, -g(xl, ..

 x,,1). In this caseL(V) = L(W) which is solvable by induction hypothesis,

 where W = {(xi , x,,1) EC"- :g(x1, . . ., x,,-1) = O}.

 THEOREM 4.1. Suppose that V= { (xi, X2, X3, X4, X5) EC (XIf X2,
 X3, X4, X5) 0 } has an isolated singularity at (0, 0, 0, 0, 0). Then thefinite
 dimensional Lie algebra L(V) associated to the singularity is solvable.

 Proof. By the Levi decomposition, if the Lie algebra is not solvable,

 then the Lie algebra L(V) contains s((2, C) as subalgebra. By Lemma 4.3

 of [3], we shall assume that s((2, C) acts on m/mr2 nontrivially where m is

 the maximal ideal in (cs o5 Writef = Ek+1fi. According to the above
 remark, we shall assume without loss of generality that multiplicity off =

 k + I 2 3. By Theorem 2.2, we know that the action of s((2, C) on C[[x ,

 X2, X3, X4, x5]] is one of the following forms.

 Case 1. s((2, C) acts on C[[x1, X2, X3, X4, x5]] via

 a a a a
 ,T =4x, + 2x2 -2x4 -4x5

 ax, ax2 ax4 ax5

 a a a a
 X+ = 4x, + 6x2 +6X3 +4x4

 ax2 ax3 ax4 aX5

 a a a a
 X- =X2 + X3 + X4 + x5

 ax, ax2 ax3 ax4

 We shall prove by induction that afi/axi for i 2 k + 1 and 1 j ? 5
 vanish along thexI axis andx5 axis. Let A(fZ) denote the ideal generated by,
 af/axI, af/ax2, af/ax3, af/ax4 and af/ax5. (f) + A(f) is as((2, C) module.
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 SINGULARITIES AND SOLVABILITY 1237

 Clearly mk/mk+l is also a s((2, C) module. Let Jk(f) denote the image of

 the canonical map (f) + A(f) -i mk/mk+l. Jk(f) is an invariant subspace
 spanned by (afk+l/axl, afk+?/axl, afk+?/ax3, afk+?/ax4, afk+l/axs> and

 hence may be identified with an invariant subspace of Mk . By Lemma 3. 1,

 afk?+l /axi for 1 ? i ? 5 vanish along xl axis and x5 axis.

 Let g = g, + g,, +, + * * * be a Taylor series expansion of g where gi is a
 homogeneous polynomial of degree i. Then for any D E s((2, C), Dg =

 Dg, + Dgi, + + * is a Taylor series expansion of Dg. It follows easily
 that

 in + A(fk?l ) + A(fk+2) + * + A(f,)/m"'+l

 + A(fk+1) + A(fk+2) + + A(f,)

 is a sl'(2, C) module. Let J,, denote the image of the canonical map (f) +

 A(f) 0 in + A(ftk4) + A(]+2) + ... + A(j,)/n"+' + A(k?+) +
 A(./'k + 2) + * + A(j,,). J,, is an invariant subspace spanned by < ajf,, /
 ax, I + I /ax2, a;,+ /ax3, +f,+ /ax4, a,I +/ax5> and hence may be iden-
 tified with an invariant subspace of M'. By Lemma 3. 1, aj;,+ I /axi for 1 < i
 < 5 vanish along xi axis and x: axis. This finishes the induction step.

 Obviously A(fZ) vanishes along xl axis and x5 axis. This implies thatf
 cannot have isolated singularity at the origin, a contradiction to our as-

 sumption.

 Case 2. s((2, C) acts on C[[x,, x2, X3, X4, X5]] via

 a a a a
 T = 2x1 - 2x3 + X4 -X5

 ax1 ax3 ax4 ax5

 a a a
 X+ 2x, + 2x2 + X4

 ax2 ax3 ax5

 a a a
 X_ =x2 + x3 +x5

 ax, ax2 ax4

 In view of Lemma 3.2, we shall obtain a contradiction by the same

 argument as Case 1 above.

 Case 3. s((2, C) acts on C[[x,, x2, X3, X4, X5]] via
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 a a a a
 T = 3 x, + X2 - X3 -3x4 ax1 ax2 ax3 ax4

 a a a
 X+ - 3x1 a + 4x2 ?3 + 3x3

 ax2 ax3 ax4

 a a a
 X_- =x2 + x3 + X4

 ax, ax2 ax3

 In view of Lemma 3.3, we shall obtain a contradiction by the same
 argument as Case 1 above.

 Case 4. s((2, C) acts on C[[x1, x2, X3, X4, x5]] via

 a a a a
 T = xi - - x2 + X3 - X4

 ax, ax2 ax3 ax4

 a a
 X xi + X3

 ax2 ax4

 a a
 X- x2 + x4

 ax1 ax3

 In view of Lemma 3.6, we shall obtain a contradiction by the same
 argument as Case 1 above.

 Case 5. s((2, C) acts on C[[xI, x2, X3, X4, x5]] via

 a a
 T =2x, -2x3

 ax1 ax3

 X+a a 2 2x, + 2x2
 ax2 ax3

 a a
 X X2 +X3

 ax, aX2

 In view of Lemma 3.7, we shall obtain a contradiction by the same
 argument as Case 1 above.
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 SINGULARITIES AND SOLVABILITY 1239

 Case 6. s((2, C) acts on C[[x1, X2, X3, X4, X5]] via

 a a
 T = Xl -X2

 ax, aX2

 a
 X+ = Xi

 aX2

 a
 X_- =X2

 axl

 In view of Lemma 3.8, we shall obtain a contradiction by the same
 argument as Case 1 above. Q.E.D.

 UNIVERSITY OF ILLINOIS AT CHICAGO
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