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ABSTRACT 

For any given s/(2, C) action on C[[#i , . . . , xn]] via derivations preserving the m-

adic filtration, we give a necessary and sufficient condition for a gradient space / ( / ) of 

a homogeneous polynomial / i.e. a vector space spanned by J^-, ~^- , . . . , •££-, to be a 

5/(2, C)-submodule for n < 5. 

Key words and phrases. Invariant polynomial, weight, irreducible submodule, represen
tation, completely reducible. 
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§0. INTRODUCTION 

Let M* be the space of homogeneous polynomials of degree k in n variables 

a?i,X2,... , x n . Let us fix a non-trivial 5/(2, C) action on M*. We shall denote 5* 

the subspace of M* on which s/(2, C) acts trivially. Let Sn = ®k>oS*i be the graded 

ring of invariants. The main object of the invariant theory is to give explicit description 

of Sn. In case 5/(2, C) acts on ®k>oM% via 

r = (n - l)*i a— + (n - Z)x2ir- + ... + ( - ( n - 3))*„_1 : dx\ 8X2 #*n-

+ ( - ( n - l ) ) * n g | - (0.1) 

a 5 9 a 
J f - = #2 * f" ^ 3 7 h . . . + * t a 1" • . .H-Sr i -

This example is identical with the theory of binary quantics, which was diligently stud-

ied in 2 n a half of nineteenth century. It is an amazingly difficult job to describe Sn 

explicitly. A complete success was achieved only for n < 6, the cases n = 5 and 6 being 

one of crowning glories of the theory. Elliott's book [1] has an excellent account on this 

subject. In 1967 Shioda [4] was able to describe Sg explicitly. Recently the theory of 

invariants, pronounced dead at the turn of the century, is once again at the forefront 

of mathematics because of of combinatorial thrust due to Rota (cf. [2]) and his school. 

In [5], we developed a new theory which connects isolated singularities on the one 

hand, and finite dimensional Lie algebras on the other hand. The natural question 

arising there is the following. Let / be a homogeneous polynomial of degree k + 1 in 

n variables. Consider the vector subspace / ( / ) spanned by •££-, ^ , J ^ , J £ , . . . , -$£-. 

Received by the edi tors February 1, 1987. 
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2 STEPHEN YAU 

Give a necessary and sufficient condition for / ( / ) to be a 5/(2, C)-submodule. Here we 

shall consider all possible 5/(2, C) actions on C[[xi , . . . , xn]] via derivations preserving 

the m-adic filtration. Notice that (0.1) is just one example of 5/(2, C) action only. 

We first observe that if / G S*+1 is an 5/(2, C) invariant polynomial, then 1(f) is a 

5/(2, C)-submodule. The main purpose of this paper is to determine precisely when 

1(f) is a 5/(2, C)-submodule for / G M*+ 1 , n < 5. We establish that the converse of 

the above statement is essentially true. 

Main Theorem. For n < 5, / ( / ) = ( | £ , | £ , . . . , ^ - ) is a 5/(2, C)-submodule if and 

only if / ( / ) = ( ^ - , •§£-,..., ^ - ) for some 5/(2, C) invariant polynomial g. 

Notice that / is not necessarily a s/(2, C) invariant polynomial even though / ( / ) is 

a 5./(2, C)~submodule. In Section 1, we shall describe our results in great detail. Several 

examples of this sort certainly appear. These phenomena occur precisely because the 

variety defined by / is highly singular. It is this observation that allows us to prove that 

the Lie algebras that we constructed from isolated singularities (cf. [5]) are solvable. 

This application of the main theorem will appear in [6]. The general case of our main 

theorem will be treated in a future paper. 

Our paper is organized as follows. In Section 1 we state our results for n = 2,3,4, 

and 5 in a precise way. The cases n = 2 and 3 were treated in our previous article [5]. 

In order to avoid the repetition, we shall only give the proof for the case n = 5. The 

proof for the case n = 4 can be sorted out from there. From Section 2 to Section 7, 

we shall deal with different actions of 5/(2, C) on M*. We shall assign each variable 

Xi a weight according to the action of 5/(2, C). It turns out that each monomial is an 

eigenvector of r with eigenvalue equal to its weight. We prove that if / ( / ) is a 5/(2, C) 
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module, then / is essentially of weight 0. In Section 8 we shall prove all the results 

stated in Section 1. Our main theorem is just a short summary of these results. 

We gratefully acknowledge the support from the University of Illinois and Yale 

University. This research was supported in part by NSF Grant No. DMS-8411477. 



§1. PRELIMINARIES AND STATEMENT OF RESULTS 

In this section, we give the detail of our results in this article. The main theorem 

stated in the introduction is a consequence of these results. We first recall our result in 

[6] on classification of s/(2, C) in Der C[[xi , . . . , xn]] preserving the m-adic filtration. 

Proposition [6]. Let L = s/(2, C) act on C[[xi, X2,.. •, xn]] via derivations preserving 

the m-adic filtration i.e., L(mk) C mk where m is the maximal ideal in C[[xi, . . . , xn]]. 

Then there exists a coordinate change y i , . . . , y n with respect to which s/(2,C) is 

spanned by 

where â - is linear function in y i , . . . ,yn variables for all 1 < i < 3 and 1 < j < n. Here 

{r ,X+ ,X_} is a standard basis for s/(2,C) i.e., [r,X+] = 2A+, [r,X_] = 2X- and 

[X+,X-] = r. 

Theorem [6]. Let 5/(2, C) act on the formal power series ring C[[xi , . . . , xn]] preserv

ing the rn-adic filtration where m is the maximal ideal in C[[xi, . . . , xn]]. Then there 

exists a coordinate system 

Xi ,x 2 , . . . , x / x , x / 1 + i , . . . , x / 1 + / 2 , . . . * I 1 +J 2 + . . .+I # _ 1 +I , . . . , x/ l +/2 +. . .+/5 

such that 

r = DT,i + ... + DTj + ... + DT,r 

X+ = Dx+,i + ... + Dx+}j + ... + Dx+tr 

X- = DX_A + ... + Dx_,j + ...+ Dx_,r 
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where r < s and 

DTJ = (Z, - l K + . . . ^ _ 1 + 1 - _ - _ + (/, - 8 ) , I l + . . . + I i _ 1 + a ^ _ - _ 

3 dx,1+...+i:j 

Dx+J = (/, - l K + . . . + , , _ 1 + 1 ^ - — — 

+ ... + i{lj - i)xh+...+ij_1+i— 
ll+...+Jj_l+«'+l 

+ ...+ (_( / ! ) ) * 

^ x _ , i = a:/1+...+/._1+2^;- + • • • + a?/1+...+Ji_1+i+i 75-

J ctej1+...+zi-i 

Suppose s/(2, C) acts non-trivially on the space M* of homogeneous polynomial 

of degree k in 2 variables #i and x^. Then the s/(2, C) action is given by 

d d 
T = X i - ^ X 2 -^ 

axi aa?2 

*+ = * £ (i.i) 

The following theorem is trivial and can be found in [5]. 

T h e o r e m 1. Let / ( / ) be the complex vector subspace of M* spanned by J^- and J^-, 
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where / is a homogeneous polynomial of degree k -f 1 in a?i,a?2 variables and k > 2. 

Then / ( / ) is not a s/(2,C)-submodule. 

Suppose 5/(2, C) acts non-trivially on the space M | of homogeneous polynomials 

of degree k in 3 variables x\> x2 and x3. Then the 5/(2, C) action is given by either (1.1) 

or 

n 9 « d 

T = 2XX-T 2x3^— 
OXi OX3 

X + = 2 * x — + 2*2 — (1.2) 
dx2 ox3 

9 d 
X- = x2-^— + x3-r-. 

OX\ OX2 

From fiow on, we shall use the following notation. By (/), we shall mean a /-

dimensional irreducible representation of 5/(2, C). The following theorem can be found 

in [5]. 

Theorem 2. Let / ( / ) be the complex vector subspace of M3 spanned by j£-y -^- and 

•%*-, where / is a homogeneous polynomial of degree k + 1 in x\, x2, £3 variables and 

k>2. 

(i) If the 5/(2, C) action of Af| is given by (1.1), then / ( / ) is a 5/(2, C)-submodule 

if and only if f(xi,x2,x3) = cx3
+1 and / ( / ) = (1) = (x3) where c is a nonzero 

constant and (x3) denotes the one-dimensional vector space spanned by x3. 

(ii) If the s/(2, C) action on M3* is given by (1.2), then / ( / ) is a 5/(2, C)-submodule if 

and only if k + 1 = 2/ is an even integer and f(xi,x2,x3) = c(x2 — 2#i£3)2/ and 

Hf) = (3) = (xi(x2 - 2xiar3), x2{x\ - 2a?iar3), x 3 ( ^ - 2a?is3)). 

Suppose 5/(2, C) acts nontrivially on the space M% of homogeneous polynomial of 

degree k in 4 variables ^ i , x 2 , x 3 and £4. Then the s/(2,C) action is given by either 
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(1.1) or (1.2) or 

8 8 8 8 
T = Xi~ X2T. M 3 — - X4-

OXi OX2 OX3 OX4 

A _ = x2 ^ h X4 - r— 

OX 1 OX3 

or 

o 9 d d 0 d 
axi C/X2 aa?3 0x4 

ts f\ e\ 

X+ = 3 ^ ! — - + 4 x 2 — - + 3*375- (1.4) 
<7£2 5 x 3 OX4 

9 d d 
A _ = X2-X h X 3 - r h X4- . 

OX\ OX2 OX3 

T h e o r e m 3. Let / ( / ) be the complex vector subspace of M% spanned by ^ - , J^-, J^-

and ^ - , where / is a homogeneous polynomial of degree k 4-1 in x\, #2, #3, #4 variables 

and A; > 2. 

(i) If the 5/(2, C) action on M | is given by (1.1), then / ( / ) is a 5/(2, C) submodule if 

and only if either one of the following occurs. 

(a) / is a polynomial in £3,24 variables and I = (1) 0 (1) = ( ^ ( ^ 3 , ^ 4 ) ) © 

(&(**, *4)). 

(b) / = (ci#3-fe2£4)*+1 where c\ and C2 are constants not all zero and I = (1) = 

((c1X3 + c2x4)k). 

(ii) If the 5/(2, C) action on M$ is given by (1.2), then / ( / ) is a s/(2, C) submodule if 

and only if either one of the following occurs. 

(a) / is a 5/(2,C) invariant polynomial in #i,#2>#3 a n d #4 variables and J = 

(3)e(i). 

(b) / is a 5/(2,C) invariant polynomial in #i,#2 and X3 variables and 7 = (3). 
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(c) / = c x | + 1 and I = (1) = <*$). 

(hi) If the 5/(2, C) action on M4 is given by (1.3), then / ( / ) is a 5/(2, C)-submodule if 

and only if / is a 5/(2, C) invariant polynomial in £ i ,# 2 , £3 and x4 variables and 

/ = ( 2 ) 9 ( 2 ) . 

(iv) If the s/(2,C) action on M\ is given by (1.4), then / ( / ) is a s/(2, C) submodule if 

and only if / is a 5/(2, C) invariant polynomial in xi,X2,X3 and x4 variables and 

J = (4). 

Suppose 5/(2, C) acts nontrivially on the space M | of homogeneous polynomials of 

degree k in 5 variables xi, #2, #3>£4 and X5. Then the 5/(2, C) action is given by either 

(1.1), or (1.2), or (1.3), or (1.4), or 

o 0 o d d d 

T = tXlT. ^ 3 " £ f"X4 ~ * 5 -
OX\ OX3 OX4 OX5 

r\ Pi f\ 

X+ = 2xi -5— + 2x2^— + x4 — (1.5) 
dx2 ox3 dx5 

d d d 
A _ - X2-r h X 3 - h X 5 -

OX\ OX2 OX4 

or 

. d s d ^ d 4 d 
r = 4x1-^—4-2x2^ 2 x 4 - 4 a ; 5 ^ — 

axi ax2 0x4 ax5 

X+ = 4*175— + 6 x 2 — + 6x3^— 4- 4x4 — (1.6) 
<9x2 ox3 0x4 0x5 

d d d 3 
X- = x2-^ h x 3 - h x 4 - h x 5 - — . 

axi ax2 ax3 <9x4 

Theorem 4. Let / ( / ) be the complex vector subspace of M* spanned by J^-, J^-, J^-, J^-

and £ j - , where / is a homogeneous polynomial of degree k 4- 1 in Xi,X2,X3,x4 and X5 

variables and fc > 2. 

(i) If the 5/(2, C) action on M* is given by (1.1), then / ( / ) is a 5/(2, C)-submodule if 

and only if one of the following occurs. 
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(a) / is a polynomial in £3, £4 and x$ variables and I = (1) 0 (1) 0 (1) = 

( f t (*3, *4> **)> © ( f t ( * 3 , *4, xB)> 0 ( f t ( * 3 , * 4 ' * 5 ) ) : 

(b) / is a polynomial in £3, £4 and £5 variables and 

/ = (1) 0 (1) = ( | £ ( * 3 , *4, *5)> 0 ( | £ ( * 3 , *4, *5)) 

Or ( ^ - ( ^ 3 , *4, *s)) 0 <^"(X3, *4i «5». 

(c) / = (C1X3 + C2»4 + c3xs)k+1 where c\, c2 and C3 are not all zero constants and 

I = ((Cl*3 + C2£4 + C3Xs)k). 

(ii) If the 5/(2, C) action on Mk is given by (1.2), then / ( / ) is a s/(2, C)-submodule if 

and only if one of the following occurs, 

(a) (1) / is a 5/(2, C) invariant polynomial and 7 = (3) 0 (1) 0 (1). 

(2) / = g(xi, x2, £3, £4, x$)+cixi(x4+rxs)k+c2x2(x4+rxs)k+c3x3(x4+rx$)k 

where g(x1,x2lx3ix4y £5) = d^{x\ - 2xxxz){xA + rx^)hmml + d2x^(x4 + rx$)k + 

rf3(^4 + rx5)Ar+1 is a s/(2, C) invariant polynomial with d\ ^ 0 and d2£Q. 7 = 

( f t . ft. ft. ft. ft) = (3)0(1)0(1 ) = <*i(*4 + r*»)*-1, x2(x4 + rx5)k-\ 

x3(x4 + rxs)1"1) 0 ((a?4 + rx5)k) 0 ((i - l)di(a?| - 2zia:3)(z4 + rx5)*""2 + 

kd2xs(x4 + rajs)*""1). 

(3) / = ^(aJi,x2,^3,»4,^5)+c1a:1(raj4H-X5)*+C2«2(rx4+X5)*+C3aj3(rx4+a:5)* 

where #(xi, x2> x3, x4, ar5) = di(x | - 2xix3)(rx4 + X5)*""1 + ^2^4(^4 + x$)k + 

d3(rx4 + X5)k+1 is a s/(2, C) invariant polynomial with d\ ^ 0 and d2 ^ 0. 7 = 

<ft.ft.ft.ft.ft) = (3)e(i)^ 
x3(ra:4 + a*)*"1) 0 ((rx4 + x5)k) 0 ((Jb - l)di(x£ - 2si*3)(r:r4 + x5)*~2 + 

W2#4(r#4 -f ss)*""1). 
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(b) / is a «/(2, C) invariant polynomial in £i,£2,£3,£4 and £5 variables and I = 

(3)e(i). 

(c) / is 5/(2, C) invariant polynomial in £1,2:2 a n d £3 variables and / = (3). 

(d) / is a 5/(2, C) invariant polynomial in £4 and £5 variables and / = (1) © (1) = 

(e) / = (ciX4 + C2X5)fc+1 where ci and C2 are not all zero constants and I = (1) = 

(c i£ 4 + c2£5)*. 

(hi) If the 5/(2, C) action on M* is given by (1.3), then / ( / ) is a 5/(2, C) sumbodule if 

and only if one of the following occurs. 

(a) / is a 5/(2, C) invariant polynomial in £1,2:2, £3, £4 and £5 variables and I = 

(2)e(2)e(i) . 

(b) / is a 5/(2, C) invariant polynomial in £1,2:2,2:3 and £4 variables and I = 

(2)e(2). 

(c) / = c£g+1 where c is a nonzero constant and / = (1) = (£5). 

(iv) If the 5/(2, C) action on M5 is given by (1.4), then / ( / ) is a s/(2, C)-submodule if 

and only if one of the following occurs. 

(a) / is a s/(2, C) invariant polynomial in £i,£2,£3,£4 and £5 variables and I = 

( 4 ) 0 ( 1 ) . 

(b) / is a s/(2, C) invariant polynomial in £1, £2, £3 and £4 variables and / = (4). 

(c) / = c£*+1 where c is a nonzero constant and / = (1) = (£5). 

(v) If the 5/(2, C) action on M5 is given by (1.5), then / ( / ) is a s/(2,C)-submodule if 

and only if one of the following occurs. 

(a) (1) / is a 5/(2, C) invariant polynomial in £i,£2,£3,£4 and £5 variables and 

1 = (3 )8 (2 ) . 
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(2) / = g(xi,x2, xz, x4, x5)+cixl+c2xlx5+c3X4xl+C4xl where g(xi, x2, *3, *4, £5) 

2xlX\ - 2*2*4*5 + x3x\ is a s/(2, C) invariant polynomial and 

7 = fe'5*?a*? di~4' axT)==(3)e(2) 

= (xlx4,x5,xl) 8 (x2xx4 - 2x,x5, x3x4 - x2x5). 

(b) / is a 5/(2,C) invariant polynomial in £i,#2 a n d ^3 variables, and I = (3). 

(vi) If the 5/(2, C) action on M | is given by (1.6), then / ( / ) is a 5/(2, C)-submodule if 

and only if / is a 5/(2, C) invariant polynomial in #i,#2,#3,£4 a n ^ x5 variables, 

a n d / = ( 5 ) . 



§2. s/(2,C) ACTION (1.6) ON Af5* 

Lemma 2 .1 . Suppose s/(2, C) acts on the space of homogeneous polynomials of degree 

k > 2 in xi,X2,x3,X4,xs via (1.6) 

d d d d 
T = 4X1- h2*2-£ 2 * 4 ~ 4 z 5 -

OX\ OX2 UX4 OX5 

A d o 9 a d A d 
X^4Xl^^6X2dx^ + 6x'^4

+4x"dxl 

a a a a 
ox\ 0x2 0x3 0x4 

Suppose the weight of art- is given by the corresponding coefficient in the expression of 

r above, i.e. 

wt(xi) = 4, wt(x2) = 2, wt(x3) = 0, wt(x4) = —2, wt(xs) = —4. 

Let J be the complex vector subspace spanned by ^ - , J^-, J^-, ^ - and Jj£- where 

/ is a homogeneous polynomial of degree k -f 1. If J is a s/(2, C)-submodule and 

d im/ = 5, then / is a homogeneous polynomial of weight 0 and / is an irreducible 

5/(2, C)-submodule. 

Proof. 

Case 1. J = (5) 

By the classification theorem of s/(2,C) representations, we know that J^-, 1 < 

i < 5, is a linear combination of homogeneous polynomials in J of degree k and weights 

4, 2, 0, —2 and —4. Since every monomial is of even weight, we can write 

00 

* = — 0 0 

where f%+x is a homogeneous polynomial of degree k -f 1 and weight 2t. 

12 
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For |i| > 5 

^ 
> 6 1 < j < 5 

=> ^ S l = 0 1 < i < 5 
ax,-

=> A+i = o 

For i = —4 

rS/, -8 

ti;t(^ti)<-6 1 < i < 4 

=• ^±L = 0 1 < i < 4 

=> / ^ involves only x$ variable i.e. f£*x = cxg 

where c is a constant. 

Since fj~*x is a homogeneous polynomial of degree fc-f 1 > 3, hence c must be zero. 

For i = - 3 

^ 5 ± L < _ 6 l < j < 3 

=• ^ ± i = 0 1 < i < 3 

=^ / ^ involves only X4 and £5 variables and 

/£"+! = C1X4 + C2X4XS where ci,C2 are constants. 

Since fj~£± is a homogeneous polynomial of degree k + 1 > 3, hence C2 = 0 and 

/£+! = C1X4. -££- G / implies ^ + 1 G / . If ci were not zero, then x\ would be in I. 

Then by applying X+yX„ successively on x\> we have 

(2*1*4 + 9x2x3) x2x4 + 4, x3x4, xl x4x5, x\) C J. 
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Therefore dim I > 6 which is impossible. Hence f^x = 0. 

For i = - 2 

=» ^ = 0 j = l , 2 

=> /JT+I does n o^ involve xi and x^ variables and 

/ ^ = c\x\x\~l -f C2X5X3 where ci and C2 are 

constant. 

J^- G J implies ^+* G L Since X„ ( a**1) is an element in / of weight —6, hence 

x.(^)=o. 

0 = * - $ & > 

= ^ 2 &T + X 3 5 x " + *4<9x~ + X57hT^k ~ ^ ^ ^ a " 2 + kc2X5x^x] 

= ( i - l ) ( i - 2 )c ix^" 3 ^ + [2(t - l)ci + k(k - l ) c 2 ] ^ - 2 x 4 x 5 . 

If k > 3, then the above equation implies C\ = 0 = C2. If A: = 2, then C2 = —ci and 

/3"4 = ci{x\xz - x5x§) • | £ € / implies %£• = - c i*§ € / . If cx ^ 0, then x\ G J. By 

successively applying X+ and X_ on £3, we have 

This implies d im/ > 6 which is impossible. Hence c\ = c^ = 0. We conclude that 

/*-+
4i = °-

By the similar argument, we an prove that / | + 1 = / | + 1 = /j
4

+1 = 0. Therefore 

/ — /*+i + /*+i + /*+i 

^(M±I)= 6 and wt(?f±±) = -6 

^ M ± I = 0 = dJMl 

=>fk+i does not involve #5 while / ^ does not involve x\. 
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We are going to prove that y^1 = 0. First we observe that X+f%+1 = 0 by the 

8 f 2 

pervious argument because utf(X+/|+ 1) = 4. Suppose on the contrary that d
k
x+l / 0. 

Then the equation 

X M f c L - d X f2 M*L--M±L 
x+~dxT ~ dx~3

x+fk+1 6 ^ T ~ ^ 7 
implies that *̂+* ^ 0. Since wt(X- d

h
x
+1) = 2 = ^ ( - ^ t L ) ) there exists a nonzero 

constant c such that 

Differentiating the above equation with respect to x$ variable, it is easy to see that 

jffi1 = 0. Hence g*+' depends only on x i ,x 2 and X3 variables. As nrt( 3*+') = 4, 

there exist constants ci and C2 such that 

d/fc + l _ Jj_l , _2 Jls-2 

Q T = C1X1X3 + C2X2x3 . 

Easy computations show that 

Xi(«iarJ_ 1 ) = 10(Jb - 1)(* - 2)2x£-3x3
: + 15(Jb - 1)(2* - 3)x^2x4x5 

+5(* - 1)(* - 2)(* - 3)(* - 4)x2x3
:-5x4

; + 30(Ar - 1)(* - 2)(* - 3)x 2x£- 4x | 

+15(* - 1)(* - 2)x2x%~3xl + (* - 1)(* - 2)(* - 3)(* - 4)(* - b)xlX%-6xl 

+10(Jb - 1)(* - 2)(* - 3)(Jb - 4)x1x£-5x3x5 + 15(* - 1)(* - 2)(* - 3)xjx*-

X£(*2*s~2) = 10(* - 2)(2*2 - 8* + 9)*§_8ar5 + 20(3*2 - 10* + 9)arJ_2*4*6 

+10(* - 2)(* - 3)2(* - 4)x2«3- 5*4 

+20(* - 2)(3*2 - 17* + 24)x2x^-4x|x5 + 10(* - 2)(3* - 7)x2x^~3x^ 

+(* - 2)(* - 3)(* - 4)(* - 5)(* - G)x\x\-7x\ 

+10(* - 2)(* - 3)(* - 4)(* - 5)*2*s~6*4*5 
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+15(ib - 2)(Jfc - 3)(Jfc - 4)xlx%-sx4xl. 

0x4 

=• c^x^-1) + c2X.{x\xk
3-2) = 0. 

If k > 3 then we have 

/ 10(* - l)(Jfc - 2)2d + 10(Jb - 2)(2Jfc2 - 8Jb + 9)c2 = 0 
\ 15(Ar — l)(2Jb — 3)ci + 20(3*2 - 10* + 9)c2 = 0 

/ (Jb - l)(Jb - 2)ci + (2k2 - 8k + 9)c2 = 0 
\ 3(Jfe - l)(2Jfe - 3)cj + 4(3*2 - 10k + 9)c2 = 0 

since det (3(I: mk~-3) $ : i^+
+

99))=<*- wp - m + Q ) 
we infer that c\ = c2 = 0. i.e., ^+ l = 0. 

If k = 2, then we have 15ci 4- 20c2 = 0. So we can rewrite 

^ =c3(4xlX3-3xl) 

is nonzero, 

and 

Hence 

X _ ( M ± L) = 2c3(2x1X4 - x2x3). 
OX4 

?&L =2C-2.(2Xlx4-x2x3). 
OX3 C 

The fact that g § £ = 4c3*i and ^ ^ = 4fXl infer easily that c = 1. If c3 # 0, 

there would be a nonzero constant d\ such that 

?&± = ^ . ( M f c L ) = dxX-[2c3(2xlX4 - x2x3)] 

= 2dic3(x2x4 + 2xix5 - x§). 

d2 f2 d2f2 

By comparing dx
 h

d+l a n d g g ^ l > we conclude that 2d\ = 1 and 

df2 

~H1 = c3(x2x4 + 2xix5 - x\). 
OX2 
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d2f2 d2f2 

On the one hand QJA
h^\ = C3X2, on the other hand dx*£.\ — — 6C3X2. Therefore we 

df2 

have C3 = 0. This completes our claim that 3*+* = 0. 

We next claim that Q*+1 = 0. Suppose on the contrary that g*+1 ^ 0. Then the 

equation 

x+-d£r - d^x+fk^-4^r - _ 4 ^r 
Qf2 df2 df2 

implies that J
d
k
x
+l ^ 0. Since wt(X- dx

+l) = 0 = wt( dx+l), there exists a nonzero 

constant d such that 

*_(£&*•) = <£&±. 
#£3 0x2 

Differentiating the above equation with respect to X4 variable, it is easy to see that 

d2 f2 d f2 . df2 

Q££1 = 0. Hence d^+l depends only on x\ and x% variables. As wt( dx
+l) = 2, there 

exists a constant d\ such that 

This contradicts the fact that deg( / | + 1 ) = k + 1 > 3. The proof of ^ ^ = 0 is 

complete. We now see that / | + 1 depends only on Xi and #2 variables. Therefore there 

exists a constant cfo such that / £ + 1 = ^2^2- This again contradicts the fact that fc > 2. 

We conclude that / £ + 1 = 0. Similarly we can show that / ^ = 0. 

Case 2. I = (4) 0 (1). 

By the classification theorem of 5/(2, C) representations, we know that every ele

ment in (4) is a linear combination of homogeneous polynomials of degree k and weights 

3,1, —1 and —3. Since every monomial is of even weight, this case cannot happen. 

Case 3. I = (3) 0 (2). 

This case cannot occur by the same argument as Case 2. 
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Case 4. / = (3) 0 ( 1 ) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weight 2,0 and —2. We can show as in Case 1 that 

/ = /jfe + l + /*+l + /jk+1-

Since %*+l and y*+l are elements in I of weight —6 and —4 respectively, so yx+l = 

0 = y^1. This implies that f£+x does not involve x\ and X2 variables. There exist a 

constant c such that 

/ i+ i = cz4*3-

If c were not zero, then x | = ~ ^ ^ 6 / . By applying X+ and X_ successively on x%, 

we see that d im/ > 6, which is a contradiction. Therefore we conclude that f^x — 0. 

Similarly, we can prove that / | + 1 = 0 . So / is a homogeneous polynomial of degree 

k 4-1 and weight 0. It follows that ^ - = ^- = 0 by weight consideration. This implies 

dim I < 3, which is impossible. Therefore this case cannot happen. 

Case 5. / = (2) 0 (2) 0 (1). 

Similar argument as Case 2 shows that this case cannot happen. 

Case 6. I = (2) 0 (1) 0 (1) 0 (1). 

Similar argument as Case 2 shows that this case cannot occur. 

Case 7. I = (1) 0 (1) 0 (1) 0 (1) 0 (1). 

Elements of J are linear combinations of invariant polynomials. We can show as in 

Case 1 that 

/ = /fc+i + fk+i + /AT+1-
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Since ^ ^ , 2&±S ^ ^ and ^ ^ are elements in I of weights - 6 , - 4 , - 2 and 2 

respectively, so 

dfjA=:dlteL = dll±±=dl£L = o 
dxi dx2 dx3 dx$ 

fk+i depends only on X4 variable. There exists a constant c such that f£+i = 0x4. 

Since k > 2, we have c = 0 and fj~£x = 0. Similarly we can prove / | + 1 = 0. Now 

/ must be a homogeneous polynomial of degree k of weight 0. It follows that j£ [s 

a non-zero element of weight —4 in I. This leads to a contradiction. Hence this case 

cannot happen. Q.E.D. 

Lemma 2.2. With the same hypothesis as Lemma 2.1, if d i m/ = 4, then i" cannot be 

a 5/(2, C)-submodule. 

Proof. We assume on the contrary that / is an s/(2,C)-submodule. 

C a s e l . 7 = (4). 

By the classification theorem of 5/(2, C) representations, we know that every ele

ment in (4) is a linear combination of homogeneous polynomials in i" of degree k and 

weights 3 , 1 , - 1 and —3. Since every monomial is of even weight, this case cannot 

happen. 

Case 2. J = ( 3 ) 0 ( 1 ) . 

The same argument as in Case 4 in the proof of Lemma 2.1 will prove that this 

case cannot occur. 

Case 3. / = (2) 0 (2). 

This case cannot happen by the same argument as Case 1. 
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Case 4. / = ( 2 ) 0 ( 1 ) 0 ( 1 ) . 

This case cannot happen by the same argument as Case 1. 

Case 5. I = (1) 0 (1) 0 (1) 0 (1). 

The same argument as in Case 6 in the proof of Lemma 2.1 will prove that this 

case cannot occur. Q.E.D. 

Lemma 2.3. With the same hypothesis as Lemma 2.1, if d im/ = 3 and / is a s/(2, C)-

submodule, then / is a homogeneous polynomial of weight 0 in #2, £3, #4 variables and 

/ is an irreducible s/(2,C)-submodule. 

Proof. Since every monomial is of even weight, we can write 

/= £ &x 
* = — 00 

where f%%
+1 is a homogeneous polynomial of degree k -f 1 and weight 2f. 

Case 1. / = (3). 

By the classification theorem of s/(2, C) representations, every element in / is a 

linear combination of homogeneous polynomials of degree k and weights —2,0 and 2. 

For \i\ > 4 

M T ^ M > 4 1 < j < 5 
OXj 

=> M k = 0 i < i < 5 

For i = - 3 

wt i^fc±i < _ 4 1 < j < 4 
OXj 
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=» 2£±L = 0 l < i < 4 
axj — "" 

=> / ^ j involves only £5 variable. 

Since 6 is not divisible by 4, this is not possible unless ft+i = 0. 

For i = - 2 

wt ^ t l < _ 4 1 < j < 3 
axj ~~ ~~ "" 

=• ^ L = 0 1 < i < 3 
axj — "" 

=> /*T+i involves only £4 and £5 variables and there exist constants c\ and C2, 

p-4 _ , 2 A+i = c i ^ + c2x5. 

Since fc>2we have fk£x = 0. 

For i= - 1 

u r t ^ * ± i < - 4 j = 1,2 
OXi 

=3^ = 0 = ^ 
dxi 3x2 

=>/jb+i does not involve £1 and £2 variables 

=> there exists a constant c such that fj^x = cx^x\. 

3ar3 

=>cfc(fc - l ) ^ * ! " 2 + ckx$xl~l = 0 

=>c = 0 and fj^x = 0. 
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Similarly we can prove that / | + 1 = /jf+1 = / | + 1 = 0. Hence / is a homogeneous 

polynomial of degree k + 1 and weight 0. It follows that wt -gL = -4 and w* ^ = 4. 

Consequently ^ - = 0 = •§£- and / involves only x2lx3 and z4 variables. 

Case 2. / = (2) 0 (1). 

Elements in / are linear combinations of homogeneous polynomials of degree k and 

weights —1,0 and 1. The same argument as in Case 1 shows that / is a homogeneous 

polynomial of degree k + 1 and weight 0. So ^ - , J^-, ^£~ a n ( l a7~ a r e e l e m e n t s m ^ 

of weights —4, —2,2 and 4 respectively. It follows that j ^ - = -§£- = •§£- = ^ - = 0 and 

d im/ < 1. This contradicts to our assumption that d im/ = 3. Hence this case cannot 

happen. 

Case 3. / = (1) 0 (1) 0 (1). 

The same argument as in Case 2 shows that this case cannot happen. Q.E.D. 

Lemma 2.4. With the hypothesis as Lemma 2.1, if d im/ < 2, then / cannot be an 

s/(2, C)-submodule. 

Proof. We assume on the contrary that / is an s/(2, C)-submodule. 

If d im/ = 2, then the proof of Lemma 2.2 Case 3 and Case 5 will provide necessary 

contradiction. 

If d im/ = 1, then the same argument as in the proof of Lemma 2.1 Case 6 will 

prove that / is a homogeneous polynomial of degree k -f 1 and weight 0. 

df df df df wt-^^-4 wt T ^ - = - 2 wt-z±-=2 wt-5+-=4 
OXi 0X2 OX4 OX5 
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=> / does not involve X\, #2, #4, #5 and there exists a constant 

c such that / = cx%+1. 

If c ^ 0, then z* = \-§L e / . So X-(a£) = t x j - 1 ^ € / . Hence d i m / > 2, which 

contradicts to our assumption that d im/ = 1. On the other hand if c = 0, then / = 0 

and hence d i m/ = 0, which again leads to a contradiction. We conclude that this case 

cannot happen. Q.E.D. 

Propos i t ion 2.5. Suppose s/(2,C) acts on the space of homogeneous polynomials of 

degree A: > 2 in #i,#2>#3>#4>#5 v*a (1-6) 

d d d d 
T = AXi + 2x2^ 2*4-r 4*5-£— 

OX 1 OX2 OX4 OX5 

A d o d * 0 A d X+ = 4«i - — + 6x2-— + 6x3-5— + 4ar4^— 
OX2 OXz OX4 OX5 

d d d d 
A_ = x2-z—+ #3-3 Ha?4^ h # 5 - — . 

axi 0x2 0x3 0x4 

Suppose the weight of x,- is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xi) = 4, wt{x2) = 2, wt(xz) = 0, wt{x4) = —2, wt(xs) = —4. 

Let / be the complex vector subspace spanned by ^ - , J^-, J^-, J^- and Jjf- where / 

is a homogeneous polynomial of degree k -f 1. If / is a 5/(2, C)-submodule, then / is 

a homogeneous polynomial of weight 0 and / is an irreducible s/(2, C)-submodule of 

dimension 5 or 3. In the latter case, / is a polynomial in #2? #3 and X4 variables. 

Proof. This is an immediate consequences of Lemma 2.1 through Lemma 2.4. Q.E.D. 



§3. «/(2,C) ACTION (1.5) IN M | . 

Lemma 3 .1 . Suppose s/(2, C) acts on the space of homogeneous polynomials of degree 

k > 2 in xi,X2,a?3,X4 and x5 via (1.5). 

o 9 0 d d 3 
T = 2Xi~ *x3-£ h ^ 4 ^ « 5 ^ 

OX i OX3 OX A OX 5 

X+ = 2X1—- + 2*277— + ** A -

dx2 0x3 0x5 

d d 0 
axi ax2 ax4 

Suppose the weight of xt- is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xi) = 2, wt(£2) = 0, urt(x3) = —2, tx;t(x4) = 1, wt(x^) = —1. 

Let J be the complex vector subspace of dimension 5 spanned by ĵf-, Ĵ f-, Ĵ f-, ^ - and 

-^- where / is a homogeneous polynomial of degree k + 1. If J is a s/(2, C)-submodule 

then there exists g} a homogeneous polynomial of degree k -f 1, and weight 0, such that 

1 = ( ^ ' 3 r̂> ^"> S^» 3*^" Moreover, if / is not a homogeneous polynomial of weight 

0, then fc = 2 and / is of the following form 

/ = 2^1X5 - 2x2X4X5 + X3X4 + C1X4 4- C2X4X5 + C3X4X5 4- C4X5. 

Proof. Case 1. J = (5). 

By the classification theorem of s/(2,C) representations, every element in / is a 

linear combination of homogeneous polynomial of degree k and weights 4,2,0, —2 and 

- 4 . Write 
00 

24 
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where / £ + 1 is a homogeneous polynomial of degree k + 1 and weight f. 

For |t| > 7. 

| ^ M ± L | > 5 l < j < 5 
OXj 

=• ^£ti = 0 1 < i < 5 

For i = 0, ±2, ±4, ±6 

w£ £+} are odd integers for j = 4,5 

=^ / £ + 1 involves only # I , £ 2 J # 3 variables. 

# f * df* df* 

If / £ + 1 were not zero, then either ^*+1 or ^ + 1 or ^ + 1 would generate I because / 

is an irreducible 5/(2, C) module. Hence J would involve only a?i,a?2,#3 variables. It 

follows that 2̂ r:, 1 < j < 5, involves only ari,a?2>#3 variables and hence so does / . This 

implies that •$£- = ^ - = 0, which contradicts to the fact that dim/ = 5. Thus we 

have fl+l = 0. 

For i = ± l , ± 3 , ± 5. 
The weights of ^ ± x , 5 ^ and ^ k i . are odd integers. So 5££±L = 2£LLL = 

3**1 = 0 and hence /J + 1 involves only 0:4 and #5. If /J + 1 were not zero, then by 

& f * # f * 
applying X+ and X_ successively on d^.+l or ^*+1, we would have 

/ = <a?5,a?5""1a?5,..., xj) and fc = 4. 

It follows that ^ 7 , 1 < i < 5, involves only X4 and #5 variables and hence so does / . 

This implies that •§£- = •§£- = ££- = 0, which contradicts to the fact that dim/ = 5. 
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We conclude that Case 1 cannot occur. 

Case 2. 1 = (4) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials in I of weights 

- 3 , - 1 , 1 , 3 andO. 

For |t | > 6 

M ^ ± I I > 4 1 < i < 5 
OX 4 LJ 

=>2&»± = o 1 < j < 5 
dxj 

=>/l+1 = 0. 

For i = - 5 

OXi 0X2 OX4 OX5 

_. g/rA _ a/^i = W i _ g/^'i ^ 0 
3xi 5a?2 3^4 3x5 

=>/£+! involves only X3 variable 

=>f£+i = 0 becasue wt f^x = —5 is not divisible by 10/23 = ~2 . 

For i = - 3 

ox 1 0x4 ax 5 

3xi 3x4 3x5 

^fk+i involves only X2,X3 variables 

^/fc+i ~ ^ because wt fk+1 = —3 is not divisible by tut x3 = —2. 
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Similar argument shows that / | + 1 = 0 = / | + 1 and hence 

/ = /AT+I + /jiT+i + /AT+I + /jb+i + A+i + fk+i + /*+i-

For i = —4 

OX1 OX2 OX3 OX4 

^ g/r+
4i = fl/rA = a/rA = g/rA = 0 

3xi 9a?2 #£3 c?#4 

=>fk+i involves only #5 variable and there exists a constant 

c such that fj^x = cx|. 

Similar argument shows that /jj?+1 involves only X4 variable. If c ^ 0, then k = 3 and 

(4) = (#4, £425,2425, xf) C I. Let ^ b e a homogeneous polynomial of degree 3 and 

weight 0 such that (<f>) = (1) C I . 

Write 

<t> = ^3(^4, 25) + i>22(X*> X$)Xl + ^2(X4, 25)x2 + ^1(^4, «5)^3 

+ $i\xA,Xf)x\ + ^j~2(24, 2 5 ) 2 ^ 2 + ^?(2 4 , #5 )* ! 

+ ^ ( 2 4 , 25)2123 4- ^1 (24, 25)2223 + ^ ( 2 4 , 2 5 ) 2 3 

+ ^§(a?l»a?2,*3) 

where ^ ( 2 4 , 2 5 ) is a homogeneous polynomial in £4, 25 of degree 1 and weight fc, and 

£3(21, a?2, 23) is a homogeneous polynomial in 21,22,23 of degree 3 and weigh 0. Since 

there is no homogeneous polynomial in £4, 25 variables of odd degree and even weight, 
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we have 

<j> = V,2_2(«4, X 5 ) x i + ^§0*4, X5 )X2 + ^ 2 ( ^ 4 , X 5 )X 3 + ^ 3 ^ 1 ) ^ 2 , X3) 

= C1X5X1 + C2X4X5X2 + C3X4X3 + C4X1X3X2 + C5X2 

X_<£ = (Ci + C2)X2X5 + (C2 + 2C3)X3X4X5 + ( c 4 + 3 c 5 ) x 2 X 3 + C4X1X3 = 0 

1 1 
=>C2 = —Ci, C3 = - C i , C5 = - - C 4 = 0. 

Let c\ = 2c?i. Then we have 

<j> = ci(2xix | - 2x2x4x5 + X3X4) 

and 

I = (X4, X4X5, X4X5, X5) 0 (2x1X5 - 2x2x4x5 + X3X4 

= (4)0(1) 

axi ax2 ax3 

*>^~ = 0 = ^ - and ^ ± - = di(2xix2 - 2x 2 x 4 x 5 + x3x | ) 
axi ax2 0x3 

=>di = 0. 

So we have 3* = 0 = -̂ J— = "&£""> hence /4~2 involves only X4 and X5 variables. 
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Similar argument shows that f\ involves only X4 and X5 variables. 

ox 1 ax2 0x3 0x4 

OXs 

0x3 ox$ 

where c?2,^3,^4,^5,^6 are constants 

5*49X2 

9 f* - 2d4x4x5 = 0 
8x48x3 

82f~l 

„ t = <*5(-2*2*5 + 2X3X4) 
ax 4 ax 5 
=> d3 = d4 = d5 = 0. 

a * —1 at — 1 Qf — 1 o * —1 

So we have ~±— = -^— = -̂ *— = -ĝ — = 0, hence /^ involves only xx variable. It 

follows that -g£— involves only x\ variable. Consequently cfe = 0 and - ^ - = 0. We 

conclude that /J"1 = 0. By the same argument, we have f\ = 0. 

- f a , - . -ja-o „«|S=2 
axi ax2 ax 3 

=• ^ = 0 = J ^ and § ^ = d6 {2xxx\ - 2x2x4x5 + xzx\) 
OX\ OX3 OX2 

where dg is a constant 

9f° =2d6xl = 0 8X18X2 

=> de = 0. 

A fO fit® fit® r\ 

So we have ^ - = 0 = ^ = •££, hence / J involves only 2:4 and 15. We conclude that 

/ = U\*S) + /4"2(*4, *6) + /4(^4, *S) + /4
2(*4, *») + ft(x4). 



30 STEPHEN YAU 

Therefore J^- = -$£- = ^ - = 0. This implies that dim/ < 2, which contradicts the 

fact that dim/ = 5. To avoid this contradiction, fj~£x had better equal to zero. 

Similar argument shows that /£ + 1 = 0. Thus we have 

/ = fk+l + /T+l + /*+l + A+l + /*+l-

For i = - 2 

OX\ OX2 

dxi dx2 

=> /jf^! involves only £3,2:4 and X5. 

Since k > 2, we have 

/*+l = ^+l( x 4 ,^5) + ^3^Jb(x4,X5) + . . . + X3<£i(x4,X5) 

where <fo(x4, x5) is a homogeneous polynomial of degree i. We claim that fj~£x depends 

only on X4,X5. Suppose on the contrary that <&(x4,X5) ^ 0 for some 1 < i < k. Let j 

be the largest integer such that x^fa+i-jix^xs) ^ 0 

/*+i = fo+i(«4, ^5) + x3</>k(x4l x5) + . . . + a?^*+i-j0*41 *5). 

Consider 

4 ± 1 = <M*4, *s) + 2x3^jb«i(x4, x5) + . . . + jx*f Vfc+i-i(*4, *5). 5X3 

Write 
H - i - j 

<^Jb+l->;(x4,X5) = ^ d/f3X4X5+1"';~/? 

/?=0 
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df ~7 

where dp is a constant. Let a be the biggest integer such that da ^ 0. Since y£l is 

£& in I, Xlim**-) is a k o in J a n d 

3 t < i - i 

where c is a nonzero constant, ^*_s(£4, £5) is a homogeneous polynomial of degree k — i. 

Let 

A _ = x 2 - r 1-^3^— A _ = a r 5 ^ — 
aa?i 0x2 0x4 

X\ = 2xi -5 l-2x2^— X+ = X4-— 
x a#2 0x3 T ax5 

/ o ^ 0 ^ // ^ ^ 

r = 2 a ? i - 2x3^— T =X4-z x$-—. 
OX\ OX3 OX4 OX5 

Obviously XLX'i = X'LXL and X'+X'l = X ^ X ; . Therefore 

xL = (xi + x^y = x'l + /xl1-1^!' +... + x'l1 (3.1) 

xl+ = (x; + x^y = x'V + / x ; 1 - ^ +. . . + x'l1. (3.2) 

In view of (3.2) and A-fi— 1 > fc-f i = 2z-f-Ar—z for i < j — 1 , we have X ^ " ^ " 1 ^ ^ * - ^ ^ , #5)) 

0. On the other hand X+
+J~1(ar£-1£5

+1~, ;) = co^~1x4
+1"",; where c is a nonzero con

stant. So we have 

z * - 1 * ^ 1 - ' = I x i + ^ x X f ( ^ L ) G I. 

By applying X_ successively on x{~1x1l+1~\ we get an irreducible s/(2, C)-submodule 

of dimension k + j , the elements of which are linearly independent bihomogeneous 

polynomials in / of degree j — 1 in x\, #2, #3 variables and k + 1 — j in £4, £5 variables. 

By our assumption, <£fc+i_j(#4, x5) is a nonzero homogeneous polynomial of degree 

bigger than zero. Either „ *""T' is nonzero or ^ X""T is nonzero. By the same argu

ment as before we can get an irreducible 5/(2, C)-submodule of dimension k + j + l> the 
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elements of which are linearly indpendent bihomogeneous polynomials in I of degree j 

in #i,£2,£3 variables and k — j in £4,25 variables. 

Thus / contains two disjoint s/(2, C)-submodules of dimensions k + j and k + j -f 1 

respectively. This contradicts the fact that I = (4) 0 (1). Hence our claim that fj~^x 

depends only on #4 and x$ variables is established. Now the argument which we used 

before to prove that fj~*x = 0 can be applied here to conclude f£+i = 0. 

Similar argument shows that / | + 1 = 0. 

For i = - 1 

0x4 

ax4 

==> /£"+! does not involve £4 variable. 

Since fj^x is of weight —1, we can write 

k 

fk+l = X)4#lUl(*l>x2>a ?3) 
t = l 

where <£fcL*+1(£i,£2>#3) ls a homogeneous polynomial of degree k — i + 1 and weight 

i — 1. Let j be the biggest integer such that ^Zj+1(a?i,ar2,a?3) # 0. Since j < k, there 

exists 1 < i < 3 such that d%^1 (x 1^X2^X3) ^ 0 for some 1 < i < 3. Consider 

= X5—^-^—(#i,#2, £3) + bihomogeneous polynomials of total degree 
OX\ 

in a?4,X5 variables less than j . 

X+(-jj*±) = * + ( 4 ) ^ J + 1 + 4 * + ( ^ i + 1 ) + bihomogeneous polynomials 
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of total degree in X4 and x$ variables less than j . 

n ( ^ f ) = [(K)j(4)]~^+•••+({) [W)*" VsMiw)1^1 1 

+ . . . + (^)[^+)J — ] + bihomogeneous polynomials of total 
uX{ 

degree in X4 and x$ variables less than j . 

The above j -f 1 homogeneous polynomials are linearly independent elements in J. On 

the other hand, we can consider 

df~l 

= jx3^1 </>J
kZlj+i(zi> £2,23) + bihomogeneous polynomials of total 

degree in £4, x$ variables less than j — 1. 

X + ( ^ S L ) = TO^"1)] • *̂-}+i + ^ _ 1 ) • ^ + ( ^ - 5 + i ) + bihomogeneous 

polynomials of total degree in £4 and £5 variables less than j — 1. 

n - 1 (^ f )=Kr' (M - 1 ) ] • 4:J+1+•••+(', 1)[Ky-1-'u4-1))[(x'+y<f>iz)+1} 
+ . . . -f O'^i"1) • [(^+)';~1^ilj+i] + bihomogeneous polynomials of total 

degree in £4 and x§ variables less than j — 1. 

The above j homogeneous polynomials are linearly independent elements in J. We have 

constructed 2j + 1 independent elements in I. Since dim/ = 5, we have 1 < j < 2. So 

Observe that there is no homogeneous polynomial in xi,#2 and X3 of odd weight. In 
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particular, <£jjrf^xi, #2>#3) is equal to zero. Hence 

If <j>k2(xi,X2ix3) ^ 0, then y*x+l = <t>k2(x\)X2,x3) is a nonzero element in L Since 

X-.(<}>k2(xiiX2,X3)) is of weight —4, we have X^(<j)^2(xi) #2,23) = 0. Thus 

(3) = (<^2(si,*2,*3), X+(<t>k2(xux2,x3)), Xl(<f>k2(xux2,x3))) 

is a 3-dimensional irreducible submodule in / , which is not possible. Therefore f^x = 0. 

Similarly we can prove that / £ + 1 = 0. 

For i = 0. 

Since / is a homogeneous polynomial of degree k+1 and weight 0, we have wt ^£- = 

—2 and wt J^- = 2. Consequently J^- = 0 = j£- and / does not involve X\,x3 variables. 

Write 
k 

/ = X]X2^2+l-i(ir4,«5) 

where 02+i-t(x4>;c5) *s a homogeneous polynomial of degree Jb -f- 1 — i and weight 0. 

Now the argument which we used before to prove that fj~£x = 0 can be applied here 

also to conclude that / ^ + 1 = 0. This means that Case 2 cannot occur. 

Case 3. J = (3) 0 (2). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights 2 , 0 , - 2 ,1 and - 1 . 

For |t| > 5. 

M ^ r H ^ 1 < i < 5 
OXj 

=» M±i = 0 l < i < 5 
OXj ~ ~ 
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For i = —4. 

oxi 0x2 0x4 0x5 

dfrfi = g/rA = a/*-+
4i = g/rA = 0 

<9xi 9X2 #X4 9x5 

/£"+! involves only X3 and / ^ = cx\ where c is a constant. 

If c were not zero, then k = 1 which contradicts to our assumption that fc > 2. Hence 

/ ~ ^ = 0. Similarly, we can prove / £ + 1 = 0. 

For i = - 3 

„**£& =-5 wt?IteJL = -2 wt^te± = „ A 
axi ax2 ax4 

dxi dx2 9x4 

=> / ^ j involves only X3 and X5 variables 

=> /fc+i = C1X3X5 -f C2xf where ci,C2 are constants. 

Since fc > 2, we have c\ = 0 and / ^ = C2X5. If c2 is not zero, then k = 2 and 

x§ = 3 - " ^ ^ € / . This implies that 

(3) = <*i*4*5,*I)C J. 

Let (2) = ((frlifa1) Q I where ^3 and <j>%1 are homogeneous polynomials of degree 2 

with weights 1 and —1 respectively. Clearly ^ J 1 must have the following form 

<j>21 = <2iX2X5 + CV2X3X4 

X+<f>21 = 2a ix ix 5 + a ix 2 x 4 + 2a2x2x4 = 2aiXix5 + (<*i + 2a2)x2x4 

x+<f>2 l = (4<*i + 4a2)^i^4-
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Since X+<f>2
 l = 0 and <j)\ is a constant multiple of X+<f>2 *, we see that 

(<t>\,<t>2 l) = (*2*4 - 2 x ^ 5 , x3x4 - ar2x5) = (2) C J 

a^i aa:2 0x3 ax4 ax5 

dx\ 

= dxxl VI*-j.-* 
dx 

df~2 

— d2#4#5 <9x3 

^ 2 = o 
(9̂ 4 

dfi 3 
-2 

3ar5 

: d3(x3£4 — X2X5) where c?i, <i2, ĉ 3 are constants. 

02/3-2 _ ° .dfs3 
^3^3 = T * = « (-5 ) = 0 

ox^oxs <9x5
v ax4 

=> d3 = 0 and - ^ - = 0. 
<9x5 

On the other hand 

2.d\x$ = - — - — = - — ( — ) = 0 
OX50X2 0X2 0x5 

W , - dVa-2 9 a/3-2, . 
ax5dx3 dx3^ dx5 

=*d1 = d2 = 0 and ^ = ^ 1 = 0. 
0X2 OX3 

Therefore f£2 = 0. Similarly we have / 3 = 0 

„*«£! =-3 ^ = -1 « * ^ = i «*«£! =-2 «*«£ 0x1 0x2 0x3 0x4 0x5 

OX 1 
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9fzx 

dx2 

a/3-1 

dx3 

= ^4(13X4 — 22X5) 

= ^5(^2^4 - 2x1x5) 

9 / 3 _ 1 _ A ,2 

= d7£4 #5 
dx5 

dx3dx2 dx2 dx3 

=> di = 0 and ^ - = 0. 
0x3 

It follows that d4 = 0 and - ^ - = 0. Therefore / 3 involves only £4 and £5 variables. 

In fact it is easy to see that /3"1 = C3X4X5. Similarly we can prove that 

/ 3 = c4z4 and / 3 = c5x4x5 

0x1 ax2 0x3 0x4 0x5 

a/3° 

a— 
5/° 
—— = 6^x2X4 — 2x1^5) where 61,62,63,64,65 are constant. 
0x5 

=> / 3 = e(2x\x\ — 2̂ 2X4X5 + ^3^4) where e is a constant. 
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We conclude that up to constant multiple, / is of the following form 

/ = 2X1*5 ~ 2X2X4*5 + xZxl + C4X4 + C5X4X5 + C3X4X5 + C2Xg 

where 2xix§ — 2x2X4X5 + X3X4 is a s/(2, C) invariant polynomial. 

For i = - 2 . 

In this case we can assume that 

/ = /rfi + /r+i+/*+i + /*+i+/*+i 

ox1 0x4 

dx\ dx^ 

=^ ft+i involves only X2,X3 and X5 

=>• fj^x = cix2X3 + C2X*-1X5 where ci,c2 are constants. 

If C\ *fi 0, then x* = ^—yj^ G 7. By applying X„ and X+ successively on xij, we have 

( X 2 , X 2 X 3 , X 2 X 3 ,X!X 2 , XXX2 9XXX2 ) C i . 

Since dim J = 5, we have Jk = 2 and 

1= (x^,x2x3,x§,xix2,x?). 

This implies that J = (5), which contradicts to our assumption that I = (3) 0 (2). 

Therefore c\ = 0 and 

If c2 ^ 0, then z\-lx* = 5 5 ^ ^ € J. Therefore 

(XUxS-'x^Xlix^x^X+ix^xs), x^x^X^xt'x^Xlix^x,)) 
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= <8(Jb - l)(Jk - 2)(Jb - 3)x?x^-4x5 + 7(i - l)(Jb - 2)x?xJT3x4, 4( i - l ) ( i - 2 ) x ? x ^ 3 x 5 + 

+3( t - l ) x i x ^ 2 x 4 , 2(* - l )x !xJr 2 x 5 + x ^ - ^ 4 , x ^ ^ s , x ^ 2 x 3 x 5 , x ^ 3 x ^ x 5 ) C L 

Since d im/ = 5, we have k = 2 and 

(X1X4, 2xiX5 + X2X4, X2X5, X3X5) C 7. 

Xf(x3Xs) = 2x2X5 4- X3X4 G 7. Since X2X5 is in 7, we have X3X4 in 7. As X+(x3X4) = 

2x2x4 + X3X5 and x3x5 are in 7, we have x2x4 G 7. Therefore 

(a?l*4, «1*5» x 2 ^ 5 , * 3 * 5 , ^ 3 * 4 , ^2^4> 

is a 6 dimensional subspace in 7, which is impossible. We conclude that C2 = 0 and 

/£"+! = 0. Similarly we can prove that / | + 1 = 0. 

For i = - 1 . 

In this case we can assume that 

/ = / r+ i + A+i + / t+ i 

axi 0x3 

C7Xi C7X3 

^/fc+i does n o^ involve xi variable and / £ + 1 does not 

involve X3 variable. 

We claim a^T+i = 0. Suppose on the contrary that 9$+* ^ 0. Then observe that 

X- ^ S 1 " = ° b e c a u s e wt x - ^ ^ = - 3 . It follows that 

<2> = <ff^lf>£'' 
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Since d#*+l and X+ e^- f l are elements in I of same weight 1, there exists a constant Ci 

such that 

OX3 OX2 

dxidxz dxi dx2 

=> either a = 0 or 'k+x = 0. 

If ci = 0, then y^1 = 0. In this case fj~+x involves only x2,X4 and £5 variables. We 

can write 
[|L] 

j = 0 

where [|] denotes the largest integer less than | . Let jo be the least integer such that 

6io ^ 0. Then 

^ = (io + l)bhx\-*«x{»xi« + (jo + 2 ) 6 i o + 1 x r 2 « o ^ ) 4 o + i x i o + i 

By formula (3.1), we have 

OX5 

where b is a non-zero constant. Since X_(a?3
 J0x5

J0) = 0, we see that there is an 

irreducible s/(2, C)-submodule of dimension 2k — 2jo -f 1 of the following form 

<**-2'°*r°, *+(*3~2'°*5io). • • • ,x?-*°(x;-*o«*>)>. 
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Since j 0 < [§], we have 2k - 2j0 + 1 > k + 1. As J = (3) 0 (2), we have k + 1 < 3. 

This implies that k = 2 and jo < 1 because of our assumption k > 2. It follows 

that /J"1 = box^xs -f &1X4X5. Since - ^ - ^ 0 by our hypothesis, we have b0 ^ 0. So 

x2a?5 = 2^"^7" a n d ^3^5 = ^-(^2^5) are in I. However, the weight of £3X5 is —3. 

This contradicts to our hypothesis 

/ = (3)©(2). 

On the other hand if c\ ^ 0, then ^ffi1 = 0. This means that the degree of fj~£x 

in x2 variable is at most one. 

K*+2)/3] ut utm m [***] 

5 

Let /?0be the biggest integer such that epQ ^ 0. Then 

- ^ = e o * 4
3 V + . . . + e,-a$*4

 3 x5
 3 + . . . + e£0s£0*P^s5

 2 

A ~ C 9x2
 ]~ 3 5 

where e is a nonzero constant. Since X_(x3°x5 °) = 0, we see that there is an 

irreducible s/(2, C)-submodule of dimension k 4- 2/?o + 1 of the following form 

As / = (3) 0 (2), we have k + 1 + 2/?0 < 3. This implies that k = 2 and /?0 = 0 because 

of our assumption fc > 2. It follows that 

fzl = dox±x\. 

This contradicts to our hypothesis that y*x+x ^ 0. All these together establish our 

claim that y^1 = 0. Hence f£+i involves only X3, X4 and #5 variables. 
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We next claim that >̂T+i = o. Suppose on the contrary that y^1 ^ 0. We can 

write 

7=0 

Let 70 be the biggest integer such that a7o ^ 0. Then 

^ ± L = ^ **i,Jf* + 2a2x3x4 **»«,*** + . . . + i a . 4 - ^ 4 **4«B"*B"i 

0x3 

^ , 7 o- i i i a i ± ^ 2 Q -
+ . . . + 70070^3 *4 ^ * 5 

( ^ ) = ^ . - . , 5 
-70 

where 7 is a nonzero constant. Since X_(xl°~ x5
 7 o ) = 0. We see that there is an 

irreducible s/(2, C)-submodule of dimension fc + 70 of the following form 

( , j o - i x * + i - i d i j r + ( , y - l « * + l - ^ ) f . . . , 4 ^ - 1 ( ^ 0 - 1 ^ 1 - 7 0 ) ^ 

Since J = (3) 0 (2), we have fc + 7o < 3. Hence (fc,7o) is either (3,0), (2,0) or (2,1) 

because fc > 2. In both cases fj~£x cannot involve £3 variable, a contradiction to our 

assumption. This established our claim that J
d*+l = 0. 

Now fj^x involves only X4 and X5 variable. If fj~+x is not zero, then it is easy to 

see that there is an irreducible s/(2, C) submodule of dimension fc -h 1 of the following 

form 

Since J = (3) © (2) and fc > 2, we have fc = 2. It follows that f^1 = 02X4X5 where c2 is 

a constant. By using the same argument as before, we have 

J = (X4,X4X5, x\) 0 (x2x4 - 2xix5, X3X4 - x2x5) 

and / = 2xix§ - 2x2x4x5 + x 3 x | + c2x4x| + c3x|x5. 
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Case 4. / = (3) 0 (1) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights 2,0 and —2. 

Clearly / £ + 1 = 0 for |t| > 4 by the same proof given in Case 3 above. 

For i = - 2 

oxi ox$ 0x5 
^ 9f& = 0 = 9f& = Q/rA 

dxi dx± dv.% 

^ / r + i involves only x^ and X3 variables 

=>fj~+i = CX2X3 where c is a constant. 

If c ^ 0, then x\ = \d^x
+l € / . In particuLai x\ = j , X t x \ is also in / . It follows that 

(xk
3!x+(xk

3), xl(4),---,xlk(4)) 

is an irreducible s/(2, C)-submodule of dimension 2fc + l . in L Since I = (3 )0 (1 )0 (1 ) , 

we have k < 1. This contradicts to our hypothesis that k > 2. Therefore / ^ x = 0. 

Similarly we can prove / | + 1 = 0. 

We can write 

/ = /*+l + /* + l + /*+•! + /jb + 1 + /fc+1-

Since weights of ^ L , 2|£ti5 5 ^ t i a n d ^ ± L a i e odd integers for 1 < i < 3, ^ L , 

* g f s *£«>, and 2 g f S are zero for 1 < * < S. Therefore /fe
3

+1, f^v fl
k+1 and / | + 1 

are polynomials involving x4 and ar5 variables only. On the other hand, since weights 

°f dxV an<* ixV a r e ~^ an<^ * respectively, we have ^ j ^ 1 = 0 and aA+i = 0. Hence 

/ £ + 1 is a polynomial involving only #i,ar2 and E3 variables. 
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If one of the f^XJ /jf+i, fl+i a n d /fc+i ls zero> then ^ *s e a s y t ° s e e that there is 

an irreducible s/(2, C) submodule of dimension k + 1 in / of the following form 

(^4,^4 X 5 , . . . , £ 5 ) . 

Since / = (3) 0 (1) 0 (1) and k > 2, we have k = 2 and 

(3) = (*4>*4*5, * ! ) £ * • 

There are constants Ci and C2 such that 

Since / £ + 1 does not involve a?4, £5 variables, we conclude that c\ = C2 = 0. It follows 

that ^ ^ = 5 ^ = 0. This implies that | £ - = | £ = 0, which contradicts to our 

hypothesis that d i m / = 5. 

If all of Z ^ , 
/jb+i' /ib+i an(* /fc+i a r e zero> then / — /fc+ifaii#2,^3)- This implies 

that ^ j - = ^ - = 0, which contradicts to our hypothesis that d im/ = 5. 

So Case 4 cannot occur. 

Case 5. / = (2) 0 (2) 0 (1). 

Elements in / are linear combinations of homogeneous polynomials of degree k + 1 

and weight —1,0 and 1. 

For |t| > 4 

|urfM±I|>2 1< j < 5 
OXj 

=• ^ i ± i | = o 1 < i < 5 

=> /*+i = 0 1 < J < 5. 
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For t = - 3 

OX\ OX2 OX4 OX5 

dx\ 8x2 6x4 dx$ 

=£> /JT+1 depends only on X3 variable 

=3. fk+i = 0 because —3 is not divisible by 1^(23) = —2. 

Similarly / £ + 1 = 0. 

For i = - 2 

a # i aa?2 # # 4 

=> g/rA_0_g/rii = a/rA 

=> /JT+I involves only £3 and £5 variables 

=^ /fc~+i = C I^3 + C2X5 where ci, C2 are constant 

=> / ^ = 0 because fc > 2. 

Similarly / | + 1 = 0. 

For t = - 1 

axi aa?4 

dxi 8x4 

=> / ^ involves only £2, ̂ 3 and £5 

=> / ^ = ca?2«5 where c is a constant. 

If c / 0, then x | = 7 ^ ^ G I. x | = j\Xt(x\) i s i n 7* lt f o U o w s t h a t t h e r e e x i s t s a n 

irreducible s/(2, C)-submodule of dim 2k + 1 in J of the following form. 

2k/ k\ <*g,X+(*$),...,*?(*$)). 
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Since 2k + 1 > 5, this contradicts our hypothesis I = (2) 0 (2) 0 (1). Therefore c = 0 

and fj-*v 

Similarly we can prove f£+1 = 0. 

For i = 0, 

OXi 0£s 

^ £ ^ 1 = 0 = ^ 1 

Since / = / * + i , we see that dim I = d i m ( ^ , g £ , j^) < 3. This contradicts to our 

hypothesis that dim I = 5. 

So Case 5 cannot occur. 

Case 6. / = (2) 0 (1) 0 (1) 0 (1). 

This case cannot occur. The argument is the same as those shown in Case 5 above. 

Case 7. / = ( 1 ) 0 (1) 0 (1 )0 (1) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k -f-1 

and weight 0. 

For 111 > 3 

\wt^^\>l 1 < > < 5 
dxj 

=* / j + 1 = o i < i < 5 . 

For i = - 2 

aa?i 9x2 9^4 ax5 
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=* d/r+2i = 0 = a/fc-+
2! = a/r+

2i = fl/tfi 
=>* /£+! depends only on x3 variable 

=>> / ^ = ca?3 where c is a constant 

=> fj-gx = 0 since fc > 2. 

Similarly we can prove / £ + 1 = 0. 

For i = - 1 

axi 0x2 0x3 0x4 

dx\ dx2 6x3 8x4 

=> /JT+I depends only on £5 variable 

=> / ^ j = cx$ for some constant c 

=> / ^ = 0 because k > 2. 

Similarly / £ + 1 = 0. 

For i = 0 

OX\ OX3 OX4 OX§ 

dxi dx3 dx4 dx$ 

Since / = / £ + 1 , we have d im / = d im(J^ ) < 1. This is a contradiction. Hence Case 7 

cannot occur. Q.E.D. 

Lemma 3.2. With the same hypothesis as Lemma 3.1; if d im / = 4, then / is not a 

s/(2, C)-submodule. 

Proof. We shall assume that / is a 5/(2, C) module and shall produce contradiction. 
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Case 1. I = (4). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights —3,-1,1 and 3. Write 

t = - o o 

where / £ + 1 is a homogeneous polynomial of degree k -f 1 and weight i. 

For |i| > 5, we have / J + 1 = 0 by the same argument in Case 2 in the proof of 

Lemma 3.1. 

For i = 4 

ox\ oxi dz% ox$ 

5xi 3a?2 5^3 dars 

=> / ^ + 1 involves only #4 variable 

=$• / £ + 1 = CX4 where c is a constant. 

If c £ 0, then Jfc = 3 and x\ = £ ^ ^ G J. It follows that 

As a consequence, / involves only £4 and x$ variables. This implies %£- = 0 = j ^ - = 

-Q±r and d im/ < 2, which contradicts to our hypothesis that d i m / = 4. Hence we 

conclude that c = 0 and / £ + 1 = 0. 

Similarly we can prove fj^x = 0. 

For i = 3 

0x3 a x 4 9^5 

dx3 dx4 dx5 
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==> /jj?+1 involves only x\ and X2 variable 

=> / | + 1 = 0 because 3 is not divisible by wt x\ = 2 and 

x2 has weight 0 

Similarly we can prove f^x = 0. 

For i = 2 

OX i OX2 OXz 

c?xi 5a?2 #£3 

=> / | + 1 involves only X4 and X5 variable 

If / | + 1 ^ 0, then it is easy to see that k = 2 and 

As a consequence, / involves only £4 and X5 variables. This implies -g£- — 0 — ^- — 

^ and dim I < 2, which contradicts to our hypothesis that d im/ = 4. Hence we 

conclude that / | + 1 = 0. Similarly we can prove f£+x = 0. 

For i = 1 

#£4 ax5 

5X4 9X5 

=*- /^+ 1 involves only xi,X2 and X3 variable 

If /jf+1 ^ 0, then either y^1 or 3*+* or ^ + 1 is a nonzero element in I. Since I 

is irreducible, we see that elements in J are homogeneous polynomials in xi,X2 and 

x3 variables. This implies that fk+i is a homogeneous polynomial in xi,X2 and X3 
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variables. It follows that ^ - = ^ - = 0 and dim I < 3, which contradicts to our 

hypothesis that d i m / = 4. Hence we conclude that / j j + 1 = 0. 

Similarly we can prove that fj~£x = 0. 

For t = 0 

ox i 0x2 0x3 0x4 

- ^ 1 . 1 

=> ^ ± 1 = 0 for all 1 < i < 5 
ax,-

=>• /2+i = 0. 

Hence Case 1 cannot occur. 

Case 2. J = ( 3 ) 0 ( 1 ) . 

The same argument as in Case 4 in the proof of Lemma 3.1 shows that Case 2 

cannot occur. 

Case 3 . / = (2) e (2). 

The same argument as Case 5 in the proof of Lemma 3.1 shows that Case 3 cannot 

occur. 

Case 4. / = (2) 0 (1) 0 (1). 

This case cannot occur. The proof is the same as those shown in Case 5 in Lemma 

3.1. 

Case 5. / = (1) 0 (1) 0 (1) 0 (1). 

This case cannot occur. The proof is the same as those shown in Case 7 in the 

proof of Lemma 3.1. Q.E.D. 
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L e m m a 3.3. With the same hypothesis in Lemma 3.1, if / is a s/(2, C)-submodule of 

dimension 3 then / is a homogeneous polynomial in xi , £2 and X3 variables of weight 0 

and J is an irreducible s/(2, C)-submodule. 

Proof. Case 1. J = (3). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. Write 

/= £ fUi 
t = — 0 0 

where / J + 1 is a homogeneous polynomial of degree k + 1 and weight i. 

By the same argument as in Case 4 of Lemma 3.1 we can write 

/ = /jfc+i + fk+i + fk+i + /jb+i + A+i-

Since weights of y**}, yj+l, 3*+* and ^ + 1 are odd integers for 1 < i < 3, so 

^ ^ ^ ^ ^ f r " a r e z e r o for 1 < i < 3. Therefore / J & , / t f i . / * + 1 

and / £ + 1 are polynomials involving x4 and x5 variables only. On the other hand, since 

weights of df
dl+l and dp]+l are - 1 and 1 respectively, we have df

d\+l = 0 and a^+* = 0. 

Hence / £ + 1 is a polynomial involving only xi,X2 and X3 variablels. 

If one of the fk+i*fk+vfk+i an(^ fk+1 *s zero> ^ e n it is easy to see that there is 

an irreducible s/(2, C) sumbodule of dimension k + 1 in I of the following form. 

(x4 ,x4 X5, . . . ,x 5 ) . 

Since J = (3), we have k = 2 and 

J = (x|,x4x5,xi?). 

There are constants Ci, C2 and C3 such that 

d/fe°+1 2 <9/*°+i fi/J+i 2 

"5xf = C1^ " # = C2^5 ^xf = C3 -̂
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Since / £ + 1 does not involve £4,25 variables, we conclude that c\ = c^ = C3 = 0. It 

follows that 2 / L L = *|£±x = 2|£±L = 0 and hence / J + 1 = 0. This implies that 

^ - = ^- = J^- = 0, which contradicts to our hypothesis that d im / = 3. 

So all of /i+i,/jk+i>/fc+i ^ d /fc+i a r e z e r o - Consequently / = 7j+1(a:i,a?2>*3)-

Case 2. I = (2) 0 ( 1 ) . 

By using the same argument as Case 5 in the proof of Lemma 3.1, we have / = 

/jk+i(^2)^4)^5)- By weight consideration, we have 

J = ( 2 ) e ( i ) 

Write 
I**1! 

a=0 

S i n c e l £ = £ (fc+l-2a)cax|-"2aa?4*xgf is nonzero element, clearly X_( J £ ) ^ 0. This 
Qf = 0 

contradicts the fact that ^ - spans a 1-dimensional s/(2, C)-submodule. We conclude 

that Case 2 cannot occur. 

Case 3. / = (1) 0 (1) 0 (1). 

This case cannot occur. The proof is the same as those given in Case 7 in the proof 

of Lemma 3.1. 

Lemma 3.4. With the same hypothesis as Lemma 3.1; if d im/ = 2, then / is not a 

5/(2, C)-submodule. 

Proof. We shall assume that / is a s/(2, C) module and shall produce a contradiction. 
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Case 1. J = (2). 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights —1 and 1. Write 

/= £ /Ui 
* = — 0 0 

where / £ + 1 is a homogeneous polynomial of degree fc+ 1 and weight i. By the same ar-

n 8f° 8fQ 

gument as Case 5 in the proof of Lemma 3.1, we have / = / £ + 1 . Weights of J
d
h

x
+l, J

Q%,+1 

and 0*+* are even. Hence y^1, y^1 and y^1 are equal to zero and / = / £ + 1 in

volves only X4 and x$ variables. If / £ + 1 is nonzero, then it is easy to see that I contains 

an irreducible submodule of dimension k + 1 of the following form 

{X4,X4 2 5 , . . . } £ 5 ) . 

This implies that d im/ > k 4- 1 > 3, which contradicts to our hypothesis d i m/ = 2. 

Therefore / = 0. We conclude that this case cannot occur. 

Case 2. / = ( 1 ) 0 ( 1 ) . 

This case cannot occur. The proof is the same as those shown in Case 7 in the 

proof of Lemma 3.1. Q.E.D. 

Lemma 3.5. With the same hypothesis as Lemma 3.1; if d im/ = 1, then / is not a 

5/(2, C)-submodule. 

Proof. The argument which is used in Case 7 in the proof of Lemma 3.1 shows that 

/ = c#2+1 where c is a constant. Therefore / = (x*) is not a s/(2, C)-submodule.Q.E.D. 

Propos i t ion 3.6. Suppose 5/(2, C) acts on the space of homogeneous polynomials of 
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degree k > 2 in xi,X2,X3,x4
 a n d £5 variables via 

o 9 ^ 8 d d 
T = 2ZX- 2 x 3 - h^47 X 5 ^ — 

axi 0x3 0x4 ox$ 

X+ = 2 £ i ~ b2x2-£ h £4-5— 
<9x2 5 x 3 <9£5 

d d d 
A_ = £ 2 ^ V #3 ̂  r- £5^—• 

a^i 0x2 0x4 

Suppose the weight of £,- is given by the corresponding coefficient in the expression of 

r as above, i.e. 
wt (x\) = 2 wt(x2) = 0 wt(x3)=:—2 wt(x4) = l wt(x>$) = — 1. 

L e t 7 = (!£» 1 ^ ' l£> ! £ ' l £ ) be the complex vector subspace spanned by | £ , | £ , | ^ 5 | £ 

and 0^-, where / is a homogeneous polynomial of degree k -f 1. If J is a s/(2,C)-

submodule, then either 

(i) / is a homogeneous polynomial in £1, x2, £3, X4 and £5 variables of weight 0 and / 

is (3) 0 (2) i.e. direct sum of 3-dimensional and 2-dimensional irreducible 5/(2, C)-

submodules, or 

(ii) / is a homogeneous polynomial in xi,X2 and £3 variables of weight 0 and I is an 

irreducible 5/(2, C)-submodule of dimension 3, or 

(iii) / is of the following form 

/ = 9 + Cixl + C2£4£5 + C3X4XI + C4£s 

where g = 2x1X5 — 2x2X4X5 + £3X4 is an s/(2, C) invariant polynomial and 

/ = # , ! ^ , ! ^ > = (3)®(2) axi 5x2 ax3 0x4 5x5 

= ( x 4 , X 4 X 5 , X 5 ) 0 (X2X4 — 2XiX5, X3X4 — X2X5). 

Proof. This is an immediate consequence of Lemma 3.1 through Lemma 3.5. 
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Remark , g is projectively equivalent to / . In fact 

g(xi + y X 5 , £ 2 - 7 r # 5 , X3 + C1X4 + C2«5,aJ4 ,aJ5) = / ( x i , J C 2 , X 3 , a ? 4 , X 5 ) . 



§4. 5/(2, C) ACTION (1.4) ON Mg. 

Lemma 4.1. Suppose s/(2, C) acts on the space of homogeneous polynomials of degree 

k > 2 in xi,X2,X3,ar4, and x5 variables via (1.4) 

o d d & 0 d 
T = 3 X I T — + « 2 ^ * 3 ~ 3X4 "5 

OX\ OX2 OX3 OX4 
ft ft ft 

X+ = 3*i — + 4x2 — + 3*3-3— 
ox2 0x3 0x4 

d d 0 
X- = X2-z h £ 3 - h X4- . 

OX 1 OX2 OX3 

Suppose the weight of xt- is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xi) = 3, wt(x2) = 1, wt(x3) = —1, t^(x4) = —3, wt{x$) = 0. 

Let J be the complex vector subspace of dimension 5 spanned by ^gr, ^*-, ^ - , j£- and 

^ - where / is a homogeneous polynomial of degree k + 1. If / is a s/(2, C)-submodule, 

then J = (4) © (1) and / is a homogeneous polynomial of weight 0. 

Proof. Case 1. I = (5). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights - 4 , - 2 , 0 , 2 and 4. Write 

00 

/ = E fi+x 
s = —00 

where / £ + 1 is a homogeneous polynomial of degree k + 1 and weight i. 

For i is an even integer wt '£+} is an odd integer for all 1 < j < 4. Hence ~^^L is 

zero for all 1 < j < 4. It follows that / £ + 1 depends only on £5 variable. Since weight of 

£5 is zero, we conclude that / J + 1 = 0 for i non-zero even integer, and / £ + 1 = c£*+1. If 

56 
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c ^ 0, then (x|) would be a 1-dimensional invariant submodule in I which contradicts 

to our hypothesis / = (5). Hence / £ + 1 = 0 and we have 

00 

/= £ ft?-
df "* • • 8 f + 

For i an odd integer, wt Jg+X = 2i + 1 is an odd integer 0. Hence Jg+l = 0. It 

follows that ^ - = 0. This contradicts our hypothesis I = (5). We conclude that Case 

1 cannot occur. 

Case 2. I = (4) 0 (1). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights —3,-1,1,3 and 0. 

For |i| > 4 and i odd, wt ( a**1) is a non-zero even integer for all 1 < j < 5. This 

implies that ^ U L = 0 for all 1 < j < 5. Thus / | + 1 = 0. 

For |tj > 7 

H(^-)i>4 1 < i < 5 

=> -ifctl- = 0 1 < j < 5 

For i = 6 

C7X2 C/X3 C/X4 C/X5 

dx2 5x3 9x4 9x5 

=>- / l+ i depends only on xi variable 

r6 2 
/ib+1 = c * l 



58 STEPHEN YAU 

=> / | + 1 = 0 because k > 2. 

Similarly we can prove that fc+\ = 0. 

For i = 4 

0x3 0x4 aa?5 

dx3 dx4 dx$ 

=» /jb+1 depends only on xi and X2 variables 

=> /£ + 1 = cx\X2 + dx2 =$• /jb+i = dx2 because fc > 2. 

If d ± 0, then x^ = ^ 2gLi G J. It follows that 

(xf, x? x2, xix^, xf, x^x3,2x2x§ + x|x4) 

is a 6-dimensional subspace in J. This contradicts to our hypothesis dim/ = 5. Hence 

d = 0 and / £ + 1 = 0. 

Similarly we can prove that /*"£ = 0. So / = fj^x + / £ £ + fj^x + / £ + 1 + / ^ i + 

For t = 3 

ax2 ax3 ax4 

=> df^^Q_dfLi_dfLi 
dx2 dxz 8x4 

=> /*+i depends only on xi and X5 variables 

=» / £ + 1 = exxx\ 

Similarly we can prove fj^x = CX4X5. If c ^ 0 or c ^ 0, then it is easy to see that 

1 = ( 4 ) e ( i ) 
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= (x1xl~1, x2x\-1, x3x%~\ xAx\-1) ® (x\) 

5xi 5x2 &e3 aa?4 &r5 

=> /jb+i depends only on £i,£2 and £3 variables, and there are constants ci,C2 and C3 

such that 

dxi -Wsxt , ^ -c2x2x5 , g^ -.c3*iz5 

=>MtL =0^±L = ^±1 sinceife>2 
aa?i aa?2 023 

=*/*+! =0-

Similarly we can prove / ^ = 0. 

aa?i C/X2 0x3 0x4 0x5 

=> fl+i depends only on X2 and 25 variables and there are constants C4 and C5 such 

that 

Q — C4X5, - — C5*2*5 =* /fc+1 ~ C6#2S5. 

Similarly we can prove that f£+i = C72325 

axi aa?2 #23 #24 ax5 

^ dxX -C*X*X* ' ^ 2 - C 9 X 3 X 5 ' 5X3 - C l 0 * 2 X 5 

5x4 ~CllXlX* ' 9x5
 12 5 

02*0 Q2f0 
=> c8 = c9 = cio = en = 0 by considering *+* = *+* dxidx$ dx^dxi 

Therefore we can write 

/ = CXixl + C6X2Xs + Ci2*5+1 + ^7«3^5 + CX4X5. 
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This implies that ( ^ - , §£-, J^r, •§£-) is at most one dimensional, which contradicts 

to our hypothesis / = (4) 0 (1). Thus we can conclude that / £ + 1 = f^x = 0 and we 

have 

The same argument as above shows that / ^ 1 = / £ + 1 = 0. Therefore we have 

/ = fk+i + fk+i + A+i 

ax4 ax5 axi ax5 

dx4 dx5 9xi dx5 

=£> / | + 1 depends on x i ,x 2 and X3 variables while 

/*T+i depends on X2,X3, and X4 variables. 

We claim that either ^ L L = 0 or 2 £ L L = 0 or 2*LA = 0 implies /fc
2

+1 = 0. 

df2 

Suppose Q*+1 = 0. Then / | + 1 depends only on x2 and X3 variables. This implies 

that k 4- 1 is even and there exists a constant d\ such that 

/*2+i(*2,*3) = d i * 2
2 a ^ -

If dx £ 0, then x 2
2 x 3

2 = ^ + 3 ) - 5 ^ is in J. By considering X l + 1 ( x 2
2 x 3

3 ), we 

see that x\ is in J. Since X_(x4) = 0, it follows that 

(xlX+(xk
4)>Xl(xk

4),...,xlk(x\)) 

is an irreducible submodule of dimension 3fc -f 1 > 7 in I. This contradicts to our 

hypothesis J = (4) © (1). Therefore we vhave / | + 1 = 0. 
ft.2 

Suppose a**1 = 0. Then / | + 1 depends only on xx and X3 variables. This implies 

that k + 3 is divisible by 4 and there exists a constant d2 such that 
9 fc+3 3fc-H 
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If c?2 7̂  0, then by the similar argument as before, it is easy to see that 

(xl,X+(x*),Xl(x\),...,Xlk(x\)) 

is an irreducible submodule of dimension 3k + 1 > 7 in J. This contradicts to our 

hypothesis J = (4) © (1). Therefore we have / | + 1 = 0. 

It is easy to see that Q*+1 = 0 implies / £ + 1 = 0. 

Similarly we can prove that if either %*+* or y*+l or *£+l is zero, then fj^x is 

zero. 

r2 ^A f -2 We claim that / | + 1 and fk+x cannot both be nonzero. Suppose on contrary that 

both / £ + 1 and fj-*x are nonzero. Since wt ^ ^ = wt ^ ^ = - 1 and wt ^ ^ = 

wt J
d

h
x+l = 1, there are nonzero constants d\ and d2 such that 

^.(x2,x3,x4) = d1^^(x1,x2,x3), ^.(x2,x3,x4) = d2^^(xux2,x3) 

dp 
=> fk+i(x2,x3,x4) = d2x4-^L(xi, x2,x3) + g(x2,x3) 

- *<3^2'*3> = T2^lt^>x^- £<•**>] 

^ /fc+i(a:iJx2)^3) does not involve a?2x3 

^ /fc+i(xi)aj2)^3) = d$x\ + h{xi,xz) where d$ is a constant and A(xi,£3) is a 

homogeneous polynomial of degree k -f 1 and weight 2 

^ /fc+i(a?i>iC2,^3) = M#i>#3) because k > 2 
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=> / £ + 1 = 0 as shown above. 

This gives rise to a contradiction. Hence our claim is proved. 

We next claim that the case f^i(xi1X2yxs) ^ 0 and f£+i(x2,Xs,X4) = 0 cannot 

occur. Suppose on the contrary that / | + 1 ( £ i , £ 2 , # 3 ) ^ 0 and /^ 1(a?2,^3,^4) = 0. 

Then we have 

/ = /jfe+l(a?l»a?2|33) + /jb+i(xi ,X2,X3,^4,^5) 

#£4 C/X3 07x3 ax i 

=> /*+i = d 4 * 4 - 7 ^ ( * i , x2, x3) + A(*i, x2, x3ya?5) 

=* ^ = d ^ ^ ( a ? i ' ^ , a J 3 ) + ^ ( x 1 , X 2 , X 3 , X 5 ) 

=> d 4x 4 / r f c j" 1 (g i ,g 2 ^3) = 0. 

If d4 = 0, then ^ * = 0 and hence | £ = 5^£±L = 0. This implies d i m / < 4, which 

contradicts to our hypothesis / = (4) 0 (1). If dA ^ 0, then *jftl (xi,x2, .S3) = 0. 

Hence / | + 1 ( x i , X 2 , x 3 ) does not involve x\ and 

/*+l = deX\X3 + d7^2x3 => /jfc+i = ^7^2X3 
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because fc > l. If d7 £ 0, thenxf = £%f- is a nonzero element in I. By similar 

argument as before, we can see easily that 

(xlX-{x\),Xl{x\),...,X\x\)) 

is an irreducible submodule of dimension 10 in I. This contradicts to our hypothesis 

J = ( 4 ) e ( i ) . 

Similarly we can prove that the case fk+i{x2)%z>24) i1 0 and /!+1(a?i,:c2,#3) = 0 

cannot occur. 

We conclude therefore / | + 1 = / ^ = 0 and / = / £ + 1 . 

Case 3. I = (3) 0 (2) 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights —2, — 1,0,1 and 2. 

For \i\ > 6 

M ^ S ± H > 3 for 1< j<5 
OXj 

=> ^ ± i = 0 for 1 < j < 5 
OXj 

=> y*+i = o. 

For i = 5 or 4 

wt ^±±± > 3, for 2 < i < 5 
OXj 

=> / ^ + 1 depends only on x\ variable 

=>• / £ + 1 = 0 because both 5 and 4 are not divisible by 3. 

Similarly we can prove fj^x = 0 = / ^ . 



64 STEPHEN YAU 

For i = 3 

OX3 OX4 C7X5 

8x3 8x4 dx§ 

=> / t+ i depends only on x\ and #2 variables 

=^ / | + 1 = C2X2 because k > 2 

If c2 # 0, then *! = 3 ^ ^ ^ i s i n 7* Xt f o l l o w s t h a t 

(X2(*2), X+(xl),zl X-{xl),Xl(zl),Xl(xD) 

is a subspace of dimension 6 in 7. This contradicts to our hypothesis that 7 = (3) 0 (2). 

Hence we have / £ + 1 = 0. 

Similarly we can prove that f£?\ = 0. 

For i = 2 

(723 a x 4 

5X3 6X4 

=£• / £ + 1 involves only #1,22 and £5 variables 

If c3 ^ 0, then x|x^""2 = (k-i)C9 H&t i s i n 7* lt f o l l o w s t h a t 

< ^ ( * ^ - 2 , X + ( ^ - 2 ) , x 2 ^ - 2 , X^x\x^% Xl{xlxt~% Xl{x\x\-*)) 

— \*1*5 J * 1 * 2 * 5 >X2X5 5 ^ 2 « 3 ^ 5 > ( * 3 + ^2^4)^5 J ^ 3 « 4 ^ 5 ) 
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is a subspace of dimension 6 in I. This contradicts to our hypothesis that I = (3) 0 (2). 

Hence we have / | + 1 = 0. 

Similarly we can prove that fc+i = 0. 

We have proved 

/ = fk+i + /*+i + /jb+i 

3a; i ctai 9^4 3x4 

=> / = /*T+i(*2,*3,x4,ar5) 4- /jfe+i(*2, *3,*s) + / * + i (^ i ,x 2 i x 3 i x 5 ) . 

Suppose $+l = 0. We are going to prove / £ + 1 = 0. Clearly / j j+ 1 depends only on 

X2, £3 and £5 variables in this case, 

III 
Jk+i — 2-J a * 3 5 

cr=0 

Suppose on the contrary that / £ + 1 ^ 0. Let a0 be the largest integer such that 

a«0 = 0. 
2 a=0 

is an element in J. By applying X^° to yx+l, we find that x1
Qr°a:5~ a ° is in I. Since 

X^(x1
aox5" a°) = 0, we have an irreducible submodule of dimension 6ao + 1 in I in 

the following form 

{x\^x\^a\X^x\^x\^a^Xl(xla0x$-2a°)y...9X^(x^xk
B'^)). 

As / = (3) © (2), we have 6c*o + 1 < 3. This implies ao = 0. Hence 

/*+i = 00*2*5• 
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It follows easily that (x|) is a one dimensional irreducible submodule of I. This con

tradicts to our hypothesis J = (3) 0 (2). Therefore we conclude that / £ + 1 = 0. 

Suppose d*+* = 0. We are going to prove / £ + 1 = 0. Clearly fl+1 depends only 

on #i, £3 and x$ variables in this case 

w 

(3=0 

Suppose on the contrary that / £ + 1 = 0. Let fy be the largest integer such that 

6 / , 0 # 0 . 

is an element in I. By applying X+ ° to y^1, we find that xx °x5~ ° is in I. Since 

we have an irreducible submodule of dimension 12/?o -f- 1 in / in 

the following form 

{x**>x*-*Po t X+(x^xk
5-4^),..., X^{x\^xk

5-^)). 

As in / = (3) 0 (2), we have 12/?0 + 1 < 3 and hence /30 = 0. This means 

/ik+i = &o£i*5-

It follows easily (x|) is a one dimensional irreducible submodule of / . This contradicts 

to our hypothesis J = (3) © (2). Therefore we conclude that / £ + 1 = 0. 

Suppose 0*+* = 0. We are going to prove / j j + 1 = 0. Clearly / £ + 1 depends only 

on xi,X2 and X5 variables. So 

/jfe+1 = c 4^2^5-

If /fc+1 7̂  0. then x | = ~ a^*+l is in L Hence (x|) is a 1-dimensional irreducible 

submodule in I. This contradicts to our hypothesis / = (3) 0 (2). Thus / £ + 1 = 0. 
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Similarly we can prove that either d^+l = 0 or £+l = 0 or y*x+l = 0 implies 

f^i = 0. 

We claim that / £ + 1 and fj^x cannot both be nonzero. Suppose on the contrary 

that / i b + 1 # 0 and f^x # 0. 

™* flg4"1^2'*3'*4' *5) = - 2 = ^ gg+ 1(g l ' x2 ,a?3,*s) 

^ '^±L^X2'X3' ^ , «s) = 2 = w* *+ 1 (a?i, *2, *3, a*) 

™* — ^ t l ( x 2 , x3, *4, a?5) = 0 = ^ - ^ ^ ( a r i , x2j ar3, «s) 
(7^3 <7X2 

*+1(x2,x3, a?4, *s) = d2 JeJ'1(xi1x2lx3ix5) 

- ^ ± I ( ^ 2 , *3, *4, *5> = d 3 ^ ^ ( * l , *2, *3, *5> 

where di, cfo and d3 are nonzero constants 

df1 

=* / * + l ( * 2 , « 3 , * 4 , ** ) = ^ 4 g * + 1 ( g l , g 2 , g 3 , g 5 ) + #0*2, S3,"**) 

=> " ^ ± i ( a ? 2 ' X 3 ) X 4 > * 5 ) = d2X4 ^ r f ^ * 1 ' * 2 ' * 3 ' * 5 ^ + ldx~(X2'X3>x^ 

-^±(x2iX3iX4iX5) = d2X4 d*}l(xi,X2,X31X5) + j~(x2,X3iX5) 

=> d 2 « 4 ^ - | ^ - ( * l , a ? 2 , * 3 , « 5 ) = d i - ^ ^ ( a ? i , a ? 2 , * 3 , * 5 ) - -Q^-(X2,X3,XS) 

d2X4 Q^2l(X^ ' *2, *3, *5) = 4 g* + 1 0*1**2, «3, a*) - ^ ~ ( S 2 , *3 , * 5 ) 

Q2fl Q2fl 

=> /fc+i does not involve x2x3 and x3 

=> fl+i = d4x2x\ where c/4 is a nonzero constant. 
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=> (a:*) is a 1-dimensional submodule in J. 

This contradicts to our hypothesis that J = (3) 0 (2). 

We next claim that /jt+1(a?i, X2,£3,£5) ^ 0. Suppose that /jfe+i(xi,X2, £3, £5) were 

zero. Then 

/ = /*+l(X2,^3,^5) + /jT+l(a:2,^3,«4,a?5) 

would imply ^ - = 0 and hence dim I < 4. This contradicts to our hypothesis / = 

(3)e(2). 

Similarly we can prove fj^1(x2iX3,X4ix^) ^ 0. 

Therefore we conclude that Case 3 cannot occur. 

Case 4. I = (3) 0 (1) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. 

By the similar argument as Case 3, we have 

aa?i ax5 dxx ax2 

0x3 0x4 0x4 0x5 

=> ^ i _ 0 _ d*& _ * # » _ * & i = * # « ^ * # » 
dxi 9x5 dxx 9x2 5^3 5a?4 

=> / = /f+l(*2, *3, £4) + C0X^+1 + /^+1(X1, X2, X3). 

If fk+i(x2,X3,X4) is zero, then / = coxj"1"1 -f /fc+i(xi,X2,X3). It follows that 
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<§^ = 0 and hence dim J < 4. This contradicts the hypothesis I = (3)0(1)® (1). Thus 

/f+i(#2, #3, £4) ^ 0. Similarly we can prove f^1(xiiX2ix3) ^ 0. 

We next claim that either ^ ± * = 0 or ^ ± * = 0 or ^ ^ = 0 implies / £ + 1 = 0. 

Suppose y^1 = 0. Then / £ + 1 depends only on x2 and #3 variables. There exists 

constant c\ such that 

/jfe+i = c i x 2 x3 • 

If c\ ^ 0, then xjar j = tk?2\c &ptL ^ a n e l e m e n ^ m I* By applying X~J on x j x j , 

we see that x* is an element in / . Since X-(z%) = 0, 

(x*,x+(«»)>x»(«5),...,jr»(«*)> 

is an irreducible submodule of dimension 3Jk + 1 > 7 in I . This contradicts to our 

hypothesis I = (3) 0 (1) 0 (1). Therefore / £ + 1 = 0. 

Suppose 3*+l = 0. Then / £ + 1 depends only on x\ and £3 variables. There exists 

constant c^ such that 

/*+l — c2*l *3 

If C2 ^ 0, then it is easy to see that 

(zlX-(z>l),Xl(z>),...,X?(zi
l)) 

is an irreducible submodule of dimension 3fc + 1 > 7 in J. This contradicts to our 

hypothesis I = (3) 0 (1) 0 (1). Therefore / £ + 1 = 0. 

Suppose 0*+* = 0. Then / £ + 1 depends only on Xi and x2 variables. There exists 

a constant C3 such that 

/jb+i = c3«2-

Since fc > 2, we have / £ + 1 = 0. 
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Similarly we can prove that either ~ £ t i = 0 or ^fc+i = 0 or d**+l = 0 implies dx2 dxa 6x4 

/ ^ i = 0 

It follows that ty±l-(xi,X2,X3), tygL(x1,x2,x3), ^ ^ ( x 2 , x3, x4) and %f-(£2, *3, x4) 

are nonzero elements in J. 

df"1 df1 

wt-J^(x2,x3,x4) = ~2 = wt-j^(xux2)x3) ax2 ox\ 

wt^^(x2ix3ix4) = 2 = wt^^(xux2,x3) 

=> -~ i ± I («2 ,^3 ,^4) = di -^±L(xiix2,x3) 

OX2 OXi 
^±{x2,X3,XA) = d2 ^±{xUX2,X3) 

where d\ and d2 are nonzero constants 

d2p^L(xi,x2,x3) = pj±L(X2,x3,x4) = 0 
0x10x3 OX1OX4 

df1 

dx^ 

* ^ ^ = 0 
dx\dx3 

^ g l ( x 2 , x 3 > x 4 ) = d2*4 *J±±L(Xl,x2>x3)+ §L{X2,X3) 

=^ / i + i ( x i j ^2? ̂ 3) does not involve X\x3 and 

r\2 f\ e\ *\ p\ 

d^Ix^3
{xuX^X3) = dl^{xuX^Z3)-^2

{x2'X3) 

-^ —LfcL = 0 and hence f\,x does not involve x2x3. 
OX2OX3

 T 

Since fl^x{xi,x2ix3) does not involve x\x3 and X2X3, we have /fc+1(xi,X2,x3) = 0-

This contradicts to what we have proved. We conclude that Case 4 cannot occur. 
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Case 5. 7 = (2) 0 (2) 0 (1). 

Elements of 7 are linear combinations of homogeneous polynomials of degree k and 

weights —1,0, and 1. 

By the same argument as Case 3, we have 

wt 0£±L = - 4 , wt ^ ± 2L = - 2 , wt ^ ± L = 2, «* ^ ^ = - 3 , wt ^ ^ = 3 
axi aa?2 c;^4 aa?i #£4 

axi ax 4 0x3 

=> Wi = Q = mix ^ a/°+1 = ^ ° + 1 = gAVi = s/ki = mil = 
<9#i 3^4 9a?i &C4 9a?i d#4 9^2 

dx3 

<9#i 3^4 

=> d i m 7 < 3 . 

This contradicts to our hypothesis 7 = (2) 0 (2) 0 (1). Thus Case 5 cannot occur. 

Case 6. 7 = (2) 0 (1) 0 (1) 0 (1). 

Case 6 cannot occur. The proof is the same as Case 5. 

Case 7. 7 = (1) 0 (1) 0 (1) 0 (1) 0 (1). 

Case 7 cannot occur. The proof is the same as Case 5. Q.E.D. 

Lemma 4.2. With the same hypothesis as lemma 4.1, if 7 is a s/(2, C)-submodule of 

dimension 4, then 7 = (4) and / is a polynomial in x\, #2, £3 and £4 variables of weight 

0. 
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Proof. Case 1. I = (4). 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights —3, — 1,1 and 3. The same argument as Case 2 in the proof of lemma 4.1 gives 

/ = /jb+i + /r+i + /r+i + /fc+i + /fc+i + fk+i+/jb+i-
Q ft ft f * 

For * = ±1, ±3 wt g*+l is an even integer for all 1 < j < 5. This implies that ^ + 1 = 0 

for all 1 < j < 5. Thus f'k+1 = 0. 

We can write / = / ^ + /fc°+1 + /fc
2

+1 

0x4 0x5 0x5 axi 0x5 

=* ^ _ 0 _ a ^ _ ^fcV _ g / r A _ a/*-+2i 
3a?4 9x5 3^5 9xi 9x5 

=> / = /jT^(^2,a?3,^4) + /fc+i(a:i,X2,X3,X4)-|-/ ik+1(xi,X2,X3). 

By the same argument as in Case 2 in the proof of lemma 4.1, we can conclude that 

/*+i = /f+i = °- H e n c e / = /fc+i(*i,*2,a?3,*4). 

Case 2. 7 = (3) 0 ( 1 ) . 

By the same argument as Case 4 in the proof of lemma 4.1, we deduce that 

/ = / r + l ( Z 2 , Z 3 , ^ ) + C0Z5+1 + /*+ l ( s i>*2 ,*3) . 

Weight of *£tL(Xuz2,x3)i8-2. So ^ ( x ! , x 2 , x 3 ) isin (3) C 7 a n d X > ( ^ ( x 1 , x 2 , x - 3 ) ) 

0. Write 

fk+i(xi> x2y £3) = <t>k(xi, ̂ 2)^3 + . . . + • <£*+i-»(xi, ^2)^3 

+ . . . + <f>i(xi>22)** + ^oa?3+1 

^ 9x! [Xl' *2'X3} " 9x! (*2'*2)*3 + *' * + dxx
 3 
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+ . " + g ^ ( * l . * 2 ) * $ 

0^ 
t . . . t r + ... + * ^ ( * i , s 2 ) x § - 1 * 4 = 0 

_ ^ = 0 for 1 < i < k 
OXi ~* 

=> /jk+i depends only on z2 and £3 variables. 

By the argument as Case 4 in the proof of the previous lemma 4.1, we have /^+ 1 = 0. 

Similarly we can prove fj~£x = 0. Hence we have / =s coZ*+1 and hence dim/ < 1. 

This contradicts to our hypothesis I = (3) 0 (1). Thus Case 2 cannot occur. 

Case 3. J = (2) 0 (2). 

This case cannot occur by the same argument as Case 5 in the proof of lemma 4.1. 

Case 4. / = (2) 0 (1) © (1). 

This case cannot occur by the same argument as Case 5 in the proof of lemma 4.1. 

Case 5. I = (1) 0 (1) 0 (1) 0 (1). 

This case cannot occur by the same argument as Case 5 in the proof of lemma 4.1. 

Q.E.D. 

Lemma 4.3. With the same hypothesis as lemma 4.1, if dimension J is 3, then I 

cannot be a 5/(2, C)-submodule. 
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Proof. Suppose on the contrary that / is a s/(2, C)-submodule. 

Case 1. / = (3). 

This case cannot occur by the same argument as Case 2 in the proof of lemma 4.2. 

Case 2. I = (2) 0 (1). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights —1,0 and 1. By the same arguments as in csae 5 in the proof of lemma 4.1, we 

have 

/ = /k+l(*3, *s) + /fc+l(*2, *3, X5) + /*+l(*2, *5) 

/*+i(x2>2?5) = C1X2X* for some constant c\. If ci ^ 0, then a^**""1 = -x a*+1 is 

an element in J. It follows that (xix\~x>X2x\~x,x$x\~l,X4x\~l) is a 4-dimensional 

subspace in I . This contradicts to our hypothesis I = (2) 0 (1). Thus /£ , x = 0. 

Similarly we can prove / J ^ 1 = 0. Therefore 

/ = / * + l ( * 2 > * 3 i * 5 ) 

= oo*S+1 + a2*2*3*5~l + a 4 x l x | x ^ 3 + . . . + a[!^]x[^]xl
3
k^]xl+l~lk^] 

=> | £ = a 2 x 3 4 - + 2 a 4 x 2 x i , - 3 + . . . + ^ ^ ^ ^ ^ ^ ^ ^ - [ ^ 

In view of wt J^- = — 2, we hvae X - J^- = 0. Observe that 

X-QX
L = a2X44~1 + (2a4xlx$-3 + 4a4x2x3x4xt3) 

+...+ai| i lWi¥ |- '4' ! 'H' .r• , ' , '1 

Therefore we have a2 = 0 = as = . . . = aj*±i] and 

/ = a 0 a v • 
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This implies that d im/ < 1, which contradicts to our hypothesis i = (2) 0 (1). 

Case 3. / = (1) 0 (1) 0 (1). 

Elements of / are linear combinatinos of homogeneous polynomials of degree k and 

weight 0. By the same argument as Case 5 in the proof of lemma 4.1, we have 

Notice that wt ^ = - 1 and wt ^ = 1 imply ^ = 0 = ^ g f . Hence f£x 

and /]J+1 depends on x$ and #2 respectively. There are constants c\ and c^ such that 

/ j ^ ! = C1X3, / £ + 1 = C2^2- As k > 2, we conclude that / ^ ^ = 0 = / ^ + 1 and 

t i ^ ^ J f = - 1 and t irf^gti = l imply ^ £ J L = 0 = ^ g f . Thus / = czx\+l for 

some constant C5. It follows that d im/ < 1, which contradicts to our hypothesis 

/ = ( 1 ) 0 (1 )0 (1 ) . Q.E.D. 

Lemma 4.4. With the same hypothesis as lemma 4.1, if dimension of / is 2, then / 

cannot be a s/(2, C)-submodule. 

Proof. Suppose on the contrary that / is a s/(2, C)-submodule. 

Case 1. / = (2). 

This case cannot occur. The proof is the same as Case 2 in the proof of lemma 4.3. 

Case 2. / = (1) 0 (1). 

This case cannot occur. The proof is the same as Case 3 in the proof of lemma 

4.3. Q.E.D. 
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Lemma 4.5. With the same hypothesis as lemma 4.1, if J is a s/(2, C)-submodule of 

dimension one, then / = cx | + 1 where c is a nonzero constant. 

Proof. The proof is the same as Case 3 in the proof of lemma 4.3. Q.E.D. 

Proposition 4.6. Suppose s/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2, in x\iX2ixs1X4 and x$ variables via 

o 9 d d 0 d 
r = 3 * ! — + s 2 — -X3—-3X4 — 

X+ = 3 * ^ + 4 * ^ + 3 * 3 ^ 

a d a 
OX\ OX2 OX 

Suppose the weight of *t- is given by the corresponding coefficient in the expression of 

r as above i.e. 

xvt(xi) = 3, wt(x2) = 1, wt(x3) = —1, wt(x4) = —3, wt(x$) = 0. 

Let I be the complex vector subspace spanned by J^-, J^-, Jj£-, ^- and J^-, where / 

is a homogeneous polynomial of degree k -f 1. If / is a s/(2, C)-submodule, then one of 

the following occurs. 

(i) I = (4) 0 (1) and / is a homogeneous polynomial of weight 0. 

(ii) I = (4) and / is a homogeneous polynomial in * i , *2, *3 and *4 variables of weight 

0. 

(iii) J = (1) and / = c**"1"1 where c is a nonzero constant. 

Proof. This is an immediate consequence of Lemma 4.1 - Lemma 4.5. Q.E.D. 



§5. 5/(2, C) ACTION (1.3) ON M5*. 

L e m m a 5 .1 . Let / be a polynomial in xi,X2,X3,X4 and x$ variables. Suppose ^*- = 

riJxf" an(* Ĵ f~ = r2Jx~' Then there exists a polynomial g in xi,X2 a n d ^5 variables 

such that 

/(xi,X2,X3,X4,x5) = g(xi + rix3, x2 + r2a?4, «s)« 

Proof. Introduce independent variables 

xi = xi + r\Xz 

%2 — #2 + ^ £ 4 

#3 = #3 

X4 = X4 

X5 = X5. 

Let g(xi1X21X3,X41xs) = / ( x i — riX3,X2 — f2X4,X3,X4,X5). We claim that y is 

independent of X3 and X4 variables. 

#0 df Ng(£i ~ r i x 3 ) 

5 / . s5(x2-r2iC4) 
+ ^—(*i - r^a, x2 - r2x4, x3, x4, x5) '-

aa?2 0x3 

, 5 / , .dx3 
+ *i (*1 " rlx3>x2 ~~ r 2 * 4 , ^ 3 , ^ 4 , ^ 5 ) - ^ -

OX3 OX3 

df , .8x4 
+ ^—(a?i - rix3y x2 - r2x4, x3, x4, *5)^p-

. # / , x<9x5 + a—(#i - 7*1X3, #2 - r2x4, x3, x4, x5;-^r-
CX5 C7X3 

, df ,d/., , 
= \~ri-E r -z—H^i _ rixs,x2 - r2X4,X3,Xi,x5) 

dxi 0x3 

= 0. 

77 
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Similarly ^£- = 0. Therefore g depends only on xi , x2 and £5 variables and our lemma 

follows. Q.E.D. 

Lemma 5.2. Suppose 5/(2, C) acts on the space of homogeneous polynomials of degree 

k > 2 in £i , £2,23, ar4
 an(^ *5 variables via (1.3). 

8 8 8 8 
dx\ 8x2 dx$ 8x4 

x+ =XldT2+X38^ 

ir d ± d 

A _ = X 2 ^ — - fX4TT~• 
OX 1 OX3 

Suppose the weight of X{ is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xi) = 1, wt(x2) = —1, wt(x3) = 1, wt(x4) = — l,utf(x5) = 0. 

Let / be the complex vector subspace of dimension 5 spanned by J^-, J^-, ^ - , ^ - and 

^ where / is a homogeneous polynomial of degree k+1. If J is a 5/(2, C)-submodule, 

then / = (2) © (2) © (1) and / is a homogeneous polynomial of weight 0. 

Proof. Case J = (5). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights - 4 , - 2 , 0 , 2 and 4. Write 

t = — 0 0 

where / £ + 1 is a homogeneous polynomial of degree k + 1 and weight i. 
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For \i\ > 6 

. t ^ ± i i > 5 f o r i < j < 5 
OXj ~~ "~ 

Mi = o for 1 < j<5 

For i = ±4, ±2 and 0 

weights of 2g±S ^ , 2 g « . and ^ are odd integers. So ^ f , ^ , % * - and 

d*+I are equal to zero. Thus / £ + 1 depends only on x$ variables. It follows that 

/fc+l = /ib+l = fk+l = /*"+! = 0 

fO _ Jb + 1 

and 

where c is a constant. If c ^ 0, then x\ = / j ^ v . ^+* is in J. Clearly {x\) is an 

5/(2, C)-submodule of dimension one in J. This contradicts to our hypothesis that 

/ = (5). Hence c = 0 and / £ + 1 = 0. 

For i = ±5, ±3 and ±1 

dfLi _ 
dx 

dx$ 

fk+i does n ° t involve #5. 

ax5 

» = 0 
ox$ 

Since / = fj-*x + / £ £ + /f+i + /jb+i + /jfe+i + /*+i> therefore / does not involve x*> 

variable. If follows that jg- = O.and d im/ < 4. This contradicts to our hypothesis 

/ = (5). So Case 1 cannot occur. 



80 STEPHEN YAU 

Case 2. / = (4) 0 (1). 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights —3,-1,1,3 and 0. 

For \i\ > 5 

M ^ ± I I > 4 f o r l < i < 5 ox j 

=> M ± ! = o for 1< j < 5 
axj "" ~~ 

=> fi+i = o. 

For i = 3. 

The weights of y^1, ^ l , *̂+* and ^*+I are nonzero even integers. We have 

dx\ dx2 dxs 8x4 

Thus / £ + 1 depends only on X5 variables. It follows that / £ + 1 = 0. Similarly we can 

prove fj-*x = 0. 

For i = 1. 

0 x 2 C/X4 

9X2 6x4 

=>• / j j + 1 involves only x1}X3 and x5 variables 

=>• / j j + 1 = C1X1X5 + C2X3X5 where ci,C2 are constants. 

If / j j + 1 ^ 0, then cixix*^1 + C2X3X5-1 = |- 3*+* is a nonzero element in J. Since 

X+faxix^"1 + c2x^x\"1) = 0, it follows that 

(C1X1X5""*1 + C2X3X5"1, C1X2X5"1 + C2X4X*"1) 
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is an irreducible 5/(2, C)-submodule of dimension 2 in J. This contradicts to our hy

pothesis 7 = (4) 0 (1). Hence / £ + 1 = 0. 

Similarly we can prove that fj"^ = 0. We can write 

/ = /*+1 + /fc-4-1 + fk+i + fk+i + /fc+i" 

For i = 4 

^ ^ ± 1 = 5 = ^ ^ 1 , ^ ^ ± 1 = 4 

^ dfLi_dfLi _Q_9fLi 
dx2 9x4 dx$ 

=> / £ + 1 involves only xi and x3 variables. 

Suppose that / £ + 1 ^ 0. Without loss of generality, we shall assume that y^1 ^ 0. 

Since wt ^ ^ = w* ̂ ^ = 3, we have ^*±i = r ^ t i . By lemma 5.1, there exists a 

nonzero constant c\ such that 

/fc+i = c i ( x i + r x 3 ) 4 . 

It is easy to see that the irreducible 5/(2, C)-submodule of dimension 4 in 7 is one of 

the following form 

((xi + rx3) 3 , (xx + rx3)2(x2 + rx4),(xi + rx3)(x2 + rx 4) 2 , (x 2 + rx 4 )3) . 

By weight consideration, there are constants c*i,a2><*3 and a 4 such that 

df2 

- ^ = ai(a?i + rx3)2(x2 + rx4) 
dx 1 

M±i = a 2(*1 +rs 3) 3 
ox2 

df2 

J6*1 = a3(xi + rx3)2(x2 + rx4) 
OX3 
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M ± i = a4(a:1+rx3)3. 
OX4 

By considering the second partial derivatives of / , we infer 

<*2 = 3 * 1 

c*3 = rot\ 

and 

0C4 = x r « i 

<*it /*+! = y ( * i + ™3)3(*2 4- rx4). 

By weight consideration, there are constants a5 ,a6 .a7 and a$ such that 

df° 

- ^ = a6(xi + ra?3)2(x2 + rx4) 
dx2 

a7(xi 4- rar3)(a:2 4- rx4)2 3/° 
0*3 

df° 
- j™" = o8(*i + rx3)2(x2 + rx4). 0x4 

It follows easily that 

<*6 = <*5 

as = ^»5 

and 

/*+i = y (*i + ^3)2(*2 + rxA)2 4 ca?£ 

where c is a constant. 
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Similarly we can prove that there exist constant /?i and d\ such that 

/*+i = T ( X l + ra?3)(*2 + rx4)3 

and 

fk+i = rfi(*2 + ra?4) . 

By renaming the constants, we have 

/ = ci(xi + rz 3 ) 4 + c2(xi + rx3)3(x2 + rx4) + c3(a?i + rx$)2(x2 + r z 4 ) 2 

+ C0X5 + c4(a?i + rar3)(x2 + rx4)3 + c$(x2 + r# 4 ) 4 . 

This implies d im / < 3, which contradicts to our hypothesis J = (3) 0 (2). Thus 

/*4
+i = 0. 

Similarly we can prove fj^x = 0. Therefore we can write / = / | + 1 + / £ + 1 + / ^ x . 

For i = 2. 

Since weight of 3*+* is 2, so ^*+1 = 0 and / | + 1 does not depend on x$ variable. 

Suppose that / | + 1 ^ 0. It is not hard to see that in order to produce a contradiction, 

it suffices to prove that the case ^ | ± L ^ Q JL £ / | ±L a n d the case ^ | ± L ^ 0 = ^ ^ = 

d*+1 both cannot occur. 

Let us first consider the case ^ L L ^ 0 ^ ^ ^ . Since urf ^ | = ^ = wt ^ ^ and 
Q * 2 o * 2 

^ as*1 = ^ ag+1» there a r e constants, ri and r2 such that 

dz 3 9xi <9:r4 d # 2 

By l emma 5.1, there exists a nonzero constant c\ such t h a t 

/ 2 + 1 = C l ( x i + r1x3)l3+2(x2 + r2xAf where 2/? = & - 1. 
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Since ^fcji = ci(/?4-2)(xi4-rix3)^+H*2+r2Z4)/? is a nonzero element in I. X f + 1 ^ | ^ = 

ci(/3 4- 2)!(x2 4- rix4)/3"f x(x2 4- r2X4)^ is also a nonzero element in / . It follows that we 

have an irreducible submodule of J of the following form 

((x24-r1x4)^1(^2-f r2x4)/?, X+lfa+wtf+tfa+wtf],..., ^ [ ( x 2 + r 1 x 4 ) / 3 + 1 ^ 2 4 

r*x*)P]). 

This implies that k = 3, /? = 1 and / | + 1 = ci(x\ -f riX3)3(x2 4- ^ 4 ) . Hence 

(4). = {(x2 4- r ix4)2(x2 4 r2x4), 2(xi -f rix3)(x2 4- r ix4)(x2 4- r2x4) + (x2 4- r ix4)2(xi 4-

^2*3), (^i+r1X3)2(x24-r2X4)-h2(xi4r1X3)(x24-r1X4)(x1-hr2X3),(xi+riX3)2(xi4-r2X3)). 

Since (xi 4- riX3)2(x2 4- ^2X4) = •£- yg*1 is an element of weight 1 in / , it is easy to 

see that r\ = r2. Therefore 

/*+1 = c i (*i + riX3)3(x2 + r ix4) 

and 

(4) = ((xi + riX3)3, (xx + rlx3)2(x2 4- rxxA), (xx 4- r ix3)(x2 4- r1x4)2, (x2 4- r ^ ) 3 ) . 

Similar argument as before will show that 

/ = c2{xx + r1x3)3(x2 4- rxxA) + c3(xx + rx3)2(x2 4- rxx4)2 + cQx\ 

+ c4(xi 4- r ix3)(x2 4- r ix 4 ) 3 . 

This implies d im/ < 3, which contradicts to our hypothesis / = (4) 0 (1). 

Now we consider the second case d^+l ^ 0 = d^.+l = %*.+l . In this case, / | + 1 

involves only x\ and X3 variables. Therefore / | + 1 is a homogeneous polynomial of 

degree 2. This implies that k = 1 which contradicts our hypothesis fc > 2. 

Therefore we have / = / £ + 1 . 

For t = 0. 
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This is not possible because weight of J^- is not equal to 3 for all 1 < i < 5 and / 

is equal to (4) 0 (1), so Case 2 cannot occur. 

Case 3. / = (3) 0 (2). 

Elements of / are linear combinations of homogeneous polynomials of degree k -f 1 

and weights —2,0,2,-1 and 1. 

For |t| > 4. 

\wt^^\>3 for all 1 < i < 5 
axj 

=> ^S±L = 0 for all 1 < j < 5 
OXj ~* — 

=» 4 + 1 = 0. 

For i = 3 

dx2 dx± dx$ 

=£* /jf+1 involves only a?i and £3 variables. 

Suppose / 3 + 1 ^ 0. We shall assume without loss of generality that y^1 ^ 0. 

Since wt *d*+x = 2 = tirt 3*+*, there exists a constant r\ such that yx+l = r i ^ + 1 . By 

Lemma 5.1, we have k = 2 and 

where ci is a nonzero constant. It is easy to see that the three dimensional submodule 

of I is of the following form 

(3) = ((a?i + r i* 3 ) 2 , (*i + r1x3)(x2 + r ix4 ) , (a?2 + ria?4)2). 
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0x2 0x4 

8X2 dx4 

=> fa involves only £1,23 and #5 variables. 

Since wt^ = 1 = ^ § | j > in v*ew °f Lemma 5.1, we have / f = (r%xi 4- rsxs)2x^ 

where T2,r3 are constants. As jfe- = {T2X\ 4- r^xs)2 is an element in I of weight 2S 

(r2£i + ^3^3)2 is a constant multiple of (xx 4- rix3)2 . Hence / | = c2(a?i 4- riXa)2^. 

Similarly because u>*§~ = 0 = ^ 7 ^ > wt^£ = 2 = w*$^, we have 

/3 = do(r4a?i 4- rsx3)2(r6x2 4- r7x4) + di(r4xi 4- r5x3)xi? 

where r4,r5,re and r-t are constants. Since -£*• = dor6(*°4£i 4- r5X3)2 and ^j3- = 

2doT4(r4Xi 4- rzXa)(r$X2 4- r7X4) 4- 1̂̂ 4X5 are constant multiples of (xi 4- ri#3)2 and 

{x\ 4- ria?3)(x2 + 1*1X4) respectively, we have d\ = 0 and 

/a1 = c3(*i 4- rxx3)2(x2 4- rix4). 

Since wtjjji = - 1 = wt^l and urf |£ = 1 = wtj£, we have 

/£ = (r8*i + r9X3)(r10X2 4- rnx4)x5 4- c0xg 

where r8,r9,rio,rn and Co are constants. As ^ is an element of weight 0 in J, we 

have 

(r8xi 4- r9x3)(rioX2 + 7*11X4) 4- 3coxi- = <f(xi 4- r!X3)(x2 4- rix4) 

where d is a constant. It follows that CQ = 0 and r8xi 4-r9X3, rioX2 4-riia*4 are constant 

multiples of xi 4- rix3 and x2 4- rxx4 respectively. Hence 

fa = c4(xi 4- rix3)(x2 4- rix4)x5 
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and 

= c i (# i + r ix 3 ) 3 + c2(xx + r ix 3) 2 x5 + c3(xi + rix3)2(x2 + rxxA) 

+c4(xi + rix3)(x2 + r ix4)x5 -f c5(xi + r ix3)(x2 + r ix 4 ) 2 

+ce(x2 + r ix4)2x 5 + c7(x2 + r ix 4 ) 3 . 

This implies that dim I < 3, which contradicts to our hypothesis / = (3)0(2). Therefore 

we have 

/ = fk+1 + /ib+l + /jfe+i + /jfe+i + /jfe+i-

For i = 2. 

Suppose / £ + 1 / 0 

axi ax 3 ax 4 3x2 

3x4 dx2 

=> / ^ + 1 involves only x i , x 3 and x$ variables. 

Assume without loss of generality that %*+l ^ 0. Then there exists a constant r such 

that 2g*L = r ^ g t i . By Lemma 5.1, 

where ci is a nonzero constant. It follows that the 3-dimensional aned 2-dimensional 

irreducible s/(2, C) submodules in I are of the following form. 

(3) = ((a?i + rx 3)2x£-2 , (a?i + rx3)(x2 + rx4)xf-2, (x2 + rx4)2x§~2) 

(2) = ((x! + rx3)xf-1, (x2 + r x 4 ) x ^ 1 ) . 
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Since wt^^ = 0 = wt^^ and wi^^ and wt^^ = 2 = w * ^ 1 - , by Lemma 5.1, 

there are constants r i , r 2 , r 3 and r4 such that 

fk+i = E d ° ( r i X l + J,2X3)0+1(r3x2 + r 4 x 4 ) a x * - 2 a . 
a=0 

If / £ + 1 ^ 0, then either ri ^ 0 or r2 / 0. Let a0 be the largest integer such 

that daQ(riXi + r2x3)Qf0+1(^3^2 + r4X4)Qf0X5~2Qf° ^ 0. It follows that either rx(a0 4 

l)da0{riXi+r2X3)ao(r3X2 + r4X4)aOx5~2ao ^ 0 or r2(ao4-l)dao(ritfi4-r2X3)afo(r3X2 4 

y*4^4)a°^5~ a ° 7̂  0. We claim that a0 < 1 and if a0 = 1 then fc = 2. Observe that 

(r\Xi + r2X3)Q^(rsX2 4 r4X4)a0£5~ a ° + polynomials of total degree in xi, x$ variables 

strictly less than ao, is an element in J. By applying XZ° to the above element we get 

(r i*2 + r2X4ro(r3*2 + r4x4)a0xl'2a° € / . 

Since X_[(rix24r2£4)Qf0(r3X24-r4X4)Qf°x5"~ a°] = 0, we have an irreducible submodule 

2ao + 1 in I of the following form 

{{rlX2 + r2x4)ao(r3X2 + rAxA)^xkf2a\X^[{r1X2 + r 2x 4) a °( r 3x 2 + r4*4)ao*J~2oto], 

. •. , X 2 a o [ ( n x 2 + r2*4)tt°(i**2 + r4X4)aOx*~2ao]). 

Since I = (3) 0 (2), we have 2a0 -f 1 < 3. Hence a0 < 1 and 

/fc+i = Mrixi + r2*3)*5 + di(r ixi 4- r2x3)2(r3X2 4- r4x4)x^""2. 

If ao = 0, then /^ + 1 = do(riXi 4 7*2^3)̂ 5 • Hence x* is an element in J because either 

3*+* or ^ + 1 is nonzero. Thus we get a one dimensional s/(2, C)-submodule in I, 

which is not possible. If ao = 1, i.e. di(riXi 4r2x3)2(r3X2 4-r4X4)x^""2 ^ 0, then k = 2 

otherwiwse by applying Ar+ and X_ sucessively to ~^L L , there would be an irreducible 

s/(2, C) submodule of dimension 4 in 7 which is impossible. Hence, 

/31 = d0(rixi + r2x3)x5 + rfi(ri«i 4- r2x3)2(r 3x2 4- r4x4) . 
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Then 

df1 

-£-2- = ndoxl + 2ridi(ri*i -f r2x^){r3X2 4- r4x4) ox 1 

df1 

—3. = r2d0xl + 2r2di(rixi 4- r2X3)(r3X2 4- r4x4) 0x3 

are nonzero elements of weight 0 in I. Therefore both elements are constant multiples 

of (x\ 4- f%X3){x2 4- rx4). This implies that do = 0 and (ri«i 4- ^£3)^3X2 + 7*4X4) is a 

constant multiple of (xi 4- rx3)(x2 + rx4). Therefore 

fl = ci(xi 4-rx3)2x5 

f£ = c2(xi 4- rx3)2(x2 4- rx4). 

Since wt^f- = wt-^f- = — 1 and wt-^f- = wtjfi*- = 1, by Lemma 5.1, there are constants 

7*5) T6, r7, r§ and r9 such that 

/a = (r5a?i 4- r6x3)(r7X2 4- r8x4)x5 + r9x|. 

^ = (r5xi 4- r6X3)(r7X2 4- r8X4) 4- 3r9Xs is an element of weight 0 in J. So §£*- is 

a constant multiple of (xi 4- rx3)(x2 4- rx4). This implies that r9 = 0 and (r5xi 4-

reX3)(r7X2 4- ^8X4) is a constant multiple of (xi 4- rzs)(x2 + rx4). Hence 

/ | = c3(x! 4- rx3)(x2 4- rx4)x5 

and 

/ = / 3 " 2 + /3"1 + /3° + /31+/32 

= ci(xi 4- rx3)2x5 4- c2(xi 4- rx3)2(x2 4- rx4) 4- c3(xi 4- rx3)(x2 4- rx4)x5 

4-c4(xi 4- rx3)(x2 4- rx4)2 4- c5(x2 4- rx4)2x5. 

This implies that dim/ < 3, which contradicts to our hypothesis that / = (3) © (2). 

On the other hand, if / £ + 1 = 0 = / ^ x , then 
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Since wt^*^ = wt^^ = - 1 and wt^jfi^ = wt^^ = 1, by Lemma 5.1, there are 

constants rio,rn,ri2 ,ri3 and dp such that 

/*°+i = £ <Wno*i + ri1x3)^(r12x2 + r13*4y,*J~2/ ,+1. 
0=0 

We observe that / £ + 1 cannot be zero, otherwise 

= ci(xx + rxa)2*?"1 + cs(*2 + ra?4)2a?5~1 

which would imply dim I < 3, a contradiction to our hypothesis. Hence we shall assume 

that / £ + 1 ^ 0. Let /?o be the largest integer such that d/?0(rioXi + ^1X3)^0(^x2 + 

r13x4)^0x5 ° ^ 0. Without loss of generality, we shall assume that r10 ^ 0. We 

claim that 0Q < 1. If/?o were strictly bigger than 1, then (rioxi + r n ^ ^ o - ^ r ^ ^ + 

^13^4)^°£5" + polynomials of total degree in £1,23 variables strictly less than 

/?o — 1 is an element in J. By applying to the above element, we get 

(rio*2 + r u « 4 / °" 1 (r ia*3 + ria*4y, 0*J~V o + 1 € I. 

Since X_[(r10x2 + n ^ y o " 1 ^ ^ + ris*4)'°xk
5~20o+1] = 0, we have an irreducible 

submoduk of dimension 2/?o in / of the following form. 

((rio*2 + riiX4)^°~Hri232 + r i 3 ^ 

• a £ - * 0 + 1 ] , . . . , X ? • - 1[ (r l 0 *a + rnX4)^o-i(r12x2 + r 1 8 * 4 ) * * ^ V o + 1 ] > . 

As J = (3) e (2), we have 2/?0 < 3. Hence /?0 < 1 and 

/£+i = dox*+1 + <*i(rio*i + ni*3)(ri2a?2 + ri3x4)*5"1. 

Then 

df° 
-j±*± = (ft 4- l)do*5 + <*i(* ~ l)(rio*i + riix3)(ri2x2 + n 3 x 4 ) x ^ 2 
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is an element of weight 0 in I. Therefore 3*+* is a constant multiple of (xi +- rxz){x2 + 

rx^)x\~2. This implies that d0 = 0 and ( r i 0 x i + rnX3)(r i 2X2 + r i 3 x 4 ) is a constant 

multiple of (xi +- rxs)(x2 -f rx^). Therefore 

fc-1 /fc+l = C2(X1 + rx*)(X2 + r*4 )* 5 

and 

/ ~ /fc+l + /fc+i + /fc+i 

= c i ( * i + ^ s ) 2 * * " 1 + c 2 (^ i 4- r z 3 ) ( x 2 + ra^ jx j""1 + c3(x 2 + r a ^ ) 2 ^ " 1 . 

This implies tha t d i m / < 3, a contradiction to our hypothesis / = (3) ® (2). Hence 

'fc+i /2+i = o-

Similarly we can prove tha t fk+x = 0. Therefore we have proved 

/ = /fc+i + fk+i + / *+ i -

For z '= 1. 

By similar argument as before, we can show tha t there are constants r\, v2 > 7*3, r4, G?O 

and di such tha t 

/ s = <*0(rixi + r2x3)xl+ d^xx + r2x3)2(r3x2 + r 4 x 4 ) . 

We shall assume without loss of generality tha t r\ ^ 0. Then 

df1 

—— = r\dox5 +- 2rid\(riXi +- r2x3)(r3x2 -f 7*4X4) 

X _ ( - ^ . ) = 2 r 1 d 1 ( r i x 2 + r2x4)(r3X2 + r 4 x 4 ) 

and 

Y. Y t 
Kdxi 

X + X . ( j - 2 - ) = 2ridi(r ia?i + r2x3)(r3X2 + r 4 x 4 ) 
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+2ridi ( r ix2 + r2x4)(r3xi + r4x3) 

are nonzero elements in / of weights 0, —2 and 0 respectively. There is a constant c 

such that 

rid0xl + 2rld1{rlx2 + r2x4)(r3x1 + r4x3) 

= 2cr\d\(r\X2 4- r2x3)(r3x2 4- ̂ 4X4) 

+2cridi(r ix2 4- r2x4)(r3Xi + r4x3) . 

This implies that do = 0 and there exists a constant a such that 

(rixi + r2x3)(r3x2 + r4x4) = a(xi + rx3)(x2 4 rx4) 

where r = ^ i . Therefore / 3 = ai(xi 4- rx3)2(x2 4- rx4) where a\ is a nonzero constant 

and (3) = ((xi + rx 3) 2 , (xx -f rx3)(x2 + rx4) , (x2 4- rx4)2) . 

Since wtf^3- = wtjfo = "~1 a n d wt^f- = wt~fa == *> ^y Lermma 5.1, there are 

constants r5 , r 6 , r 7 , r 8 and e^ sue that 

/ 3 = eoxf + ei(r5xi + r6x3)(r7x2 + r8x4)x5. 

We observe that / £ + 1 cannot be zero, otherwise 

= ai(xi 4- rx3)2(x2 + rx4) 4- fl3(xi 4 rx3)(x2 4 rx4) 2 

which would imply dim I < 2, a contradiction to our hypothesis. Hence we shall assume 

that / 3 ^ 0. We claim that t\ ^ 0. If e\ were zero, then / 3 = eoxf. It follows that 

x | = — 3 ^ is in / . We have a one dimensional irreducible sl(2, C)-submodule of J, 
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which contradicts to our hypothesis I = (3) © (2). So e\ / 0 and 

fl = CQX\ + ei(r5*i + r6a?3)(r7tf2 + ^8^4)^5 

5/° 
—-2- = 3 e 0 ^ + ei(r5xi + r6a?3)(r7X2 + r8*4) 

is an element of weight 0 in / . So yj+l is a constant multiple of (a?i + rxs)(x2 + r#4). 

This implies that eo = 0 and (r&xi + r^x^)(r-7X2 + ^£4) is a constant multiple of 

(xi + ra?3)(a?2 + rx4). Therefore 

fl = a2(xi + rx3)(a?2 + rx4)ar5 

and 

/ =/3 1 + / 3 + / 3 " 1 

= ai(#i + rx3)2(x2 + rx4) + a2(xi + rx3)(x2 + rx4)x5 

+ 03(^1 + rx3)(x2 + rx4)2. 

This implies that dim/ < 3, a contradiction to our hypothesis / = (3) © (2). Hence 

ti = 0. 

Similarly we can prove that f3
l = 0 . 

For i = 0. 

We have proved / = /j?+1. It follows that weight of J^-, 1 < i < 5, is either 

— 1,0 or 1. Therefore there is no irreducible submodule of dimension three in / , which 

contradicts to our hyypothesis / = (3) © (2). 

So Case 3 cannot occur. 

Case 4. I = (3) © (1) © (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k + 1 

and weights —2,0, and 2. 
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For |i| > 4. 

\wtM±i| > 3 for all 1 < j < e 
OXj 

=> ^ ± 1 = 0 for all < j < 5 
OXj ~ ~ 

=> fi+x = o. 

For i = 2. 

OX\ OX3 OX2 OX4 

~" dxi dx2 dx3 dx.4 

=>/^+1 involves only £5 variable 

Similarly we can prove f^x = 0. 

For i = 3. 

We have proven / = /& + /& + / ° + 1 + / i + 1 + /* + 1 

=^ /* + 1 involves only x\ and £3 variables. 

Suppose / £ + 1 ^ 0. We shall assume without loss of generality that aA+i ^ 0. Since 

u ; * 5 ^ = 2 = urf^ZttL, there exists a constant rx such that ^ ^ = r i ^*** . By 

Lemma 5.1, we have k = 2 and 

/ I = ci(xi + ria?3)3 
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where C\ is a nonzero constant. It is easy to see that the three dimensional submodule 

of I is of the following form. 

(3) = {(xi + rix3)2, (xi 4- rix3)(x2 4- rxx4), (x2 + rxx4)2) 

wr^f- = 1 implies -^f- = 0. This means that /£ does not involve x$ variabble. As 

wt-jfif- = 2 = wt-jfi*-, in view of Lemma 5.1, /^ is a polynomial in Xi}x3 and r2#2 + r3#4> 

where T2,r3 are constants. Then 

/a = (hxl + b2xxx3 + b3xl)(r2x2 + r3x4) 

for some constants 61,62 and 63. If f3 ^ 0, then by considering -^ or ^ a - , we see that 

61 x\ 4- 62X1^3 4- 63X3 is an element of weight 2 in I. Hence 61 x\ 4- 62^1 #3 4- 63^3 is a 

constant multiple of (x\ 4- rx3)2. So 

/31 = bo(xx + rix3)2(r2x2 4- r3x4) 

df1 

where 60 is a nonzero constant. Observe that -^f- = 26o(#i + r\X3)(r2X2 + r3x4) is an 

element of weight 0 in 2". Obviously (xi + rix3)(r2X2 + r3x4) is not an s/(2, C) invariant 

polynomial. Hence (x\ 4- rix3)(r2X2 4- r3x4) is a constant multiple of (x\ + rix3)(x2 + 

?*i^4)4- invariant polynomial. X~[(xi 4- rix3)(r2X2 4- 7*3X4)] = (X2 + rix4){r2X2 4- 7*3X4) 

is a constant multiple of (xi 4- rix4)(x2 4- rix4). It follows that 

fk+i = c2(^i + ri«3)2(«2 4- rix4). 

So /3 involves only x$ variable. It follows that f3 = c3x% and 

/ = /3
3 + /31 + /3+/3""1+/3""3 

= ci(xi 4- nx3)3 4- c2(xi 4- r ix3)2(x2 + rix4) 4- C3X5 4- c4(xi 4- r ix3)(x2 4- r ix 4 ) 2 

+ ^5(^2 4-r ix 4) 3 . 
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This implies that dim J < 3, which contradicts to our hypothesis I = (3) 0 (1) 0 (1). 

For i = 1. 

Here we have / = / £ + 1 + / £ + 1 + /JT+I- fl+i does n o^ involve x$ variable because 

weight of 3*+* is one. Suppose on the contrary that / £ + 1 ^ 0. We shall assume 

without loss of generality that d
k
x
+l ^ 0. Since wt J£+x = 2 = ttrt ^*+1, we have 

-|^±i = r 4 _ | t± j . where r4 is a constant. In view of Lemma 5.1, / £ + 1 is a polynomial in 

a?i, (x2 + 7*4X4) and £3 

1 + 1 * i - « 

a=0 

^ f = E(|)«-«?"a+1«s(«> + ^J*" 1 

2 a=0 

Since wt(X+^jjg-) = 4, we have X+^g^ = Q. It follows that a a = 0 for all 0 < a < 

1 + 1. Thus / i + 1 = 0. 

Similarly we can prove f£+i = 0. 

For i = 0. 

In this case / = / £ + 1 . It follows easily as above that / = cx*+1. This implies 

d i m ! = 1, which contradicts to our hypothesis. Hence Case 4 cannot occur. 

Case 5. / = (2) 0 (2) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k + 1 

and weights —1,0 and 1. 

For |t| > 3 

M ^ ± i | > 2 for all 1 < j < 5 
OXj - _ 
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_^ ^ L t L = o for all 1 < j < 5 

=> 4 + 1 = 0 . 

For »' = 2 

aa?2 0x4 ox$ 

^ 9fLi_dfLi_0_dfLi 
dx2 d$4 dx$ 

=>- /^+ 1 involves only x\ and x 3 variables 

=> / £ + 1 = cixf + C2X1X3 + C3X3 where ci , C2, C3 are constants 

=> /jb+i = 0 because Ar > 2. 

Similarly we can prove that fj^x = 0. 

For i = l 

urtMtl = 2 = t r t ^ k l 
0x2 0x4 

9^2 dX4 

=> /^+ 1 involves only X\yxz and £5 variables. 

Q * 1 Q / 1 

Since wt J
d*+l = 0 = w* 3*+*, there exist constants r\ and r2 such that 

/*+i = (na?i+r2*3)*5-

Suppose / j j + 1 ^ 0. Without loss of generality, we shall assume r\ ^ 0. Then / £ + 1 = 

ri(#i -f rxS)^* where r = rijr\. It follows that 

(i) = (4) c / 

(2) = ((xi + rxa)**- 1, (x2 + rar^s"1) £ L 

If /fc+i were zero, then 

/ = /*+i + fk+i 

= r i (x i + rx3)x5 + (r 3 x 2 + r4x4)a?5. 
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This would imply dim J < 2, which contradicts to our hypothesis I = (2) 0 (2) © (1). 

Hence we shall assume that / £ + 1 ^ 0. Write 

*+i 

where <j>i(xi1X2ixs1X4) is a homogeneous polynomial in a?i,£2>£3 and x± variables of 

degree i and weight 0. We claim that <j>%(xi, X2, £3, £4) = 0 for all 1 < 1 < k. 

^fctL = ( t + l ) « * +k<j>1(x1,x2ix3ix4)x*-1 

0x5 

+ (k - 1)^2(^1, *2, *3, *4)*5~2 + • • • 

+2<£fc-i(#i, s 2 , *3, £4)^5 + <f>k(xi, ^2,^3,^4) 

is an element of weight 0 in J. Therefore fr**1 is a constant multiple of x\. This implies 

that ^»(xi,X2,X3,X4) = 0, for all 1 < i < k and consequently 

/*+! = ca?5+1 + 0*+i(*i, *2, £3, £4) 

where c is a constant. Observe that 

d/ik + l #<£*+l / x 
-9xf=-9*r(xl'x2'x3'*4) 

dfk+l _ dfo+l,_ „. „ , \ 

0X3 5X3 <*1'*3'*8'*4' 

/̂ife + l _ d^+l( v 

are elements in J but not in (2) = ((xx + rx3)x5- 1 , (x2 + rx4)x{j-1). Since w < ^ u - = 

UJ. - i - „,f2A±j - 1 = u r f 5 ^ and urf^gu. = 1 = t»t5g*»-; and 2g"-, 1 < i < 4, are independent 
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of £5 variable, there are constants r5 ,r6,r7 and r8 such that r$ yj+l = r6 d%^1 and 

r7 Qk
x+l = r 8 dx

+l. In view of Lemma 5.1 we can write 

/*+i = cx5+1 + (r5*i + rex3) ^ ( ^ 7 * 2 + r8a?4)**\ 

Firstly we claim that {r$x\ + reXs)k+1/2(r7X2 -f r8a;4)fc+1/2 ^ 0. If this were zero, then 

A°+i = c *£ + 1 a n d 

/ = A+l + /ife+1 + /ib+l 

= (r i*i + r2x3)xl + ex*"1"1 + (^3^2 + r 4x4)z5. 

This would imply dim 7 < 3 which contradicts to our hypothesis 7 = (2) 0 (2) 0 (1). 

Our first claim is proved. Secondly, by considering yj+x or yj+l, we see that 

(r5xi 4- r6x3) 2 (r7x2 + r8z4) 2 

is a nonzero element in 7. By applying Xi_ ~ *' to the above element, we get 

(r 5 £ 2 + ?*6̂ 4) 2 (^7^2 + r 8 x 4 ) 2 ^ 7 . 

Since X ^.[(r^X2 + rex^10"1^2 (r7X2-\-r8x4)(*+1"2] = 0, we have an irreducible submod-

ule of dimension k + 1 of the following form. 

((^5^2+r6x4)"Ti(r7X2+r8a?4) 21, X + [ ( ^ £ 2 + ^ x 4 ) ^ ( ^ 7 * 2 + ^ 4 ) " " ^ ] , . . . , ,-X+[(r5a?2+ 

r6x4)A*1(r7a:2 + ^ ^ 4 ) ^ ] ) . 

As 7 = (2)0(2) 0 (1), we have k + 1 < 2. This implies Jfc < 1, which contradicts to our 

hypothesis k > 2. Hence /^ + 1 = 0 . 

Similarly we can prove that fj^x = 0. 

Case 6. 7 = (2) 0 (1) 0 (1) 0 (1). 
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Elements of J are linear combinations of homogeneous polynomials of degree k + 1 

and weights —1,0, and 1. 

Similar argument as Case 5, we can show that 

/ — /*+i + /*+i + fk 

For t = 1 

ax 2 0x4 

8x2 8x4 

=> /ib+i involves only xi,X3 and X5 variables. 

=> /ib+i = (riXi + ^2X3)^5 where r i , r2 are constants. 

Suppose / j j + 1 ^ 0. Without loss of generality, we shall assume r\ ^ 0. Then fl+1 = 

ri(x'i + rxz)x\ where r = r2/ r i . It follows that 

(i) = (4) c 1 

(2) = <(*! + r x a ^ " 1 , (x2 + rx^x*"1 ) C / . 

If / £ + 1 were zero, then 

/ = /fc+i + fk+i 

= ri(xi + rx3)x* + d(x2 + rx4)x£, where d is a constant. 

This would imply d im/ < 2, which contradicts to our hypothesis / = (2)0(1)0(1)0(1) . 

Hence we shall assume that / £ + 1 ^ 0. Write 

/ * + l = C * 5 + 1 + ^ l ( * l 1 * 2 , * 3 , *4)*5 + ^ 2 ( ^ 1 , *2> * 3 , ^ 4 ) ^ 5 _ 1 + • • • 

-f <^jb(xi, X2, X3, X 4 ) x 5 -f <£jb+l(xi, X2, X3, X4) 

where &(xi , X2> x 3 ? ^4) is a homogeneous polynomial of degree 1 and weight 0 in xi , X2, X3, x4 

variables and c is a constant. We claim that <fo(xi, x2, x3, x4) = 0 for i ^ 2. This follows 
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from the following observations. 

d J = ^ r ( * l > * 2 , « 3 , 2:4)2:5 + ^ T V * ! > * 2 , 2?3, 2:4)2:5 + • • • 

9<f>k / \ 9(f>k+1 / \ 
+ T>—(*i ,^2,^3,^4)^5 4- --o (2: i ,x2 ,X3,x4 ) 

®fk±\ *tyl / \ Jb . ^ 2 / x *_1 . 
g ^ = -Q^-(XUX2,X3,XA)XI + ^(xUX2iX3,X4)Xl X + . . . 

5 ît / x d<f>k+i, x +-5—(*i, #2, £3, £4)^5 + ——-(x i ,x 2 ,x 3 ,x4) 
0x3 0x3 

are elements of weight — 1 in 7. Hence they are constant multiple of (x2 + rx4)x\~l. 

Similarly 

A T = 7^(21,^2,2:3,24)^5 -f ^-(a:i,a:2,a:3,a:4)x5 + . . . 

+ ^—(xi, x2, x3,2:4)3:5 -f ^ (a?i, a:2, x3, x4) 

dfk+i ^ 1 / \ ib , ^ 2 / x j b — 1 , 
-]fa = for'*1' * 2 ' ar3' X 4 ' X * + foTV*l> * 2 , « 3 , 2:4)2:5. 4- . . . 

+ 0—(2*1,2:2,X3,X4)X5 + — — ( 2 : 1 , 2 : 2 , 2 : 3 , 0 : 4 ) 

are elements of weight 1 in 7. hence they are constant multiple of (0:1 + rx3)x\~l. It 

follows that 

•Q-^-IXI,2:2,2:3,X4) = 0 for all i ^ 2 and 1 < j < 4 axj 

=> ^»(2?i,2:2,2:3,X4) = 0 for all i ^ 2. 

=> /ib+i = co:^+1 + 02(2:i,2:2,X3,2:4)x^1. 

%f* = lff(xi'x2,2:3,2:4)2:^"* and ^t±L = l^ i^! ,x 2 ,x 3 ,2 :4)xj - 1 are constant mul

tiple of (x2 + rx4)x\~~l because they have the same weight —1. Similarly y^1 = 

|^ (x i , x 2 ,X3 ,x 4 )x |~ 1 and % ^ = f |^(xi,X2,X3,x4)x^1 are constant multiple of 

(xi -hrxsjxg"1. In view of Lemma 5.1, thre are constants T3,r4,r5 and re such that 

<t>2 = (f*3Xl + T4X3)(r5X2 + 7*6X4) 
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and 

/*+i = c * 5 + 1 + (r3*i + r4x3)(r!>X2 4- reX4)x%-1. 

By using the fact that ***** and ^ J 1 are constant multiple of (x2 4- ra:4)x^~1 while 

*̂+* and ffi** are constant multiples of (a?i + rssjaf*""1, we see that there exits a 

constant b such that 

/*°+i = « { + 1 + 6(*i + r*3)(*2 + r*4)«5"1 

/ = /f+l + /*+l + /*+l 

= d(x2 + rx4)a?5 + cz*+1 + 6(xi 4- rx3)(a?2 4- rxA)x\~x 4- ri(a?i 4- rx3)x*. 

This implies that dim/ < 3, which contradicts to our hypothesis dim/ = 5. Hence 

Similarly we can prove that fj^x = 0. 

For i = 0. 

In this case / = / £ + 1 . Since 

,df df tdf . df 

(•§£-, •§£-) and (^f-, -§£-) are complex vector spaces of dimension at most one. It follows 

that dim/ < 3. This contradicts to our hypothesis / = (2) © (1) © (1) © (1). 

Hence Case 6 cannot occur. 

Case 7. / = (1) © (1) © (1) © (1) © (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k 4-1 

and weight 0. 

Similar argument as Case 5, we can show that 

/ = fk+i = /jb+i + /*+i-
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For i = 1 

0x2 0x4 ox$ 

=$• / j j + 1 involves only x\ and £3 variables. 

z$> / £ + 1 = ^ x i -f C2X3 where ci ,c3 are constant 

=• 4 = 0. 

This contradicts to our hypothesis that k > 2. Hence / £ + 1 = 0. 

Similarly we can prove / ^ j = 0. 

For i = 0. 

In this case / = / £ + 1 . 

ax\ 0x3 0x2 0x4 

ctai 9^3 9a?2 #£4 

=> d i m / < l . 

This contradicts to our hypothesis. Hence Case 7 cannot occur. Q.E.D. 

Lemma 5.3. With the same hypothesis as Lemma 5.3; if J is a s/(2, C)-submodule 

of dimesnion 4, then / = (2) 0 (2) and / is a homogeneous polynomial of weight 0 in 

£i,#2>#3 and £4 variables. 

Proof. Case 1. J = (4). 

This case canot occur by the same argument as Case 2 in the proof of Lemma 5.2. 

Case 2. I = (3) 0 (1). 
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Similar argument as Case 4 in the proof of Lemma 5.2 shows that this case cannot 

occur. 

Case 3. 7 = (2) 0 (2). 

Similar argument as Case 5 in the proof of Lemma 5.2 shows that / = /^ + 1 . Since 

wt-gf- = 0, we have ^ - = 0. Hence / is a homogeneous polynomial in £i,£2>£3>£4 

variables. 

Case 4. J = (2) 0 (1) 0 (1). 

Similar argument as Case 6 in the proof of Lemma 5.2 shows that this case cannot 

occur. 

Case 5. 7 = (1) 0 (1) 0 (1) 0 (1). 

Similar argument as in Case 7 in the proof of Lemma 5.2 shows that this case 

cannot occur. 

Lemma 5.4. With the same hypothesis as Lemma 5.2; if dimension of 7 is 3, then 7 

cannot be a 5/(2, C)-submodule. 

Proof. Assume on th e contrary that J is a s/(2, C)-submodule. We shall provide a 

contradiction. 

Case 1 . 7 = (3). 

Elements of 7 are linear combinations of homogeneous polynomials of degree k and 

weights - 2 , 0 and 2. Write 
oo 

/= £ fUi 
i = - o o 

where / J + 1 is a homogeneous polynomial of degree k + 1 and weight i. 
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Similar argument as Case 4 in the proof of Lemma 5.2 shows that / £ + 1 = 0 for 

i = ±2, and \i\ > 4. The proof of / £ + 1 = 0 for i = ±3, ±1 is the same as those given 

in the Case 4 in the proof of Lemma 5.2 except that we need to observe /g = 0. f$ is 

zero because / = (3) does not contain s/(2, C) invariant polynomial. Hence this case 

cannot occur. 

Case 2. / = ( 2 ) e ( l ) . 

Similar argument as in the Case 5 in the proof of Lemma 5.2 shows that 

We shall follow the notation and the argument in Case 6 in the proof of Lemma 

5.2. If fl+1 ± 0, then fl+1 = n ( * i + rx*)z\ and 

/ = ( 2 ) 0 ( 1 ) 

= ((*i + rx*)x\-l,(z2 + rxA)*\~l) 0 (a?J>. 

We also have 

/JH-I = « 6 + 1 + H*i + rx3)(x2 + rxA)x\~\ 

Since y£l = (fc + 1)0X5 = (& — l)6(a?i + rx3)(x2 + ra^ar*""2 is an element of weight 0 

in / , 0*+* is a constant multiple of #*. This implies that 6 = 0 . Hence / £ + 1 = cx\+l 

and 

/ = /fc+i + /ib+i + /JM-I 

= d(x2 + r£4)£* + ca?5+1 + ri(a?i + 1*23)25. 

It follows that dim/ < 2, which contradicts to our hypothesis d im/ = 3. Hence 

fk+i = 0- Similarly we can prove fj~+x = 0. 
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Thus / = /<?+1. Observe that wt^ = - 1 = wt§; and wt£L = 1 = wtfe. So 

(^£"> J^-) and ( ^ - , #~) are complex vector spaces of dimension one. Without loss of 

generality, we shall assume that •§£- ^ 0 ^ •$£-. By Lemma 5.1, there are constants r2, 

and rz such that 

/ = £ ««(*! +^3)tt(«2 + ^4) a*S+ 1"2 a 

— =Y1 <*aa(Xl + r2x3)°(x2 + r3x4)axk
5

+1-2a 

dxi 
b5 

£ i - = V ( f c + l - 2 a ) a a ( x 1 + r 2 a ;3r(2 ; 2 + r 3 x 4 )«x* + 1 -2 a 

=» * - ( | f ) = £ a ( a " 1 ) a »(*i + r2^3) a - 2(x 2 + r2x4)(x2 + r 3 x 4 ) a x * + 1 - 2 a 

1 a=2 

X - ( ^ - ) = E « ( A + l - 2 a ) a o ( x 1 + r 2 X 3 r - 1 ( ^ + r2x4)(x2 + r 3 x 4 r x * - 2 a . 

Since wtX-ifc) = - 3 , wtX.(§;) = - 2 , we have X _ ( | £ ) = 0 = X - ( & ) . Thus 

ai = d2 = . . . = ari±i] = 0, and hence / = do£s+1. It follows that d im/ < 1. This 

contradicts to our hypothesis / = (2) 0 (1). Therefore we conclude that Case 2 cannot 

occur. 

Case 3. / = (1) 0 (1) 0 (1). 

Similar argument as in Case 7 in the proof of Lemma 5.2 shows that this case 

cannot occur. Q.E.D. 

Lemma 5.5. With the same hypothesis as Lemma 5.2; if dimension of J is 2, then / 

cannot be a s/(2, C)-submodule. 

Proof. Assume that J is a s/(2, C)-submodule. We shall provide a contradiction. 
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Case 1. I = (2). 

Similar argument as in Case 5 in the proof of Lemma 5.2 shows that 

/ == fk+i + fk+i + /jb+i-

We shall follow the notation and the argument in Case 6 in the proof of Lemma 

5.2. If # + 1 # 0, then 

/ D (2) 0 (1) = ((a* + rxz)x\-\ (x2 + r ^ ) ^ - 1 ) 0 <**). 

This contradicts to our hypothesis I = (2). Thus /*.+i = 0. 

Similarly we can prove that /£^x = 0. 

The same argument of Case 2 in the proof of Lemma 5.4 shows that / 

This contradicts to our hypothesis I = (2). 

Case 2. / = (1) 0 (1). 

The same argument as in Case 7 in the proof of Lemma 5.2 provides a contradiction. 

Q.E.D. 

L e m m a 5.6. With the same hypothesis as Lemma 5.2; if J is a $1(2, C)-submodule of 

dimension one, then / = cx | + 1 where c is a nonzero constant. 

Proof. This follows from the argument given in Case 7 in the proof of Lemma 5.2. 

Q.E.D. 

Propos i t ion 5.7. Suppose s/(2, C) acts on the space of homogeneous polynomials of 

/2+i = o. 
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degree k > 2 in x\iX2>X3iX4 and x$ variables via 

d 8 d d 
dx\ dx2 dxs dx\ 

ft Q 

X+ = x\- I-X3-T— 
ox2 0x4 

X =x — x — 
dx\ dxz 

Suppose the weight of Xi is given by the corresponding coefficient in the expression of 

T above i.e. 

Wt(x\) = 1, wt(X2) = — 1 , wt{x$) = 1, wt(X4) = — 1 , Wt(x&) = 0. 

Let I = (•§£">-§£;9-^'"ih anc* "Ml)* ke the complex vector subspace sapnned by 

M^'M^'Ml'ltel a n d "Hi* w h e r e / ^ a homogeneous polynomial of degree k + 1. If 7 

is a s/(2,C)-submodule, then either 

(i) / is a homogeneous polynomial in xiix2ix3yX4 and ar5 variables of weight 0 and 

J = ( 2 ) 0 ( 2 ) e ( l ) , or 

(ii) / is a homogeneous polynomial in xi,X2,xs, and X4 variables of weight 0 and 

J = (2 )0 (2 ) , or 

(iii) / = c x | + 1 where c is a nonzero constant. In this case, I = (1). 

Proof. This is a consequence of Lemmas 5.2, 5.3, 5.4, 5.5 and 5.6. Q.E.D. 



§6. */(2,C)-ACTION (1.2) IN M5* 

Lemma 6.1. Let / be polynomial in x1,X2,ar3,a?4 and z5 variables. Suppose j£- = 

ri j]L a n d _L = r^j*^* Then there exists a polynomial 0(2/1, 2/2,2/3) such that f(x\, £2, £3, 24, £5) 

g(xi,X2 4-riar4 -f r2x5,a?3). 

Proof. Let 

yi = * i 

J/2 = ^2 + ria?4 -f r2#5 

2/3 = ^3 

1/4 = X 4 

Set g(yx,2/2,2/3,2/4, ys) = / (y i , Vi - ^2/4 - r2ys, 2>3, y4, ys)- We claim that g depends 

only on yi,y2 and y3 variables. 

dg df dx2 df 
-Q-- = -fc-\vi>v* - ri2/4 - ^y5,y3,y4,y5) • ^— + ^- (y i ,y2 - riy4 - r2y5,y3,y4,y5) 

= - r x -—(y i ,y 2 - riy4 - r2y5,y3,y4, ys) + g—(l/i, Jfe - ^iy4 - r2ys, y3, y4,ys) 

= 0. 

Similarly J^- = 0. Thus <j depends only on yi, jfa and 2/3 variables. Q.E.D. 

Lemma 6.2. Suppose s/(2, C) acts on the space of homogeneous polynomiab of degree 

109 
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Jfe > 2 in £i,X2,£3,X4 and x5 variables via (1.2) 

Suppose the weight of Xi is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xx) = 2, wt(x2) = 0, u;<(aj3) = —2, ti;f(x4) = 0, wt(x^) = 0. 

Let / be the complex vector subspace of dimension 5 spanned by ^ - , -g£~y ^ - , ^ - and 

^ - where / is a homogeneous polynomial of degree k -f 1. If / is an 5/(2, C) module 

then either 

(i) J = (3) 0 (1) 0 (l)and / is weight 0, or 

(it) I = ( 3 ) 0 ( 1 ) 0 ( 1 ) 

= (*i(r2*4 + ra^s)*""1, *2(r2Z4 + ra^)*"1, ̂ 3(^2^4 + r^)*""1) 

0((r2a?4 + r3x5)*> 

©((* - l)c3(x^ - 2xiar3)(r2x4 + r3a?5)*-2 + *c7(r2x4 + r3xs)k"1 • ar5) 

and 

/ = xi(r2x4 + r3s5)* + c3(x2 - 2xix3)(r2x4 + r3x5)*"1 + c7(r2:r4 + r3z5)* • x5 

+c8(r2a:4 + r3ar5)*+1 + C4X2(r2X4 + r3#5)* + c0x3(r2x4 + r3ar5)* 

where r2c%c? ^ 0, or 

(iii) / = (3)0(1)©(1) 

= (*i(r2X4 + r s ^ s ) * - 1 , ^ ^ : ^ + »,3a:5)fc~1,a:3(''2X4 + ^ars)*-1) 
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®((r2x4 + r3x5)k) 

0((Ar - l)c3{x\ - 2x1x3)(r2X4 + r3x5)*"~2 + kc7{r2x4 + r ^ s ) * " 1 • x4) 

and 

/ = ^i(r2X4 -f r3x$)k -f c3{x\ - 2xix3)(r2«4 + r3x$)k~l 

+c7(r2x4 + ^3^5)* • %4 4- c8(r2iC4 + ^zs)*4"1 

+c4x2{r2x4 + r3x5)k + c0x3(r2x4 + r3x5)* 

where r3c3c7 ^ 0. 

Proof. Case 1. I = (5). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights 4 , 2 , 0 , -2 and - 4 . Write 

/ = £ f!U 
s = — 0 0 

where fj*+i is a homogeneous polynomial of degree k + 1 and weight 2i. 

For |i| > 4 

M ^ T ^ I ^ S for l < i < 5 axj 

f)f2i 

=> i l i i±l = 0 for 1 < i < 5 
OXj ~ ~~ 

=>/tM+i=0. 

For i = 3 

5a?2 5a?3 5a?4 $#5 

=> / | + 1 involves only x\ variable 
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=^ /£ + 1 = cx\ where c is a constant. 

Suppose / £ + 1 ^ 0. Then it is easy to see that k = 2 and 

J = (x1 ,x ix 2 ,x 2 + aria?3,x2X3,x3). 

This implies that / does not involve X4 and x$ variables. It follows that dim/ < 3, 

which contradicts to our hypothesis J = (5). Hence / £ + 1 = 0. Similarly we can prove 

For 1 = 2. 

wt 3*+* = 6 implies J
d*+l = 0. So / £ + 1 does not involve x3 variable. Since 

urt ^*+1 = wt ffi+l = wt 3*+* = 4, in view of Lemma 6.1, there are constants ri,r2 

and r3 such that / £ + 1 is a polynomial in xi and rix2 + r2x4 -f r^x^ 

/*+i = *i(ri*2 + r2x4 + r3xs)k~l. 

Suppose / £ + 1 ^ 0. Assume first that r\ = 0. Then /£ + 1 = xf(r2x4 4- rsxs)*""1 and 

^ ^ = 2xx(r2x4 4- rsxs)*"1. It follows that 

(xx(r2x4 + rsajs)*"1, x2(r2x4 + r3X5)*"~\ *3(r2x4 + r&ars)*-1) 

is an irreducible s/(2, C)-submodule of / . This contradicts to our hypothesis / = 

(5). Hence we shall assume that n ^ 0. It is easy to see that X* + 1 (%^-) = 

X*+ 1[2xi(r1x24-r2x4-f r3X5)*-1] = C1X3 where c\ is a nonzero constant. Therefore we 

have an irreducible 5/(2, C)-submodule of / of the following form. 

(xk
3,X+(X

k
3),Xl(zk

3),...,Xlk(xk
3)). 

Since / = (5), this implies k = 2 and 

J = ( x 3 , X2 X3, X2 + X1X3, XXX2, # l ) -
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Consequently / does not involve x* and £5 variables. It follows that dim J < 3, which 

contradicts to our hypothesis J = (5). Hence /^+ 1 = 0. Similarly we can prove fj^x = 0. 

For i = 1. 

Since wt(2&LL) = 2 = wt(^^) = ^ ( ^ | ^ ) , in view of Lemma 6.1, there exist 

constants n , r2 and r3 such that /^+ 1 is a polynomial in a?i,rix2 4-r2X4 4-r$xs and X3. 

[ « 
fhi = S c «* i + 1 *S(n*2 4- r 2s 4 4- r3x 5)*- 2 a . 

Similarly we can write 

[ « 
/*+i = Z ) a<**?*?+1(r4*2 4- r5s 4 4- r6x5)*~2a 

a=0 

and 

/*+i = E 6 « x ? x 3 (rr*2 + rs^4 + r9x5)*-2"+ 1. 
a=0 

Assuming / £ + 1 ^ 0. Then 

2 g ± l = £ ( 1 + a)cax$ x%{rlX2 + r2s 4 + r3x5)k-2a 

0=0 

is a nonzero element of weight 0 in J. This implies that 

mi 
dx3 

*f-2 til 
^ ± i = J > + l K * ? 4 ( r 4 * 2 + r5z4 + r6*B)*-2 a 

a=0 
fJLdbJLl 

= 5 3 r7(k ~ 2 a + l)***?*? (r7*2 4- r8x4 + r9x5)* 
or=0 

^ * ± i = £ r8(fc - 2a + l)bax?xt(r7x2 + r 8 i 4 + r9*5)*-2" 
o =0 

^ * ± i = ]JT r9(* - 2a + l)fc„*?*S(r7*a + r8x4 + r9x5)k-2a 

9x5 a=o 

8f 3 

are constant multiples of ^*+1. It follows that (r4x2 4- ̂ 5X4 4- rexs) and (r7X2 4- r$X4 + 

rgzs) are constant multiples of ( n x 2 4- r2#4 4- ^3X5). Thus 
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[ « 
= J2 c«xi*lxz(riX2 + r2xA + r3x5)k~2a 

a=0 

[ « 
+ Y^ ^aXiX^1(r1x2 + r2xA + r3x5) 

* - 2 a Aotx1 xz \r\X2 T r2*4 T * 3*5; 

+ X I *«x?x3 (ri*2 + r2s4 + r3x5)*" -2a+l 
'a*'i ~3 v / i"^ • ' a*** ' •J-'O/ 

a=0 

This implies dim/ < 3, which contradicts to our hypothesis I = (5). Hence / £ + 1 = 0. 

Similarly we can prove fj~£x = 0. 

For i = 0. 

In this case / = /*+i- The above argument shows that dim/ is at most three. 

Hence Case 1 cannot occur. 

Case 2. / = (4) 0 (1). 

Elements of (4) are linear combinations of homogeneous polynomials of degree k 

and weights 3,1, —1 and —3. Since weights of x,-, 1 < i < 5 are even integers, there is 

no homogeneous polynomial of odd weight. So Case 2 cannot occur. 

Case 3. / = (3) 0 (2). 

Case 3 cannot occur. The argument is the same as Case 2. 

Case 4. / = (3) 0 (1) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights 2,0 and —2. 

For |s| > 3 

M ^ £ k | > 4 1 < i < 5 
OXj 
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=• ^ i = 0 1 < i < 5 
OXj 

For » = 2 

=* §fk±1 = 0=dflkL=dfl±L=zdftkl 
3x2 8x3 8x4 dx$ 

=> / j ^ + 1 involves only x\ variable 

=^ / £ + 1 = cx\ where c is a constant 

=> /ib+i = : 0 because k > 2. 

Similarly we can show / j ^ = 0. 

For i = 1 

wt ^p"* = 4 implies Q*+l = 0. So / £ + 1 does not involve X3 variable. Since wt J
d

k
x+l = 

wt yj+l = ttrt p*+* = 2, in view of Lemma 6.1, there are constants r i , r2 and r3 such 

that / £ + 1 is a polynomial in xi and (r*iX2 + 2̂X4 -f r3xs) 

/fc+i = *i( r i*2 + r2x4 + r3x5)*. 

Suppose / | + 1 ^ 0. Assume first that ri = 0. Then / | + 1 = xi(r2x 4 4- 7*3X5)* and either 

r2 ^ 0 or r 3 / 0. By considering *̂+* or y^1, we see that xi( r2x 4 + r3x5)fc""1 is a 

nonzero element in / . It follows that 

(3) = (xi(r2x4 + rass)*"1, x2(r2x4 + r3X5)*"~\ x3(r2x4 + ^xs )*" 1 ) 

(l) = (r2x4 + r3X5)A;) 
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are irreducible s/(2,C)-submodules of J. Similarly, there are constants r4,rs and re 

such that fj^x is a polynomial in £3 and (r 4z2 -f r5x4 + rex^). 

/*+i = a?3(r4x2 + r5x4 + r6x5)*. 

Since ^ ^ = r4x3(r4x2 + r5x4 + re^s)*"1* ^f1 , = r$x3(r4x2 + r5x4 + r6x5)*""1 and 

3*+1 = r6X3(r4X2 4- r 5x4 + re^s)*""1 are elements of weight —2 in / , they are constant 

multiples of xs(r2X4 + rsXs)*"1. It follows that there is a constant Co such that 

/JT+I = co^3(r2a:4 + r3x5)* 

3*+* and p*+* are elements of weight —1 and 1 respectively in (3). There are constants 

ci and c2 such that 

f ^fef" = cix3(^2^4 + raxg)*-1 

I ^ f * = c2^i(r2^4 + raops)*"1 

From the above two equations, it is not hard to see that c\ = c2 and there exists a 

homogeneous polynomial of degree k + 1 in X2,x4 and £5 variables such that 

/jb+i = £1*1*3(^2*4 + raxg)*""1 -I- h(x2) a?4, x5). 

*+i 
Write h(x2,X4,xs) = XT x2 <7*+i-a(*4,*5) where gk+i-a(x4,xs) is a homogeneous 

cr=0 

polynomial of k -f 1 — a in x4 and £5 variables. Let ao be the largest integer such that 

0fc+l-tto(x4,*5) # 0, 

fl f ° Q° 

Since X_[x3°~ yjb+i_oro(x4, x5)] = 0, we have an irreducibe 5/(2, C)-submodule of I in 

the following form. 
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Thus 2a0 - 1 < 3 because i = (3) 0 (1) 0 (1). This implies that a0 < 2 and 

/ib+i = cix1x3(r2x4 + r3xs)k"~l + 9k^i(x4x5) + gk(x4x5)x2 + gk-i{x4xs)x\ 

(7x2 

ft/O 

is an element of weight —2 in (3), <7*-i(#4,25)^3 is a 

constant multiple of #3(^0:4 + ^xs)*""1. Thus there exists a constant c$ such that 

0*-l(z4,£5) = C3(r2X4 + r3Xs) fc-i 

and 

/*+i = ciXiXs{r2xA + r3x5)*~1 4- 0jb+i(x4,*5) + 0*(*4,*5)*2 + c3(r2a?4 + r3x5)* l x | -

It follows that 

£kfc i = r2(* - ^(cianxa + c3xl)(r2x4 + r3x5)*~2 + ^ t L ( * 4 , *B) + **$*-{**> **) 

X ~ ( ^ i ) = r 2 ( * " " 1 ) ( C l + 2 c 3)x2^(r2X4 + r3z5)*-2 + * 3 ^ ( * 4 , *5) 

2 & 1 = r3(fc - 1 ) ^ ^ x 3 + c3x2)(r2x4 + r3x5)*-2 + ^ ( * 4 , *B) + * 2 f g ( * 4 , *B) 

X . ( ^ I ) = r3(* - l)(ci + 2c3)x2x3(r2x4 + ^ s ) * " 2 + * 3 ^ ( * 4 , *B). 

If C1 + 2C3 were not zero, then by applying X_ to X-( QX
+1) or X . ( 3*+T), we would get 

a nonzero element xKr^+rsXs)*""2 of weight —4 in (3) C / . This clearly is impossible. 

Thus ci = —2c3 and xs^(x4iX5)} ^3^(^4 ,^s ) are both elements of weight —2 in 

(3). They are constant multiples of X3(r2X4 + rsx^)k"1. By Euler relation, there are 

constants r8 and r9 such that gkt = jx4^ + £x5§£*- = (r8x4 + r9x5)(r2x4 + ^xs)*" 1. 

Using the fact that both X3^L(x4ix^) and x3^L(x4ix^) are constant multiples of 
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#3(7*224 + f^xs)*""1, we conclude that r$X4 + rgx$ is a constant multiple of r2#4 + rzx$. 

Therefore there exists a constant C4 such that £fc(x4,X5) = 04(^X4 + rsx&)k. Thus 

/*+i = ca(x2 ~ 2xix3)(r2x4 + raXs)*""1 + flffc+i(*4, *s) + c4(r2x4 + r3x5)* • x2. 

If c3(x^ - 2xix3)(r2X4 + ^ x s ) * - 1 = 0, then 

/ = /*+ 1 + A+i + / r+ i 

= Xi(r2X4 + r3x5)fc + 0*+i(x4, x5) + c4(r2x4 + #3^5)* • #2 

+ cox3(r2X4 + r3x5)*. 

This would imply dim J < 3 because (J^f-, J^~, J^-) is one dimensional, which contra

dicts to our hypothesis I = (3) 0 (1) 0 (1). 

Suppose then that 03(^2 — 2x1X3)^2X4 + ^ x s ) * " 1 ^ 0. We shall assume without 

loss of generality that 

g—M*i ~ 2xix3)(r2x4 + r3x5)* - 1] 

= r2(fc - l)cs(xa - 2xiX3Xr2x4 + r 3 x 5 )*- 2 # 0. 

i.e. r2C3 ^ 0. Observe that 

r2(k-l)ca(xl-2xix3)(r3x4+raxs)k-i+^^(x4,xs)=^^-e4rik(r3xi+rsx6)k-l-x2 
C/X4 C/X4 

is a nonzero 5/(2, C) invariant polynomial in J. 

/ = ( 3 ) 0 ( 1 ) 0 ( 1 ) 

= (xi(r2x4 + r3x5)k-\ x2(r2x4 + r 3 x 5 )* _ 1 , x3(r2x4 + raXs)*-1) 

0 ( ( r 2 x 4 + r3x5)*> 

®(r2(fc - l)cs(*5 - 2xix3)(r 2s4 + r3x5)k~2 + ^ t i ( x 4 , c5)). 
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Similarly r^{k-l)cz(xl-2xiXz)(r2X4i^rzx^)k^2^^^{xAix^) = ^ ^ - ^ 3 0 4 ( ^ X 4 + 

rzx$)k~l • X2 is an s/(2, C) invariant polynomial in J. It is easy to see that there are 

constants C5 and c$ such that 

r3(k - l)c3(x^ - 2xix3)(r2x4 + r3x5)*~2 4- J"4"1 (x4i x5) 
C/X5 

= c5(r2x4 + r3x5)* + c6[r2(k - l)c3(x^ - 2x1x3)(r2x4 4- r3x5)*~2 

=> (^3 - c6r2)(fc - l)c3(a;2 - 2zix3)(r2a:4 + r3x5)*~2 

= c5(r2x4 + r3x5)* + c 6 % t L ( X 4 ) X 5 ) _ ^ ± i ( X 4 ; X 5 ) 
ax4 0x5 

=>c6 = — and *+A(s4,gs) - Ar4"1(x4,x5) ~ c^{r2x4 + r3x5)*. 
T2 OX5 V2 OX4 

Let y4 = X4 4- ^ £ 5 and t/5 = X5. Let 

T*3 

h+\{y^ys) =9k+i{y4 2/5,2/5) 

= cs[r2(y4 2/5) + r3y$] 
?2 

= c 5 r ^ 4 

=> 5*+i(y4,!fe) = £72/42/5 4- c8yl+l 

=> flfjb+i(x4, x5) = c7(r2X4 + r3x5)fcX5 + c8(r2x4 + r 3 x 5)* + 1 . 

Since r2(fc - l )c3 (x | - 2xix3)(r2x4 4- r3x5)fc""2 4- %f-(*4,*5) = r2(fc - l )c3 (x | -

2xix3)(r2x4 + r3X5)*""2 + C7fcr2(r2X4 + r3x*>)ki~lxs 4- c$(k + l ) (r2x4 + r3x5)* we see 

that r2(k — l)c3(x2 — 2x!X3)(r2X4 4- r3x5)*~2 4- c7 • k • r2(r2x4 4- r3X5)*"1x5 is a nonzero 

5/(2, C) invariant in 7. Hence 

/ = (a?i(r2x4 -f rfcss)*"1, x2(r2x4 4- ^ x s ) * " 1 , x3(r2x4 4- ^xs)*" 1 ) 
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and 

0((r2x4 + ^3*5)*) 

®((k - l)c3(x2 - 2xix3)(r2x4 4- r3x5)*~2 + Jbc7(r2x4 4- r ^ ) * " 1 • x5) 

= *i(r2x4 + **3x5)* + c3(x2 - 2xix3)(r2x4 4- r3x5)*_ 1 

+c7(r2X4 + r3x5)* • x5 4- cg(r2X4 + r3x5)*+ 1 + c4x2(r2x4 + r3x5)* 

4"C()X3(r2X4 4" T3X5) . 

where 

det 

Thus we have | 

" 0 
0 

- 2 c 3 

c2fc 

. T 3 * 

iii). 

0 
2c3 

0 
c4fcr2 

c4krs 

- 2 c 3 

0 
0 

cofcr2 

cokr3 

1 
c4 

Co 

c8(fc 4- l)r2 

c9 4- (* + l ) r3c8 

0" 
0 
0 
r2 

T 3 . 

= 8r2c7ci 7* 0. 

Similarly, if T3C3 ^ 0, then we have (iii). 

Suppose next that r\ ^ 0. We shall assume without loss of generality that 

/*+i = d i*i(*2 4- r2x4 4- r3x5)* 

where d\ is a nonzero constant. yx+l = c?i(x2 4- r2x4 4- r3Xs)* is a nonzero element 

in I. Consider Xt p**1 = d\k\x\. Since X_[x3] = 0, we have an irreducible 5/(2, C)-

submodule of dimension 2k 4-1 in J in the following form. 

(zlX+{z\),XU&),...,X*(x\)). 

As J = (3) 0 (1) 0 (1), we conclude 2k + 1 < 3 i.e. k < 1. This contradicts to our 

hypothesis that k > 2. 

Case 5. / = (2) 0 (2) 0 (1). 

Elements of (2) are linear combinations of homogeneous polynomials of degree k 

and weights — 1, and 1. Since weights of x,-, 1 < i < 5 are even integers, there is no 

homogeneous polynomial of odd weight. So Case 5 cannot occur. 
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Case 6. I = (2) 0 (1) 0 (1) 0 (1). 

Case 6 cannot occur. The reasoning is the same as Case 5. 

Case 7. I- (1) 0 (1) 0 (1) 0 (1) 0 (1). 

Elements of / are linear combinations of homogeneous polynomials of degree k 

and weight 0. 

For \i\ > 2 

1 < 3 < 5 M^Mi| > 2 

^ = 2 1 < ; < 5 
OXj ~ 

J » 

nix=o. 

For i = 1 

0X2 OX4 OXs OX3 

6x2 6x4 dx& 5x3 

=» / | + 1 involves only x\ variable 

=> / | + 1 = cx\ where c is a constant 

=» / | + 1 = 0 because k > 2. 

Similarly we can show fj~£t = 0. 

For i = 0. 

In this case / = /* + 1 . 

- & - - * • - & - » 
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=> d i m / < 3 . 

This contradicts to our hypothesis dim/ = 5. Hence Case 7 cannot occur. Q.E.D. 

Lemma 6.3. With the same hypothesis as Lemma 6.2; if J is an s/(2, C) module of 

dimension 4 then 

I = (3) 0 ( 1 ) 

and / is of weight 0. 

Proof. Case 1. J = (4). 

Elements of (4) are linear combinations of homogeneous polynomials of degree k 

and weights 3,1, — 1 and —3. Since weights of xf-, 1 < i < 5, are even integers, there is 

no homogeneous polynomial of odd weight. So Case 1 cannot occur. 

Case 2. / = (3) 0 (1). 

We shall follow the argument used in Case 4 in the proof of Lemma 6.2. The 

argument there gives 

/ = /jb+i + /*+i + /fc+i-

If /jfc+1 ^ 0. then we can assume that / | + 1 = x\{r2x4 + r3x5)*. It follows that 

I = (3) 0 (1) = (xi(r2x4 + r3s5)*"~\ x2(r2x4 + rsXg)*"1, x3(r2x4 + r3x5)*""1> 

0 ((r2x4 + r3x5)*) 

/*+i = c0x3(r2x4 + r3x5)k 

/fc+i = cs(xl ~ 2xix3)(r2x4 + r^s)*'1 + gk+i(x4i x5) + c4(r2x4 + r3x5)k • x2 

If c3{x\ - 2xix3)(r2x4 + T3X5)*"1 ^ 0, then either r2(k - l)c3(a^ - 2xix3)(r2x4 + 

r3xs)k-2 ^ 0 or r3(k - l)c3(a^ - 2xix3)(r2x4 + r3x5)fc"2 ^ 0. By considering ^ ^ 
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and yx+l, we see that there is an element in I with nonzero terms of degree 2 in x\, x^ 

and £3 variables. This contradicts to our previous description of J. Hence 

/*+i = 9k+i(x4, £5) -f c4(r2iP4 + r3ar5) • a?2 

and 

/ = /jb+i + fk+i + /jk+i 

= 21(7-224 + r3x5)* -f gk+i(x4, z5) + c4(r2a?4 4- ^£5)* • *2 + 00^3(^2^4 + r3x$)k 

This implies that dim J < 3 because (^f-, f̂", ^f-) is one dimensional, which contra

dicts to our hypothesis i = (3) 0 (1). Therefore / £ + 1 = 0. Similarly we can prove that 

r-2 
Jfe+i /*-+

2i = o. 

Case 3. J = (2) 0 (2). 

Case 3 cannot occur. The reasoning is the same as Case 1. 

Case 4. I = (2) 0 (1) 0 (1). 

Case 4 cannot occur. The reasoning is the same as Case 1. 

Case 5. I = (1) 0 (1) 0 (1) 0 (1). 

Case 5 cannot occur. The proof is the same as those given in Case 7 in the proof 

of Lemma 6.2. 

Lemma 6.4. With the same hypothesis as Lemma 6.2; if J is an s/(2, C) module of 

dimension 3, then J = (3) and / is of weight 0. 

Proof. Case 1. J = (3). 

We shall follow the argument given in Case 4 in the proof of Lemma 6.2. We 

get easily f%%
+1 = 0 for \i\ > 2 and f$+l = x\{riX2 + r^x* -f r^x^)k. Observe that 
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d$+l = (r\X2 4- r2a?4 + T3X5)fc is an invariant s/(2, C) polynomial in I. Since J = (3), 

we have (rxX2 + TiZ\ + ^3X5)* = 0 i.e. / | + 1 = 0. 

Similarly we can prove that fj~*x = 0. 

Case 2. J = (2) 0 (1). 

Case 2 cannot occur. The reasoning is the same as in Case 1 in the proof of Lemma 

6.3. 

Case 3. I = (1) e (1) ® (1). 

Similar argument as in Case 7 in the proof of Lemma 6.2 shows that / 

M_ = 0 = J^-. We can write 

where gk+i-a(z4,xs) is a homogeneous polynomial of degree k + 1 — a in X4 and X5 

variables. Let c*o be the largest integer such that <7jb+i-a0(#4,£5) jL 0. 

0 = 0 

(<xo)\x%0~lgk+i-a0(x4, x*)-

Since X-[x%°~ <7*+i-cr0(x4,X5)] = 0, we have an irreducible s/(2, C)-submodule of J 

in the following form. 

(*3° y*+l-o 0(*4i*5) i -y+[*3° 9k+l-aQ(X4,Xs)]y .. . ,X+a°~ iX3°~ ^ib+l-ao^4* *»))' 

Thus 2a0 - 1 < 1 because 7 = (1) 0 (1) © (1). This implies that a0 < 1 and 

/*°+i a n d 

Mfcl 

) = 

/ = flt+l(X4, «5) + Z2?fc(*4i *5)-
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Suppose 0*(#4,£5) ^ 0. Then either §fMx4>x5) ^ 0 or jfir{x4,x$) ^ 0. Without loss 

of generality, we shall assume jfoL(x4,x&) / 0 

df dgk dgk+i 

^ = x W * 4 ' X 5 ) + ~ K ~ ( a r 4 ' * 5 ) 

v , df . dgk , , 

Since X^(x3-^L(x4yx^)) = 0, we have an irreducible s/(2, C)-submodule of I in the 

following form. 

z dgk ( v 5flf* , N dgk, u 
(#3 ^ (34>*5)> *27j (*4,*5)» « l^—(«4,«5))« 

This contradicts to our hypothesis J = (1) 0 (1) 0 (1). Thus <7fc(£4,a:5) = 0 and 

/ = ^Jb+i(^4,^5)- It follows that -Q*r = 0 = jgr = 3*-. Therefore d im/ < 2, which 

again contradicts to our hypothesis J = ( 1 ) 0 ( 1 ) 0 ( 1 ) . So Case 3 cannot occur. 

Lemma 6.5. With the same hypothesis as Lemma 6.2; if J is a s/(2, C)-submodule of 

dimension 2, then / depends only on #4 and £5 variables and 

/ = (l) 0 (l) = <j£(*4,*5)> 0 < | £ ( * 4 > * 5 ) ) . 

Proof. Case 1 . 7 = (2). 

Case 1 cannot occur. The reasoning is the same as in Case 1 in the proof of Lemma 

6.3. 

Case 2. I = (1) 0 (1). 

In this Case, we can apply the argument in case 3 in the proof of Lemma 6.4 to 

conclude our lemma. 
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Lemma 6.6. With the same hypothesis as Lemma 6.2; if J is a s/(2, C) module, then 

/ depends only x4 and X5 variables. In fact, there are constants C\ and c2y not all zero, 

such that 

/ = ( C l * 4 + c 2 z 5 ) t + 1 and J = ( l ) = ( | £ > or < | £ ) . 

Proof. This is an easy consequence of Lemma 5.1 and the argument in Case 3 in the 

proof of Lemma 6.4. Q.E.D. 

Propos i t ion 6.7. Suppose 5/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2 in xi,x2,xa,x4 and £5 variables via 

T = 2XX- 2 * 3 ^ — 
OX\ OX3 

oxi ox2 

Suppose the weight of Xi is given by the corresponding coefficient in the expression of 

r above, i.e. 

wt(xi) = 2, wt(x2) = 0, wt(x3) = —2, wt(x4) = 0, wt(xs) = 0. 

L e t 7 = < J£> §£> l t » Ul> l&> b e t h e c o m P l e x v ^ t o r subspace spanned by | £ , | £ , | £ , | £ , 

and ^ - , where / is a homogeneous polynomial of degree fc + 1. If 7 is a 5/(2, C)-

submodule, then I is one of the following: 

(i) (a) 7 = (3) 0 (1) 0 (1) and / is a homogeneous polynomial of weight 0. 

(b) I = (3) 0 (1) 0 (1) = (*i(x4 4- rxs)k-\ x2(x4 + rx*)*-1, x3(x4 + rxg)*""1) 

0 ((x4 + rxs)k) 0 ((k - l)di(*2 - 2x1x3)(x4 + rx5)k~2 + kd2x^(x4 + rx + 5)k~x) 

/ = 9(xi,X2ix3,x4,X5) + ciXi(x4 + rx5)k + c2x2(x4 + rx5)k + c3x3(x4 -f rx<$)k 
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where g(xi,x2,x3iX4,X5) = di{x\-2xix3){x4+rxs)k-1 +d2xs{x4+rx$)k+d3(x4 + 

ra?5)*+1 is a 5/(2, C) invariant polynomial with d\ ^ 0 and d2 ^ 0. 

(c) I = (3 )0 (1 )0 (1 ) = (xxirxt + x*)*-1, x2(rx4 + X5)k-\ x3(rx4 + x5)k-1)®((rx4^ 

x5)*) 0 ((k - l )di(x| - 2xix3)(rx4 + * 5 ) * ~ 2 + ^ 2 * 4 ( ^ 4 + a*)*"1) 

/ = 9(xlix2) x3, a?4, a?5) + c1x1{rxA + s5)* + c2x2(rx4 + x5)* 

+ c3x3(ra?4 + x$)k 

where 0(21,22, £3,24,25) = di(x\ - 22i23)(r24 + 25)*-1 + d2X4(rx4 + 25)* + 

cf3(rx4 + 2s)*+ 1 is a 5/(2, C) invariant polynomial with d\ ^ 0 and cfo / 0. 

(ii) 7 = (3) 0 (1) and / is a homogeneous polynomial of weight 0. 

(iii) I = (3) and / is a homogeneous polynomial of weight 0. 

(iv) I = (1) 0 (1) = ( ^ ( 2 4 , 2 5 ) ) 0 (^ (24 ,25 ) ) , f is a homogeneous polynomial of 

weight 0. 

(v) ! = (!) = <J£(*4 ) *s)> or <J£(*4) *5)> and / = (cxx4 + c2*5)*+ 1. 



§7. s/(2,C) ACTION (1.1) ON Af5* 

Lemma 7.1. Suppose 5/(2, C) acts on the space of homogeneous polynomials of degree 

k > 2 in £i,£2,£3,a?4 an(* ^5 variables via (1.1) 

<L d 
]X\ 

a 

T= X\- X2-~ 
OX\ 0X2 

X. = « , / - . 
OX\ 

Suppose the weight of xt- is given by the corresponding coefficient in the expression of 

r above, i.e. 

wt(xi) = 1, wt(x2) = —1, wt(x3) = 0, wt(x4) = 0, wt(x$) = 0. 

Let / be the complex vector subspace of dimension 5 spanned by J^-, J^-, J^-, J^- and 

2^- where / is a homogeneous polynomial of degree Jb + 1. Then J is not a 5/(2, C) 

submodule. 

Proof. We suppose on the contrary that / is a 5/(2, C)-submodule. 

Case 1. J = (5). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights - 4 , - 2 , 0 , 2 and 4. Write 

oo 

/= E fUi 
t=—oo 

where / J + 1 is a homogeneous polynomial of degree fc + 1 and weight j . 

For |t| > 6. 

\wt(M±L)\ > 5 for all 1 < j < 5 

128 
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=> M ± i = o for all 1 < j < 5 
axj 

For i = ± 5 , ±3 and ±1. 

5X3 6X4 8x5 

=>/*+! involves only xi and X2 variables 

=>/£+1 = 22 coxi^ax2 where ctt is a constant. 
a=0 

If /J + 1 ^ 0, it is easy to see that 

/ = ( x j , x j - 1 x 2 , x ^ 2 x l , . . . , x ^ ) . 

This implies that / does not involve X3,x4 and x5 variables. Thus dim/ < 2, which 

contradicts to our hypothesis / = (5). We conclude that /J + 1 = 0. 

For i = ±2 or ±4 

9 / ' df* 
wt k+x = t - 1, tg;t 'l**1 = i + l are odd integers 

axi ax2 

9xi 9x2 

^/ife+i does no^ i n v ° l v e ^1^2 variables 

^/fe+i = 0 because utf(x3) = wtfa) = wt(x^) = 0. 

For i = 0. 

In this case / = /fc+i- By the similar argument as before we have / depends 

only on X3,X4 and X5 variables. This implies that dim/ < 3, which contradicts to our 

hypothesis / = (5). Thus Case 1 cannot occur. 
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Case 2. I = (4) 0 (1). 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights — 3 , -1 ,1 , 3 and 0. 

For |t| > 5 

M ^ T * 1 ) ! > 4 for all 1 < j < 5 
axj 

54ti = o for all 1 < j < 5 
dxj 

For i = 3 

aa?i ax2 

dx\ 3x2 

^/jfc+i involves only £3,24 and £5 variables 

=>/jb+1 = 0 because utf(a?3) = 1^(24) = 11^(25) = 0. 

Similarly we can prove fj^x = 0. 

For i = 1 

wt 0*+* = 2 implies 3*+* = 0. So / £ + 1 does not involve £2 variable. Since 

wtH&t = * = wi^f^ = ^ f̂"' (̂ f*' f̂*' ^t^ * a l-dimensional space. In 

view of Lemma 6.1, there are constants r i , r2 , r3 such that / ^ + 1 is a polynomial in x\ 

and r\X3 -f ^ £ 4 + 1*3X5. 

/*+i = x i ( r i * 3 + r2«4 + r3x5)*. 

If / ^ + 1 ^ 0, then it is easy to see that 

(xi(ri£3 + r2X4 + r3ar5)A; *, x2(rix3 + r2x4 + r3xs)k *) 



CLASSIFICATION OF JACOBIAN IDEALS INVARIANT BY S / ( 2 , C ) ACTIONS 131 

is an irreducible 5/(2, C)-submodule of dimension 2 in i\ This contradicts to our 

hypothesis. Hence / £ + 1 = 0. Similarly we can prove that fj^x = 0. Thus / = 

fk + l + fk+l + fk+l + fhl + /*+!• W t ^ = * = «**£?• = ^ ^ S f 1S * n0DZer0 eVeD 

integer. This implies that ffi+l = 0 = fr**1 = y£l. Thus /J + 1 involves only a?i and 

#2 variables. 

Since i / r t^+ i — 0 — wtd**+i = wt^***- (d^+i dh+i dh+i \ i s a t most a 1-oince tira ^ _ u — wi da.4 — wi Qx& , \ aa?3 , aa?4 , dxji } u> <**> m o o t d, I 

dimensional space. 

Now observe that | £ = 5g|±\ | £ = ^ J ^ and | £ = 2g±L. Hence dim/ < 3. 

This contradicts to our hypothesis / = (4) 0 (1). 

Hence Case 2 cannot occur. 

Case 3. / = (3) 0 (2) 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights —2,-1,0,1 and 2. 

For |t| > 4. 

|,trfj5±L| > 3 for aii i < j < 5 
OXi 

=> fl+i = 0 for all 1 < j < 5. 

For i = 3 

trt^fcL = 4, wt^^ = 3 = w t ^ - = t « l ^ l 
a « 2 C7«3 C70?4 C7X5 

6x2 dxs 6x4 dx$ 

=> /f+1 depends only on x\ variable 

=*• / £ + 1 = dx\ where C\ is a constant. 

If ci ^ 0, then Ar = 2 and 

(3) = {x\,xix2,xl) 



132 STEPHEN YAU 

wt-gf- = 3 implies ^ - = 0. Hence / | does not involve X2 variable, wt-^ = 2 = 

wt-jfi*- = urt^8- implies that (^^p, ^l1-, af3-) is a 1-dimensional vector space. In view of 

Lemma 6.1, there are constants ri,r2 and r3 such that / | is a polynomial in x\ and 

(ria?3 + r2a?4 + ^3X5). 

/ I = *i( r i*3 + r2x4 + r3x5). 

Similarly there are constants r4,r5,r6,r7,r8,r9 and C2 and C3 such that 

fl = xi(r4x3 + r5x4 + r6x5)2 + c2x\x2 

and 

/3 = (7*7X3 + rs*4 + r9x5)3 + c3xix2(r7X3 + rsx4 + r9x5) 

£̂a- = (r4X3-fr5ar4-f r6a?5)2-f 2C2X1X2 is a constant multiple of X1X2 because wt-§~ = 0. 

This implies that ^£3 + r5«4 + rexs = 0. ^ = Zr-j^xz + rgX4 + r9xs)2 + 03^X1X2 
a iO 

is a constant multiplie of X1X2 because wt -^ = 0. This implies that r7 = 0. Similarly 

we have r% = r9 = 0. It follows that 

/ = /3 3 + / 3
2 +/3 1 +/3° + /3~1 + /3-2 + /3-3 

= c\x\ + x2(rix3 + r2x4 + r3x5) + c2x2x2 + c4xix2 

+x^(ri0x3 + r n x 4 + ri2x5) + c6x3. 

Observe that fjk. = 2xi(rix3 + r2x4 + r3x5), ^jjj- = 2x2(riox3 + rnx4 + ri2x5), and 

X+(^d§r) = 2^i(rioX3+riiX4+ri2X5). Since w<( |k ) = 1 = urf(X+(^Jj-)), the vector 

space (2xi(riX3 + ^ x 4 -f 7*3X5), 2xi(r10X3 4* rnx 4 + ri2x5)) is at most 1-dimensional. 

Hence 

/ = cxx\ + x\{rxxz + r2x4 + r3x5) + c2x\x2 + c4x\x\ 

+ C5X2(riX3 + T2̂ 4 + 3̂X5) + C6X2-
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This implies that dim/ < 3, which contradicts to our hypothesis / = (3) © (2). Thus 

/ 3 + 1 = 0. Similarly we can prove f£^x = 0. 

For i = 2. 

In this case / = />+ 1 + /J + 1 + /f+1 + f& + f&, w t ^ = 3 implies ^ f = 0. 

Hence / | does not involve x2 variables, wt-jfi*1- = 2 = tt# y^x = ttrt ^*+1 impiles that 

( ^*+*, ^*+*, yj+l) is a 1-dimensional vector space. In view of Lemma 6.1, there are 

constants ri, r2 and r3 such that / | + 1 is a polynomial in x\ and (rix3 + r2x4 + ^25) 

/ib+i = * i (n£3 + r2x4 + rsafs)**"1. 

If / | + 1 ^ 0, then it is easy to see that 

/ = ( 3 ) ©(2) 

= (*i(n.x3 + r2x4 4* r3xs)k~2,XiZ2(riX3 + r2x4 + r3ar5)*""2, 

*2( r l*3 + r2x4 + r3x5)k~2) 

®(xi(rixs + r2x4 + ra^s)*""1, x2(rix3 + r2x4 + rsss)*""1). 

Similarly there are constants r4,r5,r6,r7,r8,r9,6cr and aa such that 

in 
/*+i = E *«*i+1*2(»-4*s + r5x4 + r6 *5 )*- 2 a 

<*=0 

/°+i = E ««*? *? M a + r5x4 + re* , ) ' - 2 "* 1 

^ f " = £ ( a + 1)6**?*? (r4*3 + r5*4 + r6ar5)*""2a is of weight 0. Hence ^ f * is a 
Qf=0 

constant multiple of XiX2{r\Xz + r2x4 + r3X5)*"~2. This implies that ba = 0 for a 5̂  1 

and (r4a?3 + 7*524 + ^£5) is a constant multiple of (1*1X3 -f r2x4 + r^xs). So 

/jb+i = ^1^1^2(^1X3 -f r2X4 + r 3 x 5 ) Jk-2 
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On the other hand 

at* m 

2£jtL = £ r4(k - 2a + l)aax^(r4x3 + r5x4 + r 6 s 5 )*- 2 a 

a=0 

df° m 

- # t i = ^2 r5(k - 2a + l )a a z f x%(r4x3 + r5x4 + r6x5) 

8fo 1*1 
2iJ±l = £ r6(k - 2a + 1)0.,*?*J(r4*8 + r5*4 + r6z5)*-2« 

a=0 

are elements of weight 0 in J. So they are constant multiples of xiX2(r\x3 + r^x4 + 

r 3 * 5 )* - 2 . 

a f° w 

^ ± i = V ; aa**?" **? ('4*3 + r5^4 + r 6 * 6 )* - 2 a r + 1 

is an element of weight —1 in / . So it is a constant multiple of £2(7*1X34-^24 4-f^xs)*"1. 

It follows easily that 

/*+i = 5ixix2 ( r ix3 + r2x4 + ra^)*""1. 

Similarly we can prove that 

/f+i = &2*i*2(ria*3 + r2x4 + r3x5)*~2 

/f+i =cx^( r ix 3 + r2X4 + r3X5)*''1. 

Hence 

/ = A+i + /*+i + A + i + / * + i + /*+i 

= *i ( r i*3 + ^2^4 + r3x$)k~x + *ia?i*2(^i*3 + r2*4 + r3x5)*""2 

4-5iXix2(riX3 + r2x4 + r^ss)*"1 + &2Xix2(rix3 + r2x4 + r*3x5)*~2 

-fCX2(riX3 + 7*2X4 + T3X5) ~ . 

This implies that dim I < 3, which contradicts to our hypothesis / = (3) © (2). Thus 

/ ^ + 1 = 0. Similarly we can prove fj~^x = 0. 
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For i = 1. 

In this case / = / ^ + / J + 1 + / i + 1 J ti*2g±i = 1 = t r f S g f = u r f 2 ^ implies 

^ a ^ ( a i r> a**1 > a£*1) *s a* m o s ^ a 1-dimensional vector space. In view of Lemma 

6.1, there are constants r1}r2 and r3 such that / £ + 1 is a polynomial in x i , x 2 and 

(7*1X3 + ^ X 4 -f ^3X5). 

I 
/*+! = £ *«*f+1*2 ('1*3 + r2x4 4- r 3 x 5 ) * - 2 a . 

Suppose fl+1 ^ 0. Let c*o be the biggest integer such that baQXi° x^0{r\Xz 4- 7*2X4 + 

r3x5)*~"2ao i=- 0. Consider 

df1 a° 
" ^ t i = J2(a + 1 ) & a ^ f ^ ( r i x 3 4- r2x4 4- r3x5) 

fc-2a u: -r xjvQiiii *2 V' l*3 T ' 2*4 T ' 3 * 5 ; 
a=0 

* f ^ f = ( a ° + ^ " o ^ " " ^ + r 2x4 + r3*5)*-2«o. 

Since X_[*a 0(ri*3+ra*4+rs*5)*""aao] = 0, we have an irreducible 5/(2, C)-submodule 

of dimension 2«Q 4-1 in I of the following form. 

(xla°(r1x3 4- r2x4 4- rass)*"2*0, x i x 2 " 0 " " 1 ^ ^ + r2x4 4- r3X5)*"~2a°, 

x2x2 a o""2(nx3 4- r2x4 4- r 3 x 5 ) ^ 2 a o , . . . , x 2 a o ( n * 3 + r 2x4 4- r 3x 5)*- 2 ao) . 

As 7 = (3) 0 (2), we have 2c*o 4- 1 < 3. Hence ao = 1. If a 0 = 1, then / ^ + 1 = 

f>oXi(riX3 4- T2^4 4- 7*3X5)* 4- 61x^x2(^x3 4- r2x4 + r3xs)*~2. Without loss of generality, 

we shall assume that r\ / 0. Suppose first that fc > 3. Consider 

df1 

* f l = *r!6oa?i(ria?3 + r2*4 + r s ^ ) * " 1 
C/X3 

+ (k- 2)r1x2x2(r1x3 4- r 2x4 4- r3x5)*~3 

^ 2 ( ^ ± I ) = 2(* - 2)r1x3(r1x3 4- r2x4 4- r 3 x 5 )*- 3 . 0x3 
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As X-[x2(rix3 + r2x4 + T3X5)*""3] = 0, we have an irreducible s/(2,C)-submodule of 

dimension 4 in J in the following form. 

(*i(ri, x3 + r2x4 + r3x5)k-3, x1x\{r1x3 + r2x4 + r3ar5)*""3, 

x\x2{rxx3 + r2x4 + r3x5)*""3, xf(rix3 + r2x4 + r3x$)k~3). 

This contradicts to our hypothesis J = (3) 0 (2). Therefore we shall assume that k = 2 

f3 = b0xi(rix3 + r2x4 + r3x5)2 + bxx\ x2 

It follows that (3) = {x\, x\x2, x2) C J. Since j£*- = 6o(^i^3 4- r2x4 + r3Xs)2 -f 26iXia?2 

is an element of weight 0 in / , ^ - is a constant multiple of xix2. Thus to = 0 and 

/a1 = biz\z2. 

Since wt-£*— = — 1 = wt^— = urt ^ j , (-gj—, / j , /* ) is at most a 1-dimensional 

vector space. In view of Lemma 6.1, there are constants r4lr$ and r6 such that 

/3"1 = £1X1*2 + cox2(r4x3 -f r5ar4 + r6z5)2. 

Since -£*— = 2cix1£2 -f Co(r4X3 + r5:c4 4- rg^) 2 is an element of weight 0 in 7, ~^— is 

a constant multiple of 2:1X2. Thus CQ = 0 and 

f3
 l = cixiar? 2-

Hence / = hx\x, +f»+clXlxl This implies that ^ = | g , ^ = g and ^ = g 

are elements of weight 0 in I. Thus dim(^f-, ^ - , -§f-) < 1; in particular, dim/ < 3. 

This contradicts to our hypothesis J = (3) 0 (2). 
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If a0 = 0, then /£ + 1 = boXi(rix$ + r2x4 + r3x5)*. Since ^ ^ = b0(rix3 + r2x4 + 

r3X$)k is a nonzero element of weight 0 in 7, we have (1) = ((riX3 + r2x4-hr3X5)*) C 7. 

This contradicts to our hypothesis 7 = (3) 0 (2). Thus we have proved / £ + 1 = 0. 

Similarly we can prove fj~£x = 0. 

For t = 0. 

In this case / = /£ + 1 . Clearly \wi-§£:\ < 1 for all 1 < j < 5. Thus no element in 7 

is of weight ±2. This contradicts to our hypothesis 7 = (3) 0 (2). Hence Case 3 cannot 

occur. 

Case 4. 7 = (3) 0 (1) 0 (1). 

Elements of 7 are linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. 

For \i\ > 4. 

M ^ ± H > 3 for all 1 < j < 5 

=> / J + 1 = 0 -foralll < i < 5 . 

For i = 2. 

^ ^ ± 1 = 1 ^ M ± l = 3 

OX\ OX2 

$Xi 9X2 

=>/fc+i involves only X3,X4 and X5 variables 

Similarly we can prove / ^ = 0. Hence 

/ == /*+l + fk + 1 + /*+l + fk+1 + /*+!• 
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For* = ± 3 , ± l . 

ax 3 0x4 ax5 

dx3 dx4 <9x5 

=£> /fc+i depends only on xj and x^ variables. 

u r f ^ J f = - 1 and U ^ ^ L = i imply * g ^ = 0 = ^ | f . So /<?+1 depends only on 

£3, £4 and £5 variables. Hence 

/ = /*+l(*l>*2) + / * + i ( * l , ^ 

Because dimension of I is 5, | £ = ^ ^ ( x 3 , X 4 , x 5 ) , | £ = ^ k ^ ( x 3 , x 4 , x 5 ) and 

^JL. = ^"fl(g3,a?4>a?5) are three linear independent invariant s/(2,C) polynomials. 

This contradicts our hypothesis / = (3) 0 (1) 0 (1). Thus Case 4 cannot occur. 

Case 5. I = (2) 0 (2) 0 (1). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weights —1,0 and 1. 

For lil > 3 

| ^ d / * ± i | > 2 for all 1 < i < 5 
UXj 

=• £ |*±i = 0 for all 1 < j < 5 
ax, ~ ~* 

=> /fc+i = 0. 
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For i = 2. 

0x2 0x3 0x4 0x5 

6x2 dxs 6x4 dx^ 

=>/|+i depends only on x\ variable 

=^ / | + 1 = cx\ where c is a constant. 

Since k > 2, we conclude / £ + 1 = 0. Similarly we can prove f^x = 0. Therefore we can 

write 

/ = /jb+i + /fc+i + A+i 

urt d*+* = 2 implies ^*+1 = 0. So / £ + 1 does not depend on X2 variable. Since weight 
a *1 4 a 11 

of 3*+* is zero, it follows easily that J
d

k
x
+l is an invariant polynomial. Clearly invariant 

polynomial depends only on £3, #4 and £5 variables. Hence 

/*+l = «l^*(«3,*4,«5) 

where gk(x3,X4,xs) is a homogeneous polynomial of degree k and weight 0. 

It is clear that / £ + 1 can be written in the following form 

i = 0 

where ftjb-2j+i(^3,a?4, £5) is a homogeneous polynomial of degree k — 2j + 1 in #3, £4 

and £5 variables. Let jo be the largest integer such that hk-2j+i(x3ix4}xs) / 0. If 

df° ^° 1 — 1 7 

jo > 2, then we consider the element J
d
h
x
+l = ]T Jx{ x2^k-2j+i(x3, #4,25) in 7. 
1 i = 0 

^ - ° aSct1 = 3^-x2°~ hk-2j0+i(x3, X4> x$) is also an element in 7. Since 

X-.[xlJ0~1hk-2j0+i(x3,X4,x5)] = 0, 
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by applying X+ successively to x2
Jo~" /*jb-2j0+i(x3> x4> x5)> w e Se t a n irreducible 5/(2, C)-

submodule of dimension 2 jo in / in the following form 

(x2
30 hk-2jQ+l(x3,X4,X&),XiX2° ft*-2;0(«3,x4,x5),-. . , X^0 /ljb-2i0 + l ( x 3 , ^4 , ^5))-

Since 2j0 > 4, this contradicts our hypothesis / = (2) 0 (2) 0 (1). We have j 0 < 1 and 

/*+i = hk+i(x3, x4} x$) + xiX2hk-i(x3) x4, xs). 

If j 0 = 1, then hk-i(xsiX4ixs) ^ 0. Without loss of generality, we shall assume 

^ ( x a , ^ , ^ ) . Consider the element 2 g ^ = *^(x3,x4,xi)+x1x2
s%gL(x3,x4,xi) 

in I. X-( Q*.+1) = x i ^ t j ^ C ^ j x4> ^s) *s a^s o a n element in J. So we have an irreducible 

5/(2, C)-submodule of dimension three in J in the following form. 

z 2 ^ * - i / \ dhu-i, , 2dhk-i, NV 
\X2—Q VX3, ^4 , X5J, » 1 ^ 2 - ^ (Z 3 , Z4 , X5J, Xx — (X3 , X4, X5J). 

This contradicts to our hypothesis / = (2) 0 (2) 0 (1). Thus / £ + 1 = /ijb+i(#3,#4,£5). 

Similarly we can prove that 

/JT+I = x2h(x3,x4ix5) 

where /*(x3,x4,X5) is a homogeneous polynomial of degree k. wt( dx+l) = 0 = 

wt( Qx+l) implies the vector space ( y^1, dx+l) is one dimensional. Observe that 

/ = fk+i + fk+i + /JT+I 

= xl9k{X3,X4,X^) + ftjb + l ( x 3 , X 4 , X 5) + X2/jfe(x3, X4, X5) 

i / _ M ± i a n d ^ = ^ i . 
dxi 3xi 6x2 8x2 

Thus (^~-,^~) is a 1-dimensional vector space. It follows that d im/ < 4, which 

contradicts to our assumption / = (2) 0 (2) 0 (1). Hence Case 5 cannot occur. 
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Case 6. 1= (2) 0 (1) 0 (1) 0 (1). 

By the same argument as Case 5, we can prove that 

/ = /jM-i + /*+i + /JT+X 

where f£+1 = *i0*(a?3,*4,a?5), /*+i = ^*+i(*3,*4>*5) and f^x = x2lk(x3lx4lx5). 

First observe that / £ + 1 and fj~+x are not zero, otherwise dim I would be at most 4, 

wt!£±L = wt^^ = wt^^ = 1 implies the vector space ( ^ J £ S ^ £ \ ^ * ) is one 

dimensional. In view of Lemma 6.1, there exist constants ri,r2 and r3 such that 

/jfe+i = *i( r i*3 + r2ar4 + r3*5)*. 

It follows easily that 

(2) = (xi(rix3 + r2x4 + raxs)*"1, x2(ria?3 + r2x4 + rs^s)*""1) C 7. 

Similarly there are constants r4,r$ and re such that 

/ r+i = *2(r4*3 + r5ar4 + r6£5)* 

and 

(2) = (xi(r4X3 + r5x4 + rexs)*""1, x2(r4x3 4- r5x4 + re^s)*"1) C 7. 

Consequently r 4 x 3 + rsx4 + r6#5 = c(rix3 + r 2x4 + r3x5) for some constant c. Thus 

(•7r-» "S—) = ^(r ix3 + r 2 X 4 + r3*5)*, c*(rix3 + r2x4 + r3x5)k) 
OX\ OX2 

= ( ( r l*3 + ^2^4 + r325)*) 

and d im/ < 4, which contradicts to our hypothesis I = (2) 0 (1) 0 (1) 0 (1). So Case 

6 cannot occur. 
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Case 7. / = (1) 0 (1) 0 (1) 0 (1) 0 (1). 

Elements of J are linear combinations of homogeneous polynomials of degree k and 

weight 0. 

For |t| > 2. 

| ^ ^ k l | > i f o r a l l l < j < 5 
OXj 

=* <y±±± = 0 for all 1< j < 5 
OXj 

For t = 1. 

C/X2 # £ 3 OX4 OX5 

5a?2 dxz 6x4 dx$ 

=> / £ + 1 depends only on x\ variable 

/ £ + 1 = cari where c is constant 

=> / j j + 1 = 0 because A: > 2 

Similarly we can prove that fk+x = 0. 

For i = 0. 

In this case, we have / = / £ + 1 . wt§£ = wt^^ = - 1 and wt-§L = w < ^ | ^ = 1 

imply ^ = 0 = -gL. Consequently we have dim I < 3, which contradicts to our 

hypothesis I = (1) 0 (1) 0 (1) 0 (1) 0 (1). So Case 7 cannot occur. 

Lemma 7.2. With the same hypothesis as Lemma 7.1; if dimension of J is 4, then J 

cannot be a s/(2, C)-submodule. 

Proof. We assume on the contrary that 7 is a 5/(2, C)-submodule. 
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Case 1. / = (4). 

This cannot occur. The argument is the same as Case 2 in the proof of Lemma 

7.1. 

Case 2. / = (3) 0 (1). 

By the same argument as Case 4, in the proof of Lemma 7.1, we have 

I t = ^ f e ^ s , * * , * * ) , 1 ^ = ^ f ^ * 3 ' * 4 ' * 5 ) and | £ = ^fej^fas,**,**) a*e invari

ant 5/(2, C) polynomiak. Since / = (3) 0 (1), we have d i m ( | £ , | £ , | £ ) < 1. This 

implies that dim/ < 3, which contradicts to our hypothesis dim/ = 4. So Case 2 

cannot occur. 

Case 3. U = (2) 0 (2). 

Elements of / are linear combinations of homogeneous polynomials of degree k and 

weights - 1 and 1. The same argument as Case 5 in the proof of Lemma 7.1 shows that 

/ ~ /*+l + /jfe+1 + /*+l 

For i = 1 

5xi 9a?2 

=>/i+i depends only on £3, #4 and 25 variables 

=>/fc+1 = 0 because 102(23) = utf(ar4) = urt(35) = 0. 

Similarly we can prove that fj~^x = 0. 



144 STEPHEN YAU 

For i = 0. 

In this case / = / £ + 1 

ox3 dx3 

0x4 0x4 

OX5 OX5 

dxz dx4 8x5 

=> dim / < 2. 

= 0 

= 0 

= 0 

This contradicts to our hypothesis J = (2) 0 (2). 

Case 4. / = (2) 0 (1) 0 (1). 

By the same argument as Case 5 in the proof of Lemma 7.1, we can prove that 

/ = A+i + /*+i + fk+i 

where / £ + 1 = x1gk(x3yX4,x5)y / £ + 1 = A*+i(*3,*4,*5) and / ^ = x2/*(*3,Z4,Z5). 

If / i + 1 and / r + \ were zero, then ^ = ^ = 0 , ^ = ^ | f = 0 a n d ^ = 

^ | ^ , | £ = ^ S | £ = 2Z£±L are s/(2, C) invariant polynomials. This would imply 

that / cannot contain (2). Without loss of generality we shall assume that /]J+1 ^ 0. 

w * ^ ^ = wt^^ = « ; < ^ ^ = 1 implies the vector space ( 5 ^ , 2 ^ , */£±L) is 

1-dimensional. In view of Lemma 6.1, there exist constants r i , r2, and r3 such that 

/*+i = *i( r i*3 + r2x4 + r3x5)k. 

It follows easily that 
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(1) = (riX3 + r2x4 + r3xs)k) C I 

(2) = (xi(ria?3 + r2x4 + r3xB)k-1,x2(riX3 + r2x4 + rs^s)*"1} Q I-

weights of 2 ^ L , Z£LL a n d ?&L a r e e q u a i to - 1 . Henee ^ £ S ^ ^ and ^ ^ are 

constant multiples of ^2(^X3 4 r2x4 4 ^ars)*""1. It follows easily that /fc(a?3, #4,2:5) = 

c(ri#3 4- r2X4 4- ^3X5)* and 

/JT+I = ca?2(ri«3 + r2x4 + ^3*5)*. 

Clearly ^ f L (x3 ,a r 4 , x 5 ) , ^^(x3lx4ix5) and ^ ^ ( ^ 3 , ^ 4 , ^ 5 ) are */(2,C) invariant 

polynomial in I. Observe that 

/ = xi(r1x3 4 r2x4 4- r3x^)k 4- /jfe+i(x3, *4, ̂ 5) 4- car2(riar3 4 r 2x4 4 r3ar5)* 

- — = (riX3 4 r2#4 4- ^#5) 
ox 1 

df t .k 7J = C(riX3 4 T2X4 4" ^3X5) 
0x2 

ft f ft f® 
— = krx[xi{rxx3 4 r2x4 4 rsXs)*""1 4 cx 2(n*3 + r2a?4 + n^s)*" 1] + g f c t l (a?3, *4, *s) 

ft f ft f® 
- — = tr2[xi(riar3 + r2x4 4 r3x5)k~l 4 cx2(r i*3 4 r2x4 4 rsxs)*""1] 4 * + 1 (s 3 , *4, *s) aa?4 a^4 

df df° 
•r— = fcr3[*i(ri*3 4 r2a?4 4 raXs)*""1 4 cx2(r 1X3 4 r2x4 4 ra^)*""1] 4 * + 1 (x3, x4, x5). 
GNP5 0x5 

It is clear that we have 

J C ([xi(rix3 4 r2x4 4 r3x5)fc""1 4 cx2(riX3 4 r2x4 4 rass)*""1]) 0 (1) 0 (1). 

Since (2) = (xi(riX3 + r2x4 4 r3x5)fc~1, x2(r ix3 4- r2x4 4- f^xs)*"-1) C J, there exist 
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polynomial p(xi,x4,X5) £ (1) 0 (1) and constant c\ such that 

x2(rxx3 + r2x4 + rzx^)k~l = ci[xi(rix3 -f r2x4 + r^)*"""1 + cx2(rix3 + r2x4 + f^xs)*"1] 

+ p(x3 ,x4 ,x5) 

=> P(*35 «4,25) = -cia?i(ria?3 + r2x4 + r^xs)*""1 + (1 - cic)x2(r1x3 + r2x4 + ^ x s ) * " 1 

=> ex = 0 and x2(r1x3 + r2x4 + r ^ ) * " 1 = p(x3, x4, x5) 

=> *2(»*ix3 + r2x4 + ra^s)*""1 = 0. 

This contradicts the fact that (2) = (xi(r ix3 -f r2x4 + r3X5)fc""1
)x2(rix3 -f r 2x4 -f 

T3X5)*-1). 

Case 5. I = (1) 0 (1) 0 (1) 0 (1). 

This case cannot occur. The argument is the same as those given in Case 7 in the 

proof of Lemma 7.1. 

Lemma 7.3, With the same hypothesis as Lemma 7.1; if J is a 5/(2, C)-submodule of 

dimension 3, then / is a polynomial in x3, x4 and X5 variables and 

I = ( ^ " ( X 3 , *4, X5)> 0 ( ^ ~ ( X 3 , X4, X5)) 0 ^ - ( X 3 , X4, X5)) . 

Proof. Case 1. J = (3). 

By the same argument as Case 4 in the proof of Lemma 7.1 we have 

/ =/ ib+i(x i > *2) + / * V ^ 

% ^ ( x 3 , x 4 , x 5 ) , ^ ^ ( x 3 , x 4 , x 5 ) and ^ f - ( x 3 , x 4 , x 5 ) are s/(2,C) invariant polyno-

mial in I. Since I = (3), we conclude that ^ + 1 ( x 3 , x 4 , x 5 ) = 0 = ^ + 1 (x 3 ,x 4 ,X5) = 

^ 1 ( x 3 , x 4 , x 5 ) . It follows that /£ + 1 (x 3 ,x 4 ,x 5 ) = 0 and / depends only on xx and x2 

variables. Hence dim I < 2, which contradicts to our hypothesis / = (3). Case 1 cannot 

occur. 
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Case 2. I = (2) 0 (1). 

This case cannot occur. The argument is the same as those given in Case 4 in the 

proof of Lemma 7.2. 

Case 3. J = ( 1 ) 0 ( 1 ) 0 ( 1 ) . 

By the same argument in Case 7 in the proof of Lemma 7.1, we have / = /£+ 1(#3, #4, x$). 

Therefore 

I = (^0*3 ,*4 5 *5) ) 0 (^p(x3,S4,*5)) © (^-(*3,*4,*5)) . 

Lemma 7.4. With the same hypothesis as Lemma 7.1; if I is a s/(2, C)-submodule of 

dimension 2, then / is a polynomial in #3, £4 and £5 variables and 

( ^ r ( x 3 , * 4 , *s)) © T>— (*3, a?4, *5)) or 

/ = < 

Proof. Case 1 . 7 = (2). 

Elements of 7 are linear combinations of homogeneous polynomials of degree k and 

weights —1 and 1. By the same argument as Case 5 in the proof of Lemma 7.1, we can 

prove that 

/ — fk+i + A + i + /jfe+i 
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where / £ + 1 = xxgk{x3, x 4 , x 5 ) , / £ + 1 = hk+i(x3iX4,xs) and / ^ = x2/fc(x3,*4,Z5) 

OXi OX2 OX3 OX4 OX5 

^^^=9k(x3,x4,x5) = 0, ™ - = / t (x 3 ,x 4 ) x 5 ) = 0 

=^/t+i = 0 = fk+l = / f c + 1 

=>/ = 0. 

Hence Case 1 cannot occur. 

Case 2. I = ( 1 ) 0 ( 1 ) . 

By the same argument in Case 7 in the proof of Lemma 7.1 we have / = f%+l(x3, x4, x5). 

Therefore 

r ( | £ ( * 3 , *4, *5)> e | £ ( * 3 , *4, *s)) or 

/ = = \ d ^ ( X 3 , ^ 4 , X 5 ) ) e | ^ ( X 3 , X 4 5 X 5 ) ) Or 

^ d ^ ( X 3 , X 4 , X 5 ) ) ^ ( x 3 , X 4 , X 5 ) ) 
Q.E.D. 

Lemma 7.5. With the same hypothesis as Lemma 7.1; if I is a 5/(2, C)-submodule of 

dimension 1, then / = (ri#3 4- ̂ 2:4 -f rsx^)k+1 for some constants r\, r<i, r3 not all zero 

and 

I = ((n*3 + r2*4 + r3x5)*). 

Proof. By the same argument in Case 7 in the proof of Lemma 7.1 we have / = 

/*+i(*3, *4, a?s). Since (^£(x 3 , a?4, x5), §^{x3,xA, x5), |£-(x 3 , x4, x5)) is 1-dimensional, 

in view of Lemma 6.1, we have / = (7*1X3 -+-7*2X4 + 7*3#5)*+1 for some constants n , r2, r3 

not all zero. Q.E.D. 
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Proposition 7.6. Suppose s/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2 in £i,£2,£3,24 and £5 variables via 

d d 
dx\ dx2 

X- = x2 dxi' 

Suppose the weight of Xi is given by the corresponding coefBcient in the expression of 

T above i.e. 

wt(xi) = 1, ivt(x2) = —1, xvt{x^) = 0, wt(x±) = 0, wt(x$) = 0. 

Let I be the complex vector subspace spanned by J^-, J^-, ^ - , J^-, and J^-, where / 

is a homogeneous polynomial of degree k + 1. If / is a s/(2, C)-submodule, then I is 

one of the following: 

(i). / is a polynomial in £3, £4 and £5 variables and 

i = ( i ) e ( i ) © ( i ) 

= ( ^ ~ ( X 3 , *4, *s)) 0 ( ^ - ( X 3 , * 4 , £5)) 8 ^ - ( * 3 , *4> ^5)). 

(ii) / is a polynomial in £3, £4 and £5 variables and 
Q £ Q £ 

(-J—(*3, x4, a*)) e a— (a*,*4, *s)> or 

( a T " ^ , Z4, x5)> © -5— (x3) x4, x5)) or 
7 = (l-)0 (!)=-{ 

(hi) / = (ri£3 + r2£4 + r3£s)fc+1 where ri,r2 and r3 are constants not all zero and 

J = (ri£3 + r2£4 + r3£5)*. 



§8. PROO F OF THE MAIN THEOREM 

In this section, we shall only give a proof of Theorem 4 in Section 1 because the 

proof of Theorem 1, Theorem 2 and Theorem 3 are similar. 

Theorem 8.1. Suppose s/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2 in 21,22,23,24 and 25 variables via 

. o . d n d A a 
r = 4*1-5— + 2x2-z 2x4-^ 4*s-£— 

ox\ OX2 ox<$ ax5 
d d d d 

X+ = 4xi — + 6x2^— + 6x3^— + 4x4^— 
0x2 0x3 0x4 ax5 

d d d d 
A - = X2-r h 2 3 - h 2 4 - h 2 5 - . 

axi ax2 0x3 0x4 

Suppose the weight of x,- is given by the corresponding coefficient in the expression 

of T above i.e. 

ix;t(xi) = 4, wt(x2) = 2, wt(xs) = 0, wt(x4) = —2, wt(x^) = —4. 

Let i" be the complex vector subspace spanned by J^-, J^-, ^ - , J^- and J^- where / 

is a homogeneous polynomial of degree k -f 1. If / is a s/(2, C)-submodule, then / is an 

invariant 5/(2,C) polynomial in £1,22,23,24 an(^ ^5 variables, and / is an irreducible 

5/(2, C)-submodule of dimension 5. Moreover, we have 

and 

*+(ft) = -4ft. *+(ft) = "6ft - *+(ft) = ~6ft- x+(ft) = ~4ft' *+(ft): 

0. 

Proof. Let us first observe that 

In view of Proposition 2.5, we only need to consider the following two cases. 

150 
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Case 1. / is a homogeneous polynomial of weight 0 and I is an irreducible s/(2, C)-

submodule of dimension 5. 

Elements in / are linear combinations of homogeneous polynomials of degree k and 

weights —4, —2,0,2 and 4. Since / is of weight 0, we have wt{^f-) = —4, wt(-§£-) = —2, 

wt{§^) = 0, wt{§L) = 2 and urf(|£) = 4. We are going to prove that X_/ = 0. 

Observe that 

urf(X_(^)) = 0, t r t (X_(^)) = -2 . 

=*• - X - ( o ) = °> ^ - ("5 ) = Cl Q ' X-K^~) = c2a 
OXi OX2 OX\ OX3 OX2 

X ( ° L ) = eaJ>L x.(—) = <*$£-
8x4 8x3' UX5 8x4 

* & * - / 

8x2 

8 
8x3 

8 
8x4 

(X-f. 

(X-f 

(X-f 

£<*-* 
dxi 

d 
dx2 

8 
dxa 

(Xlf 

(Xlf 

(Xlf 

8x4' 8x3
 3 &r3 

= x_(Ax_/) = 0 

= X _ ( ^ - X _ / ) + ^ - X _ / = (c1 + l)X_(^) = 0 

= *-<£*-/> + £.{x_f) = X_[(C2 + ̂  + (C1 + X)*L 
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= (c2c3 + 2c2 + l ) | ^ 

hx"-D=x-(fa-n+£*-/=*-[<*+D^i+c+1>& 

= (c3c4 + 2c3 + l ) ^ . 

Therefore X £ / does not depend on x\ and £2 variables. Suppose ^ f - p f i / ) is not 

zero. The Ĵ f- = c c ^ -n gf~C^-/) *s a we*ght 0 homogeneous polynomial of degree 

fc in £3, £4, X5 variables. There exists a constant d\ ^ 0 such that ^ - = ^1X3. It 

follows that (x^X^x^Xlix^Xiix^X^x^Xlix^Xlixi)) is a six dimen-

sional linear subspace in J. This contradicts to our hypothesis dim I = 5. Therefore 

we conclude that £§-(X£/) = 0 and Xtf depends only on £3 and £4 variables. We 

next claim that £§-(X£/) = 0. Suppose on the contrary that jjjriX^f) ^ 0. Then 

dx = c c +2c +1 af""(^»/) *s a we*ght ~2 homogeneous polynomial of degree k in £3 

and £4 variables. There exists a nonzero constant cf2 such that -$£- = c/2^4^3""1. It 

follows that 

is a six dimensional linear subspace in J. This contradicts to our hypothesis dim I = 5. 

Therefore our claim ^ - ( X £ / ) = 0 is proved. So X £ / depends only on £3 variable. 

Suppose on the contrary that &(Xlf) # 0. Then | £ - = CieJ2ei+1^;(Xlf) is a 

weight —4 homogeneous polynomial of degree k in £3 variable. But obviously this is 
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not possible. We conclude that j~(X^f) = 0 and hence Xtf = 0. It follows that 

cxc2 +2ci 4-1 = 0 ] 
c2c3 4-2c2 +1 = 0 J (8.1) 
C3C4 +2c3 +1 = 0 J 

Suppose C4 -f-1 ^ 0. Then equation (8.1) implies C3 -f 1 ̂  0, C2 + 1 ^ 0 and c\ + 1 ̂  0. 

It follows that & = ^£-(X-f), Ml = 5 b & ( * - / ) , ft = • & & ( * - / ) »<» 

~j£- =r — l ~ J L ( x _ / ) are homogeneous polynomial of degree k in 22,23,24 a n d 25 

variables. This implies that ^ ^ = 0 = fa ix := fa lx = §P"* ^° / ^ o e s n o * i n v ° l v e 

2?, X1X2, 21,23 and 2124. We can write / in the following form. 

k 4- 1 fc-i fc-n 
X-f = c—z— xx

2 X2X52 + X-(flfjb+i(a?2,a?3,*4,*5)) 

where c is a constant and #*4.1(22, £3,24,25) is a homogeneous polynomial of degree 

k 4- 1 and weight 0. 

£ ( * _ / ) . (C + DIJL 

_ f c 4 - l AL=JL * * i , d r v • • N1 , t 1 . fc4-l *=a *±± 

^ C - y - X ! a Xg2 +_[X_^(x2,X3,^4,«5)j = (ci4-l)c--y--Xi a x5
 2 

=> ^[X»^(x2,X3,X4,X5)] = CiC---^--Xii^iX5
3 . 

Notice that 0§-X_0(22,23,24,25) involves only 22,23,0:4 and 25 variables. So by the 

above equation, we have c = 0 because ci / 0 by equation (8.1). This means that / 

depends only on 22,23,24 and 25 variables. Hence we have J^- = 0 and dim I < 4 

which contradicts to our hypothesis d im / = 5. 

The remaining case to consider is the case C4 4- 1 = 0. In view of equation (8.1), 

we have also c3 4- 1 = 0 = c2 4- 1 = ci 4- 1. Thus we have -^(X-f) = 0 for all 1 < 

i < 5. Consequently we have X-f = 0, * _ ( £ ) = 0, X _ ( j £ ) = - & , * - ( & ) = 
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Similarly we can prove X + / = 0,X+(£) = - 4 & , X + ( | £ ) = - 6 ^ , X + ( J £ ) = 

" • f t . * + ( & ) = " 4 f t and X + ( J £ ) = 0. 

Case 2. / is a polynomial in #2, #3 and #4 variables of weight 0 and J is an irreducible 

submodule of dimension 3. 

Elements of I are linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. 

=> urt[X_(|£)] = - 4 , urf[*_( |£)] = - 2 , wt[X.(^-)] = 0 

ox2 ox$ 0x2 0x4 ax3 

&(*-/) = *-(&) +ft =° 
£(*./) = *-(ft) +£ =(61 + l )^ 
£(*-/) = X-(ft) +ft =(62 + l)ft 
&(*./) = X-(ft) +ft =ft 

£(*!/) = *_(£-*_/) + £-(*_/) = 0 kdz2 

_5^ 

£c*fl-*-<£*-»+&(*-/>-• 

5X4 

5 5 df-

(8.2) 

5/ 
(*-/) = *-(jcr*-/> + JCT(*-/) = *-K*» + ! ) S + (»i + 1 ) £ -k5ar4 

= (6162 + 26i + 1) 

0Z; 

8x2 

dx3 dxi 

&vin=x-i&x-n+£<*-/>=*-<&+(•,+u£ 
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=> Xtf involves only X4 and X5 variables 

=> Xlf = d1x\ + d2xs because wt(Xlf) = - 4 . 

=> X i / = 0 because degree of X £ / is k + 1 > 3 

(bxb2 + 26i + l = 0 i.e. *i = - | 
^ \ 262 + 1 = 0 62 = - f 

From (8.2) we have 

f ft = 3&(X-/) 

ft = 2gf7(x_/) 

ft = &(*-/) 

=> / does not involve ^1,^5,^2,^2^3 a*id ^2^4 

=> / depends only on £3 and x4 variables because degree of / is k 4-1 > 3 

=> / = 6a?3+1 because wt(/ ) = 0 

=» d i m / < 1. 

This contradicts to our hypothesis dim I = 3. So Case 2 cannot occur. Q.E.D. 

=> < 

T h e o r e m 8.2. Suppose s/(2, C) acts on the space of homogeneous polynomials of 
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degree k > 2 in xi,X2,X3,x4 and X5 variables via 

T = 2£i-r 2a?3-5 1- X*~Z X*~Z 
axi 0x3 0x4 ox$ 

X+ = 2*13— + 2x2^— + x4 — 
0x2 0x3 C/X5 
5 d d 

A_ = X2-5 h X3~ h X5- . 
axi #x2 0x4 

Suppose the weight of x,- is given by the corresponding coefficient in the expression of 

r as above i.e. 

wt(x\) = 2, wt{x2) = 0, ^ (23) = —2, wtf(x4) = 1, wt(xs) = — 1. 

Let J be the complex vector subspace spanned by Jj£-, J^-, J^-, J^- and J^ , where / 

is a homogeneous polynomial degree k -f 1. If / is a s/(2, C)-submodule, then either 

(i) (a) / is an invariant 5/(2,C) polynomial in xi,X2,X3,x4 and X5 variables and 

I = (3) 0 (2). Moreover, we have X _ ( f t ) = 0, X _ ( f t ) = - f t , X _ ( f t ) = 

" f t . * - ( f t ) = °. * - < f t ) = " f t » d X + ( f t ) = - 2 f t , X + ( f t ) = - 2 f t , 

x+( f t ) = o, x+<ft) = - f t , x+( ft> = o. 

(b) / = g -f c i x | + C2X4X5 -f c3x4x§ + c4xf where £ = 2x^§ - 2x2x4x5 -f x 3 x | is 

a 5/(2, C) invariant polynomial and 

1 = W ai? 5x7' ai7 axT} = (3) e (2) 

= (x^, X4X5, x^) 0 (x2x4 - 2xix5, x3x4 - x2x5) 

or 

(ii) / is a 5/(2, C) invariant polynomial in xi, X2 and X3 variables and / = (3). Moreover 

we have A L ( f t ) = 0, X _ ( f t ) = - f t , X _ ( f t ) = - f t and X + ( f t ) = - 2 f t , 

*+(&) =-2ft, *+(&) = 0. 
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Remark. In Case (i)(b), we have 

, ( * + £ * „ . . - S i , . , X3+ClXi + C2X„Xi>X5) = f(Xl,X2,X3,Xi,X&). 

Proof. Let us first observe that 

te?*-1 - °' fe,x-] - ^ ? te,x-] - in' [dx~4'x-] - °' te,x-] - w< 

In view of Proposition 3.6, we only need to consider the following two cases. 

Case 1. / is a homogeneous polynomial in £i,£2>#3>£4> a n ^ x5 variables of weight 0 

and / = (3) 0 (2). 

Elements in J are linear combinations of homogeneous polynomials of degree k and 

weights —2,0,2 and —1,1. Since / is of weight 0, we have 

OX\ 0X2 OX3 OX4 OX5 

^wt{X_ J l ) = _4, wt(X_ | £ ) = _2, wt{X_ *L) = o, *(*_ J£) = -3, 

df _ df _ df df _ df df df a / 
=>A_-r— = U, A..-T— = Ci~—, A_-£— = C2^—, A _ - — = 0, A - — = di~— 

OXi 0x2 OXi 0x3 0x2 0x4 0x5 0x4 
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&(*- / ) = *-<&) + f t = (c + l)ft 

£(X_/) = X_(ft) + ft = (<2 + Dft \ (83) 

&(*- / ) = *_f t = 0 

£ ( * - / ) = * - f t + f t = (<*!+l)ft J 

^hxlf)^=hxlf)=hxlf)=ly-f) 

Clearly Xtf is a polynomial in £3 variable only. If C1C2 4- 2ci -f 1 / 0, then J^- = 

c c J-̂ C +i5§"(^-/)- ^° sf* ** a polynomial in £3 variable also. As weight of ̂ - is 

—2, we have J^- = dx$ where d is a constant. Since d e g ( ^ ) = k > 2, we have d = 0 

and ^ - = 0. This implies dim J < 4, which contradicts to our hypothesis / = (3)0(2). 

We conclude that cic2 + 2ci +1 = 0 and hence ^(Xlf) = 0. It follows that Xlf = 0. 

From (8.3) we know that X_ / is a polynomial in £2, £3 an<J #5 variables. Since 

wt(X^f) = —2, there are constants 61,62 such that X_ / = 6i£*£3 *f l>2x2~lxl- The 

fact that 

Xlf = IrftixJ"1^ + (* - l)62x^2£i£3 = 0 

implies 62 = 63 = 0 and 

X M- = --£L x ^L = _J>L an( j x 

Similarly we can prove X 

'. *+<ft) = -ftand *+(ft) = 0 

hence X-f = 0. By (8.3) we have ct = - 1 = c2 = di. Thus 

a/ and X M. = -2L 
dX2 ~~ dx& dx+ 

+/ = 0, *+(ft) = -2ft, *+(ft) = "2ft, *+(ft) = 

Case 2. / is a homogeneous polynomial in *i,X2 and X3 variables of weight 0 and 

7 = (3). 
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Elements in J axe linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. Since / is of weight 0, we have 

wt§fr-2'wttr°'wtlfs=2 

*v*(X-*L) = -4, u,«X_fL) = -2, Wt(X.§L) = 0 

dx\ ' 3x2 dx\' dxz 0x2 

vskip!2pt 
d 

dxi 

&(*_/) = X-(ft) +jL + {ai + l)%\. (8.4) 

&(*./) = x_(&) + & + <«» + i ) f t J 

So X . / is a polynomial in x^ and #3 variables. Since wt(X-f) = —2, there are 

constants 03 such that X - ( / ) = 03^2^3- If ai + 1 = 0, then ^ ( X - / ) = 0 by (8.4). 

On the other hand ^f-(-X"-/) = fca3#2~la?3- ^ follows that a3 = 0 and hence Xf = 0. 

If 02 + 1 7̂  0, then in view of (8.4), we have £ ~ ( X _ / ) = 03X2 = 0. This implies 03 = 0 

a n d X - / = 0. 

It remains to consider the case a\ + 1 ^ 0 and 02 + 1 ^ 0. The second equation 

(8.4) implies 

df ka3 

dx\ a\ + 1 x2 xs 

r has t i , x 
=>/ = , tg iS2 *3 + flf(*2, a?s) ai + 1 

&r2 "" ai + r 
5(7 

(*- l )x ia:5 2a?3 + -5— (x2 ,x3) . 
5ar2 

In view of the third equation of (8.4) we have 

k{k - l ) a 3
 2

 tgia?2 2*3 = 03*2 - (a2 + 1)~— (x 2 i x3). 
CLi + 1 a#2 
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This can happen only when az = 0, i.e. X-f = 0. This implies a\ = — 1 = <*2. Hence 

X-(dx2~) = "an* X~(dx3) = ~dx2-

Similarly we can prove that X+f = 0 and X + ( J £ ) = - 2 J £ , X+(%L) = - 2 j £ , 

Theorem 8.3. Suppose 5/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2 in #1,22,£3, #4 and x$ variables via 

o d 6 d 0 d 

r = 3X1-T— + x2-£ ^3-5— - 3x 4 T— 
axi C/X2 C/X3 C/X4 o 9 A d 0 3 X+ = 3x! — + 4*2-3— + 3 a : 3 ^ — ax2 ax3 ax4 
d d d 

X- = X2-5 1" ^3-5 h ^4-^—• 
axi ax2 0x3 

Suppose the weight of x,- is given by the corresponding coefficient in the expression of 

r as above, i.e. 

wt(x\) = 3, urt(x2) = 1, wt{xz) = —1, ti;tf(x4) = —3, wt(x$) = 0. 

Let J be the complex vector subspace spanned by J^-, ^ - , J^-, J^-, and J^-, where / 

is a homogeneous polynomial of degree k -f 1. If 7 is a 5/(2, C)-submodule, then one of 

the following occur, 

(i) / is a 5/(2, C) invariant polynomial in Xi,X2,X3,x4 and X5 variables and I = 

(4) 0 (1). Moreover we have 

X £L-Q X &---2L X &---1L X 2L--2L v JtL - n and 

X+l£ = "~3I^' X+§k = "~4I£' X+l£ = ~3!£ ' X+l£ = °> X+l£ = °' 
(ii) / is an 5/(2, C) invariant polynomial in xi , X2, X3,X4 and X5 variables; and I = (4). 

Moreover we have 

X-dx1 = °> ^ - ^ = ~d77' ^-0*3" = ~-dx2> X-dx4
 = ~W; 

x+& = -3ft, *+J£ = -4j£, X+J£ = -3, X+J£ = 0. 
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(iii) J = (1) and / = cx\+l where c is a nonzero constant. 

Proof. Let us first observe that 

In view of Proposition 4.6, we only need to consider Case (i) when / is a homogeneous 

polynomial of weight 0 in 2i,£2i£3>#4 and x& variables and I = (4) 0 (1). The proof 

of case (ii) is the same. 

Elements in / are linear combinations of homogeneous polynomials of degree k and 

weights —3, — 1,1,3 and 0. Since / is of weight 0, we have 

df df df df df 
wtJ = . 3 , wtJ = - i , wt-±- = 1, uft-J- = 3, wt-±- = 0 

OX i 0X2 UX3 OX4 OX5 

=> wtX_ %L = - 5 , wtX- P- = -3 , ' wtX- -1^- = - 1 , urtX. ^ = 1, wtX- 4^- = - 2 
aa?i a«2 #£3 #£4 5x5 

ox\ 0x2 oxi oxz 0x2 0x4 0x3 9x5 

£(*_/) = *_(&) +f t = (d + l)& 
£(*_/) = X(J£) + |L = (C 2 + 1)|L > (8.5a) 
£(*_/) = *_(£)+ & = (* + !)& 
£(*_/) = *-(&) = 0 

£ < * / > = *-<£<*-/)> + ̂ . / = (clC2 + 2Cl + 1) g . 
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£(«/> = *-(£(X-/»-o 
=> Xtf is a homogeneous polynomial in £3, £4 variables of weight —4 

=> X £ / = cfixl + d2x3a?4-

Since degree of X l / i s ib+1 > 3, we have Xlf = d iz | . If rfi / 0, then z§ = ^ a f j A T i / 

is an element in J. It follows that 

{Zxix\ + 822*3, x2x\, x\, x\xA, x3xl, xl) 

is a six dimensional subspace in / . This contradicts to our hypothesis dim J = 5. Thus 

we have Xtf = 0. Consequently we have 

cxc2 + 2ci + 1 = 0 = c2c3 + 2c2 + 1. 

Therefore either both Ci,C2 and C3 are — 1 or both C\,c2 and C3 are not — 1. We claim 

the latter case cannot occur. Suppose on the contrary that c\ ^ — 1, c2 ^ — 1 and 

c3 ^ —1. From (8.5a), we know that ^ - , j£- and -$£- are polynomials in £2,23 a n ^ x4 

variables. Hence we have 

92f = d2f = d2f = d2f = a - 2 / ^ 2 /
 = p 

<9zf dx^dxi 8x\8x2 dx$dx2 8x18x3 8x58x3 

Consequently / does not involve x\,xiX5,x\x2)x\X3,x2X5 and X3X5. It follows easily 

that 
/ = C4X1X4 + <t>k + l(x2> 3 3 , 3 4 , 3 5 ) 

where ^2+1(x2,33, £4,0:5) is a homogeneous polynomial of degree k + 1 and weight 

0. Since / is a homogeneous polynomial of degree k -f 1 > 3, we have c4 = 0 and 

/ = ^2+i(32,33,x4, £5). Thus we have J^- = 0 and d im/ < 4. This contradicts to our 

hypothesis / = (4) 0 (1). 
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In conclusion, we have c\ = — 1 = c^ = C3 and ^ | - ( X _ / ) = 0 for all 1 < t < 5. So 

X-f is necessary zero, and we have 

dxi ' " 5x2 dxi' 8x3 8x2' 8x4 8x3' " 8x5 

Similarly we can prove that X + / is a zero and we have 

df _ df df _ df df _ df df _ df _ 
x+d^ ~ ~3a^' x+dx~2 ~ ~ 4 ^ ? x+dT3 " ~ 3 ^ ? x+di~4 ~ °' x+dx~5 ~ °-

Theorem 8.4. Suppose 5/(2, C) acts on the space of homgenous polynomials of degree 

k > 2, in Xi,X2>#3>#4 and x5 variables via 

8 8 8 8 
8x\ 8x2 8x3 8x4 
d d 

X+ = xi (- x3-z— 
0x2 0x4 
9 d 

Suppose the weight of x,- is given by the corresponding coefficient in the expression of 

r above, i.e. 

Wl(xi) = 1, Wt(x2) = — 1 , Wt{x3) = 1, Wt(x4) = — 1 , Wt(xs) = 0. 

Let I be the complex vector subspace spanned by J£-, J^-, ^ - , J^-, and ^ - , where / 

is a homogeneous polynomial of degree k + 1. If J is a 5/(2, C)-submodule, then either 

(i) / is a 5/(2,C) invariant polynomial in xi ,x2,X3,x4 and x5 variables and I = 

(2) 0 (2) 0 (1). Moreover we have 

oxi 8x2 dxi 8x3' x8x4/ 8x3 8x$' 

and 

X (df\- d* x <df > n x (d^ d* x 1 d* \ n x <d* \ n 
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or 

(ii) / is a s/(2, C) invariant polynomial in x\, x*i, #3> and £4 variables and I = (2)© (2). 

Moreover we have 

*-<&>- »• *-<£> • - & *-<& • »• *-<£> - - & *-<&>=• 

and 

*•<&> • & *•<&> - •• * • < & = - & * • < & = • • *•<£> - • 

or 

(iii) / = ex*"1"1 where c is a nonzero constant. In this case / = (1). 

Proof. Let us first observe that 

[£.*-l-fc 

In view of Proposition 5.7, we only need to consider the following two cases. 

Case 1. / is a homogeneous polynomial of weight 0 in xi,X2,X3,X4 and x$ variables 

and I = (2) 0 (2) 0 (1). 

Elements in / are linear combination of homogeneous polynomials of degree k and 

weights —1,0 and 1. Since / is of weight 0, we have 

ctei C/X2 C/X3 024 
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OXi 

x ^f _9f df 

OX2 OXi OX3 

OX3 

8x4 dxi 8x3 

df 
x-7r- = ° 

ox5 

- hx-»=*-€?=« 
9 <y f\-y <9f\ + df - r , + u9f 4., df 

dT2
{x~f) - x - f e } + STi -(C1 + l)Wx

 + C2dx~3 

9 (Y n - y (9f\+ 9f -r 9f -uf, +Udf _(*_/) _*_(_) + _ _ c 3 _ + (C 4 + 1 ) _ 

£(*-/) «*-(£>«o. 
=> X~f depends only on x^ and X4 variables 

=> X~f = C5X2 + ceX2X4 + C7X4 because wt(x-f) = —2 

=> X _ / = 0 because degree of X^f is greater than 2 

It follows that ci = - 1 = c4 and c2 = 0 = c3 i.e. X _ ( | £ ) = - | £ - , and X - ( | £ ) = 

Similarly we can prove that X + / = 0, - M & ) = - £ £ , X + ( g £ ) = 0, * + ( & ) = 

~l£. *+(*£) = 0 and X+(J£) = 0. 

Case 2. / is a homogeneous polynomial of weight 0 in #i,#2,#3, and X4 variables and 

/ = (2)e(2). 
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Same argument as above shows that / is an s/(2,C) invariant polynomial with 

properties listed in (ii) of our theorem. Q.E.D. 

Theo rem 8.5. Suppose 5/(2, C) acts on the space of homogeneous polynomials of 

degree k > 2 in £i,£2>£3>£4> and x$ variables via 

r = 2x i^ 2 X 3 T -
OXi OX3 

X + = 2 * 1 ^ + 2*2 T £ -
0X2 OXz 

d d 
X- = X2T, h # 3 ^ • 

OXi OX2 

Suppose the weight of X{ is given by the corresponding coefficient in the expression of 

r above i.e. 

wt(xi) = 2, wt(x2) = 0, wt(x3) = - 2 , urf(x4) = 0, tirf(s5) = 0. 

Let I be the complex vector subspace spanned by ^ - , ^ - , ^ - , ^ - and ^ - , where / 

is a homogeneous polynomial of degree fc + 1. If J is a s/(2,C)-submodule, then / is 

one of the following: 

(i) (a) I = (3) 0 (1) 0 (1) and / is a s/(2, C) invariant polynomial. Moreover we have 

X _ ( f t ) = 0, X _ ( f t ) = - f t , X _ ( f t ) = - f t , X _ ( f t ) = 0, X _ ( f t ) = 0 

and 

*+<&) = "2ft. *+<&) = -2f t . *+(&) = 0, *+<ft) = 0, *+(ft) = 
0. 

w , .(«.(„.(„_£,£.£,£.£, 
= (a;i(ar4 + ra;5)t~1, x2(x4 + rx5)k~l, x3(x4 + rx5)k~1) 

e((*4 + rx5)fc 8 ((* - l)di(*l ~ 2zi*3)(*4 + r i 5 ) * - 2 + kd2x5(x4 + rx5)*_ 1) 
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where 0(xi,X2,X3,x4,x5) = di(x\ - 2xix3)(x4 + rxs)*""1 + ^2*5(24 + rx5)* -f 

^3(^4 + r»5)fc+1 is a $1(2, C) invariant polynomial with d\ ^ 0 and d2 7̂  0; and / = 

g{xi, x2, x3, x4, x5) + cixi(x4 + rx5)* + c2x2(x4 + rx5)* + c3x3(x4 + rx5)* 

= (xi(rx4 + x5)*~'1, x2(ra?44-X5)*""1
) x3(rx4 + xs)*"1) 

0{(rx4 + x5)*) 0 ((* - l)cfi(xa - 2xix3)(rx4 + X5)*-1 + kd2x4(rx4 + ^s)*"1) 

where 0(xi,x2,x3,X4,x5) = c?i(x| - 2xix3)(rx4 + X5)*"1 + d2x4(rx4 + x5)k + 

c?3(rx4 + x$)k+l is a s/(2, C) invariant polynomial with cfi ^ 0 and d2 ^ 0; and / = 

g(xi > *2, ^3, ^4, ̂ 5) + cixi(rx4 + x5)fc + c2x2(rx4 + £5)* + c3x3(rx4 + x5)*. 

(ii) I = (3) 0 (1) and / is a s/(2, C) invariant polynomial in xi ,x2,X3,x4 and X5 

variables. Moreover we have 

and 

(iii) I = (3) and / is a s/(2, C) invariant polynomial in xi,x2 and #3 variables. Moreover 

we have 

and 

<9xi 5x3 OX2 OX3 OX3 

(iv) J = (1)0(1) = ( |£(X4, x s ) ) 0 ( | ^ ( ^ 4 , * s ) ) and / is a 5/(2, C) invariant polynomial 

in x4 and x5. 

(v) J = (1) = d ^ ( x 4 , x 5 ) ) or ( ^ ( x 4 i « s ) ) and / = (cix4 + c2X5)*+1 for some con

stants c\ and c2. 
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Finally, 5/(2, C) invariant polynomial is of the following form 

/ = ^ ( x 2 ~ 2 a ? i x 3 y ?*+i-2i(z4,s5) 

where qk+i-2j (#4> £5) is a homogeneous polynomial of degree k -f 1 — 2j in £4 and £5 

variables. 

Remark . In (i) (b), after linear change of coordinate, / becomes a polynomial of the 

form 

di(xl - 2a?ix3)(x5 + rxs)*"1 + </2x5(x4 4 rx5)* (8.5b) 

or 

di(x^ - 2xlxz)(xA + rxg)* ' 1 4- <*3*4(*4 + rs 5 )* (8.6) 

In fact 

/ ( * i + ^ " ( ^ 4- rx5) , x2 - 2j"(x4 4 rx5) , x3 4 23"(«4 4 rx5) , z 4 ,x 5) 

= d\(x\ - 2xix3)(x4 4 rx5)k~l 4 cf2x5(x4 4 rx5)* + J3(x4 4 rx 5 )*+ 1 

= 0(^1, Z2>*3, £4,^5) 

where d3 = cfe 4 ^ - ^ - . If d2 4 r J 3 = 0, then 

df2 4 rci3 d2 4 rrf3. d3 
0(*i,a?2,*3, — ^ *4-, — j 1 * 5 - - r ( x 4 4 rx 5 ) j ) 

"2 "2 a2 4 rd3 
=di{x\ - 2xix3)(x4 4 rx*>)k~l + (rf2 4 rJ3)x5(x4 + rx5)*. 

If <f2 4 rd3 = 0, then 

0(x i ,x 2 ,x 3 ,x 4 ,x 5 ) = dx{x\ - 2xix3)(x44rx5)*"~1 - rd3xs(x4 4 rx5)* 

4<*3(x4 4 rx 5)*+ 1 

= d i (x | - 2xix3)(x4 4 rx5)k'1 4 d3x4(x4 4 rx^"1. 

Similarly in (i) (c), after linear change of coordinate, we can put / in the form of 

(8.5b) or (8.6). 
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Proof. Let us first observe that 

I^.*-]-0.^-]=.^,[^.X-]-^.[j|;.X.]-W^,X.]-0. 

In view of Proposition 6.7, we only need to consider the following three cases. 

Case 1. 7 = ( 3 ) ® ( 1 ) 0 ( 1 ) and / is a homogeneous polynomial of weight 0. 

Elements in J are linear combinations of homogeneous polynomials of degree k and 

weights —2,0 and 2. Since / is of weight 0, we have 

* wtix- l£>=-4 > *<*- $h=~2'wt{x- ^ = ° -

^ Y df n V
 df °f v d* df df df 

aari 0x2 0x1 0x3 0x1 0x4 0x5 

* - & : - C 5 3 V X - ^ - < * « J : (87 ) 

£<*-/> = *-<&>-«.& (M) 

=>* ^ - / does not involve #i variable. 
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Since the vector space (^(X-f), ^ P ^ - / ) , ^(X-f)) is at most one dimension, 

in view of Lemma 6.1, there are constants n , r2 and r3 such that X-f is a polynomial 

in x3 and (r ix2 4- r2x4 + r3x5) . As weight of X„f is —2, we have 

J*L/ = x3(r1x2 + r2x4 + r3x5)*. 

We claim that ci -f 1 = 0. Suppose on the contrary that c\ -f 1 ^ 0. Then 

9a?i ci + 1 3x2 

' x3{r\X2 + r2a?4 + ^3X5) 
r i k „ / „ _ , „ _ , „ _ ^k-l 

ci + 1 

=* / = —7-T x i x 3 ( r i x 2 + r2a:4 + r3X5)*~1 + 0*+i(x2,x4,x5) 
Ci 4- 1 

where gk+i is a homogeneous polynomial of degree k + 1 and weight 0 in x2,X4,X5 

variables because weight of / is zero. It follows that 

df _ rfo(fc - 1) fc_2 &/*. 
-5— = ——xiXs(riX2 + r2x4 + r3x5J + - ^ -
dx2 ci + 1 ox 

X.(- r—) = 1 \ a?2g3(rix2 4- r2x4 + r3x5)*~ 
0x2 ci + 1 

-I xix3(r ix2 + r2x4 + r3x5) + A _ - 5 (x2, x4, x5). 
Ci + 1 ax2 

Since wt(jfa) = —2, ^ - is a nonzero element in (3) C / . Hence we have r\ ^ 0. The 

equation X-(-$£-) = c i ^ - implies that 

ci + 1 
^ i x i ( r 1 x 2 4 r 2 x 4 - f r 3 X 5 ) * 

r f o ( f c - l ) , xjb-.2 v dgk+i,M v 
= ——x2X3(riX2 + r2x4 H-r3x5) + A_ — (£2,24,25) 

ci + l 0x2 

ciV\k , \fc—1 
-"7X3(rix2 + r2X4 + r3X5)* \ ci + 1 

The left hand side of the above equation depends on Xi, while the right hand side does 

not involve x\ variable. This can happen only if k = 2. Therefore 

2rx 

ci + 1 
XiX3(riX2 + T2«4 + ^£5) + 53(^2, X4, X5) 
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df 2n . . 
=> -X = —7Xi(riX2 + r2X4 + r3X5) 

dx3 ci + 1 
df _ 2r? 8g3 

dx4 - c1 + lXlX3+dx4
{X2'X4'Xs) 

df 2r ir3 dg3 . . 
oil ss^+T*1*"+a^(X8,*4,*,) 

A - ( - T — ) = —x 2 ( r i x 2 4- r 2x4 4- r3x5) 4- "-7*1X3 

9 / 2rxr2 5flf3x x 

*-W = ^TTT*2*3 + *- a^(X2'*4' X5) 

9 / 2rir3 t v d93y v 

In view of equation (8.7), we have 

2 r ' -x2x3 + X . * * ( , „ x4>x5) = ^ x a ( n . , + r2x4 + r3x5) ci 4-1 ax2 ci 4-1 

2ri , x 2ri 2r? , x —7X2(^X2 4- ^ x 4 4- 7*3X5) 4 r-rXiXa = 7-7(^1^2 4- T2C3 4- r3C4JXi 
ci 4-1 • ci 4-1 ci 4-1 

4-c2 ^—(x 2 , x4, x5) 4- c3 ̂ —(x2 , x4, x5) 4- c 4-—(x 2, x4, x5) 

—--7X2X3 4- A - -r—(x2, x4, x5) = —--7X3(^x2 4- r2x4 4- r 3 x 5 ; 
ci 4-1 0x4 ci 4-1 

2r i r 3 t v
 d93, x 2ric6 

— x 2 x 3 4 - A -—(x 2 , x 4 , x 5 ) = — x 3 ( r i x 2 4-^x44-7*3X5) 
ci 4-1 5x5 ci 4-1 

X_ « » ( « „ , « , „ ) = ^Lx3(rlX2 + r 2x 4 + r3x5) - - M - x 2 x 3 
C/X2 C\ 4- 1 Ci 4~ 1 

v dg3, N 2ric5 , . 2rir2 
A -—(x2,X4,x5) = -Tx3(r iX2 4-r2X4 4-r3X5) --7X2X3 

C/X4 ci 4-1 ci 4-1 
v
 d93, 2rxc6 2rxr3 x--«—(*2,x4,x5)•= --7X3^1X2 4-r2x4 4-r3x5) -7X2X3 

ax5 ci 4-1 ci 4-1 
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c2 J-^(*2> x4, x5) + C3^(a r2 , «4, x5) + C 4 ^" ( a ? 2 >* 4 ' * 5 ) 

2ri 
x2(rix2 + r2x4 + r3x*>) Ci + 1 

and 

n = TiC2 4* T2C3 + T3C4 

2ricic2 / , , x 2c2r^ 
=> T7-xz(riX2 4- r 2x4 + r^xs) --72:2X3 

c\ 4- 1 ci 4-1 

, 2ric5c3 2c3rir2 
4 rT- x3Cr i x 2 + ^2X4 + r3X5j —X2X3 

ci 4- 1 ci 4-1 

2r!C6c4 2c4r!r3 4 r - r x 3 (7 i2 2 4- r2X4 4- r3xs) ;—pX2X3 ci 4- 1 ci 4-1 

2ri 
- -X- [x2(rix2 4- r2x4 + r3x5)] 

ci + 1 

=> (cic2 + C3C5 4- c4c6)x3(r1X2 4- r2x4 4- r3x5) - {c2rx 4- c3r2 4- C4r3)x2X3 

= a?3(riX2 4- T2a?4 4- r^xs) 4- 7*1X2X3 

=> [ri(cic2 4- C3C5 4- c4c6) - 3ri]x2x3 

4-[r2(cic2 4- C3C5 4- C4C6) - r2]x3x4 

4-[r3(cic2 4- C3C5 4- c4c6) - r3]x3x5 = 0. 

Since r.i ^ 0, we have C1C2 4- C3C5 4- c4C6 = 3, r2 = 0 = r3, 

2r? 
/ = ~ T X I X 2 X 3 + 03(x2, x4, x5). 

ci 4- 1 

Thus X1X2 = ^ r -far is an element in J. By applying X+ and X- successively on 

X1X2, we have an irreducible s/(2, C)-submodule of dimension 5 in / of the following 

form 

fai, xix2, X2 4- X1X3, x2x3, x\). 
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This contradicts to our hypothesis 7 = (3) 0 (1) 0 (1). Therefore our claim c\ -f 1 = 0 

is established. 

We next consider the case C5 ^ 0. In this case, we can write -g~(X^f) = 

c* Ihr(X-f). It follows that X-f is a polynomial in #3 and X4 -f rx$ where r = |*. In 

fact, since weight of X _ / is —2, we have 

X„f = 0x3(0:4 + rxs)*. 

From (8.8), we have 

5xi c5 8x4 

= —x3(x4H-rx5)A:"'1 

c5 

=> / = — *i*3(*4 + rxs)k-1 + hk+1(x2ix4ix5) 

where ftfc+i is a homogeneous polynomial of degree k -f 1 and weight 0 in £2,24, #5 

variables because weight of / is zero. It follows that 

9JL = cJ^XiX3{x4 + rX5)k-2 + aH^{x2X4>X5) 

X--^-2=X.^(x2,x4,x5) 

* - 1 £ = Cjilr1x2x3(x4 + rx5)fc~2 + X_ * f c f (*2, x4, x5) 
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X~ W* = £ M S ^ X 2 a ! 3 ^ 4 + rx^"~2 + X~ ^ ( * 2 > * 4 ' I 5 ) -
In view of (8.7), we have 

X- *&?(**> *4>*«) = ^ s f a + rxs)*"1 

§|x2(*4 + rig)*"1 = c2^*«-(*1,*4,«5) + c»e*e
(*~1)«i«3(«4 + ^ s ) * - 2 

+ c 3 ^ f - ( « 2 , *4, *s) + eiCkik
s-1)rx1x3(x4 + rx5)*-2 

&&=Hx2xs(x4 + rx5)*"2 + X. ^ * f ( x 2 , x4, x5) = ckx3(x4 + rxs)*"1 

sHt=Hrx2xa(x4 + rx5)k~2 + X_ ^ f (x2) x4) x5) = ^ x 3 ( x 4 + M * ) * - 1 

=*• X- T ^ f o . *<• *6) = ^ * 3 ( * 4 + r*«)*~l 

* - ^ ( * 2 > * 4 ' X 5 ) = ^ * 3 ( * 4 + rzs)*-1 - £ i^ ia:2^3(a!4 + rx5)*"2 

* - *&f (*2 , *4, *s) = c-*£xz{x4 + rxs)*"1 - e-k^rx2x3(x4 + rx5)*"2 

c a ^ f + c 3 ^ + ^ 4 ^ = %x2(x4 + rxs)"-1 

=>• cfc(*8~1?(c3 + rc4)xix3(x4 + rx5)*_ 2 = 0 

Ijfoea + c3c5 + c4C6)x3(x4 + rx5)*_ 1 = X - [ £ x 2 ( x 4 + rx5)*_1] = ^ x 3 ( x 4 + rxs)*"1 

and c = 0 or C3C5 + C4C6 = 0 because r = £*•. 

Observe that c ^ 0, otherwise X-f would be zero and in view of (8.8) C5 would be 

zero also. This contradicts to our assumption that C5 ^ 0. Therefore we have 

C3C5 + c4c6 = 0 (8.9) 

and 

C1C2 + C3C5 + c4c6 = 1 (8.10) 

Since c\ = — 1, the above two equations imply C2 — 1. 
fc+i 

Write ftjfc+i(x2,X4,x5) = X) a?2P*+i-o(*4i*5) where Pk+i-a(xA,xs) is a homoge-
a=0 

neous polynomial of degree k + 1 — a in X4 and #5 variables. Let a0 be the largest 

integer such that p*+i-a0(£4,£5) ^ 0. 
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df _ dhk+! • 
= (X2,X4,X5J 

5x2 ax2 

= /] <*X2 "^Jb-f l -g (g4i g5) 

=* ^-°_ 1(^) = («0K°-W-«0(*4,*5). 

Since -X-fx^0" Pjfe+i-a0(x4,x5)] = 0, we have an irreducible 5/(2, C)-submodule of i" 

in the following form 

(*3°"~ P*+l-a0(*4i*5),-^+[a?3°" Pk+l-aoix^Xs)], . . . ,X+a°~ Pk+l-aQ(x4, *s)]) . 

Thus 2a0 - 1 < 3 because / = (3) 0 (1) 0 (1). This implies a0 < 2 and 

/ = —xix3 (x4 + rxs)*""1 4-p*+i(x4,x5) +Pk(z41x5)x2 +Pfc-i(x4,x5)x| . 

As c ^ 0, it is easy to see that 

(3) = (xi(x4 + rx5)*r~1,x2Cx4 + rxs)*"1, x3(x4 + rxs)*"1) C L 

A _ ~ ( - T - ~ ) = ci-r— 
ax2 axx 

=> 2x3p*-i(x4,x5) = ——x3(x4 + rx5)*"1 

=> P*-i(*4,*5) = i p - ( * 4 + rxg)*-1 = ^ - ( x 4 4- rxg)*-1 

=> / = ^ - ( 2 x i x 3 - x^)(x4 + rx5)k-x + p*+i(x4, x5)4-

+X2PJk(x4,X5) 

=» X-f = x3pjb(x4, x5) = cx3(x4 + rx5)* 

=> P*(^4,2:5) = c(x4 + rx5)* 
ck 

=* / = 27"(2xix 3 ~x | ) (x 4 + rx5)*r"'1+pJt+i(x4,X5) + cx2(x4 + rx5)A;. 

By (8.8), we have 
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—(*_/) ={C2 + 1 ) — + C3— + C4— 

df df 
= ^3 7; ^ c 4 ^ 

C/X4 C/X5 

=> c(x4 + rx5)* = c 3 [ C f c ^ 1 ) ( 2 x 1 x 3 - x2)(x4 4- rx5)*~2 + " ^ t i ( * 4 , *s) 
+cfcx2(x4 + rxs)*""1] + c4[C ^ ~ V(2xix3 - xl)(x4 + rx5)*~2 

2c. 5 

H—H^"(:c4)«5) + cArrx2(x4 + rx5)*? *] 
£7x5 

=» C3 gfe"t"1(x4)x5) + C 4 - ^ ± i ( x 4 , x 5 ) = c(x4 + rx5)*. 

We claim that C4 ^ 0. Suppose on the contrary that C4 = 0. Then c3 / 0 because 

c ^ 0. In particular we have 

a * * 1 ^ *s) = —(*4 + rx5)* 
C/X4 C3 

=> P*+i(*4, *s) = / t , ^ ( ^4 + rx5)k+1 + dx£+1 

=> / = ^ - ( 2 x i x 3 - a?i)(x4 + rxg)*-1 + —-£—-(3.4 + rx 5 )* + 1 + dx*+1 

+ cx2(x< + rx5)k. 

From (8.8), we have 

(2xix3 - x'22){x4 + rx5)*"~2 + — (X4 + rx5)* + cfcx2(x4 + rxs)*""1 

C3 
=> 

=> 

dx4 

ck(k -
2ci 

= 

c = 

C3 a x 3 

—-(2xix3 - x; 

—-(x4 + rx5)* 
C3 

0 

This is impossible as we saw before. Our claim C4 ^ 0 is established. It follows that, 

by (8.9) we have 

^(x4,x5) - r^(x4,«,) = ^ ( * 4 + rx5)fc. 
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Let 2/4 = £4 + rxs and j/5 = #5. Let 

p*+i(y4,2/5) = pjt+i(y4 - rt/5, ys) 

=» ^ ( * . * ) = ^fcfci ( * - r » , * ) ( - . - ) 4- ^ g i ( y 4 - ry5,y5) 

= —[y4-n /5 + n/5]fc 
c4 

c k 
c4 

=> Pfc+i(y4, ys) = —y*y5 4- dy**1 
c4 

=> P*+i(*4, *5) = —(*4 + rxs)kxs + d(x4 + rx 5 )* + 1 
c4 

=» / = 7T-(2xix3 ~ xl)(x4 + rxs)*""1 + — (*4 + rx5)kxs + d(a?4 + ra?5)*+1 

ZC5 C4 

+cz 2 (#4 + ra?5)*. 

So we are in case (i) (b). 

Similarly, if ce ^ 0, then we will be in case (ii) (c). 

Finally, we have to consider the case where both c5 and c6 are zero. In this case, 

equation (8.8) becomes 

£(*-» • ° • hx-n - £(X-° • &<*-"• 
This implies that X-f depends only on x$ variable. Since weight of X _ / is —2, we 

have X^f = ax$ for some constant a. Since degree of X-f is k -f 1 > 3, we conclude 

that X~f = 0. Similarly we can prove that X+f = 0. Hence / is a s/(2,C) invariant 

polynomial. 

Case 2. / = (3) © (1) and / is a. homogeneous polynomial of weight 0. We shall follow 

the notations in Case 1. The same argument as in Case 1 gives c\ = — 1. If C5 ^ 0, 
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then the same argument as in Case 1 shows that c ^ 0 and 

/ = £L(2Xlx3 - x\){xA + rxs )* - 1 + —(*4 + rxs)kxs + d(x4 + rx5)f c + 1 + cx2(x4 + rx5)k. 
ZC5 C4 

Observe that | £ = ^xx(x4 + ra*)*"1. It follows that 

(3) = (*i(*4 + rxb)k-\x2(x4 + rx5)k-\x3(x4 + rxs)k-1) C 7. 

Hence (x4 + rz5)* = J J ^ + ~xi{x4 + rx$)k~l is in 7. Clearly xi{x4 + rx$)k~l, x2(x4-f 

rx5)f c"2, X3(x4 + rar5)*"1, (z4 + rx5)fc and 

d / __ cfc(fc — 1) , 0 ^.2\/^. , „„ \fe-2 I ^ / ^ I *.„. \fc-i„. 
- — = — (2xix3 - x2)(x4 + rx5) H (x4 + rx5) x5 
ox4 Zcs c4 

+ d(k + 1)(*4 + r*6)* + cx2(x4 + rxg)*-1 

are five linearly independent elements in I. This contradicts to our hypothesis that 

dim J = 4. Therefore we conclude that C5 = 0. Similarly we have CQ = 0. By applying 

the same argument as in Case 1, we have X-f = 0. Thus / is a s/(2,C) invariant 

polynomial. 

Case 3. I = (3) and / is a homogeneous polynomial of weight 0. In this case / is a 

5/(2, C) invariant polynomial. The argument is the same as Case 2. 

We finally claim that if / is a s/(2, C) invariant polynomial, then / is of the 

following form 

i=o 

where gjk+i-2j(#4, ^5) is a homogeneous polynomial of degree k + 1 — 2j in x4 and x5 

variables. To see this write 

i=0 ari+af2=*;+1"~* 
/ = £ E pri,03)(*i,*a,*sKi*5 
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where p^ 1' (si,S2»*3) is a homogeneous polynomial of degree i in a?i,a?2 and ar3 

variables. 

X _ / = 0 

=* £ £ ^-biflri,flrj)(«i.«2,«3)]«r*p=o 

=> X-.p^ai,0f2^(a?i,X2,a:3) = 0 for all i and (ai,c*2). 

=* Pi 1 , a 2 (xi,X2,X3) is a 5/(2, C) invariant polynomial for all i and (c*i,a2) 

=• i = 2i and p\a^\xux2ix3) = c ^ ' " ^ 2 - 2*1*8)'. 

Take 

gjb+i-2j(*4,*5) = X^ 4/1 , a 2 ) *4 l a ? 6 2 -
o1+a2=*+l~2i 

Then we have 
[ ^ 

/ = X ) (*2 - 2arix3)ig*+i-2i(a?4, ar5) 

as claimed. Q.E.D. 
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