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ABSTRACT

For any given sl(2,C) action on C[[zy,...,z,]] via derivations preserving the m-

adic filtration, we give a necessary and sufficient condition for a gradient space I(f) of
. : 3f 8 )

a homogeneous polynomial f i.e. a vector space spanned by 5}{—, &Lﬁ, ceey 5—%, to be a

sl(2, C)-submodule for n < 5.

Key words and phrases. Invariant polynomial, weight, irreducible submodule, represen-
tation, completely reducible.
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§0. INTRODUCTION

Let M} be the space of homogeneous polynomials of degree k in n variables
£1,%2,...,%,. Let us fix a non-trivial si(2,C) action on M¥. We shall denote S¥
the subspace of M¥ on which si(2,C) acts trivially. Let S, = ®x»0S% be the graded
ring of invariants. The main object of the invariant theory is to give explicit description

of S,. In case sl(2,C) acts on @kzoM,’f via

r=(n-— l)zlb—g—; +(n- 3)3323—2-; +...+(-(n—- 3))%_161:(3_1
+(~(n=D)enz (0.1)
X =(n—1)zi+2(n—2)z i+...+i(n—i):o:- +...+(n—1)m_—-6.—
+ 13222 261:3 ‘az,‘.}.l n 18::,,
X =1.’2—-6—-+Z3—9~+...+.’L‘,' 9 +...4+ 2z, 9. .
- 0z Oz, Oz 0zp—1

This example is identical with the theory of binary quantics, which was diligently stud-
ied in 229 half of nineteenth century. It is an amazingly difficult job to describe S,
explic¢itly. A complete success was achieved only for n < 6, the cases n = 5 and 6 being
one of crowning glories of the theory. Elliott’s book [1] has an excellent account on this
subject. In 1967 Shioda [4] was able to describe Ss explicitly. Recently the theory of
invariants, pronounced dead at the turn of the century, is once again at the forefront
of mathematics because of of combinatorial thrust due to Rota (cf. [2]) and his school.

In [5], we developed a new theory which connects isolated singularities on the one
hand, and finite dimensional Lie algebras on the other hand. The natural question
arising there is the following. Let f be a homogeneous polynomial of degree k + 1 in

n variables. Consider the vector subspace I(f) spanned by 2L of of o 2L

8
8z, Oxq) Bx3) By’ "' Bxy

Received by the editors February 1, 1987.



2 STEPHEN YAU

Give a necessary and sufficient condition for I(f) to be a si(2, C)-submodule. Here we
shall consider all possible sl(2, C) actions on C[[z1,...,z,]] via derivations preserving
the m-adic filtration. Notice that (0.1) is just one example of si(2,C) action only.
We first observe that if f € SX¥+! is an si(2,C) invariant polynomial, then I(f) is a
sl(2, C)-submodule. The main purpose of this paper is to determine precisely when
I(f) is a sl(2, C)-submodule for f € M¥+!, n < 5. We establish that the converse of

the above statement is essentially true.

Main Theorem. Forn <5, I(f) = (2L, 2L, ..., 5‘1‘%) is a sl(2, C)-submodule if and

9z, Bz50"

only if I(f) = (6—‘1-7;, a%‘l;, Ceey 8—‘1-":) for some sl(2, C) invariant polynomial g.

Notice that f is not necessarily a sl(2, C) invariant polynomial even though I(f) is
a si(2, C)-submodule. In Section 1, we shall describe our results in great detail. Several
examples of this sort certainly appear. These phenomena occur precisely because the
variety defined by f is highly singular. It is this observation that allows us to prove that
the Lie algebras that we constructed from isolated singularities (cf. [5]) are solvable.
This application of the main theorem will appear in [6]. The general case of our main
theorem will be treated in a future paper.

Our paper is organized as follows. In Section 1 we state our results for n = 2, 3, 4,
and 5 in a precise way. The cases n = 2 and 3 were treated in our previous article [5].
In order to avoid the repetition, we shall only give the proof for the case n = 5. The
proof for the case n = 4 can be sorted out from there. From Section 2 to Section 7,
we shall deal with different actions of sl(2,C) on MF. We shall assign each variable

z; a weight according to the action of si(2, C). It turns out that each monomial is an

eigenvector of 7 with eigenvalue equal to its weight. We prove that if I(f) is a.sl(2, C)
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module, then f is essentially of weight 0. In Section 8 we shall prove all the results
stated in Section 1. Our main theorem is just a short summary of these results.

We gratefully acknowledge the support from the University of Illinois and Yale

University. This research was supported in part by NSF Grant No. DMS-8411477.



§1. PRELIMINARIES AND STATEMENT OF RESULTS

In this section, we give the detail of our results in this article. The main theorem
stated in the introduction is a consequence of these results. We first recall our result in

[6] on classification of sl(2,C) in Der C[[zi,...,z,]] preserving the m-adic filtration.

Proposition [6]. Let L = sl(2,C) act on C[[z},z2,...,2s]] via derivations preserving
the m-adic filtration i.e., L(m*) C m* where m is the maximal ideal in C[[zs,...,2,]].
Then there exists a coordinate change y;,...,y, with respect to which si(2,C) is

spanned by

= 0
T:Zalja—yj-

j=

- 0
X4 = An; —
+ J; 2j dy;

= i)
X.= 203]'—
ji=1 ay’
where a;; is linear function in yy,...,y, variables for all 1 <i < 3 and 1 < j < n. Here
{r,X4+,X_} is a standard basis for sl(2,C) i.e, [r,X}] = 2X4, [r,X_-] = 2X_ and

[X+,X_] =T.

Theorem [6]. Let si(2, C) act on the formal power series ring C[[z1, ..., z,]] preserv-
ing the m-adic filtration where m is the maximal ideal in C[[z1,...,z,]]. Then there
exists a coordinate system
L1, &2,y Bl Bl 41y - o Ty blgs o Tlyblgdely 1 +1r - o3 Tly bl s
such that
T=Dry+...+Drj+...4+ Dry
X4 =Dxyn+...+Dxyj+...+Dx,»r

X_ =Dx_,1+.‘.+Dx_’j+...+Dx_,,-

4
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where 7 < s and

5 0
D.: =(l: —1 . o tUi-3 . B2ty t.4ty_y42
I )“"1+-~-+'J—1+16zzl+...+1,-_1+1 + (4 )”'1+-~+'J—1+26x11+...+1j-1+2
| 7]
to (5 = sy g
1+ +ii=
+(=(j = 1))z :
—(l; — W+t 73—
j 1t +-732:11+...+lj
4]

Dx,; = =Dy 4 41,141 o
+J J 1+ Hi-a+1
31‘11+...+lj__1+2

0

a-’l?ll+...+lj_1+i+1

il = DTyt

)

+...+ (= =Dzt 4. 41—
( (J )) 1+ +1J 139311+...+Ij

0 0

Dx ; =uax; . +...4+z . I —————
—J 14+ 4.+l 1+641
J 7 8x11+...+1j_,'+i

-1+25 -
6311+...+IJ-_1+1

i}
Y . ca—
1 ]6z11+...+1j—1

Suppose sl(2, C) acts non-trivially on the space M¥ of homogeneous polynomial

of degree k in 2 variables z; and z2. Then the si(2, C) action is given by

T=Z1m——2% —(?-
- 16:::1 2632
X+=:L'15-z—2- (11)
0
X_ -—1‘2%—1.

The following theorem is trivial and can be found in [5].

Theorem 1. Let I(f) be the complex vector subspace of M¥ spanned by g‘lf; and %,
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where f is a homogeneous polynomial of degree k + 1 in z;, 22 variables and k > 2.
Then I(f) is not a sl(2, C)-submodule.

Suppose sl(2, C) acts non-trivially on the space MZ of homogeneous polynomials

of degree k in 3 variables z1, 2o and z3. Then the si(2, C) action is given by either (1.1)

or
T= 22:162 - 2:83—3%
X+ =2x1-a-z—2+2zga—z; (1.2)
X_= Zzaizl + 33_.2—2'

From fiow on, we shall use the following notation. By (I), we shall mean a I-
dimensional irreducible representation of si(2, C). The following theorem can be found

in [5].

Theorem 2. Let I(f) be the complex vector subspace of M¥ spanned by -(%f-l-, 5% and

5‘?3—, where f is a homogeneous polynomial of degree k¥ + 1 in z;, 2, z3 variables and

k> 2.

(i) If the si(2,C) action of M} is given by (1.1), then I(f) is a sl(2, C)-submodule
if and only if f(z1,22,23) = czk*! and I(f) = (1) = (z%) where c is a nonzero
constant and (z%) denotes the one-dimensional vector space spanned by z¥.

(ii) If the si(2,C) action on M¥ is given by (1.2), then I(f) is a sl(2, C)-submodule if
and only if k+ 1 = 2 is an even integer and f(z1,z2,23) = ¢(2% — 2z;23)% and
I(f) = (3) = (z1(22 — 22123), z2(2% — 22123), 23(22 — 22123)).

Suppose sl{2, C) acts nontrivially on the space M} of homogeneous polynomial of

degree k in 4 variables z,,z2,z3 and z4. Then the si(2,C) action is given by either
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(1.1) or (1.2) or

Lo 0 8 8
T=a 31‘1 z2a£2 361?3 4624
4] i)
X+ —2)1% +235¢—4 (13)
0
X- —zzé—z—l+z4a—xg
or
3} 0
T= 31‘16—1_1 +x25;; - 2)36—23- - 31‘4-6}—4
7] 0 7]
— - —_— _— 14
X+ 31’1 61!2 +4226.’L'3 +31:3 61?4 ( )
0 7]

0
X_=2o—+ 23— +24—.

81‘1 6232 61‘3

Theorem 3. Let I(f) be the complex vector subspace of M} spanned by ?%[f’ 5":%, %t;

and ng‘, where f is a homogeneous polynomial of degree k+1 in 21,29, 3, £4 variables
and k > 2.
(i) If the sl(2,C) action on M} is given by (1.1), then I(f) is a sl(2, C) submodule if
and only if either one of the following occurs.
(a) f is a polynomial in z3,z4 variables and I = (1) ® (1) = (%(ra,u)) ®
(2L (23, 24))-
(b) f = (c1z3+ cazs)*t! where c; and c; are constants not all zero and I = (1) =
((crz3 + coz4)F).
(i1) If the slI(2,C) action on M{ is given by (1.2), then I(f) is a sl(2, C) submodule if
and only if either one of the following occurs.
(a) f is a sl(2,C) invariant polynomial in z;,z,,z3 and z4 variables and I =
)@ (1).

(b) fis a sl(2,C) invariant polynomial in z;,z, and z3 variables and I = (3).
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(¢) f=czkttand I = (1) = (z%).
(iii) If the sI(2,C) action on MY} is given by (1.3), then I(f) is a sl(2, C)-submodule if
and only if f is a sl(2, C) invariant polynomial in z;,z,,z3 and x4 variables and
=(2)a(2).
(iv) If the si(2,C) action on M is given by (1.4), then I(f) is a si(2, C) submodule if
and only if f is a sl(2, C) invariant polynomial in zy, %2, z3 and 4 variables and
= (4).
Suppose sl(2, C) acts nontrivially on the space M¥ of homogeneous polynomials of
degree k in 5 variables z;, 22, 23,24 and z5. Then the sl(2, C) action is given by either

(1.1), or (1.2), or (1.3), or (1.4), or

i 0 (7]
T:21’16—xl—2233 +£4&———256—25

7]
X+ = 22318 + 21:26 + 24835 (15)
0 é] 0
X_ = 1725;: + -’835;—2 +.’L‘56—x4
or
4] 0 3] 9
T=4Ila—xl+2xza_—£2—21‘4a—z4—4155;
X+ = 4.’tlai + 61‘286 + 6.t36 + 41346(25 (16)
X_=z _6_+ 9 +z +z 9
T T %0z, %0z, '0z3  Oz4

Theorem 4. Let I(f) be the complex vector subspace of M} spanned by a%%, %, a%‘%? 3‘25%
and 585%, where f is a homogeneous polynomial of degree k + 1 in z;,%2,23, 24 and z5
variables and k > 2.

(i) If the sl(2, C) action on M¥ is given by (1.1), then I(f) is a sl(2, C)-submodule if

and only if one of the following occurs.
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(a) f is a polynomial in z3,z4 and z5 variables and I = (1) (1) ® (1) =

<81:3 (xa, T4, :!,'5» ® <a;p, (.’33, T4, 25)) 57 (84:5 (:233, T4, 35))

(b) f is a polynomial in z3, 24 and 5 variables and

I=Ne(1)= (%(23,3?4,-’85)) ) ((-%j;-(za,u, zs5))
or (:Tf(rs, r4,25)) ® (aan(ws, r4,25))

or ( (l‘a,u,l‘s)) ® (8 (x3, 24, 25)).

(¢) f = (c1z3+ cax4+cazs)*t! where ¢1,cz and c3 are not all zero constants and
I = {(c123 + caz4 + caz3)F).
(ii) If the sl(2,C) action on M¥ is given by (1.2), then I(f) is a sl(2, C)-submodule if
and only if one of the following occurs.
(a) (1) fis a sl(2, C) invariant polynomial and I = (3) & (1) & (1).
(2) f = g(x1, 22,23, 24, :I:s)+c11'31(-’lf'4+T'-’E5)'°+C2-’E'z(-’b‘4+1'-’L‘5)’°+¢3-’l:3(1¢4—+-f'-7:5)'c
where g(z;,z2,23,24,25) = d1 (23 — 22, 23) (24 + r25)* "1 + dazs (24 + rzs)* +
d3(za+rzs)F*! is a 51(2, C) invariant polynomial with d; #0andd; £0. I =
oL, 2L, 2L, 2 00) = (3)0 (1)@ (1) = (z1(ea+ras) L, za(zatras)it,
z3(za + rz5)f ) @ ((z4 + rzs5)F) @ ((k — 1)di(22 ~ 2z123) (24 + rzs)* 2 +
kdyzs(za + ras)*—1).
@3 f= g(l‘l,-’82,xa,1‘4,-‘L‘s)+01m1(f'$4+1-'5)’°+02-"32(7'-’B4+$5)k+0323(7‘1‘4+$5)k
where g(z1,%2, 3,24, T5) = d1(23 — 22123)(rzs + 25)F 1 + doza(res + 25)F +
ds(rz4+2z5)¥+1 is a sl(2, C) invariant polynomial with d; #0andds £0. I =
(2L, 28,28, 20  28) = 3)@ (1)@ (1) = (21(rea+25)F~ 1, zp(rag +25)F 1,
z3(rzs + z5)F 1) @ ((rza + z5)%) @ ((k — 1)di (23 — 2z123)(res + z5)*2 +

kdazs(rzy + z5)*-1).
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(b) f is a sl(2,C) invariant polynomial in z;, z3, z3,24 and z5 variables and I =
) e (1)
(c) fis sl(2,C) invariant polynomial in z1, x5 and z3 variables and I = (3).
(d) fisa sl(2,C) invariant polynomial in z4 and z5 variables and I = (1) ®(1) =
(2L (24,25)) ® (2 (24, 25).
(e) f = (c1z4a+cozs)kt! where ¢; and c; are not all zero constants and I = (1) =
(c1z4 + cams)E.
(iii) If the sI(2, C) action on M¥ is given by (1.3), then I(f) is a si(2, C) sumbodule if
and only if one of the following occurs.
(a) f is a sl(2,C) invariant polynomial in 21, z3, 23, 24 and x5 variables and I =
@e@)e ).
(b) f is a sl(2,C) invariant polynomial in z;,z5,z3 and z4 variables and I =
2)® (2).
(¢) f = czkt! where c is a nonzero constant and I = (1) = (z}).
(iv) If the sl(2,C) action on MY is given by (1.4), then I(f) is a sl(2, C)-submodule if
and only if one of the following occurs.
(a) fisa sl(2,C) invariant polynomial in z;, 23, 73,24 and z5 variables and I =
4 e (1).
(b) fisasl(2,C) invariant polynomial in z1,z2,z3 and 4 variables and I = (4).
(¢) f = czkE*! where c is a nonzero constant and I = (1) = (z¥).
(v) If the sl(2,C) action on M} is given by (1.5), then I(f) is a sl(2, C)-submodule if
and only if one of the following occurs. |
(a) (1) f is a sl(2, C) invariant polynomial in zi, 23, z3,z4 and 5 variables and

I=3)e(2).
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— 2 3 —
(2) f = 9(x1, 22,23, 24, 25)+c123+c2xiz5+c3za i +cazd where g(z1, 22, 23, 24, 25) =

22122 — 2292425 + 2322 is a sl(2, C) invariant polynomial and
5 4

_ (%5 99 8g 09 09, _
I_((?z;’azg’aza’ 6:04’ 6:85)-(3)®(2)

= (23, 24,75,22) @ (23224 — 22,25, £3Z4 — T2T5).

(b) fis a sl(2,C) invariant polynomial in z1,z2 and z3 variables, and I = (3).
vi) If the sl(2, C) action on M} is given by (1.6), then I(f) is a sI(2, C)-submodule if
5
and only if f is a sl(2,C) invariant polynomial in z;,z2, 3,24 and z5 variables,

and I = (5).



§2. sl(2,C) acTiON (1.6) ON M¥

Lemma 2.1. Suppose sl(2, C) acts on the space of homogeneous polynomials of degree

k> 2in 21,25, 23, 24,25 via (1.6)

0 0 0 (7]

T—421-6~z:+2$26—z—2-‘—224-a'?4-—4:355;

i} 0 (7] 0

X+ =4z, — a + 62226 + 6.’!!3a + 42462
X z 9 +z 9 +z 9 +z 9
=T 0, T 0z, " T10z5 | "0zy

Suppose the weight of z; is given by the corresponding coefficient in the expression of

T above, i.e.
wt(zy) = 4, wi(zz) =2, wi(zs) =0, wi(zg) = -2, wi(zs) = —4.

Let I be the complex vector subspace spanned by ng;, a%!;’ a%—%’ 5}— and -—L where
f is a homogeneous polynomial of degree k + 1. If I is a sl(2,C)-submodule and

dim] = 5, then f is a homogeneous polynomial of weight 0 and I is an irreducible

sl(2, C)-submodule.

Proof.

Case 1. I =(5)

By the classification theorem of si(2, C) representations, we know that 8%!_.-' 1<
¢ < 5, is a linear combination of homogeneous polynomials in I of degree k and weights
4,2, 0, —2 and —4. Since every monomial is of even weight, we can write

f= Z i)
i=—00

where f2, | is a homogeneous polynomial of degree k + 1 and weight 2i.

12
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For |i| > 5
2i
w56 1gjcs
zj
2
o Y _g 1<j<5
Oz;
= fk+1
For i = —4
Ofid -
wt(—5EL) < -6 1<j<4
812j
-8
= Oiws _ 0 1<j<4
B:c_,-
= fis involves only zs variable i.e. fi, T = cxl

where ¢ is a constant.

Since fi. fl is a homogeneous polynomial of degree k+1 > 3, hence ¢ must be zero.

For i1 = -3
wt-—f—kL < -6 1<j<3
Oz;
af:8 .
= e 1<j<3
Oz;
= fi fl involves only 4 and z5 variables and
f,;fl = 01132 + c2Z425 where c;, ¢ are constants.

Since f;- _fl is a homogeneous polynomial of degree k¥ + 1 > 3, hence ¢, = 0 and
f,;‘fl = ¢1z3. —L € I implies —“-'H- € I. If ¢; were not zero, then z3 would be in I.

Then by applying X, X_. successively on z3, we have

2 2 2
(22124 + 92223, 2224 + 23, T3Z4, T4, TaTs, T5) C L.
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Therefore dim I > 6 which is impossible. Hence fk‘fl =0.

For i = -2
-4 .
wi (%) < -6 i=12
iy s
= —#-—0 i=12

fe. 4‘-11 does not involve z; and z5 variables and
fifh = cizizl™! + coxszk where ¢; and c; are

constant.

a%ta— € I implies %gl € I. Since X_ (%—ﬂ) is an element in I of weight —6, hence

ofc
x- (%) =
_ v (OfEs
0=X-(T5")

7] 0 0
= (zza + xaa +z 43 + .’L‘5 )[(k — 1)61.’!241‘3 + kc2x5x§ 1]

= (k= 1)(k = 2)c1z5 7323 4 [2(k — D)er + k(k — 1)c2)zt 22425,
If ¥ > 3, then the above equation implies ¢; = 0 = ¢2. If ¥ = 2, then ¢c; = —¢; and
f5t =ci(z2z23 — z522) - :x € I implies 7;?—‘ =—c1z3 €1. If ¢; #0, then z3 € I. By

successively applying X4 and X_ on z2, we have

(zlza,z2r3,zg,zsx4,z3zs,x4z5) clrL
This implies dimI > 6 which is impossible. Hence ¢; = ¢2 = 0. We conclude that
fifi=o0.
By the similar argument, we an prove that fg,, = 7., = fi,, = 0. Therefore
f=fn+ R+ ik

2 -2
wt(—a-fﬁi) =6 and wt(%‘zil—) = -6
1

afk =0= 6fk_j:21
6135 6.’!:1

= f,f_,_l does not involve z5 while fi. -31 does not involve z;.
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We are going to prove that 8—(.f,£-'f-‘~ = 0. First we observe that X+ff+1 = 0 by the
pervious argument because wt(X+fk+1) = 4. Suppose on the contrary that 8—f1‘-‘ﬂ- #0.

Then the equation

Ofty, _ O of¢ af

k41— 9 — k41 _ k+1

X+ dzz ~ Ozs +f’°+1 6 Oz4 6a:4

implies that —a%é-‘:l # 0. Since wt(X_ a—éé—"u) =2= wt( k41), there exists a nonzero

constant ¢ such that

6fl?i—l —_ 6fk+1
X—( 61‘4 )— 62,‘3

Differentiating the above equation with respect to zs variable, it is easy to see that

a2 . af af2

—52# = 0. Hence -—-"—ﬂ depends only on 1,z and z3 variables. As wi(=5k%t) = 4,
4

there exist constants ¢; and ¢y such that

0fEs1 2,.k-2

= clxl:c +c29: T
61‘4 3 2<3

Easy computations show that

X5 (z12571) = 10(k — 1)(k — 2)%25 7323 + 15(k — 1)(2k — )2k~ 22425
+5(k — 1)(k — 2)(k — 3)(k — 4)z225 %23 + 30(k — 1)(k — 2)(k — 3)zazk 2225
+15(k — 1)(k — 2)zoz5 322 + (k — 1)(k — 2)(k — 3)(k — 4)(k — 5)z1 25525
+10(k — 1)(k — 2)(k — 3)(k — 4)z 25 52325 + 15(k — 1)(k — 2)(k — 3)z 2k 4z 422
X3 (22257%) = 10(k — 2)(2k? — 8k + 9)zE 323 + 20(3k% — 10k + 9)zk 22425
+10(k — 2)(k — 3)2(k — 4)zozk 5z}
+20(k — 2)(3k2 — 17k + 24)zo2k ~*z2zs + 10(k — 2)(3k — 7)zo2k~322
+(k = 2)(k — 3)(k — 4)(k — 5)(k — 6)z3z%~ "z}

+10(k — 2)(k — 3)(k — 4)(k — )23zt ~Sz2zs
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+15(k — 2)(k — 3)(k — 4)z2z5~Sz422.

= X_(z21257Y) + o X _ (2225 = 0.

If £ > 3 then we have

o

10(k — 1)(k—2)%¢; + 10(k — 2)(2k? — 8k + 9)c;
15(k — 1)(2k — 3)e;  + 20(3k% — 10k + 9)cs

o
o

{ (k=1)(k=2)c1 + (2k*—8k+9)ca
3(k—1)(2k —3)c; + 4(3k? — 10k + 9)c,

(k= 1)(k —2) 2k? — 8k +9
3(k—1)(2k —3) 4(3k2 — 10k + 9)

2
we infer that ¢; = ¢ = 0. i.e., %:f’- =0.

n
oo

since det ( ) = (k — 1)(2k? — 10k + 9) is nonzero,

If k£ = 2, then we have 15¢; + 20c2 = 0. So we can rewrite

2
—aitl- = 63(42:1233 - 3.’6%)

31'4
and
0fEs
X_(—-L) = 203(2:8134 - 22.’03).
61’4
Hence

2
%& = 2c_3(23124 -— 321:3).
Oz3 c

The fact that —g—}:%ﬁ = 4c3z; and 5}},’2—3 = 4%z, infer easily that ¢ = 1. If c3 # 0,
there would be a nonzero constant d; such that
2 2
-a'fi‘kl = le_(%ﬂ) = dIX_ [263(21!12:4 - 2:22:3)]
Ozo Oz

= 2dyc3(zoz4 + 22125 — :cg)

2 22 222
By comparing g;ﬁ%—% and 37155%, we conclude that 2d; = 1 and

affil 2
B2, = c3(z224 + 22125 — 23).
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3.3 3.3
On the one hand %ﬁ: = c3Z2, on the other hand %;‘fa% = —6c3z2. Therefore we
have ¢z = 0. This completes our claim that ﬂ"*‘- =0.

We next claim that ﬂ&; = 0. Suppose on the contrary that le_-u # 0. Then the

equation
of 9 ofi of
9Jkyr . 9 2 k41 42 k41
X+ 6.‘82 2X+fk+1 4 oz 61.’3
af2 _ af3 .
implies that 2Zk£1 £ 0. Since wi(X_ “pitt) = 0 = wt(-gkt), there exists a nonzero

constant d such that

3ff+1 afk+1
X_( 6223 ) 33:

Differentiating the above equation with respect to x4 variable, it is easy to see that

3 3
a—;’-f-fgﬂ = 0. Hence a—gf:’- depends only on ; and z, variables. As wt(%f-) = 2, there

exists a constant d; such that

Thls contradicts the fact that deg(fZ,;) = k+1 > 3. The proof of a—f‘-ﬂ- = 0is
complete. We now see that f2 +1 depends only on z; and z, variables. Therefore there
exists a constant do such that f,? +1 = d2z2. This again contradicts the fact that k > 2.

We conclude that f2,; = 0. Similarly we can show that fi% = 0.

Case 2. I = (4)® (1).
By the classification theorem of sl(2, C) representations, we know that every ele-
ment in (4) is a linear combination of homogeneous polynomials of degree k and weights

3,1,—1 and —3. Since every monomial is of even weight, this case cannot happen.

Case 3. I =(3)®(2).

This case cannot occur by the same argument as Case 2.
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Cased. I=(3)d (1) ®(1).
Elements of I are linear combinations of homogeneous polynomials of degree k and

weight 2,0 and —2. We can show as in Case 1 that
f=fn+fRa+ A

-2 -2 -2
Since %ﬁ-’f‘ and %gfl are elements in I of weight —6 and —4 respectively, so %—'fl =
-2
0= a—g::‘:’-. This implies that f;- -{?1 does not involve z; and z, variables. There exist a

constant ¢ such that
-2 k
frf1 = cxqzs.

If ¢ were not zero, then :c’g = % !-5-“:’- € 1. By applying X, and X_ successively on z%,
we see that dim/ > 6, which is a contradiction. Therefore we conclude that fk‘_fl =0.
Similarly, we can prove that f? +1 = 0. So f is a homogeneous polynomial of degree
k+1 and weight 0. It follows that 2= = 2L = 0 by weight consideration. This implies

- 625

dim I < 3, which is impossible. Therefore this case cannot happen.

Case 5. I =(2)® (2)®(1).

Similar argument as Case 2 shows that this case cannot happen.

Case 6. I =(2)®(1)® (1) ® (1).

Similar argument as Case 2 shows that this case cannot occur.

Case 7. I=(1)o (1)) ()& (1).
Elements of I are linear combinations of invariant polynomials. We can show as in

Case 1 that

f= fl?+l + f1?+1 + fl:+21~
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i Ofdy  Opny Ok iy i f weights —6,—4,—2 and
Since phEL, —ghil, gkt and 5atl are elements in I of weights —6,—4, and 2

respectively, so

Ofch _ Ofch _ Ofch _ 0fih _

Oz, Oz, O0zxz = Ozs
fiZy depends only on z4 variable. There exists a constant ¢ such that fi% = czs.
Since k > 2, we have ¢ = 0 and f;/3, = 0. Similarly we can prove fZ,, = 0. Now
f must be a homogeneous polynomial of degree k of weight 0. It follows that 58% is
a non-zero element of weight —4 in I. This leads to a contradiction. Hence this case

cannot happen. Q.E.D.

Lemma 2.2. With the same hypothesis as Lemma 2.1, if dim I = 4, then I cannot be

a sl(2, C)-submodule.
Proof. We assume on the contrary that I is an s{(2, C)-submodule.

Case 1. I = (4).

By the classification theorem of sl(2, C) representations, we know that every ele-
ment in (4) is a linear combination of homogeneous polynomials in I of degree k and
weights 3,1, —1 and —3. Since every monomial is of even weight, this case cannot

happen.

Case 2. I =(3)® (1).
The same argument as in Case 4 in the proof of Lemma 2.1 will prove that this

case cannot occur.

Case 3. I = (2)®(2).

This case cannot happen by the same argument as Case 1.
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Case4. I=(2)d (1) ®(1).

This case cannot happen by the same argument as Case 1.

Case 5. I=(1) (1)@ (1) & (1).
The same argument as in Case 6 in the proof of Lemma 2.1 will prove that this

case cannot occur. Q.E.D.

Lemma 2.3. With the same hypothesis as Lemma 2.1, if dim I = 3 and I is a sl(2, C)-
submodule, then f is a homogeneous polynomial of weight 0 in z2,z3,z4 variables and

I is an irreducible si(2, C)-submodule.

Proof. Since every monomial is of even weight, we can write
[o ]
f= 74
= E+1
i=—o00

where f,fil is a homogeneous polynomial of degree k + 1 and weight 2:.

Case 1. I = (3).
By the classification theorem of sl(2,C) representations, every element in I is a

linear combination of homogeneous polynomials of degree k¥ and weights —2,0 and 2.

For |i| > 4
Itaf4|>4 1<j<5
o i 1<j<5
Oz;
=> fia=
For i = -3
t%L< -4 1<j<4

oz;
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= —%L—o 1<j<4
J

= fiy, involves only z5 variable.

Since 6 is not divisible by 4, this is not possible unless j",,‘_{_s1 =0.

For i = -2
wt%'—< -4 1<j<3
Oz;
o Ui 1<j<3
Oz;

= fk 41 involves only z4 and zj5 variables and there exist constants ¢; and ¢z, such that:

-4 __ 2
fk+l - 611‘2 + 6235.

Since k > 2 we have fi )}, = 0.

For i = -1

-2
wt%""‘ig—4 i=12

Zj
afk —0= 6flc_;tzl
621 6z2

=>f{f1 does not involve z; and z, variables

= there exists a constant ¢ such that fi3 = cxazk.

tX_(—'Laf" )=

81 2
k+1y

0
+ 40—

=‘$’(132 9 + T3—
0z, Oz3

32, + :1:5a YckzqazE~1) =0
=ck(k — 1)22zE2 4 ckzszt1 =0

=c =0 and f,;?l:o.
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Similarly we can prove that ff,, = f#,, = fZ,; = 0. Hence f is a homogeneous
polynomial of degree k + 1 and weight 0. It follows that wt 8%_% = —4 and wt % =4.

Consequently 5%% =0= % and f involves only z,, 23 and z4 variables.

Case 2. I =(2)&® (1).

Elements in I are linear combinations of homogeneous polynomials of degree k and
weights —1,0 and 1. The same argument as in Case 1 shows that f is a homogeneous
polynomial of degree k + 1 and weight 0. So 2L Bar 2L 8L and 585% are elements in 1

’ 822’ 81‘4

of weights —4, —2, 2 and 4 respectively. It follows that —f— =2L = 58;_% =0 and

81’2 6:. -

dimI < 1. This contradicts to our assumption that dimI = 3. Hence this case cannot

happen.

Case 3. I= (D)o (1)@ (D).

The same argument as in Case 2 shows that this case cannot happen. Q.E.D.

Lemma 2.4. With the hypothesis as Lemma 2.1, if dim I < 2, then I cannot be an

sl(2, C)-submodule.

Proof. We assume on the contrary that I is an si(2, C)-submodule.

If dim I = 2, then the proof of Lemma 2.2 Case 3 and Case 5 will provide necessary
contradiction.

If dimI = 1, then the same argument as in the proof of Lemma 2.1 Case 6 will

prove that f is a homogeneous polynomial of degree k + 1 and weight 0.

Of _ _, ., 0f _ df df
wt 6:::1 =4 51‘2 =-2 wt 01‘4 =2 wi 3.1:5 =4
of _,_0f _0f _of

oz, Oz,  Ozs  Ozs
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= f does not involve z1,z2, 24,25 and there exists a constant

¢ such that f = czf*!.

If ¢ # 0, then zf = %8%% €I. So X_(zf) = kzk~'z4 € I. Hence dimI > 2, which
contradicts to our assumption that dim7 = 1. On the other hand if ¢ = 0, then f =0
and hence dim I = 0, which again leads to a contradiction. We conclude that this case

cannot happen. Q.E.D.

Proposition 2.5. Suppose si(2,C) acts on the space of homogeneous polynomials of

degree k > 2 in 21,25, z3, 24,25 via (1.6)

0 0 a 0

T = 42,'155 +2z261‘2 - 21?4-8?4’ -—42:55'1;
0 7] 0 7]

Xy =4n oz, + 622 24 + 61‘35‘”—4 +4£46—x;
9] 0 7] 0

X-= et T T e T T oay

Suppose the weight of z; is given by the corresponding coefficient in the expression of

T above i.e.
wt(zy) = 4, wi(z2) =2, wi(zz) =0, wi(zs) = -2, wi(zs) = —4.

Let I be the complex vector subspace spanned by 5@%, Faé%’ a%_%, gxf: and (%_[; where f
is a homogeneous polynomial of degree k + 1. If I is a sl(2, C)-submodule, then f is

a homogeneous polynomial of weight 0 and I is an irreducible si(2, C)-submodule of

dimension 5 or 3. In the latter case, f is a polynomial in 24,23 and x4 variables.

Proof. This is an immediate consequences of Lemma 2.1 through Lemma 2.4. Q.E.D.



§3. sl(2,C) acTioN (1.5) IN M.

Lemma 3.1. Suppose sl(2, C) acts on the space of homogeneous polynomials of degree

k> 2in z,,z2, 73,24 and z5 via (1.5).

T= 13:::1 ”36z3 49z 581:5
a 0
X+—2216—x—;+2226 +z4£5—
0 a a
X_ 323_:171+236_x£+356:c4

Suppose the weight of z; is given by the corresponding coefficient in the expression of

T above i.e.
wt(zy) = 2, wi(zz) =0, wi(z3) = -2, wi(zg) =1, wi(zs) = —1.

Let I be the complex vector subspace of dimension 5 spanned by 2L, 2L 2L = 8L 54

3
81‘1 ’ axg ! 81‘3’ 81‘4

58;% where f is a homogeneous polynomial of degree k+ 1. If I is a sl(2, C)-submodule

then there exists g, a homogeneous polynomial of degree k + 1, and weight 0, such that

I= (3%9;, 3—?;, %";—, 3857:, 3%9;) Moreover, if f is not a homogeneous polynomial of weight

0, then k = 2 and f is of the following form
f= 2xlz§ — 2292425 + zazﬁ + clzi + 62:1:3.1:5 + caz4z§ + cu:?.

Proof. Case 1. I = (5).
By the classification theorem of sl(2,C) representations, every element in I is a
linear combination of homogeneous polynomial of degree k¥ and weights 4,2,0,—2 and

—4. Write

f= Z fli+1

i=—00

24
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where f} +1 is a homogeneous polynomial of degree k + 1 and weight .

For |i| > 7.
§
|wt?i’°—ﬂ|zs 1<j<5
Oz;
i
= Ofis1 _ 1<j<5
617j
= fiy1=0.

For : =0, 2, 4, 6

wt a—gf;-‘:fl are odd integers for j = 4,5

= Y0 j=45

FEN
= fi41 involves only z1,z2, z3 variables.

) . af} aff afi
If fi41 were not zero, then either —gg—f‘- or —gg—k or —(,’;g? would generate I because I

is an irreducible si(2, C) module. Hence I would involve only z;,z3,z3 variables. It
follows that 2—%%, 1 < j <5, involves only z;,z2, 3 variables and henceé so does f. This
implies that %e = % = 0, which contradicts to the fact that dimI = 5. Thus we

have f;,, = 0.

For i = 41,43, 45.

The weights of 8_5%1_’ %—? and 2{;5—‘:1 are odd integers. So %%L = a—ai-':l =
8/ks1 — ( and hence fi,, involves only z4 and zs. If fi, . were not zero, then by
81'; k+l k+1
applying X, and X_ successively on a—gé—f‘- or 8—{,&-‘:1, we would have
I=(zk 2k 'zs,...,2k) and k=4.

It follows that aﬁé’ 1 < j <5, involves only z4 and 5 variables and hence so does f.

This implies that %& = 2L = 2L —, which contradicts to the fact that dim I = 5.

- 8::9 - 83’3
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We conclude that Case 1 cannot occur.

Case 2. I =(4)® (1).

Elements of I are linear combinations of homogeneous polynomials in I of weights

-3,—-1,1,3 and 0.
For |i| > 6
e 21> 1<
oz;
i
=>QI-"—'&=0 1<j<5
61‘]'
=>f,';+1 =0.
For i = -5

-5 -5 -5 -5
wt et — g ¥k 5 e - g Oy
0z, Oz, Oz, Ozs

L O0eh _ Ofih _ Ofch _ 0Fid

6131 - 6232 = 3.1:4 - 6135 =0
= ft. -31 involves only 3 variable
=>f,:_f1 = 0 becasue wt f;}>; = —5 is not divisible by wtz; = —2.

For i1 = -3

-3 -3 -3
wt—'*'—afk L=_5 wt ——'Lafk L=—4 wt —'La'fk L=_2

0z, Oz4 Ozs
Ofch _ o _ Ofeh _ ofid
= 621 =0= 6224 - 62:5

= fi4, involves only z2,z3 variables

=>f,;'_fl = 0 because wt f,;'fl = -3 is not divisible by wt z3 = —2.
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Similar argument shows that f7., =0 = f2,, and hence
f= fk—-:l + fk_-i?l + fk"+11 + fop1 + fl:-&-l + fl?«e-l + fl?+1-
Fori= -4

—4 -4 -4 —4
Oz, Ozo Oz3 Oz4

LOfe _ 0 _ Ofity _ O _
0z, Oz, Oz3 Oz4

= fk‘fl involves only z5 variable and there exists a constant

c such that fi )} = cz}.

Similar argument shows that fj +1 involves only z4 variable. If ¢ # 0, then k = 3 and
(4) = (23, z3zs,z422,23) C 1. Let ¢ be a homogeneous polynomial of degree 3 and
weight 0 such that (¢) = (1) C I.

Write

¢ = V3(z4, z5) + Y7 2(za, T5)21 + Y3(T4, Z5)T2 + Y3 (24, T5)Z3
+ Y74 (za, T5)z} + YT (24, T5) 2122 + V) (24, 25) 23
+ %1 (24, T5)2123 + ¥} (24, 25) 7223 + V1 (24, 25) T3

+€3(21, 22, 23)

where ¥F(z4, z5) is a homogeneous polynomial in z4,z5 of degree i and weight k, and
&3 (21, z2,23) is a homogeneous polynomial in z1, 22, z3 of degree 3 and weigh 0. Since

there is no homogeneous polynomial in z4, z5 variables of odd degree and even weight,
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we have

¢ = %3 2(24, 25)z1 + V3(24, 25)22 + Y2(24, 25)T3 + £3(21, T2, 23)
= 011‘?21 + cozqz522 + 031‘3-’63 + caz12322 + c.-;z%
=>X_é=(c1+ cz)zgx§ + (2 + 2¢3)zszars + (ca + 3c5)z§x3 + c4::1z§ =0

=>cy = —C c—-l-c cs = lc-—O
2= =1, 3= 501, 65 = —36a =0,
Let ¢; = 2¢;. Then we have
o= 51(221$§ — 2zox425 + xa:cg)

and

3 .2 2,3 2 2
I = (x, 2525, a5, 5) @ (22125 — 2z22425 + T3]

=@ed)
wt%‘f—;—lz- =—4 wtaa‘t:j =-2 wt%—fg =0

:Qa‘t:;lz =0= aéfzi2 and 63}’;;2 = %1(22:13:2 — 2252475 + T372)
P it

=d, =

-2

9 -2 -2 0. .
So we have -5!:1—- =0= %2— = %s—, hence f;? involves only z4 and zs variables.
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Similar argument shows that f2 involves only z4 and z5 variables.

-1 —1 -1 -1
t%—=—3 wt%——z—l wtaf—4=1 wt%—=2

w aa:l 61:2 6273 6334
ofit _

wt ozs = 0

ofit _ o Ofit _ ., s Ofi' _ 2
P Bz S0 oay T U gy, T damam

Of;it ofrt

af; = dyz3zs, Bf_.:s = d5(2z122 — 2232425 + 2323)

where d»,d3, d4, ds,ds are constants

aZf—-l 2
= 01‘481:2 - d3.’!)5 =0

0’5

813431!3 = 2d4£4175 =0

o frt

= d5(—-2.’£2$5 + 22331:4)

=d3=dys=ds=0.

ot _ ot _ afrt _ ot -1 :
So we have = = === 0, hence f; ' involves only z; variable. It

-1 -
follows that %l— involves only z; variable. Consequently d2 = 0 and %f—z*l—l =0. We

conclude that f;! = 0. By the same argument, we have f} = 0.

w 0:”1——2 w-a—;;—-() w 63?3—2
6f2_0_6_fganda_f2—d (213 32...2331: + 2z :82)
0z, ~ Oz Oz, 6 175 FraTs T IS

where dg is a constant

Of  _og 52—
612161:2 - 2d6$5 =0

= dg=0.

]

[+] (1]
So we have g_if =0= %ﬁ—t = %’;, hence fJ involves only z4 and 5. We conclude that

f=f74(@s) + fi2(2a,@5) + f2(2a, 5) + f3(24,25) + fi(za).
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Therefore %‘; = 3%1; = 3‘%{; = 0. This implies that dimI < 2, which contradicts the
fact that dim I = 5. To avoid this contradiction, fy. -:1 had better equal to zero.

Similar argument shows that fi +1 = 0. Thus we have

fF=fh+ b+ fop + fig + i
Fori= -2

-2 -2
0z, 0z

= ofcth _ 0= ofct

6x1 8x2

= fi}1 involves only z3,z4 and zs.

Since k > 2, we have

fifh = dr41(za, 25) + 230k (za, 25) + . .. + 2501 (24, T5)

where ¢;(z4, z5) is a homogeneous polynomial of degree i. We claim that f;. fl depends
only on z4,zs. Suppose on the contrary that ¢;(z4,zs) # 0 for some 1 < ¢ < k. Let j

be the largest integer such that :c{,d;kﬂ_j (z4,25) #0

fili = brs1(2a, 25) + 23du(z4, 25) + . .. + Thdrs1-j (24, T5).

Consider

;] -2 j—
g::al = 6k(24, T5) + 2235-1(24, 75) + ... + T Prp1-j (24, Ts).

Write
k+1-j
k4l-j—
$rs1-j(za,zs) = D dprazgtiTiTP
=0
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-2
where dg is a constant. Let a be the biggest integer such that d, # 0. Since 9%‘;? is

in I, XE(%‘;,-'E*) is also in I and
Xa("‘"t') oy gt 4 Z Thtr—i(24,25)
i<j-1

where ¢ is a nonzero constant, ¥r—_;(z4, zs) is a homogeneous polynomial of degree k—:.

Let
i} 0
! - . = XII - —
x- 2 6:131 + 23 31‘2 - s 6224
KA 0
= X" = pg—
0 i} i}
!'=2p) —— — 223 — "= g — 25 5—.
T a1 31‘1 T3 623 T T4 6:1;4 s 8135

Obviously X’ X” = X” X’ and X} X} = X} X’ . Therefore

= (XL + X" = X" 4 IXI I 4+ X (3.1)
X =X+ X)) =X +i1xP X+ o+ X (3.2)

In view of (3.2) and k+j—1 > k+i = 2i+k—i for i < j—1, we have X5+~ (ahepe—i(z4,25)) =
0. On the other hand XX+~ (2}~12¥*+1~7) = &2/ ~125*!~/ where & is a nonzero con-
stant. So we have
o et = %Xiﬂ‘lxz(a—g’;:’t:l) €l

By applying X _ successively on x’l'”lz:*'l'j , we get an irreducible sl(2, C)-submodule
of dimension k + j, the elements of which are linearly independent bihomogeneous
polynomials in I of degree j — 1 in z;, z2,z3 variables and k¥ + 1 — j in x4, z5 variables.

By our assumption, @x41-j(%4,Zs5) is a nonzero homogeneous polynomial of degree
bigger than zero. Either QQ*;’;—‘—‘—i is nonzero or @bﬁh’l is nonzero. By the same argu-

ment as before we can get an irreducible si(2, C)-submodule of dimension k+j + 1, the
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elements of which are linearly indpendent bihomogeneous polynomials in I of degree j
in z1,r2,z3 variables and k& — j in 24, z5 variables.

Thus I contains two disjoint sl(2, C)-submodules of dimensions k+ j and k+j +1
respectively. This contradicts the fact that I = (4) & (1). Hence our claim that fi 2
depends only on x4 and 5 variables is established. Now the argument which we used
before to prove that fi;} =0 can be applied here to conclude f; 2} = 0.

Similar argument shows that fZ , = 0.

For i = ~1

8174

= Ofipr =0
6.’!:4

= fi}1 does not involve z4 variable.
Since fi!; is of weight —1, we can write
k .
fith = E-’Bgﬂ_—ls“(zl,xz, z3)
i=1
where @471 +1(%1,22,23) is a homogeneous polynomial of degree k — i + 1 and weight
i — 1. Let j be the biggest integer such that ﬁ:}ﬂ(zl,zg,z;;) # 0. Since j < k, there

exists 1 < i < 3 such that ﬁ%-jﬂ(a:l,xz,ra) # 0 for some 1 < ¢ < 3. Consider

2¢lcl

08, i
(z1,22,23) + .. +x’—aj—t‘(x1»z2’$3)
1

o -1 8 -2
Tits =5 g; (z1,72,23) + x5

Bx,' -
M-m

= ¢} ——""~(x1,22,23) + bihomogeneous polynomials of total degree

in z4, x5 variables less than j.

-1 j
xu(2ih) e i 4 oy, M

) + bihomogeneous polynomials
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of total degree in z4 and z5 variables less than j.

¢';c—_1+1

j-
x (e - gy et 4 (D)oo P

#k—.;-{—l

+...+ ()X %) —=I*2] + bihomogeneous polynomials of total

degree in x4 and z5 variables less than j.

The above j + 1 homogeneous polynomials are linearly independent elements in I. On

the other hand, we can consider

of-1
—EEL = §0(21, 72, 73) + 2258}y (21,22, 23) + ... + j2L T ¢} 44 (21, 72, 23)

625
= ja:;'lqﬁ;:} +1(21,22,73) + bihomogeneous polynomials of total
degree in z4, x5 variables less than j — 1.

X (‘—j"‘af'c )= (X6 ]- dhjn + (G757 - X4 (#454.1) + bihomogeneous

polynomials of total degree in z4 and zs variables less than j — 1.

L 8fcd
i ) = (e G 6l e (7] ) PG 6
o+ Gl (XL e i +1]+ bihomogeneous polynomials of total

degree in z4 and zs variables less than j — 1.

The above j homogeneous polynomials are linearly independent elements in I. We have

constructed 2j + 1 independent elements in I. Since dimI = 5, we have 1 < j < 2. So

fih = 25052 (21, T2, T3) + 22652, (21, 22, 73).

Observe that there is no homogeneous polynomial in z;,z2 and z3 of odd weight. In
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particular, ¢;3,(z1, 2, z3) is equal to zero. Hence
-1 -2
fk+1 = z5¢; (21, 22,23).

-1
If ¢7%(z1,z2,23) # 0, then %fl = ¢3%(z1,Z2,23) is a nonzero element in I. Since

X_(¢7%(z1, 22, 23)) is of weight —4, we have X_(¢; 2(z1, z2,23) = 0. Thus

(3) = (85 2(z1, 22, 23), X4(¢7 (21,22, 73)), X3 (5 (21,22, 23)))

is a 3-dimensional irreducible submodule in I, which is not possible. Therefore f. 4}1 =0.
Similarly we can prove that fi ; =0.

For 1 = 0.

Since f is a homogeneous polynomial of degree k+1 and weight 0, we have wt Faz% =
—2 and wt ng; = 2. Consequently 8%% =0= -8%1; and f does not involve z,, x3 variables.
Write

k
f= E ‘”;4’24»1-;(34, zs5)

i=0
where ¢ ,,_;(4,25) is a homogeneous polynomial of degree k + 1 — i and weight 0.

Now the argument which we used before to prove that f;- _31 = 0 can be applied here

also to conclude that f7 , = 0. This means that Case 2 cannot occur.

Case 3. I =(3)® (2).
Elements of I are linear combinations of homogeneous polynomials of degree k and

weights 2,0,—-2,1 and —1.

For [i| > 5.
(]
|wt%§1123 1<j<5
. Jj
1
= -a—j-ri‘#=0 1<j<5
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= fi-’-l = 0.
For i = —4.
-4 -4 —4 -4
wtafk”:_s wtafk|1=_4 wtaf;il=—5 ’wtafk:t1=_3
4

331 3$2 6 Bxs

- 0fith _ dfiih _ dfict — Ofith —0
6z1 0z, 334 ax5

= fi4, involves only z3 and fi}} = cz3 where c is a constant.

If ¢ were not zero, then k = 1 which contradicts to our assumption that k¥ > 2. Hence

fii4, = 0. Similarly, we can prove f , = 0.

For 1 = -3
-3 -3 -3
wt Ofi1 =-5 wt Ofex1 =-3 wt Ok =—4
6x1 8z2 6z4
Ofedy _ _ Ofd _ ofdd
= 821 =0= 322 - 01‘4

= f,;'_fl involves only z3 and z5 variables

fk‘fl = 1235 + czxg where ¢1, ¢y are constants.

Since £ > 2, we have ¢; = 0 and fk‘_f] = coxd. If co is not zero, then k = 2 and

-3
2l = 5%?%%1 € I. This implies that

(3) = (22, z4zs,22) C I

Let (2) = (¢3,¢437') C I where ¢} and ¢3! are homogeneous polynomials of degree 2

with weights 1 and —1 respectively. Clearly ¢5* must have the following form

-1
¢ = 1T2%5 + Q2T3Ty
X1¢31 =2017125 + 0132%4 + 2002574 = 2017175 + (01 + 200)T224

Xf_(ﬁz’l = (401 + 402)1,‘1.1,‘4.
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Since X2¢5! = 0 and ¢} is a constant multiple of X ¢35, we see that

(63,05") = (T2x4 — 22125, 2324 — Toz5) = (2) C 1
L0 af5? _ ofs? _ ofs? _
wt bz, 4 wt oz, =-2 wt bza =0 wt o4 =-3
0f5® _
= proule 0
of=2
afzz = dl.’tg
of=2
6f23 = d21)41?5
afs? _
8134 =0
af5?
. = d3(z3z4 — z225) where dj,ds,d3 are constants.
0% f5? o 0f5?
4973 = B0~ Brzs\ Ozs)
-2
= d3=0and ofs =0.
61,‘5
On the other hand
_ 03 0 of5°
W35 = G rs0zs  Ba3 By ) =0
0% fi2 8 ,0f52
2d. = 3 3 V=
2%4 6::56:::3 31‘3( axs )
0f 8f‘2
d, = = 3 3 = 0.
=d; =d 0 and 2y~ Ozy 0
Therefore f32 = 0. Similarly we have f2 =0
3f3 _ afa _ afa _ afst
wt 631— 3wt 63:2 =-1 wt (91:3 =1 6.’84 =-2
ofs!

=0

3231

6f3 _
wt 6.135
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8 -1
éfzz = d4(:c3:t4 - 2225)
F) -1
afza = d5(z2x4 - 2.’121-’!.‘5)
8 -1
e = oo
8 -1
afzs = d7a:4:¢:5
N A A
= ——2d1:l.'5 - 61‘131‘3 - 5;; 6.’61 )—
_ 05t _ 0 ofs!
4424 = 5 bm; = 923 Oz3 )
-1
= d; =0and 9f3 =0.
Oz3

It follows that dy = 0 and 8—;{3—1 = 0. Therefore f;! involves only z4 and zs variables.

In fact it is easy to see that f;! = czz4zZ. Similarly we can prove that

3 3 1 2
f3 = cazy and f3 = cszizs

-0 0 -0 0 -0
0f3 =-2 ‘w%zo wt—a—f3——=2 wt?—fiﬂ=—l wt-—t—a‘f" 11

wt
321 6172 61.'3 61‘4 6:85

ofs

3 2

= —=e

621 5
90
Of3 _ ozyzs
32,‘2

0
—6f3 = 63:62
6:c3 4
of3
A = €4(23%4 — T2X5
Bz, = 4 )
of9
Bﬁ = es(zaz4 — 221 25) where ey, €2, €3, €4, €5 are constant.

Ts

= fi= e(2:clz§ — 2zoz425 + z;,»:ci) where e is a constant.
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We conclude that up to constant multiple, f is of the following form
f= 2zlz§ — 2zoz425 + ::3::3 + c.;zﬁ + cs:cg:cs + csz4:c§ + czzg

where 22,22 — 2227425 + 2323 is a sl(2, C) invariant polynomial.
For i = -2.

In this case we can assume that

f=fA+ b+ Ratiintfin

-2 -2
wt gﬂl =-4 wt 2‘%’1 =-3
T4

631
Ofch _ o _ Ofdh
= 331 =0= 8::4

= f{fl involves only z2,z3 and x5

1

= f&. -31 = clz’z‘xa + cgzg‘ zg where c¢;,cs are constants.

If ¢; # 0, then zg = :—X%EL € I. By applying X_ and X successively on :::’2‘, we have

E k-1 k-2,2 k-1 2 k-2 3 k-3
(23,25 'z3, 25 ‘23,2125, =zjz; ‘,zizy °)CI.

Since dimI = 5, we have k = 2 and
— (2 2 2
I = (z3,z223,23, 2122, 2}).

This implies that I = (5), which contradicts to our assumption that I = (3) & (2).

Therefore ¢; = 0 and

-2 _ . k-12
feg1 = cazy” z§.

If ¢ #0, then z5~1z5 = ii—aa—jgfl € I. Therefore

(X3(237 2s), X3 (257 2s), X4 (257 2s), 25~ w5, X_ (2} 2s), X2 (2 "))
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= (8(k—1)(k—2)(k—3)e3zt~*z5 + T(k — 1)(k —2)2?25 324, 4(k — 1) (k- 2)z2z8 325+
+3(k — DzyzE2z4, 2k — 1)z125 225 + 257 12y, 25 V25, 25 22325, 25 32225) C 1
Since dimI = 5, we have k£ = 2 and
(z124,22125 + 2224, 2225, 2325) C 1.

X4 (z3zs) = 22925 + 2324 € I. Since zozs is in I, we have z3z4 in I. As X (z3z4) =

2x924 + 325 and z3zrs are in I, we have zoz4 € I. Therefore

(-’011‘4, L1Z5,%2%5,T3T5,23T4, 132134)

is a 6 dimensional subspace in I, which is impossible. We conclude that ¢; = 0 and
fi4y = 0. Similarly we can prove that fZ,, = 0.
For : = —1.

In this case we can assume that

f=fih+ foe + fis1

-1 :
wt%i=—3 wt%ﬂ=3

6221 axa
=>afl::tll =0= afkl;tl
6:::1 823

= fi}1 does not involve z; variable and f},, does not

involve z3 variable.
. =1 'y
We claim a—g‘;-‘:’- = 0. Suppose on the contrary that %f’- # 0. Then observe that
Xm—Obecauseth iy 3. It foll h
- = - 8m = —9. ollows that

_ 0fch Ofict
(2)_( 0z y X4 Oz, )gI
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-1 -1 .
Since a—{,ﬁ‘- and X+97f,:-';=’- are elements in I of same weight 1, there exists a constant c;

such that

0figr _ afk
6233 6z

Pfih 9 5 afk
831633 € 6 + 0z,

_ 9 0 Ofih 0 Ofich
20 = Gaednr = X5, aay ) 2055, (g )

3 firh

dx3 =0

=C1

. 62f—1
= either ¢; = 0 or Tk;_l =0.

z3
If ¢; = 0, then a—{,gl = 0. In this case f,;}l involves only z,,z4 and z5 variables. We
can write
£ \
- -2 j_j+1
fk+11 = ij"’z ’ziz;l,"‘
where [%] denotes the largest integer less than % Let jo be the least integer such that

bjo # 0. Then

= (jo + Lbj,z -21022°z§°+(.70+2)b,0+1zk 2(jo+1) JO+1 J0+1

8
Ozs
+... 4 bk Brial 4.
By formula (3.1), we have
x*-io( %’%) — k%020
where b is a non-zero constant. Since X_(z§ 7°z27°) = 0, we see that there is an

irreducible sl(2, C)-submodule of dimension 2k — 2jo + 1 of the following form

k—2j k—2j 2k —2j k-2j0 25
( .70 Jo X+( J0 JO)’ X .70( z5 JozSJO)).
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Since jo < [£], we have 2k —2jo + 1 > k+1. As I = (3)@(2), we have k +1 < 3.
This implies that ¥ = 2 and jo < 1 because of our assumption k£ > 2. It follows
that f3! = bozdzs + byzex?. Since %{;— # 0 by our hypothesis, we have by # 0. So
ToTy = z,ll,—o%f-g:—l and zgzs = X_(z2z5) are in I. However, the weight of z3zs is —3.

This contradicts to our hypothesis

=3)®(2).

On the other hand if ¢; # 0, then % = 0. This means that the degree of fi !

in z, variable is at most one.

((k+2)/3] (241
fih= ), deafzy” zg + Z epzazhTy * Ty .
a=0 p=0

Let B be the biggest integer such that eg; # 0. Then

- —148 k+x-sa
af" —eo:c_T‘ _%i+ .tezha =3+ % + .+e :cﬁ" 3 7
4 3%4 Bo

z
T2 3 “4

k-148) g1 . _
X7 ( g:izl)zezgoz: Bo

where € is a nonzero constant. Since X-(:cp °:ck h 0) = 0, we see that there is an

irreducible sl(2, C)-submodule of dimension k + 28 + 1 of the following form

Bo k-8 Bo k-8 k+2B8p, Bo k-
(-"330‘”5 o, X+(”30935 0),--~:X+ 0(-’”30‘”5 Bo))'

As I = (3)®(2), we have k+ 1+ 28, < 3. This implies that ¥ = 2 and By = 0 because

of our assumption k > 2. It follows that
fa_l = do.’l:4z§.

This contradicts to our hypothesis that %%L # 0. All these together establish our

. -1 . .
claim that a—{,g'-’- = 0. Hence f;. _.}1 involves only z3, 4 and x5 variables.
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We next claim that ﬂhﬂ- = 0. Suppose on the contrary that -B—"kﬂ # 0. We can

write
(52
kdy E*g‘—az
fk+1 Z ayz3zy N zyg .

Let o be the biggest integer such that a,, # 0. Then

-1 _ k—4 . i k+2=3i
agk 1 =ayz, k#z:-;l + 2a2z324 %235’ +... +iazy ey *35 ’
T3

k+3-3vg

+...+7oa.,0z3 'z, _5';!:0:5 2

K+, af-l . -1 k41—
X7 (k) = ot

where 7 is a nonzero constant. Since X_ (30 zt11770) = 0. We see that there is an

irreducible si(2, C)-submodule of dimension k + v of the following form

-1 k41— -1 k41— E+v9-1 -1 k41—
(z;o 1’5+ _70, X+("-'g° Zs 70)’---’X+ T (3;() Zg 70))~

Since I = (3) @ (2), we have k + v < 3. Hence (k, 7o) is either (3,0), (2,0) or (2,1)
because £ > 2. In both cases f,"_'}l cannot involve z3 variable, a contradiction to our
assumption. This established our claim that ﬂ“—’- =0.

Now fi. +11 involves only z4 and z5 variable. If fi. 4}1 is not zero, then it is easy to
see that there is an irreducible si(2, C) submodule of dimension k + 1 of the following

form

(=%, 25 1zg, ... 2F).

Since I = (3) ® (2) and k > 2, we have k = 2. It follows that f3! = coz4z2 where c; is

a constant. By using the same argument as before, we have
— (p2 2
I = (25,2425, 25) ® (2224 — 22175, T3%4 — T2T5)

and f = 22122 — 22,2425 + 323 + Coz4z? + c3z32s5.
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Case4. I=(3)d (1)@ (1).
Elements of I are linear combinations of homogeneous polynomials of degree k and
weights 2,0 and —2.

Clearly fi,, = 0 for [i| > 4 by the same proof given in Case 3 above.

For i = -2
Afel i 3f
Ikl TIkg1 9Jk41
wt Oz, —4 3:::4 -3 6:c5 -1
8fk — 0 = 6f;i21 — afbizl

31‘1 O0z4 Oxs

=>f,;'_f1 involves only £5 and z3 variables

= f,;‘_fl = czkz3 where c is a constant.

If ¢ # 0, then 2% = % € I. In particular z§ = £ X* 25 is also in I. It follows that

(x;’i,X.;.(:c’;ﬁ), X_i(ﬂg), RN va-k(zg))

is an irreducible s!(2, C)-submodule of dimension 2k+1. in I. Since I = (3)® (1) (1),
we have k < 1. This contradicts to our hypothesis that & > 2. Therefore fi ;2 = 0.
Similarly we can prove fZ,; =0.

We can write

f= fk_f1 + fh+1 + f;?+1 + flcl+1 + fl?+1'

. . oot afk afl ¥y . . s
Since weights of kL, g, M and okl are odd integers for 1 <4 < 3, —gk&L,
iy ﬂ“i‘- and 2E41 are zero for 1 < i < 3. Therefore f3 L, fr d f3
dz; oz dz; St129 re fepr Jipr Segr and fig,
are polynomials involving z4 and z5 variables only. On the other hand, since weights
[ 0 0 0
of a—é‘;‘ﬂ and a—g‘;':* are —1 and 1 respectively, we have 8(’;“ =0 and 8—5’51 = 0. Hence

fl?+1 is a polynomial involving only 21,23 and z3 variables.
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If one of the fi 2, fil, fiyy and f2,, is zero, then it is easy to see that there is

an irreducible si(2, C) submodule of dimension k + 1 in I of the following form

(e, ek e, ..., 2k).
Since I =(3)® (1) ® (1) and k > 2, we have k = 2 and

(3) = (1!2,1241‘5,22%) g I.

There are constants ¢; and ¢y such that

0 0
fksy _ . 2 Ofisr _ .2
55, = C1%s 5o, = 2%
1 3

Since f +1 does not involve z4, z5 variables, we conclude that ¢; = ¢; = 0. It follows
o
that 21 = 2fiss — 0. This implies that 2 = 2L = 0, which contradicts to our
hypothesis that dim I = 5.
allof fi 2, fily, fiy, and f3,, are zero, then f = f (1, T2, z3). This implies

that a%e- = % = 0, which contradicts to our hypothesis that dim I = 5.

So Case 4 cannot occur.

Case 5. I=(2)®(2)® (1).
Elements in I are linear combinations of homogeneous polynomials of degree k + 1
and weight —1,0 and 1.
For |i| > 4
i
wn%%#422 1<j<5

J

i
= gi’z:tl_|=0 1<j<5
az'j

= fiq1=0 1<j<5.
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For ¢ = -3

011 6.1:2 (9174 31:5

o Ot _ oo O _ Ot _ Ofh

61:1 6::2 - 61:4 - 6z5

= fiy1 depends only on z3 variable

=  fi1 =0 because —3 is not divisible by wt(z3) = —2.

Similarly f2,, = 0.

For i = -2
-2 -2 -2
wit —'Lafk L=—4 wt —i-afk L=_2 wt -———t—afk Ll=_3
?Il 9 6222 6224
o Ofeh _ o 0fh _ Ok

6-’81 61’2 61‘4

= fif1 involves only z3 and z5 variables
-2 _ 2
= fry1 = €123 + cax5 where ¢y, ¢, are constant

= f{fl = 0 because k > 2.

Similarly f2, , = 0.

For i = -1

wt aLk_-g.l_ =-3 wt Q&u =92
Oz, Oz

Ofivr _ o Ofita

631 - 634

= fr -&1 involves only z3,z3 and z5

= fiiy = czhzs where c is a constant.

If ¢ #0, then 2% = %8—;;:-‘51 € I. z§ = L X¥(2%) is in 1. It follows that there exists an

irreducible si(2, C)-submodule of dim2k + 1 in I of the following form.

(.’Bg, X+(:B§), ceey Xik(zg))
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Since 2k + 1 > 5, this contradicts our hypothesis I = (2) & (2) & (1). Therefore ¢ = 0
and fil,.

Similarly we can prove fi, , =0.

For i = 0,
-0 0
Oz, Oz3

L0 _ g 080y
6::1 533

Since f = f7,,, we see that dimI = dim(sq};, -g:, 7,6;%) < 3. This contradicts to our

hypothesis that dim I = 5.

So Case 5 cannot occur.

Case 6. I=(2)eo (1) (1)@ (1).

This case cannot occur. The argument is the same as those shown in Case 5 above.

Case 7. I=1)o () (1) (1) & (L).
Elements of I are linear combinations of homogeneous polynomials of degree k + 1

and weight 0.

For |i| > 3
i
lwt%-ﬂ-IZI 1<;<5
Oz;
i
= a—f"—t‘—lzo 1<j;<5
6::,-
> fig1=0 1<j<5
For i = -2

-2 -2 -2
wtafki_1_=_4 wta_"'l'i=_2 wi-‘mﬂz—.? ’wt?:-fﬂ=—1
6::1 02:2 634 625
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=
=
=
=

Ofits _ o= Oty _ Ofich _ Ofih

8y Oz Oz4 Ozs

fk'_fl depends only on z3 variable

fif1 = czs where c is a constant

f{fl = 0 since k > 2.

Similarly we can prove fZ,, = 0.

For i = -1

¢ v 4

-1 -1 -1
wtOerr — g i e _ g e Ok g
0z, 6132 633
dfi 0= Ofith _ Ofih _ ofch
83:1 6232 61:3 3:!:4

,f,;',:1 depends only on z5 variable
f,,"+11 = czx5 for some constant ¢

fk_4}1 = 0 because k > 2.

Similarly f{,, =0.

Fori=10

=

0 0 0
wt%—l-z——? ’wt?j”i=2 wt%’fﬁz—-l
4

T T3 x

6’?11 =()=:af£+l - afl(t)+l = af£+1_
azl 333 3£4 625

0
wtéﬁﬁi:=l
6$5

Since f = fg,,, we have dimI = dim(%) < 1. This is a contradiction. Hence Case 7

cannot occur.

Q.E.D.

Lemma 3.2. With the same hypothesis as Lemma 3.1; if dim I = 4, then I is not a

sl(2, C)-submodule.

Proof. We shall assume that I is a si(2, C) module and shall produce contradiction.
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Case 1. I = (4).

Elements of I are linear combinations of homogeneous polynomials of degree k and

weights —3,—1,1 and 3. Write

f= E f:+1

i=—00

where f{,, is a homogeneous polynomial of degree k + 1 and weight .

For |i| > 5, we have fi,, = 0 by the same argument in Case 2 in the proof of

Lemma 3.1.
Fori=14
4 4 4 4
wt Mex1 =2, wt Ofess =4, wi Ofexs _ 6, wt e _
Oz, Oz dz3 Ozs
= Ofesr _ Ofesy _ Ofisr _ 0fkys _

631 - 622 - 31‘3 - 61'5 =0

= fp41 involves only z4 variable

fﬁ_,,l = cz} where c is a constant.
4
Ifc#0,thenk=3and 2z =L a—g‘;f‘- € I. It follows that
I = (23,225, 2422, 23).

As a consequence, f involves only z4 and x5 variables. This implies ;;-% =0= ;%L; =
58;:% and dimI < 2, which contradicts to our hypothesis that dim] = 4. Hence we

conclude that ¢ = 0 and f¢,; =0.

Similarly we can prove fi. -:1 =0.

Fori=3
3 3 3
wt%ﬂizf, wt%ﬂ:Q wtﬁ&u=4
Oz3 Oz Ozs
L O, M _ 0f

6123 - 624 6255
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= fi41 involves only z; and z; variable
= f2,1 =0 because 3 is not divisible by wt z; = 2 and

x4 has weight 0

Similarly we can prove f; 2 =0.

Fori=2

2 2
wt -—-d-'—aaf: 1 =0, wt -——i—ag: L - 2, wt -—i'—afk 14
1 2

Offy _ o Offr _ 0fE
3271 632 6::,-3

= f£,, involves only z4 and z5 variable
If f2,1 # 0, then it is easy to see that k = 2 and
I= ($2,2215,z42}§,zg)

As a consequence, f involves only z4 and x5 variables. This implies 3%_{- =0= gaf; =
5%% and dimI < 2, which contradicts to our hypothesis that dimI = 4. Hence we

conclude that fZ,; = 0. Similarly we can prove f;;2 = 0.

Fori=1
wt a_filii =0 wt .a;félﬂ. =9
324 625
aflgil - afkl:tl =0
Oz4 Ozs

= f,§+1 involves only z;,z2 and z3 variable

1 1 1
If fi;1 # 0, then either a—g—‘lﬂ or %—j’- or %—':L is a nonzero element in I. Since I

is irreducible, we see that elements in I are homogeneous polynomials in z;,zs and

z3 variables. This implies that fr4; is a homogeneous polynomial in z;,z2 and z3
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variables. It follows that E%L‘ = 3%(; = 0 and dimI < 3, which contradicts to our
hypothesis that dim I = 4. Hence we conclude that f} w1 =0

Similarly we can prove that f !, =0.

Fori=0
L SSUP ) "SR wt i gy en
3.’81 62 333 64
0
wt_a_f_k-!-_l=1
635
0
= E’ifﬁ-ﬂ=0foralll_<_i55
Ox;
= f£+1=0.

Hence Case 1 cannot occur.

Case 2. I=(3)®(1).
The same argument as in Case 4 in the proof of Lemma 3.1 shows that Case 2

cannot occur.

Case 3. I =(2)® (2).
The same argument as Case 5 in the proof of Lemma 3.1 shows that Case 3 cannot

occur.

Case 4. I=(2)d (1)@ (1).
This case cannot occur. The proof is the same as those shown in Case 5 in Lemma

3.1.

Case 5. I=()o () (1)@ (1).
This case cannot occur. The proof is the same as those shown in Case 7 in the

proof of Lemma 3.1. Q.E.D.
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Lemma 3.3. With the same hypothesis in Lemma 3.1, if I is a sl(2, C)-submodule of
dimension 3 then f is a homogeneous polynomial in z,z; and zg variables of weight 0

and I is an irreducible sl(2, C)-submodule.

Proof. Case 1. I = (3).
Elements of I are linear combinations of homogeneous polynomials of degree k and

weights —2,0 and 2. Write

f= Z fin

where f,’; +1 is @ homogeneous polynomial of degree k + 1 and weight i.

By the same argument as in Case 4 of Lemma 3.1 we can write

-3 -
f=fig+ fk~|}1 + fl?+1'+ f1:+,1 + fl?+1-
. . afpd otk 8k afy i ;
Since weights of —ghti, =kl =il and ki are odd integers for 1 < ¢ < 3, so
-3 -1 1 3
8—{,‘;—?‘-, a—{,ﬁ’-, a—g‘ﬁl and yé-';-‘fl are zero for 1 < ¢ < 3. Therefore fi2, filly, finy
and f3 +1 are polynomials involving z4 and z5 variables only. On the other hand, since
. arl afl . arl afd
weights of ~zt+i and =5k+L are —1 and 1 respectively, we have itk =0 and g+ = 0.
Hence f¢,, is a polynomial involving only z,z; and z3 variablels.
If one of the fi-2, fil), fi,, and f3,; is zero, then it is easy to see that there is

an irreducible si(2, C) sumbodule of dimension k + 1 in I of the following form.

(ck zk1zs, ..., k).

Since I = (3), we have k = 2 and
I= (:cﬁ,z4:v5,z§).
There are constants c;,cs and c3 such that

i} "l i} °| 7] °|
f'k 1 =c zg 5221 = C2Xx4%5 fk L - Ca:tg.

631 - 01:3 -
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Since f,? +1 does not involve z4,z5 variables, we conclude that ¢; = c; = ¢3 = 0. It

o o
follows that a—ggfl = %‘E—j’- = 8—5‘;? = 0 and hence f¢,, = 0. This implies that

Bf = 2L = 2L —(, which contradicts to our hypothesis that dim I = 3.

8z, ~— dxy ~ Ozs

So all of fi-3, fih, fi41 and f3,, are zero. Consequently f = f¢,,(z1,23,23).

Case 2. I =(2)® (1).
By using the same argument as Case 5 in the proof of Lemma 3.1, we have f =

fo41(%2, 24, 25). By weight consideration, we have

I=2)a(1)
_(9f of \ o 9f
- <3.’t4’a£5 ® (31:2 )
Write
(544
f: f£+l = Z caz;+l—2azgxg.
a=0

!
Since 5“% = Y (k+1—-2a)cazi~2°z$z¢ is nonzero element, clearly X._(a%f;) # 0. This
a=0

contradicts the fact that %!; spans a 1-dimensional sl(2, C)-submodule. We conclude

that Case 2 cannot occur.

Case 3. I = ()@ (1) ®(1).
This case cannot occur. The proof is the same as those given in Case 7 in the proof

of Lemma 3.1.

Lemma 3.4. With the same hypothesis as Lemma 3.1; if dimJ = 2, then I is not a

sl(2, C)-submodule.

Proof. We shall assume that I is a sl(2, C) module and shall produce a contradiction.
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Case 1. I = (2).
Elements of I are linear combinations of homogeneous polynomials of degree k and

weights —1 and 1. Write

F=Y fin

f=—o00
where f} +1 is a homogeneous polynomial of degree k + 1 and weight i. By the same ar-
gument as Case 5 in the proof of Lemma 3.1, we have f = f? +1- Weights of %‘E:fl, P

8.’&‘2

and 24821 are even. Hence 2451 2/8u1 and 80541 are equal to zero and f=f,, in-
Bz : 8z, ' “Oz3 dzs q = Je+1

volves only z4 and z5 variables. If f +1 1s nonzero, then it is easy to see that I contains

an irreducible submodule of dimension k + 1 of the following form

k

(z2’24—1

zs,...,25).

This implies that dimI > k + 1 > 3, which contradicts to our hypothesis dimI = 2.

Therefore f = 0. We conclude that this case cannot occur.

Case 2. I = (1) (1).
This case cannot occur. The proof is the same as those shown in Case 7 in the

proof of Lemma 3.1. Q.E.D.

Lemma 3.5. With the same hypothesis as Lemma 3.1; if dimI = 1, then I is not a

sl(2, C)-submodule.

Proof. The argument which is used in Case 7 in the proof of Lemma 3.1 shows that

f = czk*! where c is a constant. Therefore I = (z%) is not a si(2, C)-submodule.Q.E.D.

Proposition 3.6. Suppose sl(2,C) acts on the space of homogeneous polynomials of
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degree k > 2 in z1,z2, 3,4 and z5 variables via

T=2r,— —2z i+:': i—z _6_
- ! 3171 3 61:3 4 614 s 61‘5
4] 3]
X+—2m1$';+21:2-6—x—3+124-3;
0 0 0
X——IZ—B—:B—;+1)36_3:2+ZSE'

Suppose the weight of z; is given by the corresponding coefficient in the expression of

T as above, l.e.
wt(z1) =2 wi(z2) =0 wi(zz)=-2 wi(zs)=1 wt(zs)=-1.

Let I = (%Ll, 3%_%, %, -3‘2}‘-, %) be the complex vector subspace spanned by %, -.5%, %%, 6%%
and %&, where f is a homogeneous polynomial of degree k + 1. If I is a si(2, C)-
submodule, then either
(i) f is a homogeneous polynomial in 1, z3, 23,24 and 5 variables of weight 0 and I
is (3) ®(2) i.e. direct sum of 3-dimensional and 2-dimensional irreducible si(2, C)-
submodules, or
(ii) f is a homogeneous polynomial in z;,z, and z3 variables of weight 0 and I is an

irreducible sl(2, C)-submodule of dimension 3, or

(iii) f is of the following form
f=g+ clzi + czzi:z:s + C3:c4z§ + c4z:§

where g = 22,22 — 2222475 + z323 is an sl(2, C) invariant polynomial and

_(99 99 99 99 99, _
I= (62:1’61:2’62:3’8::4’635) =@ e

= (22, 2425,22) ® (224 — 22125, 2324 — T225).

Proof. This is an immediate consequence of Lemma 3.1 through Lemma 3.5.
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Remark. g is projectively equivalent to f. In fact

C4 C3
gz + 5 %5 T2 55, T3t ozt CoZs, T4,25) = f(x1, T2, %3, 24,T5).



§4. sl(2,C) acTioN (1.4) oN M¥.

Lemma 4.1. Suppose sl(2, C) acts on the space of homogeneous polynomials of degree

k> 2in z,,z,, 23,24, and s variables via (1.4)

T=3r1 77—+ 22— — 2 i—32: —a—
- ! 6::1 28232 3 323 4 834
d 0 0]
X+—-321—6—z-2-+4132-5-z—3+3235;;
o) 0
X- _126—3I+x3_0T2+x4E:_3'

Suppose the weight of z; is given by the corresponding coefficient in the expression of

T above i.e.
wi(zy) =3, wt(zz) =1, wit(zs) =-1, wt(zy)=-3, wt(zs)=0.

Let I be the complex vector subspace of dimension 5 spanned by % 2L 8 8L anq

) 8z4 Bz3’ Oz,

2L where f is a homogeneous polynomial of degree k+ 1. If I is a sl(2, C)-submodule,

8.1:5

then I = (4) ® (1) and f is a homogeneous polynomial of weight 0.

Proof. Case 1. I = (5).

Elements of I are linear combinations of homogeneous polynomials of degree k£ and
weights —4,—2,0,2 and 4. Write

00
f= E fli+1
i=—c0

where f§ +1 is a homogeneous polynomial of degfee k + 1 and weight 1.

For i is an even integer wt%‘i—? is an odd integer for all 1 < j < 4. Hence %é—? is
zero for all 1 < j < 4. It follows that fl‘;+1 depends only on z5 variable. Since weight of

z5 is zero, we conclude that f,‘;+1 = 0 for 7 non-zero even integer, and f2+1 = czktl If

56
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¢ # 0, then (zf) would be a 1-dimensional invariant submodule in I which contradicts
to our hypothesis I = (5). Hence fJ,; = 0 and we have
bt I3
=2 Y
i=—o00
For ¢ an odd integer, wt %ﬁ = 2i 4+ 1 is an odd integer 0. Hence %‘t =0. It

follows that 5% = 0. This contradicts our hypothesis I = (5). We conclude that Case

1 cannot occur.

Case 2. I=(4) & (1).

Elements of I are linear combinations of homogeneous polynomials of degree k and
weights —3,—1,1,3 and 0.

For |i| > 4 and i odd, wt (%fi) is a non-zero even integer for all 1 < j < 5. This

implies that %%L =0 for all 1 <j<5. Thus f,‘;+l =0.

For |i| > 7
’ aflf:il :
wi ( =>4 1<j<5
oz;
i
= gﬁi:o 1<j<5
Oz;
= f1i+1=0'
Fori=26
6 6 6 6
wt%'—lz& wt_a_fitl_=7, wt%ﬁ.=g wt?;f’ﬁ-_l=6
6132 z3 T4 ’ 62?5 '

L fn g M _ 0SS _ 0S5

3.’82 023 6234 32?5

= f,?+1 depends only on z; variable

6 2
= fk+1 = czl
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= ff;1 =0 because k > 2.

Similarly we can prove that f;.%; = 0.

Fori=4
4 4 4
wtllins _ g Wen _ gy Oen _y
8:83 ’ 624 ’ 61!5

Oftes _ o Offes _ Oftas
Oz Oz, Ozs

=> ff“ depends only on z; and z variables

=

= fip1 = cz122 +dzs = fi,, = dzj because k > 2..
4
If d # 0, then z3 = & %k1 ¢ I. It follows that
2 4d 81‘3
(22, 222,, 2123, 23, 2323, 22222 + 2324)

is a 6-dimensional subspace in I. This contradicts to our hypothesis dim I = 5. Hence
d=0 and f,':_*_1 =0.

Similarly we can prove that fii}; =0. So f = fi 2 + fii + i + R+ fla +
fen + finr

Fori=3

3 3 3
wt-a-éf—l=2 wtaL:*—l=4, wtgﬁi:&

Ozs ’ Oz3 GER
L 0 0 _
Ozq Oz3 Oz4

= fi,, depends only on z; and z5 variables

= ff_,_l = czlz§
Similarly we can prove fi. -l?l = z4zk. If c # 0 or ¢ # 0, then it is easy to see that

I =)o (1)
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= (z21257Y, zozk™), zazk™l, z4zk™t) @ (2f)

2 2 2 2 2
wtg'_fﬁi_l_ =._1’wt?_fi'!i=1, wt.a_'t’f:t.l.z& wt%!i=5’wt_a__f.k_'t.1_=2
631 3.1)2 61‘3 81‘4 6135

= f2 +1 depends only on z;,z2 and z3 variables, and there are constants ¢1,cz and c3

such that
of? _, Of7 _, Of -
Uiss - gpgot, st o ot Yott o g b
axl 332 623

2 2 2
- Ofke1  _ Oafk+1 _ 9fin since k > 2

6.’81 - 622 az’s

=>f3+1 = 0.

Similarly we can prove fi % =0.

1 1 1 1 1
wt —"'—afk L=_9 wt-——-—'Lafk L =0, wt ————'h—afk L=2 wt -—Lafk L—4 wt ———i—afk L =1
Oz, Oz, Oz3 Oz4 Ozs

= f,: 1 depends only on z and z5 variables and there are constants ¢4 and cs such

that
a1} o} B}
ot =oams, —pith=oszarsT! = iy = cemaas.

Similarly we can prove that f. ;1 = crzazk

wt—""—af’? L—=_3 wt -—*—-af'? L=—1, wt -—"'—af’? L—-1
31:1 6-’82 61!3

3

0
wt2es1 _ 3y in _ g
84 3175

0fi41 i1 0fip i-1 Ofin k-1
= = CcgT4Zy , = C9T3Ty , = C10Z2%
3171 6172 633

afo 3f0
k41 _ k-1 k41 _ k
Ozs 11125 7, dzs C12%5

Pfop _
8z;0zs ~ Ozs0z;

= ¢3 = c9 = c10 = ¢11 = 0 by considering

C12 k41
k+1 8

— k+1
= 61235+ .

0
= feq1=

Therefore we can write

k k ~ k+1 k ~ k
f =cziz5 + cezazs + 012x5+ + c7z3x5 + Craxs.
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This implies that (%, a%‘%’ %, 5"{:) is at most one dimensional, which contradicts

to our hypothesis I = (4) @ (1). Thus we can conclude that f7,, = f; % = 0 and we

have
f=fA+ i+ Ru+ fig+ i
The same argument as above shows that fi}; = fl.; = 0. Therefore we have
f=FfA+ R+ fin

2 -2 -2
wt-———-‘*—aéf"’z o5, w e oy wt———"’—agk L = -5, wt &1 g
z

T4 ’ s ' 1 Ozs

614 625 3331 61’5

= f,f,,_l depends on z;,z2 and z3 variables while

L E g Ofh _ Ok _ 0%

I -31 depends on z2,z3, and z4 variables.

2 2 2
We claim that either -a—g‘gfl =0or a—‘g‘;‘:’- =0or 8—£§-‘:’- = 0 implies f2,, = 0.
2
Suppose %—fl = 0. Then f? +1 depends only on z; and z3 variables. This implies

that £ + 1 is even and there exists a constant d; such that

2 s B3
fe1(22,23) = dizy* z37 .

e 2 B8fdy .- dor P e e o
Ifdy #0, then z,% 37 = g53; 55t is in I. By considering XX¥(z,* 237 ), we

see that z% is in I. Since X_(z%) = 0, it follows that

(25, X+ (2§), X3(25), ..., 2% (<))
is an irreducible submodule of dimension 3k + 1 > 7 in I. This contradicts to our

hypothesis I = (4) @ (1). Therefore we vhave fZ,, = 0.

Suppose 9{;5—':1 = 0. Then f? +1 depends only on z; and z3 variables. This implies

that k£ + 3 is divisible by 4 and there exists a constant d; such that

_-*'_!M

k
fl?+1(1’1’33) =dz,* z5°
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If d2 # 0, then by the similar argument as before, it is easy to see that

(=5, X4 (25), X3(25), ..., X3 (D))
is an irreducible submodule of dimension 3k + 1 > 7 in I. This contradicts to our
hypothesis I = (4) @ (1). Therefore we have f2,; =0.
It is easy to see that 9%—2*& = 0 implies fk2+1 =0.
Similarly we can prove that if either —&*‘- or —%:i‘- or —1“*’- is zero, then fi- +21 is
zero.

We claim that f2,, and f;? cannot both be nonzero. Suppose on contrary that

both d o2 Since wt 2ktt = wt 2L = 1 and wt u =
oth f2,, and f;7? are nonzero. Since w = wt gkt = —1 and wt k¥ =
wt ?-L‘i’- = 1, there are nonzero constants d; and d, such that

5] ofy of2
—!J‘“i—(zz,xa,u)_dl-aii—(&‘l,zz,xs) —&(32,23,24) dz‘-a'%‘:i(xl,-’ﬂz,zs)

- aft
= fkfl(xz,za,h) = dzrq—gi;z'—l(-’cx, z3,23) + g(z2, £3)

0 0 dg
= -bfl"'—(zz,xa,u) dz$4'a—%ﬂ—(z1,-’c2,$3)+ ——(z2,3)

02 f2 1., 0f2 Og
Z k41 = —[d, 2kl -
= T4 42502, (z1,22,23) dg[dl oz, (21,22, z3) axa(l’z,-’ca)]

= —a—fzﬂ—(zl T9 2:3) =0
31‘261‘3 e
= f,fH(:cl,zg, z3) does not involve zyz3
= f,f+1(a:1,a:2,z3) = d3z2 + h(z,,z3) where d3 is a constant and h(zy,z3) is a

homogeneous polynomial of degree k + 1 and weight 2

= f2.1(z1,22,23) = h(z1,z3) because k > 2
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afl?il =0
6Z2

= fZ,1 =0 as shown above.

This gives rise to a contradiction. Hence our claim is proved.

We next claim that the case fZ,,(z1,23,23) # 0 and f; % (22, 23,24) = 0 cannot
occur. Suppose on the contrary that ff+1(:cl,zg,za) # 0 and fk‘fl(zz,za,m) = 0.
Then we have

f = (21, 22,23) + fop1(21, 22, T3, 24, 25)

812 8s2 af2
and ot #0, Tt # 0, 553 # 0.

634 - 323 ’ 6::3 6::1
0fRp _ , 0ftn 0ffp _ , Offy
= 5z, =dy e (21, z2, 23), oz =ds oz, (21, z2, z3)
of2
=> fop = 442454;1-(21,32,33) + h(zy, 22, 23, 25)

o

X ’z + T ,z I, ,:E

02 f? Of? 8h
=> d4z4—5;?i(21,32,$3) = ds—gﬁi(zhzz,za) - &;(11,-’52, r3,%s5)

fE
= dazs x=(z1,%2,23) = 0.
0z3

If d4 = 0, then %E’“—L = 0 and hence % = 9—5-2—':-1 = 0. This implies dim I < 4, which
contradicts to our hypothesis I = (4) @ (1). If d4 # 0, then %"(Zl,d?z,.z;;) = 0.
3

Hence f,'f+1(:cl, z3,z3) does not involve z2 and

2 _ 3 2 3
Ji41 = dsz123 + d7z523 = fi = drzyzs
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2
because k > 2. 