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ABSTRACT In 1997, Shor and Laflamme defined the weight enumerators for quantum error-correcting
codes and derived a MacWilliams identity. We extend their work by introducing our double weight enumer-
ators and complete weight enumerators for qubit codes and then investigate the MacWilliams identities for
these enumerators. Based on the generalized MacWilliams identities, we solve an open problem, namely,
the Singleton-type bound for asymmetric quantum codes (AQCs). Besides, the Hamming-type and the first
linear-programming-type bounds for the AQCs are deduced similarly.

INDEX TERMS MacWilliams identities, asymmetric quantum codes, quantum singleton bound.

I. INTRODUCTION
Quantum information theory is rapidly becoming a well-
established discipline. It shares many of the concepts of
classical information theory but involves new subtleties aris-
ing from the nature of quantum mechanics. Among the
central concepts in common between classical and quan-
tum information is that of error correction. Quantum error-
correcting codes have been initially discovered by Shor [37]
and Steane [39], [40] in 1995-1996 for the purpose of pro-
tecting quantum information from noise in computation or
communication [5], [6], [8], [14], [21], [33]. The discovery
of [37] has revolutionized the field of quantum information
and leads to a new research line. In [13], [49], [50] noise-
less quantum codes were built using group theoretic meth-
ods [44], [51]. In [7], [21] quantum error correction was used
to broader analyses of the physical principles. The authors
in [9], [15], [43] gave various new constructions of quantum
error-correcting codes.

It is well known that if further information about the
error process is available, more efficient codes can be
designed. Indeed, in many physical systems, the noise is
likely to be unbalanced between amplitude (X-type) errors
and phase (Z-type) errors. Recently a lot of attention has been
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put into designing codes for this situation and into studying
their fault tolerance properties [17], [18], [36], [43]. All these
results use error models described by Kraus operators [24]
that generalize Pauli operators.

In classical coding theory the famous MacWilliams iden-
tity gives a relationship between the weight distributions of
a code C and its dual code C⊥ without knowing specif-
ically the codewords of C⊥ or anything else about its
structure [31], [32]. The same technique was adapted to the
quantum case by Shor and Laflamme [38] generalizing the
classical case and they derived a MacWilliams identity.
Rains [34] investigated the properties of quantum enumera-
tors. In [35], Rains extended the work of [38] to general codes
by introducing quantum shadow enumerators. This idea was
further developed by Lai et al. [26]. They considered the
weight generating functions associated with convolutional
codes in the viewpoint of constraint codes and obtained a
simple and direct proof of this MacWilliams identity in the
case of minimal encoders.

Several bounds are known for classical error-correcting
codes. Delsarte [11] investigated the Singleton and Hamming
bounds using linear programming approach. The first linear
programming bound was generalized by Aaltonen [1] to the
nonbinary case. See [2], [27], [28] for more information
on available bounds for non-binary codes. Recently there
has been intensive activity in the area of quantum codes.
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In particular, Knill and Laflamme [22] introduced the
notion of the minimum distance of a quantum error-
correcting code and showed that the error for entangled
states is bounded linearly by the error for pure states.
Shor and Laflamme [38] presented a linear-programming
bound for quantum error-correcting codes. Cleve [10] demon-
strated connections between quantum stabilizer codes and
classical codes and gave upper bounds on the best asymp-
totic capacity. Rains [34], [35] showed that the mini-
mum distance of a quantum code is determined by its
enumerators. Ashikhmin and Litsyn [4] attained upper
asymptotic bounds on the size of quantum codes. Aly [3]
established asymmetric Singleton and Hamming bounds on
asymmetric pure quantum and subsystem code parameters.
Sarvepalli et al. [41] studied asymmetric quantum codes and
derived upper bounds on the code parameters using linear
programming. Wang et al. [43] extended the characterization
of non-additive symmetric quantum codes given in [15], [16]
to the asymmetric case and obtained an asymptotic bound
from algebraic geometry codes. Recently, Huber et al. [19]
demonstrated some bounds on absolutely maximally entan-
gled states from shadow inequalities with the help of the
quantum MacWilliams identity.

It should be mentioned that there is another weight enu-
merator for a classical code that contains more detailed infor-
mation about the codewords. Namely, the complete weight
enumerator, which enumerates the codewords according to
the number of alphabets of each kind contained in each
codeword. MacWilliams [31], [32] also proved that there
is an identity between the complete weight enumerators of
C and its dual code C⊥. The complete weight enumerators
and weight enumerators of classical codes have been studied
extensively, see [12], [29], [42], [45]–[48] and the reference
therein. However, to the best of our knowledge, there is no
quantum analog complete weight enumerators as in clas-
sical coding theory. Therefore the purpose of the present
paper is to introduce the notions of double weight enu-
merators and complete weight enumerators for qubit codes,
and then generalize the MacWilliams identities about com-
plete weight enumerators from classical coding theory to the
quantum case. Using the generalizedMacWilliams identities,
we will find new upper bounds on the minimum distance of
asymmetric quantum codes (AQCs).

Here is the plan of the rest of this paper. In Section II,
we introduce some basic definitions and notations on sym-
metric and asymmetric quantum codes. In Section III,
we establish our main result on quantum MacWilliams iden-
tities by defining double weight enumerators and complete
weight enumerators of quantum codes. In Section IV, we give
a short survey of properties of the Krawtchouk polynomi-
als and we prove the key inequality that allows us to get
new upper bounds of the minimum distance of asymmetric
quantum codes. In Section V, we apply the key inequal-
ity to obtain Singleton-type, Hamming-type and the first
linear-programming-type bounds for asymmetric quantum
codes.

II. SYMMETRIC AND ASYMMETRIC QUANTUM CODES
We begin with some basic definitions and notations. LetC be
a complex number field.We regardC2 as a Hilbert space with
orthonormal basis |0〉 and |1〉. Denote by (C2)⊗n = C2n the
n-th tensor of C2. This space enables us to transmit n qubits
of information. Its coordinate basis is given by

|j〉 = |j0〉 ⊗ |j1〉 ⊗ · · · ⊗ |jn−1〉,

for each jr ∈ {0, 1}. For two quantum states |u〉 and |v〉 inC2n

with

|u〉 =
∑
j

uj|j〉, |v〉 =
∑
j

vj|j〉,

the Hermitian inner product of |u〉 and |v〉 is defined by

〈u|v〉 =
∑
j

ujvj,

where we denote by x the complex conjugate of x.
In the process of transmission over a channel the infor-

mation can be altered by errors. There are several models
of channels. Perhaps the most popular one is the completely
depolarized channel, among which a vector v ∈ C2 can be
altered by one of the following error operators:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

The error operators acting on C2n constitute a set

E := {e = σ0 ⊗ · · · ⊗ σn−1|σr ∈ {I , σx , σy, σz}}.

For e ∈ E , the number of non-identity matrices in the
expression of e is called the weight of e which is denoted
by wQ(e) . Similarly, we denote by Nx(e), Ny(e) and Nz(e)
the number of the matrices σx , σy and σz occurred in the
expression of e, respectively. Clearly

wQ(e) = Nx(e)+ Ny(e)+ Nz(e). (1)

It is well known that each e ∈ E is the composition of two
kinds of error operators, i.e. the bit flip and the phase flip.
Precisely, for a fixed error operator e, there exist vectors a =
(a0, · · · , an−1) ∈ Fn2 and b = (b0, · · · , bn−1) ∈ Fn2 such that

e = ia·bX (a)Z (b), (2)

where

X (a) = ω0 ⊗ · · · ⊗ ωn−1, Z (b) = ω′0 ⊗ · · · ⊗ ω
′

n−1,

and

ωj =

{
I if aj = 0,
σx if aj = 1,

ω′j =

{
I if bj = 0,
σz if bj = 1.

We define the X -weight wX (e) and the Z -weight wZ (e) to be
the Hamming weights of a and b of Equation (2) respectively.
In fact, they alternatively can be defined as

wX (e) = Nx(e)+ Ny(e), (3)

wZ (e) = Ny(e)+ Nz(e). (4)
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In the following section we want to investigate some natural
partitions of the set E , so we define

E[i, j, k] := {e ∈ E|Nx(e) = i,Ny(e) = j,Nz(e) = k},

E[i, j] := {e ∈ E|wX (e) = i,wZ (e) = j},

E[i] := {e ∈ E|wQ(e) = i}.

Definition 1: A quantum code of length n is a linear sub-
space of C2n with dimension K > 1. Such a quantum code
can be denoted as ((n,K )) code or [[n, k]] code, where k =
logK .
Remark 2: Here and thereafter, the logarithms are base 2.
The conditions for error correction are due to

Knill et al. [23].
Definition 3 [23]: Let Q be a quantum code. An error e in

E is called detectable if

〈v|e|w〉 = 0

for all orthogonal codewords v and w from the code Q.
Denote by P the orthogonal projection from C2n onto

a quantum code Q. We have an alternative definition for
detectable errors. It is deduced from [4] that e is detectable
if and only if

PeP = λeP

for a constant λe depending on e.
Definition 4: Let Q be a quantum code with parameters

((n,K )). The minimum distance ofQ is the maximum integer
d such that any error e ∈ E[i] with i < d is detectable. Such
a quantum code is called a symmetric quantum code with
parameters ((n,K , d)) or [[n, k, d]]. If the integers dx and dz
are the maximum integers such that each error e ∈ E[i, j]
with i < dx and j < dz is detectable, then we call Q an
asymmetric quantum code with parameters ((n,K , dz/dx)) or
[[n, k, dz/dx]].

The classical Singleton bound can be extended to quantum
codes.
Theorem 5 (Theorem 5, [4]): Let Q be a quantum code

with parameters [[n, k, d]]. We have

n > k + 2d − 2.

In [3], [43], the authors have proved the Singleton bound
for stabilizer asymmetric quantum codes. That is

n > k + dx + dz − 2.

However, we cannot find the proof of Singleton bound for
general quantum codes.

III. WEIGHT DISTRIBUTIONS AND ENUMERATORS
The weight distributions for classical codes can be general-
ized to the case of quantum codes. According to [38], the
weight distributions for quantum codes are defined by the
following two sequences of numbers

Bi =
1
K 2

∑
e∈E[i]

Tr2(eP),

B⊥i =
1
K

∑
e∈E[i]

Tr(ePeP).

Moreover, the corresponding weight enumerators are defined
to be the following two bivariate polynomials

B(X ,Y ) :=
n∑
i=0

BiXn−iY i,

B⊥(X ,Y ) :=
n∑
i=0

B⊥i X
n−iY i.

In a similar manner, we introduce the double weight
distributions

Ci,j =
1
K 2

∑
e∈E[i,j]

Tr2(eP),

C⊥i,j =
1
K

∑
e∈E[i,j]

Tr(ePeP),

and the complete weight distributions

Di,j,k =
1
K 2

∑
e∈E[i,j,k]

Tr2(eP),

D⊥i,j,k =
1
K

∑
e∈E[i,j,k]

Tr(ePeP).

Then the double weight enumerators and the complete weight
enumerators are defined by

C(X ,Y ,Z ,W ) :=
n∑

i,j=0

Ci,jXn−iY iZn−jW j,

C⊥(X ,Y ,Z ,W ) :=
n∑

i,j=0

C⊥i,jX
n−iY iZn−jW j,

D(X ,Y ,Z ,W ) :=
∑

i+j+k6n

Di,j,kX iY jZ kW n−i−j−k ,

D⊥(X ,Y ,Z ,W ) :=
∑

i+j+k6n

D⊥i,j,kX
iY jZ kW n−i−j−k .

These enumerators are related by the following theorem.
Theorem 6: Let Q be a quantum code with enumerators

B,B⊥,C,C⊥,D and D⊥. Then the following four identities
hold:

B(X ,Y ) = D(Y ,Y ,Y ,X ), (5)

B⊥(X ,Y ) = D⊥(Y ,Y ,Y ,X ), (6)

C(X ,Y ,Z ,W ) = D(YZ ,YW ,XW ,XZ ), (7)

C⊥(X ,Y ,Z ,W ) = D⊥(YZ ,YW ,XW ,XZ ). (8)

Proof: It follows from (1), (3) and (4) that

Bl =
∑

i+j+k=l

Di,j,k ,

B⊥l =
∑

i+j+k=l

D⊥i,j,k ,

Di,j,k = Ci+j,j+k ,

D⊥i,j,k = C⊥i+j,j+k .
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The four Equations (5), (6), (7) and (8) then follow immedi-
ately, finishing the proof of the theorem. �
The classical MacWilliams identity provides a relationship

between classical linear codes and their dual codes. It is
interesting to see that the MacWilliams identity also holds
for quantum weight enumerators [38]. That is

B(X ,Y ) =
1
K
B⊥(

X + 3Y
2

,
X − Y

2
). (9)

Our main result is to show that quaternary MacWilliams
identities similarly hold for the double weight enumerators
and complete weight enumerators.
Theorem 7 (Quaternary MacWilliams Identities): Let Q

be an ((n,K )) quantum code. With the notation introduced
above, we have

C(X ,Y ,Z ,W )

=
1
K
C⊥(Z +W ,Z −W ,

X + Y
2

,
X − Y

2
), (10)

D(X ,Y ,Z ,W )

=
1
K
D⊥(

X − Y − Z +W
2

,
−X + Y − Z +W

2
,

−X − Y + Z +W
2

,
X + Y + Z +W

2
). (11)

Proof: We shall investigate the explicit expressions for
these enumerators. Recall that the coordinate basis for C2n is
given by

|j〉 = |j0〉 ⊗ · · · ⊗ |jn−1〉,

where 0 6 j < 2n and j = j0 + j12+ · · · + jn−12n−1. Denote
by ei,j, pi,j the entries of e and P, respectively, with respect
to our coordinate basis. For e = σ0 ⊗ · · · ⊗ σn−1 ∈ E , the
identity e|i〉 =

∑
j ei,j|j〉 implies

ei,j = (σ0)i0,j0 (σ1)i1,j1 · · · (σn−1)in−1,jn−1 .

According to the definition of D, we get

D(X ,Y ,Z ,W )

=

∑
i,j,k

X iY jZ kW n−i−j−kDi,j,k

=
1
K 2

∑
i,j,k

X iY jZ kW n−i−j−k

×

∑
e∈E[i,j,k]

∑
r,s,t,u

er,sps,ret,upu,t

=
1
K 2

∑
r,s,t,u

ps,rpu,t

×

∑
e∈E

XNx (e)YNy(e)ZNz(e)W n−wQ(e)er,set,u

=
1
K 2

∑
r,s,t,u

ps,rpu,t
n−1∏
λ=0

dλ(X ,Y ,Z ,W ),

where

dλ(X ,Y ,Z ,W )

= (σx)rλ,sλ (σx)tλ,uλX + (σy)rλ,sλ (σy)tλ,uλY

+ (σz)rλ,sλ (σz)tλ,uλZ + (I )rλ,sλ (I )tλ,uλW . (12)

Using the same method, one can show that

D⊥(X ,Y ,Z ,W ) =
1
K

∑
r,s,t,u

ps,rpu,t
n−1∏
λ=0

d⊥λ (X ,Y ,Z ,W ),

where

d⊥λ (X ,Y ,Z ,W )

= (σx)rλ,uλ (σx)tλ,sλX + (σy)rλ,uλ (σy)tλ,sλY

+ (σz)rλ,uλ (σz)tλ,sλZ + (I )rλ,uλ (I )tλ,sλW . (13)

To establish Equation (11), it remains to prove that for
arbitrary rλ, sλ, tλ, uλ ∈ {0, 1},

dλ(X ,Y ,Z ,W )

= d⊥λ (
X − Y − Z +W

2
,
−X + Y − Z +W

2
,

−X − Y + Z +W
2

,
X + Y + Z +W

2
). (14)

We can check directly that (14) is true for all of the 16 cases.
Let us pick the case of (rλ, sλ, tλ, uλ) = (0011) for example.
It is computed from (12) and (13) that dλ(X ,Y ,Z ,W ) =
−Z +W and d⊥λ (X ,Y ,Z ,W ) = X +Y , respectively. So (14)
holds for the case of (rλ, sλ, tλ, uλ) = (0011). Thus we have
proved Equation (11).

Using (11) and the relationship between C and D, we get

C(X ,Y ,Z ,W )

= D(YZ ,YW ,XW ,XZ )

=
1
K
D⊥(

(X + Y )(Z −W )
2

,
(X − Y )(Z −W )

2
,

(X − Y )(Z +W )
2

,
(X + Y )(Z +W )

2
)

=
1
K
C⊥(Z +W ,Z −W ,

X + Y
2

,
X − Y

2
),

where in the last step we use (8). This implies Equation (10).
Thus we complete the proof of the theorem. �

The following theorem generalize Theorem 3 in [4] to the
case of double weight distributions.
Theorem 8: Let ((Q,K , dz/dx)) be an asymmetric quan-

tum code with double weight distributions Ci,j and C⊥i,j. Then

1) C⊥i,j > Ci,j > 0 for 0 6 i, j 6 n, and C0,0 = C⊥0,0 = 1.
2) If tx , tz are the two largest integers such that Ci,j = C⊥i,j

for i < tx and j < tz, then dx = tx and dz = tz.
Proof: The proof is similar to that of Theorem 3 in [4]

and so it is omitted here. �
Remark 9: Suppose that Q is an additive quantum code of

length n constructed from a classical linear code C over F4.
Then the weight distributions of Q are nothing but the clas-
sical distributions induced by C and its symplectic dual C⊥th .
That is

Bi = #{c ∈ C : wH (c) = i},

B⊥i = #{c ∈ C⊥th : wH (c) = i},

where wH (c) denotes the Hamming weight of a codeword c,
see [5], [35]. Let α be a fixed primitive element of F4,

VOLUME 7, 2019 68407



C. Hu et al.: Complete Weight Distributions and MacWilliams Identities for Asymmetric Quantum Codes

i.e., F4 = {α, α
2, α3 = α + α2, 0}. Write

c = (c1, c2, · · · , cn)

= (a1α + b1α2, a2α + b2α2, · · · , anα + bnα2) ∈ Fn4,

where (a1, a2, · · · , an, b1, b2, · · · , bn) ∈ F2n
2 . Then the dou-

ble weight distributions of Q are deduced from C and its
symplectic dual C⊥th , i.e.,

Ci,j = #{(c1, c2, · · · , cn) ∈ C :
n∑
s=1

as = i,
n∑
s=1

bs = j},

C⊥i,j = #{(c1, c2, · · · , cn) ∈ C⊥th :
n∑
s=1

as = i,
n∑
s=1

bs = j}.

For a vector c = (c1, c2, · · · , cn) ∈ Fn4, the composition of c,
denoted by comp(c), is defined as

comp(c) = (k1, k2, k3, n− k1 − k2 − k3),

where kj (j 6= 0) is the number of components cs of c that are
equal to αj. Then the complete weight distributions of Q are
also deduced from C and its symplectic dual C⊥th , i.e.,

Di,j,k = #{c ∈ C : comp(c) = (i, j, k, n− i− j− k)},

D⊥i,j,k = #{c ∈ C⊥th : comp(c) = (i, j, k, n− i− j− k)}.

Here we provide a concrete example to illustrate our main
results.
Example 10: Let (q,m) = (4, 2). Consider the [5, 3, 3]

Hamming codeH2 overF4 of length n = (qm−1)/(q−1) = 5
with check matrix[

1 0 1 α2 α2

0 1 α2 α2 1

]
,

where α is a fixed primitive element of F4. Its dual codeH⊥2
is a [5, 2, 4] linear code over F4. The code H⊥2 induces an
additive quantum code Q with parameters [[n, n− 2m, 3]] =
[[5, 1, 3]]. The weight enumerators of Q are computed from
C := H⊥2 and its symplectic dual C⊥th := H2, namely,

B(X ,Y ) = X5
+ 15XY 4,

B⊥(X ,Y ) = X5
+ 30X2Y 3

+ 15XY 4
+ 18Y 5.

One verifies that theMacWilliams identity (9) holds forB and
B⊥. The double weight enumerators of Q are as follows

C(X ,Y ,Z ,W )

= X5 Z5
+ 5X3Y 2 Z3 W 2

+ 5X3Y 2 ZW 4
+ 5XY 4 Z3 W 2,

C⊥(X ,Y ,Z ,W )

= X5 Z5
+ X5W 5

+ 5X4 YZ3W 2
+ 5X4 YZ2W 3

+ 5X3 Y 2Z4W + 5X3 Y 2Z3W 2
+ 5X3 Y 2Z2W 3

+ 5X3 Y 2ZW 4
+ 5X2 Y 3Z4W + 5X2 Y 3Z3W 2

+ 5X2 Y 3Z2W 3
+ 5X2 Y 3ZW 4

+ 5XY 4Z3W 2

+ 5XY 4Z2W 3
+ Y 5Z5

+ Y 5W 5.

The complete weight enumerators of Q are given below

D(X ,Y ,Z ,W )

= W 5
+ 5 WX2 Y 2

+ 5 WX2 Z2
+ 5 WY 2 Z2,

D⊥(X ,Y ,Z ,W )

= W 5
+ X5

+ Y 5
+ Z5

+ 5 W 2 X2 Y + 5 W 2 X2 Z

+ 5 W 2 XY 2
+ 5 W 2 XZ2

+ 5 W 2 Y 2 Z + 5 W 2 YZ2

+ 5 WX2 Y 2
+ 5 WX2 Z2

+ 5 WY 2 Z2
+ 5 X2 Y 2 Z

+ 5 X2 YZ2
+ 5 XY 2 Z2.

The above experimental results byMagma are consistent with
the conclusions of Theorems 6 and 7.

IV. KRAWTCHOUK POLYNOMIALS
AND THE KEY INEQUALITY
In this section, we introduce Krawtchouk polynomials and
summarize their properties. This allows us to obtain the close
relationship between Ci,j and C⊥i,j of an asymmetric quantum
code. Then we propose the key inequality which enables us
to reduce the problem of upper-bounding the size of asym-
metric quantum codes to a problem of finding polynomials
possessing special properties.

Fix an integer n. For 0 6 i 6 n, the polynomial

Pi(x) =
i∑

j=0

(−1)j
(
x
j

)(
n− x
i− j

)
is called the i-th Krawtchouk polynomial. The first few
polynomials are

P0(x) = 1, P1(x)=n− 2x, P2(x) = 2 x2 − 2nx +
(
n
2

)
.

These polynomials have the generating function

(X + Y )n−r (X − Y )r =
n∑
i=0

Pi(r)Xn−iY i.

Now we recall several important properties of the
Krawtchouk polynomials, see [32] for more information.

The Krawtchouk polynomials satisfy the reciprocity
formula (

n
i

)
Ps(i) =

(
n
s

)
Pi(s). (15)

They also have the following property
n∑
i=0

(
n− i
n− j

)
Pi(x) = 2j

(
n− x
j

)
.

Besides they are orthogonal to each other, namely
n∑
i=0

Pr (i)Pi(s) = 2nδr,s. (16)

Many important facts follow from this orthogonality. For
example, there is a three-term recurrence:

(i+1)Pi+1(x)= (n−2x)Pi(x)−(n−i+1)Pi−1(x). (17)
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The Christoffel-Darboux formula (see Corollary 3.5 of [28])
also holds:

Pt+1(x)Pt (a)− Pt (x)Pt+1(a)

=
2(a− x)
t + 1

(
n
t

) t∑
i=0

Pi(x)Pi(a)(n
i

) . (18)

Using (15) and (17), the ratio Pt (x + 1)/Pt (x) is given by
McEliece et.al. [30]

Pt (x + 1)
Pt (x)

=
n− 2t +

√
(n− 2t)2 − 4j(n− x)
2(n− x)

(
1+ O

(1
n

))
. (19)

We will also need a result on asymptotic behaviour of the
smallest root rt of Pt (x). For t growing linearly in n and τ =
t/n (see, e.g., Eq A.20 of [30])

γt =
rt
n
=

1
2
−

√
τ (1− τ )+ o(1). (20)

Remember that o(1) tends to 0 as n grows.
The following theorem shows that the Krawtchouk polyno-

mials have close relation to double weight distributions Ci,j
and C⊥i,j of a quantum code.
Theorem 11: Let ((Q,K , dz/dx)) be an asymmetric quan-

tum code with double weight distributions Ci,j and C⊥i,j. Then

Ci,j =
1

2nK

n∑
r,s=0

Pi(s)Pj(r)C⊥r,s, (21)

C⊥r,s =
K
2n

n∑
i,j=0

Pr (j)Ps(i)Ci,j. (22)

Proof: We have from Theorem 7 that
n∑

i,j=0

Ci,jXn−iY iZn−jW j

=
1

2nK

n∑
r,s=0

C⊥r,s(Z+W )n−r (Z−W )r (X+Y )n−s(X−Y )s

=
1

2nK

n∑
r,s=0

C⊥r,s

n∑
i,j=0

Pi(s)Pj(r)Xn−iY iZn−jW j

=
1

2nK

n∑
i,j=0

n∑
r,s=0

C⊥r,sPi(s)Pj(r)X
n−iY iZn−jW j.

This completes the proof of (21). Taking into account that

C⊥(X ,Y ,Z ,W ) = K · C(Z+W ,Z−W ,
X+Y
2

,
X−Y
2

)

from (10), we get (22) immediately. �
The key inequality is given below, which will be needed

in the sequel. Note that it is a further generalization of the
inequality in Theorem 4 of [4].
Lemma 12: Let Q be an ((n,K , dz/dx)) quantum code.

Assume that the polynomial f (x, y) =
∑n

i,j=0 αi,jPi(y)Pj(x)
satisfies the following conditions

1) αi,j > 0 for 0 6 i, j 6 n,
2) f (r, s) > 0 for 0 6 r < dx and 0 6 s < dz,
3) f (r, s) 6 0 for r > dx or s > dz.

Then

K 6
1
2n

max
06i<dx ,06j<dz

f (i, j)
αi,j

.

Proof: It follows from Theorems 8 and 11 that

2nK
dx−1∑
i=0

dz−1∑
j=0

αi,jCi,j

6 2nK
n∑

i,j=0

αi,jCi,j

=

n∑
i,j=0

αi,j

n∑
r,s=0

Pi(s)Pj(r)C⊥r,s

=

n∑
r,s=0

f (r, s)C⊥r,s

6
dx−1∑
r=0

dz−1∑
s=0

f (r, s)C⊥r,s

=

dx−1∑
r=0

dz−1∑
s=0

f (r, s)Cr,s.

Thus we have

2nK6

∑dx−1
i=0

∑dz−1
j=0 f (i, j)Ci,j∑dx−1

i=0
∑dz−1

j=0 αi,jCi,j
6 max

06i<dx ,06j<dz

f (i, j)
αi,j

,

completing the proof of this lemma. �
Let us mention an important consequence of Lemma 12

when f (x, y) factorizes.
Lemma 13: Let Q be an ((n,K , dz/dx)) quantum code.

Define f (x, y) = f1(x)f2(y) where f1(x) =
∑n

j=0 βjPj(x) and
f2(y) =

∑n
i=0 αiPi(y). Assume that the polynomial f (x, y)

satisfies the following conditions
1) For even i, αi > 0, βi > 0. For odd i, αi = βi = 0.
2) f (r, s) > 0 for 0 6 r < dx and 0 6 s < dz. For even

r, f1(r) > 0, f2(r) > 0. For odd r, f1(r) = f2(r) = 0.
3) f (r, s) 6 0 for r > dx or s > dz.

Then

K 6
1
2n

max
06i<dx

2|i

f1(i)
βi

max
06j<dz

2|j

f2(j)
αj
.

Lemma 14: Let A(x) = 2n−d+1
∏n

r=d
(
1− x

r

)
. Then

A(x) =
n∑
i=0

αiPi(x)

where

αi = αi(d) =
(
n− i
d − 1

)/( n
n− d + 1

)
. (23)
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Proof: By definition, we have

A(x) = 2n−d+1
n∏

r=d

(
1−

x
r

)
= 2n−d+1

(
n− x

n− d + 1

)/( n
n− d + 1

)
.

It is known from the book [32] (Exercise 41) that
n∑

r=0

(
n− r

n− d + 1

)
Pr (i) = 2d−1

(
n− i
d − 1

)
,

This implies that

αi = 2−n
n∑

r=0

A(r)Pr (i) =
(
n− i
d − 1

)/( n
n− d + 1

)
,

completing the proof of this lemma. �

V. UPPER BOUNDS
In this section, we extend the work of [4] and derive asymp-
totic upper bounds on the size of an arbitrary asymmetric
quantum code of given length and minimum distance. Pre-
cisely, the Singleton bound, the Hamming bound and the first
linear programming bound are determined utilizing the key
inequality presented in Section IV.

A. A SINGLETON-TYPE BOUND
Theorem 15 (Quantum Singleton Bound): Let Q be an

[[n, k, dz/dx]] quantum code. Then n > k + dx + dz − 2.
Proof: Set αi,j = αi(dz)αj(dx) > 0 for 0 6 i, j 6 n,

where αi(d) is defined in (23). Let

f (x, y) =
n∑

i,j=0

αi,jPi(y)Pj(x)

=

n∑
i,j=0

αi(dz)αj(dx)Pi(y)Pj(x)

= 22n−dx−dz+2
n∏

r=dx

(
1−

x
r

) n∏
s=dz

(
1−

y
s

)
.

One may check that this polynomial verifies all conditions of
Lemma 12. So

K 6
1
2n

max
06i<dx ,06j<dz

f (i, j)
αi,j

= 2n−dx−dz+2 max
06i<dx

g(i, dx) max
06j<dz

g(j, dz),

where

g(i, d) =
(

n− i
n− d + 1

)/( n− i
d − 1

)
.

For d 6 n/2+1, we have g(i, d)/g(i+ 1, d) > 1. Therefore,
we obtain

K 6 2n−dx−dz+2g(0, dx)g(0, dz) = 2n−dx−dz+2.

Since K = 2k , we find n > k + dx + dz − 2. �

B. A HAMMING-TYPE BOUND
Let φ =

⌊
dx−1
2

⌋
and θ =

⌊
dz−1
2

⌋
. Define αi(dz) = (Pθ (i))2,

βj(dx) = (Pφ(j))2 and

f (x, y) =
n∑

i,j=0

αi(dz)βj(dx)Pi(y)Pj(x). (24)

Lemma 16 ([30], Eq A.19): Any product Pi(x)Pj(x) can be
expressed as a linear combination of the Pk (x) as follows:

Pi(x)Pj(x) =
n∑

k=0

(
n− k

(i+ j− k)/2

)(
k

(i− j+ k)/2

)
Pk (x),

where a binomial coefficient with fractional or negative lower
index is to be interpreted as zero.

Using the lemma, we get

αi(dz) =
n∑

k=0

(
n− k
θ − k/2

)(
k
k/2

)
Pk (i)

and

βj(dx) =
n∑

k=0

(
n− k
φ − k/2

)(
k
k/2

)
Pk (j).

It then follows that

n∑
i=0

αi(dz)Pi(y) =
n∑
i=0

n∑
k=0

(
n− k
θ − k/2

)(
k
k/2

)
Pk (i)Pi(y)

=

n∑
k=0

(
n− k
θ − k/2

)(
k
k/2

) n∑
i=0

Pk (i)Pi(y)

= 2n
(
n− y
θ − y/2

)(
y
y/2

)
,

where in the last step we use (16). Similarly we have

n∑
j=0

βj(dx)Pj(x) = 2n
(
n− x
φ − x/2

)(
x
x/2

)
,

Hence

f (x, y) = 22n
(
n− x
φ − x/2

)(
x
x/2

)(
n− y
θ − y/2

)(
y
y/2

)
.

For later use, we define the binary entropy function

H (x) = −x log x − (1− x) log(1− x),

for 0 6 x 6 1. Taking into account that

1
n
log

(
n
k

)
= H

(k
n

)
+ O

(1
n

)
(25)
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and denoting ξ = x/n, η = y/n, τ = φ/n and σ = θ/n,
we get

1
n
log
[(

n− x
φ − x/2

)(
x
x/2

)(
n− y
θ − y/2

)(
y
y/2

)]
=

1
n
log

(
n− x
φ − x/2

)
+

1
n
log

(
x
x/2

)
+

1
n
log

(
n− y
θ − y/2

)
+

1
n
log

(
y
y/2

)
= (1− ξ )H

(τ − ξ/2
1− ξ

)
+ ξ

+ (1− η)H
(σ − η/2

1− η

)
+ η + O

(1
n

)
.

This yields
1
n
log f (x, y) = 2+ ξ + η + (1− ξ )H

(τ − ξ/2
1− ξ

)
+ (1− η)H

(σ − η/2
1− η

)
+ O

(1
n

)
. (26)

To derive an estimate for αx,y = αy(dx)αx(dz), we need
bounds on values of Krawtchouk polynomials. Recall that
by (20)

γφ =
rφ
n
=

1
2
−

√
τ (1− τ )+ o(1), (27)

and

γθ =
rθ
n
=

1
2
−

√
σ (1− σ )+ o(1). (28)

We also recall the following equations, see [20]:
1
n
logPφ(x)

= H (τ )+
∫ ξ

0
log

(1− 2τ +
√
(1− 2τ )2 − 4z(1− z)
2(1− z)

)
dz

+O
(1
n

)
, (29)

for ξ < γφ and
1
n
logPθ (y)

= H (σ )+
∫ η

0
log

(1− 2σ +
√
(1− 2σ )2 − 4z(1− z)
2(1− z)

)
dz

+O
(1
n

)
, (30)

for η < γθ . Hence we obtain
1
n
logαx,y

=
1
n
log

(
(Pθ (x))2(Pφ(y))2

)
= 2H (τ )+2

∫ ξ

0
log

(1− 2τ +
√
(1− 2τ )2−4z(1− z)
2(1− z)

)
dz

+ 2H (σ )+2
∫ η

0
log

(1−2σ+√(1−2σ )2−4z(1−z)
2(1− z)

)
dz

+O
(1
n

)
. (31)

Now we are in a position to give the Hamming type
bound.
Theorem 17 (Hamming-Type Bound): Let τ =

⌊
dx−1
2

⌋
/n

and σ =
⌊
dz−1
2

⌋
/n. Define

�τ (ξ ) := ξ + (1− ξ )H
(τ − ξ/2

1− ξ

)
− 2H (τ )

− 2
∫ ξ

0
log

(1−2τ +√(1− 2τ )2 − 4z(1− z)
2(1− z)

)
dz.

Suppose that 2τ < γφ and 2σ < γθ where γφ and
γθ are given in (27) and (28), respectively. Then for an
((n,K , dz/dx)) quantum code we have

logK
n
6 1+ max

06ξ62τ

{
�τ (ξ )

}
+ max

06η62σ

{
�σ (η)

}
+ o(1).

Proof: It can be easily verified that the polynomial
f (x, y) of (24) satisfies all the conditions of Lemma 13. So we
get from (26), (31) and Lemma 13 that

logK
n

6 −1+ max
06x<dx ,2|x

06y<dz,2|y

{1
n
log f (x, y)−

1
n
logαx,y

}

= −1+ max
06x62φ,2|x

06y62θ,2|y

{1
n
log f (x, y)−

1
n
logαx,y

}

= 1+ max
06ξ62τ

{
ξ + (1− ξ )H

(τ − ξ/2
1− ξ

)
− 2H (τ )

− 2
∫ ξ

0
log

(1− 2τ +
√
(1− 2τ )2 − 4z(1− z)
2(1− z)

)
dz
}

+ max
06η62σ

{
η + (1− η)H

(σ − η/2
1− η

)
− 2 H (σ )

− 2
∫ η

0
log

(1− 2σ +
√
(1− 2σ )2 − 4z(1− z)
2(1− z)

)
dz
}

+ o(1),

where in the third stepwe use the fact that ξ = x/n 6 2φ/n =
2τ < γφ and η = y/n 6 2θ/n = 2σ < γθ . This completes
the proof. �

Matlab shows that the function in Theorem 17 achieves its
maximum at ξ = 0 and η = 0 for any 2τ < γφ and 2σ < γθ .
A straightforward calculation gives that

h(x) = 2x +
√
x(1− x)− 1/2

is a monotone increasing function in x if 0 6 x 6 1/2.
Denote δx = dx/n and δz = dz/n. Assume that 0 6 δx 6 1/5.
Then we have τ =

⌊
dx−1
2

⌋
/n < dx/2n = δx/2. Let

1 = h′(1/10)(τ − 1/10) < 0 where h′ denotes the first
derivative of h. Then we have

h(1/10)− h(τ )
1/10− τ

= h′(ϑ) > h′(1/10),
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where τ < ϑ < 1/10. Since h(1/10) = 0, then

h(τ ) < h′(1/10)(τ − 1/10) = 1.

It follows that 2τ < 1/2 −
√
τ (1− τ ) + 1 6 γφ by noting

that1 < o(1) for n sufficiently large. Therefore we conclude
that if 0 6 δx 6 1/5 and 0 6 δz 6 1/5 then 2τ < γφ and
2σ < γθ . This means the conventional Hamming bound is
valid when 0 6 δx 6 1/5 and 0 6 δz 6 1/5.
Corollary 18: The conventional Hamming bound is valid

for quantum codes, i.e., if Q is an ((n,K , dz/dx)) quantum
code then

logK
n
6 1− H

(δx
2

)
− H

(δz
2

)
+ o(1),

where δx = dx/n and δz = dz/n stand for the relative
distances of the code, 0 6 δx 6 1/5 and 0 6 δz 6 1/5.

Proof: Taking ξ = 0 and η = 0 in Theorem 17 yields
that

logK
n
6 1− H (τ )− H (σ )+ o(1)

= 1− H
(δx
2

)
− H

(δz
2

)
+ o(1),

where in the last step we use the fact H (τ ) = H (δx/2)+ o(1)
and H (σ ) = H (δz/2)+ o(1). �

C. THE FIRST LINEAR PROGRAMMING BOUND
To get the first linear programming bound for an
((n,K , dz/dx)) code, one has to choose integers s and t such
that

t
n
=

1
2
−

√
δx(1− δx)+ o(1),

s
n
=

1
2
−
√
δz(1− δz)+ o(1),

where δx = dx/n, δz = dz/n. Then we choose integers a and b
such that rt+1 < a < rt , rs+1 < b < rs, Pt (a)/Pt+1(a) = −1
and Ps(b)/Ps+1(b) = −1. Define

f (x, y) = F(x)F(y), (32)

where

F(x) =
1

a− x

{
Pt+1(x)Pt (a)− Pt (x)Pt+1(a)

}2
,

G(y) =
1

b− y

{
Ps+1(y)Ps(b)− Ps(y)Ps+1(b)

}2
.

This polynomial (32) will yield the first linear programming
bound for classical codes over F4 [1], [25], [28]. By the
Christoffel-Darboux formula (18)

F(x)

=
2

t + 1

(
n
t

){
Pt+1(x)Pt (a)− Pt (x)Pt+1(a)

}
×

t∑
i=0

Pi(x)Pi(a)(n
i

)
=

2
t+1

(
n
t

)
Pt (a)

t∑
i=0

Pi(a)(n
i

) {Pt+1(x)Pi(x)+Pt (x)Pi(x)}.

It follows from Lemma 16 that

F(x)

=
2

t + 1

(
n
t

)
Pt (a)

t∑
i=0

Pi(a)(n
i

)
×

{ n∑
j=0

Pj(x)
(

n− j
(t + 1+ i− j)/2

)(
j

(t + 1− i+ j)/2

)

+

n∑
j=0

Pj(x)
(

n− j
(t + i− j)/2

)(
j

(t − i+ j)/2

)}

=

n∑
j=0

Pj(x)
2

t + 1

(
n
t

)
Pt (a)

t∑
i=0

Pi(a)(n
i

)
×

{(
n− j

(t + 1+ i− j)/2

)(
j

(t + 1− i+ j)/2

)
+

(
n− j

(t + i− j)/2

)(
j

(t − i+ j)/2

)}
=

n∑
j=0

Pj(x)Fj,

where we use the symbol Fj to denote the coefficient of Pj(x).
Taking j = x and estimating Fx by the term with i = t ,
we obtain

Fx >
2

t + 1

(
n
t

)
Pt (a)2(n

t

) (
n− x
t − x/2

)(
x
x/2

)
=

2
t + 1

Pt (a)2
(
n− x
t − x/2

)(
x
x/2

)
.

Denote ξ = x/n, τ = t/n. Similarly to the derivation of the
Hamming bound, we have

1
n
log

{( n− x
t − x/2

)(
x
x/2

)}
= (1− ξ )H

(τ − ξ/2
1− ξ

)
+ ξ + O

(1
n

)
. (33)

Then, using (15), we get

F(x)
Fx
6

(t + 1)Pt (a)2{Pt+1(x)+ Pt (x)}2

2(a− x)Pt (a)2
( n−x
t−x/2

)( x
x/2

)

=

(t + 1)
{( n

t+1

)
Px(t + 1)(n
x

) +

(n
t

)
Px(t)(n
x

) }2
2(a− x)

( n−x
t−x/2

)( x
x/2

)
=

(t + 1)
(n
t

)2{n− t
t + 1

Px(t + 1)+ Px(t)
}2

2(a− x)
(n
x

)2( n−x
t−x/2

)( x
x/2

) .

It then follows from (15) and (19) that

F(x)
Fx

6
Pt (x)2

{n− 2x+
√
(n− 2x)2 − 4t(n− t)

2
+ t + 1

}2
2(a− x)(t + 1)

( n−x
t−x/2

)( x
x/2

) .
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Taking logarithm on both sides and dividing by n, we obtain
from (25), (29) and (33) that
1
n
log

F(x)
Fx

6 2
∫ ξ

0
log

(1− 2τ +
√
(1− 2τ )2 − 4z(1− z)
2(1− z)

)
dz

+ 2H (τ )− (1− ξ )H
(τ − ξ/2

1− ξ

)
− ξ + O

(1
n

)
,

(34)

for ξ < γφ , where γφ is given in (27). By a similar argument
as above, we have

G(y) =
n∑
i=0

Pi(y)Gi,

where Gi is the coefficient of Pi(y) defined by

Gi =
2

s+ 1

(
n
s

)
Ps(b)

s∑
j=0

Pj(b)(n
j

)
×

{(
n− i

(s+ 1+ j− i)/2

)(
i

(s+ 1− j+ i)/2

)
+

(
n− i

(s+ j− i)/2

)(
i

(s− j+ i)/2

)}
.

Consequently we obtain
1
n
log

G(y)
Gy

6 2
∫ η

0
log

(1− 2σ +
√
(1− 2σ )2 − 4z(1− z)
2(1− z)

)
dz

+ 2H (σ )− (1− η)H
(σ − η/2

1− η

)
− η + O

(1
n

)
,

(35)

for η < γθ , where σ = s/n, η = y/n and γθ is given in (28).
With the above preparation, we can get the following

theorem.
Theorem 19: Let δx = dx/n, δz = dz/n, τ = 1

2 −√
δx(1− δx) and σ = 1

2 −
√
δz(1− δz). Further let

0τ (ξ ) := 2
∫ ξ

0
log

(1− 2τ +
√
(1− 2τ )2 − 4z(1− z)
2(1− z)

)
dz

+ 2H (τ )− (1− ξ )H
(τ − ξ/2

1− ξ

)
− ξ.

Suppose that δx < γφ and δz < γθ . Then for an
((n,K , dz/dx)) code, we have
logK
n
6 −1+ max

06ξ<δx

{
0τ (ξ )

}
+ max

06η<δz

{
0σ (η)

}
+ o(1).

Proof: One verifies that the polynomial f (x, y) of (32)
satisfies all the conditions of Lemma 12. Therefore applying
Lemma 12, (34) and (35) gives that
logK
n
6 max

06x<dx

{1
n
log

F(x)
Fx

}
+ max

06y<dz

{1
n
log

G(y)
Gy

}
− 1+ O

(1
n

)
.

The desired assertion follows immediately by taking ξ = x/n
and η = y/n. This completes the proof. �
Computations withMatlab show that this function achieves

its minimum at ξ = 0 and η = 0 for any δx 6 0.1865 and
δz 6 0.1865.
Corollary 20 (The First Linear Programming Bound):

If 0 6 δx 6 0.1865 and 0 6 δz 6 0.1865 then the
conventional linear programming bound is valid for quantum
codes, i.e., if Q is an ((n,K , dz/dx)) quantum code then

logK
n
6 H

(1
2
−

√
δx(1− δx)

)
+ H

(1
2
−
√
δz(1− δz)

)
− 1+ o(1).

A straightforward computation gives that when δx = δz =
0.1865, logK/n ≈ 0.0028. So for all 0.0028 6 logK/n 6 1,
the conventional first linear programming bound is valid.
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