NON-EXISTENCE OF NEGATIVE WEIGHT DERIVATIONS OF THE LOCAL 1-ST HESSIAN ALGEBRAS OF SINGULARITIES*

SHUANGHE FAN ${ }^{\dagger}$, STEPHEN S.-T. YAU ${ }^{\ddagger}$, AND HUAIQING ZUO ${ }^{\S}$

Abstract

In our previous work, we proposed a conjecture about the non-existence of negative weight derivations of the k-th Tjurina algebras of weighted homogeneous hypersurface singularities. In this paper, we verify this conjecture for three dimensional fewnomial singularities.

Key words. derivation Lie algebra, isolated singularity, weighted homogeneous.
Mathematics Subject Classification. 14B05, 32S05.

1. Introduction. Let $(V, 0) \subset\left(\mathbb{C}^{n+1}, 0\right)$ be an isolated hypersurface singularity defined by a holomorphic function $f:\left(\mathbb{C}^{n+1}, 0\right) \longrightarrow(\mathbb{C}, 0)$. A holomorphic function f is called to be quasi-homogeneous if $f \in J(f)$, where $J(f):=\left(\frac{\partial f}{\partial z_{0}}, \frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$ is the Jacobian ideal. A polynomial $f\left(z_{0}, \ldots, z_{n}\right)$ is called to be weighted homogeneous of type $\left(\alpha_{0}, \ldots, \alpha_{n} ; d\right)$, where $\alpha_{0}, \ldots, \alpha_{n}$ and d are fixed positive integers, if it can be expressed as a linear combination of momomials $z_{0}^{i_{0}} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}$ for which $\alpha_{0} i_{0}+\cdots+\alpha_{n} i_{n}=d$. According to a beautiful theorem of Saito [27], if f defines an isolated singularity, then f is a weighted homogeneous polynomial after a biholomorphic change of coordinates if and only if f is quasi-homogeneous. Recall that the order of the lowest nonvanishing term in the power series expansion of f at 0 is called the multiplicity (denoted by mult (f)) of the singularity $(V, 0)$.

For any isolated hypersurface singularity $(V, 0) \subset\left(\mathbb{C}^{n+1}, 0\right)$ defined by the holomorphic function $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$, one has the Tjurina algebra $A(V):=$ $\mathcal{O}_{n+1} /\left(f, \frac{\partial f}{\partial z_{0}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$ which is finite-dimensional. The well-known Mather-Yau theorem [22] states that: If $\left(V_{1}, 0\right)$ and $\left(V_{2}, 0\right)$ are two isolated hypersurface singularities with the same dimension, then $\left(V_{1}, 0\right)$ is biholomorphic to $\left(V_{2}, 0\right)$ if and only if $A\left(V_{1}\right)$ is isomorphic to $A\left(V_{2}\right)$. In 1983, motivated from the Mather-Yau theorem, the second author introduced the Lie algebra of derivations of the Tjurina algebra $A(V)$, i.e., $L(V)=\operatorname{Der}(A(V), A(V))$. The finite-dimensional Lie algebra $L(V)$ was called Yau algebra and its dimension $\lambda(V)$ was called Yau number ([11], [20], [38]).

The Yau algebra plays an important role in singularity theory and is used to distinguish complex analytic structure of isolated hypersurface singularities [28]. Yau and his collaborators have been systematically studying the Yau algebras of isolated hypersurface singularities and its generalizations beginning from eighties (cf. [1, 2], [3], [4], [6], [7], [12]-[19], [28], [32], [33]-[35], [36, 37]). In [19], Hussain-Yau-Zuo introduced a new derivation Lie algebra arising from isolated hypersurface singularities. This Lie algebra is a more subtle invariant of singularities compared with previous Lie algebras.

[^0]It was defined as follows.
For any isolated hypersurface singularity $(V, 0) \subset\left(\mathbb{C}^{n+1}, 0\right)$ defined by the holomorphic function $f\left(z_{0}, \cdots, z_{n}\right)$, let $\operatorname{Hess}(f)$ be the Hessian matrix $\left(f_{i j}\right)$ of the second order partial derivatives of f and $h(f)$ be the Hessian of f, i.e. the determinant of this matrix $\operatorname{Hess}(f)$. More generally, for each k satisfying $0 \leq k \leq n+1$ we denote by $h_{k}(f)$ the ideal in \mathcal{O}_{n+1} generated by all $k \times k$-minors in the matrix $\operatorname{Hess}(f)$. In particular, the ideal $h_{n+1}(f)=(h(f))$ is a principal ideal. For each k as above, consider the k-th Hessian algebra of $(V, 0)$ defined by

$$
H_{k}(V)=\mathcal{O}_{n+1} /\left(f+J(f)+h_{k}(f)\right)
$$

In particular, $H_{0}(V)$ is exactly the well-known Tjurina algebra $A(V)$. The isomorphism class of the local k-th Hessian algebra $H_{k}(V)$ is a contact invariant of $(V, 0)$, i.e. depends only on the isomorphism class of the germ $(V, 0)$ [9].

In particular, $H_{n+1}(f)$ has geometric meaning due to the following beautiful theorem.

Theorem 1.1 (Dimca [8]). Two zero-dimensional isolated complete intersection singularities X and Y are isomorphic if and only if their singular subspaces $\operatorname{Sing}(X)$ and $\operatorname{Sing}(Y)$ are isomorphic.

Remark 1.2. Let $V=V(f)$ be an isolated quasi-homogeneous hypersurface singularity. Assume that X defined by $\left(\frac{\partial f}{\partial z_{0}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$ is a zero-dimensional isolated complete intersection singularities. Then $\operatorname{Sing}(X)$ is defined by

$$
\left(f, \frac{\partial f}{\partial z_{0}}, \ldots, \frac{\partial f}{\partial z_{n}}, h(f)\right) .
$$

Theorem 1.1 implies that in order to study analytic isomorphism type of a zerodimensional isolated complete intersection singularity X, we only need to consider the Artinian local algebra $H_{n+1}(f)$ which is the coordinate ring of $\operatorname{Sing}(X)$.

Combining Theorem 1.1 with Mather-Yau theorem, we know that $H_{n+1}(f)$ is a complete invariant of quasi-homogeneous isolated hypersurface singularities (i.e., $H_{n+1}(f)$ determines and is determined by the analytic isomorphism type of the singularity). In [4], the $H_{n+1}(f)$ is called the generalized Tjurina algebra of V. In [19], the authors introduced the following new invariants for isolated hypersurface singularities.

Definition 1.3. Let $(V, 0)=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}: f\left(z_{0}, \ldots, z_{n}\right)=0\right\}$ be a germ of isolated hypersurface singularity at the origin of \mathbb{C}^{n+1} defined by $f\left(z_{0}, \ldots, z_{n}\right)(n \geq$ 1). The series of new derivation Lie algebras arising from the isolated hypersurface singularity $(V, 0)$ are defined as $L_{k}(V):=\operatorname{Der}\left(H_{k}(V), H_{k}(V)\right)$ or $\operatorname{Der}\left(H_{k}(V)\right)$ for short, where $H_{k}(V)=\mathcal{O}_{n+1} /\left(f+J(f)+h_{k}(f)\right)(0 \leq k \leq n+1)$. Its dimension is denoted by $\lambda_{k}(V)$.

It is known that the Yau algebra can not characterize the ADE singularities completely. In fact, Elashvili and Khimshiashvili proved a beautiful result in [11]: if X and Y are two simple singularities except the pair A_{6} and D_{5}, then $L(X) \cong L(Y)$ as Lie algebras if and only if X and Y are analytically isomorphic. However, in [4], the authors have proven that the ADE singularities can be characterized completely by the new Lie algebra $L_{n+1}(V)$. We have reasons to believe that this new Lie algebra
$L_{k}(V)$ and numerical invariant $\lambda_{k}(V)$ where $1 \leq k \leq n+1$ will also play an important role in the study of singularities.

Theorem 1.4 ([4]). If X and Y are two n-dimensional $A D E$ singularities, then $L_{n+1}(X) \cong L_{n+1}(Y)$ as Lie algebras if and only if X and Y are analytically isomorphic.

The derivation Lie algebra is also important in rational homotopy theory. Let A be a weighted homogeneous zero-dimensional complete intersection, i.e., a commutative algebra of the form

$$
A=\mathbb{C}\left[z_{0}, z_{1}, \ldots, z_{n}\right] / I
$$

where the ideal $I=\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ is generated by a regular sequence of length $n+1$. Here all f_{i} are assumed to be weighted homogeneous with respect to strictly positive integral weights denoted by $w t\left(z_{i}\right)=\alpha_{i}(0 \leq i \leq n)$. Consequently, A is graded and one may speak about its homogeneous degree k derivations where k is an integer. Recall that a linear map $D: A \rightarrow A$ is a derivation if $D(a b)=D(a) b+a D(b)$ for any $a, b \in A$. A derivation D belongs to $\operatorname{Der}^{k}(A)$ if $D: A^{*} \rightarrow A^{*+k}$. That is to say, D has degree k.

On the one hand, one of the most prominent open problems in rational homotopy theory is related to the vanishing of the above derivations in strictly negative degrees:

Halperin Conjecture ([21]). If A is as above, then $\operatorname{Der}^{<0}(A)=0$.
The Halperin Conjecture has been verified in several particular cases (see [5], [6], [25], [31], [36]). For recent progress, please see [7].

Let $(V, 0)=\left\{\left(z_{0}, z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}: f\left(z_{0}, z_{1}, \ldots, z_{n}\right)=0\right\}$ be an isolated singularity defined by the weighted homogeneous polynomial $f\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ of weighted type $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} ; d\right)$. Then by a well-known result of Saito [27], we can always assume without loss of generality that $d \geq 2 \alpha_{i}>0$ for all $0 \leq i \leq n$. We give the variable z_{i} weight α_{i} for $0 \leq i \leq n$, thus the Tjurina algebra $A(V)$ is a graded algebra, i.e., $A(V)=\bigoplus_{i=0}^{\infty} A_{i}(V)$, and the Lie algebra of derivations $\operatorname{Der}(A(V))$ is also graded. Thus $L(V)$ is graded. Similarly, $H_{k}(V)$ and $L_{k}(V)$ are also graded.

On the other hand, the second author discovered independently the following conjecture on the non-existence of negative weight derivations which is a special case of Halperin Conjecture.

Yau Conjecture (cf. [5], [6]). Let $(V, 0)=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}: f\left(z_{0}, \ldots, z_{n}\right)=\right.$ $0\}$ be an isolated singularity defined by the weighted homogeneous polynomial $f\left(z_{0}, \ldots, z_{n}\right)$ of weight type $\left(\alpha_{0}, \ldots, \alpha_{n} ; d\right)$. Assume that $d \geq 2 \alpha_{0} \geq 2 \alpha_{1} \geq \cdots \geq$ $2 \alpha_{n}>0$ without loss of generality. Then there is no non-zero negative weight derivation on the Tjurina algebra (= Milnor algebra) $A(V)=\mathcal{O}_{n+1} /\left(\frac{\partial f}{\partial z_{0}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$, i.e., $L(V)$ is non-negatively graded.

This conjecture is still open and has only been proved in the low-dimensional case $n \leq 3$ ([5], [6]) by explicit calculations. It has also been proved for the highdimensional singularities under certain condition [36] and homogeneous singularities in [32].

It is a very interesting question to know whether a positvely graded algebra has negative weight derivations due to many applications in algebraic geometry, singularity theory and rational homotopy theory ([21], [26], [29, 30]). Assume that f is a weighted homogeneous polynomial, since the k-th Hessian algebra $H_{k}(V)$ and $L_{k}(V)$ are also naturally graded, it is natural to propose the following new conjecture:

Conjecture 1.5. Let $(V, 0)=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}: f\left(z_{0}, \ldots, z_{n}\right)=0\right\}$ be an isolated singularity defined by the weighted homogeneous polynomial $f\left(z_{0}, \ldots, z_{n}\right)$ of weight type $\left(\alpha_{0}, \ldots, \alpha_{n} ; d\right)$. Assume that $d \geq 2 \alpha_{0} \geq 2 \alpha_{1} \geq \cdots \geq 2 \alpha_{n}>0$ without loss of generality. Let $H_{k}(V)$ be the k-th Hessian algebra. Furthermore, in the case of $1 \leq k \leq n$, we need to assume that $\operatorname{mult}(f) \geq 5$. Then for any $0 \leq k \leq n+1$, there does not exist negative weight derivations of $H_{k}(V)$, i.e., $L_{k}(V)$ is non-negatively graded.

When $k=0$, it is exactly the long-standing Yau Conjecture which was verified for $n \leq 3([5])$.

When $k=n+1$, it was verified in [23] for $n \leq 3$.
When $1<k \leq n$, it was verified in [24] for $n \leq 2$.
When $k=2$ or $k=3$, it was also verified in [24] for $n=3$.
The case when $n=1$ is trivial. However, the proof of the Conjecture 1.5 for the case of $k=1$ is completely different from other cases and seems very hard in general. In this paper, we shall verify Conjecture 1.5 for the case $n=3$ and $k=1$ (see Theorem A). We first recall some definitions.

Definition 1.6. An isolated hypersurface singularity in \mathbb{C}^{n} is fewnomial if it can be defined by an n-nomial in n variables and it is a weighted homogeneous fewnomial isolated singularity if it can be defined by a weighted homogeneous fewnomial. 2 (resp. 3)-nomial isolated hypersurface singularity is also called binomial (resp. trinomial) singularity.

Proposition 1.7. [37] Let f be a weighted homogeneous fewnomial isolated singularity with mult $(f) \geq 3$. Then f is analytically equivalent to a linear combination of the following three types:
Type (I). $z_{0}^{n_{0}}+z_{1}^{n_{1}}+\cdots+z_{r-1}^{n_{r-1}}+z_{r}^{n_{r}}, r \geq 0$,
Type (II). $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+\cdots+z_{r-1}^{n_{r}-1} z_{r}+z_{r}^{n_{r}}, r \geq 1$,
Type (III). $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+\cdots+z_{r-1}^{n_{r-1}} z_{r}+z_{r}^{n_{r}} z_{0}, r \geq 1$.
The above three types are also called "the Brieskorn type", "the chain type", and "the loop type" respectively. According to Ebeling and Takahashi [10], the fewnomial singularity is also called invertible singularity which plays an important role in mirror symmetry.

We introduce the following definition.
Definition 1.8. Let $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ be a weighted homogeneous fewnomial.
f is called Type A fewnomial if f is one of Type (I), Type (II) or Type (III) above.
f is called Type B fewnomial if f can be written as the sum of two weighted homogeneous polynomial $f_{1}\left(z_{0}, z_{1}, z_{2}\right)$ and $f_{2}\left(z_{3}\right)=z_{3}^{n_{3}}$ (after a biholomorphic transformation if necessary) where f_{1} is Type (II) or Type (III) above.
f is called Type C fewnomial if f can be written as the sum of two weighted homogeneous polynomial $f_{1}\left(z_{0}, z_{1}\right)$ and $f_{2}\left(z_{2}, z_{3}\right)$ where both of f_{1} and f_{2} are Type (I), Type (II) or Type (III) above but they are not Type (I) at the same time.

In this paper, we prove the following main results: Theorem A and Theorem B. The Theorem A verifies Conjecture 1.5 partially, and Theorem B gives a complete classification of the singularities which have negative weight derivations.

Theorem A. Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the weighted homogeneous fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of
weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1 -st Hessian algebra. If f is Type A fewnomial with mult $(f) \geq 5$, Type B fewnomial with mult $(f) \geq 4$ or Type C fewnomial, there does not exist negative weight derivation of $H_{1}(V)$.

Proof. The Theorem A follows from the Theorem B. \square
The condition $\operatorname{mult}(f) \geq 5$ for Type A and $\operatorname{mult}(f) \geq 4$ for Type B in Theorem A cannot be omitted. In Theorem B below, we list all the possibilities of $(V, 0)$ when there exists negative weight derivation of $H_{1}(V)$.

Theorem B. Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the weighted homogeneous fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1 -st Hessian algebra. There exists a negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$:
(1) when f is a Type A fewnomial:
(i) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vi) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(viii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ix) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 4\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(x) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 5\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(xi) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 6\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(xii) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 24\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.
(2) when f is a Type B fewnomial:
(i) $f=z_{0}^{3}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

When f is Type C fewnomial, there does not exist any negative weight derivation D.

Proof. By Proposition 2.1, Proposition 3.1, and Proposition 4.1, we complete the proof of Theorem B.

Remark 1.9. Actually, in Theorem A and Theorem B we just need to consider the weighted homogeneous polynomials with $\operatorname{mult}(f) \geq 3$ due to the cases $\operatorname{mult}(f)=$ 1,2 are trivial.
2. Type A Fewnomial Case. In this section, we will discuss the Type A fewnomial case where $\operatorname{mult}(f) \geq 3$. There are three types to discuss:

Type (I): $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}}+z_{1}^{n_{1}}+z_{2}^{n_{2}}+z_{3}^{n_{3}}$.
Type (II): $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$.
Type (III): $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$.
In the above forms, the weights orders of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} are not determined. The overall conclusion is written in Proposition 2.1.

Proposition 2.1 (Type A fewnomial case of Theorem B). Let $(V, 0)=$ $\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the Type A fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. There exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$ (we combine the cases that can be transformed into each other by simply renumbering the variables, which is caused by the equal weights of asymmetrical variables):
(i) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vi) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(viii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ix) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 4\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(x) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 5\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(xi) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 6\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(xii) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 24\right)$. In this case, the set of negative derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.

Therefore, if mult $(f) \geq 5$, there does not exist any negative weight derivation of $H_{1}(V)$.

Proof. This proof is tedious but simple calculations. We omit the details and readers can find those in the rest of this section. By Proposition 2.2, Proposition 2.3, and Proposition 2.57, the proof is clear.
2.1. Type (I). Next we will discuss the case

$$
f=z_{0}^{n_{0}}+z_{1}^{n_{1}}+z_{2}^{n_{2}}+z_{3}^{n_{3}}
$$

where mult $(f) \geq 3$. The weights orders of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} are not determined. All results of this subsection are summarized in Proposition 2.2.

Proposition 2.2 (Type (I) of Proposition 2.1). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. There does not exist any negative weight derivation of $H_{1}(V)$.

Proof. Without loss of generality, set $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=$ $p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

We can get $n_{0} \geq 3, n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$ from mult $(f) \geq 3$. Regardless of difference of constants, we obtain

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} & 0 & 0 & 0 \\
* & z_{1}^{n_{1}-2} & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we have $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$. From $D\left(z_{1}^{n_{1}-2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{0}^{n_{0}-2}\right)$, we have $p_{1}\left(z_{2}, z_{3}\right)=0$. From $D\left(z_{2}^{n_{2}-2}\right)=c z_{3}^{k}\left(n_{2}-2\right) z_{2}^{n_{2}-3} \in\left(z_{0}^{n_{0}-2}, z_{1}^{n_{1}-2}\right)$, we have $c=0$.

So $D=0$, which contradicts to the assumption that D is negatively weighted. There does not exist any negative weight derivation.
2.2. Type (II). Next we will discuss the case

$$
f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}
$$

where $\operatorname{mult}(f) \geq 3$. The weight orders of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} are not determined. All results of this subsection are summarized in Proposition 2.3.

Proposition 2.3 (Type (II) of Proposition 2.1). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1 -st Hessian algebra. There exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$ (we combine the cases that can be transformed into each other by simply renumbering the variables, which is caused by the equal weights of asymmetrical variables):
(i) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vi) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Proof. By $\operatorname{mult}(f) \geq 3$, we get $w t(f)>2 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. There are two cases to discuss:
(i) $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$;
(ii) $2 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}<w t(f) \leq 3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.

They correspond to Proposition 2.4 and Proposition 2.29 respectively.
By the two propositions, we complete the proof.
For $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$, discussions when $w t(f)>$ $3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ are summarized in Proposition 2.4.

Proposition 2.4 (Case (i) of Proposition 2.3). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where wt $(f)>$ $3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=$ $z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq\right.$ 5) after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$ after renumbering.

Proof. The calculation process is lengthy. There are 24 cases with respect to the weight order of z_{0}, z_{1}, z_{2} and z_{3}.
(i) $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$;
(ii) $\alpha_{0} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{2}$;
(iii) $\alpha_{0} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{3}$;
(iv) $\alpha_{0} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{1}$;
(v) $\alpha_{0} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{2}$;
(vi) $\alpha_{0} \geq \alpha_{3} \geq \alpha_{2} \geq \alpha_{1}$;
(vii) $\alpha_{1} \geq \alpha_{0} \geq \alpha_{2} \geq \alpha_{3}$;
(viii) $\alpha_{1} \geq \alpha_{0} \geq \alpha_{3} \geq \alpha_{2}$;
(ix) $\alpha_{1} \geq \alpha_{2} \geq \alpha_{0} \geq \alpha_{3}$;
(x) $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{0}$;
(xi) $\alpha_{1} \geq \alpha_{3} \geq \alpha_{0} \geq \alpha_{2}$;
(xii) $\alpha_{1} \geq \alpha_{3} \geq \alpha_{2} \geq \alpha_{0}$;
(xiii) $\alpha_{2} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{3}$;
(xiv) $\alpha_{2} \geq \alpha_{0} \geq \alpha_{3} \geq \alpha_{1}$;
(xv) $\alpha_{2} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{3}$;
(xvi) $\alpha_{2} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{0}$;
(xvii) $\alpha_{2} \geq \alpha_{3} \geq \alpha_{0} \geq \alpha_{1}$;
(xviii) $\alpha_{2} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{0}$;
(xix) $\alpha_{3} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{2}$;
(xx) $\alpha_{3} \geq \alpha_{0} \geq \alpha_{2} \geq \alpha_{1}$;
(xxi) $\alpha_{3} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{2}$;
(xxii) $\alpha_{3} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{0}$;
(xxiii) $\alpha_{3} \geq \alpha_{2} \geq \alpha_{0} \geq \alpha_{1}$;
(xxiv) $\alpha_{3} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{0}$.

One can look up more details in the following lemmas respectively (from Lemma 2.5 to Lemma 2.28).

Lemma 2.5 (Case (i) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. The form of f does not change after renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$ α_{3}. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,2)$ and $(2,3)$. So we have $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & 0 & 0 \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & z_{3}^{n_{3}-2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, we have $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=$ $0, p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

Since $D\left(z_{1}^{n_{1}-2} z_{2}\right)=c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}\right)$, it is easy to see $c=0$. Therefore, $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.6 (Case (ii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3)$ and $(3,2)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & 0 & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0, p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

From $D\left(z_{2}^{n_{2}-2}\right)=c\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3}^{k} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{3}, z_{1}^{n_{1}-1}\right)$, we have $c=0$. Therefore, $D=0$.

In conclusion, there does not exist a negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.7 (Case (iii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{0} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist a negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3)$ and $(2,1)$. So we have $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{2} & 0 & z_{0}^{n_{0}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & z_{2}^{n_{2}-1} & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, we can obtain $c=0, p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$ and $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$.

Since $D\left(z_{1}^{n_{1}-2} z_{3}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}^{n_{0}-2} z_{2}, z_{0}^{n_{0}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)=0$. Therefore, $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.8 (Case (iv) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{0} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,2)$ and $(3,1)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{3} & 0 & 0 & z_{0}^{n_{0}-1} \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & z_{3}^{n_{1}-1} \\ * & * & z_{2}^{n_{2}-2} & 0 \\ * & * & * & z_{3}^{n_{3}-2} z_{1}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
Since $D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{0}^{n_{0}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2}=0$. Therefore, $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{2}+c z_{3}^{k} z_{1}=0$, and it follows that $c=0$ and $p_{1}\left(z_{2}, z_{3}\right)=0$.

Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.9 (Case (v) of Proposition 2.4). Let ($V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{0} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,3)$ and $(3,1)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.

Hess $(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{2} & 0 & z_{0}^{n_{0}-1} & 0 \\ * & z_{1}^{n_{1}-2} & 0 & z_{3}^{n_{3}-1} \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{1}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{1}^{n_{1}-2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{0}^{n_{0}-2} z_{2}, z_{0}^{n_{0}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)=0$.

Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.10 (Case (vi) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{3} \geq \alpha_{2} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{0}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,1)$ and $(3,2)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{3} & 0 & 0 & z_{0}^{n_{0}-1} \\ * & z_{1}^{n_{1}-2} & z_{2}^{n_{2}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{1} & z_{3}^{n_{3}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
Since $D\left(z_{1}^{n_{1}-2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{0}^{n_{0}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)=0$. So D is in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$. By the relation $D\left(z_{2}^{n_{2}-1}\right)=$ $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2}\right)$ we get $c=0$. Therefore, $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof. \square

Lemma 2.11 (Case (vii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{1} \geq \alpha_{0} \geq \alpha_{2} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,0)$ and $(2,3)$. So we have $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{2} & z_{1}^{n_{1}-1} & z_{0}^{n_{0}-1} & 0 \\ * & z_{1}^{n_{1}-2} z_{0} & 0 & 0 \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & z_{3}^{n_{3}-2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n-2} z_{2}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)=0$.

Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.12 (Case (viii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{1} \geq \alpha_{0} \geq \alpha_{3} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,0),(3,2)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0}^{n_{0}-1} \\ * & z_{1}^{n_{1}-2} z_{0} & 0 & 0 \\ * & * & z_{2}^{n_{2}-2} & z_{3}^{n_{3}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{3}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-2}\right)=c z_{3}^{k}\left(n_{2}-2\right) z_{2}^{n_{2}-3} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{0}\right)$, we get $c=0$.

Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.13 (Case (ix) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{1} \geq \alpha_{2} \geq \alpha_{0} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3)$ and $(2,0)$. So $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right] .
$$

From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{3}\right)$, it is easy to see $c=0$.

Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.14 (Case (x) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{0}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,2)$ and $(3,0)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & 0 & z_{3}^{n_{3}-1} \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} & 0 \\ * & * & * & z_{3}^{n_{3}-2} z_{0}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{1}^{n_{1}-2} z_{2}\right)=c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}\right)$, it is easy to see $c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{3}^{n_{3}-1}\right)$.

If $c \neq 0, c z_{3}^{k} z_{2}^{n_{1}-2}$ can be divided by $z_{3}^{n_{3}-1}$ and $w t\left(z_{3}^{n_{3}-1}\right) \leq w t\left(z_{3}^{k}\right)$. From the weight relationship $w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0}$ and $w t\left(z_{3}^{n_{3}-1}\right)=\left(n_{3}-1\right) \alpha_{3}=w t(f)-\alpha_{0}-$ $\alpha_{3}=n_{0} \alpha_{0}+\alpha_{1}-\alpha_{0}-\alpha_{3} \geq\left(n_{0}-1\right) \alpha_{0}>\alpha_{0}$, we have $w t\left(z_{3}^{n_{3}-1}\right)>w t\left(z_{3}^{k}\right)$, which contradicts with the fact that $w t\left(z_{3}^{n_{3}-1}\right) \leq w t\left(z_{3}^{k}\right)$. So $c=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.15 (Case (xi) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{1} \geq \alpha_{3} \geq \alpha_{0} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,0)$ and $(3,1)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$.

From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0}^{n_{0}-1} \\
* & z_{1}^{n_{1}-2} & 0 & z_{3}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right] .
$$

From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-2}\right)$, we get $c=0$.
Since $D\left(z_{1}^{n_{1}-2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{2}^{n_{2}-1}, z_{0}^{n_{0}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{2}^{n_{2}-1}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{2}^{n_{2}-1}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we have $w t\left(z_{2}^{n_{2}-1}\right) \leq$ $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. From the weight relationship $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$ and $w t\left(z_{2}^{n_{2}-1}\right)=\left(n_{2}-1\right) \alpha_{2}=w t(f)-\alpha_{0}-\alpha_{2}=n_{0} \alpha_{0}+\alpha_{3}-\alpha_{0}-\alpha_{2}>\left(n_{0}-2\right) \alpha_{0} \geq \alpha_{0}$, we have $w t\left(z_{2}^{n_{2}-1}\right)>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$, which contradicts with the fact that $w t\left(z_{2}^{n_{2}-1}\right) \leq$ $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.16 (Case (xii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{1} \geq \alpha_{3} \geq \alpha_{2} \geq \alpha_{0}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{1}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,1)$ and $(3,0)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{2} & 0 & z_{0}^{n_{0}-1} & z_{3}^{n_{3}-1} \\ * & z_{1}^{n_{1}-2} & z_{2}^{n_{2}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{1} & 0 \\ * & * & * & z_{3}^{n_{3}-2} z_{0}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{1}^{n_{1}-2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} \in\left(z_{0}^{n_{0}-2} z_{2}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right) \in\left(z_{3}^{n_{3}-1}\right)$. So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{3}^{n_{3}-1}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we have $w t\left(z_{3}^{n_{3}-1}\right) \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. From the weight relationship $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<$ $\alpha_{1} \leq \alpha_{0}$ and $w t\left(z_{3}^{n_{3}-1}\right)=\left(n_{3}-1\right) \alpha_{3}=w t(f)-\alpha_{0}-\alpha_{3}=n_{0} \alpha_{0}+\alpha_{2}-\alpha_{0}-\alpha_{3} \geq$ $\left(n_{0}-1\right) \alpha_{0}>\alpha_{0}$, we have $w t\left(z_{3}^{n_{3}-1}\right)>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$, which contradicts with the fact that $w t\left(z_{3}^{n_{3}-1}\right) \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.17 (Case (xiii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$ after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$ after renumbering.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,2)$ and $(2,0)$. So we have $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0}^{n_{0}-1} \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{0} & 0 \\ * & * & * & z_{3}^{n_{3}-2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$. From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-2} z_{2}\right)$, we get $c=0$. Therefore, $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$.

From $D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{2}^{n_{2}-1}, z_{0}^{n_{0}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{2}^{n_{2}-1}\right)$. So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{2}^{n_{2}-2}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we have $w t\left(z_{2}^{n_{2}-2}\right) \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$. From the weight relationship $w t\left(z_{2}^{n_{2}-2}\right)=\frac{n_{2}-2}{n_{2}}\left(w t(f)-\alpha_{0}\right)=\frac{n_{2}-2}{n_{2}}\left(n_{0} \alpha_{0}+\alpha_{3}-\alpha_{0}\right)>\frac{n_{2}-2}{n_{2}} 2 \alpha_{0}$, we have $\frac{n_{2}-2}{n_{2}} 2 \alpha_{0}<\alpha_{0}$. Therefore, $n_{2}<4$. Note that $n_{2} \geq 3$, we get $n_{2}=3$.

From $w t\left(z_{2}^{n_{2}-2}\right)=w t(f)-\alpha_{0}-2 \alpha_{2}<\alpha_{1}$, we get $w t(f)<\alpha_{0}+\alpha_{1}+2 \alpha_{2} \leq 4 \alpha_{0}$. Therefore, $n_{0} \alpha_{0} \leq n_{0} \alpha_{0}+\alpha_{3}=w t(f)<4 \alpha_{0}$. We can get $n_{0}<4$. Since $n_{0} \geq 3$, it is clear that $n_{0}=3$.

Therefore, f is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}$.
From $n_{1} \alpha_{1}<w t(f)=n_{1} \alpha_{1}+\alpha_{2} \leq\left(n_{1}+1\right) \alpha_{1}$, we can see that $\alpha_{1} \in\left[\frac{w t(f)}{n_{1}+1}, \frac{w t(f)}{n_{1}}\right)$.
From $3 \alpha_{0}<w t(f)=3 \alpha_{0}+\alpha_{3}<4 \alpha_{0}$, we can see that $\alpha_{0} \in\left(\frac{w t(f)}{4}, \frac{w t(f)}{3}\right)$. Therefore, $\alpha_{2}=\frac{w t(f)-\alpha_{0}}{3} \in\left(\frac{2 w t(f)}{9}, \frac{w t(f)}{4}\right)$.

By $\frac{2 w t(f)}{9}<\alpha_{2} \leq \alpha_{1}<\frac{w t(f)}{n_{1}}$, we obtain $n_{1}<\frac{9}{2}$. Since $n_{1} \geq 3$, it is clear that $n_{1}=3$ or $n_{1}=4$.

Regardless of difference of constants, we get the equations below.
Hess $(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0} z_{3} & 0 & z_{2}^{2} & z_{0}^{2} \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\ * & * & z_{0} z_{2} & 0 \\ * & * & * & z_{3}^{n_{3}-2}\end{array}\right]$.
We check the conditions of $D\left(z_{1}^{n_{1}-2} z_{2}\right) \in\left(z_{0} z_{3}, z_{2}^{2}, z_{0}^{2}\right)$ and $D\left(z_{1}^{n_{1}-1}\right) \in$ $\left(z_{0} z_{3}, z_{2}^{2}, z_{0}^{2}, z_{1}^{n_{1}-2} z_{2}\right)$.

The restriction that $D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{0} z_{3}, z_{2}^{2}, z_{0}^{2}\right)$ is equivalent to the restriction that $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by z_{2}.

The restriction that $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0} z_{3}, z_{2}^{2}, z_{0}^{2}, z_{1}^{n_{1}-2} z_{2}\right)$ is equivalent to the restriction that $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by z_{2}.

Note that z_{2}^{2} and $z_{3}^{n_{3}-2}$ are in the ideal generated by elements of Hess (f). Therefore, if D is nonzero, $p_{1}\left(z_{2}, z_{3}\right)$ must be in the form of $p_{1}\left(z_{2}, z_{3}\right)=c_{1} z_{2} z_{3}^{k_{1}}\left(0 \leq k_{1} \leq\right.$ $\left.n_{3}-3\right)$. Accordingly, D is in the form of $D=c_{1} z_{2} z_{3}^{k_{1}} \frac{\partial}{\partial z_{1}}\left(0 \leq k_{1} \leq n_{3}-3\right)$.

When $n_{1}=3, f$ is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}$.
From the weight relationship

$$
\left\{\begin{array}{r}
3 \alpha_{0}+\alpha_{3}=w t(f) \\
3 \alpha_{1}+\alpha_{2}=w t(f) \\
3 \alpha_{2}+\alpha_{0}=w t(f) \\
n_{3} \alpha_{3}=w t(f)
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{3}\left(1-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{27}\left(7-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{9}\left(2+\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array} .\right.
$$

Consider the restriction $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain $n_{3} \geq 4$. Since D is negatively weighted, we can see that $\alpha_{2}+k_{1} \alpha_{3}<\alpha_{1}$. The necessary and sufficient condition for such integer k_{1} satisfying $0 \leq k_{1} \leq n_{3}-3$ to exist is $\alpha_{2}<\alpha_{1}$, from which we get $n_{3}>4$. Therefore, $n_{3} \geq 5$.

Note that $\alpha_{2}+k_{1} \alpha_{3}<\alpha_{1}$ is equivalent to $k_{1}<\frac{1}{27}\left(n_{3}-4\right)$. Since $\frac{1}{27}\left(n_{3}-4\right)<$ $n_{3}-4<n_{3}-3$, we can see k_{1} is qualified if and only if $0 \leq k_{1}<\frac{1}{27}\left(n_{3}-4\right)$.

Therefore, when $n_{1}=3$, there exists negative weight derivation of $H_{1}(V)$ if and only if $n_{3} \geq 5$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0, \quad 0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$.

When $n_{1}=4, f$ is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}$.
From the weight relationship

$$
\left\{\begin{aligned}
3 \alpha_{0}+\alpha_{3} & =w t(f) \\
4 \alpha_{1}+\alpha_{2} & =w t(f) \\
3 \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{3}\left(1-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{36}\left(7-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{9}\left(2+\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array} .\right.
$$

Consider the restriction $\alpha_{1} \geq \alpha_{2}$, we obtain $-\frac{5}{n_{3}} \geq 1$, which is absurd.
Therefore there does not exist negative weight derivation of $H_{1}(V)$ when $n_{1}=4$.
In conclusion, there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$ after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. In this case, the set of negative
weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,0 \leq k<\frac{n_{3}-4}{27}, k \in \mathbb{Z}\right\}$ after renumbering. \square

Lemma 2.18 (Case (xiv) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{0} \geq \alpha_{3} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3)$ and $(3,0)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{2} & 0 & z_{0}^{n_{0}-1} & z_{3}^{n_{3}-1} \\ * & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\ * & * & z_{2}^{n_{2}-2} & 0 \\ * & * & * & z_{3}^{n_{3}-2} z_{0}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

Since $D\left(z_{1}^{n_{1}-2} z_{3}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}^{n-2} z_{2}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}\right)$, it is easy to see $p_{1}\left(z_{2}, z_{3}\right) \in\left(z_{3}^{n_{3}-2}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{3}^{n_{3}-2}$.
If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we have $w t\left(z_{3}^{n_{3}-2}\right) \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. From the weight relationship $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$ and $w t\left(z_{3}^{n_{3}-2}\right)=\left(n_{3}-2\right) \alpha_{3}=\frac{n_{3}-2}{n_{3}}\left(w t(f)-\alpha_{0}\right)=$ $\frac{n_{3}-2}{n_{3}}\left(n_{0} \alpha_{0}+\alpha_{2}-\alpha_{0}\right)>\frac{n_{3}-2}{n_{3}}\left(n_{0}-1\right) \alpha_{0} \geq 2 \frac{n_{3}-2}{n_{3}} \alpha_{0}$, we have $2 \frac{n_{3}-2}{n_{3}} \alpha_{0}<\alpha_{0}$. Therefore, $n_{3}<4$.

Since $n_{3} \geq 3$, we can get $n_{3}=3$. In other words, $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by z_{3}. Thus from $\frac{n_{3}-2}{n_{3}}\left(n_{0}-1\right) \alpha_{0}=\frac{\left(n_{0}-1\right) \alpha_{0}}{3}<\alpha_{0}$, we have $n_{0}<4$. Note that $n_{0} \geq 3$, so $n_{0}=3$ and f is in the form of $f=z_{0}^{3} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{3} z_{0}$.

From $3 \alpha_{0}+\alpha_{2}=3 \alpha_{3}+\alpha_{0}$, we get $2 \alpha_{0}+\alpha_{2}=3 \alpha_{3}$. Considering $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$ α_{3}, we know $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$. Since $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by z_{3}, it is clear that $\alpha_{3} \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1}=\alpha_{3}$. This leads to a contradiction.

Therefore, we get $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.19 (Case (xv) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{3}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,0)$ and $(2,1)$. So we have $n_{1} \geq 3$ and $n_{2} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{3} \alpha_{3} \leq n_{3} \alpha_{0}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0}^{n_{0}-1} \\ * & z_{1}^{n_{1}-2} z_{0} & z_{2}^{n_{2}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{1} & 0 \\ * & * & * & z_{3}^{n_{3}-2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{3}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{0}\right)$, we get $c=0$.

So $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof. \square

Lemma 2.20 (Case (xvi) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{0}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f) \stackrel{=}{=}$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,0)$ and $(3,1)$. So we have $n_{1} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{2} \alpha_{2} \leq n_{2} \alpha_{0}$, we have $n_{2}>3$, which is equivalent to $n_{2} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{2} & z_{1}^{n_{1}-1} & z_{0}^{n_{0}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{0} & 0 & z_{3}^{n_{3}-1} \\
* & * & z_{2}^{n_{2}-2} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0$. Therefore, we have $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{2}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)=0$.
Therefore, $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.21 (Case (xvii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{3} \geq \alpha_{0} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,3)$ and $(3,0)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{0}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

From $D\left(z_{2}^{n_{2}-2} z_{3}\right)=c z_{3}^{k+1}\left(n_{2}-2\right) z_{2}^{n_{2}-3} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2}\right)$, we get $c z_{3}^{k+1}\left(n_{2}-2\right) z_{2}^{n_{2}-3} \in\left(z_{3}^{n_{3}-1}\right)$.

If $c \neq 0$, we have $k \geq n_{3}-2$ and $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-2}\right)$. However, we can also see $w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0}$ and $w t\left(z_{3}^{n_{3}-2}\right)=w t(f)-\alpha_{0}-2 \alpha_{3}=n_{0} \alpha_{0}+\alpha_{1}-\alpha_{0}-2 \alpha_{3} \geq$ $2 \alpha_{0}-\alpha_{3} \geq \alpha_{0}$. Contradiction.

So we get $c=0$ and $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.22 (Case (xviii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{2} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{0}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{2}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 3$. From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=$ $n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(2,0)$ and $(3,2)$. So we have $n_{2} \geq 3$ and $n_{3} \geq 3$. From $3 \alpha_{0}<w t(f)=n_{1} \alpha_{1} \leq n_{1} \alpha_{0}$, we have $n_{1}>3$, which is equivalent to $n_{1} \geq 4$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} z_{0} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right] .
$$

From $D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0$. Therefore, we obtain $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.

From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2}\right)$, we get $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2}=0$. Therefore, we obtain $c=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof. \square

Lemma 2.23 (Case (xix) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$
$z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{3} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1 -st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,2),(2,3)$ and (3,0). So we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} & 0 & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{0}
\end{array}\right] .
$$

From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2}, z_{3}^{n_{3}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{3}^{n_{3}-1}\right)$.

From $w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3} \geq 3 \alpha_{0}-\alpha_{3} \geq 2 \alpha_{0}>\alpha_{0}$ and $w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0}$, we can know that $z_{3}^{k} z_{1}^{n_{1}-2}$ cannot be divided by $z_{3}^{n_{3}-1}$.

If $c \neq 0$, since $c z_{3}^{k} z_{1}^{n_{1}-2}$ cannot be divided by $z_{2}, c z_{3}^{k} z_{1}^{n_{1}-2}$ cannot be eliminated by $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}$, which implies that $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2}$ cannot be divided by $z_{3}^{n_{3}-1}$. Contradiction.

Therefore, we obtain $c=0$. It follows that $p_{1}\left(z_{2}, z_{3}\right) \in\left(z_{3}^{n_{3}-1}\right)$. If $p_{1}\left(z_{2}, z_{3}\right) \neq$ 0 , we have $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. Note that $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}<$ $w t\left(z_{3}^{n_{3}-1}\right)$, which leads to a contradiction. Therefore, it is clear that $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.24 (Case (xx) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{3} \geq \alpha_{0} \geq \alpha_{2} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1 -st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3} \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}\right.$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,3),(2,0)$ and (3,2). So we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} & 0 & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right] .
$$

From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-2} z_{3}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}^{n_{0}-2}, z_{2}^{n_{2}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{2}^{n_{2}-1}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{2}^{n_{2}-1}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq$ $w t\left(z_{2}^{n_{2}-1}\right)$ since $w t\left(z_{2}^{n_{2}-1}\right)=w t(f)-\alpha_{0}-\alpha_{2} \geq 3 \alpha_{0}-\alpha_{2} \geq 2 \alpha_{0}>\alpha_{0}$ and $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<w t\left(z_{2}^{n_{2}-1}\right)$. This leads to a contradiction. Thus we obtain $p_{1}\left(z_{2}, z_{3}\right)=0$.

From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2}, z_{1}^{n_{1}-2} z_{3}\right)$, we get $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2}=0$. Therefore, it is obvious that $c=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.25 (Case (xxi) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{3} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{2}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,3),(2,1)$ and (3,0). So $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} & 0 & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{3} & z_{2}^{n_{2}-1} & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{0}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-2} z_{3}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}^{n_{0}-2}, z_{3}^{n_{3}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{3}^{n_{3}-1}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right)$ can be divided by $z_{3}^{n_{3}-2}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq$ $w t\left(z_{3}^{n_{3}-2}\right)$. Since $w t\left(z_{3}^{n_{3}-2}\right)=w t(f)-\alpha_{0}-2 \alpha_{3} \geq 3 \alpha_{0}-2 \alpha_{3} \geq \alpha_{0}$ and $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<w t\left(z_{3}^{n_{3}-2}\right)$. This leads to a contradiction. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$.

Therefore, D is in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.
From $D\left(z_{2}^{n_{2}-1}\right)=c\left(n_{2}-1\right) z_{3}^{k} z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}\right)$, we get $c z_{3}^{k} z_{2}^{n_{2}-2} \in\left(z_{3}^{n_{3}-1}\right)$. If $c \neq 0$, we can get $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. From $w t\left(z_{3}^{n_{3}-1}\right)=$ $w t(f)-\alpha_{0}-\alpha_{3}$ and $w t\left(z_{3}^{k}\right)<\alpha_{2}$, we can get $\alpha_{2}>w t(f)-\alpha_{0}-\alpha_{3}$. Therefore, $w t(f)<\alpha_{0}+\alpha_{2}+\alpha_{3} \leq 3 \alpha_{0}$, which is in contradiction with $w t(f) \geq 4 \alpha_{0}$. Therefore, $c=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.26 (Case (xxii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where $\alpha_{3} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{0}$ and
$w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,2),(2,0)$ and $(3,1)$. So we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} & 0 & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & z_{3}^{n_{3}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2}, z_{1}^{n_{1}-2} z_{2}\right)$, we get $c=0$.
From $D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{0}^{n_{0}-2}, z_{2}^{n_{2}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{2}^{n_{2}-1}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right) z_{2}$ can be divided by $z_{2}^{n_{2}-1}$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right) z_{2}\right) \geq w t\left(z_{2}^{n_{2}-1}\right)$. Since $w t\left(z_{2}^{n_{2}-1}\right)=w t(f)-\alpha_{0}-\alpha_{2} \geq 3 \alpha_{0}-\alpha_{2} \geq 2 \alpha_{0}$ and $w t\left(p_{1}\left(z_{2}, z_{3}\right) z_{2}\right)<\alpha_{1}+\alpha_{2} \leq 2 \alpha_{0}$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right) z_{2}\right)<w t\left(z_{2}^{n_{2}-1}\right)$. Contradiction. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.27 (Case (xxiii) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{3} \geq \alpha_{2} \geq \alpha_{0} \geq \alpha_{1}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,0),(2,3)$ and $(3,1)$. So we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} & z_{1}^{n_{1}-1} & 0 & 0 \\ * & z_{1}^{n_{1}-2} z_{0} & 0 & z_{3}^{n_{3}-1} \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{1}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-2} z_{3}\right)=c z_{3}^{k}\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3} \in\left(z_{0}^{n_{0}-2}, z_{1}^{n_{1}-1}, z_{1}^{n_{1}-2} z_{0}, z_{3}^{n_{3}-1}\right)$, we get $c z_{3}^{k}\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3} \in\left(z_{3}^{n_{3}-1}\right)$.

If $c \neq 0$, we have $k \geq n_{3}-2$ and $w t\left(z_{3}^{k}\right)+\alpha_{3} \geq w t\left(z_{3}^{n_{3}-1}\right)$. However, we can also get $w t\left(z_{3}^{k}\right)+\alpha_{3}<\alpha_{2}+\alpha_{3} \leq 2 \alpha_{0}$ and $w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{1}-\alpha_{3} \geq 4 \alpha_{0}-2 \alpha_{0}=2 \alpha_{0}$. This leads to a contradiction.

Thus we have $c=0$ and $D=0$.
In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

Lemma 2.28 (Case (xxiv) of Proposition 2.4). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{3} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{0}$ and $w t(f)>3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=3 \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. After renumbering to make $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, the form of f changes to $f=z_{0}^{n_{0}}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$. After renumbering, if there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

After renumbering, it is clear that $n_{0} \geq 4$. Therefore, we have $w t(f)=n_{0} \alpha_{0} \geq$ $4 \alpha_{0}$. From $3 \alpha_{i}+\alpha_{j} \leq 4 \alpha_{0} \leq w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j} \geq 3$ for $(i, j)=(1,0),(2,1)$ and (3,2). So we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} & z_{1}^{n_{1}-1} & 0 & 0 \\ * & z_{1}^{n_{1}-2} z_{0} & z_{2}^{n_{2}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{1} & z_{3}^{n_{3}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{2}\end{array}\right]$.
From $D\left(z_{0}^{n_{0}-2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3}=0$, we get $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right)=0$.
From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2}, z_{1}^{n_{1}-1}, z_{1}^{n_{1}-2} z_{0}\right)$, we get $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2}=0$. Therefore, we have $c=0$ and $D=0$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ and we complete the proof.

For $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$, discussions when $2 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}<w t(f) \leq 3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ are summarized in Proposition 2.29.

Proposition 2.29 (Case (ii) of Proposition 2.3). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $2 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}<$ $w t(f) \leq 3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. There exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$ (we combine the cases that can be transformed into each other by simply renumbering the variables, which is caused by the equal weights of asymmetrical variables):
(i) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(vi) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Proof. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. After renumbering, there are 2 cases:
(i) $f=z_{0}^{3}+\ldots$;
(ii) $f=z_{0}^{2} z_{i}+\ldots$.

They correspond to Proposition 2.31 and Proposition 2.38 respectively.
Lemma 2.30. Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $2 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}<w t(f) \leq 3 \max \left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If we get $f=z_{0}^{3}+\ldots$ after renumbering, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

Proof. Regardless of difference of constants, $f_{00}=z_{0}$. So $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

In Proposition 2.31, we will discuss one case of Proposition 2.29. That is, for $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ satisfying $2 \alpha_{0}<w t(f) \leq 3 \alpha_{0}, f$ takes the form of $f=z_{0}^{2} z_{i}+\cdots$ after we renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$.

Proposition 2.31 (Case (i) of Proposition 2.29). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$. Let $H_{1}(V)$ be the 1-st Hessian algebra. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If we get $f=z_{0}^{3}+\ldots$ after renumbering, there exists negative weight derivation if and only if f is in one of the two forms after renumbering:
(i) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

Proof. There are 6 cases of f after renumbering:
(i) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$;
(ii) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$;
(iii) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$;
(iv) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$;
(v) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$;
(vi) $f=z_{0}^{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$.

The calculation requires much effort. One can refer to the lemmas below (from Lemma 2.32 to Lemma 2.37) for further details.

Lemma 2.32 (Case (i) of Proposition 2.31). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$ for $(i, j)=(1,2),(2,3)$ and $(3,0)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0} & 0 & 0 & z_{3}^{n_{3}-1} \\ * & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & 0\end{array}\right]$.
If $n_{1}=2$, the equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & 0 & z_{3}^{n_{3}-1} \\
* & z_{2} & z_{1} & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

Then the nonzero elements of $H_{1}(V)$ do not contain z_{1} or z_{2}. Since $D=$ $p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we have $D=0$.

If $n_{1}>2$, we have the following discussions.
It is obvious that $D\left(z_{0}\right)=0$. From $D\left(z_{1}^{n_{1}-2} z_{2}\right)=\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2}+$ $c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}, z_{3}^{n_{3}-1}\right)$, we get $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{3}^{n_{3}-1}\right)$.

We claim that both $p_{1}\left(z_{2}, z_{3}\right)$ and $c z_{3}^{k}$ can be divided by $z_{3}^{n_{3}-1}$. In fact, if $p_{1}\left(z_{2}, z_{3}\right)$ cannot be divided by $z_{3}^{n_{3}-1}$, there exists some monomial with respect to z_{0}, z_{1}, z_{2} and z_{3} in $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2}$ that cannot be divided by $z_{3}^{n_{3}-1}$. It cannot be eliminated by $c z_{3}^{k} z_{1}^{n_{1}-2}$. If $c z_{3}^{k}$ cannot be divided by $z_{3}^{n_{3}-1}, c z_{3}^{k} z_{1}^{n_{1}-2}$ cannot be eliminated by any monomial with respect to z_{0}, z_{1}, z_{2} and z_{3} in $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2}$. Both cases are in contradiction to $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2}+c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{3}^{n_{3}-1}\right)$.

If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. Since $w t\left(z_{3}^{n_{3}-1}\right)=$ $w t(f)-\alpha_{0}-\alpha_{3}=2 \alpha_{0}-\alpha_{3} \geq \alpha_{0}$ and $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$, it is clear that $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<w t\left(z_{3}^{n_{3}-1}\right)$. This leads to a contradiction. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$.

If $c \neq 0$, we get $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. From $w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3}=$ $2 \alpha_{0}-\alpha_{3} \geq \alpha_{0}$ and $w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0}$, we get $w t\left(z_{3}^{k}\right)<w t\left(z_{3}^{n_{3}-1}\right)$. This leads to a contradiction. Thus we get $c=0$. Therefore, $D=0$ and we get a contradiction from our discussions.

Therefore, there does not exist negative weight derivation of $H_{1}(V)$.
Lemma 2.33 (Case (ii) of Proposition 2.31). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{3}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$ for $(i, j)=(1,3),(2,0)$ and $(3,2)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0} & 0 & z_{2}^{n_{2}-1} & 0 \\ * & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\ * & * & 0 & z_{3}^{n_{3}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{2}\end{array}\right]$.

If $n_{1}=2$, we get the relation $2 \alpha_{1}+\alpha_{3}=3 \alpha_{0}$. Considering $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$ and $n_{1}=2, n_{2}=2, n_{3}=2$. Thus the equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & z_{2} & 0 \\
* & z_{3} & 0 & z_{1} \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

Then the nonzero elements of Hessian algebra do not contain z_{1}, z_{2} or z_{3}. From $D=$ $p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we get $D=0$.

If $n_{1}>2$, we have the following discussions.
Firstly, $D\left(z_{0}\right)=0$ is obvious. From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in$ $\left(z_{0}, z_{1}^{n_{1}-2} z_{3}\right)$, we get $c=0$. From $D\left(z_{1}^{n_{1}-2} z_{3}\right)=\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{3} \in$ $\left(z_{0}, z_{2}^{n_{2}-1}\right)$, we get $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{2}^{n_{2}-1}\right)$.

So $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2}^{n_{2}-1}$.
If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq w t\left(z_{2}^{n_{2}-1}\right)$. Since $w t\left(z_{2}^{n_{2}-1}\right)=w t(f)-$ $\alpha_{0}-\alpha_{2}=2 \alpha_{0}-\alpha_{2} \geq \alpha_{0}$ and $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$, we get $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<$ $w t\left(z_{2}^{n_{2}-1}\right)$. This leads to a contradiction. Thus we get $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

Therefore, there does not exist negative weight derivation of $H_{1}(V)$. \square
Lemma 2.34 (Case (iii) of Proposition 2.31). $\operatorname{Let}(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{3}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivations of $H_{1}(V)$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$ for $(i, j)=(1,3),(2,1)$ and $(3,0)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{3} & z_{2}^{n_{2}-1} & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & 0
\end{array}\right] .
$$

If $n_{1}=2$, we get the relation $2 \alpha_{1}+\alpha_{3}=3 \alpha_{0}$. Since $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}, n_{1}=2, n_{2}=2$ and $n_{3}=2$. The equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & 0 & 0 \\
* & z_{3} & z_{2} & z_{1} \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

Then the nonzero elements of $H_{1}(V)$ do not contain z_{1}, z_{2} or z_{3}. Since $D=$ $p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we have $D=0$.

If $n_{3}=2$, we get $2 \alpha_{3}+\alpha_{0}=3 \alpha_{0}$. Since $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=\alpha_{1}=$ $\alpha_{2}=\alpha_{3}, n_{1}=2, n_{2}=2$ and $n_{3}=2$. The equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & 0 & 0 \\
* & z_{3} & z_{2} & z_{1} \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right] .
$$

Then the nonzero elements of Hessian algebra do not contain z_{1}, z_{2} or z_{3}. Since $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, so we have $D=0$.

If $n_{1}>2$ and $n_{3}>2$, we can deduct $\alpha_{0}>\alpha_{3}$. In fact, when $\alpha_{0}=\alpha_{3}$, we get $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$. We can get $n_{1}=2$ and $n_{3}=2$, which leads to a contradiction.

In this case, if $n_{2}=2$, we get $2 \alpha_{2}+\alpha_{1}=3 \alpha_{0}$. Considering $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=\alpha_{1}=\alpha_{2}>\alpha_{3}$. The equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & 0 & z_{3}^{n_{3}-1} \\
* & 0 & z_{2} & 0 \\
* & * & z_{1} & 0 \\
* & * & * & 0
\end{array}\right]
$$

Then the nonzero elements of $H_{1}(V)$ do not contain z_{1} or z_{2}. Since $D=$ $p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we have $D=0$.

Thus we only need to consider the case when $n_{1}>2, n_{2}>2$ and $n_{3}>2$. It follows that $\alpha_{0}>\alpha_{2}$ since we can get $n_{2}=2$ when $\alpha_{0}=\alpha_{2}$. From $D\left(z_{1}^{n_{1}-2} z_{3}\right)=$ $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}, z_{3}^{n_{3}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right) \in\left(z_{3}^{n_{3}-2}\right)$. So $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{3}^{n_{3}-2}$. From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}\right)$, we get $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{3}^{n_{3}-1}\right)$. If $c \neq 0, z_{3}^{k}$ is divided by $z_{3}^{n_{3}-1}$ and we get $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. Since $w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3}=2 \alpha_{0}-\alpha_{3} \geq 2 \alpha_{0}-\alpha_{2}>\alpha_{0}$ and $w t\left(z_{3}^{k}\right)<\alpha_{2}<\alpha_{0}$, we get $w t\left(z_{3}^{k}\right)<w t\left(z_{3}^{n_{3}-1}\right)$. This leads to a contradiction. Thus $c=0$.

We consider $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}, z_{2}^{n_{2}-1}\right.$, $\left.z_{2}^{n_{2}-2} z_{1}\right)$. Since $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{3}^{n_{3}-2}$, we get that $p_{1}\left(z_{2}, z_{3}\right)$ is divided by z_{3}.

So it is obvious that $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{1}^{n_{1}-2} z_{3}\right)$.
From $D\left(z_{2}^{n_{2}-2} z_{1}\right)=p_{1}\left(z_{2}, z_{3}\right) z_{2}^{n_{2}-2} \in\left(z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}, z_{2}^{n_{2}-1}, z_{1}^{n_{1}-1}\right)$, we get $p_{1}\left(z_{2}, z_{3}\right) z_{2}^{n_{2}-2} \in\left(z_{3}^{n_{3}-1}, z_{2}^{n_{2}-1}\right)$.

If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, since $w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3}=2 \alpha_{0}-\alpha_{3} \geq 2 \alpha_{0}-\alpha_{2}>$ $\alpha_{0} \geq \alpha_{1}>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$, we have $p_{1}\left(z_{2}, z_{3}\right) z_{2}^{n_{2}-2}$ cannot be divided by $z_{3}^{n_{3}-1}$. So $p_{1}\left(z_{2}, z_{3}\right) z_{2}^{n_{2}-2}$ is divided by $z_{2}^{n_{2}-1}, p_{1}\left(z_{2}, z_{3}\right)$ is divided by z_{2} and $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2} z_{3}^{n_{3}-2}$.

On the one hand, we have $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq w t\left(z_{2} z_{3}^{n_{3}-2}\right)$. On the other hand, we have $w t\left(z_{2} z_{3}^{n_{3}-2}\right)=\alpha_{2}+\left(n_{3}-2\right) \alpha_{3} \geq\left(n_{3}-1\right) \alpha_{3}=w t\left(z_{3}^{n_{3}-1}\right)>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. This leads to a contradiction. It follows that $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

Therefore, there does not exist negative weight derivations of $H_{1}(V)$.
Lemma 2.35 (Case (iv) of Proposition 2.31). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$ α_{3}. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+$ $z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, for $(i, j)=(1,2),(2,0)$ and $(3,1)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & z_{3}^{n_{3}-1} \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

If $n_{1}=2$, we get $2 \alpha_{1}+\alpha_{2}=3 \alpha_{0}$. Since $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=$ $\alpha_{1}=\alpha_{2} \geq \alpha_{3}$ and $n_{2}=2$. Thus both z_{1} and z_{2} are in the ideal of ideal generated by elements of Hess (f). Then the nonzero elements of Hessian algebra do not contain z_{1} or z_{2}. Since $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we have $D=0$.

If $n_{1}>2$, from $3 \alpha_{2} \leq 2 \alpha_{1}+\alpha_{2}<n_{1} \alpha_{1}+\alpha_{2}=w t(f)=3 \alpha_{0}$, we have $\alpha_{0}>\alpha_{2} \geq \alpha_{3}$. Thus from $2 \alpha_{i}+\alpha_{j}<3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{j}>2$ for $(i, j)=(1,2),(2,0)$ and $(3,1)$. So we have $n_{1}>2, n_{2}>2$ and $n_{3}>2$. From $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}, z_{1}^{n_{1}-2} z_{2}\right)$, we get $c=0$. Thus $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$. By the relation $D\left(z_{1}^{n_{1}-2} z_{2}\right)=\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2} \in$ $\left(z_{0}, z_{2}^{n_{2}-1}\right)$, we obtain $\left(n_{1}-2\right) p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{2}^{n_{2}-1}\right)$. So $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2}^{n_{2}-2}$.
$D\left(z_{1}^{n_{1}-1}\right)$ should satisfy $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}, z_{2}^{n_{2}-1}\right.$, $\left.z_{1}^{n_{1}-2} z_{2}\right)$. Since $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2}^{n_{2}-2}, p_{1}\left(z_{2}, z_{3}\right)$ is divided by z_{2}. By the relation $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{1}^{n_{1}-2} z_{2}\right)$, it is obvious that $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}, z_{2}^{n_{2}-1}, z_{1}^{n_{1}-2} z_{2}\right)$ holds.
$D\left(z_{3}^{n_{3}-2} z_{1}\right)$ should satisfy $D\left(z_{3}^{n_{3}-2} z_{1}\right)=p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in\left(z_{0}, z_{2}^{n_{2}-1}\right.$, $\left.z_{1}^{n_{1}-2} z_{2}, z_{1}^{n_{1}-1}, z_{3}^{n_{3}-1}\right)$, from which we obtain $p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in\left(z_{2}^{n_{2}-1}, z_{3}^{n_{3}-1}\right)$. If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we have $w t\left(z_{2}^{n_{2}-1}\right)=w t(f)-\alpha_{0}-\alpha_{2}=3 \alpha_{0}-\alpha_{0}-\alpha_{2}>\alpha_{0} \geq \alpha_{1}>$ $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. However, if $z_{2}^{n_{2}-1}$ is a factor of $p_{1}\left(z_{2}, z_{3}\right)$, we have $w t\left(z_{2}^{n_{2}-1}\right) \leq$ $w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)$. This leads to a contradiction. Therefore, $z_{2}^{n_{2}-1}$ is not a factor of $p_{1}\left(z_{2}, z_{3}\right)$ and it follows that $p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in\left(z_{3}^{n_{3}-1}\right)$.

In summary, nonzero $p_{1}\left(z_{2}, z_{3}\right)$ exists only if $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2}^{n_{2}-2} z_{3}$.

Solving the equations

$$
\left\{\begin{array}{l}
3 \alpha_{0}=n_{2} \alpha_{2}+\alpha_{0} \\
3 \alpha_{0}=n_{1} \alpha_{1}+\alpha_{2}
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
\alpha_{1}=\frac{1}{n_{1}}\left(3-\frac{2}{n_{2}}\right) \alpha_{0} \\
\alpha_{2}=\frac{2}{n_{2}} \alpha_{0}
\end{array}\right.
$$

By $\left(n_{2}-2\right) \alpha_{2}<\left(n_{2}-2\right) \alpha_{2}+\alpha_{3} \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1}$, we have $\left(n_{2}-2\right) \frac{2}{n_{2}} \alpha_{0}<$ $\frac{1}{n_{1}}\left(3-\frac{2}{n_{2}}\right) \alpha_{0}$. So $n_{1}<\frac{3 n_{2}-2}{2\left(n_{2}-2\right)}$. Note that $n_{1} \geq 3$, we have $\frac{3 n_{2}-2}{2\left(n_{2}-2\right)}>3$, which means $n_{2}<\frac{10}{3}$. Note that $n_{2}>2$ we have $n_{2}=3$. So $n_{1}<\frac{3 n_{2}-2}{2\left(n_{2}-2\right)}=\frac{7}{2}$. Note that $n_{1}>2$ we have $n_{1}=3$. So we get $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}, \alpha_{1}=\frac{7}{9} \alpha_{0}$ and $\alpha_{2}=\frac{2}{3} \alpha_{0}$. The constraint $\left(n_{2}-2\right) \alpha_{2}+\alpha_{3}<\alpha_{1}$ is equal to $\alpha_{3}<\frac{1}{9} \alpha_{0}$. It follows that $\alpha_{3}<\alpha_{2}$. From $3 \alpha_{0}=n_{3} \alpha_{3}+\alpha_{1}$, we have $\alpha_{3}=\frac{20}{9 n_{3}} \alpha_{0}$. So $n_{3}>20$, which is equivalent to $n_{3} \geq 21$. The necessary and sufficient condition for $w t\left(z_{2}^{n_{2}-2} z_{3}\right)<\alpha_{1}$ and $\alpha_{3} \leq \alpha_{2} \leq \alpha_{1} \leq \alpha_{0}$ is that f is in the form of $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$.

In this case, the equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & 0 & z_{2}^{2} & 0 \\
* & z_{1} z_{2} & z_{1}^{2} & z_{3}^{n_{3}-1} \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

regardless of constants and useless polynomials. Since z_{2}^{2} and $z_{3}^{n_{3}-1}$ are in the ideal generated by elements of $\operatorname{Hess}(f)$ and $p_{1}\left(z_{2}, z_{3}\right)$ is divided by $z_{2} z_{3}$, it is clear that $p_{1}\left(z_{2}, z_{3}\right)=c_{1} z_{2} z_{3}^{k_{1}}\left(1 \leq k_{1} \leq n_{3}-2, c_{1} \neq 0\right)$. The derivation is negatively weighted if and only if $\alpha_{2}+k_{1} \alpha_{3}<\alpha_{1}$, which is equivalent to $\frac{2}{3} \alpha_{0}+k_{1} \frac{20}{9 n_{3}} \alpha_{0}<\frac{7}{9} \alpha_{0}$. We get $1 \leq k_{1}<\frac{n_{3}}{20}$.

From the above discussions, when $n_{3} \geq 21$, we have verified that such $D=c_{1} z_{2} z_{3}^{k_{1}} \frac{\partial}{\partial z_{1}}\left(c_{1} \neq 0, \quad 1 \leq k_{1}<\frac{n_{3}}{20}, k_{1} \in \mathbb{Z}\right)$ does satisfy the restrictions of negative weight derivations. Therefore, the set of negative weight derivations of f is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$.

Therefore, there exists negative weight derivation if and only if f is in the form of $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 21\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}}{20}, k \in \mathbb{Z}\right\}$.

Lemma 2.36 (Case (v) of Proposition 2.31). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{3}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$ for $(i, j)=(1,0),(2,3)$ and $(3,1)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & z_{1}^{n_{1}-1} & 0 & 0 \\
* & 0 & 0 & z_{3}^{n_{3}-1} \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

It is obvious that $D\left(z_{0}\right)=0$. From $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}\right)$, we obtain $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

If $n_{2}=2$, we have $2 \alpha_{2}+\alpha_{3}=3 \alpha_{0}$. By $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we have $\alpha_{0}=\alpha_{1}=$ $\alpha_{2}=\alpha_{3}$. Therefore, we get $n_{1}=2$ and $n_{3}=2$. The equations become

$$
\operatorname{Hess}(f)=\left[\begin{array}{llll}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & z_{1} & 0 & 0 \\
* & 0 & 0 & z_{3} \\
* & * & 0 & z_{2} \\
* & * & * & 0
\end{array}\right]
$$

Thus both z_{1} and z_{2} are in the ideal of ideal generated by elements of $\operatorname{Hess}(f)$. Then the nonzero elements of Hessian algebra do not contain z_{1} or z_{2}. From $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$, we can get $D=0$.

If $n_{2}>2$, we can get $\alpha_{0}>\alpha_{3}$. Otherwise, it is clear that $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$, from which we get $n_{2}=2$. This leads to a contradiction. Therefore, from the relation $3 \alpha_{0}=w t(f)=n_{3} \alpha_{3}+\alpha_{1}<\left(n_{3}+1\right) \alpha_{0}$, we get $n_{3}>2$, which is equivalent to $n_{3} \geq 3$. From $D\left(z_{2}^{n_{2}-2} z_{3}\right)=c z_{3}^{k}\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3} \in\left(z_{0}, z_{1}^{n_{1}-1}, z_{3}^{n_{3}-1}\right)$, we have $c z_{3}^{k}\left(n_{2}-2\right)$ $z_{2}^{n_{2}-3} z_{3} \in\left(z_{3}^{n_{3}-1}\right)$.

If $c \neq 0$, on the one hand, it is clear that $k \geq n_{3}-2$ and $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-2}\right)$; on the other hand, we notice that $w t\left(z_{3}^{k}\right)<\alpha_{2}$ and $w t\left(z_{3}^{n_{3}-2}\right)=w t(f)-\alpha_{1}-2 \alpha_{3} \geq$ $n_{2} \alpha_{2}-\alpha_{1}-\alpha_{3}$. Therefore, $n_{2} \alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}$. From $n_{1} \alpha_{1}+\alpha_{0}=w t(f)=$ $n_{2} \alpha_{2}+\alpha_{3}<\alpha_{1}+\alpha_{2}+2 \alpha_{3} \leq 3 \alpha_{1}+\alpha_{0}$, we get $n_{1}<3$. Note that $n_{1} \geq 2$, it is easy to see that $n_{1}=2$. Therefore, from the weight relationship $3 \alpha_{0}=2 \alpha_{1}+\alpha_{0}=n_{2} \alpha_{2}+\alpha_{3}=$ $n_{3} \alpha_{3}+\alpha_{1}$, we get $\alpha_{1}=\alpha_{0}, \alpha_{2}=\frac{1}{n_{2}}\left(3-\frac{2}{n_{3}}\right) \alpha_{0}, \alpha_{3}=\frac{2}{n_{3}} \alpha_{0}$. Substituting them for $n_{2} \alpha_{2}<\alpha_{1}+\alpha_{2}+\alpha_{3}$, we have $n_{2}<\frac{3}{2}+\frac{2}{n_{3}-2} \leq \frac{7}{2}$. Note that $n_{2}>2$, we get $n_{2}=3$. From $3=n_{2} \leq \frac{3}{2}+\frac{2}{n_{3}-2}$, we get $n_{3} \leq \frac{10}{3}$. Note that $n_{3} \geq 3$, we have $n_{3}=3$.

Thus f is in the form of $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. We have $\alpha_{1}=\alpha_{0}, \alpha_{2}=\frac{7}{9} \alpha_{0}$ and $\alpha_{3}=\frac{2}{3} \alpha_{0}$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & z_{1} & 0 & 0 \\
* & 0 & 0 & z_{3}^{2} \\
* & * & z_{2} z_{3} & z_{2}^{2} \\
* & * & * & 0
\end{array}\right] .
$$

Since z_{3}^{2} is in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we have $0 \leq k \leq 1$. Since $D\left(z_{2}^{2}\right)=2 c z_{3}^{k} z_{2}$ is in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we have $k=1$. Therefore, D is in the form of $D=c z_{3} \frac{\partial}{\partial z_{2}}$. It is easy to verify that this form of D is qualified.

Therefore, there exists negative weight derivation if and only if f is in the form of $f=z_{0}^{3}+z_{1}^{2} z_{0}+z_{2}^{3} z_{3}+z_{3}^{3} z_{1}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

Lemma 2.37 (Case (vi) of Proposition 2.31). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{3}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$.

Proof. By Lemma 2.30, whenever there exists any negative weight derivation D of $H_{1}(V), D$ must be in the form of $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$ after renumbering the variables.

From $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}=w t(f)=n_{i} \alpha_{i}+\alpha_{j}$ for $(i, j)=(1,0),(2,1)$ and $(3,2)$, we get $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} & z_{1}^{n_{1}-1} & 0 & 0 \\
* & 0 & z_{2}^{n_{2}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{1} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

It is obvious that the condition $D\left(z_{0}\right)=0$ is satisfied. From the condition $D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}\right)$, we can see $p_{1}\left(z_{2}, z_{3}\right)=0$. From the condition $D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}, z_{1}^{n_{1}-1}\right)$, we can see $c=0$. It is clear that $D=0$.

Therefore, there does not exist negative weight derivation of $H_{1}(V)$. प
In Proposition 2.38, we will discuss the other case of Proposition 2.29. That is, for $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ satisfying $2 \alpha_{0}<w t(f) \leq 3 \alpha_{0}, f$ takes the form of $f=z_{0}^{2} z_{i}+\cdots$ after we renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$.

Proposition 2.38 (Case (ii) of Proposition 2.29). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$. Let $H_{1}(V)$ be the 1-st Hessian algebra. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relation $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If we get $f=z_{0}^{2} z_{i}+\cdots$ after renumbering, there exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms:
(i) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{2} z_{1}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

Proof. After renumbering, z_{0} and z_{i} are in the ideal generated by elements of $\operatorname{Hess}(f)$. Thus there does not exist any nonzero monomial or polynomial with respect to z_{0}, z_{1}, z_{2} and z_{3} that is divided by z_{0} or z_{i} in $H_{1}(V)$. Since $w t(f)$ is more than $2 \alpha_{0}$, the multiplicity of each monomial with respect to z_{0}, z_{1}, z_{2} and z_{3} is more than 2.

To simplify the problem, we renumber the variables again by letting the bigger weight variable left be $z_{j_{0}}$ and the smaller weight variable left be $z_{j_{1}}$.

In this case, if there exists some negative weight derivation D, D must be in the form of $D=c z_{j_{1}}^{k} \frac{\partial}{\partial z_{j_{0}}}+c_{j_{1}} \frac{\partial}{\partial z_{j_{1}}}$.

If $z_{j_{1}}$ is an element in the ideal generated by elements of $\operatorname{Hess}(f)$, there does not exist any nonzero element which is divided by $z_{j_{1}}$ in $H_{1}(V)$. Thus $c_{j_{1}}=0$.

If $z_{j_{1}}$ is not an element in the ideal generated by elements of $\operatorname{Hess}(f)$, regardless of difference of constants, there exists an positive integer k_{1} such that $z_{j_{1}}^{k_{1}+1}$ is in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$ while $z_{j_{1}}^{k_{1}}$ is not. From the fact that $D\left(z_{j_{1}}^{k_{1}+1}\right)=c_{j_{1}}\left(k_{1}+1\right) z_{j_{1}}^{k_{1}}$ is in the ideal, we get $c_{j_{1}}=0$.

In conclusion, $c_{j_{1}}=0$ and $D=c z_{j_{1}}^{k} \frac{\partial}{\partial z_{j_{0}}}$.
There exists some positive integer p such that $z_{j_{0}}^{p}$ is in the ideal, while $z_{j_{0}}^{p-1}$ is not. Therefore, $D\left(z_{j_{0}}^{p}\right)=c p z_{j_{1}}^{k} z_{j_{0}}^{p-1}$ is in the ideal, from which we get $k \geq 1$. Therefore, $\alpha_{j_{0}}>k \alpha_{j_{1}} \geq \alpha_{j_{1}}$.

We will discuss what element the ideal contain when both $z_{j_{0}}$ and $z_{j_{1}}$ are not in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$. Otherwise, it is clear that such negative weight derivation D does not exist.

Similar to the cases in the proof of Proposition 2.4, we only need to check 18 cases after renumbering to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$:
(i) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;
(ii) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;
(iii) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ and $D=$ $c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(v) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(vi) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(vii) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(viii) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ and $D=$ $c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(ix) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;
(x) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;
(xi) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xii) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xiii) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3\right)$ and $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xiv) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 3, n_{3} \geq 3\right)$ and $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xv) $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3\right)$ and $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xvi) $f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 3, n_{3} \geq 3\right)$ and $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$;
(xvii) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}\left(n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;
(xviii) $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}\left(n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=$ $c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$;

The calculation process is lengthy. One can look it up in the following lemmas (from Lemma 2.39 to Lemma 2.56).

Lemma 2.39 (Case (i) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & 0 & 0 \\
* & 0 & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

By $D\left(z_{2}^{n_{2}-2} z_{3}\right)=c\left(n_{2}-2\right) z_{3}^{k+1} z_{2}^{n_{2}-3} \in\left(z_{1}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.40 (Case (ii) of Proposition 2.38). $X \operatorname{Let}(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & 0 & 0 \\
* & 0 & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

By $D\left(z_{2}^{n_{2}-2}\right)=c\left(n_{2}-2\right) z_{3}^{k} z_{2}^{n_{2}-3} \in\left(z_{1}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.

Lemma 2.41 (Case (iii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & 0 & z_{0} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-2} z_{3}\right)=c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3}^{k+1} \in\left(z_{2}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.42 (Case (iv) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. After renumbering, assume that there exists some D in the form of $D=$ $c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & 0 & z_{0} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} & 0 \\
* & * & * & 0
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-2} z_{2}\right)=c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}^{k+1} \in\left(z_{3}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.43 (Case (v) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & 0 & z_{0} & 0 \\
* & z_{1}^{n_{1}-2} & 0 & z_{3}^{n_{3}-1} \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-2}\right)=c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3}^{k} \in\left(z_{2}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.44 (Case (vi) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & 0 & z_{0} \\
* & z_{1}^{n_{1}-2} & z_{2}^{n_{2}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & 0
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-2}\right)=c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}^{k} \in\left(z_{3}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.45 (Case (vii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{llll}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & z_{1}^{n_{1}-1} & z_{0} & 0 \\
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{3}^{k} \in\left(z_{2}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.46 (Case (viii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{2}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0} \\
* & 0 & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} & 0 \\
* & * & * & 0
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{2}^{k} \in\left(z_{3}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.47 (Case (ix) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3, n_{3} \geq 4\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & z_{2}^{n_{2}-1} & 0 \\
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2}
\end{array}\right]
$$

By $D\left(z_{2}^{n_{2}-1}\right)=c\left(n_{2}-1\right) z_{2}^{n_{2}-2} z_{3}^{k} \in\left(z_{1}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.48 (Case (x) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 3, n_{2} \geq 4, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & 0 & z_{3}^{n_{3}-1} \\
* & 0 & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} & 0 \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{1} & =w t(f) \\
n_{1} \alpha_{1}+\alpha_{2} & =w t(f) \\
n_{2} \alpha_{2} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\left(\frac{1}{2}-\frac{1}{2 n_{1}}+\frac{1}{2 n_{1} n_{2}}\right) w t(f) \\
\alpha_{1}=\left(\frac{1}{n_{1}}-\frac{1}{n_{1} n_{2}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}} w t(f) \\
\alpha_{3}=\frac{1}{n_{3}}\left(\frac{1}{2}+\frac{1}{2 n_{1}}-\frac{1}{2 n_{1} n_{2}}\right) w t(f)
\end{array}\right.
$$

The only restriction we need to consider is that $D\left(z_{2}^{n_{2}-2}\right)=c\left(n_{2}-2\right) z_{3}^{k} z_{2}^{n_{2}-3} \in$ $\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}\right)$. Therefore, we have $k \geq n_{3}-1$, or $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. However, it is clear that $w t\left(z_{3}^{k}\right)<\alpha_{2}$. We can get $w t\left(z_{3}^{n_{3}-1}\right)<\alpha_{2}$. Therefore, we have

$$
\left(1-\frac{1}{n_{3}}\right)\left(\frac{1}{2}+\frac{1}{2 n_{1}}-\frac{1}{2 n_{1} n_{2}}\right)<\frac{1}{n_{2}}
$$

which is equivalent to

$$
n_{2}\left(1+\frac{1}{n_{1}}\right)-\frac{1}{n_{1}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

Therefore,

$$
4\left(1+\frac{1}{n_{1}}\right)-\frac{1}{n_{1}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

which is equivalent to

$$
4+\frac{3}{n_{1}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

However,

$$
\frac{2}{1-\frac{1}{n_{3}}} \leq 3<4+\frac{3}{n_{1}}
$$

This leads to a contradiction. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.49 (Case (xi) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ and $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.
Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{llll}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0} \\
* & z_{1}^{n_{1}-2} & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{3} & =w t(f) \\
n_{1} \alpha_{1} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{1} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\left(\frac{1}{2}-\frac{1}{2 n_{3}}+\frac{1}{2 n_{1} n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{n_{2}}\left(\frac{1}{2}+\frac{1}{2 n_{3}}-\frac{1}{2 n_{1} n_{3}}\right) w t(f) \\
\alpha_{3}=\left(\frac{1}{n_{3}}-\frac{1}{n_{1} n_{3}}\right) w t(f)
\end{array}\right.
$$

The only restriction we need to consider is that $D\left(z_{1}^{n_{1}-2}\right)=c\left(n_{1}-2\right) z_{2}^{k} z_{1}^{n_{1}-3} \in$ $\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}\right)$. Therefore, we have $k \geq n_{2}-1$, or $w t\left(z_{2}^{k}\right) \geq w t\left(z_{2}^{n_{2}-1}\right)$. However, it is clear that $w t\left(z_{2}^{k}\right)<\alpha_{1}$. We can get $w t\left(z_{2}^{n_{2}-1}\right)<\alpha_{1}$. Therefore, we have

$$
\left(1-\frac{1}{n_{2}}\right)\left(\frac{1}{2}+\frac{1}{2 n_{3}}-\frac{1}{2 n_{1} n_{3}}\right)<\frac{1}{n_{1}}
$$

which is equivalent to

$$
n_{1}\left(1+\frac{1}{n_{3}}\right)-\frac{1}{n_{3}}<\frac{2}{1-\frac{1}{n_{2}}}
$$

Therefore,

$$
4\left(1+\frac{1}{n_{3}}\right)-\frac{1}{n_{3}}<\frac{2}{1-\frac{1}{n_{2}}}
$$

which is equivalent to

$$
4+\frac{3}{n_{3}}<\frac{2}{1-\frac{1}{n_{2}}}
$$

However,

$$
\frac{2}{1-\frac{1}{n_{2}}} \leq 3<4+\frac{3}{n_{3}}
$$

This leads to a contradiction. There does not exist any negative weight derivation in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.50 (Case (xii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 4, n_{2} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{llll}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & 0 & z_{0} & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{2} & =w t(f) \\
n_{1} \alpha_{1} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{1} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\left(\frac{1}{2}-\frac{1}{2 n_{2}}+\frac{1}{2 n_{1} n_{2}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{n_{2}}\left(1-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}}\left(\frac{1}{2}+\frac{1}{2 n_{2}}-\frac{1}{2 n_{1} n_{2}}\right) w t(f)
\end{array} .\right.
$$

The only restriction we need to consider is that $D\left(z_{1}^{n_{1}-2}\right)=c\left(n_{1}-2\right) z_{3}^{k} z_{1}^{n_{1}-3} \in$ $\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}\right)$. Therefore, we have $k \geq n_{3}-1$, or $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. However, it is clear that $w t\left(z_{3}^{k}\right)<\alpha_{1}$. We can get $w t\left(z_{3}^{n_{3}-1}\right)<\alpha_{1}$. Therefore, we have

$$
\left(1-\frac{1}{n_{3}}\right)\left(\frac{1}{2}+\frac{1}{2 n_{2}}-\frac{1}{2 n_{1} n_{2}}\right)<\frac{1}{n_{1}}
$$

which is equivalent to

$$
n_{1}\left(1+\frac{1}{n_{2}}\right)-\frac{1}{n_{2}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

Therefore,

$$
4\left(1+\frac{1}{n_{2}}\right)-\frac{1}{n_{2}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

which is equivalent to

$$
4+\frac{3}{n_{2}}<\frac{2}{1-\frac{1}{n_{3}}}
$$

However,

$$
\frac{2}{1-\frac{1}{n_{3}}} \leq 3<4+\frac{3}{n_{3}}
$$

This leads to a contradiction. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.51 (Case (xiii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in one of the following forms:
(i) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Proof. Assume that there exists some D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$. Therefore, we have $\alpha_{3} \leq \alpha_{2}<\alpha_{1} \leq \alpha_{0}$.

By the weight relationship $3 \alpha_{3}<2 \alpha_{0}+\alpha_{3}=n_{3} \alpha_{3}$, we have $n_{3}>3$, which is equivalent to $n_{3} \geq 4$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\text { Hess }(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{3} & =w t(f) \\
n_{1} \alpha_{1}+\alpha_{2} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\left(\frac{1}{2}-\frac{1}{2 n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}}\left(1-\frac{1}{2 n_{2}}-\frac{1}{2 n_{2} n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}}\left(\frac{1}{2}+\frac{1}{2 n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array}\right.
$$

It is easy to verify that $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{2}^{k} \in\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}, z_{1}^{n_{1}-2} z_{2}\right)$. The only restriction of D we need to verify is that $D\left(z_{1}^{n_{1}-2} z_{2}\right)=$ $c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2}^{k+1} \in\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}\right)$. By our assumption that $c \neq 0$, we have $k+1 \geq n_{2}-1$, which is equivalent to $w t\left(z_{2}^{k}\right) \geq w t\left(z_{2}^{n_{2}-2}\right)$. Since D is negative weight, we have $w t\left(z_{2}^{k}\right)<\alpha_{1}$. Therefore, we have $w t\left(z_{2}^{n_{2}-2}\right)<\alpha_{1}$.

Substituting the weights of α_{1} and α_{2} for it, we get

$$
n_{1}<\frac{1}{1-\frac{2}{n_{2}}}\left(\frac{1}{\frac{1}{2}+\frac{1}{2 n_{3}}}-\frac{1}{n_{2}}\right)<\frac{2-\frac{1}{n_{2}}}{1-\frac{2}{n_{2}}}=2+\frac{3}{n_{2}-2}
$$

If $n_{1}=3$, we obtain $3<2+\frac{3}{n_{2}-2}$, which is equivalent to $n_{2}<5$. Note that $n_{2} \geq 3$, we get $n_{2}=3$ or $n_{2}=4$ when $n_{1}=3$.

If $n_{1}=4$, we obtain $4<2+\frac{3}{n_{2}-2}$, which is equivalent to $n_{2}<\frac{7}{2}$. Note that $n_{2} \geq 3$, we get $n_{2}=3$ when $n_{1}=4$.

If $n_{1} \geq 5$, we obtain $5<2+\frac{3}{n_{2}-2}$, which is equivalent to $n_{2}<3$. Note that $n_{2} \geq 3$, we get a contradiction when $n_{1} \geq 5$.

There are 3 cases left:
Case 1: $n_{1}=3, n_{2}=3$;
Case 2: $n_{1}=3, n_{2}=4$;
Case 3: $n_{1}=4, n_{2}=3$.
In Case 1, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{18}\left(5-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{6}\left(1+\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array}\right.
$$

By $\alpha_{0} \geq \alpha_{1}>\alpha_{2} \geq \alpha_{3}, w t\left(z_{2}^{n_{2}-2}\right)<\alpha_{1}$ and $n_{3} \geq 4$, we get $n_{3} \geq 5$. The restrictions of k are $k \geq n_{2}-2$ and $k \alpha_{2}<\alpha_{1}$. Therefore, $1 \leq k<\frac{5 n_{3}-1}{3\left(n_{3}+1\right)}<\frac{5}{3}$. Therefore, $k=1$. Since $\alpha_{1}>\alpha_{2}$ when $n_{3} \geq 5$, we know $k=1$ is valid when $n_{3} \geq 5$.

Therefore, in Case 1, there exists negative weight derivation D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in the form of $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+$ $z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. Accordingly, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

In Case 2, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{24}\left(7-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{8}\left(1+\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array} .\right.
$$

By $\alpha_{0} \geq \alpha_{1}>\alpha_{2} \geq \alpha_{3}, w t\left(z_{2}^{n_{2}-2}\right)<\alpha_{1}$ and $n_{3} \geq 4$, we get $n_{3}>7$, which is equivalent to $n_{3} \geq 8$. The restrictions of k are $k \geq n_{2}-2$ and $k \alpha_{2}<\alpha_{1}$. Therefore, $2 \leq k<\frac{7 n_{3}-1}{3\left(n_{3}+1\right)}<\frac{7}{3}$. Therefore, $k=2$. Since $w t\left(z_{2}^{2}\right)<\alpha_{1}$ when $n_{3} \geq 8$, we know $k=2$ is valid when $n_{3} \geq 8$.

Therefore, in Case 2, there exists negative weight derivation D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in the form of $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+$ $z_{2}^{4} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 8\right)$. Accordingly, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

In Case 3, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{1}=\frac{1}{24}\left(5-\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{6}\left(1+\frac{1}{n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}} w t(f)
\end{array}\right.
$$

By $\alpha_{0} \geq \alpha_{1}>\alpha_{2} \geq \alpha_{3}, w t\left(z_{2}^{n_{2}-2}\right)<\alpha_{1}$ and $n_{3} \geq 4$, we get $n_{3}>5$, which is equivalent to $n_{3} \geq 6$. The restrictions of k are $k \geq n_{2}-2$ and $k \alpha_{2}<\alpha_{1}$. Therefore, $1 \leq k<\frac{5 n_{3}-1}{4\left(n_{3}+1\right)}<\frac{5}{4}$. Therefore, $k=1$. Since $\alpha_{1}>\alpha_{2}$ when $n_{3} \geq 6$, we know $k=1$ is valid when $n_{3} \geq 6$.

Therefore, in Case 3, there exists negative weight derivation D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in the form of $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+$ $z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 6\right)$. Accordingly, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Therefore, we complete the proof.
Lemma 2.52 (Case (xiv) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{0}\left(n_{1} \geq 3, n_{3} \geq 3\right.$) of weight type ($\left.\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in one of the following forms:
(i) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{5}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$. From the weight relationship $3 \alpha_{2} \leq 2 \alpha_{0}+\alpha_{2}=n_{2} \alpha_{2}$, we have $n_{2} \geq 3$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & 0 & z_{0} & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{2} & =w t(f) \\
n_{1} \alpha_{1}+\alpha_{3} & =w t(f) \\
n_{2} \alpha_{2} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}}\left(1-\frac{1}{2 n_{3}}-\frac{1}{2 n_{2} n_{3}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}} w t(f) \\
\alpha_{3}=\frac{1}{n_{3}}\left(\frac{1}{2}+\frac{1}{2 n_{2}}\right) w t(f)
\end{array}\right.
$$

It is easy to verify that $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{3}^{k} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}\right)$. The only restriction of D we need to verify is that $D\left(z_{1}^{n_{1}-2} z_{3}\right)=$ $c\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3}^{k+1} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}\right)$. By our assumption that $c \neq 0$, we have
$k \geq n_{3}-2$, which is equivalent to $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-2}\right)$. Since D is negative weight, we have $w t\left(z_{3}^{k}\right)<\alpha_{1}$. Therefore, we have $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$.

Substituting the weights of α_{1} and α_{3} for it, we get

$$
n_{1}<\frac{1}{1-\frac{2}{n_{3}}}\left(\frac{1}{\frac{1}{2}+\frac{1}{2 n_{2}}}-\frac{1}{n_{3}}\right)<\frac{2-\frac{1}{n_{3}}}{1-\frac{2}{n_{3}}}=2+\frac{3}{n_{3}-2}
$$

If $n_{1}=3$, we obtain $3<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<5$. Note that $n_{3} \geq 3$, we get $n_{3}=3$ or $n_{3}=4$ when $n_{1}=3$.

If $n_{1}=4$, we obtain $4<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<\frac{7}{2}$. Note that $n_{3} \geq 3$, we get $n_{3}=3$ when $n_{1}=4$.

If $n_{1} \geq 5$, we obtain $5<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<3$. Note that $n_{3} \geq 3$, we get a contradiction when $n_{1} \geq 5$.

There are 3 cases left:
Case 1: $n_{1}=3, n_{3}=3$;
Case 2: $n_{1}=3, n_{3}=4$;
Case 3: $n_{1}=4, n_{3}=3$.
In Case 1, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{1}=\frac{1}{18}\left(5-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}} w t(f) \\
\alpha_{3}=\frac{1}{6}\left(1+\frac{1}{n_{2}}\right) w t(f)
\end{array}\right.
$$

By $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}, w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ and $n_{2} \geq 3$, we get $\frac{19}{5} \leq n_{2} \leq 5$. Therefore, we have $n_{2}=4$ or $n_{2}=5$. The restrictions of k are $k \geq n_{3}-2=1$ and $k \alpha_{3}<\alpha_{1}$. Therefore, $1 \leq k<\frac{5 n_{2}-1}{3\left(n_{2}+1\right)}<\frac{5}{3}$. Therefore, we have $k=1$. Since $\alpha_{1}>\alpha_{3}$ when $n_{2}=4$ or $n_{2}=5$, we know $k=1$ is valid when $n_{2}=4$ or $n_{2}=5$.

Therefore, in Case 1, there exists negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$ if and only if f is in one of the following forms:
(i) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{5}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

In Case 2, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{1}=\frac{1}{24}\left(7-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}} w t(f) \\
\alpha_{3}=\frac{1}{8}\left(1+\frac{1}{n_{2}}\right) w t(f)
\end{array}\right.
$$

There does not exist any n_{2} which can satisfy the restrictions $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ and $n_{2} \geq 3$ at the same time.

Therefore, in Case 2, there does not exist negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

In Case 3, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{1}=\frac{1}{24}\left(5-\frac{1}{n_{2}}\right) w t(f) \\
\alpha_{2}=\frac{1}{n_{2}} w t(f) \\
\alpha_{3}=\frac{1}{6}\left(1+\frac{1}{n_{2}}\right) w t(f)
\end{array}\right.
$$

There does not exist any n_{2} which can satisfy the restrictions $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ and $n_{2} \geq 3$ at the same time.

Therefore, in Case 3, there does not exist negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.53 (Case $(x v)$ of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}}\left(n_{1} \geq 3, n_{2} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq$ $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$. Therefore, $\alpha_{0} \geq \alpha_{1}>\alpha_{2} \geq \alpha_{3}$. From the weight relationship $n_{3} \alpha_{3}=n_{2} \alpha_{2}+\alpha_{1}>$ $\left(n_{2}+1\right) \alpha_{3}$, we have $n_{3}>n_{2}+1$. Since $n_{2} \geq 3$, we obtain $n_{3}>4$, which is equivalent to $n_{3} \geq 5$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0} \\
* & 0 & z_{2}^{n_{2}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & 0
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{2}^{k} \in\left(z_{3}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{2}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.54 (Case (xvi) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{2}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}}+z_{3}^{n_{3}} z_{1}\left(n_{1} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq$ $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$. From the weight relationship $n_{2} \alpha_{2}=2 \alpha_{0}+\alpha_{2} \geq 3 \alpha_{2}$, we have $n_{2} \geq 3$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & z_{1}^{n_{1}-1} & z_{0} & 0 \\
* & 0 & 0 & z_{3}^{n_{3}-1} \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

By $D\left(z_{1}^{n_{1}-1}\right)=c\left(n_{1}-1\right) z_{1}^{n_{1}-2} z_{3}^{k} \in\left(z_{2}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{1}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.55 (Case (xvii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}\left(n_{2} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$ if and only if f in the form of $f=z_{0}^{2} z_{1}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$. From the weight relationship $n_{1} \alpha_{1}=2 \alpha_{0}+\alpha_{1} \geq 3 \alpha_{1}$, we have $n_{1} \geq 3$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & 0 & z_{3}^{n_{3}-1} \\
* & 0 & 0 & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & 0
\end{array}\right]
$$

From the weight relaionship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{1} & =w t(f) \\
n_{1} \alpha_{1} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{3} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{n_{2}}\left(1-\frac{1}{2 n_{3}}-\frac{1}{2 n_{1} n_{3}}\right) w t(f) \\
\alpha_{3}=\frac{1}{n_{3}}\left(\frac{1}{2}+\frac{1}{2 n_{1}}\right) w t(f)
\end{array}\right.
$$

It is easy to verify that $D\left(z_{2}^{n_{2}-1}\right)=c\left(n_{2}-1\right) z_{2}^{n_{2}-2} z_{3}^{k} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}, z_{2}^{n_{2}-2} z_{3}\right)$. The only restriction of D we need to verify is that $D\left(z_{2}^{n_{2}-2} z_{3}\right)=$ $c\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3}^{k+1} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}\right)$. By our assumption that $c \neq 0$, we have $k \geq n_{3}-2$, which is equivalent to $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-2}\right)$. Since D is negatively weighted, we have $w t\left(z_{3}^{k}\right)<\alpha_{2}$. Therefore, we have $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{2}$.

Substituting the weights of α_{2} and α_{3} for it, we get

$$
n_{2}<\frac{1}{1-\frac{2}{n_{3}}}\left(\frac{1}{\frac{1}{2}+\frac{1}{2 n_{1}}}-\frac{1}{n_{3}}\right)<\frac{2-\frac{1}{n_{3}}}{1-\frac{2}{n_{3}}}=2+\frac{3}{n_{3}-2}
$$

If $n_{2}=3$, we obtain $3<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<5$. Note that $n_{3} \geq 3$, we get $n_{3}=3$ or $n_{3}=4$ when $n_{2}=3$.

If $n_{2}=4$, we obtain $4<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<\frac{7}{2}$. Note that $n_{3} \geq 3$, we get $n_{3}=3$ when $n_{2}=4$.

If $n_{2} \geq 5$, we obtain $5<2+\frac{3}{n_{3}-2}$, which is equivalent to $n_{3}<3$. Note that $n_{3} \geq 3$, we get a contradiction when $n_{2} \geq 5$.

There are 3 cases left:
Case 1: $n_{2}=3, n_{3}=3$;
Case 2: $n_{2}=3, n_{3}=4$;
Case 3: $n_{2}=4, n_{3}=3$.
In Case 1, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{18}\left(5-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{3}=\frac{1}{6}\left(1+\frac{1}{n_{1}}\right) w t(f)
\end{array}\right.
$$

By $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}, w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{2}$ and $n_{1} \geq 3$, we get $3 \leq n_{1} \leq \frac{19}{5}$. Therefore, we have $n_{1}=3$. The restrictions of k are $k \geq n_{3}-2=1$ and $k \alpha_{3}<\alpha_{2}$. Therefore, $1 \leq k<\frac{7}{6}$ and we have $k=1$.

Therefore, in Case 1, there exists negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$ if and only if f in the form of $f=z_{0}^{2} z_{1}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$.

In Case 2, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{24}\left(7-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{3}=\frac{1}{8}\left(1+\frac{1}{n_{1}}\right) w t(f)
\end{array}\right.
$$

There does not exist any n_{1} which can satisfy the restrictions $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{2}$ and $n_{1} \geq 3$ at the same time.

Therefore, in Case 2, there does not exist negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

In Case 3, the weights are

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{1}{2}\left(1-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{1}=\frac{1}{n_{1}} w t(f) \\
\alpha_{2}=\frac{1}{24}\left(5-\frac{1}{n_{1}}\right) w t(f) \\
\alpha_{3}=\frac{1}{6}\left(1+\frac{1}{n_{1}}\right) w t(f)
\end{array}\right.
$$

There does not exist any n_{1} which can satisfy the restrictions $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{2}$ and $n_{1} \geq 3$ at the same time.

Therefore, in Case 3, there does not exist negative weight derivation D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
Lemma 2.56 (Case (xviii) of Proposition 2.38). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{1}+$ $z_{1}^{n_{1}}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}\left(n_{2} \geq 3, n_{3} \geq 3\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq$
$\alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivation of $H_{1}(V)$ in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Proof. Assume that there exists some D in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$. From the weight relationship $n_{1} \alpha_{1}=2 \alpha_{0}+\alpha_{1} \geq 3 \alpha_{1}$, we have $n_{1} \geq 3$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & z_{2}^{n_{2}-1} & 0 \\
* & 0 & 0 & 0 \\
* & * & 0 & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

By $D\left(z_{2}^{n_{2}-1}\right)=c\left(n_{2}-1\right) z_{2}^{n_{2}-2} z_{3}^{k} \in\left(z_{1}, z_{0}\right)$, we obtain $c=0$. There does not exist any negative weight derivation in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}(k \geq 1, c \neq 0)$.

Therefore, we complete the proof.
2.3. Type (III). Next we will discuss the case

$$
f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}
$$

where $\operatorname{mult}(f) \geq 3$. The weight order of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} is not determined. All results of this subsection are summarized in Proposition 2.57.

Proposition 2.57 (Type (III) of Proposition 2.1). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. There exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$:
(i) $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 4\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(v) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 24\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.

Proof. After renumbering, the problem is divided into 6 cases, each of which satisfies $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$:
(i) $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$;
(ii) $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$;
(iii) $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$;
(iv) $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$;
(v) $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$;
(vi) $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$.

There are $4!=24$ cases of weight relations.
Case (i) contains the original weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}, \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3} \geq \alpha_{0}, \alpha_{2} \geq \alpha_{3} \geq \alpha_{0} \geq \alpha_{1}$ and $\alpha_{3} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{2}$.

Case (ii) contains the original weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{2}, \alpha_{1} \geq \alpha_{2} \geq$ $\alpha_{0} \geq \alpha_{3}, \alpha_{2} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{0}$ and $\alpha_{3} \geq \alpha_{0} \geq \alpha_{2} \geq \alpha_{1}$.

Case (iii) contains the original weight relationship $\alpha_{0} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{3}, \alpha_{1} \geq$ $\alpha_{3} \geq \alpha_{2} \geq \alpha_{0}, \alpha_{2} \geq \alpha_{0} \geq \alpha_{3} \geq \alpha_{1}$ and $\alpha_{3} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{2}$.

Case (iv) contains the original weight relationship $\alpha_{0} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{1}, \alpha_{1} \geq$ $\alpha_{3} \geq \alpha_{0} \geq \alpha_{2}, \alpha_{2} \geq \alpha_{0} \geq \alpha_{1} \geq \alpha_{3}$ and $\alpha_{3} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{0}$.

Case (v) contains the original weight relationship $\alpha_{0} \geq \alpha_{3} \geq \alpha_{1} \geq \alpha_{2}, \alpha_{1} \geq$ $\alpha_{0} \geq \alpha_{2} \geq \alpha_{3}, \alpha_{2} \geq \alpha_{1} \geq \alpha_{3} \geq \alpha_{0}$ and $\alpha_{3} \geq \alpha_{2} \geq \alpha_{0} \geq \alpha_{1}$.

Case (vi) contains the original weight relationship $\alpha_{0} \geq \alpha_{3} \geq \alpha_{2} \geq \alpha_{1}, \alpha_{1} \geq$ $\alpha_{0} \geq \alpha_{3} \geq \alpha_{2}, \alpha_{2} \geq \alpha_{1} \geq \alpha_{0} \geq \alpha_{3}$ and $\alpha_{3} \geq \alpha_{2} \geq \alpha_{1} \geq \alpha_{0}$.

The discussion about the 6 cases is rather trivial and occupies a certain space. One can check the following lemmas (from Lemma 2.58 to Lemma 2.63) for more details.

Lemma 2.58 (Case (i) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq$ $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, we obtain

$$
2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,2),(2,3)$ or $(3,0)$. Then $n_{1}>2, n_{2}>2$ and $n_{3}>2$. Thus $n_{1} \geq 3$, $n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we get

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{0}
\end{array}\right]
$$

From

$$
D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0
$$

we obtain

$$
p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0
$$

Therefore, $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$. So $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.
From

$$
D\left(z_{1}^{n_{1}-2} z_{2}\right)=c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}\right)
$$

we obtain

$$
c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{3}^{n_{3}-1}\right)
$$

If $c \neq 0$, it is clear that $w t\left(z_{3}^{k}\right) \geq w t\left(z_{3}^{n_{3}-1}\right)$. However, we can also see
$w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3} \geq n_{0} \alpha_{0}+\alpha_{1}-\alpha_{0}-\alpha_{0}=\left(n_{0}-2\right) \alpha_{0}+\alpha_{1} \geq \alpha_{0}+\alpha_{1}>\alpha_{0}$,
while $w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0}$. We obtain $w t\left(z_{3}^{n_{3}-1}\right)>w t\left(z_{3}^{k}\right)$. This leads to a contradiction. Thus $c=0$ and $D=0$. Therefore, for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$, when $n_{0} \geq 3$, there does not exist negative weight derivation of $H_{1}(V)$.

When $n_{0}=2$ holds, f is in the form of $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$. From

$$
\alpha_{i}+\alpha_{j} \leq 2 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,2),(2,3)$ or $(3,0)$, we get $n_{1}>1, n_{2}>1$ and $n_{3}>1$. Thus $n_{1} \geq 2$, $n_{2} \geq 2$ and $n_{3} \geq 2$. Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(\mathrm{f})$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & 0 & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\
* & * & * & 0
\end{array}\right]
$$

Since z_{1} and z_{0} is an element of $\operatorname{Hess}(f)$, there does not exist nonzero element in $H_{1}(V)$ which is divided by z_{1} or z_{0}. So D is in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

If $c \neq 0$,

$$
D\left(z_{1}^{n_{1}-2} z_{2}\right)=c z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}\right)
$$

is equivalent to

$$
z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{1}, z_{3}^{n_{3}-1}\right) .
$$

Since

$$
w t\left(z_{3}^{n_{3}-1}\right)=w t(f)-\alpha_{0}-\alpha_{3}=2 \alpha_{0}+\alpha_{1}-\alpha_{0}-\alpha_{3} \geq \alpha_{0}
$$

and

$$
w t\left(z_{3}^{k}\right)<\alpha_{2} \leq \alpha_{0},
$$

we obtain $w t\left(z_{3}^{n_{3}-1}\right)>w t\left(z_{3}^{k}\right)$ and $n_{3}-1>k$. We can see that z_{3}^{k} cannot be divided by $z_{3}^{n_{3}-1}$ so $z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{1}\right)$. Therefore, $D\left(z_{1}^{n_{1}-2} z_{2}\right) \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}\right)$ is equivalent to $z_{3}^{k} z_{1}^{n_{1}-2} \in\left(z_{1}\right)$, or $n_{1} \geq 3$.

Note that $D\left(z_{2}^{n_{2}-2} z_{3}\right)$ should satisfy

$$
D\left(z_{2}^{n_{2}-2} z_{3}\right)=c\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3}^{k+1} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{2}, z_{1}^{n_{1}-1}\right),
$$

which is equivalent to

$$
c\left(n_{2}-2\right) z_{2}^{n_{2}-3} z_{3}^{k+1} \in\left(z_{3}^{n_{3}-1}\right) .
$$

From $c \neq 0$, we have $k+1 \geq n_{3}-1$, from which we obtain $k \geq n_{3}-2$.
If $k \geq n_{3}-1$, we have $z_{3}^{k} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}\right)$. Thus $D=0$, which is equivalent to $c=0$. If D is negatively weighted, k has to be equal to $n_{3}-2$. If $\alpha_{0}=\alpha_{2}$, we have $n_{1}=2$, which contradicts to the conclusion that $n_{1} \geq 3$. So we get $\alpha_{0}>\alpha_{2} \geq \alpha_{3}$.

From

$$
n_{1} \alpha_{2}+\alpha_{3} \leq n_{1} \alpha_{1}+\alpha_{2}=n_{2} \alpha_{2}+\alpha_{3}
$$

we obtain $n_{2} \geq n_{1} \geq 3$. Since

$$
D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{2}, z_{1}^{n_{1}-1}, z_{2}^{n_{2}-2} z_{3}\right)
$$

the relation

$$
c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{3}^{n_{3}-1}, z_{2}^{n_{2}-2} z_{3}\right)
$$

is obtained.
From the weight relationship $\alpha_{0}+\alpha_{3}<2 \alpha_{0}<w t(f)=n_{3} \alpha_{3}+\alpha_{0}$, we obtain $n_{3}>1$. Thus $n_{3} \geq 2$ and $z_{3}^{n_{3}-1}$ is divided by z_{3}. Therefore, $c z_{3}^{k}$ is divided by z_{3}. From the assumption $c \neq 0$, we obtain $k=n_{3}-2 \geq 1$ and $n_{3} \geq 3$. If that is the case, we get $z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{2}^{n_{2}-2} z_{3}\right)$. Therefore the condition $D\left(z_{2}^{n_{2}-1}\right)=$ $c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{1}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{2}, z_{1}^{n_{1}-1}, z_{2}^{n_{2}-2} z_{3}\right)$ is satisfied.

The only thing we need to verify is $D=c z_{3}^{n_{3}-2} \frac{\partial}{\partial z_{2}}(c \neq 0)$ is negatively weighted. If it is negatively weighted, we obtain $\alpha_{0}>\alpha_{2}>\alpha_{3}$.

From $\alpha_{2}>w t\left(z_{3}^{n_{3}-2}\right)=\left(1-\frac{2}{n_{3}}\right) w t\left(z_{3}^{n_{3}}\right)=\left(1-\frac{2}{n_{3}}\right)\left(w t(f)-\alpha_{0}\right)=$ $\left(1-\frac{2}{n_{3}}\right)\left(\alpha_{1}+\alpha_{0}\right)>2\left(1-\frac{2}{n_{3}}\right) \alpha_{2}$, we obtain $n_{3}<4$. Thus $n_{3}=3$. From $w t(f)=2 \alpha_{0}+\alpha_{1}>2 \alpha_{0}$, we obtain $\alpha_{0}<\frac{1}{2} w t(f)$. From $w t(f)=2 \alpha_{0}+\alpha_{1} \leq 3 \alpha_{0}$, we obtain $\alpha_{0} \geq \frac{1}{3} w t(f)$. Thus $\alpha_{3}=\frac{1}{3}\left(w t(f)-\alpha_{0}\right) \in\left(\frac{1}{6} w t(f), \frac{2}{9} w t(f)\right]$. From $w t(f)=n_{2} \alpha_{2}+\alpha_{3}>\left(n_{2}+1\right) \alpha_{3}>\frac{n_{2}+1}{6} w t(f)$, we obtain $n_{2}<5$. Therefore, $n_{2} \leq 4$. From $n_{1} \alpha_{1}+\alpha_{2}=n_{2} \alpha_{2}+\alpha_{3}<n_{2} \alpha_{1}+\alpha_{2}$, we obtain $n_{1}<n_{2} \leq 4$. Therefore, $n_{1} \leq 3$. From $n_{1} \geq 3$, we obtain $n_{1}=3$. From $3=n_{1}<n_{2} \leq 4$, we obtain $n_{2}=4$. Thus f can only be in the form of $f=z_{0}^{2} z_{1}+z_{1}^{3} z_{2}+z_{2}^{4} z_{3}+z_{3}^{3} z_{0}$.

From the weight relationship

$$
\left\{\begin{array}{l}
2 \alpha_{0}+\alpha_{1}=w t(f) \\
3 \alpha_{1}+\alpha_{2}=w t(f) \\
4 \alpha_{2}+\alpha_{3}=w t(f) \\
3 \alpha_{3}+\alpha_{0}=w t(f)
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{26}{71} w t(f) \\
\alpha_{1}=\frac{19}{71} w t(f) \\
\alpha_{2}=\frac{14}{71} w t(f) \\
\alpha_{3}=\frac{15}{71} w t(f)
\end{array} .\right.
$$

We can see that $\alpha_{2}<\alpha_{3}$, which is in contradiction to $\alpha_{2}>\alpha_{3}$.
Therefore, there does not exist negative weight derivation of $H_{1}(V)$ when $n_{0}=2$ for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$.

Lemma 2.59 (Case (ii) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{1}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ;\right.$ d) where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$
α_{3}. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, from $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3),(2,0)$ or $(3,2)$. Then $n_{1}>2, n_{2}>2$ and $n_{3}>2$. Thus $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we obtain

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{1} & z_{0}^{n_{0}-1} & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right] .
$$

Since

$$
D\left(z_{0}^{n_{0}-2} z_{1}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}^{n_{0}-2}=0
$$

we obtain the equation

$$
p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{1}+p_{1}\left(z_{2}, z_{3}\right) z_{0}=0
$$

Thus $p_{1}\left(z_{2}, z_{3}\right)=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$. So $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.
From

$$
D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{3}\right)
$$

we obtain $c=0$. Thus $D=0$, which contradicts to the assumption that D is negatively weighted. Therefore, when $n_{0} \geq 3$, for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$, there does not exist any negative weight derivation of $H_{1}(V)$.

When $n_{0}=2$ holds, f is in the form of $f=z_{0}^{2} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$. From

$$
\alpha_{i}+\alpha_{j} \leq 2 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,3),(2,0)$ or $(3,2)$, we get $n_{1}>1, n_{2}>1$ and $n_{3}>1$. Thus $n_{1} \geq 2$, $n_{2} \geq 2$ and $n_{3} \geq 2$.

Regardless of difference of constants and monomials in the ideal generated by elements of $\operatorname{Hess}(f)$, we get the equations below.

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{1} & z_{0} & z_{2}^{n_{2}-1} & 0 \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & 0 \\
* & * & 0 & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

Since z_{0} and z_{1} are in the ideal generated by elements of $\operatorname{Hess}(f)$, the negative weight derivation is in the form of $D=c z_{3}^{k} \frac{\partial}{\partial z_{2}}$. If $\alpha_{0}=\alpha_{1}=\alpha_{2}$, we have $n_{2}=2$. Thus z_{2} is in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero monomial in $H_{1}(V)$ that is divided by z_{2}. Thus $D=0$.

Otherwise we obtain $\alpha_{0}>\alpha_{2} \geq \alpha_{3}$.
From

$$
n_{1} \alpha_{1}+\alpha_{3}=2 \alpha_{0}+\alpha_{1}>\alpha_{0}+\alpha_{1}+\alpha_{3} \geq 2 \alpha_{1}+\alpha_{3}
$$

we obtain $n_{1}>2$. Therefore, $n_{1} \geq 3$.
From

$$
D\left(z_{2}^{n_{2}-1}\right)=\left(n_{2}-1\right) c z_{3}^{k} z_{2}^{n_{2}-2} \in\left(z_{1}, z_{0}, z_{1}^{n_{1}-2} z_{3}\right)=\left(z_{1}, z_{0}\right)
$$

we obtain $c=0$. Thus $D=0$.
Therefore, when $n_{0}=2$, for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}$, there does not exist negative weight derivation of $H_{1}(V)$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{1}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$.

Lemma 2.60 (Case (iii) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{2}+$ $z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, from $2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}$, we get $n_{i}>2$ for $(i, j)=(1,3),(2,1)$ or $(3,0)$. Then $n_{1}>2, n_{2}>2$ and $n_{3}>2$, which is equivalent to $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we obtain

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{2} & 0 & z_{0}^{n_{0}-1} & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{3} & z_{2}^{n_{2}-1} & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{0}
\end{array}\right]
$$

From

$$
D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0
$$

we obtain

$$
p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0
$$

Therefore, $c=0, p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$ and $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$. From

$$
D\left(z_{1}^{n_{1}-2} z_{3}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{3} \in\left(z_{0}^{n_{0}-2} z_{2}, z_{0}^{n_{0}-1}, z_{3}^{n_{3}-1}\right)
$$

we obtain

$$
p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} \in\left(z_{3}^{n_{3}-2}\right)
$$

If $p_{1}\left(z_{2}, z_{3}\right) \neq 0$, we get $p_{1}\left(z_{2}, z_{3}\right)$ contains factor $z_{3}^{n_{3}-2}$. Then we obtain the equation $\alpha_{0} \geq \alpha_{1}>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right) \geq w t\left(z_{3}^{n_{3}-2}\right)=\frac{n_{3}-2}{n_{3}}\left(w t(f)-\alpha_{0}\right)=$ $\frac{n_{3}-2}{n_{3}}\left(n_{0} \alpha_{0}+\alpha_{2}-\alpha_{0}\right) \geq \frac{n_{3}-2}{n_{3}}\left(2 \alpha_{0}+\alpha_{2}\right)>\frac{n_{3}-2}{n_{3}} 2 \alpha_{0}$. Then $n_{3}<4$, therefore, $n_{3}=3$.

Since $p_{1}\left(z_{2}, z_{3}\right)$ contains factor $z_{3}^{n_{3}-2}=z_{3}$, we get $\alpha_{3} \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq$ α_{0}. From the relation $n_{0} \alpha_{0}+\alpha_{2}=3 \alpha_{3}+\alpha_{0}<3 \alpha_{0}+\alpha_{2}$, we get $n_{0}<3$, which is in contradiction to the assumption $n_{0} \geq 3$. Thus $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.

Therefore, when $n_{0} \geq 3$, for any $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$, there does not exist any negative weight derivation of $H_{1}(V)$.

When $n_{0}=2$ holds, we obtain

$$
f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}
$$

From the relation

$$
\alpha_{i}+\alpha_{j} \leq 2 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,3),(2,1)$ or $(3,0)$, we obtain $n_{1}>1, n_{2}>1$ and $n_{3}>1$. Therefore, $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$.

Thus

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & 0 & z_{0} & z_{3}^{n_{3}-1} \\
* & z_{1}^{n_{1}-2} z_{3} & 0 & z_{1}^{n_{1}-1} \\
* & * & z_{2}^{n_{2}-2} z_{1} & 0 \\
* & * & * & 0
\end{array}\right]
$$

regardless of difference of constants and useless monomials. It is clear that z_{0} and z_{2} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist nonzero element in $H_{1}(V)$ which is divided by z_{0} and z_{2}. Thus $D=c_{1} z_{3}^{k_{1}} \frac{\partial}{\partial z_{1}}$.

If $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$, we obtain $n_{1}=n_{2}=n_{3}=2 . f_{13}$ and f_{22} are in proportion to z_{1}. z_{1} is in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist nonzero element in $H_{1}(V)$ which can be divided by z_{1}. Thus $D=0$.

Otherwise we have $\alpha_{0}>\alpha_{3}$. In this case,

$$
\alpha_{0}+n_{3} \alpha_{3}=2 \alpha_{0}+\alpha_{2}>\alpha_{0}+\alpha_{2}+\alpha_{3} \geq \alpha_{0}+2 \alpha_{3}
$$

Thus $n_{3}>2$, which is equivalent to $n_{3} \geq 3$.
If $n_{1}=2, f_{13}$ is in proportion to z_{1}. In this case, z_{1} is in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by z_{1}. Thus $D=0$.

If $n_{1} \geq 3$, we obtain

$$
D\left(z_{1}^{n_{1}-2} z_{3}\right)=\left(n_{1}-2\right) c_{1} z_{3}^{k_{1}+1} z_{1}^{n_{1}-3} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}\right)
$$

which is equivalent to

$$
c_{1} z_{3}^{k_{1}+1} z_{1}^{n_{1}-3} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}\right)
$$

If $D \neq 0$, it is clear that $c_{1} \neq 0$. Therefore, we have $k_{1}+1 \geq n_{3}-1$. So $k_{1} \geq n_{3}-2$. If $k_{1} \geq n_{3}-1, z_{3}^{k_{1}}$ is in the ideal generated by elements of $\operatorname{Hess}(f)$ and $D=0$. This leads to a contradiction. Thus $k_{1}<n_{3}-1 \leq k_{1}+1$. Therefore, we get $n_{3}-1=k_{1}+1$ and $k_{1}=n_{3}-2$. D is in the form of $D=c_{1} z_{3}^{n_{3}-2} \frac{\partial}{\partial z_{1}}$.

In the following discussions, we assume $c_{1} \neq 0$.
Consider the restriction

$$
D\left(z_{1}^{n_{1}-1}\right)=\left(n_{1}-1\right) c z_{3}^{n_{3}-2} z_{1}^{n_{1}-2} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}, z_{2}^{n_{2}-2} z_{1}\right)
$$

Since $n_{3} \geq 3$, we obtain $z_{3}^{n_{3}-2} z_{1}^{n_{1}-2} \in\left(z_{1}^{n_{1}-2} z_{3}\right)$. The restriction is satisfied.
Consider the restriction

$$
D\left(z_{2}^{n_{2}-2} z_{1}\right)=c_{1} z_{3}^{n_{3}-2} z_{2}^{n_{2}-2} \in\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}, z_{1}^{n_{1}-1}\right)
$$

It is equivalent to

$$
z_{3}^{n_{3}-2} z_{2}^{n_{2}-2} \in\left(z_{2}, z_{1}^{n_{1}-2} z_{3}\right)
$$

If $n_{2}=2, f_{22}$ is in proportion to z_{1}. Therefore, z_{1} is in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist nonzero element in $H_{1}(V)$ which is divided by z_{1}.

If $n_{2} \geq 3$, we obtain $z_{3}^{n_{3}-2} z_{2}^{n_{2}-2} \in\left(z_{2}\right)$. The restriction is satisfied.
Therefore, the restriction $D\left(z_{2}^{n_{2}-2} z_{1}\right)=c_{1} z_{3}^{n_{3}-2} z_{2}^{n_{2}-2} \quad \in$ $\left(z_{2}, z_{0}, z_{3}^{n_{3}-1}, z_{1}^{n_{1}-2} z_{3}, z_{1}^{n_{1}-1}\right)$ is satisfied if and only if $n_{2} \geq 3$.
$D=c_{1} z_{3}^{n_{3}-2} \frac{\partial}{\partial z_{1}}$ is negative weight if and only if $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$.
If $\alpha_{0}=\alpha_{1}=\alpha_{2}$, we have $n_{2}=2$, which contradicts to the assumption $n_{2} \geq 3$. Thus we have $\alpha_{0}>\alpha_{2}$. Since $2 \alpha_{0}<2 \alpha_{0}+\alpha_{2}=w t(f)<3 \alpha_{0}$, we obtain $\alpha_{0} \in$ $\left(\frac{1}{3} w t(f), \frac{1}{2} w t(f)\right)$. Therefore we have $w t\left(z_{3}^{n_{3}}\right)=w t(f)-\alpha_{0} \in\left(\frac{1}{2} w t(f), \frac{2}{3} w t(f)\right)$, which is equivalent to $\alpha_{3} \in\left(\frac{1}{2 n_{3}} w t(f), \frac{2}{3 n_{3}} w t(f)\right)$.

Therefore,

$$
w t\left(z_{3}^{n_{3}-2}\right)=\frac{n_{3}-2}{n_{3}} w t\left(z_{3}^{n_{3}}\right)=\left(1-\frac{2}{n_{3}}\right) w t\left(z_{3}^{n_{3}}\right) \geq \frac{1}{3} w t\left(z_{3}^{n_{3}}\right)>\frac{1}{6} w t(f)
$$

The conclusion

$$
\alpha_{1}>w t\left(z_{3}^{n_{3}-2}\right)>\frac{1}{6} w t(f)
$$

and

$$
\frac{1}{n_{1}}\left(1-\frac{1}{2 n_{3}}\right) w t(f)>\frac{1}{n_{1}}\left(w t(f)-\alpha_{3}\right)=\alpha_{1}>w t\left(z_{3}^{n_{3}-2}\right)>\left(1-\frac{2}{n_{3}}\right) \frac{1}{2} w t(f)
$$

follows.
From $\frac{1}{n_{1}}\left(1-\frac{1}{2 n_{3}}\right) w t(f)>\left(1-\frac{2}{n_{3}}\right) \frac{1}{2} w t(f)$, we obtain an upper bound for n_{3} :

$$
n_{3}<2+\frac{3}{n_{1}-2}
$$

If $n_{1}=3$, we have $3 \leq n_{3}<5$. Thus $n_{3}=3$ or $n_{3}=4$.
If $n_{1}=4$, we have $3 \leq n_{3}<\frac{7}{2}$. Thus $n_{3}=3$.
If $n_{1} \geq 5$, we have $3 \leq n_{3}<2+\frac{3}{n_{1}-2} \leq 3$, which leads to a contradiction.
When $n_{1}=3$ and $n_{3}=3$, from the weight relationship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{2} & =w t(f) \\
3 \alpha_{1}+\alpha_{3} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{1} & =w t(f) \\
3 \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{aligned}
\alpha_{0} & =\frac{9 n_{2}-7}{18 n_{2}-1} w t(f) \\
\alpha_{1} & =\frac{5 n_{2}-1}{18 n_{2}-1} w t(f) \\
\alpha_{2} & =\frac{13}{18 n_{2}-1} w t(f) \\
\alpha_{3} & =\frac{3 n_{2}+2}{18 n_{2}-1} w t(f)
\end{aligned}\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain $9 n_{2}-7 \geq 5 n_{2}-1 \geq 13 \geq 3 n_{2}+2$. Thus $\frac{14}{5} \leq$ $n_{2} \leq \frac{11}{3}$. Note that $n_{2} \geq 3$, we get $3 \leq n_{2} \leq \frac{11}{3}$. Therefore $n_{2}=3$. wt $\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ is equivalent to $\frac{3 n_{2}+2}{18 n_{2}-1} w t(f)<\frac{5 n_{2}-1}{18 n_{2}-1} w t(f)$. The restriction is satisfied when $n_{2}=3$.

Thus when the conditions $n_{0}=2, n_{1}=3$ and $n_{3}=3$ in $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+$ $z_{3}^{n_{3}} z_{0}$ are satisfied at the same time, there exist a negative weight derivation for $H_{1}(V)$ if and only if $n_{2}=3$. In other words, f is in the form of $f=z_{0}^{2} z_{2}+z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

When $n_{1}=3$ and $n_{3}=4$, from the weight relationship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{2} & =w t(f) \\
3 \alpha_{1}+\alpha_{3} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{1} & =w t(f) \\
4 \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{aligned}
\alpha_{0} & =\frac{12 n_{2}-9}{24 n_{2}-1} w t(f) \\
\alpha_{1} & =\frac{7 n_{2}-1}{24 n_{2}-1} w t(f) \\
\alpha_{2} & =\frac{17}{24 n_{2}-1} w t(f) \\
\alpha_{3} & =\frac{3 n_{2}+2}{24 n_{2}-1} w t(f)
\end{aligned}\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain the restriction $12 n_{2}-9 \geq 7 n_{2}-1 \geq$ $17 \geq 3 n_{2}+2$. Thus $\frac{18}{7} \leq n_{2} \leq 5$. Note that $n_{2} \geq 3$, we get $3 \leq n_{2} \leq 5$. Then $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ is equivalent to $\frac{2\left(3 n_{2}+2\right)}{24 n_{2}-1} w t(f)<\frac{7 n_{2}-1}{24 n_{2}-1} w t(f)$. Thus we have $n_{2}>5$, which contradicts to $n_{2} \leq 5$.

Thus when $n_{0}=2, n_{1}=3$ and $n_{3}=4$ in $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$ hold at the same time, for any $n_{2} \geq 3$, there does not exist negative weight derivation for $H_{1}(V)$.

When $n_{1}=4$ and $n_{3}=3$, from the weight relationship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{2} & =w t(f) \\
4 \alpha_{1}+\alpha_{3} & =w t(f) \\
n_{2} \alpha_{2}+\alpha_{1} & =w t(f) \\
3 \alpha_{3}+\alpha_{0} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{aligned}
\alpha_{0} & =\frac{12 n_{2}-10}{24 n_{2}-1} w t(f) \\
\alpha_{1} & =\frac{5 n_{2}-1}{24 n_{2}-1} w t(f) \\
\alpha_{2} & =\frac{19}{24 n_{2}-1} w t(f) \\
\alpha_{3} & =\frac{4 n_{2}+3}{24 n_{2}-1} w t(f)
\end{aligned}\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain the restriction $12 n_{2}-10 \geq 5 n_{2}-1 \geq 19 \geq$ $4 n_{2}+3$. Thus $4 \leq n_{2} \leq 4$. Therefore, $n_{2}=4$. Then $w t\left(z_{3}^{n_{3}-2}\right)<\alpha_{1}$ is equivalent to $\frac{4 n_{2}+3}{24 n_{2}-1} w t(f)<\frac{5 n_{2}-1}{24 n_{2}-1} w t(f)$. When $n_{2}=4$, the inequation is false.

Thus when $n_{0}=2, n_{1}=4$ and $n_{3}=3$ in $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}$ hold at the same time, for any $n_{2} \geq 3$, there does not exist negative weight derivation of $H_{1}(V)$.

Therefore, for any $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{3}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{0}\left(n_{0} \geq 2\right)$, there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{2} z_{2}+$ $z_{1}^{3} z_{3}+z_{2}^{3} z_{1}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Lemma 2.61 (Case (iv) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{3}+$ $z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq$ $\alpha_{2} \geq \alpha_{3}$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms:
(i) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 4\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iv) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 24\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, we obtain

$$
2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,2),(2,0)$ or $(3,1)$. Thus we obtain $n_{1}>2, n_{2}>2$ and $n_{3}>2$, which is equivalent to $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we obtain

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0}^{n_{0}-1} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & z_{3}^{n_{3}-1} \\
* & * & z_{2}^{n_{2}-2} z_{0} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right] .
$$

From

$$
D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0
$$

we obtain

$$
p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0
$$

From

$$
D\left(z_{2}^{n_{2}-1}\right)=c z_{3}^{k}\left(n_{2}-1\right) z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-2} z_{2}\right),
$$

we obtain $c=0$. Thus $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$.

From

$$
D\left(z_{1}^{n_{1}-2} z_{2}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-2\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{2}^{n_{2}-1}, z_{0}^{n_{0}-1}\right)
$$

we obtain

$$
p_{1}\left(z_{2}, z_{3}\right) z_{1}^{n_{1}-3} z_{2} \in\left(z_{2}^{n_{2}-1}\right)
$$

If $p_{1}\left(z_{2}, z_{3}\right) \neq 0, p_{1}\left(z_{2}, z_{3}\right)$ contains factor $z_{2}^{n_{2}-2}$.
From

$$
D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{2}^{n_{2}-1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{2}\right)
$$

we obtain

$$
p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{2}^{n_{2}-1}, z_{1}^{n_{1}-2} z_{2}\right)
$$

Since $p_{1}\left(z_{2}, z_{3}\right)$ contains factor $z_{2}^{n_{2}-2}, p_{1}\left(z_{2}, z_{3}\right)$ contains factor z_{2}. In the way $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{1}^{n_{1}-2} z_{2}\right)$, the condition $p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in$ $\left(z_{2}^{n_{2}-1}, z_{1}^{n_{1}-2} z_{2}\right)$ is satisfied.

From

$$
D\left(z_{3}^{n_{3}-2} z_{1}\right)=p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{2}^{n_{2}-1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{2}, z_{1}^{n_{1}-1}, z_{3}^{n_{3}-1}, z_{2}^{n_{2}-2} z_{0}\right)
$$

we obtain

$$
p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in\left(z_{2}^{n_{2}-1}, z_{3}^{n_{3}-1}\right)
$$

Note $w t\left(z_{2}^{n_{2}-1}\right)=w t(f)-\alpha_{0}-\alpha_{2}=n_{0} \alpha_{0}+\alpha_{3}-\alpha_{0}-\alpha_{2}>2 \alpha_{0}-\alpha_{0}=\alpha_{0} \geq$ $\alpha_{1}>w t\left(p_{1}\left(z_{2}, z_{3}\right)\right), p_{1}\left(z_{2}, z_{3}\right)$ do not contain factor $z_{2}^{n_{2}-1}$. Thus $p_{1}\left(z_{2}, z_{3}\right) z_{3}^{n_{3}-2} \in$ $\left(z_{3}^{n_{3}-1}\right)$. Then $p_{1}\left(z_{2}, z_{3}\right)$ contains the factor z_{3}. Thus $p_{1}\left(z_{2}, z_{3}\right)$ contains the factor $z_{2}^{n_{2}-2} z_{3}$. Then we obtain $\left(n_{2}-2\right) \alpha_{2}+\alpha_{3} \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}$. However, we also notice that $\left(n_{2}-2\right) \alpha_{2}+\alpha_{3}=\left(n_{2}-2\right) \frac{n_{0} \alpha_{0}+\alpha_{3}-\alpha_{0}}{n_{2}}+\alpha_{3}=\left(n_{2}-2\right) \frac{\left(n_{0}-1\right) \alpha_{0}+\alpha_{3}}{n_{2}}+$ $\alpha_{3}>\left(n_{0}-1\right) \frac{\left(n_{2}-2\right) \alpha_{0}}{n_{2}} \geq 2 \frac{\left(n_{2}-2\right) \alpha_{0}}{n_{2}}$. From the two inequations above, we obtain $2 \frac{\left(n_{2}-2\right) \alpha_{0}}{n_{2}}<\alpha_{0}$. Therefore, $n_{2}<4$.

Note that $n_{2} \geq 3$, we obtain $n_{2}=3$. From $\left(n_{2}-2\right) \alpha_{2}+\alpha_{3}=$ $\left(n_{2}-2\right) \frac{n_{0} \alpha_{0}+\alpha_{3}-\alpha_{0}}{n_{2}}+\alpha_{3}=\left(n_{2}-2\right) \frac{\left(n_{0}-1\right) \alpha_{0}+\alpha_{3}}{n_{2}}+\alpha_{3}>\left(n_{0}-1\right) \frac{\left(n_{2}-2\right) \alpha_{0}}{n_{2}}$, we obtain

$$
\alpha_{2}+\alpha_{3}>\left(n_{0}-1\right) \frac{\alpha_{0}}{3}
$$

From

$$
\left(n_{2}-2\right) \alpha_{2}+\alpha_{3} \leq w t\left(p_{1}\left(z_{2}, z_{3}\right)\right)<\alpha_{1} \leq \alpha_{0}
$$

we get

$$
\alpha_{2}+\alpha_{3}<\alpha_{0}
$$

From the inequation $\left(n_{0}-1\right) \frac{\alpha_{0}}{3}<\alpha_{0}$, we obtain $n_{0}<4$. Considering the assumption $n_{0} \geq 3$, we obtain $n_{0}=3$. From another fact that

$$
n_{1} \alpha_{1}+\alpha_{2}=3 \alpha_{2}+\alpha_{0}=3 \alpha_{2}+\frac{n_{1} \alpha_{1}+\alpha_{2}-\alpha_{3}}{3}
$$

we obtain

$$
2 n_{1} \alpha_{1}=7 \alpha_{2}-\alpha_{3}<7 \alpha_{1}
$$

Therefore, $n_{1}<\frac{7}{2}$.
Since $n_{1} \geq 3$, we deduce $n_{1}=3$ and f is of the form $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}$. From the weight relationship

$$
\left\{\begin{array}{l}
3 \alpha_{0}+\alpha_{3}=3 \alpha_{1}+\alpha_{2} \\
3 \alpha_{0}+\alpha_{3}=3 \alpha_{2}+\alpha_{0} \\
3 \alpha_{0}+\alpha_{3}=n_{3} \alpha_{3}+\alpha_{1}
\end{array}\right.
$$

we obtain

$$
\left\{\begin{aligned}
\alpha_{1} & =\frac{7 \alpha_{0}+2 \alpha_{3}}{9} \\
\alpha_{2} & =\frac{2 \alpha_{0}+\alpha_{3}}{3} \\
\alpha_{3} & =\frac{20}{9 n_{3}-7} \alpha_{0}
\end{aligned}\right.
$$

Substituting the first two equations into $\left(n_{2}-2\right) \alpha_{2}+\alpha_{3}<\alpha_{1}$, we obtain $\alpha_{0}>$ $10 \alpha_{3}$. Substituting the last solution, we obtain $n_{3}>23$, which is equivalent to $n_{3} \geq 24$.

When $n_{3}>23$, we obtain $\alpha_{3}=\frac{20}{9 n_{3}-7} \alpha_{0}<\frac{1}{10} \alpha_{0}<\alpha_{0}$. From the three equations that $\alpha_{0}-\alpha_{1}=\frac{2 \alpha_{0}-2 \alpha_{3}}{9}>0, \alpha_{1}-\alpha_{2}=\frac{\alpha_{0}-\alpha_{3}}{9}>0$ and $\alpha_{2}-\alpha_{3}=\frac{2 \alpha_{0}-2 \alpha_{3}}{3}>0$, we obtain $\alpha_{0}>\alpha_{1}>\alpha_{2}>\alpha_{3}$. Thus $p_{1}\left(z_{2}, z_{3}\right)=c_{1} z_{2} z_{3}\left(c_{1} \neq 0\right)$ is qualified if and only if $n_{3} \geq 24$.

So when $n_{0} \geq 3$, there exists negative weight derivation if and only if f is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}$ and $n_{3} \geq 24$. If $n_{3} \geq 24, D=c_{1} z_{2} z_{3} \frac{\partial}{\partial z_{1}}\left(c_{1} \neq 0\right)$ satisfies the restriction. Regardless of difference of constants, $\operatorname{Hess}(f)$ is in the form of

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0} z_{3} & 0 & z_{2}^{2} & z_{0}^{2} \\
* & z_{1} z_{2} & z_{1}^{2} & z_{3}^{n_{3}-1} \\
* & * & z_{2} z_{0} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

Considering $p_{1}\left(z_{2}, z_{3}\right)$ which is divided by $z_{2} z_{3}$ and the elements of $\operatorname{Hess}(f)$, all the possible forms of $p_{1}\left(z_{2}, z_{3}\right)$ are $p_{1}\left(z_{2}, z_{3}\right)=c_{1} z_{2} z_{3}^{k_{1}}\left(k_{1} \leq n_{3}-2, c_{1} \neq 0\right)$ which satisfies the "negatively weighted" restriction $\alpha_{2}+k_{1} \alpha_{3}<\alpha_{1}$. From $\alpha_{1}=\frac{7 \alpha_{0}+2 \alpha_{3}}{9}$ and $\alpha_{2}=\frac{2 \alpha_{0}+\alpha_{3}}{3}$, we obtain $\left(9 k_{1}+1\right) \alpha_{3}<\alpha_{0}$. Substituting $\alpha_{3}=\frac{20}{9 n_{3}-7} \alpha_{0}$, we obtain $1 \leq k_{1}<\frac{n_{3}-3}{20}<n_{3}-2$.

In conclusion, when $n_{0}=3$, there exists negative weight derivation of $H_{1}(V)$ if and only if f is in the form of $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}$ and $n_{3} \geq 24$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.

When $n_{0}=2$ holds, we obtain

$$
f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1} .
$$

From

$$
\alpha_{2}+n_{1} \alpha_{1}=2 \alpha_{0}+\alpha_{3}>2 \alpha_{0} \geq \alpha_{1}+\alpha_{2}
$$

we obtain $n_{1}>1$, which is equivalent to $n_{1} \geq 2$.
From

$$
\alpha_{0}+n_{2} \alpha_{2}=2 \alpha_{0}+\alpha_{3}>2 \alpha_{0} \geq \alpha_{0}+\alpha_{2}
$$

we obtain $n_{2}>1$, which is equivalent to $n_{2} \geq 2$.
From

$$
\alpha_{1}+n_{3} \alpha_{3}=2 \alpha_{0}+\alpha_{3}>2 \alpha_{0} \geq \alpha_{0}+\alpha_{3}
$$

we obtain $n_{3}>1$, which is equivalent to $n_{3} \geq 2$.
Regardless of difference of constants and useless monomials, we have

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & 0 & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

If $\alpha_{0}=\alpha_{1}=\alpha_{2}=\alpha_{3}$, we obtain $n_{1}=n_{2}=n_{3}=2$ and $f=z_{0}^{2} z_{3}+z_{1}^{2} z_{2}+z_{2}^{2} z_{0}+$ $z_{3}^{2} z_{1}$. Thus z_{0}, z_{1} and z_{2} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by z_{0}, z_{1} or z_{2}. Thus $D=0$.

If $\alpha_{0}>\alpha_{3}$, from $\alpha_{1}+n_{3} \alpha_{3}=2 \alpha_{0}+\alpha_{3}>\alpha_{0}+2 \alpha_{3} \geq \alpha_{1}+2 \alpha_{3}$, we get $n_{3}>2$, which is equivalent to $n_{3} \geq 3$. Regardless of difference of constants and useless monomials, we have

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & 0 & z_{2}^{n_{2}-1} & z_{0} \\
* & z_{1}^{n_{1}-2} z_{2} & z_{1}^{n_{1}-1} & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right]
$$

Thus z_{0} and z_{3} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by z_{0} or z_{3}. If there exists negative weight derivation D, D must be in the form of $D=c_{1} z_{2}^{k_{1}} \frac{\partial}{\partial z_{1}}+c_{2} \frac{\partial}{\partial z_{2}}$. From

$$
D\left(z_{2}^{n_{2}-1}\right)=\left(n_{2}-1\right) c_{2} z_{2}^{n_{2}-2} \in\left(z_{3}, z_{1}^{n_{1}-2} z_{2}\right)
$$

we obtain $c_{2} z_{2}^{n_{2}-2} \in\left(z_{1}^{n_{1}-2} z_{2}\right)$.
If $n_{1}=2$, it is clear that z_{1} and z_{2} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero element which is divided by z_{1} or z_{2}. Thus $D=0$.

If $n_{1} \geq 3$, we have $c_{2}=0$ and $D=c_{1} z_{2}^{k_{1}} \frac{\partial}{\partial z_{1}}$. If $c_{1} \neq 0$, from

$$
D\left(z_{1}^{n_{1}-2} z_{2}\right)=\left(n_{1}-2\right) c_{1} z_{2}^{k_{1}+1} z_{1}^{n_{1}-3} \in\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}\right)
$$

we can get $z_{2}^{k_{1}+1} \in\left(z_{2}^{n_{2}-1}\right)$, which is equivalent to $k_{1}+1 \geq n_{2}-1$. However, $z_{2}^{k_{1}}$ is not in the ideal $\left(z_{2}^{n_{2}-1}\right)$. Otherwise $D=0$, which is equivalent to $c_{1}=0$. Thus $k_{1}<n_{2}-1 \leq k_{1}+1$, from which we get $k_{1}=n_{2}-2$. Therefore, $D\left(z_{1}^{n_{1}-2} z_{2}\right) \in$ $\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}\right)$ if and only if D is in the form of $D=c_{1} z_{2}^{n_{2}-2} \frac{\partial}{\partial z_{1}}$.

When $D=c_{1} z_{2}^{n_{2}-2} \frac{\partial}{\partial z_{1}}$ and $c_{1} \neq 0$, we obtain

$$
D\left(z_{1}^{n_{1}-1}\right)=\left(n_{1}-1\right) c_{1} z_{2}^{n_{2}-2} z_{1}^{n_{1}-2} \in\left(z_{3}, z_{2}^{n_{2}-1}, z_{0}, z_{1}^{n_{1}-2} z_{2}\right)
$$

which is equivalent to

$$
z_{2}^{n_{2}-2} z_{1}^{n_{1}-2} \in\left(z_{1}^{n_{1}-2} z_{2}\right)
$$

Thus $n_{2}-2 \geq 1$ and $n_{2} \geq 3$.
From the relation

$$
w t(f)=2 \alpha_{0}+\alpha_{3}>2 \alpha_{0}
$$

we obtain

$$
\alpha_{0}<\frac{1}{2} w t(f)
$$

From the relation

$$
w t(f)=2 \alpha_{0}+\alpha_{3}<3 \alpha_{0}
$$

we obtain

$$
\alpha_{0}>\frac{1}{3} w t(f) .
$$

Therefore, we have

$$
w t\left(z_{2}^{n_{2}}\right)=w t(f)-\alpha_{0} \in\left(\frac{1}{2} w t(f), \frac{2}{3} w t(f)\right)
$$

which is equivalent to

$$
\alpha_{2} \in\left(\frac{1}{2 n_{2}} w t(f), \frac{2}{3 n_{2}} w t(f)\right) .
$$

So we get

$$
w t\left(z_{2}^{n_{2}-2}\right) \in\left(\frac{n_{2}-2}{2 n_{2}} w t(f), \frac{2\left(n_{2}-2\right)}{3 n_{2}} w t(f)\right)
$$

We obtain a lower bound of α_{1} from

$$
\alpha_{1}>w t\left(z_{2}^{n_{2}-2}\right)>\frac{1-\frac{2}{n_{2}}}{2} w t(f)
$$

If $n_{2}=3$, we have $\alpha_{1}>\frac{1}{6} w t(f)$ and $\alpha_{2}>\frac{1}{6} w t(f)$. Thus $w t(f)=n_{1} \alpha_{1}+\alpha_{2}>$ $\frac{n_{1}+1}{6} w t(f)$. Thus $n_{1}<5$. Note that $n_{1} \geq 3$, we have $n_{1}=3$ or $n_{1}=4$.

If $n_{2}=4$, we have $\alpha_{1}>\frac{1}{4} w t(f)$. Thus $w t(f)=n_{1} \alpha_{1}+\alpha_{2}>n_{1} \alpha_{1}>\frac{n_{1}}{4} w t(f)$ and $n_{1}<4$. Note that $n_{1} \geq 3$, we have $n_{1}=3$.

If $n_{2}=5$, we have $\alpha_{1}>\frac{3}{10} w t(f)$ and $\alpha_{2}>\frac{1}{10} w t(f)$. However, we also notice that $w t(f)=n_{1} \alpha_{1}+\alpha_{2} \geq 3 \alpha_{1}+\alpha_{2}>w t(f)$. This leads to a contradiction.

If $n_{2} \geq 6$, we have $\alpha_{1}>\frac{1-\frac{2}{n_{2}}}{2} w t(f) \geq \frac{1}{3} w t(f)$. However, we also notice that $w t(f)=n_{1} \alpha_{1}+\alpha_{2}>3 \alpha_{1}>w t(f)$. This leads to a contradiction.

In conclusion, there are 3 possibilities: $\left(n_{1}, n_{2}\right)=(3,3),(4,3)$ or $(3,4)$.
When $\left(n_{1}, n_{2}\right)=(3,3)$, from the weight relationship

$$
\left\{\begin{aligned}
2 \alpha_{0}+\alpha_{3} & =w t(f) \\
3 \alpha_{1}+\alpha_{2} & =w t(f) \\
3 \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{1} & =w t(f)
\end{aligned}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{9 n_{3}-7}{1 n_{3}-1} w t(f) \\
\alpha_{1}=\frac{5 n_{3}-1}{1 n_{3}+1} w t(f) \\
\alpha_{2}=\frac{3 n_{3}+2}{18 n_{2}-1} w t(f) \\
\alpha_{3}=\frac{n_{3}}{18 n_{3}-1} w t(f)
\end{array} .\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain

$$
\frac{9 n_{3}-7}{18 n_{3}-1} w t(f) \geq \frac{5 n_{3}-1}{18 n_{3}-1} w t(f) \geq \frac{3 n_{3}+2}{18 n_{3}-1} w t(f) \geq \frac{13}{18 n_{3}-1} w t(f) .
$$

Thus $n_{3} \geq \frac{11}{3}$, which is equivalent to $n_{3} \geq 4$. From the negative weight restriction, we obtain $\left(n_{2}-2\right) \alpha_{2}<\alpha_{1}$, in other words, $\alpha_{2}<\alpha_{1}$. When $n_{3} \geq 4$, the restriction holds. Thus when $\left(n_{1}, n_{2}\right)=(3,3)$ in $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$, there exist negative weight derivations if and only if $n_{3} \geq 4$ and all the negative weight derivations are in the form of $D=c_{1} z_{2} \frac{\partial}{\partial z_{1}}\left(c_{1} \neq 0\right)$.

When $\left(n_{1}, n_{2}\right)=(4,3)$, from the relations

$$
\left\{\begin{array}{rl}
2 \alpha_{0}+\alpha_{3} & =w t(f) \\
4 \alpha_{1}+\alpha_{2} & =w t(f) \\
3 \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{1} & =w t(f)
\end{array},\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{12 n_{3}-10}{24 n_{3}-1} w t(f) \\
\alpha_{1}=\frac{5 n_{3}-1}{24 n_{3}-1} w t(f) \\
\alpha_{2}=\frac{4 n_{3}+3}{24 n_{3}-1} w t(f) \\
\alpha_{3}=\frac{19}{24 n_{3}-1} w t(f)
\end{array} .\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain

$$
\frac{12 n_{3}-10}{24 n_{3}-1} w t(f) \geq \frac{5 n_{3}-1}{24 n_{3}-1} w t(f) \geq \frac{4 n_{3}+3}{24 n_{3}-1} w t(f) \geq \frac{19}{24 n_{3}-1} w t(f)
$$

When $n_{3} \geq 3$, we get $n_{3} \geq 4$. From the negative weight restriction, we have $\left(n_{2}-2\right) \alpha_{2}<\alpha_{1}$, in other words, $\alpha_{2}<\alpha_{1}$. When $n_{3} \geq 4$, we get $n_{3}>4$, in other words, $n_{3} \geq 5$. Thus when $\left(n_{1}, n_{2}\right)=(4,3)$ in $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$, there exist negative weight derivations if and only if $n_{3} \geq 5$. In fact, all the negative weight derivations are in the form of $D=c_{1} z_{2} \frac{\partial}{\partial z_{1}}\left(c_{1} \neq 0\right)$.

When $\left(n_{1}, n_{2}\right)=(3,4)$, from the relations

$$
\left\{\begin{array}{rl}
2 \alpha_{0}+\alpha_{3} & =w t(f) \\
3 \alpha_{1}+\alpha_{2} & =w t(f) \\
4 \alpha_{2}+\alpha_{0} & =w t(f) \\
n_{3} \alpha_{3}+\alpha_{1} & =w t(f)
\end{array},\right.
$$

we obtain

$$
\left\{\begin{array}{l}
\alpha_{0}=\frac{12 n_{3}-9}{24 n_{3}-1} w t(f) \\
\alpha_{1}=\frac{7 n_{3}-1}{24 n_{3}-1} w t(f) \\
\alpha_{2}=\frac{3 n_{3}+2}{24 n_{3}-1} w t(f) \\
\alpha_{3}=\frac{17}{24 n_{3}-1} w t(f)
\end{array} .\right.
$$

From $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, we obtain

$$
\frac{12 n_{3}-9}{24 n_{3}-1} w t(f) \geq \frac{7 n_{3}-1}{24 n_{3}-1} w t(f) \geq \frac{3 n_{3}+2}{24 n_{3}-1} w t(f) \geq \frac{17}{24 n_{3}-1} w t(f)
$$

When $n_{3} \geq 3$, we get $n_{3} \geq 5$. From the negative weight restriction, we have $\left(n_{2}-2\right) \alpha_{2}<\alpha_{1}$, in other words, $2 \alpha_{2}<\alpha_{1}$. When $n_{3} \geq 5$, we get $n_{3}>5$, in other words, $n_{3} \geq 6$. Thus when $\left(n_{1}, n_{2}\right)=(4,3)$ in $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}$, there exist negative weight derivations of $H_{1}(V)$ if and only if $n_{3} \geq 6$. In fact, all the negative weight derivations of $H_{1}(V)$ are in the form of $D=c_{1} z_{2}^{2} \frac{\partial}{\partial z_{1}}\left(c_{1} \neq 0\right)$.

Therefore, for any $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{2}+z_{2}^{n_{2}} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$, there exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms:
(1) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 4\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(2) $f=z_{0}^{2} z_{3}+z_{1}^{4} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(3) $f=z_{0}^{2} z_{3}+z_{1}^{3} z_{2}+z_{2}^{4} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 6\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2}^{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(4) $f=z_{0}^{3} z_{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}} z_{1}\left(n_{3} \geq 24\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} z_{3}^{k} \frac{\partial}{\partial z_{1}}\right., c \neq 0,1 \leq k<\frac{n_{3}-3}{20}, k \in \mathbb{Z}\right\}$.

Lemma 2.62 (Case (v) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{2}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$ α_{3}. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist any negative weight derivations of $H_{1}(V)$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, we obtain

$$
2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,0),(2,3)$ or $(3,1)$. Therefore, $n_{1}>2, n_{2}>2$ and $n_{3}>2$. Therefore, we have $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we obtain
$\operatorname{Hess}(f)=\left[\begin{array}{cccc}f_{00} & f_{01} & f_{02} & f_{03} \\ f_{10} & f_{11} & f_{12} & f_{13} \\ f_{20} & f_{21} & f_{22} & f_{23} \\ f_{30} & f_{31} & f_{32} & f_{33}\end{array}\right]=\left[\begin{array}{cccc}z_{0}^{n_{0}-2} z_{2} & z_{1}^{n_{1}-1} & z_{0}^{n_{0}-1} & 0 \\ * & z_{1}^{n_{1}-2} z_{0} & 0 & z_{3}^{n_{3}-1} \\ * & * & z_{2}^{n_{2}-2} z_{3} & z_{2}^{n_{2}-1} \\ * & * & * & z_{3}^{n_{3}-2} z_{1}\end{array}\right]$.
From the equation

$$
D\left(z_{0}^{n_{0}-2} z_{2}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{2}+c z_{3}^{k} z_{0}^{n_{0}-2}=0
$$

we obtain

$$
p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{2}+c z_{3}^{k} z_{0}=0
$$

Therefore, we have $c=0$ and $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
So $D=p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}$. From

$$
D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{2}\right)
$$

we obtain $p_{1}\left(z_{2}, z_{3}\right)=0$ and $D=0$.
When $n_{0} \geq 3$, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{2}+z_{1}^{\overline{n_{1}}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$.

When $n_{0}=2$ holds, we obtain

$$
f=z_{0}^{2} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}
$$

From

$$
n_{1} \alpha_{1}+\alpha_{0}=2 \alpha_{0}+\alpha_{2}>2 \alpha_{0} \geq \alpha_{1}+\alpha_{0}
$$

we obtain $n_{1}>1$, which is equivalent to $n_{1} \geq 2$.
From

$$
n_{2} \alpha_{2}+\alpha_{3}=2 \alpha_{0}+\alpha_{2}>2 \alpha_{0} \geq \alpha_{2}+\alpha_{3}
$$

we obtain $n_{2}>1$, which is equivalent to $n_{2} \geq 2$.
From

$$
n_{3} \alpha_{3}+\alpha_{1}=2 \alpha_{0}+\alpha_{2}>2 \alpha_{0} \geq \alpha_{3}+\alpha_{1}
$$

we obtain $n_{3}>1$, which is equivalent to $n_{3} \geq 2$.
Regardless of difference of constants and useless monomials, we have

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{2} & z_{1}^{n_{1}-1} & z_{0} & 0 \\
* & 0 & 0 & z_{3}^{n_{3}-1} \\
* & * & z_{2}^{n_{2}-2} z_{3} & 0 \\
* & * & * & z_{3}^{n_{3}-2} z_{1}
\end{array}\right]
$$

If such negative weight derivation D exists, we have $D=c_{1} z_{3}^{k_{1}} \frac{\partial}{\partial z_{1}}$. If $\alpha_{0}=\alpha_{1}=$ α_{2}, we obtain $n_{1}=2$ and $f=z_{0}^{2} z_{2}+z_{1}^{2} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$. Thus z_{0}, z_{1} and z_{2} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by z_{0}, z_{1} or z_{2}. Thus $D=0$.

Otherwise we obtain $\alpha_{0}>\alpha_{2}$. If $n_{1}=2$, similarly z_{0}, z_{1} and z_{2} are in the ideal generated by elements of $\operatorname{Hess}(f)$. There does not exist nonzero element in $H_{1}(V)$ which can be divided by z_{0}, z_{1} or z_{2}. Thus $D=0$.

If $n_{1} \geq 3$, we obtain $D\left(z_{1}^{n_{1}-1}\right)=\left(n_{1}-1\right) c_{1} z_{3}^{k_{1}} z_{1}^{n_{1}-2} \in\left(z_{2}\right)$. Thus $c_{1}=0$ and $D=0$.

Therefore, when $n_{0}=2$, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{2}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{3}+z_{3}^{n_{3}} z_{1}\left(n_{0} \geq 2\right)$.

Lemma 2.63 (Case (vi) of Proposition 2.57). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{n_{0}} z_{3}+$ $z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq$ α_{3}. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. If there exists some negative weight derivation D, D must be in the form of $D=p_{0}\left(z_{1}, z_{2}, z_{3}\right) \frac{\partial}{\partial z_{0}}+p_{1}\left(z_{2}, z_{3}\right) \frac{\partial}{\partial z_{1}}+c z_{3}^{k} \frac{\partial}{\partial z_{2}}$.

When $n_{0} \geq 3$ holds, we obtain

$$
2 \alpha_{i}+\alpha_{j} \leq 3 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,0),(2,1)$ or $(3,2)$. Therefore, $n_{1}>2, n_{2}>2$ and $n_{3}>2$. Therefore, $n_{1} \geq 3, n_{2} \geq 3$ and $n_{3} \geq 3$. Regardless of difference of constants, we obtain

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{0}^{n_{0}-2} z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0}^{n_{0}-1} \\
* & z_{1}^{n_{1}-2} z_{0} & z_{2}^{n_{2}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{1} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

From

$$
D\left(z_{0}^{n_{0}-2} z_{3}\right)=p_{0}\left(z_{1}, z_{2}, z_{3}\right)\left(n_{0}-2\right) z_{0}^{n_{0}-3} z_{3}=0
$$

we obtain $p_{0}\left(z_{1}, z_{2}, z_{3}\right)=0$.
From

$$
D\left(z_{1}^{n_{1}-1}\right)=p_{1}\left(z_{2}, z_{3}\right)\left(n_{1}-1\right) z_{1}^{n_{1}-2} \in\left(z_{0}^{n_{0}-2} z_{3}\right)
$$

we obtain $p_{1}\left(z_{2}, z_{3}\right)=0$.
From

$$
D\left(z_{2}^{n_{2}-1}\right)=\left(n_{2}-1\right) c z_{3}^{k} z_{2}^{n_{2}-2} \in\left(z_{0}^{n_{0}-2} z_{3}, z_{1}^{n_{1}-1}, z_{0}^{n_{0}-1}, z_{1}^{n_{1}-2} z_{0}\right)
$$

we obtain $c=0$.
So $D=0$.
When $n_{0} \geq 3$, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$.

When $n_{0}=2$ holds, f is in the form of $f=z_{0}^{2} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$. We obtain

$$
\alpha_{i}+\alpha_{j} \leq 2 \alpha_{0}<w t(f)=n_{i} \alpha_{i}+\alpha_{j}
$$

for $(i, j)=(1,0),(2,1)$ or $(3,2)$. Therefore, $n_{1}>1, n_{2}>1$ and $n_{3}>1$, which is equivalent to $n_{1} \geq 2, n_{2} \geq 2$ and $n_{3} \geq 2$.

Regardless of difference of constants and useless monomials, we have

$$
\operatorname{Hess}(f)=\left[\begin{array}{cccc}
f_{00} & f_{01} & f_{02} & f_{03} \\
f_{10} & f_{11} & f_{12} & f_{13} \\
f_{20} & f_{21} & f_{22} & f_{23} \\
f_{30} & f_{31} & f_{32} & f_{33}
\end{array}\right]=\left[\begin{array}{cccc}
z_{3} & z_{1}^{n_{1}-1} & 0 & z_{0} \\
* & 0 & z_{2}^{n_{2}-1} & 0 \\
* & * & z_{2}^{n_{2}-2} z_{1} & z_{3}^{n_{3}-1} \\
* & * & * & z_{3}^{n_{3}-2} z_{2}
\end{array}\right]
$$

Thus $D=c_{1} z_{2}^{k_{1}} \frac{\partial}{\partial z_{1}}+c_{2} \frac{\partial}{\partial z_{2}}$.

From

$$
D\left(z_{1}^{n_{1}-1}\right)=\left(n_{1}-1\right) c_{1} z_{2}^{k_{1}} z_{1}^{n_{1}-2} \in\left(z_{3}\right),
$$

we obtain $c_{1}=0$ and $D=c_{2} \frac{\partial}{\partial z_{2}}$.
From

$$
D\left(z_{2}^{n_{2}-1}\right)=\left(n_{2}-1\right) c_{2} z_{2}^{n_{2}-2} \in\left(z_{3}, z_{1}^{n_{1}-1}, z_{0}\right),
$$

we obtain $c_{2}=0$ and $D=0$.
When $n_{0}=2$, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}$.

In conclusion, there does not exist negative weight derivation of $H_{1}(V)$ for any $f=z_{0}^{n_{0}} z_{3}+z_{1}^{n_{1}} z_{0}+z_{2}^{n_{2}} z_{1}+z_{3}^{n_{3}} z_{2}\left(n_{0} \geq 2\right)$.
3. Type B Fewnomial Case. In this section, we will discuss the Type B fewnomial case where mult $(f) \geq 3$. The overall conclusion is written in Proposition 3.1.

Proposition 3.1 (Type B fewnomial case of Theorem B). Let $(V, 0)=$ $\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the Type B fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right.$) of weight type ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d$) where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. There exists negative weight derivation of $H_{1}(V)$ if and only if f is in one of the following forms after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} so that $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$ (we combine the cases that can be transformed into each other by simply renumbering the variables, which is caused by the equal weights of asymmetrical variables):
(i) $f=z_{0}^{3}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Therefore, if mult $(f) \geq 4$, there does not exist any negative weight derivation of $H_{1}(V)$.

Proof. By the definition of Type B fewnomial, after renumbering, we may assume $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=f\left(z_{i_{1}}, z_{j_{1}}, \quad z_{j_{2}}, z_{j_{3}}\right)=g\left(z_{i_{1}}\right)+h\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)$ where i_{1}, j_{1}, j_{2} and j_{3} are any permutations of $0,1,2$ and 3 . $g=g\left(z_{i_{1}}\right)$ is Type (I) and is equals to $z_{i_{1}}^{n_{i_{1}}}$. $h=h\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)$ is Type (II) or Type (III). From mult $(f) \geq 3$, we can get $w t(f)>2 \max \left\{\alpha_{i_{1}}, \alpha_{j_{1}}, \alpha_{j_{2}}, \alpha_{j_{3}}\right\}=2 \alpha_{0}$.

We renumber $z_{j_{1}}, z_{j_{2}}$ and $z_{j_{3}}$ again to satisfy the weight relationship $\alpha_{i_{1}} \geq \alpha_{i_{2}} \geq$ $\alpha_{i_{3}}$. In the Type (II) case, h is in the form of $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}}, h=$ $z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}, h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}}, h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$, $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}+z_{j_{2}}^{n_{j_{2}}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$ or $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$. In the Type (III) case, h is in the form of $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$ or $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.

If f contains the monomial in proportion to $z_{r}^{n_{r}}$ where $r \in\left\{i_{1}, j_{1}, j_{2}, j_{3}\right\}$, from $n_{r} \alpha_{r}=w t(f)>2 \max \left\{\alpha_{i_{1}}, \alpha_{j_{1}}, \alpha_{j_{2}}, \alpha_{j_{3}}\right\} \geq 2 \alpha_{r}$, we get $n_{r}>2$, which is equivalent to $n_{r} \geq 3$. So $n_{i_{1}} \geq 3$. If f contains the monomial in proportion to $z_{r}^{n_{r}} z_{s}$ where $r, s \in\left\{i_{1}, j_{1}, j_{2}, j_{3}\right\}$ and $r \neq s$, from $n_{r} \alpha_{r}+\alpha_{s}=w t(f)>2 \max \left\{\alpha_{i_{1}}, \alpha_{i_{1}}, \alpha_{i_{2}}, \alpha_{i_{2}}\right\} \geq$ $\alpha_{r}+\alpha_{s}$, we get $n_{r}>1$ and $n_{r} \geq 2$.

Since $f_{i_{1}}$ does not contain the variable $z_{j_{1}}, z_{j_{2}}$ or $z_{j_{3}}$, it is clear that $f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}=0$ and $f_{i_{1} i_{1}}=n_{i_{1}}\left(n_{i_{1}}-1\right) z_{i_{1}}^{n_{i_{1}}-2}$ only contains the variable $z_{i_{1}}$. Since $f_{j_{1}}, f_{j_{2}}$ and $f_{j_{3}}$ do not contain the variable $z_{i_{1}}$, it is clear that $f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}$ and $f_{j_{3} j_{3}}$ do not contain the variable $z_{i_{1}}$.

When $n_{0}=2$, we have the following discussions.
From $w t(f)>2 \alpha_{0}$, we know f cannot contain the monomial in proportion to z_{0}^{2}. So it has to contain the monomial in proportion to $z_{0}^{2} z_{s^{\prime}}$, in which $s^{\prime} \in\{1,2,3\}$. From the structure of f, we know f does not contain the monomial in proportion to $z_{s^{\prime}}^{2} z_{0}$. Thus the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$ contains z_{0} and $z_{s^{\prime}}$ which are in proportion to $f_{0 s^{\prime}}$ and f_{00} respectively, which means that the nonzero elements of $H_{1}(V)$ cannot be divided by z_{0} and $z_{s^{\prime}}$. Obviously we have $0 \neq i_{1}$ and $s^{\prime} \neq i_{1}$. Since $n_{i_{1}} \alpha_{i_{1}}=w t(f)>2 \alpha_{0} \geq 2 \alpha_{i_{1}}$, it is clear that $n_{i_{1}}>2$, which means $n_{i_{1}} \geq 3$. In the following paragraph, we refer to $z_{j^{\prime}}$ as the variable different from $z_{0}, z_{s^{\prime}}$ and $z_{i_{1}}$.

If $n_{i_{1}}=3$, the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$ contains $z_{i_{1}}$ which is in proportion to $f_{i_{1} i_{1}}$, which means that the nonzero element of $H_{1}(V)$ cannot be divided by $z_{i_{1}}$. In this case, if there exists some negative weight derivation D, D must be in the form of $D=c^{\prime} \frac{\partial}{\partial z_{j^{\prime}}}$.

If $c^{\prime} \neq 0$, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)=(1)$ because at least one of $f_{j_{1} j^{\prime}}, f_{j_{2} j^{\prime}}$ and $f_{j_{3} j^{\prime}}$ is in proportion to a power of $z_{j^{\prime}}$ and we can use D to reduce the power to 0 . However, 1 is not in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$ since $w t\left(f_{r s}\right) \geq w t\left(f_{00}\right)=$ $w t(f)-2 \alpha_{0}>0$ for $r, s \in\left\{i_{1}, j_{1}, j_{2}, j_{3}\right\}$ when $f_{r s}$ is not equal to 0 . This leads to a contradiction. Thus $D=0$.

If $n_{i_{1}}>3, \quad$ which is equivalent to $n_{i_{1}} \geqslant 4$, the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, \quad f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)=\left(z_{0}, z_{s^{\prime}}, z_{i_{1}}^{k_{i_{1}}}, z_{j^{\prime}}^{k^{\prime}}\right)$. Therefore, we get $k_{i_{1}}=n_{i_{1}}-2 \geq 2$. We have $k^{\prime} \geq 1$ because at least one of $f_{0 j^{\prime}}, f_{s^{\prime} j^{\prime}}$ and $f_{j^{\prime} j^{\prime}}$ is in proportion to a power of $z_{j^{\prime}}$ where we can choose the one with the smaller power or smallest power if more than one of them satisfies the restriction and 1 is not in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$ since $w t\left(f_{r s}\right) \geq w t\left(f_{00}\right)=w t(f)-2 \alpha_{0}>0$ for $r, s \in\left\{i_{1}, j_{1}, j_{2}, j_{3}\right\}$ when $f_{r s}$ is not equal to 0 .

When $\alpha_{i_{1}} \leq \alpha_{j^{\prime}}$, if there exists some negative weight derivation D, D must be in the form of $D=c_{j^{\prime}} z_{i_{1}}^{w_{j^{\prime}}} \frac{\partial}{\partial z_{j^{\prime}}}+c_{i_{1}} \frac{\partial}{\partial z_{i_{1}}}$. From $D\left(z_{i_{1}}^{k_{i_{1}}}\right)=c_{i_{1}} k_{i_{1}} z_{i_{1}}^{k_{i_{1}}-1} \in$ $\left(z_{0}, z_{s^{\prime}}, z_{i_{1}}^{k_{i_{1}}}, z_{j^{\prime}}^{k_{j^{\prime}}}\right)$, we get $c_{i_{1}}=0$. Since $D\left(z_{j^{\prime}}^{k_{j^{\prime}}}\right)=k_{j^{\prime}} c_{j^{\prime}} z_{i_{1}}^{w_{j^{\prime}}} z_{j^{\prime}}^{k_{j^{\prime}}-1} \in$ $\left(z_{0}, z_{s^{\prime}}, z_{i_{1}}^{k_{i_{1}}}, z_{j^{\prime}}^{k_{j^{\prime}}}\right)$, it is clear that $c_{i_{1}}=0$ or $z_{i_{1}}^{w_{j^{\prime}}}$ is divided by $z_{i_{1}}^{k_{i_{1}}}$, both of which imply $D=0$ in the sense of $H_{1}(V)$.

When $\alpha_{i_{1}}>\alpha_{j^{\prime}}$, if there exists some negative weight derivation D, D must be in the form of $D=c_{j^{\prime}} \frac{\partial}{\partial z_{j^{\prime}}}+c_{i_{1}} z_{j^{\prime}}^{w_{i_{1}}} \frac{\partial}{\partial z_{i_{1}}}$. From $D\left(z_{j^{\prime}}^{k_{j^{\prime}}}\right)=c_{j^{\prime}} k_{j^{\prime}} z_{j^{\prime}}^{k_{j^{\prime}-1}} \in$ $\left(z_{0}, z_{s^{\prime}}, z_{i_{1}}^{k_{i_{1}}}, z_{j^{\prime}}^{k_{j^{\prime}}}\right)$, we obtain $c_{j^{\prime}}=0$. Therefore, $D=c_{i_{1}} z_{j^{\prime}}^{w_{i_{1}}} \frac{\partial}{\partial z_{i_{1}}}$. Since $D\left(z_{i_{1}}^{k_{i_{1}}}\right)=$ $k_{i_{1}} c_{i_{1}} z_{j^{\prime}}^{w_{i_{1}}} z_{i_{1}}^{k_{i_{1}}-1} \in\left(z_{0}, z_{s^{\prime}}, z_{i_{1}}^{k_{i_{1}}}, z_{j^{\prime}}^{k_{j^{\prime}}}\right)$, it is clear that $c_{i_{1}}=0$ or $z_{j^{\prime}}^{w_{i_{1}}}$ is divided by $z_{j^{\prime}}^{k_{j^{\prime}}}$, both of which imply $D=0$ in the sense of $H_{1}(V)$. Thus $D=0$.

In conclusion, if $n_{0}=2$, there does not exist negative weight derivation for any f in Type B.

When $n_{0} \geq 3$, we have the following discussions.

We figure out what case we can exclude first.
From the weight relationship $\alpha_{j_{1}} \geq \alpha_{j_{2}} \geq \alpha_{j_{3}}$, if there exists some negative weight derivation D, D must be in the form of $D=p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{i_{1}}}+$ $p_{j_{1}}\left(z_{i_{1}}, z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+p_{j_{2}}\left(z_{i_{1}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{2}}}+p_{j_{3}}\left(z_{i_{1}}\right) \frac{\partial}{\partial z_{j_{3}}}$. Note that $D\left(f_{i_{1} i_{1}}\right)=$ $n_{i_{1}}\left(n_{i_{1}}-1\right)\left(n_{i_{1}}-2\right) p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) z_{i_{1}}^{n_{i_{1}}-3} \in\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$. Any nonzero element of the set $\left\{f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right\}$ cannot be divided by $z_{i_{1}}$.

If $p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \neq 0$, there exists some nonzero $f_{r s}\left(r, s \in\left\{j_{1}, j_{2}, j_{3}\right\}\right)$ satisfying $w t\left(f_{r s}\right) \leq w t\left(p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right)$. Therefore, we have $\alpha_{0} \leq 3 \alpha_{0}-\alpha_{r}-\alpha_{s} \leq$ $w t\left(f_{r s}\right) \leq w t\left(p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right)<\alpha_{i_{1}} \leq \alpha_{0}$. This leads to a contradiction.

Thus $p_{i_{1}}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)=0$. Therefore, $D=p_{j_{1}}\left(z_{i_{1}}, z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+$ $p_{j_{2}}\left(z_{i_{1}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{2}}}+p_{j_{3}}\left(z_{i_{1}}\right) \frac{\partial}{\partial z_{j_{3}}}$.

Since $f_{i_{1} i_{1}}$ is in proportion to $z_{i_{1}}^{n_{i_{1}}-2}$, the monomial in $p_{j_{1}}\left(z_{i_{1}}, z_{j_{2}}, z_{j_{3}}\right), p_{j_{2}}\left(z_{i_{1}}, z_{j_{3}}\right)$ or $p_{j_{3}}\left(z_{i_{1}}\right)$ is 0 in the sense of $H_{1}(V)$ if it is divided by $z_{i_{1}}^{n_{1}-2}$.

Thus we obtain $D\left(f_{r s}\right) \in\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$.
We define

$$
\left\{\begin{aligned}
p_{j_{1}}\left(z_{i_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} p_{j_{1}}^{(k)}\left(z_{j_{2}}, z_{j_{3}}\right) \\
p_{j_{2}}\left(z_{i_{1}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} c_{j_{2}}^{(k)} z_{j_{3}}^{k_{j_{2}}^{(k)}} \\
p_{j_{3}}\left(z_{i_{1}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} c_{j_{3}}^{(k)}
\end{aligned}\right.
$$

If we define $D^{(k)}=p_{j_{1}}^{(k)}\left(z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}}^{(k)} z_{j_{3}}^{k_{j_{2}}^{(k)}} \frac{\partial}{\partial z_{j_{2}}}+c_{j_{3}}^{(k)} \frac{\partial}{\partial z_{j_{3}}}$, we get $D=$ $\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} D^{(k)}$.

On the one hand, $D\left(f_{r s}\right)=\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} D^{(k)}\left(f_{r s}\right)$.
On the other hand, from $D\left(f_{r s}\right) \in\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$, we have

$$
\begin{aligned}
D\left(f_{r s}\right)= & \varphi_{j_{1} j_{1}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{1}}+\varphi_{j_{1} j_{2}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{2}} \\
& +\varphi_{j_{1} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{3}}+\varphi_{j_{2} j_{2}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{2}} \\
& +\varphi_{j_{2} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{3}}+\varphi_{j_{3} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{3} j_{3}} .
\end{aligned}
$$

If

$$
\left\{\begin{aligned}
\varphi_{j_{1} j_{1}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{1} j_{1}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \\
\varphi_{j_{1} j_{2}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{1} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \\
\varphi_{j_{1} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}-3}} z_{i_{1}}^{k} \varphi_{j_{1} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \\
\varphi_{j_{2} j_{2}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{2} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \\
\varphi_{j_{2} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) & =\sum_{k=0}^{n_{i_{1}-3}} z_{i_{1}}^{k} \varphi_{j_{2} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) \\
\varphi_{j_{3} j_{3}}\left(z_{i_{1}}, z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)= & \sum_{k=0}^{n_{i_{1}-3}} z_{i_{1}}^{k} \varphi_{j_{3} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)
\end{aligned}\right.
$$

we have

$$
\begin{aligned}
& D\left(f_{r s}\right) \\
= & \left(\sum_{k=0}^{n_{1}-3} z_{i_{1}}^{k} \varphi_{j_{1} j_{1}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{1} j_{1}}+\left(\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{1} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{1} j_{2}} \\
& +\left(\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{1} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{1} j_{3}}+\left(\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{2} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{2} j_{2}} \\
& +\left(\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{2} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{2} j_{3}}+\left(\sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k} \varphi_{j_{3} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right)\right) f_{j_{3} j_{3}} \\
= & \sum_{k=0}^{n_{i_{1}}-3} z_{i_{1}}^{k}\left(\varphi_{j_{1} j_{1}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{1}}+\varphi_{j_{1} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{2}}+\varphi_{j_{1} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{3}}\right. \\
& \left.+\varphi_{j_{2} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{2}}+\varphi_{j_{2} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{3}}+\varphi_{j_{3} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{3} j_{3}}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& D^{(k)}\left(f_{r s}\right) \\
= & \varphi_{j_{1} j_{1}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{1}}+\varphi_{j_{1} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{2}}+\varphi_{j_{1} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{1} j_{3}} \\
& +\varphi_{j_{2} j_{2}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{2}}+\varphi_{j_{2} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{2} j_{3}}+\varphi_{j_{3} j_{3}}^{(k)}\left(z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right) f_{j_{3} j_{3}} .
\end{aligned}
$$

If there exists such negative weight derivation D which is not equal to 0 , there exists $k \in\left\{0,1, \ldots, n_{i_{1}}-3\right\}$ so that $D^{(k)} \neq 0$. The reverse is obvious.

Thus to judge the existence of negative weight derivation D of $H_{1}(V)$, we only need to consider the derivation D in the form of $D=p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}+$ $c_{j_{3}} \frac{\partial}{\partial z_{j_{3}}}$.

Since $w t(f)=n_{0} \alpha_{0} \geq 3 \alpha_{0}, f$ does not contain any monomial which has multiplicity less than 3 . If f contains a monomial in proportion to $z_{j_{3}}^{3}, z_{j_{3}}^{2} z_{j_{1}}, z_{j_{3}}^{2} z_{j_{2}}, z_{j_{1}}^{2} z_{j_{3}}$ or $z_{j_{2}}^{2} z_{j_{3}}, z_{j_{3}}$ is in proportion to $f_{j_{3} j_{3}}, f_{j_{1} j_{3}}, f_{j_{2} j_{3}}, f_{j_{1} j_{1}}$ or $f_{j_{2} j_{2}}$ respectively. Thus $z_{j_{3}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$. There does not exist nonzero element in $H_{1}(V)$ which is divided by $z_{j_{3}}$, from which we get $c_{j_{3}}=0$.

In other cases, $z_{j_{3}}$ is not in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}\right.$, $\left.f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$.

Considering the structure of f, there exists $m_{j_{3}} \in \mathbb{N}^{*}$ so that $z_{j_{3}}^{m_{j_{3}}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$, while $z_{j_{3}}^{m_{j_{3}}-1}$ is not. In fact, $z_{j_{3}}^{m_{j_{3}}}$ is in proportion to $f_{j_{1} j_{3}}, f_{j_{2} j_{3}}$ or $f_{j_{3} j_{3}}$. Since $D\left(z_{j_{3}}^{m_{j_{3}}}\right)=c_{j_{3}} m_{j_{3}} z_{j_{3}}^{m_{j_{3}}-1}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{1} j_{3}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{1} j_{3}}, f_{j_{2} j_{2}}, f_{j_{2} j_{3}}, f_{j_{3} j_{3}}\right)$, we can get $c_{j_{3}}=0$.

In conclusion, if there exists some negative weight derivation D, D must be in the form of $D=p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If f contains the monomial in proportional to $z_{j_{1}}^{2} z_{j_{2}}$, there does not exist any monomial in f in proportion to $z_{j_{2}}^{n_{2}} z_{j_{1}}$. Thus $f_{j_{1} j_{2}}$ and $f_{j_{1} j_{1}}$ are in proportion to $z_{j_{1}}$ and $z_{j_{2}}$ respectively. There does not exist nonzero element in $H_{1}(V)$ which is divided by $z_{j_{1}}$ or $z_{j_{2}}$. Therefore, $D=0$.

If f contains the monomial in proportion to $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}\left(n_{j_{1}} \geq 3\right)$, from $D\left(f_{j_{1} j_{1}}\right)=0$, we get $\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{2}}+c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{1}}^{n_{j_{1}}-2}=0$, which is equivalent to $\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{2}}+c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{1}}=0$. Therefore, $c_{j_{2}}=0$ and $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. Thus $D=0$.

The derivation $D=p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$ does not contain the variable $z_{i_{1}}$, so we only need to consider the function h. There are only 5 cases left. If h is in Type (II), h is in the form of $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}, h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+$ $z_{j_{3}}^{n_{j_{3}}}, h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$ or $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$. If h is in Type (III), h is in the form of $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.

It is clear that for any nonzero $f_{r s}$ where $r, s \in\left\{j_{1}, j_{2}, j_{3}\right\}, D\left(f_{r s}\right)$ cannot be divided by $f_{i_{1} i_{1}}$. We also notice that $D\left(f_{i_{1} i_{1}}\right)=0$. So we do not consider the element $f_{i_{1} i_{1}}$ in the following inclusion relations.

We have the following discussions in the case $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.
From $\operatorname{mult}(f) \geq 3$, we have $n_{j_{2}} \geq 3, n_{j_{1}} \geq 2$ and $n_{j_{3}} \geq 2$. Regardless of difference of constants, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{ccc}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}} & 0 & z_{j_{1}}^{n_{j_{1}}-1} \\
* & z_{j_{2}}^{n_{j_{2}}-2} & z_{j_{3}}^{n_{j_{3}}-1} \\
* & * & z_{j_{3}}^{n_{j_{3}}-2} z_{j_{2}}
\end{array}\right] .
$$

If $n_{j_{1}}=2, \quad$ we have $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)=$
$\left(z_{j_{3}}, z_{j_{1}}, z_{j_{2}}^{n_{j_{2}}-2}, z_{j_{3}}^{n_{j_{3}}-2} z_{j_{2}}\right)$. If there exists some negative weight derivation D, D must be in the form of $D=c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. If $n_{j_{2}}=3$ or $n_{j_{3}}=2$, we have $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)=\left(z_{j_{3}}, z_{j_{1}}, z_{j_{2}}\right)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by $z_{j_{2}}$. Thus $D=0$. If $n_{j_{2}} \geq 4$ and $n_{j_{3}} \geq 3$, we can get $z_{j_{2}}^{n_{j_{2}}-2}$ is in the ideal $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$, while $z_{j_{2}}^{n_{j_{2}}-\overline{3}}$ is not. From $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=\left(n_{j_{2}}-2\right) c_{j_{2}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$, we get $c_{j_{2}}=0$. In conclusion, if $n_{0} \geq 3$ and $n_{j_{1}}=2$, we have $D=0$.

If $n_{j_{1}} \geq 3$, from $D\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{3}}=0$, we get $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. Therefore, if there exists some negative weight derivation D, D must be in the form of $D=c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$. From $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=\left(n_{j_{2}}-2\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in$ $\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}, z_{j_{1}}^{n_{j_{1}}-1}\right)$, we get $c_{j_{2}}=0$. Therefore, if $n_{0} \geq 3$ and $n_{j_{1}} \geq 3$, we have $D=0$.

In conclusion, if $n_{0} \geq 3$, there does not exist negative weight derivation when f is in the form of $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.

We have the following discussions in the case $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}}$.
From $\operatorname{mult}(f) \geq 3$, we obtain $n_{j_{3}} \geq 3, n_{j_{1}} \geq 2$ and $n_{j_{2}} \geq 2$.
Regardless of difference of constants, we have
$\operatorname{Hess}(h)=\left[\begin{array}{ccc}h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\ h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\ h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}\end{array}\right]=\left[\begin{array}{ccc}z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}} & z_{j_{2}}^{n_{j_{2}}-1} & z_{j_{1}}^{n_{j_{1}}-1} \\ * & z_{j_{2}}^{n_{j_{2}}-2} z_{j_{1}} & 0 \\ * & * & z_{j_{3}}^{n_{j_{3}}-2}\end{array}\right]$.
If $n_{j_{1}}=2$, we have $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)=\left(z_{j_{3}}, z_{j_{1}}, z_{j_{2}}^{n_{j_{2}}-1}\right)$. If there exists some negative weight derivation D, D must be in the form of $D=c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. If $n_{j_{2}}=2$, we have $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)=\left(z_{j_{3}}, z_{j_{1}}, z_{j_{2}}\right)$. There does not exist any nonzero element in $H_{1}(V)$ which is divided by $z_{j_{2}}$. Thus $D=0$. If $n_{j_{2}} \geq 3, z_{j_{2}}^{n_{j_{2}}-1}$ is in the ideal $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$, while $z_{j_{2}}^{n_{j_{2}}-2}$ is not. From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=\left(n_{j_{2}}-1\right) c_{j_{2}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$, we get $c_{j_{2}}=0$. Thus $D=0$. Therefore, we have $D=0$ if $n_{j_{1}}=2$.

If $n_{j_{1}} \geq 3$, from $D\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{3}}=0$, we get $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. Therefore, $D=c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$. From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=$ $\left(n_{j_{2}}-1\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}\right)$, we get $c_{j_{2}}=0$. Therefore, we have $D=0$ if $n_{j_{1}} \geq 3$.

In conclusion, if $n_{0} \geq 3$, there does not exist negative weight derivation when f is in the form of $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}}$.

We have the following discussions in the case $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$.
From $\operatorname{mult}(f) \geq 3$, we obtain $n_{j_{1}} \geq 3, n_{j_{2}} \geq 2$ and $n_{j_{3}} \geq 2$.
Regardless of difference of constants, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{ccc}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}}^{n_{j_{1}}-2} & 0 & z_{j_{3}}^{n_{j_{3}}-1} \\
* & z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}} & z_{j_{2}}^{n_{j_{2}}-1} \\
* & * & z_{j_{3}}^{n_{3}-2} z_{j_{1}}
\end{array}\right] .
$$

If $n_{j_{1}}=3, z_{j_{1}}$ is in the ideal $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$. There does not exist nonzero element in $H_{1}(V)$ which can be divided by $z_{j_{1}}$. Thus if there exists some negative weight derivation D, D must be in the form of $D=c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $n_{j_{2}}=2$, we have $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)=\left(z_{j_{3}}, z_{j_{1}}, z_{j_{2}}\right)$. There does not exist nonzero element in $H_{1}(V)$ which can be divided by $z_{j_{2}}$. Thus $D=0$.

If $n_{j_{2}} \geq 3$, we have $3 \alpha_{j_{1}}=w t(f)=n_{j_{2}} \alpha_{j_{2}}+\alpha_{j_{3}}>2 \alpha_{j_{2}}+\alpha_{j_{3}}$. Thus we get $\alpha_{j_{1}}>$ $\alpha_{j_{3}}$, otherwise from $\alpha_{j_{1}} \geq \alpha_{j_{2}} \geq \alpha_{j_{3}}$, we have $\alpha_{j_{1}}=\alpha_{j_{2}}=\alpha_{j_{3}}$ and $3 \alpha_{j_{1}}=2 \alpha_{j_{2}}+\alpha_{j_{3}}$, which leads to a contradiction. From $3 \alpha_{j_{1}}=w t(f)=n_{j_{3}} \alpha_{j_{3}}+\alpha_{j_{1}}<\left(n_{j_{3}}+1\right) \alpha_{j_{1}}$,
we get $n_{j_{3}}>2$. Therefore, $n_{j_{3}} \geq 3$. Regardless of difference of constants and useless polynomials, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{lll}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}} & 0 & z_{j_{3}}^{n_{j_{3}}-1} \\
* & z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}} & z_{j_{2}}^{n_{j_{2}}-1} \\
* & * & 0
\end{array}\right] .
$$

It is obvious that $D\left(z_{j_{3}}^{n_{j_{3}}-1}\right)=0 \in\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$. From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=\left(n_{j_{2}}-1\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(z_{j_{1}}, z_{j_{3}}^{n_{j_{3}}-1}, z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}}\right)$, it is clear that $c_{j_{2}}=0$ or $k_{j_{2}} \geq 1$.

Note that $D\left(z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}}\right)=\left(n_{j_{2}}-2\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}+1} z_{j_{2}}^{n_{j_{2}}-3} \in\left(z_{j_{1}}, z_{j_{3}}^{n_{j_{3}}-1}\right)$. If $c_{j_{2}} \neq$ $0, z_{j_{3}}^{k_{j_{2}}+1}$ can be divided by $z_{j_{3}}^{n_{j_{3}}-1}$. $z_{j_{3}}^{k_{j_{2}}}$ cannot be divided by $z_{j_{3}}^{n_{j_{3}}-1}$, otherwise $D=0$ in the sense of derivation of $H_{1}(V)$, which is equivalent to $c_{j_{2}}=0$. Thus $k_{j_{2}}+1 \geq n_{j_{3}}-1>k_{j_{2}}$, which is equivalent to $k_{j_{2}}=n_{j_{3}}-2$. Thus $D=c_{j_{2}} z_{j_{3}}^{n_{j_{3}}-2} \frac{\partial}{\partial z_{j_{2}}}$ and the only thing we need to check is whether $k_{j_{2}}=n_{j_{3}}-2$ satisfies the "negatively weighted" restriction.

Solving the equations

$$
\left\{\begin{array}{r}
3 \alpha_{j_{1}}=w t(f) \\
n_{j_{2}} \alpha_{j_{2}}+\alpha_{j_{3}}=w t(f) \\
n_{j_{3}} \alpha_{j_{3}}+\alpha_{j_{1}}=w t(f)
\end{array}\right.
$$

we get

$$
\left\{\begin{array}{l}
\alpha_{j_{1}}=\frac{1}{3} w t(f) \\
\alpha_{j_{2}}=\frac{1}{n_{j_{2}}}\left(1-\frac{2}{3 n_{j_{3}}}\right) w t(f) . \\
\alpha_{j_{3}}=\frac{2}{3 n_{j_{3}}} w t(f)
\end{array}\right.
$$

From the "negatively weighted" restriction of $D=c_{j_{2}} z_{j_{3}}^{n_{j_{3}}-2} \frac{\partial}{\partial z_{j_{2}}}$, we get $\left(n_{j_{3}}-2\right) \alpha_{j_{3}}<\alpha_{j_{2}}$. Thus $\left(n_{j_{3}}-2\right) \frac{2}{3 n_{j_{3}}} w t(f)<\frac{1}{n_{j_{2}}}\left(1-\frac{2}{3 n_{j_{3}}}\right) w t(f)$, which is equivalent to $n_{j_{2}}<\frac{1}{2}\left(\frac{4}{n_{j_{3}}-2}+3\right)$. Since $n_{j_{2}} \geq 3$, we have $n_{j_{3}}<\frac{10}{3}$. From $n_{j_{3}} \geq 3$, we get $n_{j_{3}}=3$. From $n_{j_{2}}<\frac{1}{2}\left(\frac{4}{n_{j_{3}}-2}+3\right)=\frac{7}{2}$ and $n_{j_{2}} \geq 3$, we get $n_{j_{2}}=3$.

In this special case, h is in the form of $h=z_{j_{1}}^{3}+z_{j_{2}}^{3} z_{j_{3}}+z_{j_{3}}^{3} z_{j_{1}}$. Regardless of difference of constants and useless polynomials, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{ccc}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}} & 0 & z_{j_{3}}^{2} \\
* & z_{j_{2}} z_{j_{3}} & z_{j_{2}}^{2} \\
* & * & 0
\end{array}\right] .
$$

The weights of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} are

$$
\left\{\begin{array}{l}
\alpha_{j_{1}}=\frac{1}{3} w t(f) \\
\alpha_{j_{2}}=\frac{7}{27} w t(f) \\
\alpha_{j_{3}}=\frac{2}{9} w t(f)
\end{array} .\right.
$$

Under this circumstance, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{j_{3}} \frac{\partial}{\partial z_{j_{2}}}\right., c \neq 0\right\}$.

If $n_{j_{1}} \geq 4$, from $D\left(z_{j_{1}}^{n_{j_{1}}-2}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3}=0$, we get $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. Therefore, if there exists some negative weight derivation D, D must be in the form of $D=c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

We assume $c_{j_{2}} \neq 0$. Note that $D\left(z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}}\right)=\left(n_{j_{2}}-2\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}+1} z_{j_{2}}^{n_{j_{2}}-3} \in$ $\left(z_{j_{1}}^{n_{j_{1}}-2}, z_{j_{3}}^{n_{j_{3}}-1}\right)$. If $c_{j_{2}} \neq 0$, we have $z_{j_{3}}^{k_{j_{2}}+1}$ is divided by $z_{j_{3}}^{n_{j_{3}}-1}$. Thus $k_{j_{2}} \geq n_{j_{3}}-2$.

If $\alpha_{j_{1}}=\alpha_{j_{2}}=\alpha_{j_{3}}$, all the nonzero elements in $\operatorname{Hess}(h)$ are of the same weight. Since D is negatively weighted, we have $D\left(z_{j_{2}}^{n_{j_{2}}-2} z_{j_{3}}\right)=0$, from which we get $c_{j_{2}}=0$. This leads to a contradiction. Thus we have $c_{j_{2}}=0$ and $D=0$.

If $\alpha_{j_{1}}>\alpha_{j_{3}}$, we have $n_{j_{1}} \alpha_{j_{1}}=w t(f)=n_{j_{3}} \alpha_{j_{3}}+\alpha_{j_{1}}<\left(n_{j_{3}}+1\right) \alpha_{j_{1}}$. Thus $n_{j_{3}}>n_{j_{1}}-1$. In other words, $n_{j_{3}} \geq n_{j_{1}} \geq 4$. Since f is quasi-homogeneous, we have $\alpha_{j_{1}}=\frac{1}{n_{j_{1}}} w t(f)$ and $\alpha_{j_{3}}=\frac{1}{n_{j_{3}}}\left(w t(f)-\alpha_{j_{1}}\right)=\frac{1}{n_{j_{3}}}\left(1-\frac{1}{n_{j_{1}}}\right) w t(f)$. From $w t\left(z_{j_{3}}^{n_{j_{3}}-2}\right)=\left(1-\frac{2}{n_{j_{3}}}\right)\left(1-\frac{1}{n_{j_{1}}}\right) w t(f)=\left(1-\frac{2}{n_{j_{3}}}\right)\left(n_{j_{1}}-1\right) \alpha_{j_{1}} \geq\left(1-\frac{2}{4}\right) \times$ $3 \alpha_{j_{1}}=\frac{3}{2} \alpha_{j_{1}}>\alpha_{j_{1}}$ and $w t\left(z_{j_{3}}^{k_{j_{2}}}\right)<\alpha_{j_{2}} \leq \alpha_{j_{1}}$, we have $w t\left(z_{j_{3}}^{k_{j_{2}}}\right)<w t\left(z_{j_{3}}^{n_{j_{3}}-2}\right)$, which leads to $k_{j_{2}}<n_{j_{3}}-2$ and it is in contradiction to $k_{j_{2}} \geq n_{j_{3}}-2$. Thus $c_{j_{2}}=0$ and $D=0$.

Therefore, when $n_{0} \geq 3$ and $n_{j_{1}} \geq 4$, there does not exist negative weight derivation of $H_{1}(V)$.

In conclusion, when $n_{0} \geq 3$, there exist negative weight derivations for $f=$ $z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{3}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{1}}$ in Type B if and only if f is in the form of $f=$ $z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{3}+z_{j_{2}}^{3} z_{j_{3}}+z_{j_{3}}^{3} z_{j_{1}}\left(n_{i_{1}} \geq 3\right)$. If such condition satisfies, the set of negative weight derivations of f is $\left\{D \left\lvert\, D=c z_{j_{3}} \frac{\partial}{\partial z_{j_{2}}}\right., c \neq 0\right\}$.

We have the following discussions in the case $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.
From $\operatorname{mult}(f) \geq 3$, we have $n_{j_{1}} \geq 3, n_{j_{2}} \geq 2$ and $n_{j_{3}} \geq 2$.
Regardless of difference of constants, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{lll}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}}^{n_{j_{1}}-2} & z_{j_{2}}^{n_{j_{2}}-1} & 0 \\
* & z_{j_{2}}^{j_{2}-2} z_{j_{1}} & z_{j_{3}}^{n_{j_{3}}-1} \\
* & * & z_{j_{3}}^{n_{j_{3}}-2} z_{j_{2}}
\end{array}\right] .
$$

From $D\left(z_{j_{1}}^{n_{j_{1}}-2}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3}=0$, we get $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. Therefore, D is in the form of $D=c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=\left(n_{j_{2}}-1\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(z_{j_{1}}^{n_{j_{1}}-2}\right)$, we get $c_{j_{2}}=0$. Therefore, we have $D=0$.

In conclusion, if $n_{0} \geq 3$, there does not exist negative weight derivation for any $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$ in Type B.

We have the following discussions in the case $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$.
From $\operatorname{mult}(f) \geq 3$, we have $n_{j_{1}} \geq 2, n_{j_{2}} \geq 2$ and $n_{j_{3}} \geq 2$.
Regardless of difference of constants, we have

$$
\operatorname{Hess}(h)=\left[\begin{array}{lll}
h_{j_{1} j_{1}} & h_{j_{1} j_{2}} & h_{j_{1} j_{3}} \\
h_{j_{2} j_{1}} & h_{j_{2} j_{2}} & h_{j_{2} j_{3}} \\
h_{j_{3} j_{1}} & h_{j_{3} j_{2}} & h_{j_{3} j_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}} & z_{j_{2}}^{n_{j_{2}}-1} & z_{j_{1}}^{n_{j_{1}}-1} \\
* & z_{j_{2}}^{n_{2}-2} z_{j_{1}} & z_{j_{3}}^{n_{j_{3}}-1} \\
* & * & z_{j_{3}}^{n_{3}-2} z_{j_{2}}
\end{array}\right] .
$$

If $n_{j_{1}}=2, z_{j_{3}}$ and $z_{j_{1}}$ are in the ideal of $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$. Thus $D=c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. If $n_{j_{2}}=2, z_{j_{2}}$ is in the ideal of $\left(h_{j_{1} j_{1}}, h_{j_{1} j_{2}}, h_{j_{1} j_{3}}, h_{j_{2} j_{2}}, h_{j_{2} j_{3}}, h_{j_{3} j_{3}}\right)$. Thus $D=0$. If $n_{j_{2}} \geq 3$, we have $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=c_{j_{2}}\left(n_{j_{2}}-1\right) z_{j_{2}}^{n_{j_{2}}-2} \in\left(z_{j_{3}}\right)$. Thus $c_{j_{2}}=0$ and $D=0$. In conclusion, we have $D=0$ if $n_{j_{1}}=2$.

If $n_{j_{1}} \geq 3$, from $D\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{3}}=0$, we get $p_{j_{1}}\left(z_{j_{2}}, z_{j_{3}}\right)=0$. From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=\left(n_{j_{2}}-1\right) c_{j_{2}} z_{j_{3}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(z_{j_{1}}^{n_{j_{1}}-2} z_{j_{3}}\right)$, we get $c_{j_{2}}=0$. In conclusion, we have $D=0$ if $n_{j_{1}} \geq 3$.

In conclusion, if $n_{0} \geq 3$, there does not exist negative weight derivation for any $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{n_{j_{1}}} z_{j_{3}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}+z_{j_{3}}^{n_{j_{3}}} z_{j_{2}}$ in Type B case.

We can conclude that in Type B case, when $n_{0} \geq 3$, there exists negative weight derivation if and only if f is in the form of $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{3}+z_{j_{2}}^{3} z_{j_{3}}+$ $z_{j_{3}}^{3} z_{j_{1}}\left(n_{i_{1}} \geq 3\right)$. If such condition satisfies, the set of negative weight derivations of f is $\left\{D \left\lvert\, D=c z_{j_{3}} \frac{\partial}{\partial z_{j_{2}}}\right., c \neq 0\right\}$.

Therefore, in Type B case, when $n_{0} \geq 2$, there exists negative weight derivation if and only if f is in the form of $f=z_{i_{1}}^{n_{i_{1}}}+z_{j_{1}}^{3}+z_{j_{2}}^{3} z_{j_{3}}+z_{j_{3}}^{3} z_{j_{1}}\left(n_{i_{1}} \geq 3\right)$. If such condition satisfies, the set of negative weight derivations of f is $\left\{D \left\lvert\, D=c z_{j_{3}} \frac{\partial}{\partial z_{j_{2}}}\right., c \neq 0\right\}$.

Next we will discuss the relations between $z_{i_{1}}, z_{j_{1}}, z_{j_{2}}$ and $z_{j_{3}}$ and z_{0}, z_{1}, z_{2} and z_{3}.

The solution of the equations

$$
\left\{\begin{aligned}
n_{i_{1}} \alpha_{i_{1}} & =w t(f) \\
3 \alpha_{j_{1}} & =w t(f) \\
3 \alpha_{j_{2}}+\alpha_{j_{3}} & =w t(f) \\
3 \alpha_{j_{3}}+\alpha_{j_{1}} & =w t(f)
\end{aligned}\right.
$$

is

$$
\left\{\begin{array}{l}
\alpha_{i_{1}}=\frac{1}{n_{i_{1}}} w t(f) \\
\alpha_{j_{1}}=\frac{1}{3} w t(f) \\
\alpha_{j_{2}}=\frac{7}{27} w t(f) \\
\alpha_{j_{3}}=\frac{2}{9} w t(f)
\end{array} .\right.
$$

When $n_{i_{1}}=3$, we have $\alpha_{j_{1}}=\alpha_{i_{1}}>\alpha_{j_{2}}>\alpha_{j_{3}}$, which means $\left(j_{1}, i_{1}, j_{2}, j_{3}\right)=(0,1,2,3)$ or $\left(i_{1}, j_{1}, j_{2}, j_{3}\right)=(0,1,2,3)$; when $n_{i_{1}}=4$, we have $\alpha_{j_{1}}>\alpha_{j_{2}}>\alpha_{i_{1}}>\alpha_{j_{3}}$, which means $\left(j_{1}, j_{2}, i_{1}, j_{3}\right)=(0,1,2,3)$; when $n_{i_{1}} \geq 5$, we have $\alpha_{j_{1}}>\alpha_{j_{2}}>\alpha_{j_{3}}>\alpha_{i_{1}}$, which means $\left(j_{1}, j_{2}, j_{3}, i_{1}\right)=(0,1,2,3)$.

Therefore, if $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ is an isolated singularity defined by the Type B fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$, let $H_{1}(V)$ be the 1 -st Hessian algebra and let D be a derivation of $H_{1}(V)$, then after renumbering the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$, there exists negative weight derivation if and only if f is in one of the following forms (we combine the cases that can be transformed into each other by simply renumbering the variables, which is caused by the equal weights of asymmetrical variables):
(i) $f=z_{0}^{3}+z_{1}^{3}+z_{2}^{3} z_{3}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{2}}\right., c \neq 0\right\}$;
(ii) $f=z_{0}^{3}+z_{1}^{3} z_{3}+z_{2}^{4}+z_{3}^{3} z_{0}$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{3} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$;
(iii) $f=z_{0}^{3}+z_{1}^{3} z_{2}+z_{2}^{3} z_{0}+z_{3}^{n_{3}}\left(n_{3} \geq 5\right)$. In this case, the set of negative weight derivations of $H_{1}(V)$ is $\left\{D \left\lvert\, D=c z_{2} \frac{\partial}{\partial z_{1}}\right., c \neq 0\right\}$.

Therefore, if mult $(f) \geq 4$, there does not exist any negative weight derivation of $H_{1}(V) . \square$
4. Type C Fewnomial Case. In this section, we will discuss the Type C fewnomial case where mult $(f) \geq 3$. The overall conclusion is written in Proposition 4.1.

Proposition 4.1 (Type C fewnomial case of Theorem B). Let $(V, 0)=$ $\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the Type C fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. Then there does not exist negative weight derivation of $H_{1}(V)$.

Proof. By the definition of Type C fewnomial, after renumbering, we may assume $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=f\left(z_{i_{1}}, z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=g\left(z_{i_{1}}, z_{i_{2}}\right)+h\left(z_{j_{1}}, z_{j_{2}}\right)$ where $g\left(z_{i_{1}}, z_{i_{2}}\right)$ and $h\left(z_{j_{1}}, z_{j_{2}}\right)$ are Type (I), Type (II) or Type (III) fewnomial. Here we assume $\alpha_{i_{1}} \geq \alpha_{i_{2}}$, $\alpha_{j_{1}} \geq \alpha_{j_{2}}$ and $\alpha_{i_{1}} \geq \alpha_{j_{1}}$ where i_{1}, i_{2}, j_{1} and j_{2} are any permutations of $0,1,2$ and 3 .
g has the following possible 4 forms:
Type (I): $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}}$;
Type (II): $g=z_{i_{1}}^{n_{i_{1}}} z_{i_{2}}+z_{i_{2}}^{n_{i_{2}}}$ or $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$;
Type (III): $g=z_{i_{1}}^{n_{i_{1}}} z_{i_{2}}+z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$.
h has the following possible 4 forms:
Type (I): $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}}$;
Type (II): $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}+z_{j_{2}}^{n_{j_{2}}}$ or $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$;
Type (III): $h=z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$.
It is obvious that $f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} j_{1}}$ and $f_{i_{2} j_{2}}$ are equal to 0 . If any of $f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}$ is not equal to 0 , it does not contain the factor $z_{j_{1}}$ or $z_{j_{2}}$. If any of $f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}$ is not equal to 0 , it does not contain the factor $z_{i_{1}}$ or $z_{i_{2}}$.

We divide the proposition into 2 cases:
Case (i): f contains the monomial $z_{i_{1}}^{n_{i_{1}}} z_{i_{2}}$;
Case (ii): f contains the monomial $z_{i_{1}}^{n_{i_{1}}}$.
The calculation is lengthy. One can refer to the following two lemmas (Lemma 4.2 and Lemma 4.3 respectively) for more details. By the two lemmas, we complete the proof.

In Lemma 4.2, we will discuss Case (i) of Proposition 4.1. That is, for the Type C fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ satisfying $\operatorname{mult}(f) \geq 3, f$ takes the form of $f=z_{0}^{n_{0}} z_{i}+\cdots$ after we renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$.

Lemma 4.2 (Case (i) of Proposition 4.1). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the Type C fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If we get $f=z_{0}^{n_{0}} z_{i}+\cdots$ after renumbering, there does not exist negative weight derivation of $H_{1}(V)$.

Proof. By the definition of Type C, after renumbering, f can be written in the form of

$$
f\left(z_{i_{1}}, z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=g\left(z_{i_{1}}, z_{i_{2}}\right)+h\left(z_{j_{1}}, z_{j_{2}}\right)
$$

where $\alpha_{i_{1}} \geq \alpha_{i_{2}}, \alpha_{j_{1}} \geq \alpha_{j_{2}}$ and $\alpha_{i_{1}} \geq \alpha_{j_{1}}$. In this form, i_{1}, i_{2}, j_{1} and j_{2} are a permutation of $0,1,2$ and 3 . There is no harm to let $i_{1}=0$ and $i_{2}=i$. By $\operatorname{mult}(f) \geq 3$, we get $n_{i_{1}} \geq 2$. It is clear that $f_{i_{1} j_{1}}=0, f_{i_{1} j_{2}}=0, f_{i_{2} j_{1}}=0$ and $f_{i_{2} j_{2}}=0$.

If such negative weight derivation D exists, D can be written in the form of

$$
D=p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{i_{1}}}+p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{i_{2}}}+p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}} .
$$

It is easy to see that f contains the monomial $z_{i_{1}}^{n_{i_{1}}} z_{i_{2}}$. Therefore, regardless of difference of constants, $f_{i_{1} i_{1}}=z_{i_{1}}^{n_{i_{1}}-2} z_{i_{2}}$.

If $n_{i_{1}} \geq 3$, from $D\left(f_{i_{1} i_{1}}\right)=0$, we get $\left(n_{i_{1}}-2\right) p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right) z_{i_{1}}^{n_{i_{1}}-3} z_{i_{2}}+$ $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{1}}^{n_{i_{1}}-2}=0$. Therefore, $\left(n_{i_{1}}-2\right) p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right) z_{i_{2}}+p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{1}}=0$. We can get $p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=0$ and $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)=0$.

If $n_{i_{1}}=2$, it is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+$ $z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, both $z_{i_{1}}$ and $z_{i_{2}}$ are in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Any nonzero element in $H_{1}(V)$ cannot be divided by $z_{i_{1}}$ or $z_{i_{2}}$. We can get $p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=0$ and $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)=0$.

Therefore, D is in the form of $D=p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.
f contains either the monomial $z_{j_{1}}^{n_{j_{1}}}$ or the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$.
If f contains the monomial $z_{j_{1}}^{n_{j_{1}}}$, we can get $n_{j_{1}} \geq 3$. We have the following discussions.

Regardless of difference of constants, $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2}$. From $D\left(f_{j_{1} j_{1}}\right)=$ $\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$, we get $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} \in$ $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$.

If $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$, we can get $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right)<\alpha_{j_{1}}$. Therefore, $\alpha_{j_{1}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}+\alpha_{i_{2}}=w t(f)<\alpha_{j_{1}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}<3 \alpha_{i_{1}}+\alpha_{i_{2}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 2$, we can get $n_{i_{1}}=2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)=\left(z_{i_{1}}, z_{i_{2}}\right)$.

Therefore, we can remove the monomials in $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)$ and $c_{j_{2}} z_{i_{2}}^{k_{j_{2}}}$ that is divided by $z_{i_{1}}$ and $z_{i_{2}}$. If $c_{j_{2}} \neq 0$, it is clear that $k_{j_{2}}=0$. If $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0, p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)$ can be written in the form of $p_{j_{1}}\left(z_{j_{2}}\right)=c_{j_{1}} z_{j_{2}}^{k_{j_{1}}}$. Therefore, D can be written in the form of $D=c_{j_{1}} z_{j_{2}}^{k_{j_{1}}} \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. We consider the relation $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} \in$ $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ again. It is equivalent to $c_{j_{1}} z_{j_{2}}^{k_{j_{1}}} z_{j_{1}}^{n_{j_{1}}-3} \in\left(z_{i_{1}}, z_{i_{2}}\right)$. We can get $c_{j_{1}}=0$ and $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)=0$, which contradicts to $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$. Therefore, we have $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)=0$ and D is in the form of $D=c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}}$, we can get $n_{j_{2}} \geq 3$. It is clear that $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2}$, $f_{j_{1} j_{2}}=0$ and $f_{j_{2} j_{2}}=z_{j_{2}}^{n_{j_{2}}-2}$ regardless of difference of constants. By $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=$ $c_{j_{2}}\left(n_{j_{2}}-2\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$, we can get $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=c_{j_{2}}\left(n_{j_{2}}-2\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. If $c_{j_{2}} \neq 0$, we have $z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$. Therefore, $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. However, since D is negatively weighted, we have $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. Therefore, $w t(f)<2 \alpha_{i_{1}}+\alpha_{j_{2}}$. We can get $n_{i_{1}} \alpha_{i_{1}}+\alpha_{i_{2}}=w t(f)<2 \alpha_{i_{1}}+\alpha_{j_{2}} \leq 3 \alpha_{i_{1}}<3 \alpha_{i_{1}}+\alpha_{i_{2}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 2$, we can get $n_{i_{1}}=2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)=\left(z_{i_{1}}, z_{i_{2}}\right)$. Therefore, we have $k_{j_{2}}=0$. Apply D to $z_{j_{2}}^{n_{j_{2}}-2} n_{j_{2}}-3$ times and we get $z_{j_{2}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Therefore, we have $D=0$, which is equivalent to $c_{j_{2}}=0$. We get a contradiction. Therefore, $c_{j_{2}}=0$ and $D=0$. In other words, such negative weight derivation D does not exist when $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}}$.

If $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$, we can get $n_{j_{2}} \geq 2$. When $n_{j_{2}}=2$, we have $f_{j_{1} j_{2}}=z_{j_{2}}$ regardless of difference of constants. Therefore, $z_{j_{2}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Therefore, $D=0$. When $n_{j_{2}} \geq 3$, we have $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2}, f_{j_{1} j_{2}}=z_{j_{2}}^{n_{j_{2}}-1}$ and $f_{j_{2} j_{2}}=z_{j_{2}}^{n_{j_{2}}-2} z_{j_{1}}$ regardless of difference of constants. If $k_{j_{2}}=0$, we can apply D to $z_{j_{2}}^{n_{j_{2}}-2} n_{j_{2}}-3$ times and we get $z_{j_{2}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Therefore, $D=0$. We only need to consider the case when $k_{j_{2}} \geq 1$. From the weight relationship, we have $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=c_{j_{2}}\left(n_{j_{2}}-1\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}, z_{j_{1}}^{n_{j_{1}}-2}\right)$. Therefore, $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=c_{j_{2}}\left(n_{j_{2}}-1\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. If $c_{j_{2}} \neq 0$, we have $z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$. Therefore, $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. However, since D is negatively weighted, we have $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. We can get $n_{i_{1}} \alpha_{i_{1}}+\alpha_{i_{2}}=w t(f)<2 \alpha_{i_{1}}+\alpha_{j_{2}} \leq 3 \alpha_{i_{1}}<3 \alpha_{i_{1}}+\alpha_{i_{2}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 2$, we can get $n_{i_{1}}=2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)=\left(z_{i_{1}}, z_{i_{2}}\right)$. Therefore, we have $D=0$, which is in contradiction to our assumption that D is negatively weighted. Therefore, $c_{j_{2}}=0$ and $D=0$. In other words, such negative weight derivation D does not exist when $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$.

In conclusion, there does not exist any negative weight derivation when f contains the monomial $z_{j_{1}}^{n_{j_{1}}}$.

If f contains the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$, we can get $n_{j_{1}} \geq 2$. We have the following
discussions.
If $n_{j_{1}}=2$, it is clear that $f_{j_{1} j_{1}}=z_{j_{2}}$ regardless of difference of constants. If f contains the monomial $z_{j_{2}}^{n_{j_{2}}}$, we can get $f_{j_{1} j_{2}}=z_{j_{1}}$ regardless of dirrerence of constants. If f contains the monomial $z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$, we can get $n_{j_{2}} \geq 2$. Therefore, $f_{j_{1} j_{2}}=z_{j_{1}}+z_{j_{2}}^{n_{j_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)=\left(z_{j_{1}}, z_{j_{2}}\right)$. Therefore, $D=0$. Such negative weight derivation D does not exist.

If $n_{j_{1}} \geq 3$, regardless of difference of constants, we have $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2} z_{j_{2}}$ regardless of difference of constants. Note that $D\left(f_{j_{1} j_{1}}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{2}}+$ $c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$.

If $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$, we can get $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right)<\alpha_{j_{1}}$. Therefore, $\alpha_{j_{1}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}+\alpha_{i_{2}}=w t(f)<\alpha_{j_{1}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}<3 \alpha_{i_{1}}+\alpha_{i_{2}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 2$, we can get $n_{i_{1}}=2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)=\left(z_{i_{1}}, z_{i_{2}}\right)$. Therefore, we can remove the monomials in $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)$ and $c_{j_{2}} z_{i_{2}}^{k_{j_{2}}}$ that cannot be divided by $z_{i_{1}}$ and $z_{i_{2}}$. If $c_{j_{2}} \neq 0$, it is clear that $k_{j_{2}}=0$. It is clear that $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)$ can be written in the form of $p_{j_{1}}\left(z_{j_{2}}\right)=c_{j_{1}} z_{j_{2}}^{k_{j_{1}}}$. Therefore, D can be written in the form of $D=c_{j_{1}} z_{j_{2}}^{k_{j_{1}}} \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. We consider the $\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{2}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ again. It is equivalent to $\left(n_{j_{1}}-2\right) c_{j_{1}} z_{j_{2}}^{k_{j_{1}}+1} z_{j_{1}}^{n_{j_{1}}-3}+c_{j_{2}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(z_{i_{1}}, z_{i_{2}}\right)$. We can get $c_{j_{1}}=0$ and $c_{j_{2}}=0$, which is contraditory to $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$. Therefore, it is clear that $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)=0 . D$ is in the form of $D=c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $c_{j_{2}} \neq 0$, we can get $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. Therefore, $\alpha_{j_{2}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}+\alpha_{i_{2}}=w t(f)<$ $\alpha_{j_{2}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}<3 \alpha_{i_{1}}+\alpha_{i_{2}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 2$, we can get $n_{i_{1}}=2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{2}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}}$, we can get $f_{i_{1} i_{2}}=z_{i_{1}}$ regardless of difference of constants. If f contains the monomial $z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. Therefore, $f_{i_{1} i_{2}}=z_{i_{1}}+z_{i_{2}}^{n_{i_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)=\left(z_{i_{1}}, z_{i_{2}}\right)$. If $c_{j_{2}} \neq 0$, it is clear that $k_{j_{2}}=0$. Otherwise, it is equivalent to $D=0$, which contradicts to D is negatively weighted. Therefore, D can be written in the form of $D=c_{j_{2}} \frac{\partial}{\partial z_{j_{2}}}$. We consider the $\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{2}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ again. It is equivalent to $c_{j_{2}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(z_{i_{1}}, z_{i_{2}}\right)$. We can get $c_{j_{2}}=0$, which is contraditory to $c_{j_{2}} \neq 0$. Therefore, $c_{j_{2}}=0$ and $D=0$.

In conclusion, there does not exist any negative weight derivation when f contains the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$.

Therefore, we complete the proof.
In Lemma 4.3, we will discuss Case (ii) of Proposition 4.1. That is, for the Type

C fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ satisfying $\operatorname{mult}(f) \geq 3, f$ takes the form of $f=z_{0}^{n_{0}}+\cdots$ after we renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$.

Lemma 4.3 (Case (ii) of Proposition 4.1). Let $(V, 0)=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{4}: f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0\right\}$ be an isolated singularity defined by the Type C fewnomial $f\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ of weight type $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} ; d\right)$ where mult $(f) \geq 3$. Let $H_{1}(V)$ be the 1-st Hessian algebra. We renumber the variables z_{0}, z_{1}, z_{2} and z_{3} to satisfy the weight relationship $\alpha_{0} \geq \alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If we get $f=z_{0}^{n_{0}}+\cdots$ after renumbering, there does not exist negative weight derivation of $H_{1}(V)$.

Proof. By the definition of Type C, after renumbering, f can be written in the form of

$$
f\left(z_{i_{1}}, z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=g\left(z_{i_{1}}, z_{i_{2}}\right)+h\left(z_{j_{1}}, z_{j_{2}}\right)
$$

where $\alpha_{i_{1}} \geq \alpha_{i_{2}}, \alpha_{j_{1}} \geq \alpha_{j_{2}}$ and $\alpha_{i_{1}} \geq \alpha_{j_{1}}$. In this form, i_{1}, i_{2}, j_{1} and j_{2} are a permutation of $0,1,2$ and 3 . There is no harm to let $i_{1}=0$. By mult $(f) \geq 3$, we get $n_{i_{1}} \geq 3$. It is clear that $f_{i_{1} j_{1}}=0, f_{i_{1} j_{2}}=0, f_{i_{2} j_{1}}=0$ and $f_{i_{2} j_{2}}=0$.

If such negative weight derivation D exists, D can be written in the form of

$$
D=p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{i_{1}}}+p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{i_{2}}}+p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}} .
$$

It is easy to see that f contains the monomial $z_{i_{1}}^{n_{i_{1}}}$. Therefore, regardless of difference of constants, $f_{i_{1} i_{1}}=z_{i_{1}}^{n_{i_{1}}-2}$.

Since $n_{i_{1}} \geq 3$, from $D\left(f_{i_{1} i_{1}}\right)=0$, we get $\left(n_{i_{1}}-2\right) p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right) z_{i_{1}}^{n_{i_{1}}-3}=0$. Therefore, we have $p_{i_{1}}\left(z_{i_{2}}, z_{j_{1}}, z_{j_{2}}\right)=0$.

Therefore, D is in the form of $D=p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{i_{2}}}+p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.
If $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}}$, we can get $n_{i_{2}} \geq 3$. It is clear that $f_{i_{1} i_{1}}=z_{i_{1}}^{n_{i_{1}}-2}$, $f_{i_{1} i_{2}}=0$ and $f_{i_{2} i_{2}}=z_{i_{2}}^{n_{i_{2}}-2}$ regardless of difference of constants. By $D\left(z_{i_{2}}^{n_{i_{2}}-2}\right)=$ $\left(n_{i_{2}}-2\right) p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{2}}^{n_{i_{2}}-3} \in\left(z_{i_{1}}^{n_{i_{1}}-2}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$, we can get $D\left(z_{i_{2}}^{n_{i_{2}}-2}\right)=$ $\left(n_{i_{2}}-2\right) p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{2}}^{n_{i_{2}}-3} \in\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$ has the property that the total weight with respect to $z_{j_{1}}$ and $z_{j_{2}}$ is not less than $w t\left(f_{j_{1} j_{1}}\right)$. If $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) \neq 0$, we have $w t\left(p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)\right) \geq w t\left(f_{j_{1} j_{1}}\right)=w t(f)-2 \alpha_{j_{1}}$. However, since D is negatively weighted, we have $w t\left(p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)\right)<\alpha_{i_{2}}$. We can get $w t(f)<2 \alpha_{j_{1}}+\alpha_{i_{2}} \leq 3 \alpha_{i_{1}} \leq$ $n_{i_{1}} \alpha_{i_{1}}=w t(f)$. This leads to a contradiction. Therefore, if $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}}$, we have $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)=0$ and D is in the form of $D=p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we can get $n_{i_{2}} \geq 2$. It is clear that $f_{i_{1} i_{1}}=z_{i_{1}}^{n_{i_{1}}-2}$, $f_{i_{1} i_{2}}=z_{i_{2}}^{n_{i_{2}}-1}$ and $f_{i_{2} i_{2}}=z_{i_{2}}^{n_{i_{2}}-2} z_{i_{1}}$ regardless of difference of constants. By $D\left(z_{i_{2}}^{n_{i_{2}}-1}\right)=\left(n_{i_{2}}-1\right) p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{2}}^{n_{i_{2}}-2} \in\left(z_{i_{1}}^{n_{i_{1}}-2}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$, we can get $D\left(z_{i_{2}}^{n_{i_{2}}-1}\right)=\left(n_{i_{2}}-1\right) p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) z_{i_{2}}^{n_{i_{2}}-2} \in\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$ has the property that the total weight with respect to $z_{j_{1}}$ and $z_{j_{2}}$ is not less than $w t\left(f_{j_{1} j_{1}}\right)$. If $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right) \neq 0$, we have $w t\left(p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)\right) \geq w t\left(f_{j_{1} j_{1}}\right)=w t(f)-2 \alpha_{j_{1}}$. However, since D is negatively weighted, we have $w t\left(p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)\right)<\alpha_{i_{2}}$. We can get $w t(f)<2 \alpha_{j_{1}}+\alpha_{i_{2}} \leq$
$3 \alpha_{i_{1}} \leq n_{i_{1}} \alpha_{i_{1}}=w t(f)$. Contradiction. Therefore, if $g=z_{i_{1}}^{n_{i_{1}}}+z_{i_{2}}^{n_{i_{2}}} z_{i_{1}}$, we have $p_{i_{2}}\left(z_{j_{1}}, z_{j_{2}}\right)=0$ and D is in the form of $D=p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

Therefore, D is in the form of $D=p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \frac{\partial}{\partial z_{j_{1}}}+c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.
f contains either the monomial $z_{j_{1}}^{n_{j_{1}}}$ or the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$.
If f contains the monomial $z_{j_{1}}^{n_{j_{1}}}$, we can get $n_{j_{1}} \geq 3$. We have the following discussions.
$\underset{n_{j_{1}}-2}{\text { Regardless of difference of constants, we have } f_{j_{1} j_{1}}=}$ $z_{j_{1}}^{n_{j_{1}}-2}$. From $D\left(f_{j_{1} j_{1}}\right) \quad=\quad\left(n_{j_{1}}-2\right) \quad p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} \quad \in$ $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$, we get $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)$ $z_{j_{1}}^{n_{j_{1}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$.

If $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$, we can get $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right)<\alpha_{j_{1}}$. Therefore, $\alpha_{j_{1}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}=w t(f)<\alpha_{j_{1}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 3$, we get a contradiction. Therefore, it is clear that $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)=0$. D is in the form of $D=c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}}$, we can get $n_{j_{2}} \geq 3$. It is clear that $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2}$, $f_{j_{1} j_{2}}=0$ and $f_{j_{2} j_{2}}=z_{j_{2}}^{n_{j_{2}}-2}$ regardless of difference of constants. By $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=$ $c_{j_{2}}\left(n_{j_{2}}-2\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$, we can get $D\left(z_{j_{2}}^{n_{j_{2}}-2}\right)=c_{j_{2}}\left(n_{j_{2}}-2\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. If $c_{j_{2}} \neq 0$, we have $z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-3} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$. Therefore, $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. However, since D is negatively weighted, we have $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. We can get $n_{i_{1}} \alpha_{i_{1}}=w t(f)<2 \alpha_{i_{1}}+\alpha_{j_{2}} \leq 3 \alpha_{i_{1}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 3$, we get a contradiction. Therefore, $c_{j_{2}}=0$ and $D=0$. In other words, such negative weight derivation D does not exist when $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}}$.

If $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$, we can get $n_{j_{2}} \geq 2$. When $n_{j_{2}}=2$, we have $f_{j_{1} j_{2}}=z_{j_{2}}$ regardless of difference of constants. Therefore, $z_{j_{2}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Therefore, we obtain $D=0$. In other words, such negative weight derivation D does not exist when $n_{j_{2}}=2$. When $n_{j_{2}} \geq 3$, we have $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2}, f_{j_{1} j_{2}}=z_{j_{2}}^{n_{j_{2}}-1}$ and $f_{j_{2} j_{2}}=z_{j_{2}}^{n_{j_{2}}-2} z_{j_{1}}$ regardless of difference of constants. If $k_{j_{2}}=0$ and $c_{j_{2}} \neq 0$, we can apply D to $z_{j_{2}}^{n_{j_{2}}-1} n_{i_{2}}-2$ times and we get $z_{j_{2}}$ is in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{1} j_{1}}, f_{i_{1} j_{2}}, f_{i_{2} i_{2}}, f_{i_{2} j_{1}}, f_{i_{2} j_{2}}, f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)$. Any nonzero element in $H_{1}(V)$ cannot be divided by $z_{j_{2}}$. Therefore, $D=$ 0 when $k_{j_{2}}=0$. We only need to consider the case when $k_{j_{2}} \geq 1$. From $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=c_{j_{2}}\left(n_{j_{2}}-1\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}, z_{j_{1}}^{n_{j_{1}}-2}\right)$, we get $D\left(z_{j_{2}}^{n_{j_{2}}-1}\right)=c_{j_{2}}\left(n_{j_{2}}-1\right) z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. If $c_{j_{2}} \neq 0$, we have $z_{i_{2}}^{k_{j_{2}}} z_{j_{2}}^{n_{j_{2}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$. Therefore, $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$.

However, since D is negatively weighted, we have $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. We can get $n_{i_{1}} \alpha_{i_{1}}=w t(f)<2 \alpha_{i_{1}}+\alpha_{j_{2}} \leq 3 \alpha_{i_{1}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 3$, we get a contradiction. Therefore, $c_{j_{2}}=0$ and $D=0$. In other words, such negative weight derivation D does not exist when $n_{j_{2}} \geq 3$. Therefore, such negative weight derivation D does not exist when $h=z_{j_{1}}^{n_{j_{1}}}+z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$.

In conclusion, there does not exist any negative weight derivation when f contains the monomial $z_{j_{1}}^{n_{j_{1}}}$.

If f contains the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$, we can get $n_{j_{1}} \geq 2$. We have the following discussions.

If $n_{j_{1}}=2$, we can get $f_{j_{1} j_{1}}=z_{j_{2}}$ regardless of difference of constants. If f contains the monomial $z_{j_{2}}^{n_{j_{2}}}$, we can get $f_{j_{1} j_{2}}=z_{j_{1}}$. If f contains the monomial $z_{j_{2}}^{n_{j_{2}}} z_{j_{1}}$, we can get $n_{j_{2}} \geq 2$. Therefore, $f_{j_{1} j_{2}}=z_{j_{1}}+z_{j_{2}}^{n_{j_{2}}-1}$ regardless of difference of constants. In both cases, we have $\left(f_{j_{1} j_{1}}, f_{j_{1} j_{2}}, f_{j_{2} j_{2}}\right)=\left(z_{j_{1}}, z_{j_{2}}\right)$. Therefore, $D=0$. Such negative weight derivation D does not exist.

If $n_{j_{1}} \geq 3$, regardless of difference of constants, we have $f_{j_{1} j_{1}}=z_{j_{1}}^{n_{j_{1}}-2} z_{j_{2}}$ regardless of difference of constants. Note that $D\left(f_{j_{1} j_{1}}\right)=\left(n_{j_{1}}-2\right) p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) z_{j_{1}}^{n_{j_{1}}-3} z_{j_{2}}+$ $c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} z_{j_{1}}^{n_{j_{1}}-2} \in\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$. It is clear that any monomial of the element in the ideal $\left(f_{i_{1} i_{1}}, f_{i_{1} i_{2}}, f_{i_{2} i_{2}}\right)$ has the property that the total weight with respect to $z_{i_{1}}$ and $z_{i_{2}}$ is not less than $w t\left(f_{i_{1} i_{1}}\right)$.

If $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right) \neq 0$, we can get $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)\right)<\alpha_{j_{1}}$. Therefore, $\alpha_{j_{1}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}=w t(f)<\alpha_{j_{1}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 3$, we get a contradiction. Therefore, it is clear that $p_{j_{1}}\left(z_{i_{2}}, z_{j_{2}}\right)=0$. D is in the form of $D=c_{j_{2}} z_{i_{2}}^{k_{j_{2}}} \frac{\partial}{\partial z_{j_{2}}}$.

If $c_{j_{2}} \neq 0$, we can get $w t\left(z_{i_{2}}^{k_{j_{2}}}\right) \geq w t\left(f_{i_{1} i_{1}}\right)=w t(f)-2 \alpha_{i_{1}}$. Note that $w t\left(z_{i_{2}}^{k_{j_{2}}}\right)<\alpha_{j_{2}}$. Therefore, $\alpha_{j_{2}}>w t(f)-2 \alpha_{i_{1}}$. We can get $n_{i_{1}} \alpha_{i_{1}}=w t(f)<$ $\alpha_{j_{2}}+2 \alpha_{i_{1}} \leq 3 \alpha_{i_{1}}$. Therefore, $n_{i_{1}}<3$. Note that $n_{i_{1}} \geq 3$, we get a contradiction. Therefore, $c_{j_{2}}=0$ and $D=0$.

In conclusion, there does not exist any negative weight derivation when f contains the monomial $z_{j_{1}}^{n_{j_{1}}} z_{j_{2}}$.

Therefore, we complete the proof.

REFERENCES

[1] M. Benson and S. S.-T. Yau, Lie algebra and their representations arising from isolated singularities: Computer method in calculating the Lie algebras and their cohomology, Advance studies in Pure Mathematics 8, Complex Analytic Singularities, (1986), pp. 3-58.
[2] M. Benson and S. S.-T. Yau, Equivalence between isolated hypersurface singularities, Math. Ann., 287 (1990), pp. 107-134.
[3] B. Chen, H. Chen, S. S.-T. Yau, and H. Zuo, The non-existence of negative weight derivations on positive dimensional isolated singularities: generalized Wahl conjecture, J. Differential Geom., 115:2 (2020), pp. 195-224.
[4] B. Chen, N. Hussain, S. S.-T. Yau, and H. Zuo, Variation of complex structures and variation of Lie algebras II: New Lie algebras arising from singularities, J. Differential Geom., 115:3 (2020), pp. 437-473.
[5] H. CHEN, On negative weight derivations of moduli algebras of weighted homogeneous hypersurface singularities, Math. Ann., 303 (1995), pp. 95-107.
[6] H. Chen, Y.-J. Xu, and S. S.-T. Yau, Nonexistence of negative weight derivation of moduli algebras of weighted homogeneous singularities, J. Algebra, 172 (1995), pp. 243-254.
[7] H. Chen, S. S.-T. Yau, And H. Zuo, Non-existence of negative weight derivations on positively graded Artinian algebras, Trans. Amer. Math. Soc., 372:4 (2019), pp. 2493-2535.
[8] A. Dimca, Are the isolated singularities of complete intersections determined by their singular subspaces, Math. Ann., 267 (1984), pp. 461-472.
[9] A. Dimca and G. Sticlaru, Hessian ideals of a homogeneous polynomial and generalized Tjurina algebras, Documenta Math., 20 (2015), pp. 689-705.
[10] W. Ebeling and A. Takahashi, Strange duality of weighted homogeneous polynomial, Compositio Math., 147 (2011), pp. 1413-1433.
[11] A. Elashvili and G. Khimshiashvili, Lie algebras of simple hypersurface singularities, J. Lie Theory, 16:4 (2006), pp. 621-649.
[12] N. Hussain, S. S.-T. Yau, and H. Zuo, On the derivation Lie algebras of fewnomial singularities, Bull. Aust. Math. Soc., 98:1 (2018), pp. 77-88.
[13] N. Hussain, S. S.-T. Yau, and H. Zuo, On the new k-th Yau algebras of isolated hypersurface singularities, Math. Z., 294:1-2 (2020), pp. 331-358.
[14] N. Hussain, S. S.-T. Yau, and H. Zuo, k-th Yau number of isolated hypersurface singularities and an inequality conjecture, J. Aust. Math. Soc., 110:1 (2021), pp. 94-118.
[15] N. Hussain, S. S.-T. Yau, and H. Zuo, Generalized Cartan matrices arising from new derivation Lie algebras of isolated hypersurface singularities, Pacific J. Math., 305:1 (2020), pp. 189-217.
[16] N. Hussain, S. S.-T. Yau, and H. Zuo, On two inequality conjectures for the k-th Yau numbers of isolated hypersurface singularities, Geom. Dedicata, 212 (2021), pp. 57-71.
[17] N. Hussain, S. S.-T. Yau, and H. Zuo, On the generalized Cartan matrices arising from k-th Yau algebras of isolated hypersurface singularities, Algebr. Represent. Theory, 24:4 (2021), pp. 1101-1124.
[18] N. Hussain, S. S.-T. Yau, and H. Zuo, New k-th Yau algebras of isolated hypersurface singularities and weak Torelli-type theorem, 26pp. in ms, to appear, Math. Research Lett.
[19] N. Hussain, S. S.-T. Yau, and H. Zuo, Inequality conjectures on derivations of local k-th Hessian algebras associated to isolated hypersurface singularities, Math. Z., 298 (2021), pp. 1813-1829.
[20] G. Khimshiashvili, Yau algebras of fewnomial singularities, Universiteit Utrecht Preprints (1352), 2006, http://www.math.uu.nl/publications/preprints/1352.pdf.
[21] W. Meier, Rational universal fibration and flag manifolds, Math. Ann., 258 (1982), pp. 329340.
[22] J. Mather and S. S.-T.Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., 69 (1982), pp. 243-251.
[23] G. Ma, S. S.-T. Yau, and H. Zuo, On the non-existence of negative weight derivations of the new moduli algebras of singularities, J. Algebra, 564 (2020), pp. 199-246.
[24] G. Ma, S. S.-T. Yau, and H. Zuo, Non-existence of negative weight derivations of the local k-th Hessian algebras associated to isolated singularities, 37pp. in ms., submitted.
[25] S. Papadima and L. Paunescu, Reduced weighted complete intersection and derivations, J. Algebra., 183 (1996), pp. 595-604.
[26] S. Papadima and L. Paunescu, Isometry-invariant geodesics and nonpositive derivations of the cohomology, J. Differential Geometry, 71 (2005), pp. 159-176.
[27] K. Saito, Quasihomogene isolierte singularitäten von hyperflächen, Invent. Math., 14 (1971), pp. 123-142.
[28] C. Seeley and S. S.-T.Yau, Variation of complex structure and variation of Lie algebras, Invent. Math., 99 (1990), pp. 545-565.
[29] J. M. WAhl, Derivations of negative weight and non-smoothability of certain singularities, Math. Ann., 258 (1982), pp. 383-398.
[30] J. M. Wahl, A cohomological characterization of P^{n}, Invent. Math., 72 (1983), pp. 315-322.
[31] J. C. Thomas, Rational homotopy of Serre fibration, Ann. Inst. Fourier Grenoble, 31 (1981), pp. 71-90.
[32] Y.-J. XU AND S. S.-T. YAU, Micro-local characterization quasi-homogeneous singularities, Amer. J. Math., 118:2 (1996), pp. 389-399.
[33] S. S.-T. YAU, Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities, Proc. Natl. Acad. Sci. USA, 80 (1983), pp. 7694-7696.
[34] S. S.-T. Yau, Solvable Lie algebras and generalized Cartan matrices arising from isolated singularities, Math. Z., 191 (1986), pp. 489-506.
[35] S. S.-T. Yau, Solvability of Lie algebras arising from isolated singularities and nonisolatedness of singularities defined by sl(2, $\mathbb{C})$ invariant polynomials, Amer. J. Math., 113 (1991), pp. 773-778.
[36] S. S.-T. Yau and H. Zuo, Derivations of the moduli algebras of weighted homogeneous hyper-
surface singularities, J. Algebra, 457 (2016), pp. 18-25.
[37] S. S.-T. Yau and H. Zuo, A sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity, Pure Appl. Math. Q., 12:1 (2016), pp. 165181.
[38] Y. Yu, On Jacobian ideals invariant by reducible sl(2;C) action, Trans. Amer. Math. Soc., 348 (1996), pp. 2759-2791.

[^0]: *Received October 8, 2021; accepted for publication February 7, 2022. Both Yau and Zuo are supported by NSFC Grant 11961141005. Zuo is supported by NSFC Grant 12271280 and Tsinghua University Initiative Scientific Research Program. Yau is supported by Tsinghua University start-up fund and Tsinghua University Education Foundation fund (042202008).
 ${ }^{\dagger}$ Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, P. R. China (fan sh18@mails.tsinghua.edu.cn).
 \ddagger Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, P. R. China; and Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, P. R. China (yau@uic.edu).
 §Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, P. R. China (hqzuo@mail.tsinghua.edu.cn).

