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Complex structures of a twenty

dimensional family of Calabi-Yau 3-folds

Chuangqiang Hu, Stephen S.-T. Yau, and Huaiqing Zuo

In this paper, we classify all isomorphic classes of a family of
Calabi-Yau 3-folds with 20 parameters. In addition, we show that
the isomorphisms form a finite group. The invariants under the
action of this group are calculated by introducing the so-called
DS-graph.

1. Introduction

A Calabi-Yau manifold is a manifold with trivial canonical bundle. It plays
an important role in theoretical physics. In super-string theory, it is conjec-
tured that the extra dimensions of space-time take the form of a compact
complex 3-dimensional Calabi-Yau manifold. Non-singular quintic 3-folds
are Calabi-Yau manifolds. It is a fundamental important question in both
mathematics and theoretical physics to determine when two given quintic
3-folds have the same complex structure. Such a question seems to be out
of reach by 19th century invariant theory or modern geometric invariant
theory. Candelas, Ossa, Green and Parkers [1] studied the following one
dimensional family of Calabi-Yau 3-folds

Xt := {(xi) ∈ CP
4 : x51 + x52 + x53 + x54 + x55 + tx1x2x3x4x5 = 0}

in detail by means of the period map. Chen et al. [3, 4] generalize it to the
families

X
(n)
t := {(xi) ∈ CP

n−1 : xn1 + xn2 + . . .+ xnn + tx1x2 · · ·xn = 0}

with n ⩾ 3. The purpose of this paper is to study the complex structures of
a distinguished class of 20-dimensional family of Calabi-Yau 3-folds {V (ft)}
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with parameter t := (ti,j) for i, j = 1, 2, 3, 4, 5 and i ̸= j, where

ft := ft(x) := x51 + x52 + x53 + x54 + x55 +
∑

i ̸=j

ti,jx
4
ixj .

Our main goal is to completely distinguish these complex structures and
find out the moduli and modular group of this family by introducing a novel
simple method.

Let G be a finite group G = S5 ⋉ Z5
5. The group operation is given by

(τ, b1, b2, . . . , b5) · (σ, a1, a2, . . . , a5)

:= (τσ, bσ(1) + a1, bσ(2) + a2, . . . , bσ(5) + a5)

for (τ, b1, b2, . . . , b5), (σ, a1, a2, . . . , a5) ∈ G. We define the group action on
variables ti,j as follows. Fix η a 5-th primary root of 1. Then

(σ, a1, a2, . . . , a5) · ti,j := ηai−aj tσ(i),σ(j).

When restrict the parameter t to a specific affine open subset, the main
result of this paper states that the Calabi-Yau 3-fold V (ft) is biholomorphic
to V (ft′) if and only if there exists some element g ∈ G such that g · ti,j = t′i,j
for i, j = 1, 2, . . . , 5 and i ̸= j. Moreover, we construct a basis of C[tij ]

G

expressed as the polynomials
∑

symM(V,Ed, Es), where (V,Ed, Es) ranges
over all DS-graphs. See the precise statement in Section 3.

2. Isomorphic class of family {V (ft)}

In this section, we investigate the complex structures of the family {V (ft)}.
Let x = (x1, x2, . . . , x5). The derivative with respect to xi will be shortly

denoted by ∂i. Let It be the ideal of C[x] generated by ∂i,jft : i, j =
1, 2, . . . , 5. We introduce the algebra

At := C[x]/It.

Observe that At is an invariant of the V (ft). We require the parameters ti,j
verify the main assumption that ideal It is generated by x3i and

∑

k ̸=i ti,kx
2
ixk

for i = 1, 2, . . . , 5. We shall emphasize that this assumption holds generically.
To see this, we deduce the following lemma.

Lemma 1. Let (i, j, k, l,m) be an ordering of {1, 2, 3, 4, 5}. Suppose that

the coefficients ti,j satisfy the following conditions
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1) ti,jtj,ktk,i + tj,itk,jti,k ̸= 0.

2) tl,i, tl,j , tl,k do not vanish simultaneously.

3) tm,i, tm,j , tm,k do not vanish simultaneously.

Then the ideal It is finite generated by x3i and
∑

k ̸=i ti,kx
2
ixk for i =

1, 2, . . . , 5.

Proof. By direct computation, the second derivatives ∂i,jft are expressed as

∂i,jft = 4ti,jx
3
i + 4tj,ix

3
j for i ̸= j,

and

∂i,ift = 20x3i + 12
∑

k ̸=i

ti,kx
2
ixk.

The first condition of this lemma and the expressions of ∂i,jft, ∂j,kft, ∂k,ift
imply x3i , x

3
j , x

3
k are contained in It. The rest conditions yield that x3l , x

3
m

are also contained in It. The proof of our lemma is completed by applying
the expressions of ∂i,i(ft) with i = 1, 2, . . . , 5. □

Let T = C5 be a C-vector space spanned by xi for i = 1, 2, . . . , 5. For
ξ ∈ T , we denote ξ̄ ∈ At. Define subset of T by St := {ξ ∈ T : ξ̄3 = 0}. Now
we wish to determine the set St.

Lemma 2. Assume that the main assumption of t holds. Then the set St

is independent on the coefficients t. Moreover, it is given by coordinate axes.

That is St = {λxi : λ ∈ C, i = 1, 2, . . . , 5}.

Proof. The fact ξ̄3 = 0 means that ξ3 is generated by x3i and
∑

k ̸=i ti,kx
2
ixk.

Write ξ = α1x1 + α2x2 + α3x3 + α4x4 + α5x5. Then this means

(1) (

5
∑

i=1

αixi)
3 =

5
∑

i=1

βix
3
i +

5
∑

i=1

γi
∑

k ̸=i

ti,kx
2
ixk

with some coefficients βi, γi. By comparing coefficients, we see that at most
two αi’s are nonzero. Without loss generality, we assume that α1 and α2 are
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nonzero. Thus, Equation (1) becomes

(α1x1 + α2x2)
3 = β1x

3
1 + β2x

3
2

+ γ1(t1,2x
2
1x2 + t1,3x

2
1x3 + t1,4x

2
1x4 + t1,5x

2
1x5)

+ γ2(t2,1x
2
2x1 + t2,3x

2
2x3 + t2,4x

2
2x4 + t2,5x

2
2x5).

This implies t1,k = t2,k = 0 for k = 3, 4, 5. The fact x3i ∈ It implies t1,2 =
t2,1 = 0. Hence, we obtain (α1x1 + α2x2)

3 = β1x
3
1 + β2x

3
2. Therefore, we

have α1 = 0 or α2 = 0. In conclusion, we find that ξ = λxi for some con-
stant λ. □

Theorem 3. Assume that t and t′ satisfy the main assumption. Then the

linear isomorphism from V (f ′
t
) to V (ft) is generated by permutations on

the subscripts of ti,j and the scaling xi 7→ xiηi such that η5i = 1 and t′i,j =

ti,jηiη
−1
j .

Proof. Suppose that V (ft) is isomorphic to V (f ′
t
). So we have At

∼= At′ .
Hence, St maps isomorphically to St′ . Denote by φ the isomorphism from
V (f ′

t
) to V (ft). From Lemma 2, we can assume that φ(xi) := λixi for some

constant λi with i = 1, 2, . . . , 5. By assumption, we have ft′(φ(x)) = λ5
0ft(x)

for some complex number λ0. Then

ft′(φ(x)) =

5
∑

i=1

φ(xi)
5 +

∑

i ̸=j

t′i,jφ(xi)
4φ(xj)

=

5
∑

i=1

λ5
ix

5
i +

∑

i ̸=j

t′i,jλ
4
iλjx

4
ixj

=

5
∑

i=1

λ5
0x

5
i + λ5

0

∑

i ̸=j

ti,jx
4
ixj .

This implies λ5
i = λ5

0 and λ4
iλjt

′
i,j = λ5

0ti,j . Put ηi := λi/λ0. Then t′i,j =

ηiη
−1
j ti,j . Conversely, it is easy to verify that permutation on the subscripts

and scaling defined above map isomorphically from V (ft′) to V (ft). □

Let G be a finite group G = S5 ⋉ Z5
5. Fix η a 5-th primary root of 1.

According to previous theorem, it is natural to define the group action on



✐

✐

“6-Yau” — 2023/7/6 — 18:22 — page 1829 — #5
✐

✐

✐

✐

✐

✐

Complex structures of a 20 dimensional family of CY 3-folds 1829

variables ti,j as

g · ti,j := ηai−aj tσ(i),σ(j)

for g = (σ, a1, a2, . . . , a5) ∈ G. Applying the previous theorem, we obtain the
following corollary.

Corollary 4. Assume that t and t′ satisfy the main assumption. Then

V (ft) and V (ft′) are isomorphic if and only if there exists some element

g ∈ G, such that g · ti,j = t′i,j for i, j = 1, 2, . . . , 5 and i ̸= j.

3. Directed graph

In this section, we establish a relationship between invariants of V (ft) and
some directed graphs. The canonical directed graph consists of the set of
vertices V and the set of directed edges E. In order to investigate the invari-
ances of the family {V (ft)}, we introduce the new kind of directed graphs
which shall be called DS-graph. It consists of the set of vertices V and the
set of dashed edges Ed and the set of (multiple) solid edges Es such that

1) the couple (V,Es) is the union of distinct loops;

2) the couple (V,Ed) is a directed graph containing no loops.

Now we fix V to be a set of five vertices. Let (V,Ed, Es) be a DS-graph.
Associate it with a monomial M(V,Ed, Es) in 20 variables, write ti,j with
i, j = 1, 2, . . . , 5 and i ̸= j. That is

M(V,Ed, Es) :=
∏

(i,j)∈Ed

t5i,j
∏

(i,j)∈Es

ti,j .

As usual, two DS-graphs will be viewed isomorphically if they differ exactly
by a permutation on the vertices. Denote by DS(5) the set of all isomorphism
class of DS-graphs associated to the set of vertices V . For a monomial m in
20 variables ti,j , we denote

∑

symm the symmetric sum of m, namely,

∑

sym

m :=
∑

σ∈S5

σ(m).

We are in the position to describe a basis of the quotient C[ti,j ]
G.

Theorem 5. The quotient C[tij ]
G is generated by the polynomials

∑

symM(V,Ed, Es) with (V,Ed, Es) ∈ DS(5).
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Proof. Let P be a polynomial in C[tij ]
G. Since P is invariant under sym-

metric group, one may write

P =
∑

sym

P1 + . . .+
∑

sym

Pk,

where all Ps’s are monomials. By assumption, Pi is invariant under action
of subgroup {id} × Z5

5. We see that Ps can be split into three parts

(2) Ps =

5
∏

i=1

(t5i,j)
ei,j ·

∏

{ij}

(ti1,i2ti2,i3 · · · tin−1,intin,i1) ·R.

Geometrically, the second part is represented by loops. Hence, we may as-
sume that R = λti1,j1ti2,j2 . . . tim,jm contains no loops. That means

i1 ̸∈ {j1, j2, j3, . . . , jm}.

However, R is not invariant under {id} × Z5
5 if m ⩾ 1. Thus, we have R =

λ. Suppose that all power ei,j ’s in the expression of Ps equal 1 and the
second part consists of distinct loops. Then clearly the polynomial Ps is given
by some DS-graph (V,Ed, Es). That is Ps = M(V,Ed, Es). To complete the
proof, it suffices to reduce the powers in (2). Define invariant polynomials

S1 :=
∑

sym

(t5i,j)
2 −

(

∑

sym

t5i,j

)2

,

and

S2 :=
∑

sym

(ti1,i2ti2,i3 · · · tin−1,intin,i1)
2 −

(

∑

sym

ti1,i2ti2,i3 · · · tin−1,intin,i1

)2

.

We find that both S1 and S2 satisfy the previous condition. Hence they
are generated by polynomials represented by DS-graphs. It yields that
∑

sym(t
5
i,j)

2 and
∑

sym(ti1,i2ti2,i3 · · · tin−1,intin,i1)
2 are also represented by DS-

graphs. This completes the proof. □
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