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1. Introduction

Let @, , be the ring of germs of holomorphic functions (C"**,0) - C. There are
many important equivalence relations that have been defined on the elements of
Opyy- R, AL-, and A -equivalence are well known in function theory. Each
of these equivalence relations can be defined in terms of a Lie group action on
0,,,- For instance two functions are defined to be #-equivalent if they are the
same up to a holomorphic change of coordinates in the domain. In this case the
Lie group acting on @, , is the group of all holomorphic change of coordinates
preserving the origin. Simple complete characterizations of when two functions
are #-, #<L-, or A -equivalent were given by Yau [9] and by Mather and Yau
[6]. -

2-, /-, and Z-equivalence come from singularity theory. These equivalence
relations are defined on the basis of algebra isomorphisms. For example, we can
associate a C-algebra 0, /A(f), the Milnor algebra, to any fe0@,, ,, where A(f)
is the ideal in @, ,, generated by the partial derivatives of f. We say that two
functions are 2-equivalent if their associated Milnor algebras are isomorphic.

It is an interesting question to determine the relationships between these six
equivalences. The goal of this paper is to study these relationships. For a
holomorphic function f with a critical point at the origin, we determine when the
equivalence classes of f with respect to two different equivalence relations coincide.

The purpose of this paper is two-fold. On the one hand, we give a necessary
and sufficient condition for £.%-equivalence to coincide with 2 -equivalence (cf.
Theorem 5.1). This leads us to define the new notion of almost quasi-homogeneous
functions. We suspect that the singularities defined by almost quasi-homogeneous
functions may form a distinguished class of singularities which have some special
properties shared by quasi-homogeneous ones. :

In Sect. 6, we discuss the relationship between 2- and # -equivalence. Perhaps
the most striking result here is Theorem 6.9, which provides us a lot of examples
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with two holomorphic functions having isolated critical points at the origin and
the same Jacobian ideals, but their zero sets are not biholomorphically equivalent.
We also give an example (cf. Example 6.8) such that

@(f);@ﬁf(f)if(f)

+
2(f)

with 2(f) & A (f)and ' (f) & 2(f). This answers a question raised by G.M. Greuel,
who asked whether such functions exist. The computation of this example is
extremely difficult, if not impossible, by hand. We have developed a computer
program which allows us to check all of the equivalence relations. The examples
show the effectiveness of our criteria in checking whether the equivalence classes
coincide or not.

In Sect. 7, we explain how the computer programs work, and how they can
be used to compute generators of the modules and ideals discussed in this paper,
including a(f), which is an important notion in Z-equivalence.

The results mentioned above, together with results obtained in [6,8-10],
complete the solution of the problem of determining the equivalence between
isolated hypersurface singularities began in the sixties. On the other hand, since
the problem is completely solved and the method here can prove the previous
results as well, we also give a complete and self-contained account of the
relationship between these equivalences. Our methods are elementary and easy to
comprehend. Development of important tools such as computations of the tangent
spaces to the orbit manifolds by Mather [4,5] and Shoshitaishvili [8] have been
included here to assist the reader.

2. The hierarchy of equivalence relations

Let 0,,, denote the ring of germs at the origin of holomorphic functions
f{C"*1,0)—»C. 0,,, has a unique maximal ideal m, ,, consisting of the germs
of holomorphic functions which vanish at the origin. Let G, , | be the set of germs
at the origin of biholomorphisms ¢: (C"**,0)—(C"*',0). G, , can be made into
a group by using composition of map germs for the group operation.

Definition 2.1. Two germs of holomorphic functions f,g:(C"**,0)—(C,0) are
called right equivalent if there exists a ¢eG,,, such that f =geo¢. We use the
notation f - g to denote right equivalence.

The group #=G,,, acts on m,,, by composition on the right. The right
equivalence classes are the orbits of this group action. The orbit of fem, is
denoted by

R(f)={gem, . lg~f}

Definition 2.2. Two germs of holomorphic functions f,g:(C"*!,0)—(C,0) are
called right—left equivalent if there exist ¢€G,,, and YyeG, such that f =yege¢.

The notation f X g is used to indicate right-left equivalence.
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Right-left equivalence also arises from a group action. The group
RYL =G, x G, acts on =, ; by composing on the left with the G, component
and on the right with the component from G, ;. These orbits are denoted by

RL(f)={gem,, |g~ f}

Definition 2.3. Suppose f, g:(C**',0)—(C,0) are holomorphic map germs. f and
g are called contact equivalent if and only if there exists a germ of a biholomorphism
H:(C"*2,0)>(C"*2,0) such that

a) H(C*"' x {0},0)=(C"*"! x {0},0)

b) H(graph f)=graph g

The notation f ~ g is used to indicate contact equivalence.

The contact group " was first defined in the C* category by Mather [4]. For
each pair of positive integers (n,p) he associated a group J of germs of C*®
mappings. Much later Mather and Yau [6] defined the holomorphic analog
associated with the pair (n + 1, 1) which we are interested in here.

Definition 2.4. The contact group A" consists of those germs of biholomorphisms
H:C"*2—C"*2 for which there exists a holomorphic map hk:(C"*1,0)—(C"*?,0)
such that the following diagram commutes

((Dn+ 1, 0);(@n+ 2’ O)L(C'H— 1, 0)

(G:'n+1,0) ! (Cn+2 0) (C"+1 0)

where «zg,...,2,) = (zg,..
operation is composition.

This condition can be stated alternately. It says that H{z,,...,z,.,) can be
written in the form (h(z, ..., z,), k(zy,...,z2,., ,)) where h:(C"*1,0)— (C"* 1.0) is the
germ of a biholomorphism and k:(ﬁ?’“r2 0)—(C,0) is the germ of a holomorphic
map with the property that k(z,,...,z,0)=0.

We can now give the action of the group # onm, . If HeX and fem, ,,,
then g = H f is defined by the equation g = ko(id, f)}eh~'. It is easy to check that
elements of @, , | are contact equivalent if and only if they lie in the same 4 -orbit.

The A -orbits are denoted by

Z,0) and #(zq,...,z, W) =(zq...,2,). The group

H(f)={gem,, lg~ f}

Contact equivalence is important because it turns out to be very geometric.
The following proposition, due to Mather [5] in the C® category and later
appearing in [6], explains its significance.

Proposition 2.5. Let (V,0) and (W, 0) be germs of hypersurfaces in C*** defined by
f, gem, ,, respectively. Then f and g are in the same X -orbit if and only if the germs
(V,0) and (W,0) are biholomorphically equivalent.
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Proof. First, suppose fand g are in the same # -orbit. Let H be an clement of 4
such that H (graph f) = graph g. Then the following set germ equalities hold.

h=Y(W)=h"1(2"'graphg)=1"'(H ™' graphg)=:"‘(graph f)=V

This shows that k provides a biholomorphic equivalence between (¥, 0) and (W, 0).

Now suppose that (V,0) and (W,0) are biholomorphically equivalent. Let
h:(C"1,0)—(C"*1,0) be a germ of a biholomorphic mapping such that h(V) = W.
Then there is a unit ue@,, | for which f = u(geh). Define H:(C"*2,0)—(C"*2,0)
by H(z,w)=(h(z),u”'(z)w) where zeC"*' and weC. Then H=2 and
H(z, f(2)) = (h(z),u~(2)f (2)) = ((2), g°h(z)) for z=(zo,...,2,), so H (graphf)=
graph g.

For any fem_,, we define the Jacobian ideal A(f)<0,,, to be the ideal
generated by the partial derivatives of f. The C-algebra 0, ,/A(f) will be called
the Milnor algebra associated to f. When f =0 defines an isolated singularity at
the origin, then the dimension of @, , ,/A(f), considered as a C-vector space, is
the topological invariant u, the Milnor number of the singularity.

Definition 2.6. Two holomorphic germs f, g:(C***,0)—(C,0) are 2-equivalent if
there is a C-algebra isomorphism of Milnor algebras @, , ,/A(f) =0, , ,/A(g). We
also introduce the notation

AN =1{gem,,10,,,/Af)=0,,,/A9)}

The C-algebra @, ,/(f, A(f))is called the moduli algebra. This name is a natural
choice because, considered as a C-vector space, it is the base space for the miniversal
deformation of the singularity defined by f =0.

Definition 2.7. Two holomorphic germs f, g:(C***,0)—(C,0) are «/-equivalent if
there is a C-algebra isomorphism of moduli algebras @, , A f, A(f)) =0, , ,/(g, A(g)).
We will use the following notation for the &/-equivalence classes.

M(f) = {gemn+1|(9n+ 1/(fa A(f)) = (9"+ 1/(95 A(g))}

Definition 2.8. Two holomorphic germs f, g:(C**!,0)—(C,0) are %-equivalent if
there is a C-algebra isomorphism O, . ,/(f,m,. A(f)~0,, /(g,m,. A(g)). The
#-equivalence classes are denoted by

B(f)={gem, 10, [ fim, AN =0, /g m, . AlG))}

Proposition 2.9. The diagram shown below gives some of the relationships between
the different equivalence classes.

A RL ()= A ()= H(])
In in
A5y B

Proof. The inclusions Z(f) = 2% (f)< A'(f) hold because there are correspond-
ing embeddings of the groups which respect the group actions. The embedding
R, RYL is given by g—(id,g), while Z.¥ =, A is defined by (v,h)— H, where
Hf =(id,ve f)°h.

To establish that 2.2(f) < 2(f) we wiil use the following lemma.
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Lemma 2.10. Suppose f:(C"*1,0)—(C,0) is a germ of a holomorphic function and |
Y=, @) is an element of RL. Let ¢*:0,,,—0,,, be the pullback map given.
by fro feod. Then ¢*A(f)= Ay f).

Proof. According to the chain rule,

of _dv o6
0z; (f ¢) Z (62 )azi

This shows that A(y f) < ¢*A(f). For the reverse inclusion, we use the hypothesis
that both y and ¢ are biholomorphic at the origin. This means that the derivative
dyr/dz and the Jacobian matrix D¢ = (3¢7/0z;) have inverses. Let (c ) be the inverse

of D¢. Then
0L (Lion)” § g2

verifying the opposite inclusion. [

Suppose that ge 2% (f). Then there exists ye 2%, y = (Y, ¢) for which g =7 .
Now ¢ induces an isomorphism ¢*:¢0 , —0, ,,. According to Lemma 2.10,
@*A(f) = A(g). This means that ¢* induces an isomorphism of the quotient rmgs
so ge2(f). This proves the inclusion Z.Z(f) < 2(f).

The inclusions °(f) = «(f) and H#°(f) = #(f) follow from the next lemma in
a similar manner.

Lemma 2.11. Suppose f, g:(C"*1,0)—(C,0) are germs of holomorphic functions
which are contact equivalent, that is, g=u(f°¢®) for some u a unit and ¢ a
biholomorphic change of coordinates. Then the following equations hold.

a) ¢*(f, A(f)) = (g, A(g))-

b} ¢*(f,m, . A(f) =(g,m, ., Ag)).

Proof. Let ¢’ = f°¢. Applying the product rule to g = ug’ we get
og ou , 0g

- = + U
0z; 6zigr 0z;
showing that (g, A(g)) < (g, A(g")). Performing the same computation except with
g and ¢’ interchanged, and u replaced by u~* proves the opposite inclusion. Thus

(9, Alg)) = (¢', Al9")).
Using Lemma 2.10, (¢, A(9")) = ¢*(f, A(f)). Combining the two equations
proves a). The proof of part b} is very similar. [

(2.12)

3. Finite determinacy

For any f, ge0,, ,, we say that f and g have the same k-jet at the origin if their
derivatives at the origin agree up to order <k. The k-jet f® is the equivalence
class of all ge@, ,, which have the same k-jet as f.

Definition 3.1. Let fe®,,, and let ¥ be a group which actrs on 0,,,. f is
k-determined relative to % if for any ge(, , , such that g® = f® the %-orbit of f
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contains g. We say that f is finitely determined relative to ¢ if f is k-determined
for some positive integer k.

The following theorem shows that the notion of finite determinacy can be
expressed in both algebraic and geometric terms. We will use the notation f ~'m,

0 @
to represent the module consisting of all elements of the form > a;f* where Z ajt’

- . * . ) 1= 1 1= 1
is a convergent power series vanishing at zero.

Theorem 3.2. Ler (V,0) be the germ of a hypersurface in C"* ! defined by f = 0. The
following conditions are equivalent.

a) V\{0} is nonsingular.

b) O, /(f,A(f)) is a finite dimensional C-vector space.

c) O, /(f,m, . A(f)) is a finite dimensional C-vector space.

d) 0, ,/f 'm +m,  A(f)is a finite dimensional C-vector space.
e) O, ,/A(f) is a finite dimensional C-vector space.

f) 0, ,/m,,  A(f) is a finite dimensional C-vector space.

g) [ is finitely determined relative to A’.

h) f is finitely determined relative to Z%L.

i) f is finitely determined relative to 4.

Proof. The chain of inclusions m_, A(f)=f 'my +m,,  A(f) = (f,m,,  A(f) <
(f, A(f)) implies that f)=-d)=c)=-b). Similarly, the inclusions m,, , A(f) = A(f) <
(f, A(f)) show that f)=-e)=b).

When b) holds, then there exists some positive integer N so that mY, | = (f, A(f)).
But then V(f, A(f)) = {0}. This shows V\{0} is nonsingular, and so b)=a).

To prove a)=d), we use Hilbert’s Nullstellensatz. If a) holds, then m, , , A(f)
must be m_,,-primary. This means that for some positive integer N,
m¥, cm . A(f).Butthen @, /m,,  A(f)isafinite dimensional C-vector space.

This shows that the first six conditions are equivalent. The work of Mather
[4], Theorem 3.5, p. 293 shows that g)<>b), h)<>d), and i)<>¢). His paper uses
notation that is somewhat different from that which is used here because the results
were proved in the C* category, and they were stated somewhat more generally.
Nevertheless in Section 9, p. 307-308 he shows that they are also valid in the
complex analytic category. [

The hypothesis that f is finitely determined simplifies the diagram in
Proposition 2.9 showing the relationship between the different types of germ
equivalence. The notions of o -, o/-, and #-equivalence turn out to be exactly the
same. This is the content of the following theorem of Mather and Yau [6].

Theorem 3.3. Suppose f, g:(C"**,0)—(C,0) are holomorphic function with isolated
critical points at the origin. The following statements are equivalent.
a) f, g are A -equivalent '
b) f, g are s/-equivalent
¢) f, g are B-equivalent
We will not prove this theorem here, but many of the techniques used in its
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proof appear in this paper. The rest of this section is devoted to the computation
“of the tangent spaces to the k-jet orbits. These results will be used frequently in
the sections which follow. _
Let J* be the set of k-jets at the origin of elements of @, , ,. J* has a natural
complex analytic structure obtained by using the Taylor series coefficients as
coordinates. For each of the groups #, 2%, and X, let Z*, #%*, and X’* denote
“the respective sets of k-jets at the origin. They are complex Lie groups which act
on J*
For any fe0,,, we use the notations Z%(f), 2L *(f), and H™*(f) to stand for
the orbits of f% with respect to %#*, 2%, and A4

Theorem 3.4. Let f:(C**"!,0)>C be the germ of a holomorphic function with an
isolated singularity at the origin. Then #(f), RLXf), and A f) are complex
analytic manifolds. The following C-vector space isomorphisms exist between their
tangent spaces at f® and subspaces of J*.

a) TAf) =m,, A

b) THRL ([N =(f " my+m, AN

) TAA () =(f,m,. AN

Proof. 1t is well known that the orbits of a Lie group ¢ acting analytically on a
complex manifold M are submanifolds so we only need to compute the tangent
spaces.

Let 7, be the map which takes any element of J* and sends it to the values of
its k-th order Taylor approximation at z. Each of the three isomorphisms a)-c}
arises from the map which takes a tangent vector v and assigns it to ¢(z) = v(r,)eJ*,
It is clear that this map is a homomorphism. It is injective because the images of
v on the coordinate functions of J* are just the Taylor coefficients at the origin
of ¢(z). If v(n,) =0 for all z, then v applied to the coordinate functions must be
zero, so v would have to equal zero as well. We must calculate the image of this
map for each group %#*, %%, and A" separately. It should be understood that
all of these computations are to be performed modulo m*} .

We start with the case when ¢ = #*. For any tangent vector v there exists a
germ of a holomorphic curve vy, in Z*(f) through f® such that

dgey,
dt

vig)=

t=0

for all germs of maps g:#*(f)— C. Now 7y, can be lifted to a curve 7, in #*, such

that y,= f =7, and

df %,
dt

v(m,) =

t=0

n af .

— A RSO
= izzo aZi(’yO)‘yg |t=0
But jj, is the identity and $,(0) = 0, so each component of §}|,_, isinm__ . Therefore -
v(nem, ,  A(f).
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‘ R0 )
On the other hand, suppose that ¢em ., A(f), ¢ = Y éia—f with {em, .
i=0 Z;
Define a holomorphic family of k-jets by y{zg, - .., 2,) = f(zo + t€o(Zos -5 Zah - +» Zp T
té(zo,-..,2,). In a neighborhood of the origin, this is a curve in Z*(f) through
f® whose tangent vector at the origin maps to ¢.
When 4 = 2.9 the argument is similar, but the lifting of the curve y, is given
e . ~ k . -
by the equation y, = §,°f°j,. Expand ¥, in a Taylor series ¢, = ) ¥!z" Then
i=0
k — .
7= 3 ¥9(f%). Here is the computation of v(r,) in this case.
i=0
Kk dg®
)= Y,

i=0 dt =0

i—14f°%
dt t=0

(foFo) + X ¥Qilf 7o)

The first term is clearly in f ~!m, and second one is in m,,  A(f) according the
computation made in the previous paragraph. Now we prove that all elements of

k
(f "'my+m,, A(f)J* are images of tangent vectors. Suppose ¢ = Z EOfi4y,

i=1
nem, .  A(f). We only have to check that )’ & f'is the image of a tangent vector,
i=0
because we have already proved that n corresponds to a tangent vector of

k
R(f) S RL(f). Define y, by Y (1 +t£P)f% This is a curve in 2£*(f) through

i=1 . o
f% with a tangent vector that maps into ) & f".
i=0
Finally when ¢ = 2* we can use Proposition 2.5 to the lift the curve 7, to
v, = ii(f°7,). (n,) can be computed as follows

di, .. xaf . dy,
v(m,) = i :=of Yo+ Uo iiL-:O azi(%) 1 :=0-
Using the same reasoning as in the computation of the tangent space of R f),
v(r)e(f,m,, ,A(f). To see that all members of (f, m, , ; A f)) are images of tangent
vectors, we take a general element ¢ = uf + # where nem, , | A(f). As above, it is
only necessary to show that uf corresponds to a tangent vector. For this, define
v, by (1 + tu)f. This is a curve in #™(f) through f* with a tangent vector that

maps to uf. [J

We want to look at the jet version of Z2-equivalence as well. Let

)= {g®0,  JAS) +m,, * =0, [Ag)+m,. " }, d(f)={g¥1Ag) = Af) +
m,, *},and AX(f) = (a"(f) + m, ,  A(f)J*. The following result, due to Shoshitaishvili
[8], gives the structue of the 92*-equivalence classes.

Theorem 3.5. Let f:(C**',0)—(C,0) be the germ of a holomorphic function with
an isolated singularity at the origin. Then 2(f) is a complex analytic manifold and
its tangent space at f® is isomorphic to the vector space A(f).

Proof. m,, 2J*is the subspace of J* consisting of k-jets of holomorphic functions
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with singularities at the origin. Let L be a vector subspace of a*(f) complementary
to (d(f)nm, ., A(f))J* and M be a vector subspace of m_, ,2J* complementary to
A¥(f). Within £* let T be a local transversal through the 1dent1ty to the subgroup
‘which fixes f®..

Define a mapping ¢:L x M x T —m, . 2J* by ¢(l,m, ) =1+ m + f®)ot. From
the way L and M were chosen, L x M is transverse to the tangent space of #*(f)
atf™®. For this reason, the differential ¢, at (0, 0,id) is an isomorphism. The inverse
function theorem implies that locally the map ¢ is biholomorphic.

We want to prove that there exist neighborhoods U of f® in m_, ,*J%, V of 0
in L, and W of the identity in T for which U n2%(f) = ¢(V x {0} x W). This will
show that 2% f) is a manifold in the neighborhood of f* and also that its tangent
space is A*(f). The following lemma is used to construct U.

Lemma 3.6. There exists a neighborhood U’ of the origin in L x M for which
(f9+ U2 = (f9+ U)n(f® + L),

Proof. Let &* be the vector space of k-jets of holomorphic mappings
(C"*1,0)—(C"*1,0). The gradient map V:m_, ,2J* — &* ! given by h— Vhis linear
and one-one. We are going to use this embedding of 2%(f) in &*~! to study its
the local structure. _

The theory developed by Mather [4], [5] is more general than has been
presented here, and in particular it applies to the elements of &*. Proposition 2.5
also generalizes, as found in Mather [5], Theorem 2.1. In this formulation it implies
that if f and g are 2*-equivalent, then Vf and Vg are %~ '-equivalent.

Thus the image of 2%(f) under the gradient map is contained in J#*~ (V).
Let A" be the tangent space to #™*~}(Vf) at Vf. The computation carried out
in Theorem 3.4c generalizes to this case as well, see Mather [4], Theorem 7.4a.
Each tangent vector in A~ ! can be written in the form Hf-v + BVf modulom_, *
where Hf is the Hessian matrix, v is any n+ 1-tuple of elements of m,, ,, and B
is any (n+ 1) x (n + 1) matrix of elements of @_, .. By using the product rule to
rewrite this expression, it can be seen that any tangent vector is of the form

(d,f)+ B'Vfmodulom_, .* whered,f is the directional derivative of f along v

It follows that V(m,_, IZJ")mA" ! = V(A*(f)) and also that A* "1 = g¢— 1 4+ #
where @71 = {(BV/)*~Y|B and n x n matrix} and #~' = V(m,, A(/ )T 1.

Because V(L)< d*~! and V(L)n7*~' =0, we can find a subspace Lca -1
which contains V(L) and which is complementary to @~ 'ni*~'. And because
V(M) A*~1 =0, there is a subspace M < &* which contains V(M) and which is
complementary to A*1,

Let N be the submamfo]d VI® + I x M. Because 7%~ '(Vf) is algebraic, there
exists a neighborhood U of the origin in &%~ ! such that (Vf® + U)n N n o~ 1( Vf )
1s a manifold of dimension dim¢ L. On the other hand, from the definition of &~ 1,
there are sufficiently small neighborhoods ¥V of the origin in L such that
(Vf® + V) Nax™* }(Vf). Choosing U small enough, we will have Vf® +
V=(Vf% + 0)ANAX* Y(Vf).Choosing U’ = ¥V ~1U completes the proof of this
lemma. [

2

Choose a product neighborhood U=V x V' x W small enough so that ¢ is
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biholomorphic and so that Lemma 3.6 is satisfied by U' =V x V. Suppose
(Lmoel x M x T. X ¢(,m,1)=(f® +1+m)ote2%f), then O L1+ med /),
because &%(f) < 2(f). According to Lemma 3.6, m= 0. We have ‘shown
Un24f)=¢(V x {0} x W), completing the proof of the theorem. []

4. Weighted homogeneity and Z-orbit equivalence

In this section we investigate the conditions when the Z-orbit of a holomorphic
function with an isolated critical point at the origin is the same as the 2%-, A -, and
9-orbits. It turns out that these orbits coincide precisely when the function 1s
analytically equivalent to a weighted homogeneous polynomial.

The following lemma will be very useful for the results to come. We want to
emphasize that this lemma is very general and does not require that the singuiarity
be isolated. A similar result appears in Shoshitaishvili [8, Lemma 2]. That result
is somewhat stronger, but is restricted to the case of an isolated singularity. Our
lemma is powerful enough for our applications. Moreover the proof is extremely
elementary.

Lemma 4.1. Suppose f, ge@,, ,. f is weighted homogeneous, and A(f) = A(g). Then
gem, . Alg).

Proof. Suppose that f is weighted homogeneous of degree d with weights a, ..., a,.
By definition f(t“z,...,1"z,) = t"f(z,...,2,) for all t. Tt is easy to check that

of

9J either vanishes or is weighted homogeneous of degree d —a; And, since
Zj
A(f) = A(g) there exist elements «;;, f;€0, ., for which

of & Og

o 5"

Z; j=0 Z;

dg & , 0f
=Zﬁij52__
J

6zi j=0

We are going to use these facts in the computation below

d a a - a;—1 ag a a
—g(tzg, ..., t"z,) = ¥, at® 'z (t"2¢,. .., 1"2,)
dt i=0 52,-

-~ af
az " Bt z0, - t“"z,,)ggu(t“"zo, ey tz,)
J

n

[w]

T

. d—a;+ai—1 ag an af
Y azgtT Bt zg, .. t72,) (205 - Zn)
=0 azl

n n n )
=y [ Y oy aizit"""f“‘_1,8,-j(t“°zo,...,t“"zn)ajk(zo,...,zn)]

k=0 i=0j=0
og

——I\Zy »Zn
azk( 0 )
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Then integrate back to find that

o L g
9(Zos---r20) = [—g(t™z,...,t"z,)dt
odt
n ag )
Z blzos ... r2)—(20s---52,)
k=0 0z,
where
n n 1
bi(zos . - z Z 20 (Zgs -, 2,) [ 1Y TET B (102, . 1oz, )drem,

0

This proves that gem,_ . ,A(g). O

We can now begin examining the conditions for when the Z-orbits coincide
with other orbits. The first result is originally due to Shoshitaishvili [8].

Theorem 4.2. Suppose [:(C"**,0)—(C,0) is a holomorphic function with an isolated
critical point at the origin. The following statements are equivalent.

a) 2Af)=2(f)

b) m ,,HA(f) =a(f)+m,, ,Af)

C) (f n + IA(f

d) f is right equivalent to a weighted homogeneous polynomial.

Proof We start by showing that a)=>b). Because f defines an isolated singularity,
m . ,* < A(f) for all large k. This means that 2% f) is precisely 2(f)J*. It follows
that 2%(f)= #*(f) for all k large enough. Therefore their tangent spaces must
coincide. Using the results of Theorems 3.4 and 3.5 we see that (a(f) + m,l AN =
m, ,  A(f)J* for all large k. This means that a(f) + m, , , A(f) =m,  A(f).

The implication by=-c) is obvious. As for ¢c)=d), fea(f) implies fem, . A(f).
By Saito’s theorem [7], f is right equivalent to a weighted homogeneous
polynomial.

The final implication, d) = a), takes more proof. Assume that fis right equivalent
to a weighted homogeneous polynomial f’ and ge2(f). Then we only need to
show that geZ(f).

Since #(f) = A(f"), we can assume without loss of generality that f is a weighted
homogeneous polynomial. The following lemma allows us to also assume that

A(f) = Alg).

Lemma 4.3. Suppose f, g:(C"**,0)—(C,0) are holomorphic functions with isolated
critical points at the origin and O, JA(f) =~ O, ,/A(g). Then there exists a g'e #(g)
such that A(f)= A(g').

Proof. Suppose ¢:0, . /A(f)— 0O, +1/A(g) is a C-algebra isomorphism. We are
going to construct a local system z,,...,z, of holomorphlc coordinates on C" "1,

centered at the origin. Let k = dim¢ (A( f )mm,,Jr L +m, . %)/m,, % Choose elements
Zgy---r 2y EA(f)m,,  Which are lmearly independent modulo m_, ,2. Then pick
n— k more functions z,,...,z,em,_ ., to form a basis modulo m, .2. By the inverse
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function theorem, z,,...,z, form a holomorphic local system of coordinates. We
can now define a lifting “53(9"“ —0,,, of ¢ by specifying its image on each of
the coordinate functions. For each i=k,...,n pick w,-=$(zi)e(9nﬂ so that its
projection in O, ,/A(g) is ¢(Z). Since ¢ is an isomorphism of the quotient rings,

the w,,...,w, must be linearly independent modulo m,,,>. Then choose
Wos---»W,_ €EA(g)nm, . , so that the w,, ..., w, complete a basis modulo m, , 2. By
its construction this map makes the diagram
é
(On+ 1 (9n+ 1

| 7

0, JMH—2—C,, /A4

commute. Furthermore, the w; form a local system of coordinates so that ¢ must
be biholomorphic at the origin. According to Lemma 2.10, A(f) = ¢*A(g) = Alge¢).
Let ¢' = gopeZ#(g) and the proof of our lemma is complete. []

We will assume from now on that

(4.4) A(f) = Alg)

where [ is a weighted homogeneous polynomial defining an isolated critical point
at the origin. It follows from Lemma 4.1 that

(4.5) gem, ., A(g)
(4.6) fem,  A(f)

We will also assume that f & g, because otherwise there is nothing more to prove.
‘Let L be the complex line in @, | joining f to g. Every element of L is of the

form h = (1 — w)f + wg for some weC. Because of (4.4), m__  A(h)c m, . A(f). Let
L, be the set of he L for which

4.7 m,,Ahy=m, A(f)
Lemma 4.8. L, is a connected complex manifold.

Proof. Since f defines an isolated critical point at the origin, there exists an integer
k such that m_, *<=m, , A(f). For any such k

(4.9) m_, AW =m,  A(f)J*
holds if and only if (4.7) holds.

dh \W®
The C-vector space m, , , A(h)J* is generated by the elements v(h) = (z"a—) ,
Z‘I

i =(p, q), where p runs through the non-negative multi-indices with degree between
land kand ¢ =0,1,..., k. Letd be the dimension of the C-vector space m, , , A(/)J*.
By choosing a basis of this space, we may represent each v,(h) as a row vector of
length d.

Together the v,(h) form a matrix with d columns. Because vi(h) = (1 — wv,(f) +
woy(g), each coefficient of the matrix is a linear function of w. Equation (4.9) will
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_hold if and only if at least one of the d x d minors has a nonzero determinant.
Since it holds for w = 0, at least one of the minors must have a determinant which
does not vanish identically. Therefore it is a polynomial in w of degree <d. Hence
there are at most d values at which (4.9) fails to hold.

Therefore we have shown that L, is equal to L with at most a finite number
of points deleted. Since L is a complex line, this implies that L, must be
connected. [

Since f has an isolated critical point at the origin, f is finitely determined with
respect to 4. Therefore it is enough to show that g®e%*(f) for every positive
integer k. We are going to show LyJ* = #%(f) by using the following result proved
by Mather [5, Lemma 3.1, pp. 234-236]. This lemma will be used repeatedly, so
for convenience, we will give the proof here.

Lemma 4.10. Let 0:G x U — U be a C* action of a Lie group G on a C*-manifold
U, and let V be a connected C®-submanifold of U. Then necessary and sufficient
conditions for V to be contained in a single orbit of a are that

a) T(Gv)=2T,V, if veV

b) dim T,(Gv) is independent of the choice of veV

Proof. Necessity is trivial. Now we prove sufficiency. For each veU, let a,:G > U
be the mapping defined by gr—a(g, v). Then T(Gv) = a,,,(T;3G). Provide T,;G with
a Hilbert norm and for each veV, let L, be the orthogonal complement of ker o,
in T,4G. Define L= ) (v x L)<=V x T,4G. Condition b) implies that L is a

veV

subvector bundle over V of ¥ x T4G. Let Ly = ) (o, (T,V)nL,). Condition a)

veV

shows that L, is a subvector bundle of L and the mapping \J ¢py:Lo— TVis an
velV

isomorphism of C*-vector bundles. Let §: TV— L, be the inverse of this mapping,
and let m:V x T,;G - T,4G denote the projection map. Then ne: TV > TG is a
C*-mapping, and a,,(n°f(n)) =n for any neT,V.

To prove that V is contained in a single orbit of «, it is enough to show that
any two points v,,v, of V are contained in the same orbit. Since V is connected,
there is a smooth curve y:[0,1]— V joining v, to v,. We only need to show that
for any t,e[0,1], there is an ¢>0 such that if to—e<t<ty+e, then () is
contained in the same orbit as y(z,).

Let y(t)eT,,V denote the derivative of y(t) with respect to t, and define
X(t)=noP@y(6)eT,yG. X(t) is a C* function of t and

(4.11) &%, (X(8) =¥(0)

From the existence theory for ordinary differential equations, it follows that there
exists a curve t+—> u(t) in G defined for ty — e < t < £y + ¢ for a suitable ¢ > 0 such that
u(to)=1 and

du(r)

(4.12) —d—m=if,(u(r))
L

where X, is the unique right invariant vector field on G which extends X(z).
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We now show that pu(t) ™ '9(¢) = y(t,) for t, — & <t < t, + & This will imply that
y(t) 1s in the same orbit as y(t,) for all ¢ within this range and finish the proof the
lemma. The derivative with respect to ¢ is

#( ) ! 1 v(t)

WO+ pt) ™ ——

d d
=mnﬂ(— i”()l() y@)

By (4.12) and the fact that X, is right invariant, the quantity inside the brackets
‘becomes — X(t)y(t) + y'(t). According to (4.11), this is zero. Since pu(ty) = I, this
shows that u(t)~1y(t) = y(t,) for t, — & <t <ty + & This completes the proof of the
lemma. [J

d )
aﬂ(t) ¥(t) =

We will now apply this lemma. Take the action of « to be the action of G = %&*
on U=J* We can deduce from Lemma 4.8 that V' =L,J* is a connected
submanifold of U = J*, By Theorem 3.4a, T(#*h) =m_, A(h)J*, for any hed, , . If
h®eL,J*, then (4.7) holds, and we obtain

(4.13) TR =m, . A(f)J*

which verifies condition b) of Lemma 4.10. The tangent space T,(L,J*) is the one
dimensional complex subspace of J* spanned by g— f. By (4.5) and (4.6),
g—fem, . A(f)J*. HenceT,(LoJ*) = T,(%*h), which shows that condition a) holds
as well.

Therefore we may apply Lemma 4.10 to conclude that LyJ* is contained in a
single orbit of the action of #* of J*. This proves our result. []

Théorem 4.14. Let f:(C"*1,0)—(C,0) be a holomorphic function with an isolated
critical point at the origin. Then the following statements are equivalent

a) A(f)=H1(f)

b) m,  A(f)=(f,m,,  A(f))

c) f is right equivalent to a weighted homogeneous polynomial.

n+1-

Proof. To prove a)=>b), we use the computation of the tangent spaces performed

in Theorem 3.4a, c. Since Z(f) = H'(f), Zf) = A™(f)for all k. We can equate their

tangent spaces, getting m_, A(f)*=(f,m,, A(f)HJ* for all k. But then
m, Ay =(f,m, Af))

Condition b} is equivalent to saying that (f) & m,, , A(f). According to Saito’s
theorem [7], f is right equivalent to a weighted homogeneous polynomial.
Therefore b)=c).

Finally, for c)=a), it suffices to prove that J4(f)< %(f). We may assume
without loss of generality that f is actually weighted homogeneous. Therefore

f= Z a where a;em_, .. Suppose g = f(f) Then there exist ue(OnH, u(0)+0

and q.‘;em 1 such that g = u( f °¢). Making use of Lemma 2.11 and the fact that
feA(f), we find that ¢*A(f)= A(g). This means that ¢* induces a C-algebra
isomorphism 0, . ,/A(g) =0, ,/A(f). Therefore g is right equivalent to f by
Theorem 4.2. []
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Theorem 4.15. Let f:(C"**,0)—(C,0) be a holomorphic function with an isolated
critical point at the origin. Then the following statements are equivalent

a) Af)=RL(S) '

b) mn+ 1A(f) =f_ 1m1 + mn+ 1A(f)

c) f is right equivalent to a weighted homogeneous polynomial.

Proof. To prove a)=>b), we use the computation of the tangent spaces performed
in Theorem 3.4a, b. Since Z(f) = ZL(f), Z*(f) = Z.L*(f) for all k. We can equate
their tangent spaces, getting m,,  A(f)J*=(f"'m;+m, , A(f)J* for all k. But
then m_, A(f)=f"'m; +m__ A(f). '

Condition by implies that f ~'m, =m_, ,A(f), so fem,, ,A(f). Then, as before,
Saito’s theorem [7] implies that c) holds.

The implication c)=a) can be proved by using Theorem 4.14 and the fact that

ANerL(NsA(f) O

5. &% -orbit equivalence

In this section we investigate the conditions when the #.%-orbit of a holomorphic
function with an isolated critical point at the origin is the same as the 4"~ and
2-orbits.

Theorem 5.1. Suppose f:(C"**,0)—(C, 0) is a holomorphic function with an isolated
critical point at the origin. Then the following statements are equivalent.

a) ZL(f)=A(f)

b) f7himy 4 m, AS)=(f,m,,  A(S))

) m,.,(f)sm,, Af)

Proof. a)=>Db)is proved by using the computation of the tangent spaces performed
in Theorem 3.4b, ¢. Since ZZL(f ) A (f), RLH(f) = A™(f)for all k. We can equate
their tangent spaces, getting (f ~'m, +m_, A(/)J*=(f,m,, | A(f)J* for all k. But
then f~'m; +m, ,  A(f) = (f,m,,  A(f)).

Assume that b) holds. Then z;fef 'm;+m,, A(f), so there exists a

d
convergent power series a(t) = Z ait', a;eC such that z,f = Z a;f'+ Z b, 6f
i=1 i= i=0 Z

where b;em_,  for 0 < i < n. There are two cases to consider, dependlng on whether

e8]
or not a, is nonzero. If a, 0, then u=a, —z;+ Y a,f*~! is a unit element in
=2

0. ., and f=u_1(— Y b,-Z—f)emnHA(f). In particular m,,  (f)=m, A(f)
i=0 Z;
when a; £ 0.

On the other hand, if a, =0, then we have zjf=( i aif"_l)f+ i bia—f
i=2 i=0 Z
Since f has a critical point at the origin, fem, ,%. Therefore m,_, ,(f)=m,, ,*(f) —!l-
m,,A(f). Using Nakayama’s Lemma, it follows that m, ,(f)=m,, A(f).
Therefore we have proved in either case that b)=c).
Finally, to prove c)=-a), it is sufficient to prove that 2 (f) € Z.#(f). Suppose
geX (f). Then there exists ue(,,,,u(0}+0, such that g=u(f°h) where
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h:i(C"*1,0}—(C"**,0) is a germ at the origin of a biholomorphic mapping. Now
f"=u(0)"!(f~h) is holomorphic function with the property that #°(f)=A"(f")
and 22(f)= AL(f"). Thus by replacing f by f’, we may assume without loss of
generality that g = uf where u(0) = 1.

Using Lemma 2.11

(5.2) (fom, AN =(g.m,, Alg))

We will also assume that f # g, because otherwise there is nothing more to prove.

Let L be the complex line in @_, | joining f to g. Since every he L can be written
in the form h = (1 — w) f + wg for some weC, we have (h,m, , | A(h)) < (f,m, ., A(f).
Let L, be the set of heL for which the two ideals are equal. Using an argument
similar to the one used to prove Lemma 4.8, we find that L, is a connected manifold.

The hypothesis that j:(C"**,0)—(C,0) has an isolated critical point at the
origin implies that f is finitely determined with respect to A.%. Hence it is enough
to prove that g¥eZ.L*(f) for every positive integer k. In what follows let k be a
fixed positive integer.

We want to apply Lemma 4.10. In this case G = RL* U=J*and V =L, We
have to check that conditions a) and b) of the lemma are applicable.

Suppose heL,. Then h=(1—w)f +wg=(1 —w + wu)f for some weC. Since
w(0)=1, 1 —w + wu is a unit in O, ,. the following lemma can be applied to h.

Lemma 5.3. Suppose f, h:(C"**,0)—(C,0) are holomorphic functions with isolated
critical points at the origin and h=uf where ue@,  , is a unit. 1If
m . (f)Sm, A, thenm,, (k) S m, Ah).

Proof. Using the hypothesis that m__ () Sm,,,A(f) and (2.12), it is easy to see
that

(5.4 m, ,,Ahysm,,  A(f)

Our first step is to show that these ideals are actually equal. We can do this by
proving that dimg @, ; ,/m, 4 A(f) = dime O, 1 /m, . A(h).
The exact sequence

0— A(f)fm, , A(f)= O,y (fmy M) = O, /A) 0

shows that
dimg @, 4 /My 1 A(f) = dimg Ops 1 /A(f) + dimg A(f)/m, , 1 A(S)

We are going to show that the right hand side of this equation depends only on
the analytic type of the singularity, and not on the defining equation f =0. The
first term on the right hand side is the Milnor number, which is a topological
invariant of the singularity. We will now prove that the second term is equal to
n+1 :
Consider the map ¢:C"t'—>A(f)ym, , A(f) defined by (apas,....a,)—

no 0 . . o - .
> a,-a—f+mn +1A(f). This map is obviously surjective. Suppose that ¢ is not
i=0 Zi

injective, then there exists a nonzero vector (ag,dy,...,d,) in C"*! such that
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Z aiFemn 1400 Without loss of generality, we shall assume a, + 0. Then there
exist bg,...,b,em, ., such that ) a,—~—= ) b, Rearrangmg terms we find
i=0 ji=0

that gzi =(ag—by)™! Z (—a;+ bj) f . This means that A(f) is generated by less
0 j=1 Z;

than n + 1 elements, so the critical pomt of f at the origin cannot be isolated. We

have shown that ¢ is an isomorphism, and dim¢ A(f)/m, . A(f)=n+ 1.

This proves that dim¢ @, | /m, , ,A(f) depends only on the singularity and not
on f. Since f =0 and k=0 define the same singularity, dim. 0, ,/m, ., A(f) =
dim¢ O, ,/m,,  A(h). Combined with (5.4), we see that m,,  A(h) =m, ,  A(f).

Since m,_, (f)em, , A(f) and h=uf, we have m, ,(h)=m,,  A(h). This
compietes the proof of the lemma.

We can now use Lemma 5.3 and (5.2) to show that

foimy+m, A =(f,m,  A(f))
= (h,m,_ ., A(h))
o =h"lmy+m,, A)

In particular we can see that

(5.5) (f imy A m, AN = (T my 4 m AR

for any heL, Combining this with the computation of the tangent space in
Theorem 3.4b, T(2L*h) = (f ~'m; + m_,  A(f))J* for any heL,. This shows that
condition b) holds.

The tangent space of L, at any A is the one dimensional complex subspace of
J* spanned by (g— f)*. According to (5.5), (g—f)®e(f 'm, +m, , A/ ),
proving that T,(L,) = T,(%Z.%*h). Thus condition a) holds as well.

We can now apply Lemma 4.10. We deduce that L, is contained in a single
orbit of the action of Z.%* on J¥, and so in particular g¥e2.2%(f). O

In [7], Saito proved for any f with an isolated critical point at the origin,
fem_ . A(f) if and only if up to a biholomorphic change of coordinates f is a
weighted homogeneous polynomial. Any f satisfying fem_, A(f) is called a
quasi-homogeneous function. Theorems 4.2, 4.15, and 4.14 show that the following
conditions are equivalent: f is quasi-homogeneous, Z(f) = Z2.L(f), Z(f) = A {f),
and Z(f) = 2(f). Theorem 5.1 suggests the following definition.

Definition 5.6. Suppose f:(C"*1,0)—(C,0) is a function with an isolated critical
point at the origin. f is said to be an almost quasi-homogeneous function if
My (f) S, A

The previous theorem leads us to expect that the singularities defined by almost
quasi-homogeneous functions may form a distinguished class of singularities which
have some special properties.

We can also give a criterion for when the £.% and 2 orbits coincide. This
result is originally due to Shoshitaishvili [8].
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Theorem 5.7. Suppose f(C"*',0)—=(C,0) is a holomorphic function with an
isolated critical point at the origin. Then the following statements are equivalent.
a) 2L(f)=2(/)

b) £~ 'my+m, ., Af)=a(f)+m, ., A(f)

Proof. a)=>b)is proved by using the computation of the tangent spaces performed
in Theorems 3.4b and 3.5. Since ZL(f) = 2(f), ZL*(f) = 2"(f) for all k. We can
equate their tangent spaces, getting (f ~'m, +m, , A(fW* = (a(f) + m, . AN
for all k. But then f ~'m, +m, . A(f)=al(f) +m,, ,A(f).

For b)=a), there are two cases. If fA(f), then we can use Theorem 4.2 to
handle this case. We will assume that f¢A(f) from now on. We need to prove
that if ge2(f), then geZZ(f). Using Lemma 4.3, we may also assume without
loss of generality that A(f) = A(g). A final assumption is that f $g.

Let Lbe the complex line in @, , , joining f to g. Since every he Lcan be written
in the form h = (1 — w)f + wg for some weC, we have A(h) € A(f). Let L, be the
set of heLfor which the two ideals are equal. Using an argument similar to the
one used to prove Lemma 4.8, we find that L, is a connected manifold. The
following lemma applies to all elements of L.

Lemma 5.8. Let f:(C"*,0)—(C,0) be a holomorphic function with an isolated
critical point at the origin. Suppone [~ 'm,+m,,  A(f)=a(f)+m,,  A(f) and
f&A(f). Then for any hem_, - such that A(f) = A(h), we have f ~'m; +m, . A(f)=
h™'m,+m, Ah).

Proof. Since A(f)= A(h), we have hea(f). It follows that
h™imy+m,, AW S alf)+m, . A(f)
=f"tm + m, . A(f)

and there exists a power series p(t) = Y. a,t* in C[t] and nem, ,  A(f) such that

k=1
(5.9) h= 3 af+n
k=1
We claim that a, + 0. Suppose not. Then differentiating (5.9) we get
oh © _\Oof On :
—= ka, f* ‘>#+— 5.10
azi (kgz kf az; 6Z!' ( )

Since Y. ka,f*"em,,,, it follows that A(f)=A(h)<m,. A(f)+ Aln). By
k=2

Nakayama’s Lemma, we have A(f) < A(r). On the other hand, since
dn 0h ( ® _\df
5.11 — = ka, f* 1)—
G-11) 0z, 0z; kgz ,kf oz
we have A(n) € A(f). This implies that A(n)= A(f). But nem, +14(n), and so
Lemma 4.1 implies that fem,, ,A(f). Thisis a contradiction, so it must have been
true that a, # 0. ‘ _
Hence there exists a series r(t) belonging to the maximal ideal in C{¢t} such

i
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that #(p(t)) = t. According to (5.9), r(h — ) = f. Therefore we have [ = r(h) + ¢ where
Eem,  A(f)=m,, A(h). It follows that feh™'m, +m,_, A(h), and in particular
fimy+m, A(f)<h™'m + m,, A(h). This completes the proof of the lemma.

: [

2

This lemma implies that for any he L,
(5.12) fimi+m, Af)=h"'m, +m,, Ah)

Since f is finitely determined with respect to Z.%, it is enough to prove that
gV e RF*(f) for every positive integer k. In what follows let k be a fixed positive
integer.

As before we must verify that Lemma 4.10 can be applied to our situation. In
this case G =R¥*, U =J* and V = Ly,J*. We have to check that conditions a)
and b) of the lemma are applicable.

Using Theorem 3.4b and (5.12) we find that

T(RL*h)=(h"‘m, +m, , Ah)J*
=(f"'m +m,, A

for any he0,, ,. This verifies condition b). We also know that T,(L,J*) is the one
dimensional complex subspace of J* spanned by g — f. Applying Lemma 5.8 with
h replaced by g, we get (g—f)®e(f 'm, +m,, A(f)J*. This shows that
TW(L) = T(RF*h)) which verifies condition a).

Therefore we can apply Lemma 4.10 to conclude that L,J* is contained in
RLHf). Since g®¥eLyJ*, this is all we need to prove. []

We will finish this section by giving an example of a function which is almost
quasi-homogeneous, but not quasi-homogeneous and also an example of a function
which is not almost quasi-homogeneous.

Example 5.13. Let f(x, y) = x° + y*> + x*y*. Then
a) f 1s not quasi-homogeneous.
b) f is almost quasi-homogeneous.

) (fim, AN=F""my +m, Af)=alf) +m,, Af)

In particular, we have

-@(f)ig?i"(fbf(f)
I

Af)
Proof. Assume that fem, ,  A(f). Then there exist power series a(x,y)=
. . 0 0
Y g’y and b(x,y)= Y. byx'y! for which f — a—f — bl= 0. If we multiply
i+jz1 i+jz1 0z dy

this equation out and equate each of the coefficients to zero we get a system of
linear equations involving the a;; and b;;. This system includes the equations a4 = 3,
bo, =%, and 3a,;, + 3ay, = 1, obtained by equating the coefficients of x>, y*, and
x3y? respectively. However these equations are inconsistent with each other. This
is a contradiction, and therefore f is not quasi-homogeneous.
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To prove that f is almost quasi-homogeneous, we make the following
calculation

1 ,0f 1 6f) |
= -x*—+_xy_— |- A )+m’
xf (Sx e 5xyay 5x yemA(f)+m

Now it is easy to see that m” = mA(f)+ m®. According to Nakayama’s Lemma,
(5.14) m’ < mA(f)

This shows that xfemA(f). We can prove in a similar manner that yfemA(f),
which verifies that f is almost quasi-homogeneous.
Since f is almost quasi-homogeneous, we can use Theorem 4.15 to see that

(f,mAf N =f""m; +mA(f)
ca(f)+mA(f)

0
All we need to prove is a(f) < (f,mA(f)). Let gea(f). Then (—g,aﬁ) S(g,a—f)
dx dy 0x Jy
This implies that the order of g is at least 5 and that

0
a—g = agx* + a, y* + terms of order = 5
x

Integrating back, we find that
g =tagx® +a,xy* + a,y> + terms of order 2 6
Now differentiating by y, we find that

0
Egz 4a1xy3 + Sazy"' + terms of order = 5
y

.0 .
Since ageA(f), it must be true that ¢, = 0. Now expand g up to order 6.
v

g =Lagx® +a,p° + axx® + ax’y + asx*y? + agx3y? 4+ a;xty* + agxy® + agy®
+ terms of order =7
X . . 0g . . :
By differentiating and expressing p™ in terms of the partials of f and solving the
X
resulting system of linear equations we find that as = 0 and 1a, = a¢. Doing the

: % )
same thing for gg shows that a; =0 and a, = a4. As a result we can write
g ="Lay(x®> + y° + x>p*) + a3x® + agx*y + agxy® + agy® + terms of order 27
1 1 2 af 1 — 20f
=zaof +5lazx” + a4xy)af + g(agxy +dgy )a; + terms of order =7
x y .

Using (5.14) we can see that ge(f) + mA(f). Therefore we have shown that part
¢) holds. :
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The relationships in the diagram follow from Theorems 4.15, 5. l,and5.7. O

Example 5.15. Let f(x,y)=(y+x*)(y*+x°). Then f is not almost quasi-
homogeneous. In particular

A g AL g ()

Proof. We are going to show that xf¢m, . A(f). Assume on the contrary that
xfem,, A(f). Then there exist power series a(x,y)= Y, a;x'y' and b(x,y)=

i,jz1
Y. b;x'y inm_, , such that
i,j=z1
. F
(5.16) xf = ax )2+ b(x, )2
0x dy

By comparing the coefficients of y3, xy3, x*y?, x*v%, x®y, x°y, and x'* on both
sides respectively, we get the following equations.
by, =0
3b,;=1
da, o+ 3byo+2bo; =0
day, +3bse+2b,, =1
2b,=0
Qa0+ 2bso + by =0
13a,0+ bso=1
This system of equations is inconsistent and leads to a contradiction. This means

fis not an almost quasi-homogeneous polynomial. We will consider this example
again in the next section. []

6. Relationship between 2 and 4" equivalence

There are still two more natural questions. The first is whether J°(f) < 2(f), that
is, whether the Milnor algebra isomorphism type is an invariant of the
corresponding singularity. The second is whether 2(f) < J£°(f), that is, whether the
analytic type of an isolated singularity is determined by the Milnor algebras which
are associated to it. The following proposition gives an answer to the first question.

Proposition 6.1. Suppose f:(C"**,0)—=(C,0) is a holomorphic function with an
isolated critical point at the origin with X°(f) < 2(f). Then feA(f)+m, . A*(f),
where A*(f) is the ideal in O, ., generated by all second partial derivatives

of f.

Proof. Using the computation of the tangent spaces to the manifolds #°(f) and
9(f) found in Theorems 3.4c and 3.5, #°(f) < 2(f) implies that (f,m,, A/ ) <=
(a(f) +m_, , A(f))J* for all k. Since both ideals contain some power of the maximal



128 ‘ M. Benson and S. S.-T. Yau

ideal m, , , we have
(6.2) (fim, AN s alf) +m, . A(f)
Then (1 + z,)f€a(f) + m,, ,A(f) and there exist gea(f) and {;em, , , such that

U+z)f=g+ 3 é,-j—f
j=0 0Z;

Differentiating with respect to z,,

n 2
f+(1+20):_f=a—g+ %983 5 e, el

2o 0z j=00zp0z; j= J@zoaz

By definition of a(f) eA(f) Therefore fed(f)+m,, A*(f). O

29
The following remark, due to Mather, shows that it is not true in general that
A (f) = 2f).

Remark 6.3. There exists a polynomial f(x,y) such that f¢A(f)+ A%(f). In
particular ()& 2(f).

Proof. We are going to show that we can find polynomials of the form

64) S )= 3,

for which f¢A(f) + AX(f). We will restrict the exponents a; and b; so that they
satisfy the condition

(6.5) max (a; —a;, b;— b)) =3

for each i <.

For the moment assume that e A(f) + A%(f) and write f in terms of its first
and second partial derivatives. Then if we equate the coefficients of the x*y® terms
on both sides we get six linear equations i=1,...,6

which must have a common solution x,,...,xseC. Condition (6.5) assures that
no cross terms arising from an x%y® term contribute to the final x*y* term
of i % j.

Therefore it cannot be true that f e A(f) + A*(f) if the matrix

[a, by afa,—1) ab, byb,—1)
a, by a)la;—1) azb, byb,—1)
a; by aslaz—1) azby balbs— 1)
a, by azlas—1) agb, bub,—1)
as bs aslas—1) asbs bs(bs—1)
a¢ bs aglas—1) aghs belbs—1)

(6.7)

[ L N N = S
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is nonsingular. Let A(4, b) denote its determinant, where d=(ay,. ..,a¢) and
b=(by,...,bs).

Since the functions 1,a,b,a(a — 1),ab,b(b —1) are linearly independent, the
determinant A(d, b) cannot vanish on any open subset of C% x C®. Consequently
there exist non-negative vectors 4, ge@i such that A(4,5)+0 and such that
condition (6.5) holds. But then A(Ad, ib)is a polynomial in 4 which does not vanish
identically. We can choose 4= 1, so that Ad, /ll;eZi and A(1d, Ab) % 0.

Let a; and b; be the i-th components of Ad and Ab, respectively. Using these

as the exponents in (6.4), we obtain an f(x,y) which is not contained in

A(f)+4%(f). O

Example 6.8. Let f(x,y) = x5 + x'12y% 4+ x°y® + x5y1° + x3y*3 + »'7. Then the
following relationships hold

«@(f);-@ﬁf’(f);%”(f)

_.H.ﬂ
2(f)

with 2(f) & A (f) and A(f) & 2(f)-

Proof. With Remark 6.3 in mind, we looked for positive integers a;, b;, 1 <1i,j <6
which satisfy (6.5) and for which the matrix (6.7) is nonsingular. A computer
program that calculates ranks of matrices with exact rational entries aided our
investigation. The polynomial f was the lowest degree example that we could find.
Our selection procedure guarantees that J#'(f) ¢ 2(f), and it follows that
RL(f) i A°(f) as well. f is not quasi-homogeneous because f ¢ A(f) + A*(f). This

means that 2(f) % RL(]).

We used computer programs described in the next section to check the
remaining inclusions. It was found that a(f)%(f,mA(f)). This shows that

2ZL(f) g 2(f) and AfyE A (S)-

The computations in this example are complex. The Milnor number of the
singularity is 209, and the smallest power of the maximal ideal contained within
A(f)is m3°. a(f) + mA(f) modulo m3! has dimension 317, while (f, mA(f)) modulo
m>! has dimension 329. All of the generators we found for a(f) which were not
contained in (f, mA(f)) were extremely complicated. Some of their coefficients were
rational numbers with over 30 digits in both the numerator and denominator. [

We now turn to the second question and give a general method for constructing
functions F for which 2(F) & S '(F).

Theorem 6.9. Suppose F(Xq,...,%Xpm V1is-e s V) =S (Xpseeos X))+ f(¥1s..., V) where
n>1 and f(xy,...,x,) is a function with an isolated critical point at the origin
which is not quasi-homogeneous. Then 2(F) & A '(F).

Proof. Suppose 2(F) < #'(F). Then using the computation of the téngent spaces
to the manifolds 2(F) and #(F) performed in Theorems 3.5 and 3.4c, 2(F) < H#(F)
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implies that (a(F) + m,,A(F))J* < (F, m,,A(F))J* for all k. Since both ideals contain
some power of the maximal ideal m,,, we have

(6.10) a(F) + ma, A(F) € (F, m,,A(F))

In the foliowing, let x stand for x,,...,x, and y for y,,..., y,. According to the
definition of a(F), f(x)ea(F). Using (6.10), f(x)e(F,m,,A(F)), so there exist b(x, y),
c;(x, ), dj(x, y)eC{x, y} with ¢;(0,0) = d;(0,0) = 0 such that
610 S0 =ble DU+ + 3 e 9T Y+ 5 ae Nl

Xj 0y,

Now b(x, y) must be a unit in C{x, y}. Otherwise we can rearrange the terms

in (6.11) and set y =0 to find that

(6.12) (1 —b(x Z (x, 0)—(x)

Here we have used the fact that f(y) has a singularity at the origin. This equation .

implies that f(x)em,, A(f). Since f =0 defines an isolated singularity, Saito’s ;

theorem [7] implies that f is quasi-homogeneous. This is a contradiction to our

hypothesis, so it must be true that b(x, y) is a unit. .
Next rearrange the terms in (6.11) and set x = 0. We get

(6.13) —b(0, ) f(¥) = Zd(Oy ()

j

af ros

where we have again used the fact that f(x) has a singularity at the origin. Sinééﬁf

b(0, y) is a unit in C{y}, it follows that f(y)em, ., A(f). As before, this contradicts
our hypothesis that f is not quasi-homogeneous. Therefore we conclude that .

AR E A (F). O

Corollary 6.14. Suppose F(X1,..., % V1s--s V) =f (%150 X) + f(¥15-- -, Ya) where
n>1and f(x,,...,x,) is a function with an isolated critical point at the origin which
is not quasi-homogeneous. Then there exists a GeC{x, y} such that A(G)= A(F)
but G¢ A'(F).

Proof. According to Theorem 6.9, there exists HeC{x, y} such that 0, ,/A(H) ~
O, ,/AF) but H¢A(F). Using Lemma 4.3, we can find Ge%(H) such that
A(F) = A(G). Since H is not in (F), it follows that G is not in J#'(F).
These arguments can be modified to work in the C* category as well. The
following remark summarizes this extension to the C* case. '

Remark 6.15. Suppose F(Xi,...,%m Vis--o» Vo) =f (%1, %) + f(y1,..., ¥,) where
n>1 and f(xy,...,X,) is a function with an isolated critical point at the origin
which is not quasn -homogeneous. Then there exists G(x;,...,Xmp V1,--:» Xa)E
C{X1s+--sXp Y1s---» Yny such that A(F)= A(G) and the zero set V(F) deﬁned by
F =0 is not C*-diffeomorphism equivalent to the zero set V(G) deﬁned by G=0
although the two sets are homeomorphic.

When F has real coefficients this is also a consequence of Ephra1m S
Theorem [3] and Corollary 6.14.




"
7
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Corollary 6.16. For any n>1, there exists a one parameter family of
non- quasi-homogeneous isolated singularities in which the Milnor algebras
corresponding to each singularity are the same, but in which the diffeomorphism types
are different. -

Example 6.17. Let F(x, y,z,w)=x"+y° +2° + w’ + x3j23 + z*w3. Then the fol-
lowing relationships hold ‘

R(F) ¢ RL(F) g A (F)

_.H.n

AF)
and F) <& A°(F).
Proof. Observe that F(x, y,z,w) = f(%, y) + f(z,w) where f(x,y) = x>+ y° + x°y*.
We have already shown in Example 5.13 that f(x, y) is not a quasi-homogeneous
function. By Theorem 6.9, we have 2(F) & A'(F).

We now claim that F is also not almost quasi-homogeneous, that is,
m, (F)&m,, A(F). We are going to show that xF¢m, ,  A(F). Assume the
opposite is true. Then there exist power series a(x, y, z, w), b(x, y, z,w), c(x, y,z, W)
and d(x, y,z,w) in m,, such that

) oF 5, oF F
(618) xF = a(xs y.2, W)— + b(xs Y. 2, W)_F + C(X, .z W)t + d(x: Y.z, W)a_‘
0x dy 0z ow

Comparing the coefficients of xz°, xw”, xz*w? on both sides, we get the following

~ equations respectively.

5¢1010=1
5dy10, =1
3¢1010 t3dgs01 = 1.

It turns out that these linear equations form a inconsistent system. This means
that xF¢m_, ,A(F) and so F is not almost quasi-homogeneous. It follows from
Theorems 4.15 and 5.1 that %(F) % RL(F) i.}if (F). Tt is also clear that

.%E(F)i,@(F), because otherwise 2(F)=.@$(F)i,%f (F} w}hich contradicts the
fact that 2 F) £ A (F). O

We will give two more examples which we have computed.

fxlczimple 6.19. Let f(x,y)=(y+ x*}(y*+ x°). Then the following relationships
o

@(f)igi’ﬁf(f);f(f)
4N
2(F)
and 2(f)=A(f).
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Proof. This example was discussed in the previous section, but we did not consider
the inclusions involving 2(f).

We have used computer programs to check these inclusions and have found
that a(f)} < f~'m; + mA(f). One generator of a(f) that is not contained in
L7 my + mA(f) s x?y® + x8y? + xMty 4+ 33x!5 +35x16 On the other hand the
programs showed that a(f) + mA(f) = (f, mA(f)).

Despite the simple form of the polynomial f, the computing problem was still
fairly complex. The Milnor number of this singularity is 23, but the smallest power
of the maximal ideal contained in A(f) is m'®. The dimension of the C-vector
space a(f) modulo m'” is 113 and the dimension of £~ 'm, + mA(f) modulo m*’
is 129. O

Example 6.20. Let f(x, y,z) = x® + y® + 2% + x?>y?z2. Then the following relation-
ships hold

) g AL g A )
4N
2f)
and 2(f) = A (f).

Proof. As in the preceding examples, this singularity was analyzed using computer
programs dlscussed in the next section. It was found that a(f) + mA(f) = (f, mA(f)),
but a(f)¢ fim, + mA( f). One generator of a(f) that is not contained in
f7imy + mA(f)is x*y?z% + 10x° + xy® + xz%. These inclusions are enough to verify
the diagram given above.

The Milnor number of this singularity is 215, with the smallest power of the
maximal ideal contained in A(f) being m'”. The dimension of the C-vector space
a(f) modulo m'® is 706. [J

7. Computational methods

In this section we will describe the computer programs that have been used to
check the examples in Sect. 6. Earlier versions of some of the programs have
already been discussed by Benson and Yau in [2], but many new programs have
been added since that paper.

The programs are written in the C language using the techniques described by
Benson in [1]. These techniques and the associated libraries of subroutines have
made it possible to develop programs rapidly. In most cases it was possible to
implement the algorithms in a compact and readable form.

Our approach has been to develop programs that work on objects of four
different types: ideals in power series rings Q[x, ..., x,], prepared ideals in power
series rings Q[x,,...,x,], submodules of jet spaces Q[x,...,x,]/m*, |, and finite
dimensional Q-algebras. We have developed a description file format for specifying
each type of object and the programs are able to read and wrlte description files
for these objects.

Each of the programs either creates a new description file based on input from
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construct

contains

to_module

standard_base

moduli_ideal

Fig. 7.1. Organization of software

the terminal, reads a description file and computes a new one, or reads a descnptlon
file and does some analysis.

Figure 7.1 gives a graphical description of how these programs relate to one
another. The programs are shown as edges in a directed graph with the description
formats as vertices. The starting vertex of each edge indicates the format of the
program’s input, while the terminating vertex shows the program’s output format.
When the endpoint is not on a vertex, the meaning is that the input or output is
from or to the terminal in a format different from those used for the description files.

We will give brief descriptions of each of the programs used for computing
examples in this paper.

Moduli-ideal. Creates a description file for the following types of ideals: m*_ .,
mt_ L A(f), and (f,m,,  A(f)). It prompts the user for the number and names of
the variables, the type of ideal, the value of k, and the polynomial, if necessary.
Construct module. Creates a description file for 2 module. The user is prompted
for the number and names of the variables and the generators.

To-module {ideal-file> k. Creates a module description file corresponding to an
ideal specified by {ideal-file }. k is the power of the maximal ideal to be used.
Contains {module-1){module-2>. Determines whether the module given by the file
{module-1) contains the module given by the file {module-2>. The algorithm used
is to reduce each generator of {module-2) by the set of generators of {module-1).
{module-1)> contains {(module-2) if and only if all of the reductions are zero.
Sum (module-1>{module-2). Creates a description file for the module which is the
sum of the modules specified by {module-1) and {module-2>.

Standard-base. Finds a prepared ideal description corresponding to an ideal
description file read from the standard input. The ideal must contain a power of
the maximal ideal. A prepared ideal description consists of a standard base for
the ideal along with a basis of monomials for the quotient algebra.

af. Finds a description file for the module a(f) modulo m!  ,, where k is one more
than the minimum power of the maximal ideal contained in A(f). The program
reads a prepared description file for the ideal A(f) from the standard input. Then
it finds all monomials of degree less than or equal to k — 1 which are in a(f). These
form part of a basis for a (f) modulo m* . The remaining generators are found
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by taking a generic linear combination of the other monomials of degree less than
or equal to k — 1 and determining conditions on the coefficients for the derivatives
to be contained in A(f). These conditions form a homogeneous system of linear
equations involving the coefficients of this polynomial. The program solves this
system and resubstitutes the solutions back into the polynomial. The remaining
generators can then be read from this polynomial. It is clear that the
lexicographically smallest monomial in this linear combination cannot have
a derivative which is in the monomial basis for quotient algebra of A(f). The
program takes this in account when it forms the linear combination in order to
reduce the amount of computation.

To show how these programs work together, we give the UNIX commands that
were used to determine whether a(f) < f " 'm, + m,, | A(f):

% moduli-ideal|standard-base|af > af-module

% moduli-ideal > m-delta-ideal

% to-module m-delta-ideal k > m-delta-module

% construct module > f-powers-module

% sum m-delta-module f-powers-moduie > f-powers-m- 1-delta-module
% contains f-powers-m-delta-module af-module -

A SUN-3 computer running the UNIX operating system has been used for program
development. Most computations have not taken more than a few minutes of CPU
time. However a(f) in Example 6.8 with its many digit fractions was an exception.
4hours and 52 minutes of computer time was used.

We will be happy to share these programs and related ones with other
researchers upon request.
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