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Abstract
Let (V , 0) ⊂ (Cn, 0) be a weighted homogeneous isolated hypersurface singularity. In this
paper, we give explicit formulas of its k-th Milnor numbers and the k-th Tjurina numbers in
terms of its weight type. Moreover, we propose a sharp lower bound conjecture for the k-th
Tjurina numbers and verify this conjecture for binomial singularities. We also give a new
characterization for the simple hypersurface singularities.

Keywords Moduli algebra · Isolated singularity · Weighted homogeneous · Derivation Lie
algebra

Mathematics Subject Classification 14B05 · 32S05

1 Introduction

LetOn = C{x1, . . . , xn} be the analytic algebra of convergent power series. For any isolated
hypersurface singularity (V , 0) ⊂ (Cn, 0) where V = V ( f ) = { f = 0}, f ∈ On , the
algebra A(V ) = On/( f ,

∂ f
∂x1

, . . . ,
∂ f
∂xn

) is an invariant of (V , 0). This algebra is called the
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moduli algebra of V ; its dimension τ(V ) is called Tjurina number. The order of the lowest
nonvanishing term in the power series expansion of f at 0 is called the multiplicity of
the singularity (V , 0) denoted as mult( f ). A polynomial f ∈ C[x1, . . . , xn] is weighted
homogeneous, if there exist n positive rational numbers w1, . . . , wn , called weights of the
variables x1, . . . , xn, such that

∑
aiwi = d is the same for all nonzero terms of f . The

d is called the weight degree of f with respect to weights w1, ..., wn, and is denoted by
w-deg f . The weight type of f is denoted by (w1, ..., wn; d). Without loss of generality, we
can assume that w-deg f = 1. The Milnor number of an isolated hypersurface singularity
is denoted as μ := dimC{x1, . . . , xn}

/
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

). The Tjurina number and Milnor
number are probably the most important invariants of singularities. In [16], Milnor and Orlik
proved that theMilnor numberμ of aweighted homogeneous hypersurface singularity of type
(w1, . . . , wn; 1) can be given by its weight: μ = ( 1

w1
− 1)( 1

w2
− 1) · · · ( 1

wn
− 1). According

to the beautiful theorem of Saito [18], f becomes a weighted homogeneous polynomial after
a biholomorphic change of coordinates if and only if μ = τ .

By Mather-Yau theorem [17], the complex structure of an isolated hypersurface singu-
larity is uniquely determined by its moduli algebra. Motivated by this, Yau has considered
further the Lie algebra of derivations of the moduli algebra A(V ), denoted as L(V ) :=
DerC(A(V ), A(V )). This Lie algebra L(V ) has been proven to be finite dimensional and
was called Yau algebra. The dimension λ(V ) of L(V ) was called Yau number [6, 14, 23].
The Yau algebra plays an important role in singularity theory [19]. Yau and his collaborators
have been systematically studying the Yau algebra and its generalizations since the 1980s
[3–5, 8–12, 15, 20–22, 24, 25].

Recall that we have the following well-known generalized Mather-Yau theorem ([7],
Theorem 2.26).

Theorem 1.1 Let m = (x1, . . . , xn) be the maximal ideal of On. Let f , g ∈ m ⊂ On. The
following are equivalent:

1. (V ( f ), 0) ∼= (V (g), 0);
2. For all k ≥ 0, On/( f ,mk J ( f )) ∼= On/(g,mk J (g)) as C-algebra;
3. There is some k ≥ 0 such that On/( f ,mk J ( f )) ∼= On/(g,mk J (g)) as C-algebra,

where J ( f ) = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

).

In particular, if k = 0, 1 above, then the claim of the equivalence of (1) and (3) is exactly
the same as those in the Mather-Yau theorem [17].

For each integer k ≥ 0, we call τ k(V ) = dim On
( f ,mk J ( f ))

the k-th Tjurina number and

μk(V ) = dim On
mk J ( f )

the k-th Milnor number, respectively. These invariants are generaliza-
tions of the Tjurina numbers and Milnor numbers.

For a weighted homogeneous singularity (V , 0), Milnor and Orlik obtained a formula for
μ [16]. In this paper, we shall generalize the formula to μk(V ) and τ k(V ). We shall show
that τ k(V ) and μk(V ) can also be computed by just the weight type. Thus, both τ k(V )

and μk(V ) are topological invariants for binomial plane curve singularity, since the weight
type is a topological invariant. We obtain the formulas of τ k(V ) and μk(V ) for binomial
singularities as follows.

Theorem A Let (V , 0) be a binomial isolated singularity defined by f . Then τ k(V ) depends
only on the weight type of (V , 0). We have:

(1) if f = xa11 + xa22 (2 ≤ a1 ≤ a2) with weight type ( 1
a1

, 1
a2

; 1), then

τ k(V ) =
{
a1a2 − (a1 + a2) + 1 + k2+3k

2 ; 0 ≤ k < a1,
a1k + (2a2−a1)(a1−1)

2 ; k ≥ a1;
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(2) if f = xa11 x2 + xa22 (2 ≤ a1 + 1 ≤ a2) with weight type ( a2−1
a1a2

, 1
a2

; 1), then

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; k < a1 + 1,
(a1 + 1)k + (2a2−a1)(a1−1)

2 + 1; k ≥ a1 + 1.

(3) if f = xa11 x2 + xa22 (a1 + 1 ≥ a2 ≥ 2) with weight type ( a2−1
a1a2

, 1
a2

; 1), then

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; 0 ≤ k < a2,

a2k + a1a2 + a2
2 − a22

2 ; a2 ≤ k;
(4) if f = xa11 x2 + xa22 x1 (1 ≤ a1 ≤ a2) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1), then

τ k(V ) =

⎧
⎪⎨

⎪⎩

a1a2 + k2+3k
2 ; 0 ≤ k < a1, a1 ≥ 2,

(a1 + 1)k + a1a2 + a1
2 − a21

2 ; k ≥ a1 ≥ 2,
2k + 1; k ≥ 0, a1 = 1.

Theorem B Let (V , 0) be a binomial isolated singularity which is defined by f . Then τ k(V )

depends only on the weight type of (V , 0). We have:
(1) if f = xa11 + xa22 (2 ≤ a1 ≤ a2) with weight type ( 1

a1
, 1
a2

; 1), then

μk(V ) =
{
a1a2 − (a1 + a2) + 1 + k2 + k; 0 ≤ k < a1,

(a1 − 1
2 )k + (2a2−a1)(a1−1)

2 + k2
2 ; k ≥ a1;

(2) if f = xa11 x2 + xa22 (2 ≤ a1 + 1 ≤ a2) with weight type ( a2−1
a1a2

, 1
a2

; 1), then

μk(V ) =
{
a1a2 − a2 + 1 + k2 + k; 0 ≤ k < a1 + 1,

(a1 + 1
2 )k + k2

2 + (2a2−a1)(a1−1)
2 + 1; k ≥ a1 + 1;

(3) if f = xa11 x2 + xa22 (a1 + 1 ≥ a2 ≥ 2) with weight type ( a2−1
a1a2

, 1
a2

; 1), then

μk(V ) =
{
a1a2 − a2 + 1 + k + k2; 0 ≤ k < a2,

(a2 − 1
2 )k + k2

2 + a1a2 + a2
2 − a22

2 ; a2 ≤ k;
(4) if f = xa11 x2 + xa22 x1 (1 ≤ a1 ≤ a2) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1), then

μk(V ) =

⎧
⎪⎨

⎪⎩

k2 + k + a1a2; 0 ≤ k < a1, a1 ≥ 2,

(a1 + 1
2 )k + k2

2 + a1a2 + a1
2 − a21

2 ; k ≥ a1 ≥ 2,
k2
2 + 3k

2 + 1; k ≥ 0, a1 = 1.

Secondly, we conjecture the following sharp lower bound for τ k(V ) and verify it in the
case of binomial singularities.

Conjecture 1.1 For each k ≥ 0, assume that τ k({xa11 + · · · + xann = 0}) = �k(a1, . . . , an).
Let (V , 0) = {(x1, x2, . . . , xn) ∈ C

n : f (x1, x2, . . . , xn) = 0}, n ≥ 2, be an isolated
singularity, defined by the weighted homogeneous polynomial f (x1, x2, . . . , xn) of weight
type (w1, w2, . . . , wn; 1). Then

τ k(V ) ≥ �k(1/w1, . . . , 1/wn).
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Remark 1.1 Conjecture 1.1 says that, with the sameweight type, the Brieskorn singularity has
the Tjurina number τ k being smaller than or equal to that of any other weighted homogeneous
singularity.

In this paper, we verify Conjecture 1.1 for binomial singularities. See Theorem C below.

Theorem C Let (V , 0) be a binomial singularity (see Corollary 2.1) defined by the weighted
homogeneous polynomial f (x1, x2) with the weight type (w1, w2; 1). Then

τ k(V ) ≥ �k
(

1

w1
,
1

w2

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
w1w2

− ( 1
w1

+ 1
w2

) + k2+3k
2 + 1; 0 ≤ k < 1

w1
, 2 ≤ 1

w1
≤ 1

w2
,

k
w1

+ ( 2
w2

− 1
w1

)( 1
w1

−1)

2 ; k ≥ 1
w1

, 2 ≤ 1
w1

≤ 1
w2

.

Recall that the Yau algebras of simple singularities and simple elliptic singularities were
computed and a number of elaborate applications to deformation theory were presented in [2]
and [19]. However, the Yau algebra can not characterize the simple singularties completely.
In [6], it has been shown that if X and Y are two simple singularities except for the pair A6 and
D5, then L(X) ∼= L(Y ) as Lie algebras if and only if X and Y are analytically isomorphic.
Therefore, it is natural to find new Lie algebras which can be used to distinguish singularities
completely at least for the simple singularities. In [9], we introduced the k-th Yau algebra
in the following way.

Based on Theorem 1.1, it is natural for us to introduce a new series of k-th Yau algebras
Lk(V ), which are defined to be the Lie algebra of derivations of the k-th moduli algebra
Ak(V ) = On/( f ,mk J ( f )), k ≥ 0, i.e., Lk(V ) = DerC(Ak(V ), Ak(V )). Its dimension is
denoted by λk(V ). This number λk(V ) is a new numerical analytic invariant of the singu-
larities. We call it the k-th Yau number. In particular, L0(V ) is exactly the Yau algebra, thus
L0(V ) = L(V ), λ0(V ) = λ(V ). Therefore, it is reasonable to believe that these new Lie
algebras Lk(V ) and the numerical invariants λk(V ) should also play important roles in the
study of singularities.

Recall that the simple (i.e., ADE) singularities play a significant role in singularity theory
[1]. They consist of two series Ak : {xk+1

1 + x22 = 0} ⊂ C
2, k ≥ 1, Dk : {x21 x2 + xk−1

2 =
0} ⊂ C

2, k ≥ 4, and three exceptional singularities E6, E7, E8 defined inC
2 by polynomials

x31 + x42 , x1
3 + x1x23 and x31 + x52 , respectively. Notice that each simple singularity belongs

to one of these three series: A) xa1 + xb2 , B) x
a
1 x2 + xb2 , and C) x

a
1 x2 + xb2 x1. These are called

binomial singularities, a special kind of fewnomial singularities, see Definition 2.1.
Since L(V ) can not characterize the simple singularities completely [6], there is a natural

question: whether the simple singularities (or which classes of more general singularities)
can be characterized completely by the Lie algebra Lk(V ) for k ∈ N≥1? In [11], we proposed
the following conjecture.

Conjecture 1.2 If X and Y are two ADE singularities, then Lk(X) ∼= Lk(Y ) for any k ∈ N≥1

if and only if X and Y are analytically isomorphic.

Conjecture 1.2 has been confirmed positively for k = 1 in [11]. We shall validate this
conjecture for k = 2, from which we could see that the k-th Yau algebra Lk(V ), k ≥ 1, is
more subtle compared to the Yau algebra L(V ).

Theorem D If X and Y are two simple hypersurface singularities, then L2(X) ∼= L2(Y ) as
Lie algebras, if and only if X and Y are analytically isomorphic.
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2 Fewnomial singularities

Since we would also deal with new Lie algebras of fewnomial isolated singularities, we
recall the definition of fewnomial isolated singularities. The concepts related to fewnomial
are introduced in [13].

Definition 2.1 We say that a polynomial f ∈ C[z1, z2, . . . , zn] is fewnomial, if the number
of monomials in f does not exceed n.

Obviously, the number of monomials in f may depend on the system of coordinates.
In order to be rigorous, we shall only allow linear transformations of coordinates, and say
that f (or rather its germ at the origin) is a k-nomial, if k is the smallest natural number
such that f becomes a k-nomial after (possibly) a linear transformation of coordinates. An
isolated hypersurface singularity V is called k-nomial, if there exists an isolated hypersurface
singularity Y analytically isomorphic to V , which can be defined by a k-nomial and k is the
smallest such number. It was shown that a singularity defined by a fewnomial f can be
isolated, only if f is a n-nomial in n variables with its multiplicity at least 3.

Definition 2.2 We say that an isolated hypersurface singularity V is fewnomial , if it can
be defined by a fewnomial polynomial f . V is called weighted homogeneous fewnomial
isolated singularity, if it can be defined by a weighted homogeneous fewnomial polynomial
f . A 2-nomial (resp. 3-nomial) isolated hypersurface singularity is also called binomial (resp.
trinomial) singularity.

The following proposition and its corollary tells us that each simple singularity belongs
to one of the three types of series.

Proposition 2.1 ([25]) Let f be a weighted homogeneous fewnomial isolated hypersurface
singularity with multiplicity at least 3. Then f is analytically equivalent to a linear combi-
nation of the following three series:

Type A. xa11 + xa22 + · · · + xan−1
n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann x1, n ≥ 2.

Corollary 2.1 ([25]) Each binomial isolated singularity is analytically equivalent to one of
the three series:

Type A. f = xa11 + xa22 ,
Type B. f = xa11 x2 + xa22 ,
Type C. f = xa11 x2 + xa22 x1.

In many situations, it is necessary to display explicitly all the basis of A(V ). And there
always exist such basis consisting of monomials. This kind of basis is called monomial basis
and will often be used in the sequel. Recall that the monomial basis of moduli algebras of
simple singularities (Ak, Dk, E6, E7, E8) are given in [1].
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2.1 An algorithm to compute the k-th Tjurina number �k of binomial isolated
singularities

Proposition 2.2 Let (V , 0) be a binomial isolated singularity of type A, defined by f =
xa11 + xa22 (2 ≤ a1 ≤ a2) with weight type ( 1

a1
, 1
a2

; 1). Then

τ k(V ) =
{
a1a2 − (a1 + a2) + 1 + k2+3k

2 ; 0 ≤ k < a1,
a1k + (2a2−a1)(a1−1)

2 ; k ≥ a1.

Proof The Jacobian ideal of f is J ( f ) := (
∂ f
∂x1

,
∂ f
∂x2

) = (a1x
a1−1
1 , a2x

a2−1
2 ), and maximal

ideal of On is m = (x1, x2).
To compute the k-th Tjurina number, i.e., the dimension of the C-module Ak( f ) =

F(V )/m̄k J̄ ( f ), we first consider the local algebra F(V ) := C{x1, x2}/( f ) = C{x̄1, x̄2};
then by a quotient again, we get Ak( f ) = F(V )/m̄k J̄ ( f ). Throughout this paper, we

draw a bar over a term to denote its image in the corresponding quotient map.
According to the identity f̄ = 0 in C{x̄1, x̄2} = C{x1, x2}/( f ), we have the identity

x̄a11 = −x̄a22 (∗). And then we have the following direct sum decomposition of C-module
F(V ):

C{x̄1, x̄2} = C{x̄2} + C{x̄2}x̄1 + C{x̄2}x̄21 + · · · + C{x̄2}x̄a1−1
1 =

a1−1∑

i=0

C{x̄2}x̄ i1. (�)

The right hand side of (�) contains only finitely many terms, since all the higher order
terms can be included in the first few terms, say

C{x̄2}x̄a11 = C{x̄2}x̄a22 ⊂ C{x̄2},

by the identity x̄a11 = −x̄a22 (∗).

Next, in the local algebra F(V ), we give a simplification of m̄k J̄ ( f ). There we use the

notations J̄1 = (
∂ f̄
∂ x̄1

), J̄2 = (
∂ f̄
∂ x̄2

). And then when k ≥ 1 we have

m̄k J̄ ( f ) = (x̄ k1 , x̄
k−1
1 x̄2, . . . , x̄1 x̄

k−1
2 , x̄ k2 )( J̄1, J̄2)

= x̄1 J̄1(x̄
k−1
1 , x̄ k−2

1 x̄2, . . . , x̄
k−1
2 ) + x̄ k2 J̄1

+ x̄2 J̄2(x̄
k−1
1 , x̄ k−2

1 x̄2, . . . , x̄1 x̄
k−2
2 , x̄ k−1

2 ) + x̄ k1 J̄2

= x̄1(x̄
a1−1
1 )(x̄1, x̄2)

k−1 + x̄ k2 J̄1 + x̄2(x̄
a2−1
2 )(x̄1, x̄2)

k−1 + x̄ k1 J̄2.

By the equality x̄a11 = −x̄a22 (∗) in the local algebra F(V ), when k ≥ 1 we then have

m̄k J̄ ( f ) = (x̄a22 )(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 ) + (x̄ k1 x̄

a2−1
2 )

=
k∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 ).

123



Geometriae Dedicata           (2023) 217:34 Page 7 of 35    34 

When k ≥ a1 ≥ 2, we have

m̄k J̄ ( f )
∗=

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

k∑

a1

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 )

=
[
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+a2−a1

2 x̄a1−1
1 )

]

+
k∑

a1

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 ).

By the assumption a1 ≤ a2 in f = xa11 + xa22 , when k ≥ a1 ≥ 2, we have inclusions of
ideals:

(x̄ k+a2−a1
2 x̄a1−1

1 ) ⊂ (x̄ k2 x̄
a1−1
1 ),

k∑

a1

(x̄ k+a2−1−i
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1),

and here the inclusion of
∑k

a1(x̄
k+2a2−1−i
2 x̄ i−a1

1 ) arises from the fact that we have

k∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) =

d−1∑

h=1

(h+1)a1−1∑

i=ha1

(x̄ k+a2−1−i
2 x̄ i1) +

k∑

da1

(x̄ k+a2−1−i
2 x̄ i1),

where d ∈ N≥1 is such that k − (d − 1)a1 ≥ a1, and k − da1 < a1.
Furthermore, by the identity x̄a11 = x̄a22 (∗), one has

•
k∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1)

∗=
d−1∑

h=1

(h+1)a1−1∑

i=ha1

(x̄ k+(h+1)a2−1−i
2 x̄ i−ha1

1 ) +
k∑

i=da1

(x̄ k+(d+1)a2−1−i
2 x̄ i−da1

1 )

=
d−1∑

h=1

a1−1∑

i=0

(x̄ k+(h+1)a2−1−i−ha1
2 x̄ i1) +

k−da1∑

i=0

(x̄ k+(d+1)a2−1−i−da1
2 x̄ i1);

• 1 ≤ h ≤ d − 1, a1 ≤ a2, k − da1 < a1

⇒
d−1∑

h=1

a1−1∑

i=0

(x̄ k+(h+1)a2−1−i−ha1
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1),

k−da1∑

i=0

(x̄ k+(d+1)a2−1−i−da1
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1).

Consequently, we have the simplification of m̄k J̄ ( f ) when k ≥ a1 ≥ 2 :

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 ).

And then, when k ≥ a1, we have for f = xa11 + xa22 (2 ≤ a1 ≤ a2):

τ k( f ) = dim
C{x1, x2}

( f ) + mk J ( f )
= dim

C{x̄1, x̄2}
m̄k J̄ ( f )

= dim

∑a1−1
i=0 C{x̄2}x̄ i1

∑a1−2
i=0 (x̄ k+a2−1−i

2 x̄ i1) + (x̄ k2 x̄
a1−1
1 )

=
a1−2∑

i=0

(k + a2 − 1 − i) + k

= a1k + a2a1 − a2 − a21
2

+ a1
2

.
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If k < a1 ≤ a2, we still have

C{x̄1, x̄2} =
a1−1∑

i=0

C{x̄2}x̄ i1,

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k2 x̄

a1−1
1 ) + (x̄a2−1

2 x̄ k1 ).

If there is the case that 0 ≤ k = a1 − 1 < a1 ≤ a2, then

(x̄ k2 x̄
a1−1
1 ) = (x̄a1−1

2 x̄a1−1
1 ), (x̄a2−1

2 x̄ k1 ) = (x̄a2−1
2 x̄a1−1

1 ),

⇒ (x̄a2−1
2 x̄ k1 ) ⊂ (x̄ k2 x̄

a1−1
1 ).

Then there we have

τ k = dim

∑a1−1
i=0 C{x̄2}x̄ i1

∑a1−2
i=0 (x̄a1+a2−2−i

2 x̄ i1) + (x̄a1−1
2 x̄a1−1

1 )

=
[
a1−2∑

i=0

(a1 + a2 − 2 − i)

]

+ (a1 − 1)

= a1a2 − (a1 + a2) + 1 + (a1 − 1)2 + 3(a1 − 1)

2
.

If 0 ≤ k < a1 − 1 < a2, then
we can take an expression of m̄k J̄ ( f ) :

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄a2−1

2 x̄ k1 ) + (x̄ k2 x̄
a1−1
1 ) +

a1−2∑

i=k+1

(x̄a2−1
2 x̄ i1).

There we choose an equivalent expression of m̄k J̄ ( f ), and then we do the quotient:

τ k( f ) = dim

∑a1−1
i=0 C{x̄2}x̄ i1

∑k−1
i=0 (x̄ k+a2−1−i

2 x̄ i1) + (x̄a2−1
2 x̄ k1 ) + (x̄ k2 x̄

a1−1
1 ) + ∑a1−2

i=k+1(x̄
a2−1
2 x̄ i1)

=
[
k−1∑

i=0

(k + a2 − 1 − i)

]

+ (a2 − 1) + k + (a1 − k − 2)(a2 − 1)

= a1a2 − (a1 + a2) + 1 + k2 + 3k

2
.

Consequently, we get the whole formula of τ k( f ), that is:

τ k(V ) =
{
a1a2 − (a1 + a2) + 1 + k2+3k

2 ; 0 ≤ k < a1,

a1k + a2a1 − a2 − a21
2 + a1

2 ; k ≥ a1.

	

Algorithm. Let f be any binomial isolated singularity. The proof of Proposition 2.2

provides an algorithm for computing the k-th Tjurina number τ k( f ) of the binomial isolated
singularity f .
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Step 1.Do a direct sum decomposition of the local algebra F(V ) = C{x1,x2}
f =: C{x̄1, x̄2}

using the equality f̄ = 0 in F(V ).
Step 2. Simplify the expression of m̄k J̄ ( f ) in C{x̄1, x̄2}, i.e., the image of m̄k J̄ ( f ) in

F(V ). Usually, we first give the simplification under the assumption that k ≥ h0, where h0
is some positive integer.

Step 3. After having a simplified expression of m̄k J̄ ( f ) under the condition that k ≥ h0,
we do the quotient F(V )/m̄k J̄ ( f ) and determine its dimension, which is exactly the k-th
Tjurina number for k ≥ h0. As one can see, till this step, we may only have parts of the
results due to some restrictions of k, say k ≥ h0, needed in the simplifications above. To
complete the results for all possible values of k, we need the last step.

Step 4. Complete the formulas of τ k( f ) for all possible values of k. In general, in this
step, conversely to the idea in Step 2 to some extent, we add some terms to the simplified
expression of m̄k J̄ ( f ) keeping it an equivalent expression of m̄k J̄ ( f ). Adding some terms
is an operation which makes m̄k J̄ ( f ) seem more complicated but quite useful when we do
the quotient F(V )/m̄k J̄ ( f ).

In the next part, following the steps in the Algorithm, we shall give the formulas for
the other two series of binomial isolated singularities: (B) f = xa11 x2 + xa22 and (C) f =
xa11 x2 + xa22 x1, respectively.

Lemma 2.1 For (B) f = xa11 x2 + xa22 , a1 ≥ 1, and (C) f = xa11 x2 + xa22 x1, a1 ≥ 2, their

local algebras F(V ) = C{x1,x2}
f = C{x̄1, x̄2}, as modules overC, have the same forms direct

sum decomposition

C{x̄1, x̄2} =
a1−1∑

i=0

C{x̄2}x̄ i1 + C{x̄1}x̄a11 .

Proof (1) For f = xa11 x2 + xa22 , there is an identity x̄a11 x̄2 = −x̄a22 (∗) due to the equality
f̄ = 0 in C{x̄1, x̄2}. Thus we have a series of equalities:

C{x̄2}x̄a11 = Cx̄a11 + C{x̄2}x̄2 x̄a11 ∗= Cx̄a11 + C{x̄2}x̄a22 ,

C{x̄2}x̄a1+1
1 = Cx̄a1+1

1 + C{x̄2}x̄a22 x̄1,

. . . ,

C{x̄2}x̄2a1−1
1 = Cx̄2a1−1

1 + C{x̄2}x̄a22 x̄a1−1
1 ,

C{x̄2}x̄2a11 = Cx̄2a11 + C{x̄2}x̄a22 x̄a11
∗= Cx̄2a11 + C{x̄2}x̄2a2−1

2 ,

. . . .

By the equalities above, we observe a periodic result that all the second parts of C{x̄2}x̄ l1,
l ≥ a1, are contained in

∑a1−1
i=0 C{x̄2}x̄ i1. The reason is that if l = l1(mod a1), 0 ≤ l1 < a1,

that is, if there exists such a positive integer d ∈ N≥0 that 0 ≤ l − (d − 1)a1 ≥ a1, and
l − da1 < a1, we then have

C{x̄2}x̄ l1 ∗= Cx̄ l1 + C{x̄2}x̄da2−(d−1)
2 x̄ l−da1

1 ,

and an inclusion of the second parts of C{x̄2}x̄ l1 :

C{x̄2}x̄da2−(d−1)
2 x̄ l−da1

1 ⊂
a1−1∑

i=0

C{x̄2}x̄ i1.
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Thus we have

C{x̄1, x̄2} =
a1−1∑

i=0

C{x̄2}x̄ i1 +
∞∑

i=a1

C{x̄2}x̄ i1 =
a1−1∑

i=0

C{x̄2}x̄ i1 +
∞∑

i=0

Cx̄a1+i
1

=
a1−1∑

i=0

C{x̄2}x̄ i1 + C{x̄1}x̄a11 .

(2) For f = xa11 x2 + xa22 x1(a1 ≥ 2), there is an identity x̄a11 x̄2 = −x̄a22 x̄1(∗) due to the
equality f̄ = 0 in C{x̄1, x̄2}. Thus we have a series of equalities:

C{x̄2}x̄a11 = Cx̄a11 + C{x̄2}x̄2 x̄a11 ∗= Cx̄a11 + C{x̄2}x̄a22 x̄1,

C{x̄2}x̄a1+1
1 = Cx̄a1+1

1 + C{x̄2}x̄a22 x̄21 ,

. . . ,

C{x̄2}x̄2a1−2
1 = Cx̄2a1−2

1 + C{x̄2}x̄a22 x̄a1−1
1 ,

C{x̄2}x̄2a1−1
1 = Cx̄2a1−1

1 + C{x̄2}x̄a22 x̄a11
∗= Cx̄2a1−1

1 + C{x̄2}x̄2a2−1
2 x̄1,

. . . .

Like in case (1), we observe a similar periodic result that all the second parts of C{x̄2}x̄ l1,
l ≥ a1, are contained in

∑a1−1
i=1 C{x̄2}x̄ i1, since if there exist such a positive integer d ∈ N≥0

that l − (d − 1)(a1 − 1) ≥ a1 − 1, and l − d(a1 − 1) < a1 − 1, one has

C{x̄2}x̄ l1 = Cx̄ l1 + C{x̄2}x̄da2−(d−1)
2 x̄ l−d(a1−1)+1

1 ,

and the inclusion of the second parts of C{x̄2}x̄ l1 :

C{x̄2}x̄da2−(d−1)
2 x̄ l−d(a1−1)+1

1 ⊂
a1−1∑

i=1

C{x̄2}x̄ i1.

Thus we have the expression of the local algebra of f = xa11 x2 + xa22 x1 :

C{x̄1, x̄2} =
a1−1∑

i=0

C{x̄2}x̄ i1 +
∞∑

i=a1

C{x̄2}x̄ i1 =
a1−1∑

i=0

C{x̄2}x̄ i1 + C{x̄1}x̄a11 .

	

Nextwe shall give, to some extent, simplified expressions of m̄k J̄ ( f ) in their local algebras

C{x̄1, x̄2} of the binomial singularity of types (B) and (C).

Remark 2.1 A weighted homogeneous polynomial f of type (w1, . . . , wn; d) satisfies the
Euler identity:

d · f =
n∑

i=1

wi xi
∂ f

∂xi
in C{x}.

In our case, the identity:

d · f = w1x1
∂ f

∂x1
+ w2x2

∂ f

∂x2
,
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leads to equalities of elements in the local algebra C{x1, x2}/( f ):

0 = f̄ ∈ ( f̄ ) ⇒ x̄1
∂ f̄

∂ x̄1
= x̄2

∂ f̄

∂ x̄2
, (∗)

as well as of ideals:

x̄1 J̄1 = x̄2 J̄2, (∗∗)

where we use the notation (J1, J2) := ((
∂ f
∂x1

), (
∂ f
∂x2

)), and then a notation for J̄ ( f ), that

is, image of J ( f ) in the local algebra, i.e., J̄ ( f ) = J̄1 + J̄2.

Using the equality (∗∗) here, we have a kind of simplifications of m̄k J̄ ( f ) for general
cases.

Lemma 2.2 For each binomial isolated singularity f, the ideal m̄k J̄ ( f ) has the following
kind of simplified form, whenever k ≥ 1, in its local algebra F(V ) = C{x̄1, x̄2} :

m̄k J̄ ( f ) = x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2.

Proof By Remark 2.1, one has

m̄k J̄ ( f ) = (x̄ k1 , x̄
k−1
1 x̄2, . . . , x̄1 x̄

k−1
2 , x̄ k2 )( J̄1 + J̄2)

= x̄1 J̄1(x̄
k−1
1 , . . . , x̄ k−1

2 ) + x̄ k2 J̄1 + x̄2 J̄2(x̄
k−1
1 , . . . , x̄ k−1

2 ) + x̄ k1 J̄2

= x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄2 J̄2(x̄1, x̄2)

k−1 + x̄ k1 J̄2
(∗∗)= x̄1 J̄1(x̄1, x̄2)

k−1 + x̄ k2 J̄1 + x̄ k1 J̄2.

	

Lemma 2.3 For type (B) f = xa11 x2 + xa22 , in the local algebra F(V ) = C{x̄1, x̄2}, m̄k J̄ ( f )
has a simplification when k ≥ 1 :

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
k
1 x̄

a2−1
2 ),

and specifically we have
(1A). If 3 ≤ a1 + 1 ≤ a2 and k ≥ a1 + 1, there is

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 );

(1B). If 2 = a1 + 1 ≤ a2 and k ≥ 1, there is

m̄k J̄ ( f ) = (x̄ k+1
2 ) + (x̄ k+1

1 );
(2A). If a1 + 1 ≥ a2 ≥ 2 and a1 ≥ k ≥ a2, there is:

m̄k J̄ ( f ) =
k−a2∑

i=0

(x̄2a2−1
2 x̄ i1) +

k−1∑

i=k−a2+1

(x̄ k+a2−1−i
2 x̄ i1)

+
a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 );
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(2B). If a1 + 1 ≥ a2 ≥ 2 and k > a1 ≥ a2 − 1, there is:

m̄k J̄ ( f ) =
k−1−da1∑

i=0

(x̄ k+(d+1)a2−da1−(d+1)−i
2 x̄ i1) +

k−da1+a1−a2∑

i=k−da1

(x̄ (d+1)a2−d
2 x̄ i1)

+
a1−1∑

i=k−da1+a1+1−a2

(x̄ k+a2+(d−1)(a2−a1)−d−i
2 x̄ i1) + (x̄ k+a1

1 ).

Proof The image of the Jacobian ideal of f = xa11 x2 + xa22 in its local algebra is

J̄ ( f ) = (x̄a1−1
1 x̄2, x̄

a1
1 + a2 x̄

a2−1
2 ).

By Lemma 2.2, when k ≥ 1, we have

m̄k J̄ ( f ) = x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2

= x̄1(x̄
a1−1
1 x̄2)(x̄1, x̄2)

k−1 + x̄ k2 (x̄
a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 )

∗= (x̄a22 )(x̄1, x̄2)
k−1 + x̄ k2 (x̄

a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 )

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

(1). When 2 ≤ a1 + 1 ≤ a2, we first have that

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

(1A). If a1 + 1 ≤ a2, k ≥ a1 + 1, firstly we have

m̄k J̄ ( f ) =
a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 )

+ (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

Take i = a1 − 1 in (x̄ k+a2−1−i
2 x̄ i1), we have

a1 + 1 ≤ a2 ⇒ (x̄ k+a2−a1
2 x̄a1−1

1 ) ⊂ (x̄ k+1
2 x̄a1−1

1 ).

Then when 3 ≤ a1 + 1 ≤ a2, we have

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) =

a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ), (1A.1)

and this leads to the equality:

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) +

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1)

+ (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).
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Considering
∑k−1

i=a1(x̄
k+a2−1−i
2 x̄ i1) above, we use the similar argument in Lemma 2.1 about

the decomposition of C{x̄1, x̄2}. This argument shows that we can always lower the power
of x̄1 in (x̄ k+a2−1−i

2 x̄ i1) of the sum
∑k−1

i=a1(x̄
k+a2−1−i
2 x̄ i1) to a number less than or equal to

a1 − 1, by the identity x̄a11 x̄2 = x̄a22 (∗). After this reduction, we have

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1). (1A.2)

To explain (1A.2) explicitly, there is the equality:

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) =

d−1∑

h=1

(h+1)a1−1∑

i=ha1

(x̄ k+a2−1−i
2 x̄ i1) +

k−1∑

da1

(x̄ k+a2−1−i
2 x̄ i1),

where d ∈ N≥1 is such that k − 1 − (d − 1)a1 ≥ a1, and k − 1 − da1 < a1.
Furthermore, by the identity x̄a11 x̄2 = x̄a22 (∗), one has

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) (1A.3)

∗=
d−1∑

h=1

(h+1)a1−1∑

i=ha1

(x̄ k+(h+1)a2−h−1−i
2 x̄ i−ha1

1 ) +
k−1∑

i=da1

(x̄ k+(d+1)a2−d−1−i
2 x̄ i−da1

1 )

=
d−1∑

h=1

a1−1∑

i=0

(x̄ k+(h+1)a2−h−1−i−ha1
2 x̄ i1) +

k−1−da1∑

i=0

(x̄ k+(d+1)a2−d−1−i−da1
2 x̄ i1).

And since there is

a1 + 1 ≤ a2 ⇒ k + (h + 1)a2 − h − 1 − i − ha1 > k + a2 − 1 − i, ∀1 ≤ h ≤ d − 1.

This fact leads to the inclusion:

d−1∑

h=1

a1−1∑

i=0

(x̄ k+(h+1)a2−h−1−i−ha1
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1). (1A.4)

Takeh = 1 in
∑a1−1

i=0 (x̄ k+(h+1)a2−h−1−i−ha1
2 x̄ i1),wehave

∑a1−1
i=0 (x̄ k+2a2−2−i−a1

2 x̄ i1). Thus
by the assumption 0 ≤ k − 1 − da1 < a1 and d ≥ 1, we have

k + (d + 1)a2 − d − 1 − i − da1 ≥ k + 2a2 − 2 − i − a1, 0 ≤ i ≤ k − 1 − da1 (1A.5)

⇒
k−1−da1∑

i=0

(x̄ k+(d+1)a2−d−1−i−da1
2 x̄ i1) ⊂

d−1∑

h=1

a1−1∑

i=0

(x̄ k+(h+1)a2−h−1−i−ha1
2 x̄ i1).

By (1A.4) and (1A.5), we then have (1A.2):

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1) ⊂

a1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1).

Furthermore,
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we also have

a2x
a2−1
2 xk1 ∈

a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ).

Thus we come to the result that for f = xa11 x2 + xa22 , if 3 ≤ a1 + 1 ≤ a2, k ≥ a1 + 1, one
has

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 ).

(1B). If 2 = a1 + 1 ≤ a2, k ≥ 1, then for f = x̄1 x̄2 + x̄a22 , according to Lemma 2.2, one
has

m̄k J̄ ( f ) = x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 )

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 ) + (x̄ k+1
1 + a2 x̄

a2−1
2 x̄ k1 ).

There similarly hold the inclusions:

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) ⊂ (x̄ k+a2−1

2 ) ⊂ (x̄ k+1
2 ),

a2 x̄
a2−1
2 x̄ k1 ∈

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1).

And then when 2 = a1 + 1 ≤ a2, k ≥ 1, we have

m̄k J̄ ( f ) = (x̄ k+1
2 ) + (x̄ k+1

1 ).

(2). (2A).If a1 + 1 ≥ a2 ≥ 2, a1 − 1 ≥ k ≥ a2 ≥ 2, we still have

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

And the inequality a1 − 1 ≥ k leads to the equality:

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) =

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+1
2 x̄a1−1

1 ),

and k ≥ a2 leads to the following inclusion of ideals:

(x̄ k+1
2 x̄a1−1

1 ) ⊂ (x̄a22 x̄a1−1
1 ) ⊂

a1−1∑

i=k

(x̄a22 x̄ i1) ⊂
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1). (2A.1)
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Thus we have

(x̄ k+1
2 x̄a1−1

1 ) ⊂
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1), (2A.2)

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 )

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

In fact, this expression is still not simplified enough, we need to do more.
As one can see, by x̄a11 x̄2 = x̄a22 (∗), there is

(x̄2a2−1
2 )

∗= (x̄a22 x̄a11 ) ⊂
a1−1∑

i=k

(x̄a22 x̄ i1), (2A.3)

and k ≥ a2 leads to the inclusion:

k−a2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) ⊂ (x̄2a2−1

2 ) ⊂
a1−1∑

i=k

(x̄a22 x̄ i1). (2A.3′)

Thus if a1 − 1 ≥ k ≥ a2 ≥ 2, we have

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 )

=
k−1∑

i=k−a2+1

(x̄ k+a2−1−i
2 x̄ i1) +

a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

To do quotient ofC{x̄1, x̄2} by m̄k J̄ ( f ) in the sequel, we add some terms to this expression
just like we add

∑a1−1
i=k (x̄a22 x̄ i1) above.

Thus when a1 − 1 ≥ k ≥ a2 ≥ 2, we can take the following form of m̄k J̄ ( f ) :

m̄k J̄ ( f ) =
k−a2∑

i=0

(x̄2a2−1
2 x̄ i1) +

k−1∑

i=k−a2+1

(x̄ k+a2−1−i
2 x̄ i1)

+
a1−1∑

i=k

(x̄a22 x̄ i1) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

(2B). If k ≥ a1 ≥ a2 − 1, still we have

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

By the similar argument used in the decomposition of C{x̄1, x̄2} in Lemma 2.1, we can
always reduce the power of x̄1 in

∑k−1
i=0 (x̄ k+a2−1−i

2 x̄ i1) as well as in a2 x̄
a2−1
2 x̄ k1 to a power
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less than or equal to a1 − 1 using the equality x̄a11 x̄2 = x̄a22 (∗). Firstly, we have

a2 x̄
a2−1
2 x̄ k1 ∈

k−1∑

i=a1

(x̄ k+a2−1−i
2 x̄ i1). (2B.6′)

And suppose d ∈ N≥1 is such that k − 1− (d − 1)a1 ≥ a1, and k − 1− da1 < a1, we also
have

da1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) =

d−1∑

h=0

(h+1)a1−1∑

i=ha1

(x̄ k+a2−1−i
2 x̄ i1) (2B.1)

∗=
d−1∑

h=0

(h+1)a1−1∑

i=ha1

(x̄ k+(h+1)a2−h−1−i
2 x̄ i−ha1

1 )

=
d−1∑

h=0

a1−1∑

i=0

(x̄ k+(h+1)a2−h−1−i−ha1
2 x̄ i1);

da1−1∑

i=(d−1)a1

(x̄ k+a2−1−i
2 x̄ i1)

∗=
da1−1∑

i=(d−1)a1

(x̄ k+da2−(d−1)−1−i
2 x̄ i−(d−1)a1

1 )

=
a1−1∑

i=0

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1).

And by the assumption of d , ∀d > h ≥ 1, we have

k + (h + 1)a2 − h − 1 − i − ha1 > k + da2 − (d − 1) − 1 − i − (d − 1)a1,

which leads to the inclusion:
da1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) ⊂

da1−1∑

i=(d−1)a1

(x̄ k+a2−1−i
2 x̄ i1). (2B.2)

Besides, we have

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1)

∗=
k−1∑

i=da1

(x̄ k+(d+1)a2−1−i−d
2 x̄ i−da1

1 ) (2B.3)

=
k−1−da1∑

i=0

(x̄ k+(d+1)a2−1−i−d−da1
2 x̄ i1).

Dividing the right hand side of (2B.1) into two parts, one has

da1−1∑

i=(d−1)a1

(x̄ k+a2−1−i
2 x̄ i1) =

a1−1∑

i=0

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1) (2B.1′)

=
k−1−da1∑

i=0

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1) +

a1−1∑

i=k−da1

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1).

By the assumption a1 + 1 ≥ a2, there is

k + da2 − (d − 1) − 1 − i − (d − 1)a1 ≥ k + (d + 1)a2 − 1 − i − d − da1,
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which leads to the inclusion:

k−1−da1∑

i=0

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1) ⊂

k−1−da1∑

i=0

(x̄ k+(d+1)a2−1−i−d−da1
2 x̄ i1) (2B.4)

=
k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1).

Take i = k − 1 − da1 in the middle part of (2B.4), we get the ideal (x̄ (d+1)a2−d
2 x̄ k−1−da1

1 ),
and the inclusion:

k−da1+a1−a2∑

i=k−da1

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1)

k−da1+a1−a2∑

i=k−da1

(x̄ (d+1)a2−d
2 x̄ i1) ⊂ (x̄ (d+1)a2−d

2 x̄ k−1−da1
1 )

(2B.4′)

⊂
k−1−da1∑

i=0

(x̄ k+(d+1)a2−1−i−d−da1
2 x̄ i1) =

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1).

Here the inclusion holds since there is

i ≤ k − da1 + a1 − a2 ⇒ k + da2 − (d − 1) − 1 − i − (d − 1)a1 ≥ (d + 1)a2 − d.

According to (2B.4) and (2B.4)′, we have

da1−1∑

i=(d−1)a1

(x̄ k+a2−1−i
2 x̄ i1) +

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1) (2B.5)

=
a1−1∑

i=k−da1+a1−a2+1

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1) +

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1).

Take i = a1 − 1 in (x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1) above, we get the ideal

(x̄ k−(d−1)+d(a2−a1)
2 x̄a1−1

1 ), and then we have

a1 + 1 ≥ a2 ⇒ k − (d − 1) + d(a2 − a1) ≤ k + 1 (2B.6)

⇒ (x̄ k+1
2 x̄a1−1

1 ) ⊂ (x̄ k−(d−1)+d(a2−a1)
2 x̄a1−1

1 ).
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According to the inclusions (2B.1, 4, 6)′ and (2B.4, 5, 6), if k ≥ a1 ≥ a2 − 1, we have a
satisfying simplified form of m̄k J̄ ( f ) :

m̄k J̄ ( f ) =
da1−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 )

+ (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 )

=
da1−1∑

i=(d−1)a1

(x̄ k+a2−1−i
2 x̄ i1) +

k−1∑

i=da1

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+a1

1 )

=
a1−1∑

i=k−da1+a1−a2+1

(x̄ k+da2−(d−1)−1−i−(d−1)a1
2 x̄ i1)

+
k−1−da1∑

i=0

(x̄ k+(d+1)a2−da1−(d+1)−i
2 x̄ i1) + (x̄ k+a1

1 )

=
a1−1∑

i=k−da1+a1+1−a2

(x̄ k+a2+(d−1)(a2−a1)−d−i
2 x̄ i1)

+
k−1−da1∑

i=0

(x̄ k+(d+1)a2−da1−(d+1)−i
2 x̄ i1) + (x̄ k+a1

1 ).

Then to do the quotient of C{x̄1, x̄2} by m̄k J̄ ( f ) in the sequel, by (2B.4)′, we can add
some terms to this expression just like above in (2A). Thus when k ≥ a1 ≥ a2 − 1, we have

m̄k J̄ ( f ) =
k−1−da1∑

i=0

(x̄ k+(d+1)a2−da1−(d+1)−i
2 x̄ i1) +

k−da1+a1−a2∑

i=k−da1

(x̄ (d+1)a2−d
2 x̄ i1)

+
a1−1∑

i=k−da1+a1+1−a2

(x̄ k+a2+(d−1)(a2−a1)−d−i
2 x̄ i1) + (x̄ k+a1

1 ).

	


Lemma 2.4 For (C) f = xa11 x2 + xa22 x1, 2 ≤ a1 ≤ a2, in the local algebra F(V ) =
C{x̄1, x̄2}, if k ≥ a1, m̄k J̄ ( f ) has the following simplification:

m̄k J̄ ( f ) =
a1−1∑

i=1

(x̄ k+a2−i
2 x̄ i1) + (x̄ k+a2

2 + a1 x̄
k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 ).

Proof The image of the Jacobian ideal of f = xa11 x2 + xa22 x1 in its local algebras is

J̄ ( f ) = (x̄a22 + a1 x̄
a1−1
1 x̄2, x̄

a1
1 + a2 x̄

a2−1
2 x̄1).
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According to the Lemma 2.2, if k ≥ 1, firstly we have

m̄k J̄ ( f ) = x̄1 J̄1(x̄1, x̄2)
k−1 + x̄k2 J̄1 + x̄k1 J̄2

= x̄1(x̄
a2
2 + a1 x̄

a1−1
1 x̄2)(x̄1, x̄2)

k−1 + x̄k2 (x̄a22 + a1 x̄
a1−1
1 x̄2) + x̄k1 (x̄a11 + a2 x̄

a2−1
2 x̄1)

∗= (x̄a22 x̄1)(x̄1, x̄2)
k−1 + x̄k2 (x̄a22 + a1 x̄

a1−1
1 x̄2) + x̄k1 (x̄a11 + a2 x̄

a2−1
2 x̄1)

=
k−1∑

i=0

(x̄k+a2−1−i
2 x̄ i+1

1 ) + (x̄k+a2
2 + a1 x̄

k+1
2 x̄a1−1

1 ) + (x̄k+a1
1 + a2 x̄

a2−1
2 x̄k+1

1 ).

If 2 ≤ a1 ≤ a2, k ≥ a1, then there is k − 1 ≥ a1 − 1, and we have inclusion of ideals:

k−1∑

i=a1−1

(x̄ k+a2−1−i
2 x̄ i+1

1 )
∗=

k−1∑

i=a1−1

(x̄ k+2a2−2−i
2 x̄ i+2−a1

1 ) ⊂
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ),

which leads to the equality:

k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ) +
k−1∑

i=a1−1

(x̄ k+a2−1−i
2 x̄ i+1

1 )

=
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ).

Then we have

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ) + (x̄ k+a2
2 + a1 x̄

k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k+1

1 )

=
a1−1∑

i=1

(x̄ k+a2−i
2 x̄ i1) + (x̄ k+a2

2 + a1 x̄
k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k+1

1 ).

Furthermore, for k ≥ a1, we have the reduction of the power of x̄1 in a2 x̄
k+1
1 x̄a2−1

2 . This
reduction leads to the inclusion:

a2 x̄
a2−1
2 x̄ k+1

1 ∈
a1−1∑

i=0

(x̄ k+a2−i
2 )x̄ i1.

Thus for f = xa11 x2 + xa22 x1(2 ≤ a1 ≤ a2), we have when k ≥ a1 :

m̄k J̄ ( f ) =
a1−1∑

i=1

(x̄ k+a2−i
2 x̄ i1) + (x̄ k+a2

2 + a1 x̄
a1−1
1 x̄ k+1

2 ) + (x̄ k+a1
1 ).

	

We have given the formulas of the k-th Tjurina number for almost all but finitely many
values of k. Subsequently, as described in the step 4, we will complete these formulas for all
possible values of k.

Proposition 2.3 Let (V , 0) be a binomial isolated singularity of type B, defined by f =
xa11 x2 + xa22 (2 ≤ a1 + 1 ≤ a2) with weight type ( a2−1

a1a2
, 1
a2

; 1). Then

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; k < a1 + 1,
(a1 + 1)k + (2a2−a1)(a1−1)

2 + 1; k ≥ a1 + 1.
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Proof (1).According to Lemmas 2.1 and 2.3 (1A), for f = xa11 x2 + xa22 , if 3 ≤ a1 + 1 ≤ a2,
and k ≥ a1 + 1, we have the simplified forms of C{x̄1, x̄2} and mk J̄ ( f ) respectively:

C{x̄1, x̄2} =
a1−1∑

i=0

C{x̄2}x̄ i1 + C{x̄1}x̄a11 ,

m̄k J̄ ( f ) =
a1−2∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 ).

Thus we have

τ k( f ) = dim
C{x̄1, x̄2}
m̄k J̄ ( f )

=
a1−2∑

i=0

(k + a2 − 1 − i) + (k + 1) + k

= (a1 − 1)(2k + 2a2 − a1)

2
+ 2k + 1

= (a1 + 1)k + a1a2 − a2 − a21
2

+ a1
2

+ 1.

Moreover, if 2 = a1 + 1 ≤ a2, k ≥ 1, according to Lemma 2.3 (1A), we have

C{x̄1, x̄2}
m̄k J̄ ( f )

= C{x̄2} + C{x̄1}x̄1
(x̄ k+1

2 ) + (x̄ k+1
1 )

,

τ k( f ) = dim
C{x̄1, x̄2}
m̄k J̄ ( f )

= (k + 1) + k = 2k + 1.

This formula fits well with the situation when 3 ≤ a1 + 1 ≤ a2.
(2). In the case 2 ≤ a1 + 1 ≤ a2, 1 ≤ k < a1 + 1, as told in Step 4, one can complete

the formulas as follows.
According to Lemma 2.2, we have

m̄k J̄ ( f ) = x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2

= x̄1(x̄
a1−1
1 x̄2)(x̄1, x̄2)

k−1 + x̄ k2 (x̄
a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 )

∗= (x̄a22 )(x̄1, x̄2)
k−1 + x̄ k2 (x̄

a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 )

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

Then there is

F(V )

m̄k J̄ ( f )
=

∑a1−1
i=0 C{x̄2}x̄ i1 + C{x̄1}x̄a11

∑k−1
i=0 (x̄ k+a2−1−i

2 x̄ i1) + (x̄ k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 )

.
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Hence, as a module over C,
F(V )

m̄k J̄ ( f )
has a subcollection of basis consisting of

1, x̄2, x̄
2
2 , . . . , x̄

k+a2−2
2 ;

x̄1, x̄2 x̄1, . . . , x̄
k+a2−3
2 x̄1;

x̄21 , x̄2 x̄
2
1 , . . . , x̄

k+a2−4
2 x̄21 ;

. . .

x̄ k−1
1 , x̄2 x̄

k−1
1 , . . . , x̄a2−1

2 x̄ k−1
1 ;

x̄a1−1
1 , . . . , x̄ k2 x̄

a1−1
1 ;

as well as

x̄ k1 , x̄2 x̄
k
1 , . . . , x̄

a2−1
2 x̄ k1 ; (∗)

x̄ k+1
1 , x̄2 x̄

k+1
1 , . . . , x̄a2−1

2 x̄ k+1
1 ;

. . .

x̄a1−2
1 , x̄2 x̄

a1−2
1 , . . . , x̄a2−1

2 x̄a1−2
1 .

Since in the quotient module F(V )

m̄k ¯J ( f )
, we have (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ) = 0, which leads to the

result that in C{x̄1}x̄a11 =< x̄a11 , x̄a1+1
1 , x̄a1+2

1 , . . . >, we have x̄ k+a1+h
1 = −a2 x̄

a2−1
2 x̄ k+h

1 .

Thus for these generators in {x̄ k+a1+h
1 | 1 ≤ k < a1 + 1, h ≥ 0.}, we observe that the

ones in {x̄ k+a1+h
1 = x̄a2−1

2 x̄ k+h
1 | 1 ≤ k < a1 + 1, 0 ≤ h ≤ a1 − 2 − k.} have been counted

in the above list (∗); and the monomials in {x̄a2−1
2 x̄ k+h

1 | 1 ≤ k < a1, h > a1 − 2 − k} are
all zeros since we have a2 − 1 ≥ a1 ≥ k + 1, k + h ≥ a1 − 1, and there is x̄ k+1

2 x̄a1−1
1 = 0

in F(V )

m̄k J̄ ( f )
; the monomial in {x̄a2−1

2 x̄ k+h
1 | k = a1, h = 0} has also been counted in the above

list (b), and all monomials in {x̄a2−1
2 x̄ k+h

1 | k = a1, h > 0} = {x̄2a2−2
2 x̄ h1 | h > 0} are zeros

since there is x̄ k+a2−1
2 = x̄a1+a2−1

2 = 0 and 2a2 − 2 ≥ a1 + a2 − 1.

Thus the remaining part of the basis of the module F(V )

m̄k ¯J ( f )
consists of

x̄a11 , x̄a1+1
1 , . . . , x̄ k+a1−1

1 .

Consequently, we have the dimension of this C-module:

τ k( f ) = dim
F(V )

m̄k ¯J ( f )
= [(k + a2 − 1) + (k + a2 − 2) + · · · + a2]

+ (k + 1) + a2(a1 − 1 − k) + k

= (k + 2a2 − 1)k

2
+ (k + 1) + a2(a1 − k − 1) + k

= a1a2 − a2 + 1 + k2 + 3k

2
.

This formula fits well with the situation when k = 0.
The complete formulas of τ k for f = xa11 x2 + xa22 , 2 ≤ a1 + 1 ≤ a2, are

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; k < a1 + 1,
(a1 + 1)k + (2a2−a1)(a1−1)

2 + 1; k ≥ a1 + 1.
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Remark 2.2 For f = xa1a x2 + xa22 , 2 ≤ a1 + 1 ≤ a2, a1 ≥ 1, 1 ≤ k < a1 + 1, we did an
operation above, like what is told in Algorithm.Step 4. We added some terms in the equality
of m̄k J̄ ( f ). This operation made m̄k J̄ ( f ) seemmore complicated, but the operation is useful
when we do the quotient F(V )/m̄k J̄ ( f ). The form of m̄k J̄ ( f ) we used above is

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

a1−2∑

i=k

(x̄a22 x̄ i1) + (x̄ k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

	


Proposition 2.4 Let (V , 0) be a binomial isolated singularity of type B, defined by f =
xa11 x2 + xa22 (a1 + 1 ≥ a2 ≥ 2) with weight type ( a2−1

a1a2
, 1
a2

; 1). Then

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; 0 ≤ k < a2,

a2k + a1a2 + a2
2 − a22

2 ; a2 ≤ k;

Proof (1) If a1 ≥ k ≥ a2, according to Lemma 2.3.(2).(2A), we have

m̄k J̄ ( f ) =
k−a2∑

i=0

(x̄2a2−1
2 x̄ i1) +

k−1∑

i=k−a2+1

(x̄ k+a2−1−i
2 x̄ i1) +

a1−1∑

i=k

(x̄a22 x̄ i1)

+ (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k1 ).

Consequently, we have

τ k( f ) = dim
C{x̄1, x̄2}
m̄k J̄ ( f )

= dim

∑a1−1
i=0 C{x̄2}x̄ i1 + C{x̄1}x̄a11

m̄k J̄ ( f )

=
[
k−a2∑

i=0

(2a2 − 1)

]

+
⎡

⎣
k−1∑

i=k−a2+1

(k + a2 − 1 − i)

⎤

⎦ +
[
a1−1∑

i=k

a2

]

+ k

= (k − a2 + 1)(2a2 − 1) + [
a2−2∑

i=0

(2a2 − 2 − i)] + (a1 − 1 − k + 1)a2 + k

= a2k + a2a1 + a2
2

− a22
2

.

(2) If k > a1 ≥ a2 − 1, according to Lemma 2.3.(2).(2B), we have

m̄k J̄ ( f ) =
k−1−da1∑

i=0

(x̄ k+(d+1)a2−da1−(d+1)−i
2 x̄ i1) +

k−da1+a1−a2∑

i=k−da1

(x̄ (d+1)a2−d
2 x̄ i1)

+
a1−1∑

i=k−da1+a1+1−a2

(x̄ k+a2+(d−1)(a2−a1)−d−i
2 x̄ i1) + (x̄ k+a1

1 ).
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Then we have

τ k( f ) = dim

∑a1−1
i=0 C{x̄2}x̄ i1 + C{x̄1}x̄a11

m̄k J̄ ( f )

=
[
k−da1−1∑

i=0

(k + d(a2 − a1) − (d + 1) + a2 − i)

]

+ (a1 + 1 − a2)(da2 − d + a2)

+
⎡

⎣
a1−1∑

i=k−da1+a1+1−a2

(k + a2 + (d − 1)(a2 − a1) − d − i)

⎤

⎦ + k

=
[
a2−1∑

i=1

(k + d(a2 − a1) − d + i)

]

+ (a1 + 1 − a2)(da2 − d + a2) + k

= a2k + a1a2 + a2
2

− a22
2

.

(3) If 1 ≤ k < a2,
by Lemma 2.2, when k ≥ 1, firstly we have

m̄k J̄ ( f ) = (x̄a22 )(x̄1, x̄2)
k−1 + x̄ k2 (x̄

a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 )

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) + (x̄ k+1

2 x̄a1−1
1 ) + (x̄ k+a1

1 + a2 x̄
a2−1
2 x̄ k1 ).

Since there is 1 ≤ k < a2 ≤ a1 + 1 ⇒ 1 ≤ k ≤ a2 − 1 ≤ a1 − 2, following the Algorithm
Step 4, we can take the expression of m̄k J̄ ( f ) :

m̄k J̄ ( f ) =
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i1) +

a1−2∑

i=k

(x̄a22 x̄ i1) + (x̄ k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

k
1 x̄

a2−1
2 ).

Then we have

τ k( f ) = dim
C{x̄1, x̄2}
m̄k J̄ ( f )

= dim

∑a1−1
i=0 C{x̄2}x̄ i1 + C{x̄1}x̄a11

m̄k J̄ ( f )

=
k−1∑

i=0

(k + a2 − 1 − i) + (a1 − 2 − k + 1)a2 + (k + 1) + k

= a2a1 − a2 + 1 + 3k

2
+ k2

2
.

This formula fits well with the situation when k = 0.
Finally, we have

τ k(V ) =
{
a1a2 − a2 + 1 + k2+3k

2 ; 0 ≤ k < a2,

a2k + a1a2 + a2
2 − a22

2 ; a2 ≤ k;
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Proposition 2.5 Let (V , 0) be a binomial isolated singularity of type C, defined by f =
xa11 x2 + xa22 x1 (1 ≤ a1 ≤ a2) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1). Then

τ k(V ) =

⎧
⎪⎨

⎪⎩

a1a2 + k2+3k
2 ; 0 ≤ k < a1, a1 ≥ 2,

(a1 + 1)k + a1a2 + a1
2 − a21

2 ; k ≥ a1 ≥ 2,
2k + 1; k ≥ 0, a1 = 1.

Proof (1). By Lemma 2.4, if 2 ≤ a1 < a2, k ≥ a1, we have

C{x̄1, x̄2}
m̄k J̄ ( f )

=
∑a1−1

i=0 C{x̄2}x̄ i1 + C{x̄1}x̄a11
∑a1−1

i=1 (x̄ k+a2−i
2 x̄ i1) + (x̄ k+a2

2 + a1 x̄
k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 )

.

Thus, when 2 ≤ a1 ≤ a2 and k ≥ a1, we have

τ k( f ) = dim
C{x̄1, x̄2}
m̄k J̄ ( f )

= (k + a2) +
[
a1−1∑

i=1

(k + a2 − i)

]

+ k

= (a1 + 1)k + a1a2 − a21
2

+ a1
2

.

(2).(2a) If 1 = a1 ≤ a2, and k ≥ 1, we know

C{x̄1, x̄2} = C{x1, x2}
(x1x2 + xa22 x1)

,

and by Lemma 2.2, we have

m̄k J̄ ( f ) = x̄1(x̄
a2
2 + x̄2)(x̄1, x̄2)

k−1 + x̄ k2 (x̄
a2
2 + x̄2) + x̄ k1 (x̄1 + a2 x̄

a2−1
2 x̄1).

And then there is:

τ k( f )

= dim
C{x̄1, x̄2}
m̄k J̄ ( f )

= dim
C{x1, x2}

(x1x2 + xa22 x1) + x̄1(x̄
a2
2 + x̄2)(x̄1, x̄2)k−1 + x̄ k2 (x̄

a2
2 + x̄2) + x̄ k1 (x̄1 + a2 x̄

a2−1
2 x̄1)

.

Since in the local rings C{x1, x2} or C{x̄1, x̄2}, we have

(x1x2 + xa22 x1) = x1x2(1 + xa2−1
2 ),

x̄1(x̄
a2
2 + x̄2)(x̄1, x̄2)

k−1 = x̄1 x̄2(x̄
a2−1
2 + 1)(x̄1, x̄2)

k−1,

x̄ k2 (x̄
a2
2 + x̄2) = x̄ k+1

2 (x̄a2−1
2 + 1),

x̄ k1 (x̄1 + a2 x̄
a2−1
2 x̄1) = x̄ k+1

1 (1 + a2 x̄
a2−1
2 ),

and that 1 + xa2−1
2 , x̄a2−1

2 + 1, 1 + a2 x̄
a2−1
2 are all units.
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Consequently, when 1 = a1 ≤ a2 and k ≥ 1, we have

τ k( f ) = dim
C{x1, x2}

(x1x2) + x̄1 x̄2(x̄1, x̄2)k−1 + (x̄ k+1
2 ) + (x̄ k+1

1 )

= dim
C{x1, x2}

(x1x2) + (x̄ k+1
2 ) + (x̄ k+1

1 )

= 2(k + 1) − 1 = 2k + 1.

(2b) In the case k = 0, 1 = a1 ≤ a2, it is easy to get τ( f ) = 1.
(3a) For the case 2 ≤ a1 ≤ a2 and 1 ≤ k < a1, according to Lemma 2.2, firstly we have

m̄k J̄ ( f )

= x̄1 J̄1(x̄1, x̄2)
k−1 + x̄ k2 J̄1 + x̄ k1 J̄2

= x̄1(x̄
a2
2 + a1 x̄

a1−1
1 x̄2)(x̄1, x̄2)

k−1 + x̄ k2 (x̄
a2
2 + a1 x̄

a1−1
1 x̄2) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 x̄1)

∗= (x̄a22 x̄1)(x̄1, x̄2)
k−1 + x̄ k2 (x̄

a2
2 + a1 x̄2 x̄

a1−1
1 ) + x̄ k1 (x̄

a1
1 + a2 x̄

a2−1
2 x̄1)

=
k−1∑

i=0

(x̄ k+a2−1−i
2 x̄ i+1

1 ) + (x̄ k+a2
2 + a1 x̄

k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k+1

1 )

=
k∑

i=1

(x̄ k+a2−i
2 x̄ i1) + (x̄ k+a2

2 + a1 x̄
k+1
2 x̄a1−1

1 ) + (x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k+1

1 ).

There we come to the situation mentioned in Algorithm.Step4. Thus we take an equivalent
expression of m̄k J̄ ( f ) :

m̄k J̄ ( f ) =
k∑

i=1

(x̄ k+a2−i
2 x̄ i1) +

a1−1∑

k+1

(x̄a22 x̄ i1) + (x̄ k+a2
2 + a1 x̄

k+1
2 x̄a1−1

1 )

+(x̄ k+a1
1 + a2 x̄

a2−1
2 x̄ k+1

1 ).

Considering C{x̄2} =< 1, x̄2, x̄22 , . . . >, the submodule of C{x̄1, x̄2}, we have

(x̄ k+a2
2 + a1x

k+1
2 x̄a1−1

1 ) = 0 ⇒ x̄ k+a2
2 = x̄ k+1

2 x̄a1−1
1 ,

which means x̄ k+a2+h
2 , h ≥ 0 in C{x̄2} =< 1, x̄2, x̄22 , . . . > are either equal to zero or

have been counted as generators. Thus C{x̄2} =< 1, x̄2, x̄22 , . . . > contributes to F(V )

m̄k J̄ ( f )
a

collection of basis:

1, x̄2, x̄
2
2 , . . . , x̄

k+a2−1
2 .

Similarly, in the the quotient module F(V )

m̄k J̄ ( f )
, we have x̄a2−1

2 x̄ k+1
1 = xk+a1

1 . Thus elements

like xk+a1+h
1 , h ≥ 0 in C{x̄1}x̄a11 =< x̄a11 , x̄a1+1

1 , x̄a1+2
1 , . . . > are either equal to zero or

have been counted as generators.
Consequently, C{x̄1}x̄a11 =< x̄a11 , x̄a1+1

1 , x̄a1+2
1 , . . . > contributes to F(V )

m̄k J̄ ( f )
a finite col-

lection of basis:

x̄a11 , x̄a1+1
1 , x̄a1+2

1 , . . . , x̄ k+a1−1
1 .
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Then if 1 ≤ k ≤ a1 − 1, a1 ≥ 2, one has

τ k( f ) = dim
F(V )

(m̄k J̄ ( f ))

= [(k + a2 − 1) + · · · + a2] + a2[(a1 − 1) − (k + 1) + 1] + (k + a2) + (k)

= (k + 2a2 − 1)k

2
+ a2(a1 − k − 1) + (k + a2) + k

= a1a2 + k2

2
+ 3k

2
.

(3b) If k = 0, 2 ≤ a1 ≤ a2, we have τ( f ) = a1a2.
Consequently, we get the complete formulas of τ k for f= xa1a x2 + xa22 x̄1( 1 ≤ a1 ≤ a2):

τ k(V ) =

⎧
⎪⎨

⎪⎩

a1a2 + k2
2 + 3k

2 ; 0 ≤ k < a1, a1 ≥ 2,

(a1 + 1)k + a1a2 + a1
2 − a21

2 ; k ≥ a1 ≥ 2,
2k + 1; k ≥ 0, a1 = 1.

	


2.2 From the k-th Tjurina number �k to the k-th Milnor number�k

Lemma 2.5 Let A be a ring, and M be an A-module. If M1, M2 are submodules of M, then

(M1 + M2)

M1

∼= (M2)

M1 ∩ M2
,

and there is an exact sequence:

0 −→ (M1 + M2)

M2
−→ M

M2
−→ M

(M1 + M2)
−→ 0.

Corollary 2.2 For f ∈ On = C{x1, . . . , xn}, there is an exact sequence:

0 −→ ( f ) + mk J ( f )

mk J ( f )
−→ On

mk J ( f )
−→ On

( f ) + mk J ( f )
−→ 0,

which leads to an equality of the k-th Tjurina number and k-th Milnor number:

dim
On

mk J ( f )
= dim

On

( f ) + mk J ( f )
+ dim

( f ) + mk J ( f )

mk J ( f )
,

i.e.,

μk( f ) = τ k( f ) + dim
( f ) + mk J ( f )

mk J ( f )
.

Proof Use Lemma 2.5, and let A, M1 and M2 be On , mk J ( f ) and ( f ) respectively. 	

Proposition 2.6 For an isolated singularity defined by a weighted homogeneous polynomial
f of type (w1, . . . , wn; d), we have its k-th Tjurina number and the k-th Milnor number
satisfying

μk( f ) = τ k( f ) +
(
n + k − 2

n

)

.
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Proof By Corrollary 2.2, we only need to check that:

dim
( f ) + mk J ( f )

mk J ( f )
=

(
n + k − 2

n

)

.

A weighted homogeneous polynomial f of type (w1, . . . , wn; d) satisfies the Euler iden-
tity as mentioned in Remark 2.1:

d · f =
n∑

i=1

wi xi
∂ f

∂xi
in C{x},

by which we know f is contained in J ( f ), and then we have

( f ) ⊂ mJ ( f ) ⇒ mk−1( f ) ⊂ mk J ( f ).

By Lemma 2.5, there is

( f ) + mk J ( f )

mk J ( f )
∼= ( f )

( f ) ∩ mk J ( f )
.

In ( f )
( f )∩mk J ( f )

, all the nonzero elements are exactly the images of the elements that belong to

the submodule ml( f ), 0 ≤ l ≤ k − 2. Thus we have

dim
( f )

( f ) ∩ mk J ( f )
= dim

k−2∑

l=0

ml( f ) = dim
( f ) + mk J ( f )

mk J ( f )

=
(
n + k − 2

n

)

.

Consequently, we have

μk( f ) = τ k( f ) +
(
n + k − 2

n

)

.

And for the binomial case in this paper, we have

μk( f ) = τ k( f ) +
(
2 + k − 2

2

)

= τ k( f ) + k(k − 1)

2
.

	

By Proposition 2.6, once we have known the formulas of the k-th Tjurina numbers τ k( f ),

we have a quick way to give the formulas of the k-th Milnor numbers!

Proposition 2.7 Let (V , 0) be a binomial isolated singularity of type A, defined by f =
xa11 + xa22 (2 ≤ a1 ≤ a2) with weight type ( 1

a1
, 1
a2

; 1). Then

μk(V ) =
{
a1a2 − (a1 + a2) + 1 + k2 + k; 0 ≤ k < a1,

(a1 − 1
2 )k + (2a2−a1)(a1−1)

2 + k2
2 ; k ≥ a1;

Proposition 2.8 Let (V , 0) be a binomial isolated singularity of type B, defined by f =
xa11 x2 + xa22 (2 ≤ a1 + 1 ≤ a2) with weight type ( a2−1

a1a2
, 1
a2

; 1). Then

μk(V ) =
{
a1a2 − a2 + 1 + k2 + k; 0 ≤ k < a1 + 1,

(a1 + 1
2 )k + k2

2 + (2a2−a1)(a1−1)
2 + 1; k ≥ a1 + 1;
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Proposition 2.9 Let (V , 0) be a binomial isolated singularity of type B, defined by f =
xa11 x2 + xa22 (a1 + 1 ≥ a2 ≥ 2) with weight type ( a2−1

a1a2
, 1
a2

; 1). Then

μk(V ) =
{
a1a2 − a2 + 1 + k + k2; 0 ≤ k < a2,

(a2 − 1
2 )k + k2

2 + a1a2 + a2
2 − a22

2 ; a2 ≤ k;
Proposition 2.10 Let (V , 0) be a binomial isolated singularity of type C, defined by f =
xa11 x2 + xa22 x1 (1 ≤ a1 ≤ a2) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1). Then

μk(V ) =

⎧
⎪⎨

⎪⎩

k2 + k + a1a2; 0 ≤ k < a1, a1 ≥ 2,

(a1 + 1
2 )k + k2

2 + a1a2 + a1
2 − a21

2 ; k ≥ a1 ≥ 2,
k2
2 + 3k

2 + 1; k ≥ 0, a1 = 1.

3 Proofs of theorems

Proof of Theorem A.
Theorem A follows from Propositions 2.2– 2.5 immediately.

Proof of Theorem B.
Theorem B follows from Propositions 2.7–2.10 immediately.

Proof of Theorem C.

Proof It follows from Propositions 2.2 to 2.5 that the inequality

τ k(V ) ≥ �k
(

1

w1
,
1

w2

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
w1w2

− ( 1
w1

+ 1
w2

) + k2+3k
2 + 1; 0 ≤ k < 1

w1
, 2 ≤ 1

w1
≤ 1

w2
,

k
w1

+ ( 2
w2

− 1
w1

)( 1
w1

−1)

2 ; k ≥ 1
w1

, 2 ≤ 1
w1

≤ 1
w2

,

holds true. 	

In the following proof of Theorem D, we shall distinguish a simple hypersurface singularity
from the other by using the corresponding dimension of the Lie algebra L2(V ), minimal
number of generators of the nilradical of Lie algebra L2(V ) or the dimension sequence of
the derived series.

Proof of Theorem D.

Proof It is easy to see that L2(Ak) associated to the series

Ak : {x21 + xk+1
2 = 0} ⊂ C

2, k ≥ 1,

has dimension

λ2(Ak) =
{
k + 6; k ≥ 2,
6; k = 1.

In the case k ≥ 2, the Lie algebra L2(Ak) has the following basis:

e1 = (k + 1)x1∂1 + 2x2∂2, e2 = xk2∂1, e3 = x22∂2, e4 = x32∂2, . . . , ek = xk−1
2 ∂2,

ek+1 = xk2∂1 + x1∂2, ek+2 = xk2∂2, ek+3 = x1x2∂2, ek+4 = xk+1
2 ∂2,

ek+5 = x1x2∂1, ek+6 = xk+1
2 ∂1.
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Let g(Ak) be the nilradical of Lie algebra L2(Ak), one has

g(Ak) =< e2, e3, e4, . . . , ek+6 > .

The nilradical g(Ak) has the following multiplication table:
Case 1. If k is even and k = 2 l + 8, l ≥ 1, then

[e2, e3] = −kek+6, [e2, ek+1] = ek+2, [e2, ek+3] = ek+4, [e2, ek+5] = ek+6,

[e3, e4] = e5, [e3, e5] = 2e6, [e3, e6] = 3e7, . . . , [e3, ek] = (k − 3)ek+2,

[e3, ek+1] = −2ek+3 + kek+6, [e3, ek+2] = (k − 2)ek+4,

[e4, e5] = e7, [e4, e6] = 2e8, [e4, e7] = 3e9, . . . , [e4, ek−2] = (k − 6)ek,

[e4, ek−1] = (k − 5)ek+2, [e4, ek] = (k − 4)ek+4,

[e5, e6] = e9, [e5, e7] = 2e10, [e5, e8] = 3e11, . . . , [e5, ek−3] = (k − 8)ek,

[e5, ek−2] = (k − 7)ek+2, [e5, ek−1] = (k − 6)ek+4,

...

[el+5, el+6] = e2l+10, [el+5, el+7] = 2e2l+12,

[e2l+9, e2l+13] = −e2l+13, [e2l+9, e2l+14] = −e2l+12.

Case 2. If k is odd and k = 2 l + 9, l ≥ 0, then

[e2, e3] = −kek+6, [e2, ek+1] = ek+2, [e2, ek+3] = ek+4, [e2, ek+5] = ek+6,

[e3, e4] = e5, [e3, e5] = 2e6, [e3, e6] = 3e7, . . . , [e3, ek] = (k − 3)ek+2,

[e3, ek+1] = −2ek+3 + kek+6, [e3, ek+2] = (k − 2)ek+4,

[e4, e5] = e7, [e4, e6] = 2e8, [e4, e7] = 3e9, . . . , [e4, ek−2] = (k − 6)ek,

[e4, ek−1] = (k − 5)ek+2, [e4, ek] = (k − 4)ek+4,

[e5, e6] = e9, [e5, e7] = 2e10, [e5, e8] = 3e11, . . . , [e5, ek−3] = (k − 8)ek,

[e5, ek−2] = (k − 7)ek+2, [e5, ek−1] = (k − 6)ek+4,

...

[el+6, el+9] = e2l+13, [e2l+10, e2l+14] = −e2l+12, [e2l+10, e2l+15] = −e2l+13.

It follows that when k ≥ 9, the minimal spanning set of the nilradical g(Ak)/[g(Ak),

g(Ak)] is

{e2, e3, e4, ek+1, ek+5}.

It is easy to see that the Lie algebra L2(Dk) associated to the series

Dk : {x21 x2 + xk−1
2 = 0} ⊂ C

2, k ≥ 4,

has the following dimension:

λ2(Dk) =
{
k + 10; k ≥ 5,
13; k = 4.
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In the case k ≥ 5, L2(Dk) has the following basis:

e1 = (k − 2)x1∂1 + 2x2∂2, e2 = (xk−2
2 + x21 )∂1, e3 = −x1x2∂1 + x22∂2,

e4 = xk−3
2 ∂1, e5 = (xk−2

2 + x21 )∂2, e6 = x22∂2, e7 = xk−2
2 ∂1,

e8 = x32∂2, e9 = x42∂2, e10 = x52∂2, . . . , ek+2 = xk−3
2 ∂2,

ek+3 = xk−2
2 ∂1 + x1x2∂2, ek+4 = xk−2

2 ∂2, ek+5 = x31∂2, ek+6 = x1x
2
2∂2,

ek+7 = xk−1
2 ∂2, ek+8 = x31∂1, ek+9 = x1x

2
2∂1, ek+10 = xk−1

2 ∂1.

Let g(Dk) be the nilradical of the Lie algebra L2(Dk) associated to Dk , one has

g(Dk) =< e2, e3, e4, . . . , ek+10 > .

The nilradical g(Dk) has the following multiplication table:
Case 1. If k is even and k = 2 l + 6, l ≥ 1, then

[e2, e3] = −kek+10, [e2, e5] = 2ek+5, [e2, e6] = −(k − 2)ek+10,

[e3, e4] = (k − 2)e7, [e3, e5] = kek+7 + ek+8, [e3, e6] = ek+9,

[e3, e7] = (k − 1)ek+10, [e3, e8] = e9, [e3, e9] = 2e10, [e3, e10] = 3e11, . . . ,

[e3, ek+2] = (k − 5)ek+4, [e3, ek+3] = −2ek+6 + (k − 2)ek+10,

[e3, ek+4] = (k − 4)ek+7, [e4, e6] = −(k − 3)e7, [e4, e8] = −(k − 3)ek+10,

[e4, ek+3] = ek+4, [e4, ek+6] = ek+7, [e4, ek+9] = ek+10, [e5, e6] = −(k − 2)ek+7,

[e5, ek+3] = ek+5, [e6, e7] = (k − 2)ek+10, [e6, e8] = e9, [e6, e9] = 2e10,

[e6, e10] = 3e11, . . . , [e6, ek+2] = (k − 5)ek+4,

[e6, ek+3] = −ek+6 + (k − 2)ek+10, [e6, ek+4] = (k − 4)ek+7, [e7, ek+3] = ek+7,

[e8, e9] = e11, [e8, e10] = 2e12, [e8, e11] = 3e13, . . . , [e8, ek] = (k − 8)ek+2,

[e8, ek+1] = (k − 7)ek+4, [e8, ek+2] = (k − 6)ek+7,

[e9, e10] = e13, [e9, e11] = 2e14, [e9, e12] = 3e15, . . . , [e9, ek−1] = (k − 10)ek+2,

[e9, ek] = (k − 9)ek+4, [e9, ek+1] = (k − 8)ek+7,

[e10, e11] = e15, [e10, e12] = 2e16, [e10, e13] = 3e17, . . . ,

[e10, ek−2] = (k − 12)ek+2, [e10, ek−1] = (k − 11)ek+4, [e10, ek] = (k − 10)ek+7,

...

[el+7, el+8] = e2l+10, [el+7, el+9] = 2e2l+13.

123



Geometriae Dedicata           (2023) 217:34 Page 31 of 35    34 

Case 2. If k is odd and k = 2 l + 5, l ≥ 1, then

[e2, e3] = −kek+10, [e2, e5] = 2ek+5, [e2, e6] = −(k − 2)ek+10,

[e3, e4] = (k − 2)ek−4, [e3, e5] = kek+7 + ek+8, [e3, e6] = ek+9, [e3, e7] = (k − 1)ek+10,

[e3, e8] = e9, [e3, e9] = 2e10, [e3, e10] = 3e11, . . . ,

[e3, ek+1] = (k − 6)ek+2,

[e3, ek+2] = (k − 5)ek+4, [e3, ek+3] = −2ek+6 + (k − 2)ek+10, [e3, ek+4] = (k − 4)ek+7,

[e4, e6] = −(k − 3)e7, [e4, e8] = −(k − 3)ek+10, [e4, ek+3] = ek+4, [e4, ek+6] = ek+7,

[e4, ek+9] = ek+10, [e5, e6] = −(k − 2)ek+7, [e5, ek+3] = ek+5, [e6, e7] = (k − 2)ek+10,

[e6, e8] = e9, [e6, e9] = 2e10, [e6, e10] = 3e11, . . . , [e6, ek+1] = (k − 6)ek+2,

[e6, ek+2] = (k − 5)ek+3, [e6, ek+3] = −ek+6 + (k − 2)ek+10, [e6, ek+4] = (k − 4)ek+7,

[e7, ek+3] = ek+7, [e8, e9] = e11, [e8, e10] = 2e12, [e8, e11] = 3e13,

. . . , [e8, ek] = (k − 8)ek+2,

[e8, ek+1] = (k − 7)ek+4, [e8, ek+2] = (k − 6)ek+7,

[e9, e10] = e13, [e9, e11] = 2e14, [e9, e12] = 3e15, . . . , [e9, ek−1] = (k − 10)ek+2,

[e9, ek] = (k − 9)ek+4, [e9, ek+1] = (k − 8)ek+7,

[e10, e11] = e15, [e10, e12] = 2e16, [e10, e13] = 3e17, . . . , [e10, ek−2] = (k − 12)ek+2,

[e10, ek−1] = (k − 11)ek+4, [e10, ek] = (k − 10)ek+7,

...

[el+7, el+8] = e2l+12.

It follows thatwhen k ≥ 7, theminimal spanning set of the nilradical g(Dk)/[g(Dk), g(Dk)]
is {e2, e3, e4, e5, e6, e8, ek+3}. Therefore when k ≥ 7, nilradicals of Lie algebras associated
to the series Ak and Dk have different minimal numbers of generators.

Notice that the two pairs (L2(D5), L2(A9)) and (L2(D6), L2(A10)) have the same dimen-
sion. The minimal numbers of generators of the nilradicals of L2(D5), L2(D6), L2(A9) and
L2(A10) are 6, 7, 5 and 5 respectively. It is easy to see that λ2(E6) = 17, λ2(E7) = 19,
λ2(E8) = 20. Next we need to distinguish the remaining pairs which have the same dimen-
sion. We only need to consider the following four cases:

(1) L2(E6) � L2(D7), L2(E6) � L2(A11), L2(D7) � L2(A11),

(2) L2(E7) � L2(D9), L2(E7) � L2(A13), L2(D9) � L2(A13),

(3) L2(E8) � L2(D10), L2(E8) � L2(A14), L2(D10) � L2(A14),

(4) L2(D4) � L2(A7).

Now it is sufficient to prove the following proposition.

Proposition 3.1 The Lie algebras L2(V ) associated to simple hypersurface singularities in
the following four cases are not isomorphic:

(1) L2(E6) � L2(D7), L2(E6) � L2(A11), L2(D7) � L2(A11),

(2) L2(E7) � L2(D9), L2(E7) � L2(A13), L2(D9) � L2(A13),

(3) L2(E8) � L2(D10), L2(E8) � L2(A14), L2(D10) � L2(A14),
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(4) L2(D4) � L2(A7).

Proof Case (1). It is easy to see that L2(A11) is a 17-dimensional complex Lie algebra
spanned by the following basis:

e1 = 12x1∂1 + 2x2∂2, e2 = x112 ∂1, e3 = x22∂2, e4 = x32∂2, . . . , e11 = x102 ∂2,

e12 = x112 ∂1 + x1∂2, e13 = x112 ∂2, e14 = x1x2∂2, e15 = x122 ∂2, e16 = x1x2∂1,

e17 = x122 ∂1.

The nilradical g(A11) of the Lie algebra L2(A11) is spanned by

{e2, e3, e4, . . . , e17}.
The nilradical g(A11) has the following multiplication table:

[e2, e3] = −11e17, [e2, e12] = e13, [e2, e14] = e15, [e2, e16] = e17, [e3, e4] = e5,

[e3, e5] = 2e6, [e3, e6] = 3e7, [e3, e7] = 4e8, [e3, e8] = 5e9, [e3, e9] = 6e10,

[e3, e10] = 7e11, [e3, e11] = 8e13, [e3, e12] = −2e14 + 11e17, [e3, e13] = 9e15, [e4, e5] = e7,

[e4, e6] = 2e8, [e4, e7] = 3e9, [e4, e8] = 4e10, [e4, e9] = 5e11, [e4, e10] = 6e13,

[e4, e11] = 7e15, [e5, e6] = e9, [e5, e7] = 2e10, [e5, e8] = 3e11, [e5, e9] = 4e13,

[e5, e10] = 5e15, [e6, e7] = e11, [e6, e8] = 2e13, [e6, e9] = 3e15, [e7, e8] = e15,

[e12, e16] = −e14, [e12, e17] = −e15.

It follows from the multiplication table that the sequence of dimensions of derived series is
{16, 11, 5, 0}.

It is easy to see that L2(D7) is a 17-dimensional complex Lie algebra spanned by the
following basis:

e1 = 5x1∂1 + 2x2∂2, e2 = (x52 + x21 )∂1, e3 = −x1x2∂1 + x22∂2, e4 = x42∂1,

e5 = (x52 + x21 )∂2, e6 = x22∂2, e7 = x52∂1, e8 = x32∂2, e9 = x42∂2, e10 = x52∂1 + x1x2∂2,

e11 = x52∂2, e12 = x31∂2, e13 = x1x
2
2∂2, e14 = x62∂2, e15 = x31∂1, e16 = x1x

2
2∂1,

e17 = x62∂1.

The nilradical g(D7) of the Lie algebra L2(D7) is spanned by

{e2, e3, e4, . . . , e17}.
The nilradical g(D7) has the following multiplication table:

[e2, e3] = −7e17, [e2, e5] = 2e12, [e2, e6] = −5e17, [e3, e4] = 5e7, [e3, e5] = 7e14 + e15,

[e3, e6] = e16, [e3, e7] = 6e17, [e3, e8] = e9, [e3, e9] = 2e11, [e3, e10] = −2e13 + 5e17,

[e3, e11] = 3e14, [e4, e6] = −4e7, [e4, e8] = −4e17, [e4, e10] = e11, [e4, e13] = e14,

[e4, e16] = e17, [e5, e6] = −5e14, [e5, e10] = e12, [e6, e7] = 5e17, [e6, e8] = e9,

[e6, e9] = 2e11, [e6, e10] = −e13 + 5e17, [e6, e11] = 3e14, [e7, e10] = e14, [e8, e9] = e14.

It follows from the multiplication table that the sequence of dimensions of derived series is
{16, 9, 3, 1, 0}.
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It is easy to see that L2(E6) is a 17-dimensional complex Lie algebra spanned by the
following basis:

e1 = 4x1∂1 + 3x2∂2, e2 = x22∂1, e3 = 2x1x2∂1 − x22∂2, e4 = x32∂1 + x21∂2,

e5 = x21∂1 − x1x2∂2, e6 = x22∂2, e7 = x1x2∂2, e8 = x1x
2
2∂1, e9 = x21∂2,

e10 = x1x
2
2∂2, e11 = x1x

2
2∂1 − x32∂2, e12 = x21 x2∂2, e13 = x1x

3
2∂2, e14 = x42∂2,

e15 = x21 x2∂1, e16 = x1x
3
2∂1, e17 = x42∂1.

The nilradical g(E6) of the Lie algebra L2(E6) is spanned by:

{e2, e3, e4, . . . , e17}.
The nilradical g(E6) has the following multiplication table:

[e2, e3] = 4e4 + 4e9, [e2, e4] = 2e10 − 2e15, [e2, e5] = e11 − 3e8, [e2, e6] = −2e4 − 2e9,

[e2, e7] = e11 − e8, [e2, e8] = e17, [e2, e9] = −2e10 + 2e15, [e2, e10] = e14 − 2e16,

[e2, e11] = −3e17, [e2, e12] = 2e13, [e2, e15] = 2e16,

[e3, e4] = 6e12 − 3e17, [e3, e5] = 3e10 − 4e15,

[e3, e6] = −2e8, [e3, e7] = 3e10 − 2e15, [e3, e8] = −2e16,

[e3, e9] = −6e12 − 2e17, [e3, e10] = 2e13,

[e3, e11] = −e14, [e4, e5] = −2e14 − 5e16, [e4, e6] = 2e12 − 3e17,

[e4, e7] = −3e16, [e4, e9] = −2e13,

[e5, e6] = e10, [e5, e7] = −e12, [e5, e8] = −e13, [e5, e9] = −3e14,

[e5, e11] = 3e13, [e6, e7] = −e10,

[e6, e8] = 2e16, [e6, e9] = 2e12, [e6, e11] = e14 − 2e16,

[e7, e8] = −e13, [e7, e9] = −e14, [e7, e11] = 3e13.

It follows from the multiplication table that the sequence of dimensions of derived series is
{16, 10, 0}.
Therefore the Lie algebras L2(D7), L2(E6) and L2(A11) have different sequences of dimen-
sions of derived series. Therefore these three Lie algebras are pairwise non-isomorphic.
Similarly we can prove the cases (2), (3), and (4). 	


It follows from Proposition 3.1 that the Lie algebras L2(V ) associated to the simple
hypersurface singularities, in the corresponding four cases, are non-isomorphic. Therefore
we completely characterize the simple hypersurface singularities by using their Lie algebras
L2(V ). 	
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