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1. Introduction

In this paper, we announce the recent results, obtained in [CHYZ], on the new Lie

algebras arising from isolated hypersurface singularities.

Let G be a semi-simple Lie group acting on its Lie algebra G by the adjoint action and

let G/G be the variety corresponding to the G-invariant polynomials on G. The quotient

morphism γ : G → G/G was intensively studied by Kostant ([Ko1], [Ko2]). Let H ⊂ G be

a Cartan subalgebra of G and W be the corresponding Weyl group.

(i) The space G/G may be identified with the set of semi-simple G classes in G such

that γ maps an element x ∈ G to the class of its semi-simple part xs. Thus γ−1(0) = N(G)

is the nilpotent variety. An element x ∈ N(G) is termed regular (resp., “subregular”) if

its centralizer has minimal dimension (resp., minimal dimension + 2).

(ii) By a theorem of Chevalley, the space G/G is isomorphic to H/W , an affine space

of dimension r = rank(G). The isomorphism is given by the map of a semi-simple class

to its intersection with H (a W orbit).

The following beautiful theorem of Brieskorn [Br] conjectured by Grothendieck [Gr]

establishes connections between the simple singularities and the simple Lie algebras.
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Theorem 1.1. ([Br]) Let G be a simple Lie algebra over C of type Ar, Dr, Er. Then

(i) the intersection of the variety N(G) of the nilpotent elements of G with a transverse

slice S to the subregular orbit, which has codimension 2 in N(G), is a surface S ∩ N(G)

with an isolated rational double point of the type corresponding to the algebra G.

(ii) the restriction of the quotient γ : G → H/W to the slice S is a realization of a

semi-universal deformation of the singularity in S ∩N(G).

The details of this Brieskorn’s theory can be found in Slodowy’s papers ([Sl1], [Sl2]).

Among many other things, Brieskorn’s theory gives the way to construct rational double

points from simple Lie algebras. It is known that finite dimensional Lie algebras are semi-

direct product of the semi-simple Lie algebras and solvable Lie algebras. Brieskorn gave

the connection between simple Lie algebras and simple singularities. Simple Lie algebras

and semi-simple Lie algebras have been well understood, but not the solvable (nilpotent)

Lie algebras. Historically, a marked difference is noted between the classification theory

of semi-simple Lie algebras and the classification theories of solvable or nilpotent Lie al-

gebras. The semi-simple theory can best be described as beautiful, while the others lack

anything resembling elegance. For semi-simple Lie algebras over the complex numbers

one has the Killing form, Dynkin diagrams, root space decompositions, the Serre pre-

sentation, the theory of highest weight representations, the Weyl character formula for

finite-dimensional representations, and much more ([Hu], [Ja]). In the theory of solvable

Lie algebras one has the theorems of Lie and Engel along with Malcev’s reduction of the

classification problem to the same problem for nilpotent algebras [Ma]. There does not

seem to be any nice way to classify nilpotent Lie algebras (such as a graph or diagram

for each algebra). Therefore, it is of great importance to establish connection between

singularities and solvable (nilpotent) Lie algebras. In [CHYZ], a new natural connection

between the set of complex analytic isolated hypersurface singularities and the set of

finite dimensional solvable (nilpotent) Lie algebras has been constructed. These connec-

tions help people to understand the solvable (nilpotent) Lie algebras from the geometric

point of view.

2. Yau algebra

For any isolated hypersurface singularity (V, 0) ⊂ (Cn, 0) where V = V (f) = {f = 0},
one can consider the moduli algebra A(V ) := On/(f,

∂f
∂x1
, · · · , ∂f

∂xn
), where On is the

algebra of convergent power series in n indeterminates and f ∈ On. In [MY], Mather

and Yau proved that the complex structure of (V, 0) determines and is determined by its

moduli algebra.
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Theorem 2.1. [MY] The analytic isomorphism type of an isolated hypersurface singular-

ity determine and is determined by the isomorphism class of its moduli algebra. i.e.,

(V1, 0) ∼= (V2, 0)⇐⇒ A(V1) ∼= A(V2).

Subsequently, motivated from Mather-Yau theorem, Yau [Ya2] introduced the Lie al-

gebra to (V, 0) as follows:

Let V = {f = 0} be a germ of isolated hypersurface singularity at the origin of Cn

defined by f ∈ C[x1, x2, ..., xn] and A(V ) be the moduli algebra. We denote L(V ) :=

DerC(A(V ), A(V )). Yu [Yu] call L(V ) the Yau algebra of V . Its dimension denoted as

λ(V ) is called the Yau number by Elashvili and Khimshiashvili [EK].

He proved that L(V ) is solvable (cf. [Ya3]). Yau and his collabrators have systematically

studied the Lie algebras of isolated hypersurface singularities since 1980s ([Ya1]-[Ya3],

[BY], [SY], [YZ1, YZ2], [CYZ], [CCYZ], [HYZ1]-[HYZ3]). We shall denote as λ(V ) the

dimension of L(V ). In [Yu], L(V ) is called Yau algebra while in [EK] λ(V ) is called Yau

number.

3. New derivation Lie algebra

The following beautiful theorem of Dimca characterizes zero-dimensional isolated com-

plete intersection singularities.

Theorem 3.1. (Dimca [Di]) Two zero-dimensional isolated complete intersection sin-

gularities X and Y are isomorphic if and only if their singular subspaces Sing(X) and

Sing(Y ) are isomorphic.

Remark 3.1. Let V = V (f) be an isolated quasi-homogeneous hypersurface singularity.

Assume that X defined by ( ∂f
∂x1
, · · · , ∂f

∂xn
) is a zero-dimensional isolated complete inter-

section singularities. Then Sing(X) is defined by (f, ∂f
∂x1
, · · · , ∂f

∂xn
,Det( ∂2f

∂xi∂xj
)i,j=1,··· ,n).

Theorem 3.1 implies that in order to study analytic isomorphism type of zero dimen-

sional isolated complete intersection singularity X, we only need to consider the Artinian

local algebra A∗(V ) which is the coordinate ring of Sing(X). Thus A∗(V ) is defined as

the quotient

On/(f,
∂f

∂x1
, · · · , ∂f

∂xn
,Det(

∂2f

∂xi∂xj
)i,j=1,··· ,n).

Combining Theorem 3.1 with Mather-Yau theorem, we know that A∗(V ) is a complete

invariant of quasi-homogeneous isolated hypersurface singularities (i.e., A∗(V ) determines

and is determined by the analytic isomorphism type of the singularity). We call A∗(V )
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the generalized moduli algebra of V . Based on this important observation, in [CHYZ],

we introduce the following new invariants for isolated hypersurface singularities.

Definition 3.1. Let V = {f = 0} be a germ of isolated hypersurface singularity at the

origin of Cn defined by f ∈ C[x1, x2, ..., xn]. The new Lie algebra arising from the isolated

hypersurface singularity V is defined as L∗(V ) := Der(A∗(V ), A∗(V )) ( or Der(A∗(V )) for

short). Its dimension is denoted as λ∗(V ).

It is natural to present the following question.

Question 3.1. What type of singularities such that L∗(V ) is a complete invariants. That

is, if V1, V2 are two singularities of such type, then L∗(V1) ∼= L∗(V1) if and only if V1 ∼= V2.

In [CHYZ], we have given an affirmative answer to Question 3.1 for simple singularities

and simple elliptic singularities.

The following theorem by Saito will be used later.

Theorem 3.2. ([Sa1]) Let f ∈ On be a germ of a holomorphic function, defining an

isolated quasi-homogeneous singularity at 0. Then

Det(
∂2f

∂xi∂xj
)i,j=1,··· ,n /∈ (

∂f

∂x1
, · · · , ∂f

∂xn
)On

and

mDet(
∂2f

∂xi∂xj
)i,j=1,··· ,n ⊆ (

∂f

∂x1
, · · · , ∂f

∂xn
)On

where m is the maximal ideal of On.

We obtain the following result.

Theorem 3.3. Let V be an isolated singularity defined by a quasi-homogeneous polynomial

f . Then

µ∗(V ) = µ(V )− 1,

where µ∗(V ) is the dimension of A∗(V ) and µ(V ) is the Milnor number of V .

Proof. Since the Milnor algebra

On/(
∂f

∂x1
, · · · , ∂f

∂xn
),

is a Gorenstein local algebra and has a unique socle, it follows from Theorem 3.2 that

Det( ∂2f
∂xi∂xj

) is the unique socle. Thus we have µ∗(V ) = µ(V )− 1. �

Remark 3.2. It follows from Theorem 3.3 that A∗(V ) = 0 when µ(V ) = 1. For this reason,

our new Lie algebra L∗(V ) is defined only for singularities with Milnor number µ(V ) ≥ 2.
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Yau algebras are solvable. However, the new Lie algebra is not solvable in general. An

example is: x3 + y3, and its new Lie algebra is spanned by x∂x, y∂y, x∂y, y∂x. Then it is

easy to check that the derived series does not go down to zero. However, we prove that

the new Lie algebra is solvable when the multiplicity of the singularity is at least 4. We

first recall an important result obtained by Schulze.

Theorem 3.4. [Sc] Let S be a zero-dimensional local C-algebra of embedding dimension

embdim(S) and order ord(S), and denote its first deviation by ε1(S). Then the Lie algebra

DerC(S, S) is solvable if ε1(S) + 1 < embdim(S) + ord(S).

Recall that, by definition, ε1(S) = dimCH1(S) where H•(S) is the Koszul algebra of

S. More explicitly, when S = R/I in Theorem 3.4, where R = On and I ⊆ R is a

zero-dimensional ideal with I ⊆ mm, m = (x1, · · · , xn) and m ≥ 2 is chosen maximal.

Then n = embdim(S),m = ord(S), and ε1(S) = dimC(I/mI) is the minimal number of

generators of I ([BH], Thm. 2.3.2(b)).

This result applies in particular to the generalized moduli algebra A∗(V ). If f is

not quasi-homogeneous, then Der(A∗(V ), A∗(V )) is the same as Yau algebra, thus it is

solvable. Otherwise we have the following result.

Corollary 3.1. If f is quasi-homogeneous and mult(f) ≥ 4, then the new Lie algebra

Der(A∗(V ), A∗(V )) is solvable.

Proof. Since f is quasi-homogeneous and mult(f) ≥ 4, then embdim(A∗(V )) = n, ε1(S) =

n + 1, and ord(A∗(V ) ≥ 3. It follows from Theorem 3.4 that Der(A∗(V ), A∗(V )) is

solvable. �

4. main results

Given a family of complex projective hypersurfaces in CP n, the Torelli problem studied

by Griffiths and his school asks whether the period map is injective on that family, i.e.,

whether the family of complex hypersurfaces can be distinguished by means of their

Hodge structures. A complex projective hypersurface in CP n can be viewed as a complex

hypersurface with isolated singularity in Cn+1. Let V = {z ∈ Cn+1 : f(z) = O} be a

complex hypersurface with isolated singularity at the origin. Seeley and Yau investigated

the family of isolated complex hypersurface singularities using Yau algebras and obtained

two deep Torelli-type theorems for simple elliptic singularities Ẽ7 and Ẽ8 [SY]. The

natural question arises: whether the family of isolated complex hypersurface singularities

can be distinguished by means of their new Lie algebras. The family of hypersurface
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singularities here is not arbitrary. First of all, as in projective case, we are actually

studying the complex structures of an isolated hypersurface singularity. In view of the

theorem of Lê and Ramanujan [LR], we require that the Milnor number µ is constant

along this family. Recall that the dimension of the moduli algebra (denoted by τ) is

a complex analytic invariant. So it suffices to consider only a (µ, τ)-constant family of

isolated complex hypersurface singularities [SY]. The simple elliptic singularities are such

families. We shall prove two Torelli-type theorems for simple elliptic singularities Ẽ7 and

Ẽ8 respectively. However, there is no Torelli-type result for Ẽ6, since L∗(Vt) is a trivial

family. Our method for Ẽ7 is completely new and can be used to prove Torelli-type

theorems for more general singularities. There are several advantages of our approach.

First of all, it works for general complex hypersurface singularities without homogeneity

assumption. Second, it allows us to construct a continuous invariant explicitly. Third, it

gives a general method to produce a continuous family of nilpotent Lie algebras.

For recent progress on the new Lie algebras, please see [MYZ], we propose a new con-

jecture about the non-existence of negative weight derivations of the new moduli algebras

of weighted homogeneous hypersurface singularities and verify this conjecture up to di-

mension three.

Due to the space limit, this paper is to summarize mainly the following results that we

have obtained in [CHYZ]. The details and proofs can be found there.

Theorem A. The Torelli-type theorem holds for simple elliptic singularities Ẽ8. That is,

L∗(Vt1)
∼= L∗(Vt2) as Lie algebras, for t1 6= t2 in C − {t ∈ C : 4t3 + 27 = 0}, if and only

if Vt1 and Vt2 are analytically isomorphic (i.e., t31 = t32). In particular, Ẽ8 give rise to a

non-trivial one-parameter family of solvable (resp. nilpotent) Lie algebras of dimension

12 (resp. 11).

Theorem B. The weak Torelli-type theorem holds for simple elliptic singularities Ẽ7, i.e.,

L∗(Vt) is a non-trivial one-parameter family. In particular, Ẽ7 give rise to a non-trivial

one-parameter family of solvable (resp. nilpotent) Lie algebras of dimension 11 (resp. 10).

However the new Lie algebra can not distinguish Ẽ6.

Ẽ6 is a simple elliptic singularity defined by {(x, y, z) ∈ C3 | x3 + y3 + z3 = 0}. Its

(µ, τ)-constant family is given by

Vt = {(x, y, z) ∈ C3 | ft(x, y, z) = x3 + y3 + z3 + txyz = 0}
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with t3 + 27 6= 0 (cf. [Ya1]). The moduli algebra of Vt, denoted as A(Vt), is given by

A(Vt) =C{x, y, z}/(∂ft
∂x

,
∂ft
∂y

,
∂ft
∂z

)

= < 1, x, y, z, xy, yz, zx, xyz >,

with multiplication rules

x2 = − t
3
yz, y2 = − t

3
zx, z2 = − t

3
xy,

x2y = xy2 = y2z = yz2 = x2z = 0.

Let Hess(ft) be the Hessian matrix of ft. Then the generalized moduli algebra A∗(Vt) :=

On/(
∂ft
∂x
, ∂ft
∂y
, ∂ft

∂z
,Det(Hess(ft))) = A(Vt)/(x

2y2) =< 1, x, y, z, xy, yz, zx > with multipli-

cation rules

x2 = − t
3
yz, y2 = − t

3
zx, z2 = − t

3
xy,

and

x2y = xy2 = y2z = yz2 = x2z = xyz = 0.

By calculation, a basis for the new Lie algebra L∗(Vt) = Der(A∗(Vt), A
∗(Vt)) denoted

as L∗
t for short is:

x∂x + y∂y + z∂z, yz∂x, yz∂y, yz∂z, xz∂x, xz∂y, xz∂z, xy∂x, xy∂y, xy∂z,

for t 6= 0 and 216− t6

27
+ 7t3 6= 0. It is easy to see that in this case, L∗

t are isomorphic as

Lie algebra. Thus L∗
t is a trivial family.

The classification of nilpotent Lie algebras in higher dimensions (> 7) remains wide

open. It is known that there are one-parameter families of non-isomorphic nilpotent Lie

algebras (but no two-parameter families) in dimension seven. There are no such families

in dimension less than seven. And the existence of such families is known in dimension

greater than seven. However, such examples are hard to construct (cf. [Se]). As a

corollary of Theorem A and Theorem B, we obtain non-trivial one-parameter families

of 11-dimensional and 12-dimensional solvable (resp. 10-dimensional and 11-dimensional

nilpotent) Lie algebras associated to Ẽ7 and Ẽ8 respectively.

Yau and Zuo [YZ2] formulated a sharp upper estimate conjecture for the Yau number of

weighted homogeneous isolated hypersurface singularities and validated this conjecture for

binomial isolated hypersurface singularities. A natural question is: what is the numerical

relation between the new analytic invariant λ∗(V ) and the Yau number λ(V )? We propose

the following conjecture:
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Conjecture 4.1. Let (V, 0) be an isolated hypersurface singularity defined by f ∈
On, n ≥ 2, and multiplicity greater than or equal to 3. Let λ∗(V ) be the dimension

of L∗(V ) := DerC(A∗(V ), A∗(V )), then λ∗(V ) = λ(V ).

The above conjecture is obviously true when the isolated singularity (V, 0) is not quasi-

homogeneous. Recall the beautiful result of Saito ([Sa2], Corollary 3.8): let f ∈ On be a

germ of a holomorphic function which defines a hypersurface with an isolated singularity

at 0, then f is not quasi-homogeneous, precisely when

Det(
∂2f

∂xi∂xj
)i,j=1,··· ,n ∈ (f,

∂f

∂x1
, · · · , ∂f

∂xn
).

Consequently, for non-quasi-homogeneous isolated hypersurface singularities, A(V ) =

A∗(V ). It follows that L∗(V ) = L(V ) and λ∗(V ) = λ(V ).

In this article, we shall also prove the following results:

Theorem C. Let f be a weighted homogeneous polynomial in C[x1, x2, . . . , xn] (n ≥ 2)

with respect to weight system (w1, w2, . . . , wn; 1) and with mult(f) ≥ 3. Suppose that f

defines an isolated singularity (V, 0), then

λ∗(V ) ≤ λ(V ).

Conjecture 4.1 is verified when n ≤ 4.

Theorem D. Let f be a weighted homogeneous polynomial in C[x1, x2, . . . , xn] (2 ≤ n ≤
4) with respect to weight system (w1, w2, . . . , wn; 1) and with mult(f) ≥ 3. Suppose that

f defines an isolated singularity (V, 0), then

λ∗(V ) = λ(V ).

Elashvili and Khimshiashvili [EK] proved the following result: if X and Y are two

simple singularities except the pair A6 and D5, then L(X) ∼= L(Y ) as Lie algebras, if and

only if X and Y are analytically isomorphic. Finally, we shall also show that the simple

hypersurface singularities can be characterized completely by the new Lie algebra L∗(V ).

Theorem E. If X and Y are two simple hypersurface singularities, then L∗(X) ∼= L∗(Y )

as Lie algebras, if and only if X and Y are analytically isomorphic.

The proof follows directly from the computation performed in section 6 by a straight-

forward analysis of the new Lie algebras.
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5. Fewnomial singularities

In this subsection we recall the definition of fewnomial isolated singularities [Kh].

Definition 5.1. We say that a polynomial f ∈ C[z1, z2, · · · , zn] is fewnomial if the number

of monomials in f does not exceed n.

Obviously, the number of monomials in f may depend on the system of coordinates.

In order to obtain a rigorous concept we shall only allow linear transformations of coor-

dinates and f (or rather its germ at the origin) is called a k-nomial if k is the smallest

natural number such that f becomes a k-nomial after (possibly) a linear transformation

of coordinates. An isolated hypersurface singularity V is called k-nomial if there exists

an isolated hypersurface singularity Y analytically isomorphic to V which can be defined

by a k-nomial and k is the smallest such number. It was shown in [CYZ] that a singu-

larity defined by a fewnomial f is isolated only if f is a n-nomial in n variables when its

multiplicity is at least 3 .

Definition 5.2. We say that an isolated hypersurface singularity V is fewnomial if it

is defined by a fewnomial polynomial f . V is called a weighted homogenous fewnomial

isolated singularity, if it is defined by a weighted homogenous fewnomial polynomial f .

The 2-nomial (resp. 3-nomial) isolated hypersurface singularity is also called binomial

(resp. trinomial) singularity.

The following proposition and corollary tell us that each simple singularity belongs to

one of the following three types.

Proposition 5.1. [YZ2] Let f be a weighted homogeneous fewnomial isolated hypersur-

face singularity with multiplicity at least 3. Then f is analytically equivalent to a linear

combination of the following three series:

Type A. xa11 + xa22 + · · ·+ x
an−1

n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · ·+ x
an−1

n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · ·+ x
an−1

n−1 xn + xann x1, n ≥ 2.

Corollary 5.1. [YZ2] Each binomial isolated singularity is analytically equivalent to one

of the three series: A) xa11 + xa22 , B) xa11 x2 + xa22 , and C) xa11 x2 + xa22 x1.

In many situations it is necessary to have an explicit basis of A(V ). It is well known that

there always exist monomial bases. Recall that the monomial bases in moduli algebras of

simple singularities (Ak, Dk, E6, E7, E8) are given in [AGV].
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6. Computing the new Lie algebras

We compute the new Lie algebra for binomial singularities, which includes the simple

singularities as special case. As an application, we prove that the simple hypersurface

singularities can be characterized completely by the new Lie algebra.

Proposition 6.1. Let (V, 0) be a weighted homogeneous fewnomial isolated singularity of

type A, defined by f = xa11 + xa22 (a1 ≥ 2, a2 ≥ 3) with weight type ( 1
a1
, 1
a2

; 1). Then

λ∗(V ) =

{
2a1a2 − 3(a1 + a2) + 4, a1 ≥ 3, a2 ≥ 3
a2 − 3, a1 = 2, a2 ≥ 3.

Remark 6.1. Since our new Lie algebra is not defined for the Milnor number µ(f) = 1.

The restriction a1 ≥ 2, a2 ≥ 3 in Proposition 6.1 follows from µ(f) ≥ 2. The similar

restrictions also appear in Proposition 6.2 and Proposition 6.3 below.

Proposition 6.2. Let (V, 0) be a binomial isolated singularity of type B defined by f =

xa11 x2 + xa22 (a1 ≥ 2, a2 ≥ 2) with weight type (a2−1
a1a2

, 1
a2

; 1). Then

λ∗(V ) =

{
2a1a2 − 2a1 − 3a2 + 5, a1 ≥ 2, a2 ≥ 3
2a1 − 3, a1 ≥ 2, a2 = 2.

Proposition 6.3. Let (V, 0) be a binomial isolated singularity of type C, defined by f =

xa11 x2 + xa22 x1 (a1 ≥ a2 ≥ 2) with weight type ( a2−1
a1a2−1

, a1−1
a1a2−1

; 1). Then

λ∗(V ) =

{
2a1a2 − 2a1 − 2a2 + 6, a1 ≥ a2 ≥ 3,
2a1, a1 ≥ a2 = 2

In order to prove Theorem E, we need the following proposition.

Proposition 6.4. The following three pairs of new Lie algebras arising from simple hy-

persurface singularities are not isomorphic:

L∗(D7) � L∗(E6), L
∗(A10) � L∗(E7), and L∗(D10) � L∗(E8).

It is easy to see that, from Propositions 6.1 and 6.2, we get dimL∗(Ak) = k − 2,

dimL∗(Dk) = k, dimL∗(E6) = 7, dimL∗(E7) = 8, and dimL∗(E8) = 10. Cartan subal-

gebras that from L∗(Ak) and L∗(Dk) are generated by < x2∂2 > and < x1∂1, x2∂2 >

respectively. It is then easy to verify that rkL∗(Ak) = rkL∗(E7) = 1 while rkL∗(E6) =

rkL∗(E8) = rkL∗(Dk) = 2. When the dimensions or ranks of the new Lie algebras for all

simple singularities are different, then they are certainly not isomorphic, so we only need to

treat the three pairs of Lie algebras (L∗(A10), L
∗(E7)), (L

∗(E6), L
∗(D7)), (L

∗(E8), L
∗(D10))

which have the same dimensions and ranks. It follows from the Proposition 6.4 that these

three pairs are non-isomorphic. Therefore we have the following proposition.
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Proposition 6.5 (i.e. Proposition E). If X and Y are two simple hypersurface singu-

larities then L∗(X) ∼= L∗(Y ) as Lie algebras, if and only if X and Y are analytically

isomorphic.

In fact, we have obtained the following theorem which generalize Theorem E.

Theorem 6.1. [CHYZ](i.e., Conjecture 4.1) Conjecture 4.1 is true for binomial singu-

larities.

Proof. In order to prove Conjecture 4.1, i.e., λ∗(V ) = λ(V ), we need the following propo-

sitions from [YZ2].

Proposition 6.6. [YZ2] Let (V, 0) be a weighted homogeneous fewnomial isolated singu-

larity of type A defined by f = xa11 + xa22 + · · · + xann with weight type ( 1
a1
, 1
a2
, · · · , 1

an
; 1).

Then the Yau number is

λ(V ) = n
n∏

i=1

(ai − 1)−
n∑
i

(a1 − 1)(a2 − 1) · · · ̂(ai − 1) · · · (an − 1),

where ̂(ai − 1) means that ai − 1 is omitted.

Proposition 6.7. [YZ2] Let (V, 0) be a binomial isolated singularity of type B defined by

f = xa11 x2 + xa22 with weight type (a2−1
a1a2

, 1
a2

; 1). Then the Yau number is

λ(V ) = 2a1a2 − 2a1 − 3a2 + 5.

Proposition 6.8. [YZ2] Let (V, 0) be a binomial isolated singularity of type C defined by

f = xa11 x2 + xa22 x1 with weight type ( a2−1
a1a2−1

, a1−1
a1a2−1

; 1). If mult(f) ≥ 4, i.e., a1, a2 ≥ 3,

then the Yau number is

λ(V ) = 2a1a2 − 2a1 − 2a2 + 6.

If mult(f) = 3, i.e., f = x21x2 + xa22 x1, then the Yau number is λ(V ) = 2a2.

Comparing the Yau number λ(V ) with the new analytic invariant λ∗(V ) in the case of

binomial isolated singularities of type A, type B and type C (see Propositions 6.1-6.3), it

is easy to see that the conjecture holds for binomial isolated singularities, i.e.

λ∗(V ) = λ(V ),

and hence Theorem 6.1 is proved.

�
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