
HYPERSURFACE WEIGHTED DUAL GRAPHS OF NORMAL 
SINGULARITIES OF SURFACES 

By STEPHEN SHING-TOUNG YAU. 

Introduction. Let p be a normal singularity of the 2-dimensional Stein 
space V. Let S: M- > V be a resolution of V such that the irreducible compo- 
nents Ai, 1 < i < n, of A = ' - '( p) are nonsingular and have only normal cross- 
ings. Associated to A is a weighted dual graph r (e.g. see [10] or [14]) which, 
along with the genera of the Ai, fully describes the topology and differentiable 
structure of A and the topological and differentiable nature of the embedding 
of A in M. 
One of the important questions in normal two dimensional singularities is "the 
classification of all weighted dual graphs for hypersurface singularities." It is 
known that in the weighted dual graphs for hypersurface singularities, the K' 
cycle (see Definition 0.9) exists. M. Artin has studied the rational singularities 
[those for which R '7. (O ) = 0]. Double points are hypersurface singularities. He 
has shown that if p is a rational double point, then the graph associated to p is 
one of the graphs Ak, k > 1; Dk, k> 4; E6; E7; E8 which arise in the classification 
of Lie groups. In [26], Wagreich introduces a definition for p to be weakly 
elliptic. He proved that for double points, Z Z > -2, where Z is the fundamen- 
tal cycle. Using this fact, he listed a lot of the possible weighted dual graphs of 
elliptic double points [26] (34 possible cases). I was kindly informed by Laufer, 
and Wagreich himself that the list is incomplete. In this work, we will give a 
complete list (131 cases) of all weighted dual graphs for weakly elliptic double 
points (cf. Theorem 2.9). Moreover, for each of these weighted dual graphs, a 
typical defining equation is given. The defining equations have been found by 
means of an unpublished technique of Laufer. Rational singularities have 
H '(M, (9 ) = 0. The hypersurface rational singularities are actually double points. 
For H '(M, 69 ) = C, Laufer was able to list all weighted dual graphs of hyper- 
surface singularities. In this paper, we list all possible weighted dual graphs of 
hypersurface singularities with H '(M, e ) _ C2. As a consequence of this classifi- 
cation, the following theorem is proved. 
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762 STEPHEN SHING-TOUNG YAU. 

THEOREM. Let g: M-- V be the minimal good resolution of normal two 
dimensional Stein space with p as its only singular point. Suppose H'(M, 0)_ 
C2 and p is a hypersurface singularity. Let E be the minimally elliptic cycle. If 
H'(A, Z) = 0, then p is an almost minimally elliptic singularity. (For definition 
see [29].) 

An example in [28] shows that the above theorem is sharp. Our main tool is 
the previous result [28] that - K'= summation of the elliptic sequence, the 
complete list of minimally elliptic hypersurface singularities by Laufer [18] and 
Theorem 2.7 of Wagreich [26]. 

We begin by recalling some theorems and definitions in Section 0. In 
Section 1, we get a lower estimate on the dimension of Zariski tangent space of 
general two dimensional normal singularity in terms of the fundamental cycle 
Z, 

dim M/M2 > X(Z) -Z Z + dim H'(M, (9(Z)) -dim H'(M, (9(2 Z)), 

which will give us a necessary condition on hypersurface weighted dual 
graphs. This kind of estimate is sharp in the sense that equality holds for 
certain singularities. In case of maximally elliptic singularities, we know that 
dim H'(M, 69 (- Z)) = dim H'(M, 69 (-2Z)). In particular, for maximally elliptic 
singularities, Z Z > -3. This enables us to list all the possible maximally elliptic 
hypersurface singularities. However, the list is too long to be included. In 
Section 2, we give a topological classification of elliptic double points. In 
Section 3, we list all possible hypersurface weighted dual graphs for those 
singularities with H1(M, ()) = C2. 

I gratefully acknolwedge the encouragement and help of Professor Henry 
B. Laufer during the investigation of these results, especially for showing me his 
unpublished technique in finding a defining equation for the weighted dual 
graph of double points. I would also like to thank Professor Kuga, Professor Siu 
and Professor Wagreich for their encouragement and discussion of mathemat- 
ics. 

0. Preliminaries. Let S: M-> V be a resolution of normal two dimensional 
Stein space V. We assume that p is the only singularity of V. Let ST - '(p) = A = 

U Ai, 1 < i < n, be the decomposition of the exceptional set A into irreducible 
components. Suppose S is the minimal good resolution. Let r be the associated 
weighted dual graph. The vertices of r correspond to the Ai. The edge of r 
connecting the vertices corresponding to Ai and Ap, i #, corresponds to the 
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HYPERSURFACE WEIGHTED DUAL GRAPHS. 763 

points of Ai n A,. Finally, associated to each Ai is its genus, gj, as a Riemann 
surface, and its weight, AiAi, the topological self-intersection number. r will 
denote the graph along with the genera and the weights. 

Definition 0.1. degAi = EA-AiA, j#4i. 

A cycle (or divisorial cycle) D on A is an integral combination of the Ai. 
D = EdiAi, 1 < i < n with di an integer. In this paper, "cycle" will always mean 
a cycle on A. There is a natural partial ordering, denoted by <, between cycles 
defined by comparing the coefficients. We shall only be considering cycles 
D > 0. We let suppD = ID I = U Ai, di c0, denote the support of D. 

Let 6 be the sheaf of genus of holomorphic functions on M. Let ( (- D) 
be the sheaf of germs of holomorphic functions on M which vanish to order di 
on Ai. Let ?D denote 6 /6 (-D). We use "dim" to denote dimension over C. 
Then 

x(D) = dimH?(M, ?D)- dimH'(M, ?D). (0.1) 

Some authors work instead with the arithmetic genus PU(D) =1- X(D). The 
Riemann-Roch theorem [24, p. 75] says 

X(D) = -2 (D.D+ DK). (0.2) 

In (0.2), K is the canonical divisor on M. D-K may be defined as follows. Let w 
be a meromorphic 2-form on M, i.e., a meromorphic section of K. Let (w) be the 
divisor of w. Then D-K = D- (w), and this number is independent of the choice 
of w. In fact, let g, be the geometric genus of Ai, i.e., the genus of the 
desingularization of Ai. Then [24, p. 75] 

Ai*K = -Ai-Ai +2g. -2+26i, (0.3) 

where 8i is the "number" of nodes and cusps on Ai. Each singular point on Ai 
other than a node or cusp counts as at least two nodes. Fortunately, such more 
complicated singularities will not occur in this paper. 

The minimal resolution of V is characterized by there being no Ai which is 
a nonsingular rational curve with AiAi = -1 [5, p. 364]. The intersection matrix 

(Ai-Ai) is negative definite [14], so by (0.3) we see the following. 

PROPOSITION 0.2. S is the minimal resolution of V if and only if Ai-K > 0 
for all Ai. 

It follows immediately from (1.2) that if B and C are cycles, then 

x(B + C) = x(B) + X(C)-B * C. (0.4) 
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764 STEPHEN SHING-TOUNG YAU. 

Associated to S is a unique fundamental cycle Z [1, pp. 131-132] such that 
Z >0, Ai Z S 0 (all Ai), and such that Z is minimal with respect to those two 
properties. Z may be computed from the intersection matrix as follows [15, p. 
607] via what is called a computation sequence (in the sense of Laufer) for Z: 

ZO = 0, Z1= Ai, 

Z2= Z1+A12' = 

Z; = Zj_ l +A Ait 

Z, = Zl- 1 + Ail =Z, 

where Ai, is arbitrary and A Z1> 0, 1<j 1. 
Since M is two dimensional and not compact, 

H2(M, 6) = 0 (0.5) 

for any coherent analytic sheaf S on M [25]. 
Wagreich [26] defined the singularity p to be elliptic if x(D) > 0 for all 

cycles D > 0 and x(F) = 0 for some cycles F > 0. He proved that this definition 
is independent of the resolution. It is easy to see that under this hypothesis, 

X(Z) =0. 

Definition 0.3. A cycle E > 0 is minimally elliptic if x(E) = 0 and x(D) > 
0 for all cycles D such that 0<D<E. 

THEOREM 0.4 (Laufer). Let F be a weighted dual graph including genera 
for the vertices, associated to a minimal resolution with nonsingular Ai and 
normal crossings. Suppose that X(Z) = 0. Then, generically (in the sense of 
Laufer [18]), H1(M, ( ) = C. Consequently x(D) > 0 for any cycle D > 0. Let E 
be the minimally elliptic cycle, E < Z. If there exists Ai C: E with Ai Z <0, 
then H1(M, 0 ) = C for all p associated to F. 

Henceforth, we will adopt the following definition. 

Definition 0.5. p is said to be weakly elliptic if X(Z) = 0. 

Definition 0.6. Let S: M-* V be the minimal resolution of V. p is minim- 
ally elliptic if p is elliptic and every connected proper subvariety of A is the 
exceptional set for a rational singularity. 

The following definitions and theorems can be found in [28] and [29]. 

LEMMA 0.7. Let r: M-* V be a resolution of normal two dimensional 
space V with p as its only weakly elliptic singularity. Let 7r-l(p) =A = U Ai, 
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1 < i < n, be the decomposition of the exceptional set A into irreducible compo- 
nents. Let E be the minimally elliptic cycle on A. If suppE consists of more 
than one irreducible component, then all Ai, 1 < i < n, are rational curves. 

suppE = A1 if and only if A1 is a nonsingular elliptic curve or A1 is a singular 
rational curve with a node or cusp singularity. In this case, all Ai, 2 < i < n, are 
nonsingular rational curves. 

PROPOSITION 0.8. Let S: M-- V be the minimal good resolution of normal 
two dimensional Stein space with p as its only weakly elliptic singular point. In 
the computation sequence for the fundamental cycle Z, we have A, Z. -1 = I for 
all 1 < j < 1 except possibly one 1 < k < 1 such that Aik ' Zk- 1 = 2. In this case, Aik 

is in JEl. 

Definition 0.9. Let K be the canonical divisor on M. We define the 
negative cycle K' = : k Ai on A, where ki E Z, the set of integers, to be a cycle 
such that Ai K'= A K for all Ai CA. (K' does not always exist.) 

Definition 0.10. Let A be the exceptional set of the minimal good 
resolution S: M-- V, where V is a normal two dimensional Stein space with p as 
its only weakly elliptic singularity. If E Z < 0, we say that the elliptic sequence 
is { Z ) and the length of elliptic sequence is equal to one. Suppose E Z = 0. Let 
B1 be the maximal connected subvariety of A such that Bl?suppE and 

Ai Z = 0 for all Ai C B1. Since A is an exceptional set, Z Z < 0. So B1 is properly 
contained in A. Let ZBI be the fundamental cycle on B1. Suppose ZB E = 0. Let 
B2 be the maximal connected subvariety of B1 such that B2D JE I and Ai ZB1 =0 
for all Ai C B2. By the same argument as above, B2 is properly contained in B1. 
Continuing this process, we finally obtain Bm with ZB nE <O. We call {ZBO = Z 

ZB, ... ZB } the elliptic sequence, and the length of the elliptic sequence is 
m+1. 

THEOREM 0.11. Let gr: M-- V be the minimal good resolution of normal 
two dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose p is not a minimally elliptic singularity. If E Z <0 and IEJ 1A, then 
K' does not exist. If K' exists, then the elliptic sequence is of the following 
form: 

ZB( = Z, ZB1 ..., Z5 Zj 
= ZE, > O. 

Moreover -K' = i =oZB + E. 

Definition 0.12. Let S: M--V be the minimal good resolution of normal 
two dimensional Stein space with p as its only weakly elliptic singularity. 
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766 STEPHEN SHING-TOUNG YAU. 

Suppose K' exists. If dimH'(M, 6 ) =length of the elliptic sequence, then p is 
called a maximally elliptic singularity. 

Definition 0.12. Let vr,M,V,p be as in Theorem 0.11. If for all Ai IEJ 
and AinJ E 1J#-0, then Ai Z < 0. We call p an almost minimally elliptic singular- 
ity. 

PROPOSITION 0.14. Let p be the maximally elliptic singularity. Let ZB 0 
Z, ZB1 ..., ZBI ZE = 

ZB, be the elliptic sequence. Then for any 0< h <1, there 
exists f E H?(M, 6 (- >=OZB )) such that f - H?(M, 6 (- Eh +1ZB)). In fact, the 
vanishing order of f on A, is precisely E wh=oBZi where ZBj=2kBzkAk and 

AiCBh+l. 

THEOREM 0.15. Let r: M-* V be the minimal good resolution of nmal 
two dimensional Stein space with p as its only weakly elliptic singularity. 
Suppose H1(M,D)= C2 and v)p is Gorenstein. Let ZB.=Z, ZB1,..., Z, ZE be 
the elliptic sequence. Then the multiplicity of v9 > - Z=OZB2j. Moreover if 
ZE ZE < -2, then the equality holds. 

THEOREM 0.16. Let gT: M-* V be the minimal good resolution of normal 
two dimensional Stein space V with p as its only weakly elliptic singularity. 
Suppose H1(M,6)>C2, H1(IEJ,7Z)=0, and v ep is Gorenstein. Let ZBO, ZBR,., 
ZB, ZE = ZBI 1 be the elliptic sequence. Let D be the subvariety of B1 consisting 
of those irreducible components AiC Bl such that AjnlEJ #0. If Z/D= 
ZB/D, then 1 = 0, i.e., p is an almost minimally elliptic singularity. 

Notation and Terminology. 

* =the sheaf of germs of holomorphic functions on V. 
* p=the stalk of the sheaf v 9 over p. 
E = minimally elliptic cycle. 
Z = fundamental cycle. 
m =maximal ideal of V0p 

IDI = support of the divisor D. 

Convention of weighted dual graphs: vertices without specifying genera 
are of genus zero. We record the multiplicity z, of Ai in the fundamental cycle 
Z = E ziAi by placing that integer in the corresponding position of the vertex. 
See e.g. Figure 1. 

A4 -4 

1 
Z= 131=A1 +3A2+A3+A4 

A1 A2 A2 

-3 -1 -3 

FIGURE 1. 
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Let D= 2diAi be a positive cycle. Let BCIDJ. Then DIB= LfAi is a 
positive cycle, where f = di if Ai C B and fi = O if Ai Z B. 

1. Lower Estimate of the Dimension of Zariski Tangent Space and Upper 
Estimate of Multiplicities of Hypersurface Singularities. 

THEOREM 1.1. Let r: M-* V be a resolution of normal two dimensional 
Stein space V with p as its only singular point. Let Z be the fundamental cycle. 
Then 

dim m/m' > X(Z) -Z Z + dimH 1(M, 6 (- Z)) -dimH 1(M, 6 (- 2Z)). 

If p is weakly elliptic, then dimm/m2>-Z Z+dimH'(M,O(-Z))- 
dimH'(M,C(-2Z)). Suppose q7 is the minimal good resolution and p is a 
maximally elliptic singularity. Then dim /2 Z. Z. Moreover, if ZE-ZE < 

-3, then dimmn/mn+1 = -nZ Z for all n > 1. 

Proof. It is true that H?(A, O (-Z)) =dirlimH?(U, (9 (-Z)), U a neigh- 
borhood of A. Since Z is minimal, m -H?(A, (9 (- Z)). Since m2 C 

H?(A,0 (- 2Z)), we have dimm/m2 > dimH?(A, 0 (- Z))/H?(A, 0 (- 2Z)). 
The cohomology exact sequence 

O H H?(A,(C9 (- 2Z)) ->H?(A,5(9(-Z)) 

> H?(A, (9(-Z)/(9(-2Z)) -*H1(A, (9(-2Z)) 

-H1(A,09(-Z)) ->H1(A,09(-Z)/0(-2Z)) -*0 

says that 

dimH?(A, 09 (- Z))/H?(A, (9 (- 2Z)) 

= dimH?(A, 09 (- Z)//9 (-2Z)) - dimH'(A, ( (-2Z)) 

+ dimH'(A, (9 (-Z))-dimH'(A, 6 (-Z)/ (-2Z)) 

= dimH?(M, /9 (-Z)//9 (-2Z))-dimH'(M, 9 (-2Z)) 

+ dimH1(M, (9 (-Z))-dimH'(M, (9 (-Z)/9 (-2Z)) 

by Lemma 3.1 of [15]. 
Look at the following cohomology exact sequence: 

0 H?(M, ( (- Z)/C (-2Z)) -> H?(M, 62Z) 

H?(M, (9z) - H1(M, ) (- Z)/C(-2Z)) 
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768 STEPHEN SHING-TOUNG YAU. 

Since H0(M, ?z)-C, and H0(M, (92Z)--*H(M, Oz) is not a zero map, we have 
two short exact sequences 

O H?(M, (- Z)/O (-2Z)) H?(M, (D2Z) H?(M, (z) 0, 

0 H1(M, (-Z)/O (-2Z)) H'(M,62Z) H H1(M,( z) 0. 

Hence, 

dim m/m2 

> dimH?(M, O (-Z)/O (-2Z))-dimH'(M, O (-2Z)) 
+ dimH'(M, O (- Z)) - dimH'(M, ( (- Z)/O (-2Z)) 

= dim H(M, 02z) - dim H0(M, Oz) - dim H'(M, 0 (-2Z)) 

+dimH1(M, O(-Z))-dimH1(M, O(-Z)/9(-2Z)) 

= X(2Z) - X(Z) + dimH'(M, 2z)- dimH'(M, 9z) 

-dimH1(M, O (-Z)/O (-2Z)) + dimH1(M, ? (-Z)) 

-dimH'(M,((-2Z)) 

= X(2Z) -X(Z) + dimH1(M, ( (-Z)) -dimH'(M, O (-2Z)) 

= X(Z) - ZZ + dimH1(M, (-Z)) -dimH1(M, O(-2Z)). 

If p is weakly elliptic, then X(Z) = 0. So dim m /m2> - ZZ + 
dim H1(M, 0 (- Z))-dimH1(M, 0 (-2Z)). 

Suppose T is the minimal good resolution and p is a maximally elliptic 
singular point. We claim that H1(M, 0 (-nZ))-- C'+, where 1+2 is the length 
of elliptic sequence ZB0, ZB ZB, ZE= ZB,1. Choose a computation sequence 
for Z of the following form: Z0=O... Zk=E,..., Zro=ZE,* I Zr=ZB,*'.. 
Zr ZBI,,,, Zr +1= ZBO = Z. Consider the following sheaf of exact sequences: 

O 0(- nZ - Zj)/O (-nZ - B - ZE) 6( nZ)/ (- nZ - B - ZE) 

- (-nZ)/?(-nZ- Z1) -', 

O (-nZ- Zk)/O((- nZ- B- ZE) -* nZ- Zk- 1)/(- nZ- B- ZE) 

0 6nZ - 
Zk- 1)/ ( - nz -Zk) ?-- , 

O -* nZ- ZB1)/0(- nZ- B- ZE) -- (9( - nZ- Z,-1)/O(- nZ- B - ZE) 

0 dnZ - 
Z,- 1) /(- nz- ZB1) -- ? 

O ?(-nZ - GC1-Zl)/?(-nZ-B-ZE) - ?(-nZ- GC)/9(-nZ- B-ZE) 

- (-nZ- Gh)/(9(-nZ-GCh- Z,) -?0, 
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9 ?(-nZ - GC - Zk- )/(9 (- nZ - G1 - Zk) 0, 

O (-nZ- G,%+1)/?(-nZ- B - ZE) --(- nZ- GC- Z_, - 1)/?( nZ B ZE) 

0 6nZ - Q% 
- 

Zn_ -_ )/(9 (- nZ -C%+ 1) O, 
O - (-nZ- B - Z1)/?( - nZ- B - ZE) -(- nZ- B)/?(- nZ- B - ZE) 

- ?(-nZ- B)/(- nZ-B- Z) -Z) 0, 

o - (-nZ- B - Zk)/O (- nZ- B - ZE) (- n(- B - Zk- 1)/ (- nZ -B -ZE) 
- (-nZ-B- Zk-)/O(-nZ-B- Zk) - 0, 

0O3 0(-nZ- B - 
r-j)/O( -nZ- B -ZE) 0( -nZ-B - 

Zr-2)/O( -nZ- B -ZE) 

?(-nZ - B - Zr-2)/?(- nZ- B - 
ZrO- ? 

where 

I h 0 
B ZB, Gh= ZB and ZB = 0. 

i= i=l1= 

We claim that H?(M, 0 (- nZ - Gh - z,1)// (- nZ - B -ZE)) 
H?(M, 9 (-fnZG- Z;- 1)/O (- nZ- Gh- Z.)) is surective for all -1 < h<l 
-1 and 0 < j < rh+ 1. The Chern class of the line bundle associated to 0 (- nZ - 
G1-Z>i-)/C(-nZ- Gh- Z) is -A4.(nZ+ Gh+ Zj-1)= -A(Zi _, which is 
<0 for j>1 and 0 for j=1. For />1, the claim is trivially true because 
H?(M,0(-nZ- Gh-Zil)/0(-nZ- Gh-Zi))=O. For j=1, by Proposition 
0.14, we know that there exists f E H?(M, 0 (- nZ - Gh)) such that the image of 
f in H?(M, 0(- nZ - Gh)/C(-nZ - Gh - Zj)) is nonzero. Therefore, 
H?(M, (- nZ- Gq)/0(-nZ- Gh- Zj))- C, and H?(M, 0 (- nZ- Gh))-* 
H?(M, (- nZ - Gh)/0(-nZ - Gh - Zj)) is surjective. Now the usual 
cohomology exact sequence argument will show that H '(M, 0 (- nZ)/ 0 (- nZ 
-B-ZE))-C'+1. By Proposition 2.7 of [28], H 1(M,50(-nZ-B- ZE))=O. So 
the exact sequence 

H'(M,0(-nZ-B-ZE)) -* H'(M,6(-nZ)) 

-* H'(M,O(-nZ)/0(-nZ-B-ZE)) -*0 

shows that H1(M,6(-nZ))- +C1. 

dimm/m2 > -Z Z+dimH'(M,0(-Z))-dimH'(M,0(-2Z)) 
= -Z.Z. 

If ZE ZE< -3, then - Z Z >3. In this case, all the inequalities above are 
actually equalities. In particular, m 2=H0(A,0(-2Z)). By Theorem 3.15 of 
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[28], we have mn = H?(A, e (-nZ)), n > 1. Hence 

dimmn/mn+' = dimH?(A,O(-nZ))/H?(A,O(-(n+l)Z)) 

= dimH?(A, e (-nZ)/O (-nZ-Z)) 

-dimH'(A, (-nZ-Z)) + dimH'(A, 6 (-nZ)) 

-dimH'(A, e (-nZ)/O (-nZ - Z)) 

= dimH?(M, O (-nZ)/O (-nZ-Z)) 

-dimH'(M, e (-nZ)/O (-nZ - Z)) -( + 1) + (1+ 1) 

= dimH?(M, (9nZ+Z)- dim H0(M, 0nZ) -dimH'(M, enZ+Z) 

+ dimH'(M,6nz) = X((n+ 1)Z)-X(nZ) = -nZ Z Q.E.D. 

COROLLARY 1.2. Let 7T: M-* V be the minimal good resolution of normal 
two dimensional Stein space V with p as its only maximally elliptic singularity. 
Suppose p is a hypersurface singularity. Then Z Z > -3. 

The following theorem of Laufer and Lipman, gives an upper estimate of 
multiplicity in terms of dimH '(M, 0). 

THEOREM 1.3. Let V= { f(x, y, z) = 0) have an isolated singularity at 
(0,0,0). Let n be the multiplicity of V. Then dimH'(M, 6)> (n-1)(n-2)/2, 
where M is a resolving manifold of V. 

Proof. The proof is a refinement of the proof of [18, Theorem 3.14]. 

2. Topological Classification of Weakly Elliptic Double Points. In 1964, 
M. Artin gave a complete topological classification of rational double points. In 
1970, Wagreich proved that for double points, Z Z > -2. Using this fact, he 
listed a lot of the possible weighted dual graphs of weakly elliptic double points. 
Using the fact that - K' is the summation of an elliptic sequence and a 
combinatorial argument, we list all possible weighted dual graphs for weakly 
elliptic double points. Moreover, all these weighted dual graphs actually arise 
from weakly elliptic double points, because we can find a defining equation for 
each of them. The defining equations have been found by an unpublished 
technique of Laufer. 

PROPOSITION 2.1. Let F be a weighted dual graph including genera for 
the vertices, associated to the minimal good resolution of weakly elliptic 
singularity. Suppose K' exists. Let Z = ZBO ... ZB5 ZE be the elliptic sequence. 
Then Z*Z?< ZBB1 < - < ZBI ZBI < ZE IfZE If ZBZBZB ZB+1 then A, A= 
-2 for all AjCBi, Ai ZiBi +, 0<i<1. 
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Proof. For 0 <i <1, let A, CBi and A,ZBi+1. If A,nBiB 1=0, then A,-(ZB 
+ZB,+1)=A; ZB, <0. If AinBi+1:70, then A,-ZB <0 by the definition of 
elliptic sequence. Since A,-ZB +I = 1 in this case, A,- (ZB, + ZB +1) < 0. We observe 
that ZB, > ZB, i. e., ZB, 

- ZB+ is a positive cycle. It follows that (ZB -ZB 
- 

(ZBB, 4 1) < 0. Hence ZB, ZB, < ZB,+1ZB,+. 

Suppose that ZB,-ZB, = ZB1-ZB. + We want to prove Ap-A =-2 for all 

Ai C Bi and A, Z Bi + 1. Since (ZB-ZB) (ZB, + ZB,+ ) =ZB, Z 0, we have 
A, (ZB,+ZB,+)=0. Recall that K'= - _OZB-E. Then 

0 < A,-K' =-A .( ZB, +E 
i =o 

=-A,(ZB + ZBi+ + - - - +Z+ E) 

-Aj- (ZB,+2+ + *.. +Z+ E) 

<0 since A, ZZ Bi+2 

Therefore 0= A.-K' =2g1-2-AA-Ai -2-A AA and ApA= 2. Q.E.D. 

PROPOSITION 2.2. Let F be a weighted dual graph including genera for 
the vertices associated to the minimal good resolution of weakly elliptic 
singularity. Supose K' exists. Let Z = ZB 0... ZBi, ZE be the elliptic sequence. If 
ZZ = -1, then there exists a unique A1 B1, AlA1 = -2, such that Z = ZB1 + 

A1 and A1 n B1j#0. Moreover, if A2 C B1 such that Al A2= 1, then A2.ZB1 -1 

and z2= 1. 

Proof. By the definition of the elliptic sequence and Z Z =-1, there 
exists a unique A1 .g B1 such that A1 n B 1 #0 and z1 = 1. By Proposition 2.1, we 
know that AlAl = -2. Since z1 = 1, A1 Z < 0 and AlAl = -2, we conclude 
that z2= 1 and A1 cannot intersect any AO Z B1 with AOA 1. Hence A2 ZB1 =- 

1. Otherwise A2 ZB1 = 0 would imply that z2 > 2. So Z = ZB1 + A1. 

COROLLARY 2.3. Let F be a weighted dual graph including genera for the 

vertices associated to the minimal good resolution of weakly elliptic singularity. 

Suppose K' exists and Z = ZBO, ..., Z = ZE is the elliptic sequence. If Z Z=- 

1, then F must be one of the forms in Table 1 below. 

We now explain the notation we shall use in Tables 1, 2, 3 and 4. We shall 
employ Laufer's notion of unweighted dual graphs which he needed to describe 
minimally elliptic singularities (see [18]). The special cases of Proposition 2.4 of 
[28], where it is not true that the Ai in the support of the minimally elliptic 
cycle are nonsingular rational curves with normal crossings, are described and 
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named individually. In the other dual graphs of IEl, * denotes a vertex which 
will have Z*E = 1 and 0 denotes a vertex will have ZOE equal to 2 or 3 and 

AO-AO= -3. The remaining vertices, each denoted by *, will all have weight 
-2. Each vertex is a nonsingular rational curve unless otherwise specified. 

LIST I. 

* r... 

denotes 

. .*- - - - 

with r vertices and r + 1 edges. The case r =0 is included. 

El * The vertex A* is a non- 

singular elliptic curve. 

.*s 
/\ 

No * r ' SN 

r-. 
/ \ 

or * * 
\/ 

\ , 

's~ 

or * r r > with each A* a nonsingu- 
lar rational curve, or 

* with A* a rational curve 

with a node singularity 
(r= 0). 

Cu * A* is a rational curve 

with a cusp singularity. 

Ta The vertices are nonsin- 
gular rational curves 
which meet tangentially 
to first order. 

Tr The vertices are nonsin- 
gular rational curves 
which meet transversely 
at the same point. 
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A*,o *--O ZOE=2 

Al, *, O * - * O ZOE 3 

An,**.o 0 (n -l) ZOE= 2 

n> 1 

A1,**** 

An,****3 A (n -2).. 
n>2 

A/3, 0 * . f .e ZOE=2 

A4, *,0 A..ezoE= 3 

At** * * * f . . e zoE =2 

A7~~* 0 * v f * ZOE=2 

7, **,0 ZOE 

AooA *0 A; *;;- F ZOE 3 

D4 ** 

This content downloaded  on Mon, 7 Jan 2013 03:51:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


774 STEPHEN SHING-TOUNG YAU. 

D5 *'0 *0 . . I . oZOE=2 

D7,* * . ... I . ? 0=2 

D9*o* * . . . . * . o Z0E=2 

Dg, *' 0 4--1--t--4--4I- ZOE =32 

E6,0 I ..o ZOE =3 

E6**,. . 

E7,0 . I ._ . ZOE =2 

E8* . I . . .* 

In order to describe weakly elliptic double points or hypersurface singular- 
ities with geometric genus equal to two thoroughly, we need to introduce some 
special notions of weighted dual graphs, each of which consists of one special 
vertex 0 which we call the end component of the corresponding weighted dual 
graph. We make a convention that an edge with at most one vertex attached to 
it will be omitted. 

LIST II. 

Al, 1>1: (1-1) D0, AO:=emptygraph 

(by our convention A1 is 0). 
-2 

DA(I11+4,-3, 12), 11 > O, 12 >' 1: 

... **2(l2-1)... 0 
-3 ~~~-2 

1 >O, 12=0 

.2.11 
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AAA(11,11, -3,12), 11> O, 12> 1: 

> 111 

-- 3- 

,,-' 11 

1 >O, 12 0: 

,z 11 

A'A(21 + 3,-3,12), l >O?, 12 >1: 

* * * --. * ** ...(la-i1) .. 0 

11>0, l2=0. 

* 21l.. I . 
-3 

EA(6, -3,1), 1>1: 

-3 -2 

1=0 

-3 

Al1+3 1 > 0: 

-2 

-2 
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D(1+ 4), 1 >0: 

.2.~~-2 
I=-1 

D32 

F-4 (D 
-4 

F-3: (D 
-3 

A'(m+2, -3), m> 1: 

-3 -2 

m=O: 

-3 -2 

Al: A5 

-2 

D6: 

-2 

E7: 

-2 

AF: 

-3 -2 
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In Tables 1, 2, 3 and 4 below, the underlying part of a weighted dual graph 

FE corresponds to the weighted dual graph of a minimally elliptic singularity. 
The weighted dual graphs rE are described by giving values for the A* A* in 
the graphs in List I. These A* A* are listed from left to right. The union of 
subgraphs Po with the Ao identified is indicated by +. Thus, for example 
r= A + Al * with n = 2 and weights A*A* given by 
- 3, -2, -2, -2 denotes the weighted dual graph shown in Figure 2. 

'-2 

_3 -2 -2 -3 -2 -2 -2 

A2, 0 A3,**0 

FIGURE 2. 

The weighted dual graphs denoted by No may have either three, two or one A, 
These correspond respectively to three, two and one given value for A*. The 
weighted dual graphs in Tables 1, 2, 3 and 4 are described by attaching (also 
indicated by +) the end components of graphs in List II to a weighted dual 
graph of a minimally elliptic singularity. Except in cases (98) and (117) of Table 
4, all the end components of graphs in List II are attached to the A* 
components in rE whose self-intersection numbers (in column 2) are undefined. 

Table 1 The Weighted Dual Graphs for Weakly Elliptic Singularities with Z.Z = -l.a 

Dual Graph A*-A* Equation 

(1) El +Al -1 Z2=y3+X6+6 

(2) No +Al {-1, r- } z2=( y+x2+21)(y2+xr+5+41) 

(3) Cu +Al -1 z2=Y3+X7+61 

(4) Ta +Al -2, -3 Z2= y3+ x5+41y 

(5) Tr +Al -2,-2, -3 z2=y3+x8+61 

(6) Al****+Al -2, -2, -2, -3 z2=y3+x9+61 

(7) An ****+Al, n >2 -2, -2, -2, -3 z2=( y+x 321)( y2+ xn)541 

(8) D4,***+Al -2,-2, -3 z2=y3+x10+61 

(9) E6s**+Al -2, -3 Z2=Y3+X7+4lY 

(10) E8,* +Al -3 z2= y3 +X11+61 

al >0. 
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The singly underlined A* component is attached to one graph from List II. The 
doubly underlined A* component is attached to two graphs from List II. The 
triply underlined component is attached to three graphs from List III. The 
attaching order is from left to right: the graphs from List II and the underlined 
self-intersection numbers A* A* are listed from left to right. 

Example 1. In Table 4, (56), An,** *+Al+Al+Al (n > 2) and weights 
A *A* given by -2, -3, -3, -3 denote the weighted dual graph shown in 
Figure 3. 

*-2 *-2 

-3 -3 

* * * *(n-2)* 
-2 -2 -2 3 -2 FIGuRE~ 3. 

Example 2. In Table 4, (58), No + A1 + A1 + A1 (r> 0, s , O) and weights 
A* A* given by -3, -4 denotes the weighted dual graph shown in Figure 4. 

_ r _ s /-2 

* * ~~* 
-2 -3\ /- 

FIGuRE 4. -2 

Example 3. In Table 4, (73), D4***+A1+A1 +A1 and weights A*-A* 
given by -2, -2, -5 denote the weighted dual graph shown in Figure 5. 

X -2 

- -2 X-2 

o * 4 b * 4 O -2 
-2 -2 -2 -2 -5 

FIGURE 5. 

Example4. InTable 4, (116)A*,o+A*,O+A*,O+A2,**,O+A,+Aland 
weights A *-A* given by -3, -2, -2, -2, -2 denote the weighted dual graph 
shown in Figure 6. 

-2t -2s >-2 

-2 _3 -3 -2 -2 -2 2 
FIGURE 6. 
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Example 5. In Table 2, (20), E6 ** + AAA(11, 11, -3,3), and weights 
A * A* given by -2, -3 denote the weighted dual graph shown in Figure 7. 

--2 I 

-2 -2 -2 -2 -2 -2 _ -2 -2 -2 3 

FIGURE 7. \ 

PROPOSITION 2.4. Let F be a weighted dual graph including genera for the 
vertices associated to the minimal good resolution of weakly elliptic singularity. 
Suppose K' exists. Let Z = ZBO,..., ZB1, ZE be the elliptic sequence. If Z Z -2, 
ZB ZB1= -1, then r must be one of the following forms: 

(1) A25Bl, A27B2, Z=A + ZBI, A2-ZB =-1, z2= 1: 

Al A2 

"B2 

(2) Z = 2A1 + D, D is a positive cycle, D |=B1; z2=3, A2 ZB =0, A2 C 
B1, A2 B2: 

Al A2 

-2 

FBI 

where rB is the graph of Bi. 

Proof. By the definition of elliptic sequence and the fact that Z Z =-2 
we have the following two cases. 

(I) There exist Al,A2ZBl, AlnBl#0&A2nBA and A1 -A2. In this 
case, A1 Z= -1=A2*Z and zl=l=z2. For i=1,2, we have 0>AAi(-K')= 

Ai(2=oZB, +E) >Aj.(Z+ ZB)=O. So 0 -A'K'=2+A*Ai and hence A'Ai = 
-2, i = 1,2. Let A3,A4 5 B1 such that A1lA3 =1, A2A4 =1. Since Al-Al = A2A2 
=-2, zl=z2= 1, and A1Z =A2Z -1, there is no A Z B1, A2#Ai #&A1, such 
that A1A1>O or A1*A2>0, i.e., A=A1UA2uB1. Moreover, we know that 
z3=z4= 1. Hence A3 ZB1 <0 and A4 ZBI < 0. It follows that A3= A4 and A3 ZB 
=-, since ZBZB=-1. As z3=1, Z=A +A +Z we have s3ZB,= 1 >0, 
which is a contradiction. This case cannot occur. 

(II) There exists a unique A1 , B1 such that A1 n B, ^0. In this case, we 
have either (A) A1 Z= -2 and z1 = 1, (B) A1 Z= -1 and z1=2, or (C) A1 Z 
-I and z1= 1. 
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In (A), 0>AL.(-K')=AL(>i=OZBs)>AL(Z+ZBI)=-2+1=-1. So 
either Al (K') = 0 or A1 (-K') -1. If Al (-K') = 0, then Al-Al + 2 = 0, i.e., 
Al- Al -2. It follows that A1Z > -1. This is a contradiction. If A (-K')= 
-1, then Al-Al= -3. Let A2CIB1 such that AlA2=1. Then A2_B2. Since 
A1Z= -2, Al-Al= -3 and z1=1, there is no AiZBl, Ai#A,, such that 
Ai Al > 0, i.e., A = A1 U B1. Moreover, we have z2= 1 and hence Z = Al + ZB1. 
So A2 ZB =-1 and we are in (1). 

In (B), 0 >A1.(-K') =Al(E=OZB + E) >A1(Z + ZB) =0. Then A-K'= 0 
and AIZB, =0, 2Si Sl+1. Let A25B1 such that A1 A2=1. We have AlAl= 
-2 and A2 ZB2. For any Ai . B1, Ai 7O.A1, we have Ai-Z = 0= Ai-ZBI. It follows 
that 2 + AiAi = Ai(-K') = Ai. (El =OZB, + E) = 0, i.e., Ai Ai =-2. We claim that 
z2> 1. For if z2 = 1, then supp(Z - ZB1) consists of those Ai g B1. Consequently 

Z-Z1 =(Z -ZB) (Z + ZB) = 0. However, Z2 -Z_ = -2+1= -1. This 
leads to a contradiction. Since z1 =2, z2> 1, Al-Al= -2 and A1Z= -1, it is 
clear that 1 < degA, S 2. If degA, =2, then there exists a unique A3 ZB1 such 
that A3'A1= 1, z3= 1 and z2=2. Let F, be the subgraph of F consisting of those 
Ai Z B1, Ai-#Al. Since Ai-Ai= -2 for all Ai in F,, F, is a graph of rational 
double point. Because z3= 1, it is easy to see that this case cannot occur. We 
conclude that degAl = 1, i.e., A = Al U Bl. Since z1 =2, Al-Al -2 and AlZ= 
- 1, we have z2=3. Then we are in (2). 

In (C), O>A1>(-K')=A 2(E0ZoZB +E) >A1.(Z+ ZB)=O. Then A1lK'= 
0 and Al ZB =0, 2 <i< I+ 1. Let A2C B1 such that A1 A2=1.We have AlAl= 
-2. Since z1 = 1 and A1Z = -1, we have A =A1 U B1 and z2=1. So Z=A1+ 

ZB,. But then Z Z=(Al+ZBI)(Al + ZBI) = Al(Al + ZB) =-1, which is absurd. 
Q.E.D. 

PROPOSITION 2.5. Let F be a weighted dual graph including genera for 
the vertices associated to the minimal good resolution of weakly elliptic 
singularity. Suppose K' exists. Let Z = ZB0,..., ZB,, ZE be the elliptic sequence. 
If Z.Z= -2=ZB ZB, then F must be one of the following forms: 

(1) Z=AL+ZB1+A2, A3,A4C B1, A3,A4 ZB2; z3=1=z4, A3ZB=-1= 
A4. ZB1: 

Al A2 A4 A2 

-2 -2 

FBI 

(2) Z1 Z',A3CB1,A3ZB2; z3=,A -ZB =-2: 
-2 

-2 FBI 
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1 
(3) Z=122. .. 2ZB2, A2CBl, A2ZB2; Z2= 1, A2ZB =-2: 

-2 

-2 -2 -2 -2 A2 

1>0 FBI 

(4) Z=12D, IDj=B1, D is a positive cycle, z2=2, A2 ZB-=O, A2CIB1, 
A2!ZB2: 

A3 A1 A2 

FI, 

(5) Z=2D, D is a positive cycle, IDj=B1, z2=3, A2 ZB= 0, A2CB1, 
A2!Z B2: 

-2 A2? 

FBI 

where FB, is the graph of B:. 

Proof. We firstly recall that by Proposition 2.1, AiAi =-2 for all Ai X B1 
By the definition of elliptic sequence and the fact that Z Z =-2, we have the 
following cases. 

(I) There exist A1,A2 ZB1, A1l#,A2, such that A1nBj1#40#,A2n B1. In 
this case A1 Z = -I=A2Z and zl=z2= 1. Let A3,A4cB1 such that Al A3=1 
=A2*A4. Since z1 = z2=1 and A1 Z= -1 =A2Z, there is no Ai X B1, A1 #Ai 71 
A2, such that Ai Al > 0 or AiA2 >0, i.e., A = A1 U A2 U B1. Moreover, z3 =1=Z4 
and Z=Al+A2 + ZB1 If A3#'A4, then A3 ZB1 =-l=A4 ZB1 and A3,A47B2. 
We are in (1). If A3=A4, then A3-ZB = -2 and A3zB2, and we are in (2). 

(II) There exists a unique A1gB1 such that A1n B1,0. Since Z Z=-2 

ZBI ZBI, (Z- ZB1) (Z + ZB) = O. It follows that Ai(Z + ZBI) = O for all Ai Z B1. 
In particular, if AinB1=0, then Ai Z=0. So we have either (A) A1 Z= -2 
and z1= 1, or (B) A1Z= -1 and z1=2. 

In (A) Al-Al must be less than -2. But this is impossible because 
A1*A1= -2. 
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In (B) let A2 c B1 such that Al A2=1. We claim that A2.ZB2. Otherwise 

0>Al(-K')=Ag(V=0ZB+E)> -1+2=1. This is absurd. The proof breaks 
up into four subcases. 

(BL) There exist A3,A4 7B1, A3#6A4, such that A3-Al=1=A4-Al and 
z3=z4= I=z2. It follows that A=AlUA3uA4uB1 and Z=2A1+ 
A3+A4 + ZBI. We are in (3). 

(B2) There exists A3 B1 such that A1lA3= 1 and z3=2. Because Ai Z=O 
for Ai Z B1, Ai #A1, it is easy to see that we are in (3). 

(B3) There exists A3ZB1 such that A,-A3=1, z3= 1 and z2=2. Since 
z1 = 2, z3 = 1 and A3 Z=0, it follows that there is no Ai X B1, 
A1 #Ai =#A3 such that Ai'A3 =1, i.e., A=A1UA3uB1 and Z=2A1 
+A3+ D, where D is a positive cycle with support B1. We claim 
that A2 ZBI = O. Otherwise Z = Al + A3+ZBI and hence A1ZZ=O. 
This leads to a contradiction. We are in (4). 

(B4) z2=3. Then A=AlUB1 and Z=2A1+D, where D is a positive 
cycle with support B1. We claim that A2. ZBI = 0. Otherwise Z = A2 
+ ZBI. This leads to a contradiction. We are in (5). Q.E.D. 

Definition 2.6. Let : M-> V be the minimal good resolution of weakly 
elliptic singularity p. Let ZB, = Z, .. ., ZB1 = ZE be the elliptic sequence. The set 
of self-intersection numbers of the elliptic sequence is { 72 Z2}. 

COROLLARY 2.7. Let F be a weighted dual graph including genera for the 
vertices associated to the minimal good resolution of weakly elliptic singularity. 
Suppose K' exists and the set of self-intersection numbers of the elliptic 
sequence consists of -2 and -1. Then r must be one of the forms in Table 2. 

Table 2. The Weighted Dual Graphs for Wealdy Elliptic Singularities with ZZ =-2 and 
ZE.ZE =1.a 

Dual Graph A*-A* Equation 

(1) Ta +A1 -2,-3 z2=x5+y7 

(2) El +DA(11+4, -3,12) -1 z2=(y2+X3+11)(x3+y2+6 

(3) No +DA(11+4, -3,12) { -3 r z2=(y2+x3+11)(x+y4+212) 

X (x2+ y9+412+r) 

(4) Cu +DA(11+4, -3,12) -1 Z2=( y2+X3+11)(x3+ y13+61 

(5) Ta + DA(11 + 4, -3,12) -2, -3 z2=X(y2+ x11+3)(x2+ y9+412) 

(6) Tr + DA(11 +4, -3,12) -2, -2, -3 z2= ( y2+xll+3)(X3+ y14+612) 

(7) Al,**** +DA(11+48-3,12) -2, -2,-2, -3 z2=(y2+xll+3)(x3+ yl5+612) 
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Table 2. (cont.) 

Dual Graph A*-A* Equation 

(8) An,**** +DA(l1+4,-3,12), n> 2 -2,-2,-2, -3 z2= ( y2+ x"1+3)(x+ y5+212) 

X(x2+ yn+9+412) 

(9) D4, *** +DA(11 +4, -3,4) -2, -2, -3 z2=( y2+x3+11)(x3+ yl6+612) 

(10) E6, * + DA(1 +4, -3,12) -2, -3 z2 x(y2+ X3+1)(y2+xll+412 

(11) E8, * + DA(11 + 4, -3,12) -3 z2= ( y2 + x3+11)(x3+ yl7+612) 

(12) El +AAA(11, 11, -3, 4) -1 z2=(X+ y1+ x)(x3+ y9+612+311) 

(13) No +AAA(l, 11, -3,12) { -3 r }1 z2-= (x+ y1+' )(x+ y3+l1+2l2) 

X (x2 + y7+r+211+412) 

(14) Cu +AAA(1,l1, -3,12) -1 z2=(x+ yll+l)(x3+ yl10+2+31) 

- (15) Ta+AAA(1,l1, -3,12) -2, -3 z2=x(x+yll+l)(x2+ y7+211+412) 

(16) Tr +AAA(1,l1, -3,12) -2,-2, -3 z2=(x+y'1+l)(x3+yll+311+612) 

(17) Al,**** +AAA(1,l1, -3,12) -2,-2,-2, -3 z2=(x+ yll+l)(x3+ yl2+311+612) 

(18) An**** +AAA(1,l1, -3,12) -2, -2, -2, -3 z2-(x+y"l')(x+y4+l1+2l2) 

X(x2+ yn+7+211+412) 

(19) D *** +AAA(11,l1, -3,12) -2, -2, -3 z2=(x+y 1+l)(x3+yl3+311+612) 

(20) E6 ** + AAA(l1,l1, -3,12) -2, -3 z =x(x+ y' + 1)(x2+y9+ 11+12) 

(21) E8, * +AAA(l1,l1, -3,12) -3 z2 = (x + y1+' X)(x3 + yl4+311 +612) 

(22) El +A'A(211 +3, -3,12) -1 z2= y(x+ y"1+1)(x3+ yl2+311+612 

(23) No +A'A(211+3, -3,12) { -3 r } z2y =Y(X+yll+l)(x+y4+l1+2 2) 

X (X2 + yr+9+211+412) 

(24) Cu +A'A(211 +3, -3,12) -1 z2 = y(X+ y" 1+)(x3+ yl3+311 +612) 

(25) Ta +A'A(211+3, -3,4) -2, -3 z2= yx(x+ y'1+l)(x2+ y9+21+412) 

(26) Tr +A'A(211+3, -3,12) -2, -2, -3 z2=y(x+yLl+')(x3+yl4+311+612) 

(27) Al,**** +A'A(211+3,-3,12) -2, -2,-2, -3 z2=y(x+y 1+')(x3+y15+311+612) 

(28) An,**** +A'A(211+3,-3,12) -2,-2,-2, -3 z2= y(x + y11 +)(x+ y5+11+212) 

X(X2+ yn+9+211+412) 

(29) D4,*** +A'A(211+3,-3,12) -2,-2, -3 z2-= y(x + y 1 + ')(x3 + y16+311+612) 

(30) E6,*# +A'A (211+3, -3,12) -2, -3 z2- yx(x+ y" ')(x2+ yll+21x+412 

(31) E8, * + A'A (211+3, -3,12) 3 z2= y(x+Y1+1)(X3+ y17+311+612) 
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Table 2 (cont.) 

Dual Graph A*-A* Equation 

(32) El + EA(6, -3,1) -21=(X2+ 3)(x3+yl5+6 

(33) No + EA (6, -3, 1) (-' ; ) z2=(X2+ y3)(X +y5+21) 

X (x2 + yr+ll+41) 

(34) Cu + EA(6, -3, 1) - 1 Z2 (X2 + y3)(x3+yl6+61) 

(35) Ta +EA(6, -3,1) -2, -3 z2 x(x2 +y3)(x2 +y 41) 

(36) Tr +EA(6, -3,1) -2,-2, -3 Z2 (x2+ y3)(x3+ y17+61) 

(37) Al,**** +EA(6,-3,1) -2, -2, -2, -3 Z2 =(X2+ y2)(x3+ y8+61) 

(38) An,**** +EA(6,-3,1) -2,-2,-2, -3 Z2 (X2 + y3)(x + y6+21) 

X(x2+ yn+ll+41) 

(39) D4,*** +EA(6,-3,1) -2,-2, -3 z2=(X2+ y3)(X3 + y9+61) 

(40) E6,** +EA(6, -3,1) -2, -3 Z2= X(X2+ y3)(x2+ y3+41) 

(41) E8 * + EA(6, -3,1) -3 Z2 = (x2+ y3)(x3+ y20+61) 

all > , 1 > 0, 1 > ?. 

COROLLARY 2.8. Let F be a weighted dual graph including genera for the 
vertices associated to the minimal good resolution of weakly elliptic singularity. 
Suppose K' exists and the set of self-intersection numbers of elliptic sequence 
consists of -2. Then r must be one of the forms in Table 3. 

Table 3. The Weighted Dual Graphs for Weakly Elliptic Singularities with ZZ =-2 = ZE.ZE.a 

Dual Graph A*-A* Equation 

(1) NO+A1+A1(r>0,s>0) -3, -3 Z2=(X2+ y,+3+21) 

X [(X+ y+ 1)2+ ys+3+21] 

(2) Ta +A1+Al -3, -3 Z2 = Y4 + X5+41 

(3) Tr +A1+Al -2, -3, -3 z2= y4+x4+31y 

(4) Al,**** +AI+AI -2,-2, -3, -3 z2=y4+x6+41 

(5) A.,**** +AI+AI -2,-2, -3, -3 z2=(y2+X3+21)(y2+Xn+21+2) 

(6) An**** +A1+Al -2, -3, -3,-2 Z2=(y2+X3+21)2+Xayb, 

2a+(3+21)b=ll+n+81 

(7) D4,*** +AI+AI -2, -3, -3 Z2= y4+x5+31y 

aFrom (1) to (40) 1 is assumed to be > 0. From (51) to (60) 1 is assumed to be > -1. 
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Table 3. (cont.) 

Dual Graph A*-A* Equation 

(8) E8,** +A1+AI -3, -3 Z2= y4+ X7+41 

(9) El +Al+Al -2 Z2=y4+X41+4 

(10) No +Al+A1 { - ( yA+ x1 )( y+2x1+ ) 

X( 2 + Xr+21+3) 

(11) Cu +AI+A1 -2 z2=(y+Xl+l y3+ X4+31 

(12) Ta +A1+Al -2, -4 z2=X(X+ y1+1)(x2+ y3+21) 

(13) Tr +A1+Al -2,-2, -4 z2=(y+xl+l)(y3+ x5+31) 

(14) A1,****+AI+A, -2,-2,-2, -4 z2=(y+Xl+ )( y3+X6+31) 

(15) An,**** +A +Al -2,-2,-2, -4 z2=( y+xl+')( y+x'+2) 

X(y y2+ Xn+3+21 ) 

(16) D4,*** +A,+Al -2,-2, -4 z2=(y+xl+x )( y3 + x7+31) 

(17) E6,** +A1+Al -2, -4 z =y(y+x )(y2+21) 

(18) E8* +A1+Al -4 Z2=(y+xl+ Xy 3+X8+31) 

(19) El +A'3 -2 Z2 = y(x + y' + )(x3 + y6+31) 

(20) No +A23 { 2,r= z2= y(x+ y'+')(x+ y1+2) 

X(X2+ yr+5+21) 

(21) Cu +A'1+3 -2 Z2=Y(X+y +1 Xx3+y7+31) 

(22) Ta +A'1+3 -2, -4 Z2=Xy(X+y+1)(X2+y5+21) 

(23) Tr +A'1+3 -2,-2, -4 z2 = y(x + y 1+1 X3+ y8+31) 

(24) Al,**** +A'1+3 -2,-2,-2, -4 z2 = y(x+ yl+' )(X3+ y9+31) 

(25) An**** +A'1+3 -2,-2,-2, -4 z2=y(x+y+ ')(x+y1+3) 

X (x2 + yn+5+21) 

(26) D4*** +A'1+3 -2, -2, -4 Z2=y(x+yl+ )(x3+yl0+31) 

(27) E6,** +Al1+3 -2, -4 z2=xy(x+ y1+1 YX2+ y7+21) 

(28) E8,* +A'1+3 -4 z =y(x+y )x +y ) 

(29) Ta + A21 -2,-4 z2= xy(x3 + y2 +31) 

(30) No +A21 (r=0, s=0) -2,-4 z2=X(y2+ X21+1)(y2+X21+2 

(31) Tr + A21 -2, -3, -3 Z2 = y(x4 + y3+41) 
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Table 3. (cont.) 

Dual Graph A*-A* Equation 

(32) No +A21 (r=O, t=O, s >0) -2,-3, -3 z2=-x(y2+x2l+l)(y2+X3+21+s) 

(33) A*,o+A*,o+A*,o+A*,o+A*,O +A21 -2, -2, -2, -2, -2 z2= y(x+ y1+1)(x+2y'+') 

X (x +3y +)(x +4y +) 

(34) A*,O+A*,O+A*,O+A,**,O +A21 -2, -2, -2, -2, -2 z2= y(x2+ y2+21)(x2+ y +2+21) 

(n > 1) 

(35) A*,+A*o+A **,O +A21 -2, -2, -2, -2 Z2=y(x+y'+')(x3+y4+31) 

(36) A*,o+A*,O+D5,*,0 +A21 -2, -2, -2 z2=xy(x+ y'+' )(x2+ y3+21) 

(37) A*O+A *,0+A7,0 +A21 -2, -2 z2-= y(x+ y 1+' )(x3+ y5+31) 

(38) A*,o+An,**,o+Am,**,o +A21 -2,-2,-2, -2, -2 z2=(x+ y)(x2+ y2+n+21) 

(n > 1, m > 1) X [(x+Y y+ 1)2 + y + 21+ 2 

(39) A*o+As,**,o +A21 -2,-2, -2 z2=y(x4+y4l+5) 

(40) A*,o+D7,*,0 +A21 -2,-2 z2 = xy(x3 + y4+31) 

(41) El +E6 -2 z2 = (x2 + y3)(x3 + y9) 

(42) No +E6 
2 r=0 z2=(x2+ y3)(x+ y3)(x2+ y,+7) 

(43) Cu +E6 -2 z2= (x2+ y3)(x3+ y 1) 

(44) Ta +E6 -2, -4 z2 = x(x2 + y3)(x2 + y7) 

(45) Tr +E6 -2,-2, -4 z 2=(x2+y3)(x3 +y ) 

(46) Al,*** +E6 -2, -2,-2, -4 z2 =(x2 +y3)(x3 +y 2) 

(47) An**** +E6 -2,-2,-2, -4 z2=(x2+ y3)(x+ y4)(x2+ yn+7) 

(48) D4, *** + E6 -2-2, -4 z2 = (x2 + y3)(x3 + y 13) 

(49) E6,** +E6 -2, -4 z2= x(x2+ y3)(x2+ y9) 

(50) E8,* +E6 -4 z2=(X2+y3)(x3+y4) 

(51) El +D(l+4) -2 Z2=( y2+x3+ Xx3+ 6) 

(52) No +D(1+4) -4 r=) Z2=(y2+x3+1)(x+y2)(x2+ yr+5) 

(53) Cu +D(1+4) -2 z2=( y2+X3+1 YX3+ y7) 

(54) Ta +D(1+4) -2, -4 Z2=x(y2+X3+1 X2+Y5) 

(55) Tr +D(1+4) -2,-2, -4 Z2=(y2+x3+1)(x3+y8) 
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Table 3. (cont.) 

Dual Graph A*-A* Equation 

(56) Al,**** +D(1+4) -2,-2,-2, -4 z2=( y2+x3+1)(x3+ y9) 

(57) A.,**** +D(1+4) -2, -2,-2, -4 z2=-(y2+x3+1)(x+ y3)(x2+ yn+5) 

(58) D4,*** +D(1+4) -2,-2, -4 z2=(y2+x3+1)(x3+yl') 

(59) E6 ** +D(l+4) -2, -4 z2=X(y2+x3+ Xx2 + y7) 

(60) E8,* +D(l+4) -4 z2=( y2+x3+ Xx3 + 

(61) No +A1 (r=1, s=1) -2, -4 Z2 = (X2 + y4)(x3 + y4) 

(62) Al, **** + Al 2,-2,-2, -4 Z2 = x(x4 + y 6) 

(63) An,**** +A1 -2,-2, -2,-4 Z2 = X( y3 + x2)2 + xay b, 

3a+2b=n+14 

(64) No +A1 (r=1, t=1, s>O) -2,-3,-3 z2=(x2 + y5+5)(x3+ y4) 

(65) A2,**** +A1 -2,-2,-3, -3 z2=(x2+y3)(x3+ y5) 

(66) D4,*** +A1 -2,-3,-3 z2= x5+ y8 

(67) A*o+A*o+A*o+A2,**,O +A1 -2,-2, -2, -2, -2 z2=(x3+ y)(x2+ y3) 

(68) A*,o+A*o,+D5,*,0 +A1 -2, -2, -2 z2=(x2+ y4)(x3+ y5) 

(69) A*o+An**o+A2,**,0 +A1 -2,-2, -2, -2, -2 z2-(x+ y2)(x2+ y3)(x2+ y4+n) 

(n > 1) 

(70) A*o,+D7,*,0 +A1 -2, -2 z2= x(x4+ y7) 

(71) Ds,*,0 +A1 -2 z2 = 5+ y9 

(72) A2,**,0+A' **,0 +A1 -2,-2,-2, -2 z2=(x2+y3)(x3+y7) 

(73) A2,**,0+D5,*,0 +A1 -2, -2,-2 z2-= X(X2 + y3)(x2 +y5) 

(74) An,**,o+D5,*,0 +A1 -2, -2, -2 z2=(x2+y4+n)(x3+ y5) 

(n > 1) 

(75) A2,**,0+E7,0 +Al -2,-2 z2=(X2+y3)(x3+y8) 

(76) A' *, -2,-2 z 2=x x5+ y 
6 

(77) D,*,,0 -2 z2=x5+xy5 

(78) An,**,O+A',**,o (n>1) -2,-2,-2,-2 z2=(y2+xn+2)(x3+y4) 

(79) An,**,o+D5,*o (n> 1) -2, -2,-2 z2=(y2+xn+2)(x3+xy3) 

(80) An,**,o+E7,0 (n>1) -2,-2 2=(y2+Xn+2)(X3+y5) 
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THEOREM 2.9. Let g: M-> V be the minimal good resolution of a normal 
two dimensional Stein space with p as its only weakly elliptic double point. 
Then the associated weighted dual graph is one of the form shown in Corollary 
2.3, Corollary 2.7 and Corollary 2.8. Moreover any such weighted dual graph 
has a weakly elliptic double point structure. 

Theorem 2.9 gives a complete topological classification of weakly elliptic 
double points because of the following fact. Suppose poE VO and Pi E V1 are 
isolated singularities of complex surfaces such that the graph of po is the same 
as the graph of pl. Then there are open neighborhoods Uo 3 po and U1 3 P1 and 
a homeomorphism h: UO-- U1, such that h( po) = Pl. For the proof, see Remark 
3.9 of [26]. 

3. Topological Classification of Hypersurface Singularities with h= 

dimH'(M, E) ) =2. Rational singularities have H'(M, 0 )-O. The hypersurface 
rational singularities are actually double points. For H1(M, 0) -, Laufer was 
able to list all weighted dual graphs of hypersurface singularities. In this section, 
we are going to list all possible weighted dual graphs of hypersurface singulari- 
ties with H1(M, e)_ 2. 

PROPOSITION 3.1. Let IF be a weighted dual graph including genera for 
the vertices associated to the minimal good resolution of weakly elliptic 
singularity. Suppose K' exists. Let Z= ZB0, , ZBi, Z be the elliptic sequence. 
If Z Z= -3 and ZBZB1 = -1, then IF must be one of the following forms: 

(1) Z= 1ZBI, A2CB1, A2 B2, Z2= 1,A2-ZB1=-1: 

-4 A2 

]rBI 

(2) Z= 12D, IDI =B1 A2CIB1, A27B2, z2=2, A2 ZB=0: 

-3 -2 A2 B 

]FBI 

(3) Z= 123D, IDI =B1, A2CB1, A27B2, z2=3, A2 ZB=0: 

-2 -2 -2 A2I 
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(4) Z=3D, IDI=B1, A2CB1, A2 7B2, z2=5, A2ZB= 0: 

-2 A2 

]FBI 

where 
rBi 

is the graph of Bi. 

Proof. Since Z.Z = -3, by the definition of the elliptic sequence, we 
have the following three cases: 

(I) There are only three distinct A1,A2,A3 Z B1 such that Ai n B #L0, 
1? i <3. 

(II) There are only A1,A2 z B1 such that A1 n qB 0 fA2n B1 and A1I 
A2. 

(III) There exists unique A1 Z B1 such that A1 n B1 #0. 

In the first case, we have A1 Z = -=A2 Z= A3*Z and z1=z2= z3=1 
Since 0>Ai(-K')=Ai.(21=oZB,+E)>Aj(Z+zBI)=0 for i=1,2,3, we have 
AinB2= 0 and AiAi =-2 for i = 1, 2,3. Let A4,A5,A69c B1 such that A1*A4= 
A2A5= A3A6=1. Then z4= z5= z6= 1. Hence A4 ZB <0, A5ZB <0, A6ZB1 < 
0. Since ZB1 ZB1 =-1, we have A4=A5=A6 and A4 ZB1 =-1. However, Z4 =1 
will imply that Z = A1 + A2 + A3 + ZB1 and A4*Z =2 > 0. This is a contradiction. 

In the second case, there are two subcases. 

(IIA) A1Z =-1 =A2Z. Since 0 >Ai (-K') =Ai- (E=oZB + E) >Ai (Z + ZB1) 
=0, we have Ain B2= 0 and Ai'Ai=-2 for i = 1, 2. We claim that there is no 

A3 . B1 such that A1l A3#WA2 and A3 Z < O. Otherwise A3 Z= -1 and zl=z2 
=z3= 1. By our hypothesis, for any Ai X B1, A1l A F4 A2, we have Ai n B1 =0. 
Since A is connected, there exists A,.7 B1, A1#WA,; A2 such that A,Al=1 or 
Ar.A2= 1. It follows that either A1 Z > 0 or A2*Z >0. This is a contradiction. 
Without loss of generality, we may assume that z1 = 1, z2 = 2. There is no Ai Z B1 
such that Ai A1=1. For AX XB1, A2 W1A; ,A, we have A;.Z= O=AXZB, So 
Ai (-K') =A.(El=ZB+E)=0andA;A;=-2.LetA3,A4 CB1 such that Al 
A3 =1= A2*A4. Then z3 = 1 and A3 ZB1 < O. Since ZB IZB1 = -1, we have A3 ZB 
= -1. If A3=A4, then Z=D+ZB1 where IDI consists of those Ai which are 
not in B1. Hence A3*ZB1 =-3. This is a contradiction. We conclude that 
A3Y7A4. z4 cannot equal one: otherwise A4 ZB1 =-2, which is absurd. There- 
fore z4 > 2. For any Ai C B1, Ai WA3, we have Ai ZBI = 0. Since B1 is connected, 
there exists A5 C B1 such that Z5 > 

BIZ5 
+ 1 and A5-A3 =1. However, z3 = 1 and 

A3ZB, = -1 will imply that A3 Z > 1, which is absurd. 
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(IIB) A1 Z= -1 and A2 Z= -2. In this subcase, we have z=l= Z2. Since 
O>Ag (-K')=A (Y$LOZB +E) >A1 (Z+ ZB))=0, we have Al-Al=-2 and 

A,nB2=0. Also 0>A2.(-K')=A2.(Y =OZBt+E)>A2.(Z+ZB)= -2+1I 
-1. Either A2-A2=-2 and A2nB2#L0 or A2-A2=-3, A2nB2=0. A2 A2= 
-2 and A2 n B2 # 0 cannot occur: otherwise A2Z > -1, which contradicts to 
our assumption A2. Z = -2. Therefore A2-A2 =-3 and A2n B2 =0. Let A3,A4 

GB, such that AlA3=1, A2-A4=1. Then A=A,UA2uB1 and z3=1=z4. 
Moreover, Z = Al + A2 + ZB1 and A3. ZBI < 0 and A4. ZBI < 0 If A3 #A4, then 
ZB*ZB < -2, which is absurd. If A3=A4, then A3. ZB = -1, since ZB:IZB1= - 

1. Hence A3 Z = A3 (Al + A2+ZB1) = 2-1 = 1. This is again a contradiction. 

In the third case, there are three subcases. 

(IIIA) A1lZ= -3. In this case, z =1, O>Al.(-K')=Al (2>=oZBs+ E)>AlA 
(Z + ZB) -3 + -2. Either (i) Al-Al =-3, A1 n B2 #40 and A1nB3 =0, 
or (ii) Al-Al= -4 and A1 nB2=0, or (iii) AlAl= -2 and A1 nB2#t 0-#A1n 
B3. If (i) holds, then A1 Z > -2, since z1 =1. This is a contradiction. If (iii) 
holds, then A1 Z > -1. This is also impossible. Suppose AI AI = -4 and 

AInB2=0. Let A2CB1 such that A, A2=1. Since A1 Z=-3, we have z2=I 
and A = A1 U B1. Moreover, Z = A1 + ZB1 and hence A2. ZB1 = 1. So we are in (1). 
(IIIB) A1 Z=-2. In this case, we have z1 =1. Otherwise z1 >2 would imply 
that Z Z? -4, which is absurd. 0>Al.(-K')=Al.(E2=oZBi + E) >Aj (Z + 

ZBI) = -2 + -1. Either (i) AlAl = -2 and A1 n B2 =#0 or (ii) Al-Al =-3 
and A1 n B2=0. If (i) holds, then A1 Z > -1, since z= 1. This is a contradic- 
tion. Suppose A,-A, = -3 and A1 n B2 =0. Since A1 Z =-2 and z, = 1, there is 
no Ai .Z B1 such that Ai A1 = 1. It follows that A = A1 U B1 and Z = Al + ZB1. But 
then Z Z=(Al+ ZB).Z =AIZ= -2. This is a contradiction. 
(IIIC) A1 Z -1. Then 0 >A1I (- K') = A1 (Y2lo =ZBi + E) >A1j (Z + ZB1) = 0. 

So A A1 = -2 and A1 n B2=00 z1 cannot equal 1: otherwise A = A1 U B1 and 
Z=Al+ZB, which implies that Z.Z=(Al+ZB1).Z=Al.Z=-1. This is a 
contradiction. Therefore either z, = 2 or z, = 3. Let A2 c B1 such that A2 A1 = 1, 
A2ZB2. 

(IIIC a) z1 = 2. Let A3Z7B1, A3#X-A1 such that A3. Z < 0. Then A3 Z -1 and 
z3=1. Since 2+A3.A3=A3. (-K') = A3. (i=OZB, + E) = A3 Z =-1, A3A3 - 

3. For any Ai. B1, A3FAi=FA, we have Ai-Z=O and AinB1=0. Hence, 
Ai*(-K')=Ai(Y>=OZB,+E)=Ai?Z=0 and Ai-Ai=-2. There are four sub- 
cases. 
(IIIC a i) Z2 = 1. In this case Z/B1 = ZB1. Therefore A2 Z = 2A2 A1 + A2 ZB1 

2-1 = 1. This is impossible. 
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(IIIC a ii) z,2=2. Since zl=2 and A, Al=-2, there exists A3fzB1, A3.A1=1 
and z3= 1. A3-A3 is either -2 or -3. If A3-A3=-2, then A = B1 U A1 u A3 and 
Z=A3+2A1+D, where D is a positive cycle with IDI=B1. Then Z Z=(A3+ 
2A1+D) Z=2A Z= -2. This is a contradiction. So A3-A3= -3 and we are 
in (2). 
(IIIC a iii) z2=3. Then A=A,UB, and Z=2A1+D, where D is a positive 
cycle with IDI=B1. It follows that Z Z=2A1 Z= -2. This is a contradiction. 
(IIIC a iv) z2 > 4. Then AlZ > 0. This is impossible by our hypothesis. 
(IIIC ,) z1=3. Since ZZ= -3 and A1Z= -1, Ai'Z=O for any Ai2ZBj, 
Ai #A1. Moreover O Ai (-K') = Ai2 (E=OZB + E) = AiZ = O. Hence AiAi = 
-2. 
(IIIC /3 i) z2 = 1. Then Z/BL = ZB1. Since z =3, we have A2Z > +3A1A2+A 
ZB = 3-1 = 2. This is a contradiction. 
(IIIC B ii) z2 = 2. Let IF, be the subgraph of IF consisting of those Ai _0 B1 such 
that Ai-#Al. Since z1=3, z2=2, A1lA1= -2 and A1Z= -1, we have degA1= 
2. As Ai'Ai = -2 for all Ai in rJ', F1 is a graph of a rational double point. There 
exists a unique A3 c ]F1 such that z3 = 3. Because A3. Z = 0 and z1 = 3, degA3 = 2. 
There exists a unique A4 C ]F1 such that z4 = 3 and A4-A3 =1. By induction rF is 
of the following form: 

-2 -2 -2 -2 
An An- 1 A4 A3 

Z =3An +3An1 +** +3A4+3A3+ 3A1 + D, where D is a positive cycle with 
IDI = B1. Then An Z -3 and Z Z < -3. This is a contradiction. 
(IIIC /3 iii) z2=3. It is easy to see that degA,=2. Hence we are in (3). 
(IIIC /3 iv) z2=4. Since z1=3, A1 A1=-2 and A1 Z=-1, there exists a 
unique A3F4B1 such that A3A1= 1 and z3= 1. Then A3Z > 1. This is a 
contradiction. 

(IIIC /3 v) z2=5. We are in (5). 
(IIIC ,8 vi) z2 > 6. In this case, A1,Z > 0. This is a contradiction. Q.E.D. 

PROPOSITION 3.2. Let IF be a weighted dual graph including genera for 
the vertices associated to the minimal good resolution of weakly elliptic 
singularity. Suppose K' exists and Z = ZBO,..., ZBi, ZE be the elliptic sequence. 
If Z.Z= -3 and ZB ZB1 =-2, then IF must be one of the following forms: 
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(1) Z=lD21, z3=1, z4=2, D is a positive cycle, IDj=B1, A3 ZB <0, 
A4*ZB1 =0, A3,A4sZB2, A3#fA4: 

A3 A4 

-2 -2 -2 

(2) Z=1D2, z3=1, z4=3, D is a positive cycle, IDj=Bl, A3ZB <0, 

A4*ZBI=O, 
A3,A4CIB1, A3,A4 Z B2, A3 FA4: 

-2 A3 4- 

3 

B 3 

3, 

(3) Z =l1ZB1l, z3 =z4=1 A ZB1= =-1=A4 ZB, A ,A4 GB, ,A B, 
A3 A4 

-B2 

(4 Z=1 ZB1,Z3 =1, A3ZB,=-2, A3 CBl, A3 {B2: 
-2 

A3 rB 

B2 

(5) Z-= 122B * *ZB1, z2 = 1, A2Z= , A3-B2 

-2 0 _o - -3 n 
IF?rB 

A2(B) 

-2 -2 -22 

3 ~~>0 
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(6) Z=12D, D is a positive cycle, IDI=B1, z2=2, A2cIB1, A2gZB2, 
A2 ZB1 = 0: 

-2 A2 ') 

-3 -2 0 r 

(7) Z=123D, D is a positive cycle, ID= B1, z2=3, A2 ZBI=O, A2CB1, 
A2 -B2: 

-2 -2 -2 A2 

]FBI 

(8) Z = 3D, D is a positive cycle, ID =B1, z2 = 5, A2 ZB = O, A2g CB1, 
A2-CB2: 

-2 A2 ) 

FBI 

where rB, is the graph of Bi. 

Proof. Since Z Z = -3, by the definition of elliptic sequence, we have 
the following three cases: 

(I) There are only three distinct A,,A2,A3.7B, such that Ai n B1&#0, 
16 i 63. 

(II) There are only two distinct A1,A2 Z B1 such that Ai n B1 =#0, 1 6 i 6 

2. 
(III) There exists a unique A1 Z B1 such that A1 n B1 =#0. 

In the first case, we have A1, Z = -=A2 Z= A3Z and z, = z2= z3=1, 

O>Ai(-K')=Ai(El2=oZB,+E)>Ai(Z+ZBI)=0 for i=1,2,3. So AiA =-2 
and Ai n B2=0, 1 6i 6 3. Let A4,A5,A69C B, such that A1*A4=1=A2*A5=A3* 
A6. Then z4=z5=z6=1 and Z=AL+A2+A3 +ZB. Hence A4 ZB1 <O, A5 ZB, 
<0, and A6 ZB < O If A4,A5,A6 are distinct, then ZB IZB < -3. This is a 
contradiction. If A4 = A5 #A6, then A4-ZB1 =-2 because A1lA4 = A2A4 =1 and 
A4 Z = 0. Again we get ZB1 ZB1 -3, which is absurd. If A4=A5= A6, then 

A4-ZBI 6-3. In particular, ZB.IZB1 -3. This is absurd. 
In the second case, there are two subcases. 
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(IIA) A1Z = -1=A2Z. We claim that there are no A3 .7 B1 such that A1#7A3 
,4A2 and A3 Z < O. Otherwise A1 Z = A2 Z = A3 Z -1 and z = z2= z3= 1. By 
our hypothesis, for any Aig B1, A2#Ai -#AI, we have AinB l=0. Since A is 
connected, 3Aj Z B1, A1#fA, #A2 such that A,-A, =1 or A,A2= 1. As 0 >Ai 
(-K')=A12(> =OZB, + E) >Ai- (Z + ZB) = 0 for i=1, 2, we have AlA=-2 = 
A2*A2 and AjnB2=0=A2nB2. It follows that either AlZ >0 or A2Z >0. 
This is a contradiction. Our claim is proved. Without loss of generality, we may 
assume that z1=1, z2=2. There is no Ai. B, such that AiAl=1. For any 

Ai X B1, A2 #A #A1, we have A, Z = 0 = A/ ZB. So Aj (-K') = Aj(EO = oZB, + E) 
=0 and A*A, =-2. Let A3,A4C B1 such that A4,A3 gB2 and Al A3=1=A2 
A4. Then z3= 1 and A3 ZB, <0. If A3=A4, then Z/Bl = ZB. So A3 Z = 2AgA3 
+A2A3+ A3*ZB > 1. This is a contradiction. We conclude that A3#?A4. z4 
cannot equal 1. Otherwise Z/B1 = ZB1 and A4 ZB1 =-2. This would imply that 

ZB, ZB < -3, which is absurd. Suppose z4 = 2. Then there exists unique A5C B, 
such that A2#?A5#sA1, A5A2=1 and z5=1. It follows that A=AlUA2uA5u 
B1. If A4.ZB <0, then Z=Al+A2+A5+ZBI. This is a contradiction. So 
A4 ZB1=O and we are in (1). Suppose z4=3 then A=A,UA2UBl. Similar 
argument to the above will show that A4-ZB1= 0 and we are in (2). 
(IIB) A1*Z=-1 and A2Z=-2. In this case, z1=l=z2. 0>Aj (-K')=Ag 

(=oZB, + E)>Aj (Z + ZB1) =0. Hence A A =-2 and A1 n B2=0. Since 0> 
A2 (-K') = A2 (Ei =OZB, + E) >A2 (Z + ZBI) =-1, either A2A2=-2 and A2n 
B2=#0 or A2*A2= -3 and A2nB2=0. A2A2 cannot equal -2: otherwise 
A2Z > -1, which is a contradiction. Therefore A2A2=-3 and A2n B2=0. 
Let A3,A4C B1, A3,A4 ZB2 such that Al A3=1=A2A4. Then A =A1 U A2U B1 
and z3= z4= 1. Moreover, Z =Al+ A2+ZB1 and A3 ZBI < 0, A4 ZBI < Z If A37? 

A4, then A3 ZB1 =-1 =A4 ZBI and we are in (3). If A3= A4, then A3 ZB= -2 
and we are in (4). 

In the third case, there are three subcases. 

(IIIA) A1Z= -3. In this case z, = 1. Since 0 >A (- K') =Al(l=oZB + E) > 
A1.(Z+ ZB)= -3+1= -2, either (i) AlAAl=-2 and A1 n B2#0#7Ajn B3, or 
(ii) Al Al= -3, Aln B2#?0 and Aln B3 =0, or (iii) AlAl= -4 and Aln B2= 

0. In case (i), A1,Z> -1, which is absurd. In case (ii), A1 Z> -2, which is 
also absurd. In case (iii), it is easy to see that A = A1 U Bl. Let A2C Bl, A2ZB2 
such that AlA2=1. Then z2=1 and hence Z=Al+ZBI. Since A2Z=0, this 
implies that A2. ZB1 = -1. However, ZB1I ZB = -2, so there exists A3C5 Bl, 
A3 #A2 such that A3 ZB1 = -1. It follows that A3 Z = (A1 + ZB,) A3 = A3 ZB, = 

- 1 < 0. This is a contradiction. 
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(IIIB) A1 Z -2. In this case, z1 = 1. Otherwise z1 > 2 and Z Z <-4. Since 
0> A1 (-K') =A1 (0ZB + E) >A (Z + ZB) =2 + 1 -1, either (i) AlAl 
=-2 and AjnB2#70 or (ii) AlAl=-3 and A,nB2=0. If (i) holds, then 
AlZ >0, which is absurd. Suppose (ii) holds. It follows easily that A =Al U B1 
and Z=Al+ZB,. Then Z*Z=(Al+ZB) Z = Al Z -2. This is a contradic- 
tion. 
(IIIC) A1 Z=-1. Since 0>A1 (-K')=Al(E=oZB + E)>Aj (Z+ ZB) =0, 

we have Al Al =-2 and A1 n B2 = 0. There are three subcases. 
(IIIC a) z1 = 1. In this case, A = A1 U B1 and Z = Al + ZB. Hence Z Z = (A1 + 
ZB ) Z = AlZ = -1. This is a contradiction. 
(IIIC /) z1 =2. Let A3ZB1, A3#PA1 such that A3Z <0. Then z3 = 1, A3.Z= 
-1 and A3nB1=0. Since A3 (-K')=A3.(Y=oZB+E)=A3Z=- 1, we 
have A3*A3= -3. For AizZB1, A3#?&Ai =7A1, we have Ai Z = 0 and AinB1=0. 
Because Ai (-K') =Ai .(E= VoZBO + E) = AiZ =0, we have AiAi =-2. Let A2 
cBJ, A2 OB2 such that A1 A2=1. 
(IIIC /3 i) z2= 1. It is easy to see that we are in (5). 
(IIIC /3 ii) z2=2. It is easy to see that we are in (6). 
(IIIC /3 iii) z2=3. In this case, A=A1UB1 and Z=2A1+D, where D is a 
positive cycle with ID= B1. It follows that Z Z=(2A1+D) Z=2A Z= -2. 
This is a contradiction. 
(IIIC /3 iv) z2 > 4. In this case, A1lZ > 0, which is absurd. 
(IIIC y) z1=3. Since ZZ=-3 and A1Z=-1, AiZ=0 for any Ai _Bl, 
Ai #A1. Moreover, 0>Ai*(-K')=Ai.(E =oZB, + E) >Ai (Z + ZB) = 0. Hence 
AiAi=-2 for all Ai #A1 and Ai ZBl. Let A2CB1 such that A2SZB2 and 
AlA2= . 
(IIIC y i) z2= 1. In this case Z/Bl = ZBI. So A2 Z=3A, A2+A2. ZB, > 3-2= 
1. This is a contradiction. 
(IIIC y ii) z2 = 2. Let F, be the subgraph of F consisting of those Ai Z B1. Since 
AiAi =-2 for all Ai in 'l, rJ is a graph of a rational double point. Since z1 = 3, 
z2= 2, AlAl = -2 and A1 Z = -1, it is easy to see that degA, = 2. Hence there 
exists a unique A3 C: ]1i such that z3 =3. Since A3Z =0 and zl =3, degA3 =2. 
There exists a unique A4 Cl'1 such that z4=3, A4#7A1 and A4A3=1. By 
induction F' is of the following form: 

-2 -2 -2 -2 -2 -2 4 . p * - 

An A, - A5 A4 A3 A1 

Z=3A4+ *.. +3A3+ 3A1 + D, where D is a positive cycle with IDI =B1. Then 
An- = -3 and Z Z < -3. This is a contradiction. 
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(IIIC y iii) z2=3. Since zl=3, A1 A1=-2 and A1Z=-1, we have 2< degA, 
<3. It is not hard to see that degA1=3 cannot occur. Therefore degA =2. It 
follows that we are in (7). 
(IIIC y iv) z2 = 4. There exists a unique A3 Z B1 such that Al A3 =1 and z3 =1. 

Therefore A3 Z > 3-2 = 1. This is a contradiction. 
(IIIC y v) z2=5. Since z1=3, z2=5, A1lA1= -2 and A1 Z= -1, we have 
A=AlU Bl. So we are in (8). 
(IIIC y vi) z2 >6. Then A1,Z >O, which is a contradiction. 

PROPOSITION 3.3. Let F be a weighted dual graph including genera for 
the vertices associated to the minimal good resolution of weakly elliptic 
singularity. Suppose K' exists. Let Z = ZBO,..., ZA, ZE be the elliptic sequence. 
If ZZ <-3 and ZBI ZBI=-3, then F must be one of the following forms: 

1 
(1) Z = 1 ZBI 1, Z4 = Z5 = Z6 = 1, A4 ZB, =-l=A5ZBI =A6& ZBI: A4,A5,A6 

CB2, A4,A5:A6 B2, A44A54A6 A4: 

-2 

1~~ 

(3) Z= 1 ZB11, Z4=,AZ5 =1, 3 A44CB1= , A54ZB2:1 4A5B'4 

XB2, A47&A5: A 

(2) Z = 1 ZB 1, Z4= 1A4Z5=1 =-3 A4 C=B1, A4 ZB =B2: C:Bl 

1 
-2 A 

-2 ~~, FB2) 

-2 r'B1 

FB 
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1 
(4) Z=122 ... 2'ZBI, z3= 1, A3*ZBj=-3, A3CBl A3SZB2: 

-2 4 

-2 

- 2 - 2 - 2 -2 A3 (JB2) 

n>O B 

(5) Z=Z, ..21 = (5)Z 1 B . .2 21,Z3 =Z4 = ,A3 ZB1 =1, A4 ZB1 2, A3, A495 B1' 
A3, A4O B2, A3#A4: 

-2 

A3 A4 

-2 B-2 -2 - 

rBl n > 0 -2 

(6) Z = 1D2 1 D is a positive cycle, IDI=B1, z3 = 1, z4 =2, A3 ZB1 <0, 
A4 ZB1 = 3, A4-CBl A3 A4-B2, A3' A4 

A3 A 

-2 B-2 -2 

rBj 

(7) Z=1D2, D is a positive cycle, IDI=B1, z3=1, z4=3, A3ZB <01 
A4 ZB= 0, A3,A4CBA, A3,A4ZB2, A3-A4 

A3 A4 

-2 -2 

FBI 
(8) Z= 1 2 3ZBIZ3= 1, A2 ZB1=-3, A2CBl, A2ZB2: 

*1 2 

-2 -2 FBI 
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2 
(9) Z=12343ZB, z2=1, A2 ZB =-3, A2CB1, A2ZB2: 

-2 

rB 

3 
(10) Z=246543ZB, z2= 1 A2.ZB1=-3, A2CBl, A2ZB2: 

(12) Z = 23D, D is a positive cycle, IDI|= B1, Z2=53, A2 ZB1=O?, A2Q5B, 

-2 

"'BF 

where "B: is the graph of BB. 

Proof Since Z Z =ZB ZB, (Z-ZB )(Z +ZB)=O. For all Ai XB1, we 
have O1A Z(- K)=A ( oitOZB + E) cAcl(Z+ ZB,)=O. Therefore, A 2AC = -2 
and ArnB2=0 for all AiZB1. As ZZ=-3, by the definition of elliptic 
sequence, we have the following three cases. 

(I) There exist A1,A2,A3SZBj such that AinB#7L0, 1<i<3, and 
A1,A2,A3 are distinct. 
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(II) There are only Al,A27 ZBl, A1#7A2, such that AlnBl170:#A2nBl. 
(III) There exists unique AlgB1 such that A1nl Bn 0. 

In the first case, we have A1Z = -1 =A2 Z = A3 Z and zl=z2=z3=1. It 
follows that there is no AIZBl, Aj=/=Ap, 1< j<3, such that A,-A1>O or 
A2 A2>O or A2 A3>0, i.e., A=A1uA2uA3u B1. Let A4,A5,A6CB1 such that 
A4,A5,A6 ZB2 and AlA4=1=A2A5=A3A6. Then z4=z5=z6 and A4 Z<O, 
A5 Z<O, A6 Z<O. If A4,A5,A6 are distinct, then Z = A1 + A2+A3+ ZB, and we 
are in (1). If A4=A5 #7A6, then A4. ZB, =-2 because A4 Z = O and A1A4= A2 
A4 =1. HenceA6ZB =-1. We are in (2). Suppose A4=A5= A6. Since A4Z= 
0, we have A4. ZB, =-3. We are in (3). 

In the second case, we claim that there is no A3 _ B1 such that A1 #7A3 #7A2 
and A3 Z<0. Otherwise A1 Z= -1=A2 Z=A3 Z and z1=z2=z3=1. By our 
hypothesis, A nBl=0 for any AjZBl, Al 7Aj 7A2. Since A is connected, 
there exists A, Z B1, A2 #7A 7LAl, such that A,Al = 1 or A{A2 = 1. Consequently, 
either A1 Z > 0, or A2Z > 0. This is a contradiction. Our claim is proved. There 
are two subcases: 

(IIA) A1ZZ=-1, A2.Z=-2. Since Z Z=-3, we conclude that z1=1, Z2=1. 
However, A2A2 = -2, so A2Z > -1. This is a contradiction. 
(IIB) A1Z=-1= =A2Z. Without loss of generality, we may assume that 

zl=l, z2=2. Let A3,A4CB1, A3,A4ZB2 such that AlA3=1=A2A4. Since 

zl=1 andA, Al=-2, we have z3=1 and A3 ZB,<O. If A3=A4, then A3ZB,= 
-3 because A3Z = A3(2A2 + Al + ZB) = 0. As A2A2 = -2 and A2 Z -1, we 
have 2 <degA2 ?3. We are in (4). Suppose A3#PA4. Because A2Z =-1, the 
proof breaks up into four subcases. 
(IIB i) There exist A5, A6B1, A 1A5 7A6 #A1, such that A5A2=A6A2= 1. 
In this case, we have z4 = z5 = z6 = 1. Hence Z = Al + A5 + A6 + 2A2 + ZB1. A4 Z 
=O, A3 Z = 0 imply that A4 ZB, = -2, A3 ZB = -1. Then we are in (5). 
(IIB ii) There exists a unique A5 Z B1, A1l#A5#4A2, such that A5A2 1, Z4 = 1 

and z5=2. In this case, Z/Bl= ZB. So A4 ZB, = -2 and A3 ZB, = -1. Since 
A5*A5= -2, A5*Z=0 and z5=z2=2, we have 2<degA5?3. It follows easily 
that we are in (5). 
(IIB iii) There exists a unique A5 Z B1, A1 -7A5 =PA2 such that A5A2 = 1, Z5 = 1 

and z4=2. In this case A=AluA2uA5u Bl. Since z4>1, it is easy to see 
that A4 ZB,=O. We are in (6). 
(IIB iv) z4=3. In this case, A=A,UA2UB,. Hence A4ZB1=O. We are in (7). 

In the third case, there are three subcases. 

(IIIA) There exist A2, A3 Z B1 such that A 1, A2, A3 are distinct and A2 Z < 0, 
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A3.Z<0. Because ZZ=-3, we have A,Z=A2*Z=A3*Z=-1 and zl=z2= 
z3= 1. There exists A Z B1 such that AiA1 = 1. Since z1 = 1 and Al Al =-2, we 
have Al Z > 0. This is a contradiction. 
(IIIB) There exists a unique A2 Z B1 such that A2 7A1 and A2Z <0. Since 
Z.Z = -3, we have three subcases. 
(IIIB a) z1 =2, z2= 1. In this case, we have Al Z= -1 =A2Z. Let A3CBl, 
A3 0 B2 such that A1*A3 =1. If z3 =2, then there exists a unique A4LZ B1, such 
that A4Aj=I and z4=1. It follows easily that A=AlUA4UBl. Since z4=1, 

z1=2 and A4A4 =-2, we have A4 Z = 0. This implies that A4#7A2, which is 
absurd. If z3 = 1, then Z/B, = ZB,. Since 0= A3Z = A3 (2A, + ZB1) =2 + A3 ZB1, 
we have A3*ZB = -2. As ZB,*ZB= -3, there exists Ai!ZB1 such that AiZBl= 
-1. It follows that AiZ = AiZB =-1 < 0. This is a contradiction. 
(IIIB /) z1 = 1, z2=2. In this case, there exists AiZB1, Ai Al = 1. Since zl =1, 
A A1 = -2, we have A 1Z > 0. This is a contradiction. 
(IIIB y) z1 = 1 = z2. The same argument as (IIIB /) shows that this case cannot 
occur. 
(IIIC) There is no Ai. B,, Ai 7Al, such thatAi Z<O. Inthiscase, A1 Z=-1 
and z= 3. Otherwise, A1 Z <-2 and Al (-K') = Al (El =OZB, + E) = Al (Z + 
ZB1) <-1. This would imply that A 1Al < -3, which is a contradiction. Let 
A2 C B1 such that Al A2 = 1 and A2Z B2. There are five subcases. 
(IIC i) z2= 1. Let Fl be the subgraph of F consisting of those Ai Z Bl. Since 
A2 A =-2 for all A2 in Fl, rT is a graph of a rational double point. Since z =3, 
z2= 1 and Al Z= -1, it is not hard to check that we are in (8), (9) or (10). 
(IIC ii) z2 = 2. Let F, be the subgraph of F consisting of those Ai2Z Bl. Since 
Ai Ai=-2 for all Ai in I'l, rJ is a graph of a rational double point. As z =3, 
z2= 2, AlAl = -2 and Al Z = -1, we have degA, = 2. There exists a unique 
A3 C rl such that z3= 3. Since A3 Z = 0 and z1 = 3, we have degA3= 2. There 
exists a unique A4 5 rl such that z4 =3, A4 7LA, and A4 A3 =1. By induction, r, 
is of the following form: 

-2 -2 -2 -2 -2 

An An-1 A4 A3 A1 

Z=3An + . +3A3+3A1 + D, where D is a positive cycle with IDI = Bl. Then 
An Z = -3 and Z Z < -3. This is a contradiction. 
(IIIC iii) z2=3. Then we are in (11). 
(IIIC iv) z2=4. Since zl=3, Al Al=-2 and A, Z=-1, there exists a unique 
A3 B1 such that A3 Al= 1 and z3= 1. Then A3 Z > 1 >0, which is absurd. 
(IIIC v) z2= 5. Then we are in (12). Q.E.D. 
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THEOREM 3.4. Let S: M-> V be a resolution of normal two dimensional 
Stein space with p as its only singular point. If dim H'(M, 6) < 2 and p is a 
hypersurface singularity, then the multiplicity v0p is less than or equal to 3. 

Proof. This is a trivial consequence of Theorem 1.3. 

COROLLARY 3.5. Let q: M- V be the minirnl good resolution of normal 
two dimensional Stein space with p as its only singular point. Suppose 
H'(M, 9) 02 If p is a hypersurface singularity, then the elliptic sequence is 
one of the following forms: 

(I) elliptic sequence is { Z, ZE), 

(a) ZZ= -3, ZE*ZE = - 1, 

(b) Z*Z= -3, ZE ZE = -2, 

(c) ZZ= -3=ZEZE, 

(d) Z*Z= -1, ZE*ZE = - 1, 

(e) Z Z= -2, ZE ZE = - 1, 
(f Z*Z= -2, ZE ZE-= 2; 

(II) elliptic sequence is { Z, ZB, ZE} 

(g) ZZ=-2, ZB1ZB1=-=ZE*ZE, 

(h) Z Z=-1=ZB1 ZB1=ZE ZE; 
(III) elliptic sequence is { Z, ZBI ZB2 ZE), 

(i) Z*Z=-l=ZB1 ZB =ZB2ZB2 =ZE*ZE. 

Proof. This is an easy consequence of Proposition 2.1, Theorem 3.4 and 
Theorem 0.15. 

THEOREM 3.6. Let : M-* V be the minimal good resolution of normal 
two dimensional Stein space with p as its only singular point. Suppose 
H'(M, ( ) C2 and p is a hypersurf ace singularity. Then the associated 
weighted dual graph is one of the forms in Table 4. 

Table 4. The Weighted Dual Graphs for Hypersurface Singularities with Geometric Genus h 2. 

Dual Graph A* A* 

I(a) Z Z=-3,ZEZE= l 

(1) E1 +F_4 

-l,r=O 
(2) No +F-4 {i,>: } 

(3) Cu +F_4 

(4) Ta +F_4 -2, -3 

(5) Tr +F_4 -2,-2, -3 

(6) Al,**** +F_4 -2,-2,-2, -3 
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802 STEPHEN SHING-TOUNG YAU. 

Table 4. (cont.) 

Dual Graph A* A* 

(7) A.,**** +F_4 -2,-2,-2, -3 

(8) D4,*** +F_4 -2,-2, -3 

(9) E6,** +F-4 -2, -3 

(10) E8* +F-43 

(11) Tr +Al -2,-2,-3 

(12) No +A1 (r=s=t=0) -2,-2, -3 

I(b) Z-Z=-3,ZE-ZE=-2 
(13) NO+A1+F-3(r0>,s?O) -3'-3 

(14) Ta +A1+F_3 -3, -3 

(15) Tr +A1+F_3 -2, -3, -3 

(16) Al,**** +A1+F_3 -2,-2, -3, -3 

(17) A.,**** +A1+F_3 -2,-2, -3, -3 

(18) A.,**** +A1+F3 -2, -3, -3,-2 

(19) D4,*** +A1+F3 -2, -3, -3 

(20) E6,** +A1+F3 -3, -3 

(21) E1 +A1+F_3 -2 

-2, r=0 
(22) No +A1+F-3 ( >i: 
(23) Cu +A1+F_3 -2 

(24) Ta +A1+F3 -2, -4 

(25) Tr +A1+ F_3 -2,-2, -4 

(26) Al,**** +A1+F3 -2,-2,-2, -4 

(27) An**** +A1+F3 -2,-2,-2, -4 

(28) D4,*** +A1+F-3 -2,-2, -4 

(29) E6,** +A1+F_3 -2, -4 

(30) E8,* +A1+F-3 -4 

(31) El + A'(m + 2, -3) (m > 0) -2 

(32) No +A'(m+2, -3) (m>0) 
2 r 

( -4,2r>1 

(33) Cu + A'(m +2, -3) (m > 0) - 2 
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Table 4. (cont.) 

DualGraph A*-A* 

(34) Ta +A'(m+2,-3)(m>0) -2, -4 

(35) Tr +A'(m+2,-3)(m >0) -2,-2, -4 

(36) A1,**** +A'(m+2,-3)(m>0) -2,-2,-2, -4 

(37) A,**** + A'(m +2,-3)(m >0) -2,-2,-2, -4 

(38) D4,*** +A'(m+2,-3) (m?>0) -2,-2, -4 

(39) E6,** + A'(m +2,-3)(m >0) -2, -4 

(40) E8, + A'(m +2,-3)(m >0) -4 

(41) No + AAA(0,0, -3,1) (r=0, s=0) -2,-4 

(42) Ta + AAA(0,0, -3,1) -2,-4 

(43) No +AAA(0,0,-3,1)(r=0,s=0,t>0) -3, -2,-3 

(44) Tr + AAA(0,0, -3,1) -2,-3,-3 

(45) A*, +A*,o+A*, +A*,o+A*,o +AAA(0,0, -3,1) -2,-2,-2,-2,-2 

(46) A*, +A*,o+A*,o+A,,**,o +AAA(0,0, -3,I) -2,-2,-2,-2,-2 

(47) A* +A*,o+A,** +AAA(0,0,-3,I) -2,-2,-2,-2 

(48) A*, +A*o,+D5,*,o +AAA(0,0, -3,1) -2,-2,-2 

(49) A*, +A*,o+E7,0 +A*, +A*,o+ -2,-2 

(50) A*,O+An,**,O+Am,**,o +AAA(0,0, -3,1) -2,-2,-2,-2,-2 

(51) A*,o + A',**,o+AAA(O,O, -3,1) -2,-2,-2 

(52) A*o,+D7,*o, +AAA(0,0, -3,1) -2,-2 

I(c) ZZ= -3=ZE ZE 

(53) No +A1+A1+Al(r>,Os>, t?O) -3, -3, -3 

(54) Tr +A1+A1+Al -3, -3, -3 

(55) Ai,**** +A1+A1+Al -2, -3, -3, -3 

(56) A.**** +A,+A,+Al -2, -3, -3, -3 

(57) D4, +A1+A1+A1 -3, -3, -3 

(58) No +Al+Al+Al(r>0,s>0) -3,-4 

(59) Ta +A1+A1+A1 -3, -4 

(60) Tr +A1+A1+A1 -2, -3, -4 

(61) Al,**** +A1+A1+Al -2,-2, -3, -4 

(62) A.**** +A,+A,+Al -2,-2, -3, -4 
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Table 4. (cont.) 

Dual Graph A*-A* 

(63) A.**** +A1+A1+A1 -2, -3, -4,-2 

(64) D4,**** +A1+A1+A1 -2, -3, -4 

(65) E68** +A1+A1+A1 -3, -4 

(66) El +A1+A1+A1 -3 

-3 , r=0 

(67) No +A1+A1+Al { 

-5 ,r >1J 

(68) Cu +A1+A1+A1 -3 

(69) Ta +A1+A1+A1 -2, -5 

(70) Ta +A1+A1+A1 -2,-2, -5 

(71) A1,**** +A1+A1+A1 -2,-2,-2, -5 

(72) A.,**** +A +A +Al -2,-2,-2, -5 

(73) D4,*** +A1+A1+A1 -2,-2, -5 

(74) E6 ** +A1+A1+A1 -2, -5 

(75) E8,* +A1,+A1+Al -5 

(76) El +D(1+4)+A1 (1 > -1) -3 

-3, r=0 
(77) No +D(1+4)+A1 (1> -1) { } 

(78) Cu +D(l+4)+A1 (1 >-1) -3 

(79) Ta +D(1+4)+A1 (1 >-1) -2, -5 

(80) Tr +D(1+4)+A1 (l >-1) -2,-2, -5 

(81) Al, + D(1+4)+A1 ( > -1) -2,-2,-2, -5 

(82) A., +D(1+4)+A1(l > -1) -2,-2,-2, -5 

(83) D4,*** +D(1+4)+A1 (l > -1) -2,-2, -5 

(84) E68** +D(1+4)+A1 (l >-1) -2,-5 

(85) E8 * +D(1+4)+Al (l > -1) -5 
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Table 4. (cont.) 

Dual Graph A*-A* 

(86) No +A1 + D(l+4) (l >-1) -3, -4 

(87) Ta +A1+ D(1+4) (l >-1) -3, -4 

(88) Tr +A1+D(1+4) (1 -1) -2, -3, -4 

(89) A1, ***+A1 + D(l+4) (l >-1) -2,-2, -3, -4 

(90) An * Al +D(1+4) (I >-1) -2,-2, -3, -4 

(91) An,**** +A1 +D(1+4) (I > -1) -2, -3, -4, -2 

(92) D4,*** +A1+D(1+4) (I >-1) -2, -3, -4 

(93) E6,** +A1+D(l+4) (I >-1) -3, -4 

(94) No +A1+A2 (r=0, s=0) -5, -2 

(95) Ta+A1+A2 -5, -2 

(96) No +A2 +A1 (r=0, t=0, s > 0) -2,-3, -4 

(97) Tr +A2+A1 -2,-3, -4 

(98) No +A1+A2 (s=I, r>0, t>0) -3,-3,-3 

-2 s_-2 -2 -2 

(99) A*,o+A*O+A*O+A*O+A*o +A1+A2 -3,-2,-2, -2, -2 

(100) A*,o+A*o+A*o+A,**o +A1 +A2 -3, -2,-2,-2, -2 

(101) A*,o+A*O+A*O+A.**o +A1+A2 -2,-2,-2,-2, -3 

(102) A*,o+A*,o+A3**,o +A2+A1 -2,-2, -2, -3 

(103) A*,o+A*,o+A,**,o +A1+A2 -3, -2, -2, -2 

(104) A*,o+A*,O+D5,*,0 +A1+A2 -3, -2,-2 

(105) A*,o+A*,o+D5,*,o +A2+A1 -2,-2, -3 

(106) A*,o+A*o,+E7,0 +A1+A2 -3, -2 

(107) A*,O+An,**,O+Am,**,o +A2+A1 -2,-2,-2, -2, -3 

(108) A*,o+A5**,o +A2+A1 -2,-2, -3 

(109) A*,o+D7,*,0 +A2+A1 -2, -3 

(110) No +Al+A1 (r= 1, s = 1) -5,-2 

(111) Al,**** +A1+A1 -2, -2,-2, -5 
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Table 4. (cont.) 

Dual Graph A* A* 

(112) A,**** +A +Al -2,-2, -2, -5 

(113) No +A1 +A1 (r= 1, t= 1, s > 0) -2,-3, -4 

(114) A2,**** +A1+A1 -2, -2,-3, -4 

(115) D4,*** +A1+A1 -2,-3, -4 

(116) A*,o+A*,o+A*,O+A2, **, +A1+A1 -3, -2,-2,-2, -2 

(117) No +A1+A1 (r=3, s>0, t>0) -3,-3,-3 

-3 
-2 * /-- -s 

-2 2-2 

-3 

(118) A*,o+A*,o+D5,*,o +A1+A1 -3,-2, -2 

(119) A*,o+ Ans**,o+A2,**,o +A1+A1 -3,-2,-2,-2,-2 

(120) A*,O+An,**,o+A2,**O +Ao +Al -2, -3,-2, -2, -2 

(121) A*,o+D7,*,o +A1+A1 -3, -2 

(122) A2,* + A, **,o +Al +Al -2,-2,-2, -3 

(123) A2, **,0 + D5, *,o + A1 + A1 -2 ,-2, -3 

(124) El +A5' -3 

(125) No +A5 { 3 r=O 

- -5 , r > 1J 

(126) Cu +A5' -3 

(127) Ta +A" -2, -5 

(128) Tr +A"' -2,-2, -5 

(129) Al,*** +A" -2,-2,-2, -5 

(130) An,*** +A"' -2,-2,-2, -5 

(131) D4* +A"' -2,-2, -5 

(132) Es,** +A5 -5,-2 

(133) E8,* +A" -5 

(134) El +D6 -3 

( -3, r=0 + 
(135) No +D6 -5 r_ 1 
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Table 4. (cont.) 

Dual Graph A*-A* 

(136) Cu +D6 -3 

(137) Ta +D6 -2, -5 

(138) Tr +D6 -2,-2, -5 

(139) Al,**** +D6 -2,-2,-2, -5 

(140) A,**** +D6 -2,-2,-2, -5 

(141) D4,*** +D6 -2,-2, -5 

(142) E6, ** + D6 -2, -5 

(143) E8,* +D6 -5 

(144) E1 +E7 -3 

- 3 r=0 
(145) No +E7 {T O 

(146) Cu +E7 -3 

(147) Ta +E7 -2, -5 

(148) Tr +E7 -2,-2, -5 

(149) Al,**** +E7 -2,-2,-2, -5 

(150) A.,**** +E7 -2, -2,-2, -5 

(151) D4* +E7 -2,-2, -5 

(152) E6* + E7 -2, -5 

(153) E8 * + E7 -5 

(154) No +A3 (r=O, s =1) -2, -5 

(155) Tr +A3 -2,-2, -5 

(156) Al,**** +A3 -2, -3, -3, -3 

(157) A*,o+A*o+A*,o+A1,**,o +A3 -2, -2, -2, -2, -3 

(158) A*,o+Al**O+A,**o +A3 -2, -3, -2, -2, -2 

(159) Al,**,O+A ** +A3 -2, -3, -2, -2 

(160) Al,**,O+D5,*,0 +A3 -2, -3, -2 

(161) A1, **,0+E7,0 +A3 -2, -3 

(162) A1,*,0+A1,*,o+A,*,o+A,,*,o +A3 -2, -2, -2, -2 

(163) Al*,O+A*,O+A4*,O +A3 -2, -2, -2 

This content downloaded  on Mon, 7 Jan 2013 03:51:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


808 STEPHEN SHING-TOUNG YAU. 

Table 4. (cont.) 

Dual Graph A* A* 

(164) Al,*,O+A1,*,O+E6,0 +A3 -2, -2 

(165) A1, *,o+A7,*,0 +A3 -2, -2 

(166) No +A1 (r= 1, s=3) -2, -5 

(167) D4,*** +Al -2,-2,-5 

(168) No +A1 (r > 0, s =3, t= 1) -4,-3, -2 

I(d) Z*Z=-1,ZE*ZE=-1 

(169) El +Al -1 

- l,r=0 
(170) No +Al { 

(171) Cu +A1 -1 

(172) Ta +A1 -2, -3 

(173) Tr +A1 -2, -2, -3 

(174) Al,**** +A1 -2, -2,-2, -3 

(175) A,**** +A1 -2, -2,-2, -3 

(176) D4,*** +A1 -2, -2, -3 

(177) E6,** +A1 -2, -3 

(178) E8* +Al -3 

I(e) Z.Z=-2,ZE ZE-l 

(179) El +F_3 -1 

- l,r=0 
(180) No + F-3 { ; 1} 

(181) Cu +F-3 -1 

(182) Ta +F3 -2, -3 

(183) Tr + F3 -2, -2, -3 

(184) Al,**** + F-3 -2, -2,-2, -3 

(185) A,**** + F3 -2, -2,-2, -3 

(186) D4,*** +F-3 -2, -2, -3 

(187) E6,** +F-3 -2, -3 

(188) E8,* +F-3 -3 

(189) Ta +A1 -2,-3 
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Table 4. (cont.) 

Dual Graph A*.A* 

I(f) Z*Z=-2,ZE-ZE=-2 

(190) NO+A1+Al(r>0, s,0) -3,-3 

(191) Ta +A1+A1 -3, -3 

(192) Tr +A,+A1 -2, -3, -3 

(193) Al,**** +A1+Al -3,-2,-2, -3 

(194) A,**** +A +Al -2,-2, -3, -3 

(195) A,**** +A1+Al -3,-2,-2, -3 

(196) D4,*** +A1+A1 -2, -3, -3 

(197) E6,** +A1+Al -3, -3 

(198) El +A1+A1 -2 

-2, r=0 
(199) No +A1+A1 { 

(200) Cu +A,+Al -2 

(201) Ta +A1 +A1 -2, -4 

(202) Tr +A1+A1 -2,-2, -4 

(203) Al,**** +A1+Al -2,-2,-2, -4 

(204) A.,**** +A +Al -2,-2,-2, -4 

(205) D4,*** +A1+A1 -2,-2, -4 

(206) E6,** +A1+A1 -2, -4 

(207) E8* +A1+A1 -4 

(208) El +D(1+4) 1>-1 -2 

(209) No +D(1+4)1> -1 { 1} 

(210) Cu +D(1+4) l > -1 -2 

(211) Ta +D(1+4) l > -1 -2, -4 

(212) Tr +D(1+4) l >-1 -2,-2, -4 

(213) A1,**** + D(1+4) l >-1 -2,-2,-2, -4 

(214) A.,**** + D(l+4) l >-1 -2,-2,-2, -4 

(215) D4,*** + D(1+4) l >-1 -2,-2, -4 

(216) E6 ** + D(1+4) 1 >-1 -2, -4 

(217) E8,* + D(l+4) l > -1 -4 
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Table 4. (cont.) 

Dual Graph A* A* 

(218) Ta +A2 -2, -4 

(219) No +A2 (r=O, s=0) -2, -4 

(220) Tr +A2 -2,-3, -3 

(221) No +A2 (r=0, t=O, s > 0) -2,-3,-3 

(222) A*,O+A*,o+A*,o+A*o+A*o +A2 -2, -2, -2, -2, -2 

(223) A*o+A*O+A*O+An,**,o +A2 -2, -2, -2, -2, -2 

(224) A*,o+A*o,+A'**,0 +A2 -2, -2, -2, -2 

(225) A*,o + A*,o + D5,*,o+A2 -2, -2, -2 

(226) A*o+A*O+E7,0 +A2 -2, -2 

(227) A*,o+An**O+Am**o +A2 -2, -2, -2, -2, -2 

(228) A*,o+A,**,0 +A2 -2, -2, -2 

(229) A*,o+D7.*,0 +A2 -2, -2 
-~~~~~ 

(230) No +A1 (r= 1, s= 1) -2, -4 

(231) A1 **** +Al -2, -2, -2, -4 

(232) A**** +A1 -2, -4, -2, -2 

(233) No +A1 (r=l,s=l, t>0) -2,-3,-3 

(234) A2,**** +A1 -2,-2,-3,-3 

(235) D4,*** +A1 -2,-2,-3 

(236) A*,o+A*o+A*O+A2,** +A1 -2, -2, -2, -2, -2 

(237) A*,o+A*o,+D5*,o +A1 -2, -2, -2 

(238) A*,o+A2**,O+Am **,0 +A1 -2, -2, -2, -2, -2 

(239) A*,O+D7,*,o +A1 -2, -2 

(240) Dg,*,o +A1 -2 

(241) A2, **, +A, **,o 
+A1 -2, -2, -2, -2 

(242) A2, 3,+D5X,0 +A1 

(243) A2,**,0+D5,*,0 +A1 -2,-2, -2 

(244) A2,**,0+E7,0 +A1 -2, -2 

II(g) Z-Z=-2, ZBI1ZBI=ZE*ZE=-1 
(245) El +AF -1 
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Table 4. (cont.) 

Dual Graph A* A* 

-l,r=O 
(246) No +AF 

II(h) Z-Z=-1=ZB1-ZB1=ZE ZE 

(247) El +A2 

-l,r=O 
(248) No +A2 

III(i) Z-Z=-l1=ZB1-ZB1=ZB2*ZB2=ZE*ZE 

(249) El +A3 -1 

-1,r=O 
(250) No + A3 {3,Ir} 

Proof of Theorem 3.6. This is a consequence of Proposition 3.1, Proposi- 
tion 3.2, Proposition 3.3 and Corollary 3.5. 

By the virtue of Theorem 3.6 we have the following theorem. 

THEOREM 3.7. Let r: M- V be the minimal good resolution of norrnal 
two dimensional Stein space with p as its only singular point. Suppose 
H'(M, 0) C2 and p is a hypersurface singularity. Let A be the exceptional 
set. If H'(A, Z) =0, then p is an almost minimally elliptic singularity. 

Proof. The condition H'(A, Z)=0 rules out cases (245), (246), (247), 
(248), (249) and (250) in Theorem 3.6. All the remaining cases in Theorem 3.6 
are almost minimally elliptic by Theorem 0.16. Q.E.D. 

Remark 3.8. Using Propositions 3.1, 3.2 and 3.3, we can list all possible 
weighted dual graphs of weakly elliptic singularities such that K' exists and 
ZZ < -3. By Corollary 1.2, we know that all hypersurface maximally elliptic 
singularities must be one of these forms. However, the list is too long to be 
included here. We remark only that the condition on the elliptic sequence of 
Theorem 0.16 is automatically satisfied if Z Z -3 and K' exists. 
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