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NORMAL TWO-DIMENSIONAL ELLIPTIC SINGULARITIES1

BY

STEPHEN SHING-TOUNG YAU

Abstract. Given a weighted dual graph such that the canonical cycle K'

exists, is there a singularity corresponding to the given weighted dual graph

and which has Gorenstein structure? This is one of the important problems

in normal surface singularities. In this paper, we give a necessary and

sufficient condition for the existence of Gorenstein structures for weakly

elliptic singularities. A necessary and sufficient condition for the existence

of maximally elliptic structure is also given. Hence, the above question is

answered affirmatively for a special kind of singularities. We also develop a

theory for those elliptic Gorenstein singularities with geometric genus equal

to three.

0. Introduction. Let /? be a singularity of a normal two-dimensional analytic

space V. In [27] Wagreich introduced a definition for p to be weakly elliptic.

Weakly elliptic singularities have occurred naturally in papers by Grauert [5],

Hirzebruch [9], Laufer [19], Orlik and Wagreich [22], [23], Wagreich [28].

Karras [11], [12] and Saito [24] have studied some of these particular elliptic

singularities. Recently Laufer [19] made fundamental progress on the theory

of elliptic singularities. He developed a theory for a general class of weakly

elliptic singularities which satisfy a minimality condition. These are so-called

the minimally elliptic singularities. Choose F to be a Stein space with /? as its

only singularity. Let it: TV/ —* V be a resolution of V. It is known that

dim //'(TV/, 0) is independent of resolution. Let K0 be the germs at/? of

holomorphic functions on V. Minimally elliptic singularities are actually

those Gorenstein singularities with HX(M, 0) = C [19]. In [30] we develop a

theory for a general class of weakly elliptic singularities which satisfy a

maximality condition. Maximally elliptic singularities may have

dim //'(TV/, 0) arbitrarily large. They also include minimally elliptic singular-

ities in the sense of Laufer as a particular case. In [32] we develop a theory for

those Gorenstein singularities with //'(TV/, 0) = C2. The results of this paper

are of two kinds.

On the one hand, one might ask the following existence problem. It is

known that for Gorenstein singularity, the cycle K' exists. Recall that the
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118 S. S.-T. YAU

cycle K' is a negative integral divisor with support on the exceptional set A

which is numerically equivalent to canonical divisor. Given a weighted dual

graph such that K' exists, is there a singularity corresponding to the given

weighted dual graph and which has Gorenstein structure? In §1 we give a

necessary and sufficient condition for the existence of Gorenstein structures

for weakly elliptic singularities. A necessary and sufficient condition for the

existence of maximally elliptic structure is also given. In §2 we give a positive

answer to the above question for a special kind of singularity.

On the other hand, we develop a theory for those elliptic Gorenstein

singularities with H '(TV/, 0 ) = C3. One might use this theory together with

the technique which we develop in [31] to get a topological classification of

elliptic hypersurface singularities with //'(TV/, 0) = C3, i.e. one can list all

possible weighted dual graphs which can arise from hypersurface elliptic

singularities with HX(M, 0) = C3.

In this paper Z will denote the fundamental cycle in the sense of M. Artin

[1] and E will denote the minimally elliptic cycle in the sense of Laufer [19].

Recall that in [30] we introduce the concept of elliptic sequence which

depends only on the topology of the singularities. It turns out that this elliptic

sequence plays an important role in elliptic normal singularities. The notation

in this paper is standard and can be found in [19] and [30]. Actually, these

two papers are good references for the basic knowledge.

We gratefully acknowledge the encouragement and help of Professor

Henry B. Laufer during the investigation of these results. We also wish to

thank Professors Bennett, Kuga, Siu and Wagreich for discussions of

mathematics. Finally, we would like to thank Professors Griffiths, Hironaka

and Mumford for their encouragement and their interest in the paper.

1. Preliminaries. Let it: M —> V be a resolution of normal two-dimensional

Stein space V. We assume that/? is the only singularity of V. Let n~x(p) = A

— U ,• A¡, I < » < n, be the decomposition of the exceptional set A into

irreducible components. Suppose ir is the minimal good resolution. The

topological nature of this embedding of A in TV/ is described by the weighted

dual graph T [10], [15]. The vertices of T correspond to the A¡. The edge of T

connecting the vertices corresponding to A¡ and Ap i ¥=j, correspond to the

points of A¡ n Aj. Finally, associated to each A, is its genus, g„ as a Riemann

surface, and its weight, A¡ ■ A¡, the topological self-intersection number. T will

denote the graph, along with the genera and the weights.

A cycle (or divisorial cycle) D on A is an integral combination of the A¡.

D = "2d¡A¡, I < i < n with di an integer. Let 0 be the sheaf of germs of

holomorphic functions on TV/. Let 0 (- D) be the sheaf of germs of holomor-

phic functions on TV/ which vanish to order d¡ on A,. Let 0ß denote

0 / 0 ( - D ). We use "dim" to denote dimension over C
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NORMAL TWO-DIMENSIONAL ELLIPTIC SINGULARITIES 119

x(D ) = dim H°(M, SD) - dim //'(TV/, 0O).

Some authors work instead with the arithmetic genus Pa(D) = 1 — xC^)- The

Riemann-Roch Theorem says

X(D)= -\(DD + DK). (1.2)

It follows immediately from (1.2) that if B and C are cycles then

X(B + C) = x(B) + x(C) - B ■ C. (1.3)

In (1.2), K is the canonical divisor on TV/. D ■ K may be defined as follows.

Let w be a meromorphic 2-form on M i.e. a meromorphic section of K. Let

(to) be the divisor of u. Then D- K = D- (u) and this number is independent

of the choice of co. In fact, let g, be the geometric genus of A¡, i.e. the genus of

the desingularization of A¡. Then

ArK=-ArAi + 2gi-2 + 28i (1.4)

where 5, is the "number" of nodes and cusps on A¡. Each singular point on A¡

other than a node or cusp counts as at least two nodes. Fortunately, such

more complicated singularities will not occur in this paper.

Associated to ir is a unique fundamental cycle [1, pp. 131-132] such that

Z > 0, Aj • Z < 0 all A¡, and such that Z is minimal with respect to those two

properties. Z may be computed from the intersection matrix as follows [16, p.

607] via what is called a computation sequence (in the sense of Laufer) for Z.

Z0 = 0,   Zx = y4,i,   Z2 = Zx + A¡2, . . . ,

Zj-Zj^ + A^- -Z-Z^ + A,,

where Ah is arbitrary and A, ■ Zy_, > Q, 1 <j < /. 0(- Zj_x)/e(- Z¡) repre-

sents the sheaf of germs of sections of a line bundle over A¡ of Chern class

-Ah ■Zj_x.SoH°(M, e(-Zj_ ,)/0(- Zj)) = Ofory > 1.

0-*6(-ZJ_l)/6(-Z,)-*6lj^ei_t-+0 (1.5)

is an exact sequence. From the long exact homology sequence for (1.4), it

follows by induction that

H\M, 0ZJ = C,       1 < k < /, (1.6)

dim//'(TV/, eZk) = 2 dim//'(M, 0(-Z,_,)/0(-Z,)),        1 < j < k.

(1.7)

Since TV/ is two dimensional and not compact,

H2(M, <F) = 0 (1.8)

for any coherent sheaf ^ on TV/ [25].

Definition   1.1.  A cycle F > 0 is minimally elliptic if x(£) = 0 and

X(D) > 0 for all cycles D such that 0 < D < E.

Wagreich [27] defined the singularity /? to be elliptic if x(^) > 0 f°r a^
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120 S. S.-T. yau

cycles D > 0 and x(^) = 0 for some cycles F > 0. He proved that this

definition is independent of the resolution. It is easy to see that under the

hypothesis, x(Z) = 0. The converse is also true [19], [21]. Henceforth, we will

adopt the following definition.

Definition 1.2./? is said to be weakly elliptic if x(Z) = 0.

Theorem 1.3 (Laufer). Let it: M -> V be the minimal resolution of the

normal two-dimensional variety V with one singular point p. Let Z be the

fundamental cycle on the exceptional set A = ir~x(p). Then the following are

equivalent:

(1) Z is a minimally elliptic cycle.

(2) A¡- Z = — A¡ ■ Kfor all irreducible components A¡ in A.

(3) x(Z) = 0 and any connected proper subvariety of A is the exceptional set

for a normal two-dimensional singularity.

Definition 1.4. Let /? be a normal two-dimensional singularity, p is

minimally elliptic if the minimal resolution it: M —» F of a neighborhood of/?

satisfies the conditions of Theorem 1.3.

Theorem 1.5 (Laufer). Let it: M -» S represent A as an exceptional set in

the 2-dimensional manifold M with S a Stein space. Let A = U "=\A¡ be the

decomposition of A into irreducible components and suppose that the A¡ are

nonsingular. Let k, be the canonical bundle of A¡ and TV,, the normal bundle. If V

is a line bundle over M such that C¡(V) > C(k¡N*), then //'(TV/, °V) = 0 where

T denotes the sheaf of germs of sections of the line bundle V.

Definition 1.6. Let A be the exceptional set of the minimal good resolution

it: M —» V where F is a normal two-dimensional Stein space with/? as its only

weakly elliptic singularity. If F • Z < 0, we say that the elliptic sequence is

{Z} and the length of elliptic sequence is equal to one. Suppose F • Z = 0.

Let Bx be the maximal connected subvariety of A such that Bx D supp F and

A¡- Z = 0, V/l, Ç. Bx. Since A is an exceptional set, Z- Z < 0. So Bx is

properly contained in A. Suppose ZB • F = 0. Let B2 be the maximal con-

nected subvariety of Bx such that B2 D \E\ and A¡ ■ ZB = 0 \M(- <Z B2. By the

same argument as above, B2 is properly contained in Bx. Continuing this

process, we finally obtain Bm with ZB • F < 0. We call {ZB = Z,

ZB , . . ., ZB } the elliptic sequence and the length of elliptic sequence ism + 1.

Theorem 1.7. Let it: M —» V be the minimal good resolution of normal

two-dimensional Stein space with p as its only weakly elliptic singularity.

Suppose p is not a minimally elliptic singularity and K' exists. Then the elliptic

sequence is of the following form

ZB¡¡ = z, ZB], . . . , ZB¡ = ZE,       I > 0.

Moreover, — K' = 2'=0^5 + E-
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NORMAL TWO-DIMENSIONAL ELLIPTIC SINGULARITIES 121

2. Necessary and sufficient condition for the existence of Gorenstein struc-

ture for weakly elliptic singularities.

Lemma 2.1. Let it: M^>V be the minimal good resolution of normal

two-dimensional Stein space with p as its only weakly elliptic singular point.

Suppose K' exists. Let ZB = Z, . . . , ZB, ZE = ZB be the elliptic sequence.

Let Cj = S^.oZ». Then either

h°(m, e(-Cj)/e(-Cj - f))=,o^//'(m, e{-Cj)/e(-Cj - f))

or

h\m, e{-Cj)/e{-Cj - e))^c^h\m, e(-Cj)/e(-Cj - f)).

Proof. Choose a computation sequence for Z as follows: Z0 = 0, Z, = A¡,

Z2 = Z, + A¡2, . . ., Zk = E = Zk_x + Aik, . . . . Consider the following ex-

act sequence.

o-*eCj^eq+E-+e(-cJ)/6(-cJ-E)^o.

We have the corresponding long cohomology exact sequence.

0 -+ H°(M, ec) -* H°(M, eCj + E) -* H°(M, 0(- C,)/0(- C, - F))

^HX(M, ec)^H\M, eCj + E)^H\M, 6(-Cj)/6(-Cj - F))^0.

Hence

dim H°(M, 0q) - dim HX(M, 0q)

- dim H°(M, eq+E) + dim Hl(M, 0c+£)

= dim //'(TV/, e(-Cj)/e(-Cj - E))

- dim H°(M, 6{-Cj)/e{-Cj - E))

i.e.

X{Cj) - x(C, + F) = dim H\M, 0(-Cy)/0(-Cy - F))

- dim H\M, e{-Cj)/e(-Cj - E)).

However x(Cy) - x(C, + E) = E ■ Cj = 0, therefore

dim H '(TV/, e(-Cj)/e(-Cj - E)) - dim//°(TV/, 0(-Cy)/0(-C - F)).

Caií? (i). Support of F = \E\ consists of only one irreducible component. In

this case, F = A¡ is an elliptic curve. Since e(-Cj)/e(-Cj — E) is the

sheaf of germs of sections of a line bundle of degree zero over an elliptic

curve, by the Riemann-Roch Theorem, the assertion holds.

Case (ii). Support of F has at least two irreducible components. Then all

the irreducible components of the exceptional set are rational curves and

Zj_x • A i = 1 for all j ¥* 1, k; Zk_x- Aik =2. Consider the following sheaf
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122 S. S.-T. YAU

exact sequences:

O^0(-C,-Z,)/0(-Cy-F)^0(-Cy)/0(-C,-F)

^0(-C,)/0(-C,-Z,)^O, (1)

o-*e(-cy- z2)/e(-Cj- E)^e(Cj- z,)/0(-cy- e)

-+e(-Cj - zx)/e{-q - z2)^o, (2)

0-+6C-Ç - Z,_,)/0(-C, - £)-0(-C, - Zk_2)/6(-Cj - E)

->0(-c, - zk_2)/e(-Cj - zfc_,)->o    (* - i).

Look at the corresponding long cohomology exact sequences. The long

cohomology exact sequence corresponding to equation (1) gives

0^ H°(M, e(-Cj - Z,)/0(- Cj - F)) -» H°(M, 0(- C,)/0(- Cj - E))

^H\M, 0(-C,)/0(-C, - Z,)H//'(M, 0(-C, - Z,)/0(-C, - F))

^//'(TV/, 0(-C,)/0(-C,.)/0(-C, - F))

-*/fl(M,0(-Cy)/0(-C,-Z,))-»O.... (*)

Since e( — Cj)/e(—Cj — Zx) is the sheaf of germs of sections of a line

bundle of degree zero over a rational curve, we have H°(M, 0(— C7)/0(- C,

- Z,))^C and //'(TV/, 0(-Cy)/0(-Cy - Z,)) ~ 0 by Serre duality and

the Riemann-Roch Theorem. We claim that //'(M, 0(- Ç, - Z,)/0(- Ç -

F))~C and //°(TV/, 0(-Ç - Z,)/0(-Cy - F))~0. The long cohomol-
ogy exact sequence corresponding to (2) gives

o^ h°(m, e(-Cj- z2)/e(-Cj - e))

"4 H°(M,e(-Cj- z,)/0(-c,- E))

-* H\M, e(-Cj - Z,)/0(-C, - Z2))

^//'(A/,0(-Cy-Z2)/0(-C,-F))

% H\M,e(-Cj- ZJM-Cj- E))

-+ H\M, e(-Cj- Z,)/0(- Cj - Z2)) -*0.

Since 0(— Cj — Z,)/0(— C, — Z2) is the sheaf of germs of sections of a line

bundle of degree — 1 over a rational curve, we have

/7°(TV/,0(-C,-Z,)/0(-C,-Z2))

=*0 » H\M, 0(- Cj - Z,)/0(- Cj - Z2)).

So <p2 and xp2 are isomorphisms. By exactly the same argument as above, one

has the following isomorphisms.
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NORMAL TWO-DIMENSIONAL ELLIPTIC SINGULARITIES 123

//°(TV/,0(-Cy-Z,)/0(-C,-F))

* H°(M, 0(-C, - Z^x)/e(-Cj - E)),

//■(TV/,0(-C,-Z,)/0(-C,-F))

* h\m, e(-Cj - z,_,)/0(-q - f))

for 3 < i < k — 2. The long cohomology sequence corresponding to (k — 1)

gives

0-*H°(M, 0(-C, - Zk_x)/e(-Cj - E))

-*//°(M, 0(-C, - Zk_2)/e(-Cj - E))

^h°(m, e(-Cj - zk_2)/e(-Cj - zk_x))

-*h\m, e(-Cj - zk_x)/e(-Cj - e))

^h\m, e(-Cj - zk_2)/e(-Cj - f))

^h\m, e(-Cj - zk_2)/e(-Cj - z*_,))-»o.

Since e(-Cj - Zk_x)/e(-Cj - E) and 0(-C, - Zk_¿/e(-Cj - Zk_x)
are the sheaf of germs of sections of line bundles of degree — 2 and — 1

respectively over rational curves, we have

h\m, e(-Cj - zk_x)/e(-Cj - F))=,o,

h\m, e(-Cj - zk_x)/e(-Cj - e))^c,

H°(M,e(-q - zk_2)/e{-Cj - zk_x))^o

« h\m, e(-Cj - zk_2)/e(-Cj - zk_x)).

Hence

H°(M, 0(- Cj - Zk_2)/e{- Cj - E)) sx 0   and

//'(TV/, 0(-C, - Z*_2)/0(-C, - £))-C

This proves our claim. From (*) we have the exact sequence

0^//°(TV/, 0(-C,)/0(-C, - E))

^H°{M,e(-Cj)/e(-Cj-zx))^c

-+h\m, e(-Cj - zx)/e{-Cj -e))c*c

-*Hx(M,e(-Cj)/e(-Cj-E))^o.

The lemma follows easily from the above exact sequence.    Q.E.D.
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124 S. S.-T. YAU

Let ir: M —» V be a resolution of a normal two-dimensional Stein space V

with p as its only singularity. Serre duality gives //'(TV/, 0) as dual to

H}(M, ß), where fi is the canonical sheaf, i.e. the sheaf of germs of holomor-

phic 2-forms. By [16, Theorem 3.4, p. 604], for suitable TV/, which can be

chosen to be arbitrarily small neighborhoods of A = it"'(/?), HX(M, Q) may

be identified with H°(M \ A, ß)///°(M, ñ). Let co E H°(M \ A, ß).

HX(M, £2) is a H°(M, 0)-module of finite dimension over C. So co is mero-

morphic on TV/ with possible poles on the A,. The corresponding element in

HC'(M, fi) is given by restricting co to TV/ \ TV0, where TV0 c C TV/ is a neighbor-

hood of A, extending co to a C°°(2, 0)-form ¿b on M and then taking

cls[3cô] E HX(M, fi). If À is a 3-closed C°°(0, l)-form, the pairing between

cls[X] G //'(TV/, 0) and cls[3co] is given by

f X A3w = <cls[A], cls[3«]>. (2.1)

The duality of the pairing in (3.4) holds for all holomorphically convex

TV/' D TV0 since the restriction map is an isomorphism on //'(TV/, 0)

[16, Lemma 3.1, p. 599].

Lemma 2.2 (Laufer). Let A¡, 1 < i < n, be the irreducible component of A.

Assume that the A¡ are nonsingular with normal crossings. Let A' = \J A¡,

2 < i < n. Let Px, . . . , F, be disjoint poly disc coordinate patches on M such

that

(i)Ax n A' c U Pj, \ <j <t,
(ii) in the (xj,yj) coordinate system on Pj,Ax = { v7 = 0},

(iii) ifA'nPj^ 0, then A n P} = {xßTj = 0}.
Let TV, TV0 c C TV c C TV/, have a cover % = {U0, Ux} where U0 contains

U Pj, 1 < j < t, and is also a neighborhood of A'. Ux D Ax should be the

complement of discs in the Xj-coordinate systems of (ii). Suppose that U0 n Ux

= U U0j, I <j <t, with U0j = {(xj,yj) E Pj: r < \Xj\ < R, \yj\ < R} for

suitable r and R. Let %' = { U¿, U[} have Uk c C U'k, k = 0, 1. Let X = {Aq.

E H°(U¿., 0)} be a cocycle in H\N(%'), 0). Upon restricting to TV/', TV0 c C

TV/' c C TV, X determines an element cls[\] in //'(TV/', 0). Then the pairing in

(1.1) between cls[A] and cls[3to] over TV/' is given by

i

(cls[X], cls[co]> = 2     /    \>w-
7=1 \xj\ = R     '

M-x

Proof. X is obtained by finding Cx functions Xk on Uk, k = 0, 1, such that

Xq = Xx — Xq on U¿. X = dXk on Uk. 3w = 0 outside of TV0, so
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NORMAL TWO-DIMENSIONAL ELLIPTIC SINGULARITIES 125

(X, co) = j   X A3« = / Â A3« = — /   Â A¿>
J M' ■'/V •'3/V

- -f AA«= - 2  f 3\A"+2f      _3X,Aw
•'SA' k = 0JdNnÜk j=\JäNnU0j

- - 2 r   aa«+2 f,   x*.a<o
A; = 0-/3(3^nî7i) y=i^3(3/Vnt7o,)

-2     /    (A, - A0) A co = 2     /   A0. • co.    Q.E.D.
7=i|*,| = R y=i |x,.|-/c    '

M-* M = R

Theorem 2.3. Let it: M —» V be the minimal good resolution of normal

two-dimensional Stein space with p as its only weakly elliptic singular point.

Suppose K' exists. Let ZB = Z, . . . , ZB be the elliptic sequence. Let C¡ =

2'_o^b¡- Then vep is Gorenstein if and only if <p: H°(M, 0c+£)-*

H°(M,'ec) is surjective and 0(-C,)/0(-C, - F) is the sheaf of germs of

sections of a trivial line bundle over (\E\, 6E).

Proof. "=> ". Choose a computation sequence for Z as follows: Z0 = 0,

Z, . . . , Zk = E, . . . . By Theorem 3.7 of [30] - K' = C, + E. So

//'(TV/, 0(- C, - E)) = 0. The exact sequence

//'(TV/, 0(-C, - E))^HX(M, 0(-C,))

i //'(M, 0(-C,)/0(-C, - £))->0

shows that ^ is an isomorphism. By Lemma 2.1 we have either

h°(m, e(-c,)/e(-c,- e))^o^h\m, e(-c,)/e(-C!- e))
or

H \M, 0 ( - C,)/0 ( - C, - F)) » C ̂  H '(TV/, 0 ( - C,)/0 ( - C, - F)).

Thus either //'(TV/, 0(- Q) « C or //'(TV/, 0(- C,)) = 0. We claim that

//'(TV/, 0(-Q)^C and HX(M, 0(- Q) -> //'(TV/, 0) is injective. Other-
wise HX(M, 0(-C,))->//'(TV/, 0) is a zero map. As vep is Gorenstein,

there exist co E H '(TV/ - A, Ü) having no zeros near A and the image of co in

H°(M - A, Ü)/H°(M, B) is nonzero. Let w, be the order of the pole of co on

A¡. Consider a cover as in Lemma 1.2. On F, where Ax Ç |F|

Wli-Kl.-Vl)   .      A    .
co-—-dx,A*i

^i

where ux(xx,yx) is a holomorphic function, u>x(xx, 0) ^ 0. There is a holomor-

phic function/(jc,) r < |x,| < R such that
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|*i| = * y*
\yt\'R

Let Ag = y\w'~xf(xx) and Xq = 0 for 2 < j < i. Then by Lemma 2.2, cls[A] ̂

0 in //'(TV/', 0). Let F = Se,^,-, ZÄ = 2,. ¡ZjAj. Then w, = 2-_0 *fi + ei and

w, — 1 > 2'_o/zi- Hence À may be thought of as also a cocycle in

//'(TV(%), 0(- Cf)). It follows that cls[A] = 0 in //'(TV/', 0). This leads to a

contradiction. Our claim is proved. Consider the following commutative

diagram with exact rows.

0^//°(M, 0(-C, - E))^H°(M, e)^H°(M, 0C/+£)

o^  /¥°(m, ©(-c,))  -*h\m, ey-> h\m, eQ)

-^HX(M, 0(-C, - E))^HX(M, 0)^//'(M, 0C;+£)^O

-»     //'(TV/, 0(-C,))     ^HX(M, 0)-»   //'(A/, 0C;)   ^0

It follows that //°(TV/, 0C) ^ //°(TV/, 0Q) is surjective. Look at the following

exact sequence

0-» H°(M, 0(-C, - £))-» /7U(M, 0(- Q))

^h°(m, e(-c,)/e(-q- e))^ c^o.

Let ©(-C/VOi-Q - F) correspond to a line bundle L over (|F|, 0£).

There exists / E H°(M, 0(- C,)) such that the image of / in

/7°(TV/, 0(-Q/0(-C/ - F)) viewed as a section of line bundle F is

nowhere zero. So L is a trivial bundle.

"«=" Suppose conversely that H°(M, 0c,+£)-> H°(M, 0C) is surjective

and 0(- C/)/0(- C, - F) is the sheaf of germs of sections of a trivial line

bundle over (|F|, 0£). Then

H0(M,e(-c,)/e(-c,- E))~c~Hx(M,e(-c,)/e(-c,- e)).

The exact sequence

0~Hl(M, ©(-C,- E))^H\M, 0(-C/))

-+HX(M, 0(-C,)/0(-C,- £))-»0

shows that // '(TV/, 0 ( - C,)) -> ¿/ '(TV/, 0 ( - Q)/0 (- Q - F)) ~ C is an iso-

morphism. Consider the following commutative diagram with exact rows.
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0 -» H°(M, 0(- C, - F)) -> //°(TV/, 0) -* //°(TV/, 0Q+£)

0^        H°(M, 0(- C,)) -» //°(M, 0) -» //°(M, 0C)

-* H\M, e(-C, - E)) -» //'(TV/, 0) -» //'(M, 0Q+£)-»0

-* //'(M, 0(-C,))^//'(M, 0)^//'(M, 0C;)

Since //°(TV/, 0C/+£) ^//°(M, 6C;) is surjective, //°(TV/, 0)->//°(M, 0C;) is

also surjective. So //'(TV/, 0(-Q) ^ C^//'(TV/, 0) is injective. Since

Hx(M,e(-C,)/e(-C, - E))^C, the usual long cohomology exact

sequence argument shows that

//'(TV/, 0(-C,- Zfc_,)/0(-C,- F))~C

^//'(tv/, ©(-qyot-q-F))

is an isomorphism. Look at the following commutative diagram with exact

rows.

HX(M, e(-C, - Zk_x))^Hx(M, 0(-Q - Zk_x)/e(-C, - F))^C^0

Iß i
Hl(M,6(-Cl))c^C   -+       //'(TV/, 0(-C,)/0(-C, - F))=¿C       -^0

4r

//'(A/, 0)

There exists A e //'(TV/, 0(-C, - Zk_x)) such that a(A) ^ 0 ^ y • /3(A). Use

the notation of Lemma 2.2. % is a Leray cover for Ax. So there exists

{\)< = yfj-«Jz, + e'~l -fi(xx) + higher power of v,}, f(xx) is holomorphic for

r < \xx\ < R such that cls[A] ^ 0 in HX(M', 0). Let co be the element such

that <A, co> =7^= 0. Then on F, by Lemma 2.2, we know that wx > 2'_0 ¡zx + ex

— 1 where wx is the order of pole of a on Av (co) = [co] + D where D is a

positive divisor which does not involve any A¡ and [co] = S¡w¡At. For any

A, C A, -A¡ ■ ( 2 ZB + e) = A, ■ (co) = A, ■ [co] + A, ■ D,

=> A¡ • ( [co] + 2 ZB + E + d) = 0   for all A, C A

=> A,: • ( 2 ZB + F + [co] j < 0   for all 4. ç A.
V/-0    ' /

Let F = 2-=0Zs + F + [co] = 2 y ¡A,. We have v, < 0 and A,,- Y < 0 for all

Ai ÇA. By the proof of Theorem 3.11 of [30] this is possible only if Y - 0. It

follows easily that D = 0 and (co) = — 1,'¡=0ZBi — E. So co has no zeros in an

n neighborhood of A, i.e.,  vep is Gorenstein.   Q.E.D.
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Theorem 2.4. Let it: M —> V be the minimal good resolution of normal two-

dimensional Stein space V with p as its only weakly elliptic singularity. Suppose

K' exists. Let ZB = Z, . . . , ZB, ZE be the elliptic sequence. Then p is a

maximally elliptic singularity if and only if H°(M, Bc.+E) -» H°(M, 0C) is

surjective for 0 < j < I and 0(— C})/0{- C, — F) is the sheaf of germs of

sections of a trivial line bundle over (\E\, <SE) for 0 < j < /.

Proof. Let us first prove that dim H°(M, ec+E) - 1 < dim H°(M, 0C)

< dim H°(M, eCj+E). We recall that x(Cj + F) = 0 = x(Q- The exact

sequence

Hx(M,eCj+E)^Hx(M,ec)^o

shows that

dim H°(M, 0C) = dim HX(M, 0q) < dim Hx{M, QCj+e)

= dim H°(M, eCj+E).

By the proof of the previous theorem, we know that either

h°(m, e(-Cj)/e(-Cj - f))^o^//'(tv/, e(-Cj)/e(-Cj - e))

or

h\m, e(-Cj)/e(-Cj - e))^c^h\m, e{-Cj)/e{-Cj - e)).

The exact sequence

o^//°(m, e(-Cj)/e(-cJ - e))^h°(m, eq+E)^H°(M, ec)

^H\M,6(-Cj)/e(-Cj-E))

shows that dim H°(M, 0C) > dim HX(M, 0c+£) - 1. Choose a computa-

tion sequence for ZB as follows Z0 = 0, Z„ . . ., Zk = E,.. ., Z, = ZB ,

Consider the following sheaf exact sequence.

o   -»   e(-Cj- zk+x)/e(-Cj+x)->e(-Cj- E)/e(-Cj- zBjj

->   e(-Cj-E)/e(-Cj-zk+x)^o,

o   ->   0(-c, - zk+2)/e(-cj+x)^e(-Cj - zk+x)/e(-cJ+x)

-*   e(-Cj-zk+x)/e(-Cj- zk+2) -»o,

o  ->  e(-q-^_I)/6(-cy+i)-»e(-q-^_2)/e(-cy+1)

-»   ©(-ç-z^/oî-ç-z,.,)-^.

By the usual long cohomology exact sequence argument,

H\M, 0(-C, - F)/0(-C,+ 1))^O^/7'(M, 0(-C, - F)/0(- C,+I)).
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The following two exact sequences

o   -»   H\M,e{-Cj-E)/e{-cJ+x))^H\M,ecj

-»   h°(m, eCj+E)^H\M, e(-Cj - E)/6{-CJ+l))

-»   Hx(M,eCjj^H\M,eCj+E)^o,

0     ^     H°(M, e{-Cj+x))-*H°(M,e(-Cj - E))

-»   H°{M,e(-Cj-E)/e(-Cj+x))^H\M,e(-Cj+x))

-»     //'(M, 0(-Ç - E))^H\M, e(-Cj - 2?)/0(-C,+ 1))-»O

shows   that   Hd(M, 0Cj+i)^> Hd(M, 6qti+E)   and   //rf(Tl/, 0(-Ç,+ 1)) ̂

//''(TV/, 0(- Ç - F)) are isomorphisms fore/ = 0, 1.

Suppose /? is a maximally elliptic singularity. Consider the following com-

mutative diagram with exact rows.

0  -*  H°(M, e(-q-E))   -*   H°(M, 0)   -*  //0(M, 0c, + £)

I 1 I
0^      //°(TV/, 0(-C,))       -*  H°(M, 0)   -*     //°(M, 0C;)

o^  H°(M,e(-cJ+x))   -+H°(M,e) - H°(M,eqj

i i i
0^      H°(M,e(-Cj))       -»   rY°(M, 0)   ->     //°(TV/, 0Q)

0^       //°(TV/, 0(-Z))       -^  //°(TV/, 0)   -*     H°(M,ez)

-*  //'(TV/, 0(-C,-F))   ->   //'(TV/, 0)   -* //'(M, 0q+£)   -*  0

-»      /Y'(M, 0(-Q))       -*  HX(M, 0)   -*    /Y'(TV/,0C/)     -^0

-»    //'(TV/,0(-C,+ 1))     ->/f'(Af,0)   ->   //'(M,0q+|)    -^   0

4 I 1
-*      Hx(M,e(-Cj))       -^//'(TV/,0)   ->     //'(A/,0q)      -»  0

-*       //'(TV/, 0(-Z))       -»  H\M, 0)   -*     Hx(M,ez)      ^0
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Since //'(TV/, 0(- C, - E)) = 0, dim H°(M, 0C/+£) = dim HX(M, 0C/ + £) =

dim //'(TV/, 0) = / + 2. It follows that H°(M, 0q+i) -» H°(M, BCj) is'surjec-

tive for all 0 < j < / and dim H°(M, 0C + |) = dim H°(M, 0C.) + 1. More-

over, H°(M, 0(-Cy+1))-*//°(TV/, e(-Cjj) is not an isomorphism for all

0 < j < /. The exact sequence

0^H°(M, e(-Cj)/e(-Cj - F))

-* H°(M, eCj + E) -* //°(M, ec)^0 (2.3)

shows that //°(M, 0(- CJ)/6(- Cj - E)) ~ C. We have the following exact

sequence

0->H°(M, e(-Cj - E))^H°(M, S(-Cj))

-^H°(M,e(-Cj)/e(-Cj- f))^c^o.

It follows readily that 0(— C})/0(- G — F) is a sheaf of germs of sections

of a trivial line bundle over (\E\, BE) for 0 < j < /.

Conversely, suppose H°(M, 0c+£) -» H°(M, 0C) is surjective for 0 < y <

/, and 0(— Ç)/0(— Cj — E) is the sheaf of germs of sections of a trivial line

bundle over (|F|, 6E) for 0 < j < /. From (1.2) since

//°(TV/, 0(- Cj)/e(-Cj - E)) ca C, dim H°(M, 0c+£) = dim H°(M, 0C.)

+ 1. By induction, dim H°(M, 0Q+£) = / + 1 + dim //°(M, 0Z) = / + 2.

However, dim HX(M, 0) = dim HX(M, BQ+E) = dim H°(M, 0C/+£) = / +

2. So/? is a maximally elliptic singularity.

Corollary 2.5. Let it: M ^ V be the minimal good resolution of normal

two-dimensional Stein spaces with p as its only weakly elliptic singularity.

Suppose p is an almost minimally elliptic singularity but not a minimally elliptic

singularity and K' exists. Then yQp is Gorenstein if and only if

H°(M, 0(-Z)/0(-Z- F))^C.

3. Existence theorem for almost minimally quasi-simple elliptic singularities.

Definition 3.1. Let it: M -» V be the minimal good resolution of a normal

two-dimensional Stein space with /? as its only weakly elliptic singularity. If

the minimally elliptic cycle F = A, is a nonsingular elliptic curve, we say that

p is a quasi-simple elliptic singularity.

Theorem 3.2. Let it: M —» V be the minimal good resolution of normal two-

dimensional Stein space with p as its only quasi-simple elliptic singularity. Let T

denote the weighted dual graph along with the genera of the A¡. Suppose K'

exists and ZBq = Z, ZB¡, . . . , ZB;+i = ZE = Ax is the elliptic sequence. Assume

further that the coefficient of Aj in ZB, 0 < / < /, are equal whenever A- n Ax

t^ 0 and Aj =£ Ax. Let Lj be the line bundle corresponding to 0 (— Cj)/6(—Cj

— Ax), 0 < j < /, over the elliptic curve Ax where Cj = 2^_oZr- Then we can

deform a suitably large infinitesimal neighborhood B of the exceptional set of p

such that Lj are trivial bundles over A, simultaneously and that T is preserved.
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Proof. Let ZB = 2ClikAh. Then C01 = Cxx = ■ ■ • = Clx = ex = 1 by

Corollary 2.6 of [30] where F = exAx. For 0 < j < I, Lj are line bundles of

Chern class zero over the elliptic curve Ax. Let TV be the normal bundle of Ax

in TV/. Let ZB¡ = Ax + ~2j=2C¡jAj + D¡ where Ax, . . . , An are distinct, Ax • Aj

= 1, 2 < j < n and D¡ is a positive cycle which does not involve Ax, . . . , A„

and Ax ■ D¡ = 0. Then F, = N~J^^ ■ ■ • ^^ where P¡ = Ax n ¿4„ a,v =

2^=0Q,/' 2 < i < n, and £p are point bundles [7]. We want to show that by

varying the point of intersection in A x n A¡, 2 </'<«, we can vary F, in the

Picard variety of A, and make Lj trivial simultaneously for all 0 < j < /. As

A, • ZB¡¡ = 0, we have A¡A x + C0 2 + • • • + C0n = 0. We claim that there

exists n - 1 distinct points q2, . . . , q„ such that TV " ' = ¿£02 • • • £q°\ In fact

pick any fixed point q E A,, by Abel's theorem one can write

for some n — 1 distinct points q2, . . . , qn where ax = Ax ■ Ax. It follows easily

that TV ~' = ^c°'2 • • • £q0\ By our assumption c0, = cx ¡ = • • ■ = c¡¡ for 1 <

i < n, hence a,j = jc0i

L = N-JL-"v ■ ■ ■ L-"^

= &r ■ ■ ■ & Yç- ■ ■ ■ ̂ = &&T ■ ■ ■ (t&T-
Now Abel's Theorem says that by varying the point of intersection in

Ax n A,■ = {P¡}, 2 < i < n, we can vary ^¿p~x in the Picard variety of Ax

and make C?,^, ' trivial so that L, is a trivial line bundle simultaneously for all

0 < j < /. '

Corollary 3.3. The hypothesis is the same as Theorem 2.2. Then we can

deform a suitable large infinitesimal neighborhood B of the exceptional set such

that p is a Gorenstein singularity.

Proof. Trivial consequence of Theorems 2.3, 2.4 and 3.2.

4. Results on elliptic Gorenstein singularities with //'(TV/, 0) = C3. We show

in this section that for elliptic Gorenstein singularities with //'(TV/, 0) = C3,

the elliptic sequence gives us a lot of information about the singularities.

Proposition 4.1. Let it: M ^> V be the minimal good resolution of normal

two-dimensional Stein space with p as its only weakly elliptic Gorenstein

singularity. Let A be the exceptional set. Suppose HX(A, Z) = 0 and the length

of the elliptic sequence is three. Let ZB,ZB, ZE be the elliptic sequence. Let D

be the subvariety of Bx consisting of those Ai C Bx such that A¡ n \E\ =0. If

Z/D = ZBJD, then dim //'(TV/, 0) = 3, i.e. p is a maximally elliptic singu-

larity.
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Proof. By Theorem 3.9 of [30] dim H '(TV/, 0 ) < 3. It is obvious that p

cannot be rational singularity or minimally elliptic singularity, i.e.

dim //'(TV/, 0) ¥• 0 or 1. By Theorem C of [30] dim HX(M, 0)^2. There-

fore we have dim //'(TV/, 0) = 3.

Theorem 4.2. Let ir: TV/ —» V be the minimal good resolution of normal

two-dimensional Stein space with p as its only weakly elliptic Gorenstein

singularity. Suppose //'(TV/, 0) = C3 and HX(A, Z) = 0. Let ZB,ZB, . . . , ZB,

ZE be the elliptic sequence. Let D be the subvariety of B¡ consisting of those

Ai C B, such that A¡ n \E\ ¥=0. Suppose Z/D = ZBJD. Then mB C
B( — '2liZx0ZB) and the multiplicity of the singularity is at least — 2'~ô^i- V

ZE ■ ZE <-2, then mB = 0(-2'~{,zb,)- U ze ze < ~3> then
din\mn/mn+x-n2'i-J0Z2r

Proof. Look at the diagram (1.1). Since/? is a Gorenstein singularity and

dim //'(TV/, Bq+E) = 3 (we denote Ç = %^ZB), we know that H°(M, 0)

-» H°(M, Bc) is surjective and dim H°(M, Bc) = 2. The five lemma asserts

that H°(M,'e(-C,))^ H°(M, 0(-Z)) aiid H°(M, 0(-C, - F)) -+

H°(M, 0(- G)) are not the isomorphisms. There exist/ E H°(M, 0(-Q)

and gE H°(M, 0(-Z)) such that f (£ H°(M, B(-C¡ - E)) and gí
H°(M,B(-C,)). We claim that h E H°(M, B(- C,_,)) for any h E

H°(M,B(-Z)) and h E H°(M, B(~ C,)). Since mB CB(-Z), it will

follow that mB C B(-C,_x). Also the multiplicity of vBp will be greater

than or equal to — C2_x by Theorem 2.7 of [30]. There are two cases:

Case (i). Suppose h E H°(M, 0(-C,)). In the proof of Theorem 1.2 we

know that

dim H°(M, 0c + ]) - 1 < dim H°(M, 0C) < dim H°(M, Bq+¡).

In fact, let Rj be the image of H°(M, 0C+|) -h> H°(M, 0C), then

dim H°(M, 0c+i) - 1 < dim F, < dim H°(M, 0C+|).

The five lemma shows that H°(M, 0 ) -^ H°(M, 0C ) is surjective and

dim H°(M, 0C|) = 2. Observe that hj+x E H°(M, B(-Cj)) but hJ+x &

H°(M, B(-Cj'+X)) for 0 < j < /. So by induction, we have H°(M, ©)->

//°(TV/, 0C+|) is surjective and dim H°(M, 0C+|) =j: + 2. In particular,

dim //'(TV/, 0) = dim HX(M, BCi+E) = / + 2. Hence/? is a maximally elliptic

singularity and 1=1. Our claim holds trivially.

Case (ii). Suppose 3h E H°(M, B(- C,)), and h E H°(M, B(-C,_x)),

then / > 3. Since //'(TV/, 0) = C3, co,/to, /ico form a dual basis for Hl(M, 0)

ss H°(M \ A, Q)/H°(M, ß) where * represents compact support and ß de-

notes the sheaf of germs of holomorphic two forms and/ E H°(M, mB). By

case (i) we may assume that/ E H°(M, B(— C,)). Let/ be the least integer

such that / and h are in H°(M, 0(-G)). Then 1 < j < / - 2. Let U be a
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suitably small holomorphically convex neighborhood of \BJ+X\ such that/co,

/ico E H°(U \ \BJ+X\, ß) and one of hu> and /co has no zeros on U and such

that $: £/-» Vx represents \BJ+X\ as exceptional set with Vx a normal

two-dimensional Stein space. Let /?, = $(BJ+X). Then px is a Gorenstein

singularity and dim HX(U, 0) > 2 because/co, /¡co are linearly independent in

H°(U \ \BJ+X\, Q)/H°(U, ß). ZBj+¡, .. ., ZB¡, ZE is the elliptic sequence of

length > 3 relative to 4\ Hence' dim HX(U, 0) = dim HX(U, Bc¡_a+E) by

Theorem 3.7 of [30]. The following exact sequence

Hx(M,BCi)^Hx(M,BCi_Cj + e)^0

shows that dim HX(U, 0) = dim //'(TV/, 0Cj_q+£) < dim //'(TV/, 0C/) = 2.

Therefore dim HX(U, 0 ) = 2. But this is impossible because of Theorem C of

[32].
Let    Ai   Q   \B,\.    We    claim     that    H °(M,  0(-C,_,))-*

//°(M, 0(- C,_x)/B(- Q_, - 4,.)) is surjective. Otherwise H°(M, 0(- C,_x

— Ai))-> H°(M, 0(- C¡_x)) is an isomorphism. A similar argument of the

proof of Theorem 1.1 will show that H°(M, 0(- C,)) -* H°(M, 0(- C,_,)) is

an isomorphism. By applying five lemma in diagram (1.1), we see that the

image of H°(M, 0) in H°(M, Bc) has dimension equal to one. This implies

that dim //'(TV/, 0) = dim //'(TV/, 0C(+£) = dim H°(M, BQ+E) < 2, which

is a contradiction. If ZE ■ ZE < —2, then by the similar argument as the

proof of Theorem D of [32], mB = 0(-Q_,). The same argument as the

proof of Theorem D of [32] also gives that dim m"/m"+x = - n2'=ÔZJ. if

ZE ° ZE < -3.

Corollary 4.3. The assumption is the same as Theorem 3.2. Suppose we

assume further that p is a hypersurface singularity. If ZE ° ZE < —1, then

I < 4. If ZE » ZE < -2, then I < 2. If ZE ° ZE < —3, then I = 1 (i.e.p is a

maximally elliptic singularity), m" = H°(A, B(—nZ)) and dim m"/m"+x =

- nZ ° Z.

Proof. Since dim HX(M, 0) = 3, by Theorem 1.3 of [31], multiplicity of

vBp is less than or equal to 4 for hypersurface singularity. Recall that

-Z2 > - Zlt >•••>- Zg\ > - Z\. Therefore 4 > - C,2_, =
-2'~Í)Z¿. The corollary follows easily.
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