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ABSTRACT. This is the second in a series of papers on standard monomial theory and in-
variant theory of arc spaces. For any algebraically closed field K, we construct a standard
monomial basis for the arc space of the Pfaffian variety over K. As an application, we
prove the arc space analogue of the first and second fundamental theorems of invariant
theory for the symplectic group.

1. INTRODUCTION

Invariant theory. Given an algebraically closed field K, an algebraic group G over K,
and a finite-dimensional G-module W , a fundamental problem in invariant theory is to
describe the ring of invariant polynomial functions K[W ]G. It is natural to also consider
K[V ]G, where V = W⊕p

⊕
W ∗⊕q is the direct sum of p copies of W and q copies of the dual

G-module W ∗. In Weyl’s terminology [18], a first fundamental theorem of invariant theory
(FFT) for the pair (G,W ) is a generating set for K[V ]G, and a second fundamental theorem
(SFT) for (G,W ) is a generating set for the ideal of relations among the generators of
K[V ]G. When char K = 0, if G is one of the classical groups and W is the standard module,
the FFTs and SFTs are due to Weyl [18]. The analogous results in arbitrary characteristic
were proven much later by de Concini and Procesi using standard monomial theory [4].

In this paper, we consider the case where G is the symplectic group. For an even integer
h, let W = K⊕h be equipped with a non-degenerate, skew-symmetric bilinear form given
by w =

∑h/2
i=1 dz2i−1 ∧ dz2i. Then

Sph(K) = {A ∈ SLh(K)| A preserves w}

is the symplectic group over K. For p ≥ 1, let V = W⊕p be the direct sum of p copies of
W . The affine coordinate ring of V is

K[V ] = K[a
(0)
il | 1 ≤ i ≤ p, 1 ≤ l ≤ h].

Theorem 1.1. (FFT and SFT for Sph(K) and W = K⊕h)

(1) The ring of invariants K[V ]Sph(K) is generated by

X(0)
uv =

h/2∑
i=1

(a
(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i), 1 ≤ u, v ≤ p.
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(2) The ideal of relations among the generators in (1) is generated by the Pfaffians

(1.1) P


X

(0)
u1u1 X

(0)
u1u2 · · · X

(0)
u1uh+2

X
(0)
u2u1 X

(0)
u2u2 · · · X

(0)
u2uh+2

...
...

...
...

X
(0)
uh+2u1 X

(0)
uh+2u2 · · · X

(0)
uh+2uh+2

 , 1 ≤ ui < ui+1 ≤ p.

Standard monomials and Pfaffian varieties. Standard monomial theory was initiated
by Seshadri, Musili and Lakshmibai [17, 8, 9, 10], generalizing earlier work of Hodge
[6]. It involves combinatorial bases for the coordinate rings of Schubert varieties inside
quotients of classical groups by parabolic subgroups. In this paper, we only need the case
of Pfaffian varieties. For a positive integer p, let

(1.2) R = Rp = Z[x(0)
uv | 1 ≤ u, v ≤ p]/(x(0)

uv + x(0)
vu , x

(0)
uu )

be the ring of polynomial functions with integer coefficients on the space of p × p skew-
symmetric matrices. Consider the Pfaffian P (B) of the skew-symmetric matrix

(1.3) B =


x
(0)
u1u1 x

(0)
u1u2 · · · x

(0)
u1uh

x
(0)
u2u1 x

(0)
u2u2 · · · x

(0)
u2uh

...
...

...
...

x
(0)
uhu1 x

(0)
uhu2 · · · x

(0)
uhuh

 ,

with 1 ≤ ui < ui+1 ≤ p and h ∈ 2Z≥0. Throughout this paper, we will represent P (B) by
the ordered h-tuple |uh, . . . , u2, u1|. There is a partial ordering on the set of these Pfaffians
given by

|uh, . . . , u2, u1| ≤ |u′
h′ , . . . , u′

2, u
′
1|, if h′ ≤ h, ui ≤ u′

i.

R has a standard monomial basis (cf. [11]) with respect to this partially ordered set; the
ordered products A1A2 · · ·Ak of Pfaffians Ai with Ai ≤ Ai+1, form a basis of R.

Similarly, let R[h] be the ideal of R generated by the Pfaffians of the diagonal h × h-
minors, which are precisely the elements (1.1) with h+ 2 replaced by h. Let

(1.4) Rh = R/R[h+ 2].

Then Rh has a basis consisting of ordered products A1A2 · · ·Ak of the Pfaffians Ai with
|h, . . . , 2, 1| ≤ Ai ≤ Ai+1.

For an arbitrary algebraically closed field K, let SMp = SMp(K) be the affine space
of p × p skew-symmetric matrices with entries in K. The affine coordinate ring K[SMp]
is obtained from R by base change, that is, K[SMp] = R ⊗Z K. Let K[SMp][h] be the
ideal generated by the Pfaffians of the diagonal h× h minors. The Pfaffian variety Pfh =
Pfh(K) is a closed subvariety of SMp with K[SMp][h] as the defining ideal. Then for an
even integer h, the affine coordinate ring K[Pfh] = K[SMp]/K[SMp][h] has a standard
monomial basis: the ordered products of A1A2 · · ·Ak with |h − 2, . . . , 2, 1| ≤ Ai ≤ Ai+1

form a basis of K[Pfh]. For G = Sph(K) and V as in Theorem 1.1, we have V//Spk(K) =
Spec K[V ]Sph(K) ∼= Pfh+2. The proof of Theorem 1.1 in [4] makes use of this standard
monomial basis. The key is to consider an integral form of K[V ], namely, Z[a(0)il ] for 1 ≤
i ≤ p and 1 ≤ l ≤ h, and show that the natural map Rh → Z[a(0)il ] is injective. After
tensoring with K, this yields an injective map K[Pfh+2] → K[V ] whose image is precisely
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K[V ]Sph(K). A uniform treatment of these results for all the classical results using standard
monomial theory can be found in the book [11] of Lakshmibai and Raghavan.

Arc spaces. Given an irreducible scheme X of finite type over K, the arc space J∞(X) is
defined as the inverse limit of the finite jet schemes Jn(X) [5]. By Corollary 1.2 of [2], it is
determined by its functor of points: for every K-algebra A, we have a bijection

Hom(SpecA, J∞(X)) ∼= Hom(SpecA[[t]], X).

If G is an algebraic group over K, J∞(G) is again an algebraic group over K. If V is a
finite-dimensional G-module, there is an induced action of J∞(G) on J∞(V ). The quotient
morphism V → V//G induces a morphism J∞(V ) → J∞(V//G), so we have a morphism

(1.5) J∞(V )//J∞(G) → J∞(V//G),

and the corresponding ring homomorphism

(1.6) K[J∞(V//G)] → K[J∞(V )]J∞(G).

In the case K = C, if G is connected and V//G is smooth, it was shown in [12] that (1.6)
is an isomorphism, and under some additional hypotheses this also holds when V//G is a
complete intersection. In general, (1.6) is neither injective nor surjective.

Standard monomials for arc spaces. Let

(1.7) R = Rp = Z[x(k)
uv | 1 ≤ u, v ≤ p, k ≥ 0]/(x(k)

uv + x(k)
vu , x

(k)
uu ),

with a derivation ∂ characterized by ∂x
(k)
uv = (k+1)x

(k+1)
uv . It can be regarded as the ring of

polynomial functions with integer coefficients on the arc space of p × p skew-symmetric
matrices; in particular, K[J∞(SMp)] ∼= R⊗Z K.

Let R[h] be the ideal of R generated by the Pfaffians of the diagonal h × h minors
in the form of (1.3) and their normalized derivatives 1

n!
∂nP (B). Let Rh = R/R[h + 2].

Let Jr be the set of Pfaffians of the matrices of the form of (1.3) with h ≤ r and their
normalized derivatives 1

n!
∂nP (B). Note that R and Rh are naturally subrings of R and

Rh, respectively. In Section 2, we will define a notion of standard monomial on Jh that
extends the above notion on Rh, and in Section 3 we will prove the following result.

Theorem 1.2. For an even integer h, Rh has a Z-basis given by the standard monomials of Jh.

The proof is based on a technical result (Lemma 2.8) whose proof is quite long and is
deferred to Section 6.

Let J∞(Pfh+2) be the arc space of the Pfaffian variety Pfh+2. Then the affine coordinate
ring K[J∞(Pfh+2)] is Rh ⊗Z K, so we immediately have

Corollary 1.3. K[J∞(Pfh+2)] has a K-basis given by the standard monomials of Jh.

Application in invariant theory. Our main application of Theorem 1.2 is to prove the arc
space analogue of Theorem 1.1. As above, for an even integer h ≥ 2, let Sph(K) be the
symplectic group over K, W = K⊕h its standard representation, and V = W⊕p the sum
of p copies of W . Then

K[J∞(V )] = K[a
(k)
il | 1 ≤ i ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0],

which has an induced action of J∞(Sph(K)). The following theorem is the arc space ana-
logue of Theorem 1.1, and is proved in Section 4.
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Theorem 1.4. Let X(k)
uv = ∂̄k

∑h/2
i=1(a

(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i), for 1 ≤ u, v ≤ p, where ∂̄k = 1

k!
∂.

(1) The ring of invariants K[J∞(V )]J∞(Sph(K)) is generated by X
(k)
uv .

(2) The ideal of relations among the generators in (1) is generated by

(1.8) ∂̄kP


X

(0)
u1u1 X

(0)
u1u2 · · · X

(0)
u1uh+2

X
(0)
u2u1 X

(0)
u2u2 · · · X

(0)
u2uh+2

...
...

...
...

X
(0)
uh+2u1 X

(0)
uh+2u2 · · · X

(0)
uh+2uh+2

 , 1 ≤ ui < ui+1 ≤ p.

(3) K[J∞(V )]J∞(Sph(K)) has a K-basis given by standard monomials of Jh.

Corollary 1.5. For all h ≥ 1 and p ≥ 1, the map K[J∞(V//Sph(K))] → K[J∞(V )]J∞(Sph(K))

given by (1.6), is an isomorphism. In particular,

J∞(V )//J∞(Sph(K)) ∼= J∞(V//Sph(K)).

Corollary 1.5 generalizes Theorem 4.5 of [12], which is the case K = C and p ≤ h + 2.
A similar result was proven in [13] for the general linear group GLk(K). The approach
in this paper is similar to [13] but more involved since we need a result of Bardsley and
Richardson [1] which provides a version of the Luna slice theorem in arbitrary character-
istic.

Theorem 1.4 has significant applications to vertex algebras which are developed in
[14, 15, 3]. First, it provides a complete description of certain cosets of affine vertex al-
gebras inside free field algebras that are related to the classical Howe pairs. This implies
the classical freeness of the simple affine vertex (super)algebras Lk(ospm|2n) for integers
k,m, n ≥ 0 satisfying −m

2
+ n+ k + 1 > 0. Next, for any smooth manifold X in either the

algebraic, complex analytic or smooth settings, the chiral de Rham complex Ωch
X is a sheaf

of vertex algebras on X that was introduced by Malikov, Schechtman and Vaintrob in
[16]. Theorem 1.4 is essential in the description of the vertex algebra of global sections
Γ(X,Ωch

X ) for a d-dimensional compact Kähler manifold X with holonomy group Sp(d
2
).

This algebra is isomorphic to the simple small N = 4 superconformal algebra with central
charge 3d, and is an important building block in the structure of Γ(X,Ωch

X ) for an arbitrary
compact Ricci-flat Kähler manifold X [14].

2. STANDARD MONOMIALS

Fix an integer p ≥ 1 and recall the ring

R = Z[x(k)
uv | 1 ≤ u, v ≤ p, k ≥ 0]/(x(k)

uv + x(k)
vu , x

(k)
uu ),

with derivation ∂ given on generators by ∂x
(k)
uv = (k+1)x

(k+1)
uv . As above, this is an integral

version of the coordinate ring of the arc space of the space SMp of p× p skew-symmetric
matrices, i.e., K[J∞(SMp)] = R⊗Z K, for any field K.

For l ≥ 0, we have the lth normalized derivation ∂̄l = 1
l!
∂l on R. It satisfies ∂̄lx

(k)
ij =

C l
k+lx

(k+l)
ij ∈ R, where for k, n ∈ Z≥0,

Ck
n =

{
n!

k!(n−k)!
, 0 ≤ k ≤ n;

0, otherwise.
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The following statements are easy to verify.

Proposition 2.1. For any a, b ∈ R,

∂̄l(ab) =
l∑

i=0

∂̄ia ∂̄l−ib,

and ∂̄la ∈ R.

Proposition 2.2. For a skew-symmetric matrix B of the form in Equation (1.3) with h = 2l,

(2.1) ∂̄nP (B) =
∑

n1+···+nl=n
ni∈Z≥0

∑
σ

sign(σ)

l!2l
x(n1)
uσ(1)uσ(2)

x(n2)
uσ(3)uσ(4)

· · ·x(nl)
uσ(h−1)uσ(h)

The second summation is over all permutations σ of 1, 2, · · · , h and sign(σ) is the sign of the
permutation.

Generators. Recall that the Pfaffian P (B) of the matrix B in 1.3, is represented by the
ordered h-tuple |uh, . . . , u2, u1| with 1 ≤ ui < ui+1 ≤ p and h ∈ 2Z≥0. Similarly, let

(2.2) J = ∂̄n|uh, . . . , u2, u1|

represent ∂̄nP (B) ∈ R, the nth normalized derivative of P (B). For convenience, we use
the notation ∂̄0|uh, . . . , u2, u1| instead of |uh, . . . , u2, u1| when n = 0, and we shall call such
expressions ∂̄-lists throughout this paper. We call wt(J) = n the weight of J and call
sz(J) = h the size of J . Let J be the set of these ∂̄-lists, and

Jh = {J ∈ J |sz(J) ≤ h}

be the set of elements in J with size less than or equal to h. Let E be the set of ordered
h-tuples of ordered pairs of the form

(2.3) E = |(uh, kh), . . . , (u2, k2), (u1, k1)|

with 1 ≤ ui ≤ p, ui ̸= uj if i ̸= j and ki ∈ Z≥0. Let

||E|| = ∂̄n|uσ(h), . . . , uσ(2), uσ(1)| ∈ J .

Here n =
∑

ki, and σ is the permutation of 1, 2, . . . , h such that uσ(i) < uσ(i+1). Let

wt(E) = wt(||E||), sz(E) = sz(||E||).

Let

Eh = {E ∈ E| sz(E) ≤ h}.

For J ∈ J , let

E(J) = {E ∈ E| ||E|| = J}.

Note that the Pfaffians represented by J form a set of generators of R, and each J ∈ J
can be represented by an element of the set E(J).
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Ordering. For any set S , let M(S) be the set of ordered products of elements of S. If S is
an ordered set, we order the set M(S) lexicographically, that is

S1S2 · · ·Sm ≺ S ′
1S

′
2 · · ·S ′

n if Si = S ′
i, i < i0, with Si0 ≺ S ′

i0
or i0 = m+ 1, n > m.

We order M(Z), the set of ordered products of integers, lexicographically.
There is an ordering on the set J :

∂̄k|uh, . . . , u2, u1| ≺ ∂̄k′ |u′
h′ , . . . , u′

2, u
′
1|

if

• h′ < h ;
• or h′ = h and k < k′;
• or h′ = h, k = k′ and uh · · ·u1 ≺ u′

h · · ·u′
1. Here we order the words of natural

numbers lexicographically.

We order the pairs (u, k) ∈ Z≥0 × Z≥0 by

(u, k) ≤ (u′, k′), if k < k′ or k = k′ and u ≤ u′.

There is a partial ordering on the set E :

|(uh, kh), . . . , (u1, k1)| ≤ |(u′
h′ , k′

h′), . . . , (u′
1, k

′
1)|

if h′ ≤ h and (ui, ki) ≤ (u′
i, k

′
i), for 1 ≤ i ≤ h′.

Finally, there is an ordering on E :

|(uh, kh), . . . , (u1, k1)| ≺ |(u′
h′ , k′

h′), . . . , (u′
1, k

′
1)|

if

• h > h′;
• or h = h′ and

∑
ki <

∑
k′
i;

• or h = h′,
∑

ki =
∑

k′
i and

(uh, kh) · · · (u1, k1) ≺ (u′
h′ , k′

h′) · · · (u′
1, k

′
1)

Here we order the words of Z≥0 × Z≥0 lexicographically.

Lemma 2.3. If E ≤ E ′, then ||E|| ≺ ||E ′||.

Proof. If sz(E ′) < sz(E) or sz(E) = sz(E ′) and wt(E) < wt(E ′), then ||E|| ≺ ||E ′||.
If sz(E) = sz(E ′) and wt(E) = wt(E ′), we must have ki = k′

i . So ui ≤ u′
i, we have

||E|| ≺ ||E ′||. □

Relations. In the previous notation of the ∂̄-list ∂̄k|uh, . . . , u1|, we require ui < ui+1.
To describe their relations, we extend this notation ∂̄k|uh, . . . , u1| to any 1 ≤ ui ≤ p.
∂̄k|uh, . . . , u1| still represents ∂̄kP (B) with B in Equation (1.3) without the requirement
ui < uj . Thus we have two obvious relations:

∂̄k|uh, . . . , u1| = 0

if there is 1 ≤ i < j ≤ h such that ui = uj and

∂̄k|uσ(h), . . . , uσ(2), uσ(1)| = sign(σ)J

for a ∂̄-list J ∈ J of (2.2) and a permutation σ of 1, 2, . . . , h.
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Lemma 2.4. For 0 ≤ k < s, and h′ ≥ s+ 1, we have

∑
σ

1

h!s!
sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1)| ∂̄k|u′

h′ , . . . , u′
s+1, uσ(s), . . . , uσ(1)| ∈ R[h+ 2].

Here the summation is over all permutations σ of 1, 2, . . . , h+ s.

Proof. It is easy to see that

(2.4) ∂̄0|uh, . . . , u1| =
h∑

i=2

(−1)ix
(0)
1,i ∂̄

0|uh, . . . , ui+1, ui−1, . . . , u2|;

(2.5) ∂̄1|uh, . . . , u1| =
∑

1≤i<j≤h

(−1)i+j+1x
(1)
i,j ∂̄

0|uh, . . . , uj+1, uj−1, . . . , ui+1, ui−1, . . . , u1|.

Let l′ = h′/2. For 0 ≤ k < s,

∂̄k|u′
h′ , . . . , u′

s+1, uσ(s), . . . , uσ(1)| =
∑

k1+···+kl′=k

∑
σ′

sign(σ′)

l′!2l′
x
(k1)
σ′(uσ(1))σ

′(uσ(2))
· · ·x(kl′ )

σ′(u′
h′−1

)σ′(u′
h′ )

(2.6) =
h′∑

j=s+1

s∑
i=1

x
(0)

uσ(i)u
′
j
fij,σ +

∑
1≤i<j≤s

x(0)
uσ(i)uσ(j)

gij,σ +
∑

1≤i<j≤s

x(1)
uσ(i)uσ(j)

hij,σ.

Here fij,σ, gij,σ, hij,σ ∈ R, and if σ1 is a permutation of 1, 2, . . . , s and σ2 is a permutation of
s+ 1, . . . , h+ s, then

x(0)
uσ(i)u

fiu,σ = sign(σ1)x
(0)
uσ(i)u

fσ−1
1 (i)u,σσ1σ2

,

x(0)
uσ(i)uσ(j)

gij,σ = sign(σ1)x
(0)
uσ(i)uσ(j)

gσ−1
1 (i)σ−1

1 (j),σσ1σ2
,

x(1)
uσ(i)uσ(j)

hij,σ = sign(σ1)x
(1)
uσ(i)uσ(j)

hσ−1
1 (i)σ−1

1 (j),σσ1σ2
.

We can also require that if σ3 is a permutation of i, s+ 1, . . . , h+ s, fiu,σ = fiu,σσ3 and if σ4

is a permutation of i, j, s + 1, . . . , h + s, gij,σ = gij,σσ4 , hij,σ = hij,σσ4 . So by Equation (2.4),
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(2.5) and (2.6),∑
σ

1

h!s!
sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1)| ∂̄k|u′

h′ , . . . , u′
s+1, uσ(s), . . . , uσ(1)|

=
∑
σ

sign(σ)

h!s!

h′∑
j=s+1

s∑
i=1

−1

h+ 1
∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(i), u

′
j| fij,σ

+
∑
σ

sign(σ)

h!s!

∑
1≤i<j≤s

1

(h+ 1)
∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(j), uσ(i)| gij,σ

+
∑
σ

sign(σ)

h!s!

∑
1≤i<j≤s

1

(h+ 1)(h+ 2)
∂̄1|uσ(h+s), . . . , uσ(s+1), uσ(j), uσ(i)|hij,σ

=
h′∑

j=s+1

∑
σ(h+s)>···>σ(s)
σ(s−1)>···>σ(1)

− sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), u
′
j| fsj,σ

+
∑

σ(h+s)>···>σ(s)
σ(s−2)>···>σ(1)

∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), uσ(s−1)| gij,σ

+
∑

σ(h+s)>···>σ(s−1)
σ(s−2)>···>σ(1)

− sign(σ)∂̄0|uσ(h+s), . . . , uσ(s+1), uσ(s), uσ(s−1)|hij,σ

∈ R[h+ 2]

□

Lemma 2.5. For i, j, h, h′, k0,m ∈ Z≥0 with h ≥ h′, i ≤ h, j ≤ h′ and k0 ≤ m, let l0 =
i + j − h − 1. Given any integers ak for k0 ≤ k ≤ k0 + l0, there are integers ak in the range
0 ≤ k < k0, and k0 + l0 < k ≤ m, such that∑m

k=0 ak
∑

σ
1
i!j!

sign(σ)(2.7)

∂̄m−k|uh, . . . , ui+1, σ(ui), . . . , σ(u1)| ∂̄k|u′
h′ , . . . , u′

j+1, σ(u
′
j), . . . , σ(u

′
1)| ∈ R[h+ 2].

Here the second summation is over all permutations σ of ui, . . . , u1, u
′
j, . . . , u

′
1 and sign(σ) is the

sign of the permutation.

For simplicity, we write Equation (2.7) in the following way,

(2.8)
∑

ϵak∂̄
m−k|uh, . . . , ui+1, ui, . . . , u1|∂̄k|u′

h′ , . . . , u′
j+1, u

′
j, . . . , u

′
1| ∈ R[h+ 2].

Remark 2.6. Since the second summation in Equation (2.7) is over all permutations, each mono-
mial in the equation will appear i!j! times, and the coefficient of each monomial will be ±ak.

Proof of Lemma 2.5. Let Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1)

=
∑
σ

sign(σ)

i!j!
∂̄0|uh, . . . , ui+1, σ(ui), . . . , σ(u1)| ∂̄l|u′

h′ , . . . , u′
j+1, σ(u

′
j), . . . , σ(u

′
1)|.

We have Fl(uh, . . . , ui;u
′
h′ , . . . , u′

j+1)

= Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1)±Fl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1, ui).
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If i = h and 0 ≤ l ≤ l0, by Lemma (2.4), Fl( ;u
′
h′ , . . . , u′

j+1) ∈ R[h + 2]. By induction on
h− i, we can see that Fl(uh, . . . , ui+1;u

′
h′ , . . . , u′

j+1) ∈ R[h+ 2]. Thus
m∑
k=0

C l
k

∑
σ

sign(σ)

i!j!
∂̄m−k|uh, . . . , ui+1, σ(ui), . . . , σ(u1)| ∂̄k|u′

h′ , . . . , u′
j+1, σ(u

′
j), . . . , σ(u

′
1)

= ∂̄m−lFl(uh, . . . , ui+1;u
′
h′ , . . . , u′

j+1) ∈ R[h+ 2].

Now the (l0 +1)× (l0 +1) integer matrix with entries cji = Ci
k0+j , 0 ≤ i, j ≤ l0 is invertible

since the determinant of this matrix is ±1. Let bij ∈ Z be the entries of the inverse matrix.
Let ak =

∑l0
l=0

∑l0
j=0 C

l
kbl,jak0+j . So

left hand side of Equation (2.7) =
l0∑
l=0

l0∑
j=0

bl,jak0+j ∂̄
m−lFl(uh, . . . , ui+1;u

′
h′ , . . . , u′

j+1) ∈ R[h+2].

□

Standard monomials. Now we give the definition of standard monomials of J .

Definition 2.7. An ordered product E1E2 · · ·Em of elements of E is said to be standard if

(1) Ea ≤ Ea+1, 1 ≤ a < m,
(2) E1 is the largest in E(||E1||) under the order ≺,
(3) Ea+1 is the largest in E(||Ea+1||) such that Ea ≤ Ea+1.

An ordered product J1J2 · · · Jm of elements of J is said to be standard if there is a standard ordered
product E1E2 · · ·Em such that Ei ∈ E(Ji).

Let SM(J ) ⊂ M(J ) be the set of standard monomials of J . Let SM(E) ⊂ M(E) be
the set of standard monomials of E . Let SM(Jh) = M(Jh)∩SM(J ) be the set of standard
monomials of Jh. Let SM(Eh) = M(Eh)∩SM(E) be the set of standard monomials of Eh.

By Definition 2.7, if J1J2 · · · Jm is standard, the standard monomial E1 · · ·Em ∈ SM(E)
corresponding to J1 · · · Jm is unique and E1 has the form

|(uh, wt(E1)), (uh−1, 0), . . . , (u1, 0)| ∈ E

with ui < ui+1. Therefore the map

πh : SM(Eh) → SM(Jh), E1E2 · · ·Em 7→ ||E1||||E2|| · · · ||Em||

is a bijection.
We order M(J ), the set of ordered products of elements of J , lexicographically. The

following lemma will be proved later in Section 6.

Lemma 2.8. If J = J1 · · · Jb ∈ M(J ) is not standard, J can be written as a linear combination
of elements of M(J ) preceding J1 · · · Jb−1, with integer coefficients.

Recall that R[h] denotes the ideal generated by J ∈ J with sz(J) = h, and Rh = R/
R[h+ 2]. If h ≥ p, then Jh = J and Rh = R. By the above lemma, we immediately have

Lemma 2.9. Any element of Rh can be written as a linear combination of standard monomials of
Jh with integer coefficients.
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Proof. We only need to show that any element of R can be written as a linear combination
of standard monomials of J with integer coefficients. If the lemma is not true, there
must be a smallest element J ∈ M(J ), which cannot be written as a linear combination
of elements of SM(J ) with integer coefficients. So J is not standard. By Lemma 2.8,
J =

∑
α±Jα with Jα ∈ M(J ) and Jα ≺ J . Since Jα can be written as a linear combination

of elements of SM(J ) with integer coefficients, J can also be written as such a linear
combination, which is a contradiction. □

3. A CANONICAL BASIS

A ring homomorphism. Let

Sh = {a(k)il | 1 ≤ i ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0},

and let

(3.1) B = Z[Sh],

the polynomial ring generated by Sh. Note that for a field K, if W = K⊕h and V = W⊕p,
the affine coordinate ring K[J∞(V )] is obtained from B by base change, i.e., K[J∞(V )] ∼=
B⊗Z K.

Let ∂ be the derivation on B given by ∂a
(k)
ij = (k + 1)a

(k+1)
ij . We have a ring homomor-

phism

Q̃h : R → B, x(k)
uv 7→ ∂̄k

h/2∑
i=1

(a
(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i).

For any J ∈ J with sz(J) > h, we have Q̃h(J) = 0, so Q̃h induces a ring homomorphism

(3.2) Qh : Rh → B.

Tableaux. Let S̃h=Sh ∪ {∗}. We define an ordering on the set S̃h:
for a(k)ij , a

(k′)
i′j′ ∈ Sh, a(k)ij < ∗ and a

(k)
ij ≤ a

(k′)
i′j′ if kij ≺ k′i′j′.

We use tableaux to represent the monomials of B. Let T be the set of the following
tableaux:

(3.3)

∣∣∣∣∣∣
y1,h, · · · , y1,2, y1,1

...
ym,h, · · · , ym,2, ym,1

∣∣∣∣∣∣ .
Here ys,l are some a

(k)
il or ∗, every row of the tableau has elements in Sh and ys,j ≤ ys+1,j.

We use the tableau (3.3) to represent a monomial in B, which is the product of a(k)ij

′
s in the

tableau. It is easy to see that the representation is a one-to-one correspondence between
T and the set of monomials of B. We associate to the tableau (3.3) the word:

y1,h · · · y1,1y2,h · · · y2,1 · · · ym,h · · · ym,1

and order these words lexicographically. For a polynomial f ∈ B, let Ld(f) be its leading
monomial in f under the order we defined on T .
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For Ei = |(ui
h1
, ki

h1
), . . . , (ui

2, k
i
2), (u

i
1, k

i
1)| ∈ E , 1 ≤ i ≤ m, we use a tableau to represent

E1 · · ·Em ∈ SM(E),

(3.4)

∣∣∣∣∣∣∣∣
(u1

h1
, k1

h1
), · · · , (u1

2, k
1
2), (u

1
1, k

1
1)

(u2
h2
, k2

h2
), · · · , (u2

2, k
2
2), (u

2
1, k

2
1)

...
(um

hm
, km

hm
), · · · , (um

2 , k
m
2 ), (u

m
1 , k

m
1 )

∣∣∣∣∣∣∣∣ .
Let T : SM(Jh) → T with

T (E1 · · ·Em) =

∣∣∣∣∣∣∣∣∣∣∣∣

∗, · · · , ∗, a
(k1h1

)

u1
h1

h1
, · · · , a(k

1
1)

u1
11

∗, · · · , ∗, a
(k2h2

)

u2
h2

h2
, · · · , a(k

2
1)

u2
11

...
∗, · · · , ∗, a(k

m
hm

)

um
hm

hm
, · · · , a(k

m
1 )

um
1 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Obviously, T is an injective map and T (E) ≺ T (E ′) if E ≺ E ′.

Lemma 3.1. Let J1 · · · Jm ∈ SM(Jh) and E1 · · ·Em ∈ SM(Eh) be its associated standard
monomial. Assume the tableau representing E1 · · ·Em is (3.4). Then the leading monomial of
Qh(J1 · · · Jm) is represented by the tableau T (E1E2 · · ·Em). Thus

Ld ◦Qh = T ◦ π−1
h : SM(Jh) → T

is injective. The coefficient of the leading monomial of Qh(J1 · · · Jm) is ±1.

Proof. Let Wm be the monomial corresponding to the tableau T (E1 · · ·Em). Let

Mm = a
(kmhm )

um
hm

hm
· · · a(k

m
1 )

um
1 1

be the monomial corresponding to the tableau T (Em). Then Wm = Wm−1Mm. Let lm = hm

2
,

by a direct calculation,

Qh(Jm) =
∑

±a
(k1)
um
σ(1)

2s1−1a
(k2)
um
σ(2)

2s1
a
(k3)
um
σ(3)

2s2−1a
(k4)
um
σ(4)

2s2
· · · a(khm−1)

um
σ(hm−1)

2slm−1a
(khm )
um
σ(hm)

2slm
.

The summation is over all ki ≥ 0 with
∑

ki = wt(Em), all si with 1 ≤ s1 < s2 < · · · <
slm ≤ h/2 and all permutations σ of 1, 2, . . . , hm.

We prove the lemma by induction on m. If m = 1, the lemma is obviously true. Assume
it is true for J1 · · · Jm−1. Then Ld(Qh(J1 · · · Jm−1)) = Wm−1, the monomial corresponding
to T (E1 · · ·Em−1), and the coefficient of Wm−1 in Qh(J1 · · · Jm−1) is ±1. Mm is one of the
monomials in Qh(Jm) with coefficient ±1. All of the monomials in Qh(J1 · · · Jm−1) except
Wn−1 are less than Wn−1, so any monomial in Qh(J1 · · · Jm−1) except Wn−1 times any mono-
mial in Qh(Jm) is less than Wm−1. Since Wm−1 ≺ Wm, the coefficient of Wm in Qh(J1 · · · Jm)
is not zero. Now

Wm−1 ≺ Wm ≺ Ld(Qh(J1 · · · Jm)).
The leading monomial Ld(Qh(J1 · · · Jm)) must have the form

W = Wm−1a
(k1)
um
σ(1)

2s1−1a
(k2)
um
σ(2)

2s1
a
(k3)
um
σ(3)

2s2−1a
(k4)
um
σ(4)

2s2
· · · a(khm−1)

um
σ(hm−1)

2slm−1a
(khm )
um
σ(hm)

2slm
.

If some si is greater than hm−1/2, then W ≺ Wn−1. So si ≤ hm−1/2. We must have

a
(ki)
um
i si

≥ a
(km−1

si
)

um−1
si

si
; otherwise, W ≺ Wm−1. If there is some hm−1/2 ≥ si > lm, then W ≺ Wm.
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So we can assume si = i. Such monomials in Qh(Jm) are in one-to-one correspondence
with E ′

m ∈ E(Jm) such that Em−1 ≤ E ′
m. Em is the largest in E(Jm) with Em−1 ≤ Em

since E is standard, so Wm is the leading term of Qh(J1 · · · Jm). The coefficient of Wm in
Qh(J1 · · · Jm) is ±1 since the coefficients of Wm−1 in Qh(J1 · · · Jm−1) and Mm in Qh(Jm) are
±1. □

Proof of Theorem 1.2. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly independent, so SM(Jh)
are linearly independent. By Lemma 2.9, SM(Jh) generates Rh. So SM(Jh) is a Z-basis
of Rh. □

Theorem 3.2. Qh : Rh → B is injective. So we may identify Rh with its image Im(Qh), which
is the subring of B generated by ∂̄k

∑h/2
i (a

(0)
u2i−1a

(0)
v2i − a

(0)
v2i−1a

(0)
u2i). In particular, Qh(SM(Jh)) is

a Z-basis of Im(Qh).

Proof. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly independent. Since SM(Jh) is a Z-
basis of Rh, Qh : Rh → B is injective. □

Since Qh is injective and B is an integral domain,

Corollary 3.3. Rh is an integral domain.

4. APPLICATION

In this section, we give the main application of our standard monomial basis, which is
the arc space analogue of Theorem 1.1.

Arc spaces. Suppose that X is a scheme of finite type over K. Its arc space (cf. [5]) J∞(X)
is determined by its functor of points. For every K-algebra A, we have a bijection

Hom(SpecA, J∞(X)) ∼= Hom(SpecA[[t]], X).

If i : X → Y is a morphism of schemes, we get a morphism of schemes i∞ : J∞(X) →
J∞(Y ). If i is a closed immersion, then i∞ is a closed immersion. If i : X → Y is an étale
morphism, then we have a Cartesian diagram

J∞(X) → J∞(Y )
↓ ↓
X → Y

If X = SpecK[x1, . . . , xn], then J∞(Y ) = SpecK[x
(k)
i |1 ≤ i ≤ n, k ∈ Z≥0]. The identifi-

cation is made as follows: for a K-algebra A, a morphism ϕ : K[x1, . . . , xn] → A[[t]] de-
termined by ϕ(xi) =

∑∞
k=0 a

(k)
i tk corresponds to a morphism K[x

(k)
i ] → A determined by

x
(k)
i → a

(k)
i . Note that K[x1, . . . , xn] can be identified with the subalgebra K[x

(0)
1 , . . . , x

(0)
n ] ⊂

K[x
(k)
i ], and from now on we use x

(0)
i instead of xi.

The polynomial ring K[x
(k)
i ] has a derivation ∂ defined on generators by

(4.1) ∂x
(k)
i = (k + 1)x

(k+1)
i .

It is more convenient to work with the normalized k-derivation ∂̄k = 1
k!
∂k, but this is a

priori not well-defined on K[x
(k)
i ] if char K is positive. But ∂ is well defined on Z[x(k)

i ],
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and ∂̄k maps Z[x(k)
i ] to itself, so for any K, there is an induced K-linear map

(4.2) ∂̄k : K[x
(k)
i ] → K[x

(k)
i ],

obtained by tensoring with K.

If X is the affine scheme Spec K[x
(0)
1 , . . . , x

(0)
n ]/(f1, . . . , fr), then J∞(X) is the affine

scheme
Spec K[x

(k)
i | i = 1, . . . , k ∈ Z≥0]/(∂̄

lfj| j = 1, . . . , r, l ≥ 0).

Indeed, for every f ∈ K[x
(0)
1 , . . . , x

(0)
n ], we have

ϕ(f) =
∞∑
k=0

(∂̄kf)(a
(0)
1 , . . . , a(k)n ) tk.

It follows that ϕ induces a morphism K[x
(0)
1 , . . . , x

(0)
n ]/(f1, . . . , fr) → A[[t]] if and only if

(∂̄kfi)(a
(0)
1 , . . . , a(k)n ) = 0, for all i = 1, . . . , r, k ≥ 0.

If Y is the affine scheme Spec K[y
(0)
1 , . . . , y

(0)
m ]/(g1, . . . , gs), a morphism P : X → Y gives a

ring homomorphism P ∗ : K[Y ] → K[X]. Then the induced homomorphism of arc spaces
P∞ : J∞(X) → J∞(Y ) is given by

P ∗
∞(y

(k)
i ) = ∂̄kP ∗(y

(0)
i ).

In particular, P ∗
∞ commutes with ∂̄k for all k ≥ 0.

Arc space of the Pfaffian variety. Recall that the space SMp of skew-symmetric p × p
matrices over K has affine coordinate ring

K[SMp] = K[x
(0)
ij | 1 ≤ i, j ≤ p]/(x

(0)
ij + x

(0)
ji , x

(0)
ii ) = R⊗Z K,

where R is given by (1.2). The Pfaffian variety Pfh is the subvariety of SMp determined
by the ideal K[SMp][h] generated by the Pfaffians of all diagonal h-minors, so

K[Pfh] = K[SMp]/K[SMp][h] = Rh−2 ⊗Z K,

where Rh−2 is given by (1.4). Similarly, recall that

K[J∞(SMp)] = K[x
(k)
ij | 1 ≤ i, j ≤ p]/(x

(k)
ij + x

(k)
ji , x

(0)
ii ) = R⊗Z K.

Then
K[J∞(Pfh)] = K[J∞(SMp)]/K[J∞(SMp][h− 2] ∼= Rh−2 ⊗Z K.

Proof of Corollary 1.3. By Theorem 1.2, SM(Jh−2) is a Z-basis of Rh−2. So it is a K-basis of
K[J∞(Pfh)]. □

Recall the map Qh : Rh → B given by (3.2), which extends to a map

(4.3) QK
h : K[J∞(Pfh+2)] → K[J∞(V )],

where K[J∞(Pfh+2)] and K[J∞(V )] are identified with Rh⊗ZK and B⊗ZK, respectively,
and QK

h = Qh ⊗ Id.

Theorem 4.1. QK
h is injective, so we may identify K[J∞(Pfh+2)] with the subring Im(Qk

h) of
K[J∞(V )]. In particular, K[J∞(Pfh+2)] is integral.
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Proof. By Lemma 3.1, Ld(Qh(SM(Jh))) are linearly independent. By Corollary 1.3, SM(Jh)
is a K-basis of Rh, so QK

h is injective. Since K[J∞(V )] is integral, so as K[J∞(Pfh+2)]. □

In general, if char K = 0, the arc space of an integral scheme is irreducible [7] but it
may not be reduced. Pfh(K) is an example whose arc space is integral.

Principle G-bundles. Let G be an algebraic group over K. If G acts morphically on an
algebraic variety X , then we say that X is a G-variety. An affine G-variety X is a principal
G-bundle in the the étale topology if, for every x ∈ X//G, there is an étale neighborhood
V → X of x such that V ×X/G X ∼= V × G as G-varieties. The following result is from [1]
by P. Bardsley and R. W. Richardson,

Proposition 4.2. Let X be an affine G-variety. Then X is a principal G-bundle in the étale
topology if and only if for every x in X , the orbit G · x is separable and the stabilizer Gx is trivial.

The group structure G×G → G induces the group structure on its arc space

J∞(G)× J∞(G) → J∞(G).

So J∞(G) is an algebraic group. For a G-variety X , the action G × X → X induces the
action of J∞(G) on J∞(X),

J∞(G)× J∞(X) → J∞(X).

The quotient map X → X//G induces morphisms J∞(X) → J∞(X//G) and

πX : J∞(X)//J∞(G) → J∞(X//G).

Proposition 4.3. If X is a principal G-bundle in the étale topology and X//G is smooth, then πX

is an isomorphism.

Proof. For any étale morphism V → X//G with V ×X//GX ∼= V ×G as G-varieties, we have
Cartesian diagrams

J∞(V ) → J∞(X//G)
↓ ↓
V → X//G

and

J∞(V )× J∞(G) → J∞(X)
↓ ↓

V ×G → X
↓ ↓
V → X//G

.

So J∞(V ) → J∞(X//G) is an étale morphism and

J∞(V )×J∞(X//G) J∞(X)//J∞(G) ∼= (J∞(V )×J∞(X//G) J∞(X))//J∞(G)
∼= (V ×X//G J∞(X))//J∞(G)
∼= J∞(V )× J∞(G)//J∞(G)
∼= J∞(V ).

If πX is not an isomorphism, there is an étale morphism V → X//G such that V ×X//G

X ∼= V × G as G-varieties and πV : J∞(V ) ×J∞(X//G) J∞(X)//J∞(G) → J∞(V ) is not an
isomorphism. But V ×X//G J∞(X//G) ∼= J∞(V ), which is a contradiction. □
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Invariants for the arc space of the symplectic group action. Let G = Sph(K) be the
symplectic group over K, W = K⊕h its standard representation, and V = W⊕p. Recall
that V has affine coordinate ring

K[V ] = K[a
(0)
il | 0 ≤ i, j ≤ p, 1 ≤ l ≤ h].

The action of G on V induces an action of J∞(G) on the affine coordinate ring

K[J∞(V )] = K[a
(k)
il | 0 ≤ i, j ≤ p, 1 ≤ l ≤ h, k ∈ Z≥0],

which is identified with B⊗Z K, where B is given by (3.1).
If p ≥ h, let ∆ = QK

h (|h, . . . , 1|), and let K[J∞(V )]∆ and Im(QK
h )∆ be the localization of

K[J∞(V )] and Im(QK
h ) at ∆.

Lemma 4.4. If p ≥ h,
K[J∞(V )]

J∞(Sph(K))
∆ = Im(QK

h )∆.

Proof. Let K[V ]∆ be the localization of K[V ] at ∆ and V∆ = SpecK[V ]∆. By Theorem 1.1,
the ring of invariants K[V ]Sph is generated by QK

h (x
(0)
uv ), so the affine coordinate ring of

J∞(V∆//G) is isomorphic to Im(QK
h )∆. To prove the lemma, we only need to show that

πV∆
: J∞(V∆)//J∞(G) ∼= J∞(V∆//G). By Proposition 4.2, V∆ is a principal bundle in the

étale topology, and by Proposition 4.3, πV∆
is an isomorphism. □

Theorem 4.5. K[J∞(V )]J∞(Sph(K)) = Im(QK
h ).

Proof. If p ≥ h, we regard K[J∞(V )] and Im(QK
h )∆ as subrings of K[J∞(V )]∆. By Lemma

4.4, we have
K[J∞(V )]

J∞(Sph(K))
∆ = K[J∞(V )] ∩ Im(QK

h )∆.

Now for any f ∈ K[J∞(V )] ∩ Im(QK
h )∆, f = g

∆n , with ∆nf = g ∈ Im(QK
h ). The leading

monomial of g is
Ld(g) = (a

(0)
11 · · · a(0)hh )

nLd(f),

with coefficient C0 ̸= 0. Since g ∈ Im(QK
h ), there is a standard monomial J ∈ SM(Jh),

with Ld(Qh(J)) = Ld(g). Since J has the factor |h, . . . , 1|n, Qh(J) has the factor ∆n. Thus
f −C0

QK
h (J)

∆n ∈ K[J∞(V )]∩ Im(QK
h )∆ with a lower leading monomial and QK

h (J)

∆n ∈ Im(QK
h ).

By induction on the leading monomial of f , f ∈ Im(QK
h ), so K[J∞(V )] ∩ Im(QK

h )∆ =
Im(QK

h ), and K[J∞(V )]J∞(Sph(K)) = Im(QK
h ).

More generally, let V ′ = W⊕p+h where W = K⊕h as before. Its arc space has affine
coordinate ring

K[J∞(V ′)] = K[a
(k)
il | 0 ≤ i, j ≤ p+ h, 1 ≤ l ≤ h, k ∈ Z≥0],

which contains K[J∞(V )] as a subalgebra, and has an action of J∞(G). By the above
argument, K[J∞(V ′)]J∞(G) is generated by X

(k)
uv = ∂̄k

∑h/2
i=1(a

(0)
u2i−1a

(0)
v2i−a

(0)
v2i−1a

(0)
u2i). Let I be

the ideal of K[J∞(V ′)] generated by a
(k)
il with i > p. Then

K[J∞(V ′)] = K[J∞(V )]⊕ I.

Note that K[J∞(V )] and I are J∞(G)-invariant subspaces of K[J∞(V ′)], and

K[J∞(V ′)]J∞(G) = K[J∞(V )]J∞(G) ⊕ IJ∞(G).
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If i > p or j > p, X(k)
ij ∈ IJ∞(G), so

K[J∞(V )]J∞(G) ∼= K[J∞(V ′)]J∞(G)/IJ∞(G)

is generated by X
(k)
ij , 1 ≤ i, j ≤ p. Therefore K[J∞(V )]J∞(G) = Im(QK

h ), as claimed. □

Proof of Theorem 1.4. By Theorem 4.5 and Theorem 4.1, K[J∞(V )J∞(Sph(K)) = Im(QK
h )

∼=
K[J∞(Pfh+2)]. □

Proof of Corollary 1.5. This is immediate from Theorem 1.4 because V//Sph(K) is isomor-
phic to the Pfaffian variety Pfh+2. □

5. SOME PROPERTIES OF STANDARD MONOMIALS

By the definition of standard monomials, if E1E2 · · ·En ∈ SM(E), then Ei+1 is the
largest element in ||E(Ei+1)|| such that Ei ≤ Ei+1. In this section, we study the properties
of ||E(Ei+1)|| and Ei+1 that need to be satisfied to make E1E2 · · ·En a standard monomial.

Let
E = |(uh, kh), . . . , (u1, k1)| ∈ E ,

J ′ = ∂̄n′|u′
h′ , . . . , u′

1| ∈ J .

L(E, J ′). For h′ ≤ h, let σ be the permutation of {1, 2, . . . , h′} such that uσL(i) < uσL(i+1).
Let L(E, J ′) be the smallest non-negative integer i0 such that u′

i ≥ uσL(i−i0), i0 < i ≤ h′.
Let

E(h′) = |(uh′ , kh′), . . . , (u1, k1)|.
Then L(E, J ′) = L(E(h′), J ′).

The following lemma is obvious.

Lemma 5.1. For J ′′ = ∂̄k|u′′
h′ , . . . , u′′

1| ∈ J , if there are at least s elements in {u′′
h′ , . . . , u′′

1} from
the set {u′

h′ , . . . , u′
1}, then L(E, J ′′) ≥ L(E, J ′)− h′ + s;

A criterion for J ′ to be greater than E. We say J ′ is greater than E if there is an element
E ′ ∈ E(J ′) with E ≤ E ′. Then J ′ is greater than E if and only if J ′ is greater than E(h′).
The following lemma is a criterion for J ′ to be greater than E.

Lemma 5.2. J ′ is greater than E if and only if wt(E(h′))− wt(J ′) ≥ L(E, J ′).

Proof. Let i0 = L(E, J ′) and σ be the permutation of {1, 2, . . . , h′} such that uσL(i) < uσL(i+1)

.
If wt(E(h′))− wt(J ′) ≥ L(E, J ′), let

ũ′
σ(i) =

{
u′
i+i0

, σ(i) + i0 ≤ h′

u′
i+i0−hb

, i+ i0 > h′ , k′
σ(i) =

{
kσ(i), i+ i0 ≤ h′, i ̸= h′

kσ(i) + 1, i+ i0 > h′, i ̸= h′ ,

k′
σ(h′) = wt(J ′)−

h′−1∑
i=1

k′
i.

Then
k′
σ(h′) = wt(J ′)− wt(E(h′))− i0 + kσ(h′) + 1− δ0i0 ≥ kσ(h′) + 1− δ0i0 .

(ũ′
σ(i), k

′
σ(i)) ≥ (uσ(i), kσ(i)).
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So
Ẽ ′ = |(ũ′

h′ , k′
h′), . . . , (ũ′

2, k
′
2), (ũ

′
1, k

′
1)|

is an element in E(J ′) with Ẽ ′ ≥ E.

On the other hand, suppose Ẽ ′ ∈ E(J ′) with Ẽ ′ ≥ E. Assume

Ẽ ′ = |(ũ′
h′ , k′

h′), . . . , (ũ′
2, k

′
2), (ũ

′
1, k

′
1)|.

We have (ũ′
i, k

′
i) ≥ (ui, ki) i.e., k′

i > ki or k′
i = ki, ũ

′
i ≥ ui. So

h′∑
i=1

(k′
i − ki) + ♯{ũ′

i ≥ ui, i|1 ≤ i ≤ h′} ≥ h′,

Let i′0 = h′ − ♯{ũ′
i ≥ ui, i|1 ≤ i ≤ h′}. Then

i′0 ≤
h′∑
i=1

(k′
i − ki) = wt(J ′)− wt(E(h′)).

Here ũ′
1, . . . , ũ

′
h′ is a permutation of u′

1, . . . , u
′
h′ . By the definition of i′0, it is easy to see that

u′
i ≥ uσ(i−i′0)

, i′0 < i ≤ h′. So i′0 ≥ L(E, J ′). Thus

wt(E(h′))− wt(J ′) ≥ i′0 ≥ L(E, J ′).

□

Corollary 5.3. J ′ is greater than E if and only if ||E(h′)||J ′ is standard.

Proof. By Lemma 5.2, J ′ is greater than E if and only if wt(E(h′))− wt(J ′) ≥ L(E, J ′) and
||E(h′)||J ′ is standard if and only if wt(E(h′))− wt(J ′) ≥ L(E(h′), J ′) = L(E, J ′). □

The property “largest”. Let

Ws(E, J ′) = {J = ∂̄k|u′
is . . . u

′
i1
| | 1 ≤ il ≤ h′, J is greater than E}.

Lemma 5.4. If E ′ is the largest element in E(J ′) such that E ≤ E ′, then for s < h′, ||E ′(s)|| is
the smallest element in Ws(E, J ′).

Proof. Assume
E ′ = |(u′

h′ , kh′), . . . , (u′
2, k2), (u

′
1, k1)|.

For s < h′, let Js be the smallest element in Ws(E, J ′). Let

Es = |(u′
is , k̃s), . . . , (u

′
i2
, k̃2), (u

′
i1
, k̃1)|

be the largest element in E(Js) such that E(s) ≤ Es.

Assume l is the largest number such that (u′
j, k

′
j) = (u′

ij
, k̃j) for j < l ≤ s + 1. If l ≤ s,

then il ≥ l and (u′
il
, k̃l) ̸= (u′

l, k
′
l). If il = l, by the maximality of E ′ and the minimality of

Js, we must have (u′
il
, k̃l) = (u′

l, k
′
l), a contradiction. So il > l.

If (u′
il
, k̃l) < (u′

l, k
′
l), then (u′

l, k
′
l + k′

il
− k̃l) > (u′

il
, k′

il
). Let E ′′ be the element in E(J ′)

obtained by replacing (u′
l, k

′
l) and (u′

il
, k′

il
) in E ′ by (u′

il
, k̃l) and (u′

l, k
′
l+k′

il
−k̃l), respectively.

We have E ′ ≺ E ′′ and E(h′) ≤ E ′′. But E ′ ̸= E ′′ is the largest element in E(||E ′L||) such
that E ≤ E ′, which is a contradiction.

Assume (u′
il
, k̃l) > (u′

l, k
′
l). If l /∈ {i1, . . . , is}, replacing (u′

il
, k̃l) in Es by (u′

l, k
′
l), we get E ′

s

with E(s) ≤ E ′
s and ||E ′

s|| ≺ Js. This is impossible since Js ̸= ||E ′
s|| is the smallest element
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in Ws(E,E ′). If l = ij ∈ {i1, . . . , is}, (u′
il
, k̃l + k̃j − k′

l) > (u′
ij
, k̃j). Let E ′

s be the element
in E(Js) obtained by replacing (u′

il
, k̃l) and (u′

ij
, k̃j) in Es by (u′

l, k
′
l) and (u′

il
, k̃l + k̃j − k′

l),
respectively. We have Es ≺ E ′

s and E ≤ E ′
s. But E ′

s ̸= Es is the largest element in E(Js)
such that E ≤ E ′

s, a contradiction. Therefore Es = E ′(s), and ||E ′(s)|| is the smallest
element in Ws(E, J ′). □

Corollary 5.5. If E ′ is the largest element in E(||E ′||) such that E ≤ E ′, then for s < h′,

L(E, ||E ′(s)||) = wt(E ′(s))− wt(E(s)).

Proof. Since E ≤ E ′, E ≤ E ′(s). By Lemma 5.4, ||E ′(s)|| is the smallest element in
Ws(E, J ′). By Lemma 5.2, L(E, ||E ′(s)||) = wt(E ′(s))− wt(E(s)). □

Corollary 5.6. If E ′ is the largest element in E(||E ′||) such that E ≤ E ′, then for s < h′ and any
J ∈ Ws(E,E ′),

L(E, ||E ′(s)||) ≤ L(E, J).

Proof. Assume J = ∂̄k|us, . . . , u1| and ||E ′(s)|| = ∂̄l|u′
s, . . . , u

′
1|. If m = L(E, J)−L(E, ||E ′(s)||) <

0, let J ′′ = ∂̄l+m|us, . . . , u1|. By Lemma 5.2, J ′′ ∈ Ws(E, J ′). By Lemma 5.4, ||E ′(s)|| is the
smallest element in Ws(E, ||E ′||). But wt(||E ′(s)||) > wt(J ′′), a contradiction. □

Lemma 5.7. Let Ei = |(ui
hi
, ki

hi
), . . . , (ui

1, k
i
1)|, i = a, b. Suppose that Eb ≤ Ea, and that Ea

is the largest element in E(||Ea||) such that Eb ≤ Ea. Let 1 ≤ h < ha and σi be permutations
of {1, . . . , h}, such that ui

σi(1)
< ui

σi(2)
< · · · < ui

σi(h)
. Let u′

1, . . . , u
′
ha

be a permutation of
ua
1, . . . , u

a
ha

such that u′
1 < u′

2 < · · · < u′
ha

. Assume u′
i2
= ua

σ(i1)
with i2 > i1. Then for any

K = ∂̄k|uh, . . . , us+1, u
′
ts , . . . u

′
t1
|,

with t1 < t2 < · · · < ts < i2, L(Eb, K) > L(Eb, ||Ea(h)||) + s− i1.

Proof. Let n = wt(Ea(h)).
Let i0 = R(Eb, K), then u′

ti
≥ ub

σb(i−i0)
, for s ≥ i > i0.

Let i′0 = R(Eb, ||Ea(h)||), then ua
σa(i)

≥ ub
σb(i−i′0)

, for h ≥ i > i′0.

We have i1 > i′0. Otherwise, i1 ≤ i′0. Replacing ua
σa(i1)

in ||Ea(h)|| by some ua
i < ua

σa(i1)

with i > h, (such ua
i exists since i2 > i1), we get

J = ∂̄n|ua
σ′
a(h)

, . . . , ua
σ′
a(i1+1) u

a
i , u

a
σ′
a(i1−1), . . . , u

a
σ′
a(1)

|
with R(Eb, J) ≤ i′0. By Lemma 5.2, J is greater than Eb. It is impossible by Lemma 5.4
since J ≺ ||Ea(h)|| and Ea is the largest element in E(||Ea||) such that Eb ≤ Ea.

If s ≥ i1, let
J ′ = ∂̄n|ua

σa(h), . . . , u
a
σa(i1+1), u

′
ts , . . . , u

′
ts−i1+1

|.
If L(Eb, K) ≤ L(Eb, ||Ea(h)||) + s− i1,

u′
ti
≥ ub

σb(i−i0)
≥ ub

σb(i−i′0−s+i1)
, for i ≤ s.

We have R(Eb, J
′) ≤ i′0. By Lemma 5.2, J ′ is greater than Eb. By Lemma 5.4, it is impossible

since J ′ ≺ ||Ea(h)|| and Ea is the largest element in E(||Ea||) such that Eb ≤ Ea. So when
s ≥ i1, L(Eb, K) ≥ L(Eb, ||Ea||) + s− i1.

If s < i1, let t′1 < t′2 < · · · < t′i1 < i2 with {t1, . . . , ts} ⊂ {t′1, . . . , t′i1}. Let

K ′ = ∂̄k|u′
t′1
, . . . , u′

t′i1
, ui1+1, . . . , uh|.
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By Lemma 5.1, we have

L(Eb, K) ≥ L(Eb, K
′) + s− i1 ≥ L(Eb, ||Ea||) + s− i1.

So for any s > 0, we have L(Eb, K) > L(Eb, ||Ea||) + s− i1. □

The following lemmas are obvious.

Lemma 5.8. If J1 ≺ J2 ≺ · · · ≺ Jn, σ is a permutation of {1, . . . , n}, then

J1J2 · · · Jn ≺ Jσ(1) · · · Jσ(n).

Lemma 5.9. If K1K2 · · ·Kk ≺ J1 · · · Jl, then

K1K2 · · ·Ks−1JKs · · ·Kk ≺ J1 · · · Js−1JJs · · · Jl.

6. PROOF OF LEMMA 2.8

In this section we prove Lemma 2.8. By Lemma 5.8, we can assume the monomials are
expressed as ordered products J1J2 · · · Jb with Ja ≺ Ja+1. For α ∈ M(J ), let

R(α) = {
∑

ciβi ∈ R|ci ∈ Z, βi ∈ M(J ), βi ≺ α, βi ̸= α},

the space of linear combinations of elements preceding α in M(J ) with integer coeffi-
cients.

Lemma 6.1. If J1J2 is not standard, J1J2 ∈ R(J1).

Proof. Assume Ji = ∂̄ni |ui
hi
, . . . , ui

2, u
2
1|, for i = 1, 2.

Let E1 = |(u1
h1
, n1), . . . , (u

1
1, 0)|. Let i0 = L(E1, J2). If i0 ̸= 0, there is i0 ≤ i1 ≤ h2, such that

u2
i1

< u1
i1−i0+1. If i0 = 0, let i1 = 0. Let m = n1 + n2 and an2−l = δ0l , 0 ≤ l ≤ l0 − 1. By

Lemma 2.5, there are integers ak such that

(6.1)
∑

ϵak∂̄
m−k|u1

h1
, . . . , u1

i1−i0+1, u
1
i1−i0

, . . . , u1
1|∂̄k|u2

h2
, . . . , u2

i1+1, u
2
i1
, . . . , u2

1| ∈ R[h1 + 1].

(1) If h1 = h2, then n1 ≤ n2. Since J1J2 is not standard, J2 is not greater than E1. By
Lemma 5.2, i0 > n2 − n1 ≥ 0. J1J2 ∈ R(J1) since in Equation (6.1):

• All the terms with k = n2 precede J1 except J1J2 itself;
• All the terms with k = n2 − 1, . . . , n1 vanish since ak = 0;
• All the terms with k = n2 + 1, . . . ,m precede J1 since the weight of the upper
∂̄-list is m− k < n1;

• All the terms with k = 0, . . . , n1 − 1 precede J1 after exchanging the upper
∂̄-list and the lower ∂̄-list since the weight of the lower ∂̄-list is k < n1;

• The terms in R[h1 + 2] precede J1 since they have bigger sizes.
(2) If h1 > h2. Since J1J2 is not standard, by Lemma 5.2, i0 > n2. J1J2 ∈ R(J1) since in

Equation (6.1):
• All the terms with k = n2 precede J1 in the lexicographic order except J1J2

itself;
• All the terms with k = n2 − 1, . . . , 0 vanish since ak = 0;
• All the terms with k = n2, . . . ,m precedeJ1 since the weight of the upper ∂̄-list

is m− k < n1;
• The terms in R[h1 + 2] precede J1 since they have bigger sizes.

□
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Proof of Lemma 2.8. We prove the lemma by induction on b.
If b = 1, J1 is standard.
If b = 2, by Lemma 6.1, the lemma is true.
For b ≥ 3, assume the lemma is true for b − 1. We can assume J1 · · · Jb−1 is standard
by induction and Lemma 5.9. Let E1 · · ·Eb−1 ∈ SM(E) be the standard ordered product
of elements of E corresponding to J1 · · · Jb−1. If J1 · · · Jb is not standard, then Jb is not
greater than Eb−1. By Lemma 6.2 (below), Jb−1Jb =

∑
Kifi with Ki ∈ J , fi ∈ R such

that Ki is either smaller than Jb−1 or Ki is not greater than Eb−2. If Ki is smaller than
Jb−1, then J1 · · · Jb−1Kif ∈ R(J1 · · · Jb−1). If Ki is not greater than Eb−2, J1 · · · Jb−2Ki is not
standard, so it is in R(J1 · · · Jb−2) by induction. Then J1 · · · Jb−2Kif ∈ R(J1 · · · Jb−1). So
J1 · · · Jb =

∑
J1 · · · Jb−2Kifi ∈ R(J1 · · · Jb−1). □

Lemma 6.2. Let E ∈ E , Ja and Jb in J with Ja ≺ Jb, and suppose that Ea is the largest element
in E(Ja) such that E ≤ Ea. If Jb is not greater than Ea, then JaJb =

∑
Kifi with Ki ∈ J ,

fi ∈ R such that Ki is either smaller than Ja or Ki is not greater than E.

Proof. Assume Ja = ∂̄na |u′
ha
, . . . , u′

1| and Jb = ∂̄nb|ub
hb
, . . . , ub

1|. Ja ≺ Jb, so ha ≥ hb. Assume
||Ea(hb)|| = ∂̄ma |ua

hb
, . . . , ua

1|. Let m = nb + na. Let i0 = L(Ea, Jb). If i0 ̸= 0, there is
i0 ≤ i1 ≤ hb, such that ub

i1
< ua

i1−i0+1. If i0 = 0, let i1 = 0. Since Jb is not greater than Ea, by
Lemma 5.2,

(6.2) i0 > nb −ma.

By definition, {ua
hb
, . . . , ua

1} is a subset of {u′
ha
, . . . , u′

1} with u′
i < u′

i+1 and ua
i < ua

i+1. If we
assume u′

i2
= ua

i1−i0+1, we have i2 ≥ i1 − i0 + 1.
Now we prove the lemma. The proof is quite long and it is divided into three cases.
Case 1: ha = hb. Let anb−l = δ0l for 0 ≤ l ≤ i0 − 1. By Lemma 2.5, there are integers ak,

such that

(6.3)
∑

ϵak∂̄
m−k|u′

ha
, . . . , u′

i1−i0+1, u
′
i1−i0

, . . . , u′
1| ∂̄k|ub

hb
, . . . , ub

i1+1, u
b
i1
, . . . , ub

1| ∈ R[ha + 2].

JaJb ∈ R(Ja) since in the above equation,

• All the terms with k = nb precede Ja in the lexicographic order except JaJb itself;
• All the terms with k = nb − 1, . . . , na vanish since na = ma, ak = 0;
• All the terms with k = nb +1, . . . ,m precede Ja since the weight of the upper ∂̄-list

is m− k < na;
• All the terms with k = 0, . . . , na − 1 precede Ja after exchanging the upper ∂̄-list

and the lower ∂̄-list since the weight of the lower ∂̄-list is k < na;
• The terms in R[ha + 2] precede Ja since they have bigger sizes.

Case 2: hb < ha and nb < ma.
By Lemma 2.5,

(6.4)
∑

0≤i<hb

∑
σ

(−1)i sign(σ)

i!(hb − i)

∑
ϵaik

∂̄m−k|u′
ha
, . . . , u′

i+1, u
b
σ(i), . . . , u

b
σ(2), u

b
σ(1)| ∂̄k|ub

σ(hb)
, . . . , ub

σ(i+1), u
′
i, . . . , u

′
1| ∈ R[ha + 2].

Here aik are integers and ainb−l = δ0,l for 0 ≤ l < hb − i. The second summation is over
all permutations σ of {1, . . . , hb}. In the above equation:
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• The terms in R[ha + 2] precede Ja since they have bigger sizes.
• All the terms with k = nb, . . . ,m precede Ja since the weight of the upper ∂̄-list is
m− k < na.

• The terms with k = nb are JaJb and the terms with the lower ∂̄-lists

K0 = ∂̄nb|u′
ihb

, . . . , u′
i2
, u′

i1
| ∈ J .

And all the other terms are cancelled. By Corollary 5.5 and 5.6,

L(Eb−2, K0) ≥ L(Eb−2, Ea(hb)) = ma −mb−2 > nb −mb−2.

By Lemma 5.2, K0 is not greater than Eb−2.
• The terms with k < nb vanish unless hb − i ≤ nb − k. In this case the lower ∂̄-lists

of the terms are

K1 = ∂̄k|ub
σ(hb)

, . . . , ub
σ(i+1), u

′
si
, . . . , u′

s1
|.

By Lemma 5.1,

L(Eb−2, K1) ≥ L(Eb−2, K0)− (hb − i).

So
L(Eb−2, K1) > nb −mb−2 − (hb − i) ≥ k −mb−2.

By Lemma 5.2, K1 is not greater than Eb−2.

Case 3: ha > hb and nb ≥ ma. If i0 = 0, then Jb is greater than Ea and J1 · · · Jb is
standard. So i0 > 0. By Lemma 2.5, we have

(6.5)
∑

min{i1,i2}>s

∑
σ

(−1)s sign(σ)

s!(i2 − 1− s)!

m∑
k=0

ϵask

∂̄m−k|u′
h, . . . , u

′
i2
, u′

σ(i2−1), . . . , u
′
σ(s+1), u

b
s, . . . , u

b
1| ∂̄k|ub

hb
, . . . , ub

i1+1, u
b
i1
, . . . , ub

s+1, u
′
σ(s), . . . , u

′
σ(1)|

∈ R[ha + 1].

Here ask are integers, asnb−l = δ0,l for 0 ≤ l < i1−s, and σ are permutations of {1, . . . , i2−1}.

(6.6)
∑

i≥i1>s
i2>s

∑
σ,σ1

(−1)i+s+t sign(σ) sign(σ1)

(i− i1)!(hb − i)!s!(i2 − 1− s)!

m∑
k=0

ϵai,sk

∂̄n−k|ub
σ(hb)

. . . ub
σ(i) . . . u

b
σ(i1+1), u

b
i1
. . . ub

1, u
′
ha
. . . u′

hb+1| ∂̄k|u′
hb+1, . . . u

′
i2
, u′

σ1(i2−1), . . . u
′
σ1(s+1), u

′
σ1(s)

, . . . u′
σ1(1)

|

∈ R[ha + 1].

Here ai,sk are integers, ai,snb−l = δ0,l for 0 ≤ l < (i+ j1−s), σ are permutations of {hb, . . . , i1+
1}, and σ1 are permutations of {1, . . . , i2 − 1}.

• We use Equation (6.5) when i2 > i1 − i0 + 1;
• We use Equation (6.6) when i2 = i1 − i0 + 1.

In the above relations:

(1) The terms in R[ha + 2] precede Ja since they have bigger sizes.
(2) All the terms with k = nb + 1, . . . , n precede Ja since the weight of the upper ∂̄-list

is n− k < na.
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(3) The terms with k = nb are JaJb, the terms with the upper ∂̄-list preceding Ja (the
upper ∂̄-lists are the ∂̄-lists given by replacing some u′

i, i ≥ i2 in Ja by some ub
k) and

the terms with the lower ∂̄-lists

K0 = ∂̄nb|ub
hb
, . . . , ub

i1+1, u
′
σ1(i1)

, . . . u′
σ1(1)

|.

And all of the other terms cancel. By Lemma 5.7,

L(Eb−2, K0) > L(Eb−2, ||Ea(h)||) + i1 − (i1 − i0 + 1);

By the above inequality,

L(Eb−2, K0) ≥ L(Eb−2, ||Ea(hb)||) + i0

(by corollary 5.5) = wt(Ea(hb))− wt(Eb−2) + i0

(by Equation (6.2) > wt(Eb)− wt(Eb−2(hb)).

By Lemma 5.2, K0 is not greater than Eb−2.
(4) When i2 > i1 − i0 + 1, the terms with k < nb in Equation (6.5) vanishes unless

i1 − s ≤ nb − k. In this case the lower ∂̄-lists of the terms are

K1 = ∂̄k|ub
hb
, . . . , ub

i1+1, u
b
i1
, . . . , ub

s+1, u
′
σ(s), . . . , u

′
σ(1)|

The underlined u in K1 can be any underlined u in Equation (6.5). By Lemma 5.7

L(Eb−2, K1) > L(Eb−2, Ea(hb)) + s− (i1 − i0 + 1);

L(Eb−2, K1) ≥ L(Eb−2, Ea(hb)) + k − nb + i0

(by Corollary 5.5) = wt(Ea(hb))− wt(Eb−2(hb)) + k − nb + i0

(by Equation (6.2) > k − wt(Eb−2(hb)).

By Lemma 5.2, K1 is not greater than Eb−2.
(5) When i2 = i1 − i0 + 1, the terms with k < nb are the terms in the Equation (6.6),

such that i− s ≤ nb − k. In this case, the lower ∂̄-lists of the terms are

K1 = ∂̄k|u′
hb+1, . . . , u

′
i2
, u′

σ1(i2−1), . . . , u
′
σ1(s+1), u

′
σ1(s)

, . . . , u′
σ1(1)

|.

The underlined u in K1 can be any underlined u in Equation (6.6). Let

K ′
1 = ∂̄k|u′

khb
, . . . , u′

ki2
, u′

σ(i2−1), . . . , u
′
σ(1)|.

Here i2 ≤ ki2 < ki2+1 < · · · < khb
≤ ha. By Lemma 5.1, there is some K ′

1 such that

L(Eb−2, K1) ≥ L(Eb−2, K
′
1)− (i2 − 1− s)− (i− i1),(6.7)

since in K1 the number of ub
l with ub

l > u′
i2

is at most i− i1 . By Corollary 5.6,

(6.8) L(Eb−2, K
′
1) ≥ L(Eb−2, ||Ea(hb)||).

By Equation (6.7, 6.8),

L(Eb−2, K1) ≥ L(Eb−2, ||Ea(hb)||) + s− (i− i0)

(by Corollary 5.5) ≥ wt(Ea(hb))− wt(Eb−2(hb)) + k − nb + i0

(by Equation 6.2) > k − wt(Eb−2(hb)).

By Lemma 5.2, K1 is not greater than Eb−2.

□
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