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EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE
COHOMOLOGY OF CLASSIFYING STACKS

DMITRY KUBRAK AND FEDERICO SCAVIA

ABSTRACT. Let G be a smooth connected reductive group over a field k£ and I" be a central
subgroup of G. We construct Eilenberg-Moore-type spectral sequences converging to the Hodge
and de Rham cohomology of B(G/T"). As an application, building upon work of Toda and using
Totaro’s inequality, we show that for all m > 0 the Hodge and de Rham cohomology algebras
of the classifying stacks BPGL4y,4+2 and BPSOuy,42 over Fo are isomorphic to the singular
Fa-cohomology of the classifying space of the corresponding Lie group. From this we obtain a
full description of H”%(GLam+2, Sym? (pgly,,,»)) and H”°(SOum2, Sym’ (psoy,,, . ,)) over Fa.
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1. INTRODUCTION

Let p be a prime number, and let G be a split reductive group over Z. We denote by BG the
classifying stack of G, and by BG(C) the classifying space of the topological Lie group G(C).
The computation of the mod p singular cohomology ring Hs*ing(BG((C);IFp), or equivalently
the determination of mod p characteristic classes of principal G(C)-bundles, is one of the most
classical problems in algebraic topology, with contributions from a long list of illustrious authors.

Recently, in [Tot18], B. Totaro initiated the study of Hodge cohomology H{;(BG/F,) and
de Rham cohomology Hjy(BG/F,) of the classifying stack BG,. Similarly to the topological
situation, one can think of elements of these rings as Hodge and de Rham characteristic classes for
Gr,-torsors. However, as Totaro showed, Hf;(BG/F,) also has a purely representation-theoretic
interpretation in terms of rational cohomology of the algebraic group G, with coefficients
Sym®g", where g is the adjoint representation of G. In [Tot18, Theorem 9.2], he established a
general result, stating that if p is not a torsion prime for G' then Hodge and de Rham cohomology
of BGF, are in fact isomorphic to the mod p singular cohomology of BG(C). The subtlety of the
situation, however, is that there is no natural map between Hodge (or de Rham) and singular
cohomology: the above isomorphisms are constructed by explicitly computing and comparing
the two sides.

Totaro also investigated what happens at torsion primes in some particular examples. For
p =2 and G = SO,, he constructed isomorphisms of graded rings

(1.1) Hiy(BSO, /Fy) ~ Higp (BSO,/Fy) ~ HZ, (BSO,(C); Fa).

sing
On the other hand, he computed that
dimp, H3% (BSpiny; /F2) > dimg, H32 (BSping; (C); Fy),

sing
showing that Hodge and de Rham cohomology of BGr, are not isomorphic to mod p singular
cohomology of BG(C) in general, even as graded vector spaces. Some further calculations of
HY(BG/Fa) and Hji (BG/F2) have been performed by E. Primozic [Pril9] for G = G2 and
G = Spin,, for n < 11.
A general statement which holds even for torsion primes is the inequality of dimensions. First
of all, the existence of the Hodge-to-de Rham spectral sequence implies the inequality

dimg, H{;(BG/F,) > dimg, Hjg (BG/F)).

1A prime p is called torsion if there is non-trivial p-torsion Hg,,(G(C);Z). For any given G there are only
finitely many torsion primes, and there also is a simple recipe to find them all (see [KP21a, Example 6.1.5]).
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Moreover, as conjectured by Totaro and recently proved by A. Prikhodko and the first author
in [KP21b], one also has an inequality

dimp, Hig(BG/F,) > dimg, H,,(BG(C); F,).

sing
Therefore
(1.2) dimg, H{;(BG/F,) > dimg, Hjg (BG/F,) > dimg, H,\,(BG(C);F,).

sing

We will refer to (1.2) as Totaro’s inequality.

Main results. The computations of Totaro and Primozic are based on a version of the Hoch-
schild-Serre spectral sequence in Hodge cohomology (see [Totl8, Proposition 9.3]). In this
paper we attempt to compute the Hodge and de Rham cohomology of the classifying stacks
of classical simple adjoint groups PGL,, PSp,,, PSO,, over Fy by using the Eilenberg-Moore
spectral sequence instead. The Hodge cohomology in these situations can also be reinterpreted
in terms of cohomology of the classical groups GL,, Sp,,, SO, but with coefficients in modules
that are slightly more complicated than Sym’g" (see Section 9 for more details).

Let us describe our setup. Let G be a split connected reductive group over a field k, let I' C G
be a central subgroup (so I' is of multiplicative type) and consider the quotient G := G/I". For
example, we could take G = GL, and I' = G,,, in which case we get G = PGL,. The
multiplication map I' x G — G defines an action BI' x BG — BG of the group stack BI" and
so induces a coaction of the Hopf algebra Hj;(BI'/k) on H}j(BG/k). We also get a similar
structure for de Rham cohomology. This coaction can be used to give a first approximation to
H};(BG/k), as our first general result shows.

Theorem 1.3 (Eilenberg-Moore spectral sequence). Let k be a field, and consider a short exact
sequence of linear algebraic k-groups

15T —>G—>G—1.

where G and G are smooth and T is a central subgroup of multiplicative type. Then we have two
(cohomological) first-quadrant convergent spectral sequences

i ; . J i
EY = (CotorHﬁ(BF o, HH(BG/k:))) = H9(BG/k),

i\ i « Y i+ A
B (CotorHsR( ar /k)(k,HdR(BG/k:))> — HY(BG/k).

Here k is the trivial comodule over Hy;(BG/k) (and H}g(BG/k)) and Cotor’ are the derived
functors of cotensor product (the definition is essentially dual to Tor" in the algebra setting, see
Section 2.2 for a reminder).

Remark 1.4. Recall that Hodge cohomology is in fact a bigraded algebra (see Section 2.1 for
a short reminder). By our construction, in the Hodge setting, the Eilenberg-Moore spectral

sequence E,” splits as a direct sum F;’ ~ @y, (E7)" where

%,] i * % h.j i+7 Yol
(ESYh = <CotorH;,*(BF 1 U Hg (BG/k))) = HIY"(BG/K).

A spectral sequence analogous to those of Theorem 1.3 for singular cohomology was used
by H. Toda in [Tod87] to compute the Fa-singular cohomology of BPGL,,(C), BPSp,,(C) and
BPSO,,(C) when n = 4m+ 2. The main result of our paper is that the answer for Hodge and de
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Rham cohomology over Fy stays essentially the same. (When n is odd, 2 is not a torsion prime
for any of these groups, and so Hodge and de Rham cohomology are isomorphic to singular
cohomology by the aforementioned result of Totaro.)

Theorem 1.5. (1) Let G be either PSOypy2 or PGLyyi2. Then we have isomorphisms of
graded rings

Hiy(BG/Fz) = Hip(BG/F2) = Hipu( BG(C)iFy).

sing
(2) In the case G = PSpy, o we have an isomorphism of graded vector spaces

Hiy(BG/Fz) = Hip(BG/Fs) = Hiu(BG(C)iFy).

sing

We don’t know if there exists an algebra isomorphism in Theorem 1.5(2), the main reason
being that the algebra structure on HY  (BPSpy,, 2(C);F2) is not fully understood (see e.g.
[Tod87, Proposition 4.7]). In contrast, the algebra structures of Hg,,(BPSO4p42(C); F2) and
H, o (BPGL4p42(C); F2) can be described explicitly in terms of generators and relations; see
[Tod87, Proposition 4.2, Proposition 4.5].

Let us sketch the main ideas which go into the proof of Theorem 1.5. With Theorem 1.3
at our disposal, one can try to make direct computations similar to the ones in Toda’s work
[Tod87]. After some extra work, this is possible to achieve for PGL4y,42 and PSpy,, .. However,
Toda’s argument doesn’t seem to go through directly for PSO442 (Remark 8.14). Our key
observation is that if we assume the results of [Tod87] as given, there is an easier way: some
parts of Theorem 1.5 are implied by Totaro’s inequality almost for free, while with a little more
computational work one can also get the rest of Theorem 1.5, including the most complicated
case of PSOyy,42. This led us to split the proof of Theorem 1.5 in two parts.

Part 1. Isomorphisms as graded vector spaces for BPGLyy, 12 and BPSpy,, ;5. The main step
in Toda’s computation of Hs*ing(Bé((C); F3) consists in showing that the Eilenberg-Moore spec-
tral sequence degenerates at the second page. Assuming Toda’s result, it is enough to identify
the second sheets of the Eilenberg-Moore spectral sequences for Hodge and singular cohomology:
indeed, by Totaro’s inequality (1.2) this would immediately imply the degeneration in the Hodge
setting and then also give an equality of dimensions of cohomology. This identification is done

by explicitly comparing the comodule structures on Hjj(BGL4y42/F2) and Hy(BSpy,,2/F2)

with the ones for singular cohomology (having identified Hf(BGw/F2) with Hg,,(BC*,Fs) as
Hopf algebras and Hfj(Bpus2/F2) with Hf  (BZ/2,F3) as coalgebras); see Section 4.

Part 2. Isomorphisms as graded rings for BPGLypn42 and BPSOymio. For BPGLyyp 42, the
spectral sequence argument above already produces a ring isomorphism between the Hodge
and singular cohomology, but only after passing to the associated graded. To lift this to an
isomorphism between the original rings we imitate the computation of Toda in the Hodge set-
ting (see Sections 5 and 7). The case of BPSOyy,+2 is more difficult, as the comodule struc-
ture on H{j(BSO4m+2/F2) is not compatible with the one on singular cohomology. Neverthe-
less, we get around this by directly replacing some results on the structure of the comodule
H, o (BSOu4m42(C), F2) with suitable Hodge cohomology analogues (see Section 5). In some
ways, the Hodge context actually turns out to be easier for the computation via Toda’s method;
see Remark 8.9. After computing Cotor via the twisted tensor product construction (see Sec-
tion 5.3) we deduce the degeneration of the Eilenberg-Moore spectral sequence in the PSOyy,4o-
case by comparing to topological side and using Totaro’s inequality. To conclude, we identify the
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resulting descriptions of Hodge and singular cohomology in terms of generators and relations.
For more details see Section 8.

Even though the algebras Hjj(BSOum+2(C)/F2) and HE,,(BSO4m+2(C),F2) are abstractly
isomorphic, there is a rather subtle implicit distinction between topological and Hodge settings.
Namely, the square

H}{(BPSOym+2/Fo) ————— HZ  (BPSO412(C),Fa)

Section 7 sing

| |

H{(BSOypm42/F2) = H o (BSOum+2(C), Fa),

Totaro

induced by pull-back with respect to the map BSOyy,+2 — BPSO4y,42 and isomorphism (1.1)
is not commutative.

Applications to representation theory. Recall that the Hodge cohomology of a smooth
algebraic stack X over k comes with a natural bigrading: Hp(X/k) ~ @it j=nH" (X/k), where
H%(X/k) ~ HI(X,Q%). In [Tot18, Theorem 2.4], Totaro showed that if G is a smooth affine
k-group, one has the following representation-theoretic formula for H%(BG /k):

H“(BG/k) ~ H"™I(G,Sym’g").
The right hand side denotes the cohomology of G as an algebraic group (sometimes also called
“rational cohomology”), and the G-action on Sym®g" is the natural adjoint action. This gives a
geometric interpretation of the cohomology of representations like Sym* gV, which Totaro used to
make new computations. If I' C G is a central subgroup and G := G/T", the Hodge cohomology

of BG can also be interpreted in terms of rational cohomology of G, but with coefficients in
more complicated modules, namely Sym’g", where § := Lie(G).

Remark 1.6. In order to compute the groups H7 (G, Sym’ g") by the above method, it is necessary
to describe Hodge cohomology of BG as a bigraded algebra. Given the degeneration of the
Eilenberg-Moore spectral sequence, this reduces to understanding the bigraded components
of the cotorsion groups Cotor’ from Theorem 1.3. In order to keep track of the bigrading,
we compute Cotor’ via twisted tensor product construction with an explicit twisting cochain,
imitating the original computation of Toda (see Construction 5.16 and Corollary 5.19).

For brevity, let us only discuss the result of the computation in the case G = PGL,, here,
and refer the reader to Section 9 for the remaining cases. For every n > 1 we have a short
exact sequence of GL,-modules 0 — Fy — gl,, — pgl,, — 0, which is non-split if and only if n
is even. From the Hochschild-Serre spectral sequence in rational cohomology one can see that
H*(GL,, Sym" pgly) ~ H*(PGL,, Sym"pgly), and, thus

H"(BPGL, /Fy) ~ H’""(GL,, Sym" pgl").

From Theorem 7.16, giving the description of the left hand side in the case n = 4m+ 2, we get
a full computation of higher cohomology (over Fy) of GLyy, 2 with coefficients in Sym* pgly. To
be more precise, there is a certain class 2 € H'(GLyp 12, pgly,, +2) and a polynomial subalgebra
A = Fafer, bili<i<oms1 C (i Sym® pg(Xm+2)GL4m+2 in the GLyy,1o-invariants such that for any
J > 0 one has that

HY(GL4p 42, B; Sym’ pg[Xerz) — A
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is a free A-module of rank 1 generated by 27 € H7(GLyp42, Sym? pgly 12). Here ¢1 has degree
1 and each b; has degree 4i. In particular, for all 4,5 > 0, we get a formula for the dimension of
HI(GLa+2, Sym’ pgly,, . o) as the number of ways to write i — j as a sum

M+ 482+ 883+ -+ (8m + 4) Bam1,

where 7; and the f), are non-negative integers. In particular, H7(GLygy,42, Sym® paly, 4o) #0if
and only if ¢ > j.

Acknowledgements. The first-named author is grateful to Max Planck Institute for the excel-
lent work conditions during his stay there while this work was being written. He would also like
to thank Peter Scholze and Xing Gu for fruitful and helpful conversations. The second-named
author thanks Kestutis Cesnavi¢ius and the Laboratoire de Mathématiques d’Orsay (Université
Paris-Saclay) for hospitality during Summer 2021, and the Institut des Hautes Etudes Scien-
tifiques for hospitality in the Fall 2021.

2. PRELIMINARIES

2.1. Hodge and de Rham cohomology of stacks. Let k be a field and X be a smooth Artin
stack of finite type over k. For every i,j > 0, we denote by H'(X,Q’) the i-th cohomology of
the sheaf ¥/ of j-differential forms on the big étale site of X (see [Tot18, Section 2]).

We denote by Hj (X/k) == HI(X, Q") and H(X/k) = @iy j—nH (X/k) the (i, j)-th com-
ponent and the total n-th Hodge cohomology group, respectively. The algebra Hj;(X/k) =
®2 HR (X /k) ~ ®; j>0H}y’ (X/k) has a natural bigraded k-algebra structure.

We also denote by Hj(X/k) the de Rham cohomology of X (which is a Z-graded k-algebra):
it can be defined as the hypercohomology of the (de Rham) complex of sheaves 2 = 00 —
Q! — Q% — ... on big étale site of X. See [Tot18, §1] or Appendix A for more details.

The abutment filtration F*(Qg) = le;i{ C Qjy has the associated graded &;Q[—i] and
induces the Hodge-de Rham spectral sequence:

EY = Hi (X/k) = HS (X/k).

Remark 2.1 (Another formula for Hodge cohomology). By flat descent for the cotangent complex,
for any j > 0 one has a quasi-isomorphism

where Lx/;, € QCoh(X) is the cotangent complex of X (see e.g. [KP2la, Proposition 1.1.4]).
If X = BG for some smooth k-group scheme G then, under the identification QCoh(X)" =~
D(Rep(G))™, one has an equivalence L/, >~ g¥[—1] (see e.g. [KP21b, Example A.3.8]), where g"
is the coadjoint representation. This leads to an equivalence RI'(BG, V) = RT(G, Sym’ gV [—4]),
since AJ(g¥[—1]) ~ (Sym’ g")[—j] by the decalage isomorphism (see e.g. [KP21b, Proposition
A.2.49]). In particular:

H“(BG/k) ~ H™(G,Sym’g").
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2.2. Cotensor product and Cotor. Our main reference on comodules, coalgebras, cotensor
products and the cobar construction is [Rav86, Appendix A]. As it is mentioned in [Rav86,
Definition A1.1.1], loc.cit. works with coalgebras not only in the ungraded, but also in the
graded or bigraded settings (or, in fact any L-graded setup with L := Z" for some n > 0), even
though some of the statements in [Rav86, Appendix A] that we will refer to do not explicitly
mention this.

Let k be a field and let A be an L-graded Hopf k-algebra. A left (resp. right) A-comodule is
an L-graded k-vector space M together with a k-linear L-graded map ¢pr: M — A @y M (resp.
dr: M — M ®j A) which is coassociative and counital. If M is also an L-graded k-algebra and
¢ is a graded k-algebra homomorphism then M is called a left (right) comodule algebra. In
this paper, we will only consider L-graded comodules and coalgebras for L = Z™ (n = 0,1, 2).
When L is clear from context, we will suppress “L-graded” from the notation.

Write A: A — A ®; A for the comultiplication map of A. If V is an L-graded vector space,
we define a comodule structure on A ®; V by A®idy. The functor V — A®; V from L-graded
vector spaces to L-graded A-comodules is right adjoint to the forgetful functor; see [Rav86,
Definition A1.2.1].

Lemma 2.2. (a) The category of L-graded left (resp. right) A-comodules is abelian.

(b) For every L-graded k-vector space V', since V is injective, A®y V' is an injective L-graded
A-comodule.

(¢) The category of L-graded left (resp. right) A-comodules admits enough injectives.

Proof. We will only consider left A-comodules, the case of right A-comodules being entirely
analogous. (a) is [Rav86, Theorem A1.1.3], and (b) and (c) are [Rav86, Lemma A1.2.2]. O

Definition 2.3. (1) Let M be a right A-comodule and N be a left A-comodule. The coten-
sor product of M and N over A is defined as the L-graded k-vector space

MOpN = Ker(M ®y M @ A ®p N);

see [Rav86, Definition A1.1.4].
(2) Given a left A-comodule N, one defines the A-subcomodule PN C N of primitive ele-
ments as

PN :={ne€ N :¢n(n)=1®n}.
Note that the canonical isomorphism k£ ®; N ~ N induces an isomorphism
kOAN ~ PN.

It is also not hard to see that if N = A is a left A-comodule k-algebra, then PA C A is a
k-subalgebra.

Lemma 2.4. The functor N — MUOaN is left exact in M.
Proof. Consider a short exact sequence of A-comodules

0—>M - M- M'—D0.
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Since k is a field, the functors M +— M ®; N and M — M ®, A®; N are exact in N. We obtain
the following commutative diagram with exact rows:

0 —s My N —— s My N ——— M" @y, N — 0

l%f'@l—l@@v l@w@l—l@m l¢Mu®1—1®¢N

0 — M A N —— M AR, N —— M" @, A Q@ N —— 0.

The snake lemma then yields an exact sequence
0 — M'OpN — MOAN — M"ON,
as desired. N
By Lemma 2.4 and Lemma 2.2(c), we may give the following definition.

Definition 2.5. If i > 0 is an integer, we define the i-th cotorsion group Cotor’y (M, N) as the
i-th right derived functor of MU\ N, regarded as a left exact additive functor of M with values
in L-graded vector spaces. We also let

Cotor} (M, N) := @;>0 Cotor’y (M, N).
There is a canonical isomorphism
Cotor (M, N) ~ MON.
By construction, each Cotory (M, N) is an L-graded vector space.

As the right derived functor, Cotor} (M, N) can be explicitly computed by picking any in-
jective resolution M — I* in the category of right A-comodules and taking the cohomology of
I*OAN. There is a preferred such resolution given by the cobar construction.

Construction 2.6 (Cobar construction). Let A: A — A®y A and e: A — k denote the comul-
tiplication and the counit maps of A, respectively. If M is an L-graded right A-comodule with
the coaction ¢pr: M — M ® A, we may construct a cosimplicial right A-comodule 5A(M )® as
follows. For all s > 0, set 5A(M)S = M ®, A®*T! with the coaction given by idy/®...®ida ® Ax.
For every 0 < i < s, the i-th codegeneracy map o7} : C~A(]\J)S+1 — 5A(M)S is given by

ogiMOYW R @Yeq1) =€()MO YR Vi1 ®Vi @ -+ ® Yot1

-1

for all vp,...,7s+1 € A and m € M. For every 1 < ¢ < s, the i-th coface map §;: 5A(M)S —

CaA(M)*® is given by
Mm@ ®7) =m0 @2 ®A(Yi-1) ®Y ® - ®7s
for all vp,...,vs € A and m € M, and 4 is given by
Fom @70 @+ ®7s) = du(m) @ @ -+ @ 7s.

By definition, the non-normalized cobar resolution of M is the cochain complex 5}‘\ (M) such
that C{ (M) = Cp(M)? for all s > 0 and whose differentials are given by the alternating sums of

the coface maps of C(M)*®.
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Let A := Ker(e) C A, where e: A — k is the counit map. The unit n: k — A defines a splitting
A ~ k@ A (as k-vector spaces) with an isomorphism A ~ Coker(n). The comultiplication
A: A — A®p A induces a map A: A — A ®; A as the composition

K‘—)AA>A®1€A—»K®1¢K,

which endows A with the structure of non-unital coalgebra over k. For a left (resp. right)
comodule N (resp. M) with the coaction ¢n: N — A @k N (resp. ¢pr: M — M ®p A) we
will denote by ¢n (resp. ¢ar) the corresponding coaction of A on N (resp. M) obtained by
composing with the projection Q: A — A.
The (normalized) cobar resolution Cx (M) of M is defined as the normalized cochain complex

associated to Cy(M)®, that is, by

s—1

CA(M) = () (Ker(o7 ™" CA(M)* — CA(M)*™") = M @, A" @ A,

=0
where as before A ~ Ker(e) ~ Coker(n), and differential d: C3(M) — C3™ (M) is induced by
the one on 5X(M)

(2.7) dm M-+ ®@7Ys41) = dpu(M) @M @ -+ @ Ys41 +

S
+ Z(—l)l_lm RN D @Y1 DA(Y) @ Yit1 ® - - @ Yst1
i=1

for all ys11 € A, 71,...,7s € A and m € M. See also [Rav86, Definition A1.2.11] for an analogous
construction for left comodules. It is a part of the cosimplicial Dold-Kan correspondence that the
natural inclusion Cx (M) — 5}“\ (M) is split and a homotopy equivalence; see e.g. [Sta, Lemma
0191, (3)] (the proof is dual to that of [Sta, Lemma 019A]).

The map M — M ®j, A®*tt =: Cy(M)* sending m — m ® 1 ® ... ® 1 defines a map
of cosimplicial right A-comodules M® — Cx(M)® (here M*® denotes the constant cosimplicial
object). By passing to normalized cochain complexes we get a map

M — CA(M)

of complexes of right A-comodules (where M is considered as a complex concentrated in degree
0). The complex C} (M) gives an injective resolution of M; indeed, all of its terms are injective
right A-comodules by Lemma 2.2(b). In particular, given a left A-comodule N one can explicitly
compute Cotor (M, N) as the cohomology of C}(M,N) = Cx(M)OAN. Let us record that
Ci(M,N) is given explicitly by C5(M)OAN ~ M@, A° @, N with the differential d: C{ (M, N) —
CiT (M, N) given by

dm@1n®@...0 % ®n) =pu(M)@MNG...0 % n+(-1)'mMON ®...® 7 ® dn(n)
s—1

(2.8) + ()T'men®... 0% 1 @A) @Y ®... 87 ®n.
=1

If A, M and N are L-graded, so are C}(M) and C}(M)OAN; then H*(Cx(M)OAN) computes
Cotory (M, N) as an L-graded vector space.
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Remark 2.9. In [Rav86, Definition A1.2.3], Ravenel defines Cotor’(M, N) as the i-th right derived
functor of MOAN, but considered as a functor in N. By a standard argument one can show
that it doesn’t matter whether to consider MU\ N as a functor in M or in N: namely, picking
injective resolutions M — I3, and N — I}, as right an left A-comodules one has natural quasi-
isomorphisms

I OAN = Iy OaTy < MOpT N
by using the fact that all rows and columns in the bicomplex defined by Iy,LI5I5; are exact.

2.3. Algebra structure on Cotor. Let ma: A ®, A — A be the multiplication map. Given
two L-graded left A-comodules M and N, we write M ®j N for the comodule tensor product of
M and N. By definition, this is the usual tensor product of L-graded k-vector spaces M ®; N,
endowed with the following left coaction of A:

M®kNM>A®kM®kA®kN*N>A®kA®kM®kN A®p M ®, N .

This definition agrees with [Rav86, Definition A1.1.2]. Let us emphasize that the left coaction
of A on M ®; N crucially depends on the algebra structure on A. Similarly, one defines right
A-comodule algebras.

Note that given right A-comodules M7, My and left A-comodules Ny, No there is a natural
map

(210) (MIDANl) Rk (MQDANQ) — (M1 Rk MQ)DA(Nl Rk NQ)

of k-vector spaces: indeed, both are subspaces of M7 ® My ® N1 ® Ny and one checks easily from
the definitions that the left hand side is the subspace of the right.

Construction 2.11 (External product). If M; and My are L-graded right A-comodules and

N7 and N, are L-graded left A-comodules, we have an external cup product map
COtOI‘*A1 (Ml, Nl) Rk CO’GOI‘T\2 (MQ, Ng) —_— Cotorzl+*2 (Ml R Mo, N1 ®p Ng),

which can be defined as follows (see also [Rav86, Definition A1.2.13]). Let M; — I3, and
My — Iy, be injective resolutions in the category of right A-comodules; then I}, ® I}, is an
injective resolution for M; ® M. We have a natural map

(I}%D/\Nl) Rk (.[7{42DAN2) — (I]Tﬁ Rk I}%)DA(]\H ®p Na)

ma®id ®id Ny
_—

given by 2.10.

If A is a right A-comodule algebra and B is a left A-comodule algebra, then letting M; =
Ms = A and N1 = Ny = B and composing the external cup product with the map

Cotor} (A®y A, B® B) —— Cotor} (A, B)

induced by the multiplication maps A ®; A — A and B ®; B — B gives Cotor (A, B) the
structure of a (Z @ L)-graded k-algebra. (Here Cotor’ (A, B) has Z-grading i and the L-grading
is the one coming from A, M and N.)

More generally, if M (resp. N) is a left A-(resp. B-)module in the category of left (resp.
right) A-comodules, then similarly, composing with the map

Cotor} (A®, M, B ®; N) —— Cotor} (M, N)

the external cup product endows Cotorj (M, N) with a natural structure of (Z & L)-graded
Cotor} (A, B)-algebra.
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Remark 2.12. It will be useful to lift the above action of Cotor} (A, B) on Cotorj (M, N) to an
explicit action of a DG-algebra on a DG-module.

Namely, the map Cotor)! (M1, N1) ®; Cotor)? (M, Na) — Cotorzﬁ*Q(Ml ®k M, N1 ®j) N2)
has a natural lift to the map of complexes

AW: CX (M, N1) @ C{ (M2, No) — C{(My ®y Mz, N1 @) M>)

via the Alexander-Whitney product (see [Rav86, (A1.2.15)]). When M; = My = A and Ny =
Ny = B are A-comodule algebras the map AW endows C} (A, B) with the structure of DG-
algebra (that lifts the algebra structure on Cotor).

We will be particularly interested in the case where the A-comodule structure on My, Ny, Mo
is trivial. Then the formula for AW simplifies significantly: given m; ® 71 ® ... ® vs ® n1 €
C5 (M, N1) and ma @ Y541 @ ... @ Ys1t @ ng € C4(Ma, N) we simply have

AW(m1 @ 71® ... 07 @ n1) @ (M2 @ Y541 ® ... @ Vst @ MN2)) 1=
(M1 @M)@Y ® ... @ Vs ® Vb1 D ... @ Yot @ (N1 @ N2),

where the result is an element of Ci+t(M1®kM2, N1®kN3). Inthe case Ny = No = My = My =k
this map induces a DG-algebra structure on C (k, k) lifting the multiplication on Cotor} (k, k).
For a general left A-comodule N it induces a structure of DG-module over C} (k, k) on C} (k, N)
which lifts the natural Cotor}, (k, k)-module structure on Cotor) (k, N).

In the case M1 = My = A, Ny = No = B are k-algebras considered as A-comodule algebras
with trivial actions, composing with the maps A® A — A, B® B — B this gives a DG-algebra
structure on C} (A4, B) (with multiplication given by

AW(a1 @M @ ... 07 @b1)R(a2 @ Vsq1 @ ... @ Yoyt @ ba)) :=
a1a2 @Y1 & ... ® Vs @ Y1 @ - .. @ Vst @ b1b2),

lifting the algebra structure on Cotor} (A4, B).

Remark 2.13. We will be working over fields of characteristic 2, so the sign conventions for
multiplication will not matter for us; in particular, if M and N are commutative algebras, then
so will be Cotory (M, N).

Example 2.14. If G is a linear algebraic group over a field k and I' C G is a central subgroup,
the multiplication map I' x G — G is a k-group homomorphism and so induces a morphism of
stacks BI' x BG — BG. Passing to Hodge cohomology and applying Kiinneth’s formula [Tot18,
Proposition 5.1] we obtain a homomorphism of Z?-graded k-algebras

(2.15) Hy"(BG/k) — Hy"(BU/k) @k Hiy"(BG/k).

If G =T is commutative, (2.15) makes Hj;y"(BG/k) into a Z*-graded Hopf algebra over k. If G is
an arbitrary linear algebraic group, (2.15) makes Hyy"(BG/k) into a left Hf;" (BT /k)-comodule
algebra. The same holds for de Rham cohomology, using the Kiinneth formula (Corollary A.5).
Namely, Hj, (BI'/k) is a Z-graded Hopf algebra and Hjy (BG/k) has a natural left Hj (BT'/k)-
comodule algebra structure.
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3. THE EILENBERG-MOORE SPECTRAL SEQUENCE

Let K*® be a first-quadrant double cochain complex, and write Tot(/*®) for the associated
total complex. By definition, the first spectral sequence associated to K*® is the spectral sequence

(3.1) EY = HI(K™) = H"(Tot(K**))
associated to the decreasing filtration F™* Tot(K*®) of Tot(K*®) given by column degree, that is
n
FiTot"(K**) = @ K%
ptg=n,p=>i

see [Sta, 012X].
Let Xqe be a bisimplicial scheme and F' be an abelian sheaf on the small étale site of Xq,.
By [Fri82, Proposition 2.6], there exists a first-quadrant spectral sequence

(3.2) EY = H (X, Flx,)) = H (Xea, F),

which is functorial in F'. It is defined as the first spectral sequence (3.1) associated to the double
complex Koo = Homppgn(x,,)(Zx.., ), where AbSh(X,,) is the category of abelian sheaves on
the small étale site of Xee, Zx,, — Z is a certain projective resolution in AbSh(Xe,) and F' — I
is an injective resolution in AbSh(Xs.). (In [Fri82, Proposition 2.4], the simplicial analogue of
(3.2) is proved with more details than [Fri82, Proposition 2.6].)

Remark 3.3. The spectral sequence (3.2) is compatible with cup products in the following sense:
given a homomorphism of abelian sheaves A ® B — C on the small étale site of X, there is
a homomorphism from the tensor product of the spectral sequence (3.2) for A and B to the
spectral sequence (3.2) for C, which on the Ej-page and on the Eo.-page is the one induced by
the map A® B — C.

Indeed, let A — I4, B — Ig and C — Io be injective resolutions. We may construct a
commutative square

A®BHIA®IB

C Ic,

where the map Iy ® Ig — I is uniquely determined up to homotopy. We obtain an induced
homomorphism of double complexes

Homysh(x,.)(Zx..; 14) @ Homapsh(x,.) (Zx,., Is) — Homapsn(x,.)(Zx.., Ic)-

Now an application of [CE99, XV, Exercises 2, 4] to this homomorphism yields the required cup
products. It is independent of the choice of resolutions A — I4, B — Ig and C — Iz and of
the map I4 ® Ip — I¢.

For every k-scheme X, there is a simplicial scheme EX whose space of n-simplices (EX),
is X"*1 see [Del74, Section 6.1.3]. If G is a linear algebraic k-group, the Cech nerve of the
universal G-torsor Speck — BG is EG /G, the quotient of EG by the diagonal left G-action:

(3.4) BG<—8Speck=—G=—"-Gx; G=Z/="--.
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(We do not draw the degeneracy maps.) If H is a subgroup of G, the Cech nerve of the G-torsor
G/H — BH is given by EG/H, where H acts diagonally by left multiplication:

(3.5) BH<~—G/H=—G?)H=——G3/H=——"--

Proof of Theorem 1.3. We start by constructing the spectral sequence for Hodge cohomology.
Since I' is a k-group of multiplicative type, there exist a k-torus 7" and a k-group embedding
I' — T'. Define

G:= (T xG)/T.
The projection G — G /G is a G-torsor. The induced morphism G /G — BG is smooth and
surjective, and the Cech nerve of G/G — BG is given by EG’/G7 that is

(3.6) BG<~—G/G=—G?)/G=—G3/G=—"--

The projection T — T'/T" is a I'-torsor. The induced morphism 7'/I" — BI' is smooth and
surjective, and the Cech nerve of T'/T" — BT is given by ET/T":

(3.7) Bl ~—T/T=—T?T=——T3)T=——--.

For all i > 1, the projection morphism G*/G — @i/é is a (T /T)-torsor, hence it is smooth and
surjective, and its Cech nerve is given by

(3.8) G/G~——TI=—TI'xG/GZT— (T"/T? xG/G=—— .

We obtain the following commutative diagram

wonow

GG FBIG=—T3Tx B)G == (T}T2 x B/G=— --.
/G

(3.9)

N I

2/G<7T2/F><G2/G<;(T2/F2XG2/G<7“_
I !

Ql

-

Speck <—— G/G T/T x G/G=—— (TT) 2><G/G<7---
I | o
BG BT x BG (BT)? x BG =——

In diagram (3.9), the leftmost column is EG /G, and for all the other columns are the product
of an increasing number of copies of (3.7) and one copy of (3.6). The bottom row is the Cech
nerve of the smooth cover of stacks BG — BG, and the other rows are given by (3.8). Let
Xee be the bisimplicial scheme obtained from (3.9) by removing the left column and bottom
row. The diagram shows that X,, is the Cech nerve of the morphism of simplicial schemes
EG/G — EG/G. Since (EG/G); — (EG/G); is a (T*/T)-torsor and T%/T' is smooth, the
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morphism EG /G — EG/G is a smooth cover. Therefore, for all h > 0, [Fri82, Proposition 3.7]
gives an isomorphism

H*(EG/G, Q" = H*(X.., Q").
Since Spec k — BG is smooth, we have an isomorphism

H*(BG,Q") = H*(EG/G, Q).
Moreover, for all i > 0, the simplicial scheme X, is the Cech nerve of the (7% x G)-torsor
(T/T)" x G/G — BT x BG. We obtain the isomorphisms

H*(BT® x BG, Q") = H* (X4, Q).
Therefore the spectral sequence (3.2) for Xee and F' = Q" takes the form
EY(h) == HI((BT)' x BG,Q") = H™(BG,Q").
Letting h vary, the spectral sequences E% (h) assemble into a spectral sequence of graded k-vector
spaces
EY = H}((BT)' x BG/k) = Hy;”’ (BG/k).
An application Remark 3.3 to the homomorphisms Q" @ Q" — Q"1 where h,h' > 0, turns

the spectral sequence into a spectral sequence of graded k-algebras.
By the Kiinneth formula in Hodge cohomology [Tot18, Proposition 5.1], for every i > 0,

E¥ = H}{(BT® x BG/k) ~ Hj;(BT'/k)®' @ Hy;(BG/k).

This is the non-normalized cobar construction of the Hy;(BI'/k)-comodule algebra Hj;(BG/k).
Indeed, the differentials are alternating sums of projection maps in (3.9), and using this one may
check that they agree with those of the cobar construction. Therefore, by [Rav86, Corollary
A1.2.12], the Ey page of the spectral sequence computes Cotor}l*(BF)(k, H{{(BG)).

The construction for the spectral sequence in de Rham cohomology is entirely analogous.
Indeed, while [Fri82, Proposition 2.6, Proposition 3.7] are only phrased for sheaves of abelian
groups, they also hold for complexes of sheaves. For the Kiinneth formula in de Rham cohomol-
ogy, see Corollary A.5. O

Remark 3.10. If X is a smooth algebraic k-stack, U is a k-scheme, and f: U — X is a morphism,
then the Cech nerve of f can be used to compute the Hodge or de Rham cohomology of X only
when f is smooth and surjective. This explains the introduction of the auxiliary torus T in the
proof of Theorem 1.3: indeed, the morphisms G — G and Speck — BI are I'-torsors, hence
not necessarily smooth, while the morphisms G — G and T/T' — BT are torsors under the tori
T/T and T, respectively, and so they are smooth.

Remark 3.11. Let K*® be a first-quadrant double cochain complex, and consider the spectral
sequence (3.1) for K**. Let u € F'H™(Tot K**) and v € F" H"+J'(Tot K**). Then u and
v are represented by classes @ € E and v € E.’. Suppose that @ -7 = 0 in Es. This
means that wv € F'7+ Hi+ 47+ (Tot K**), and so there exists an integer d > 1 such that the
representative in w0 € Fo, of uv has bidegree (i +j+d, i + j'). In other words, if -7 = 0 then
the column degree of wv is strictly greater than the sum of the column degrees of w and .

Since the Eilenberg-Moore spectral sequence is defined in terms of (3.1), this remark applies
to it. We will make use of this observation during the proof of Theorems 7.16 and 8.17.
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Remark 3.12. It follows from the construction of the Eilenberg-Moore spectral sequence in Hodge
cohomology that

Ey* = Cotorly. pr i) (ks Hiy(BG/k)) = PH{y(BG/k),

where we regard H{j(BG/k) as a left Hjj(BI'/k)-comodule algebra. The corresponding edge
homomorphism

H{(BG/k) — PH{(BG/k) C Hj;(BG/k)
is exactly the pull-back with respect to the map BG — BG induced by the projection G — G.
A similar description holds for de Rham cohomology.

Remark 3.13. Let us emphasize that, taking into account the bigrading on Hodge cohomology
and the construction of the Eilenberg-Moore spectral sequence, Ey’ decomposes as a direct sum
Ey? ~ @p(Ey’ )" where
i3 \h . ) *
(Ei)h = (cotorlHﬁ(BF /k)(k:,HH(BG/k)))

Here the bigrading on Cotor%f}(BF/k)(k,HI";(BG/k:)) is the one coming from H{;"(BT/k) and
Hi" (BG/k).

hj o
! = HIY(BG ).

4. ADDITIVE PART OF THEOREM 1.5 FOR PROJECTIVE LINEAR AND SYMPLECTIC GROUPS

The goal of this section is to identify the E5 page of the Eilenberg-Moore spectral sequence for
the Hodge and de Rham cohomology with their topological counterparts in the case of PGL,, and
PSp,,. This is done by explicitly comparing the coalgebras and comodules that take part in the
Cotor description on both sides. In Section 4.3 we then record how to deduce the degeneration
of the above spectral sequences in the case n = 4m + 2 from Totaro’s inequality and the results
of Toda [Tod87] for the singular cohomology.

4.1. Projective linear group. Let n > 1 be an integer and p be a prime number. We have
isomorphisms

(4.1) H{i{(BGy /Fp) ~ Fpylza], H{(BGL,, /F)y) ~ Fylet, ..., cnl,
where x4 € HII{’I(BGm/Fp) and ¢; € Hﬁi(BGLn/Fp). If : T,, — GL, is the diagonal maximal
torus, then by the Kiinneth formula H};(BT,/F,) is a polynomial ring in n generators ti,...,t,

of bidegree (1,1), and the pullback map
B/*: Hj1(BGL, /F,) —— Hy(BT,/F,) ~F,lt1,. .., t,]

is injective and identifies ¢; with the i-th symmetric function on variables t;; see [Tot18, End of
proof of Theorem 9.2].

If we identify Gy, with the center of GL,, the multiplication map G, x GL, — GL, is a
group homomorphism, and so induces a morphism of stacks BG,, x BGL,, - BGL,. By the
Kinneth formula, we obtain a ring homomorphism

(4.2) ¢: H(BGL,/F,) — Hji(BGy /F,) ® Hi(BGL, /F)),

which endows Hjj(BGL,,/F,) with the structure of an H};(BGy,/F,)-comodule algebra (as dis-
cussed in Example 2.14).
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Let us explicitly describe the coalgebra structure on Hjj(BGy,/F,). The restriction of the
product map Gy, X Gy, — Gy, to Gy x {1} and {1} x Gy, is the identity, hence the comultiplication
map

A: HY(BGy/F,) — HA(BGy x BGp/F,) 22" B2 (BG,, /F,) @ HE(BG/F,)

is the diagonal embedding. It then follows that the Hopf algebra structure on H{j(BGu /Fp) ~
[F,[x2] is the unique one given by A(z2) = 22 ® 1 + 1 ® 2, namely

n
n . .
Alay) =) <1)x§ ‘R .
i=0
Since Hy;"(BGL,/F,) is concentrated in bidegrees (i,i) and is a polynomial algebra, the
Hodge-de Rham spectral sequence for BGL,, degenerates and induces an isomorphism

H;((BGLy/F,) ~ Hip(BGL,/F,).

Thus the previous discussion also applies to Hjj, (BGL,/F),). Below, in this section we will be
giving proofs in the case of Hodge cohomology, but the same arguments then apply to de Rham
context.

We now write

BCFy) ~Fyles”],  Hiug(BOLy(C):F,) = B[, .. o],

ren

51ng(BGLn((C) Fp) as a I{s*lng(B(C>< ) IFP)_
comodule algebra, and let ¢*°P be the coaction map. We note that the coalgebra structure on
Slrlg(BCX IF,) is the unique one given by A(z5®) = 25 @1+ 1 ® 5.

It is easy to see that there is an isomorphism of Hopf algebras

H(BGm/Fp) =~ (BC*;Fp)

sm (
g

where |25P| = 2 and |¢;°"| = 2i. We naturally regard

smg

defined by sending x2 to xg)p. The next lemma shows that it can be extended to an isomorphism
between the comodule-algebras Hjj(BGL, /Fp) and H . (BGL,(C); Fp), inducing in particular
an isomorphism of cotorsion groups of our interest.

Lemma 4.3. Consider the H{{(BGy/Fp)-comodule algebra H{j(BGL,/Fp) = Fplei,. .., cnl,
with the coaction ¢ of (4.2).
(a) For alli=1,...,n, we have

n — ig ;
o(c;) = E < , ):cgl ® Ciy,
e 11
11+12=1

where we use the convention that ¢y == 1.
(b) The isomorphisms

H{{(BGy/Fp) = HZ,o(BC*;Fy), H{{(BGL,/F,) = H%,,(BGL,(C);F,)

sing sing
. . t t . . .
given by sending xo — x5 and ¢; = ¢;°Y induce an isomorphism of bigraded algebras

Cotorfs (56, /my) (Fps Hit(BGLn /Fp)) = Cotory. (pex,) Fp Hing(BGLA(C); Fy)).

Entirely analogous statements hold with Hodge cohomology replaced by de Rham cohomology.
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Proof. (a) The proof is analogous to that of [Tod87, Proposition 3.2]. We have a commutative
diagram

Hi(BGL, [F,) — H3(BGw/F,) ® H5(BGL,/F,)
Bu* 1 B*
* ¢/ * *
Hiy (BT, /Fp) Hiy(BGw/Fp) ® Hyy (BT, /Fp),

where ¢’ is the coaction map for T,,. We have H}3(BT,/F,) = Fplti,...,tn], where ¢; has
degree 2 for all i. Recall that A: H{5(BGw/Fp) — H{(BGw/Fp) ® H{ (BT, /F),) sends z2 to
o ® 14+ 1® xo. Thus, for all i =1,...,n, the commutativity of the square

GuxT; —— T;

J/id X pr; lpri

Gm x Gy, —— G

implies that
O () =10t + 22 @ 1.
Moreover
n n
B (Z ¢i) H (1+1t)
=1 i=1
Elementary calculations show that

(1@ B 6} e) = (1® By)* 3 i( fj>x2®c]

] 1=

Now (a) follows from the injectivity of (1 ® Bu)*.
(b) By (a) and [Tod87, Proposition 3.2], the stated isomorphisms induce a commutative square

Hyy(BGL, /F,)) — %+ H}(BGy/F,) ® Hyy( BGL,/F,)
j ]
prop * *
smg(BGL ((C) Fp) - Hsmg(BCX ) ® Hsmg(BGLn((C); Fp)a

where vertical maps are the ones in the statement of the proposition. This shows that the
corresponding comodule-algebras are equivalent, and, consequently, one also has an isomorphism
of the corresponding Cotor-algebras. O

4.2. Projective symplectic group. Let n > 1 be an integer. By [Tot18, Theorem 9.2], we
have an isomorphism

H;I(BSpQ’n/FQ) = FQ[le o 7Q7L]7

where ¢; has bidegree (2i,2i) for i = 1,...,n. By [Tot18, Proposition 10.1], we have an isomor-
phism of Hopf algebras

Hiy(Bpa/F2) = Folz1, 23]/ (23),
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where x; € H;I’O(B,ug/Fg) and xa € H%I’l(B,UQ/FQ). We identify po with the center of Sp,,.
Then the multiplication map pa X Spg,, — Sps,, induces a ring homomorphism

(4.4) ¢: Hy(BSpy,/F2) —— Hg(Bu2/Fa) @ Hy(BSpy,/Fa).
We can view Hjj(BSpsy,/F2) as an Hjj(Bua/F2)-comodule algebra, with coaction map ¢.
Lemma 4.5. Let j: Sp,y,, — GLa, be the tautological inclusion. Then

Bj*(can) = qn, Bj*(con-1) =0
forallh =1,...,n. In particular, Bj* is injective.

Proof. Let Ty, C GLg, be the diagonal maximal torus, and let T4 := j~!(Ty,). Then T} is a
maximal torus of Sp,,,, and j induces a commutative square

Bj*
Hjy(BGLay /Fa) > H;;(BSpay,/F2)

HYy(BTon /Fa) — Hyy (BT, /F).

The vertical maps are injective. Indeed, by a theorem of Borel [Bor61] (the computation of tor-
sion primes for all connected compact Lie groups), the classifying spaces BSU(2n) and BSp(2n)
have no torsion primes, hence the injectivity of the two maps follows from [Tot18, End of proof
of Theorem 9.2].

Fori=1,...,2n, let t; € H*(BTs,/F2) be the generator corresponding to the i-th coordinate
of T5,,. Then the bottom horizontal arrow gives an identification

Hyy (B3, /F2) ~ Hig(BTon/F2)/(t + tni1,t2 + tnsa, o tn + ton).

The conclusion follows from the fact that ¢; is the i-th symmetric function of 1, ..., t9,, and
that under the previous identification g; is the i-th symmetric function of ¢2, ... t2; see the last

line of the proof of [CR10, Proof of Theorem 6.6]. O

Let us also identify the coalgebra structure on Hyj(Bua/F2). Similarly to the G,,-case one
can see that the comultiplication map

A: Hy(Bpa/F,) —= HY(Bpz x Bpa/F,) 5" HY(Bpua /F,) @ Hiy(Bpia/Fy)
is the diagonal embedding, so A(z1) = 21®1+1®x1. The class o € Hjj(Busa/F2) is the pullback
of the generator of Hy;(BGy/F2) (see the proof of [Tot18, Proposition 10.1]) and so we also have
A(z2) = 29 ® 1+ 1 ® x9. This defines a Hopf-algebra structure on Hjy(Bua/Fa) ~ Falx1, x9] /23
uniquely.
Recall that HZ,,,(BZ/2;F3) ~ Fa[z], where |z| = 1. The natural Hopf algebra structure here

is uniquely defined by A(z) =21+ 1® z.

Remark 4.6. Note that Hyj(Buz/F2) is not isomorphic to HY,(BZ/2;F2) as an algebra. Nev-
ertheless, the unique Fo-linear map ¢: Hyj(Buz/F2) — H,\,(BZ/2;F2) which sends a 7 to 2%
2i+1 ;

and z175 to 2 is easily checked to be an isomorphism of coalgebras.
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Recall that
HZ, o (BSpoy; Fa) = Fo[qlP, ... | ¢tP],

sing

where qf()p has degree 4i for i =1,...,n.

Lemma 4.7. Consider H{;j(BSp,,/F2) = Falq1,. .., qn], with the coaction ¢ of (4.4).
(a) For alli=1,...,n, we have

n — iQ 2%
olai) = Z | ( i )362“ ® iy -
11+12=1

(b) The isomorphism of coalgebras v: H{j(Bua/Fo) — H}

sing

(BZ/2;F2) together with the map

of comodules Hi;(BSpy,/F2) — HE,,(BSpy,; Fa) sending g¢; to ¢;°" induces an isomorphism of
bigraded Fo-vector spaces

Cotorye (Buy /) (F2s Hu(BSpoy /F2)) = Cotory.  (pz/97)my) (F2, Heing (BSpan; F2)).

Proof. (a) Since ¢ respects the gradings and H};(BSp,,, /F2) is concentrated in even degrees, the
rbx1-component of ¢(g,) must be zero for all h. To compute the z%-components, observe that
we have the following commutative square

H(BSpyy /F2) 2> H(BGLay /Fa)
Hi(Bua/F2) Hi;(BGm /Fa),

where Gy, is viewed as the center of GLg, and u9 as the center of Sp,,,. The conclusion follows
from Lemma 4.3(a) and Lemma 4.5.

(b) We have
H:ing(BSPQn; ]FQ) = FQ[qiop’ s 7q:10p]7
where qfOP has degree 4i for i = 1,...,n. The coaction map
¢top : Hs*ing(BSPQn; FQ) - s*lng(B(Z/QZ)’ FQ) ® :ing(BSp2n/F2)

has been computed in [Tod87, Proposition 3.4] and agrees with the formula that we have proved
in part (a). Recall (Remark 4.6) that we have an isomorphism of coalgebras

e Hiy(Bpa/F2) = Hjyo(B(Z/2L); Fa).

sing

Comparison of (a) with Toda’s formula for ¢*°P yields the commutativity of the following
diagram of graded linear maps

H{{(BSp,, /F2) H{i(Bua/Fa) @ Hij(BSpy,/F2)

o ]

* ¢ * *
Hsing(BSp2n; FQ) —H (B(Z/2Z)7 Fg) ® Hsing(BSPQn; F2)7

sing

where the vertical maps are induced by v and the graded algebra isomorphism

Hii(BSpa,/Fa) —> HZ (BSponiFa),  an > .

sing
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This induces the desired isomorphism between Cotor* (as graded vector spaces). O

4.3. Proof of the additive part of Theorem 1.5 for general linear and symplectic
groups. Let G' be one of the split reductive Z-groups GLy4y,12 and Spy, o, and let I' be the
center of G. We now prove that we have isomorphisms of Z-graded Fo-vector spaces

Hiy(BG/Fz) ~ Hip(BG/F2) ~ Hj,y(BG(C):Fa).

sing
In particular, this establishes Theorem 1.5(2).

Consider the Eilenberg-Moore spectral sequence associated by Theorem 1.3 to the central
short exact sequence

(4.8) 1 — T'p, = Gy, = G, — 1.

By Lemmas 4.3(b) and 4.7(b), its F2 page is isomorphic to the Ey page of the topological
Eilenberg-Moore spectral sequence of [Tod87, (4.1)] for the fibration I'(C) — G(C) — G(C).
Toda showed that the latter spectral sequence degenerates on the second page; see [Tod87, p.
99, line 8] for G = GL4y,42 and [Tod87, p. 102, line 9] for Spy,, . Therefore,

dimp, Hi(BG/Fy) < dimp, H;’ing(Bé(C); Fy)

for all ¢ > 0 (where the equality holds for all 4 if and only if the spectral sequence for Hodge

cohomology also degenerates). On the other hand, by [KP21b, Theorem 5.3.6] and the existence
of the Hodge-de Rham spectral sequence, we have

dimp, H{;(BG/Fy) > dimg, Hig (BG/Fs) > dimp, H;'ing(Bé(C); Fs).

We conclude that the algebraic Eilenberg-Moore spectral sequence associated to (4.8) degener-
ates and that we have equality of dimensions, as desired.

Remark 4.9. The same argument would also apply for n # 4m+2, if we knew that the Eilenberg-
Moore spectral sequence degenerates on the topological side in this case.

5. COMPUTATION OF COTOR

In this section we set up the main tool for an explicit computation of Cotor: namely, the
twisted tensor product construction (Construction 5.5).

5.1. Totalizations. Below, we will need the following notation. Let k be a field and let V*1:*2 be
a Z @ Z-graded vector space over k. Given a bihomogeneous element v € V12 we denote |v| :=
(deg; (v), degy(v)) where deg(v) := i1 and degy(v) = i2. Given a bigraded vector space V*1*2,
we can associate to it a Z-graded vector space V% by putting (V)¢ := @, 1,—;V1%2. For all
v € V2 we denote by |v|tor = degy (v)+degy(v) = i1+ the total degree of v. The totalization
functor V*1*2 s V' from Z2-graded vector spaces to Z-graded vector spaces is symmetric
monoidal with respect to monoidal structures given by the Day convolution®. In particular,
given a Z2-graded coalgebra C*!**2 or a Z?-graded algebra A*1*2, the corresponding totalizations
C*t and AY' are naturally a Z-graded coalgebra and a Z-graded algebra, respectively. Note
that the underlying (ungraded) coalgebra C and algebra A stay the same:

C = @il,igcil’iz ~ @i(ctot)i and A= @h,izAil’h ~ @i(AtOt)i.

n+m=1i V" ® Wm

2Namely (V*l,*g ® W*l,*z)i,j — @ S an,ng ) W'ml,rnz and (V* ® W*)L — @

mi+ma=j
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5.2. Twisting cochains. In this section we briefly remind the concept of twisting cochains
following [Pos11]. All the results hold true in the presence of extra L-grading for any abelian
group L (see [Posll, Remark in Section (1.1)]). We will assume that & is a field of characteristic
2, so we can ignore all the signs. Given a Z-graded vector space V = @,c7V? we denote by Vi
the i-th shift to the left, so that (V[i])P :== VP,

Let A a DG-algebra over k. Thus, A = ®pecz AP is a Z-graded?® associative algebra over k,
endowed with a k-linear map d4: A — A of degree 1 (in other words a Z-graded map A — A[1]),
such that d? = 0 and satisfies the Leibnitz rule d4(ab) = da(a)-b+a-da(b). We will assume A
is augmented, in other words that there is a preferred DG-algebra homomorphism e: A — k.

Dually, let C be a coaugmented DG-coalgebra and let n: k& — C be the coaugmentation.
One can consider a DG-algebra Homy(C, A)* defined as follows: the n-th graded component
Homy (C, A)"™ C Homg(C, A) is given by the space of graded maps C — A[n], the differential
d: Homy(C, A) — Homy(C, A) is given by the formula

d(f)=dco f+ foda,
and multiplication is defined by
frg=mao(f@g)oAc.

Here m4 and A¢ denote the multiplication and comultiplication maps on A and C' correspond-
ingly.
Definition 5.1. A k-linear map 0: C — A is called a twisting cochain if

(1) 0 is homogeneous of degree 1: § € Homy(C, A)!;

(2) ec=0on=0;

(3) daob+0x0=0.

Example 5.2. The zero map 0: C' — A[l] is a twisting cochain.

Given a coalgebra C with cougmentation n there is a canonical example of twisting cochain
provided by the Cobar-construction. For simplicity, let us only consider the case when C' is
classical: in other words, C'= C” and d¢ = 0. Let us also denote C := ker(n); non-canonically
one has C' ~ k @ C. The counital comultiplication Ac: C — C ® C induces a well-defined map
ZC : 6 — 6 ® 6

First, we recall the definition of Cobar-construction.

Construction 5.3 (DG-algebra Cobar,(C)). To a coaugmented coalgebra (C,7n) one can asso-

ciate a natural DG-algebra Cobar,(C') called its Cobar construction. By definition, the under-
lying Z-graded algebra

Cobarn(C’) = Tk(é[—l]) ~ @nzgé[—l]@m
is the free algebra on C[—1]. Note that various DG-algebra structures lifting the free algebra
structure on Cobar,(C) are in bijection with the graded k-linear maps C[—1] — Cobar,(C);

indeed, the differential extends uniquely from C[—1] via the Leibnitz rule. We put the cor-
responding map C[—1] C Cobar,(C) to be Ag: C — C @ C, which defines a Z-graded map

3In the L-graded setting we assume each AP has an extra L-grading and all linear maps in consideration
preserve this grading.
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C[-1] = (C[-1] ® C[-1])[1] C Cobar,(C)[1]. The augmentation Cobar,(C) is given by projec-
tion to the 0-th summand (given by k).
Explicitly, the underlying complex of Cobar,(C') is given by

0—2k—=-C—-00C—-CCxC —...
with the differential given by

ACobary () (1 @ ... @ cn) =Y a1 ®..®Ac(c)®...cn € oacanl
=1

while the multiplication is given by stacking the tensors together:

—k+l
(1®..0c) (,®..0d)=00..043d®..0d¢eC .

In the case C' = A has a compatible structure of Hopf algebra, this agrees with the DG-algebra
Ci(k,k) (see Remark 2.12). In particular, upon taking the cohomology we get an isomorphism
of Z-graded algebras

H*(Cobar,(A)) ~ Cotory (k, k).
Example 5.4 (Universal twisting cochain). There is a natural twisting cochain,

fcan: C — Cobar, (C)[1]

simply given by the composition of the projection C' — C and the embedding of the summand
C[—1][1] ~ C — Cobar,(A)[1]. One sees that eo§ = on =0, and also for c € C

(d 0 Ocan + Ocan * Ocan)(c) = Z(C) + Z(C) = QA(C) =0,

where A(c) € C ® C is considered as an element of Cobar,(C).

In fact this twisting cochain is universal: given any other twisting cochain §: C' — A[l] one
gets a map [—1]: C[-1] — A, which factors through C[—1], and which then extends to an
algebra map

T(9]—1]): Cobar,(C) --+» A

by multiplicativity. To see that it commutes with the differential it is enough to do so when
restricted to C'[—1] C Cobar,(C'), where this reduces exactly to Definition 5.1(3):

T(0[—1]) (dcobar,(c)(c)) = T(O[=1])(A(c)) = (ma o0 @00 A)(c))) = (0 x0)(c) = da(6(c)).

Moreover, by construction, one has § = T(#[—1]) o Ocan. The other way around, given a DG-
algebra homomorphism 7: Cobar,(C') — A one sees from the equation above that the restriction

1)lz: © — Al

(or rather its composition with C' — (') defines a twisting cochain between C' and A.
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5.3. Twisted tensor product. The choice of a twisting cochain 6: C' — A[1] (Definition 5.1)
allows to define natural functors between the categories of left DG-comodules over C' and left
DG-modules over A given by the twisted tensor product.

Construction 5.5 ([Posl1, Section 6.2]). Let (C,n) be a coaugmented DG-coalgebra and let M
be a DG-comodule over C' with the coaction map ¢pr: M — CR M. Let (A, €) be an augmented
DG-algebra and let 6: C' — A[l] be a twisting cochain. The twisted tensor product A ®¢ M is
the left A-DG-module given by A ® M endowed with the natural action of A from the left and
the differential

dg(a @m) = da(a) @m+a@dy(m) +a- (0 ®idy)(dc(m)).

Remark 5.6. Similarly, if N is a DG-module over A, one defines the C-DG-comodule C'®g N by
taking C ® N with the left coaction of C induced by the one on itself, and with the differential
dg defined as

do(c®n) =dc(c)@n+c®dpy(n)+c® (6(c) - n).
By [Posll, Theorem in (6.5)], in the case C' is conilpotent, the functor A ®y — is left adjoint
to C' ®9 —, when considered as functors between the homotopy categories of DG-categories of
A-DG-modules and C-DG-comodules.

Example 5.7. Let C be classical and let 0¢.,: C — A be the universal twisting cochain from
Example 5.4 for A = Cobar,(C). Let M be a classical C-DG-comodule, meaning that M = M
(with dy; = 0) and let ¢,;: M — C ® M be the composition of the coaction ¢pr: M — C @ M
and the projection C ® M — C ® M. Unwinding the definitions, the twisted tensor product
A ®g,,, M is identified with the complex

0-M—-COM—-CCM — ...
with the differential dy given by
do(c1 ® ... ® cp ®@m) = doopar, () (C1® ... @) @M + 1 ®...Q ¢y, @ Py(m) =

n
:Zc1®...®ﬁc(c,~)®...cn®m + 6 ®...0 ¢ @by (m),
=1

which agrees with Cx (M, N) from Construction 2.6 for A = C', N = k and M = M. In particular,
H*(A ®g,,, M) computes Cotory,(k, M), and the natural A-DG-module structure on A ®q_, M
agrees with the natural action of Cotorg(k, k) on Cotory,(k, M) by passing to cohomology (using
Remark 2.12).

Sometimes, one can find a smaller DG-model for Cobar, (C) that would still allow to compute
Cotorf(k, —). Usually, for that some assumptions on the coalgebra C' are also necessary.

Definition 5.8. A twisting cochain 6: C' — A[l] is called acyclic if the induced map of DG-
algebras

T(]—1]): Cobar,(C) — A
from Example 5.4 is a quasi-isomorphism.

Definition 5.9. A classical coalgebra C is called conilpotent if any classical C-comodule M has
an exhaustive filtration indexed by N with the associated graded given by the trivial comodules.*

4Namely, comodules M where the reduced coaction ¢rr: M — M ® C is the zero map.



24 DMITRY KUBRAK AND FEDERICO SCAVIA

Remark 5.10. The underlying coalgebra of the Hopf algebra defining a unipotent group k-scheme
is conilpotent (see [Jan03, 1.2.14(8)]).

Lemma 5.11. Let C' be a classical conilpotent coalgebra, and let M be a classical C-comodule.
If 6. C — A[l] is an acyclic twisting cochain, then

(1) There is a natural isomorphism

Cotorg(k, k) ~ H*(A)
of Z-graded algebras;
(2) There is a natural isomorphism
Cotorg(k, M) ~ H*(A®g M).
Moreover, the left action of A on A ®g M agrees with the natural action of Cotorg:(k, k) on
Cotorg(k, M) by passing to cohomology.
Proof. The isomorphism in (1) is induced by the DG-algebra map
T(9[—1]): Cobar,(C) — A

after passing to cohomology. Indeed, by the definition of acyclic twisting cochain that map is
an equivalence. Moreover, by functoriality of the twisted tensor product we also get a map of
complexes
Cobarn(C) ®gcan M- A ®o M.

Since C' is unipotent, M = colim,>o M, where M, /M,_; is given by some vector space V'
with the trivial coaction. The map above is the colimit of analogous maps for M replaced by
M, and since the filtration on M is exhaustive it is enough to show that the map is a quasi-
isomorphism on the associated graded pieces. Since the coaction is trivial we can identify the
map Cobar,(C) ®g,,, gr, M — A ®y gr,, M with the tensor product

T(0[-1]) ® idg, ar: Cobar,(C) ® gr, M — A® gr, M,

which is a quasi-isomorphism by (1). Finally, the compatibility of the actions follows from the
commutativity of the diagram

Cobar,(C') ® Cobar,(C) ®y,,, M — Cobar,(C) ®q,,, M

l i

ARQARy M A®g M

(with horizontal arrow given by the left action, and vertical one induced by T(6[—1])) and the
discussion in Example 5.7 by applying H*(—). O

5.4. Twisting cochains for A; and A,. For simplicity® further we will assume that k = Fy.
We regard Fy as a trivial left and right comodule over any Hopf algebra over F9 via the counit
map.

5This way any coefficient in any k-linear expression is either 0 or 1.
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Construction 5.12. Consider the primitively generated Z2-graded Hopf algebras
(5.13) Ay = TFylzs], Ay = Falzy, 20]/(22),
where the bigradings of the generators are |z1| := (1,0) and |z2| := (1,1). Their total gradings

are |ziltot = i. As before, by “primitively generated,” we mean that x; and zy are primitive
elements, that is, the comultiplication map sends x; to x; ® 1 + 1 ® x; for i = 1, 2.

Remark 5.14. We note that Ay ~ H};*(BG,/F2) and A" ~ H}j(BG,,/F2) ~ Hjs (BG,/F),
while Ay ~ Hy;*(Bpus/F2) and A" ~ H}i(Bpus/F2) ~ H}p (Bpusa/Fa).

Remark 5.15. The affine k-group scheme Spec A; can be identified with G,, while Spec As is
naturally isomorphic to G, X as. Both group schemes are unipotent, so coalgebras underlying
A1 and As are conilpotent.

We will now define some explicit twisting cochains for A; and Ag, essentially following [Tod87].
Below we consider A; (resp. A?) as a classical DG-coalgebra in Z?-(resp. Z)-vector spaces.

Construction 5.16 (Twisting cochain for A;). (1) Consider a Z2-graded polynomial alge-
bra
R1 = FQ[Z37Z5’ R LN P ]
with the bigrading of the variables given by [zgn | = (2"=1,27=1) The corresponding
total grading is |z;|tot = ¢ — 1. We endow R; with augmentation 7;: Ry — Fa by putting
m(z;) = 0 for all 7.
Let us consider Ry as a DG-algebra in Z?-graded vector spaces by assigning to each
z; a DG-grading 1 (which we will also denote deg, further) and letting the differential d
to be 0.
Consider an Fy-linear graded® map 6;: A; — R1[1] by setting:
o 01(23") = zpne1yy;
. Hl(asg) = 0 if j is not a power of 2.
It induces a map 6i°%: A" — R°[1] as well.
(2) Similarly, consider a Z2-graded polynomial algebra
R2 = ]FQ[ZQ, 235 RZ5y ey RQh g1y ]
with bigrading |z2| = (1,0) and |zgn,q| = (2"71,2"71) for h > 1. The total gradings
again are given by |ziltot = @ — 1. We endow Rp with augmentation ns: Ry — Fy by
putting 72(z;) = 0 for all 4.
As above, we consider Ry as a DG-algebra in Z?-graded vector spaces by assigning to
each z; grading 1 and putting the differential d to be 0. Define a graded map 65: Ay —
Ry[1] by:
o Oy(x1) = 29,
O2(23") = zon4141,
92(3:%) = 0 if j is not a power of 2,
O2(z125) = 0 for all [ > 1.
It also induces a map 65°": A" — RIPU[1].

6Here —[1] denotes the shift with respect to the DG-degree.
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Lemma 5.17. The maps 0;: A; — R;[1] define twisting cochains that are acyclic.
In particular, the corresponding DG-algebra maps T(0;[—1]): Cobar(A;) — R; are quasi-
isomorphisms and induce an algebra isomorphism

Cotory, (F2,F2) ~ R;
by passing to cohomology.

Proof. Properties (1) and (2) of Definition 5.1 are obvious by construction. Let ug,: R; @ R; —
R; and Ap,: A; — A; ® A; denote the multiplication and comultiplication maps, respectively.
Since dg, = 0, to prove (3) we need to show that

mRp, © (0; ®6;) o Ap, =0.
Suppose first that i = 1. If 2 =3~ ', then
M@ =Ywetriony = ¥ (¥)des™
J J,0<h<a;
We have 601 (x}) ® 6; (:r:gj_h) =0 unless h = 2¢ and a; — h = 2¢ for some d,e > 0. In that case
d e e d
(1R, © (01 ® 61)) (23 ®a3) = zpar14129e41 41 = (1R, © (61 © 61))(23 @ a3).
2d+2e)

Since ( od
hence (g, o (61 ® 61) 0 Ap)(z) = 0, as desired.

Suppose now that i = 2. We can write z € Az as 1> _,5025" + > .5 azgj. Then

d e . . d e d d e d
= (2 24;2 ), the contributions of (2 ;@2 ):):% ® 23" and (2 ;;2 )x%e ® x3" add to zero,

Ap(@)=(@1014+1021)) (22@1+1®22)% + > (22014 1@ 3)% =
i i

a; —h —h bj bj—h
= Z (}:) (mm%@x% +oh @ zi2§ ) + Z <}i>x;‘®m2ﬂ .

,0<h<a; 3,0<h<b;

Again we have that f2(24) ® 92(xgrh) = 0 unless h = 2¢ and b; — h = 2°¢ for some d,e > 0,

d e e
and so, as above, contributions to mpg, o (f2 ® 02) o Ap,(x) coming from (2 ;2 )x%d ® x3" and

(2d;2e)x%e ® 22" cancel each other. Also, fy(z12h) ® 92($;j_h) = 0 unless & = 0 and a; = 2" for
some n > 0 and, similarly, 5(z%) ® Gg(zclx;j_h) = 0 unless h = a; and aj = 2".

It remains to show that the twisting cochains 6; are acyclic. By Remark 5.15, Cotor}  (F2,[F2)
is computed by the group cohomology RI'(G,,Fs3). By [Jan03, Proposition in 1.4.27] the latter
is given by the polynomial ring Fa[t;, %, ...] in infinitely many generators t; € H'(G,, F2). The
underlying complex of Cobar(A;) is given by

d d
0 — Fy = @oFa[xo] — (22F2(w2]) ® (z2Fafza]) — ...

with d; sending z to (z2®@14+1®z2)" —2h ® 1 — 1 ® 2§ € xoFa[xa]) @ (xoF2[z2]). By Lukas’s
theorem for binomial coefficients we get that di(z4) = 0 if and only if n is a power of 2. Recalling
the definition of #; we see that the map

T(@l[—”): Cobar(Al) — Ry ~ Fg [23, 25, . . ]
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induces an isomorphism on H!, and, since the cohomology of both sides are polynomial rings in
H', is a quasi-isomorphism.

Similarly, by Remark 5.15 Cotor}, (F2,F2) is computed by the group cohomology RT'(G, x
ag,Fa) >~ RI'(G,, Fa) ® RI' (a2, F2). By [Jan03, 1.4.26(2)] cohomology H* (a2, F2) is given by the
polynomial ring Fa[tg] on a class in degree 1. Consequently, H*(G, x ag,Fo) ~ Fa[to, t1,12,.. ]
is again a polynomial ring in infinitely many generators. Cobar(As) is given by

0— Ty d—O>K2d—1>K2®Kg—>...

with d; sending 25 to (22 @ 1+ 1R x9)" = (1@ 1+ 1@ 22)" — 28 ® 1 - 1® 2% € Ay ® Ay,
which is 0 only if n is a power of 2, and 12 to (z1 ® 1+ 1®z1)(z2® 1+ 1 ® x2)™ which is 0 in
Ay ® Ay if an only if n = 0. So we get that H' is generated by z; and {L‘%h for h > 0. Looking
at the definition of #; and arguing as for #; we get that the map

T(02]—1]): Cobar(A2) — Ro ~ Fo[z9, 23, 25, . . .|
is a quasi-isomorphism. U
Remark 5.18. Lemma 5.17 shows that the DG-algebras Cobar(A;) are formal.
Corollary 5.19. Let M be a graded A;-comodule. Then there is a natural isomorphism
Cotory, (F2, M) ~ H*(R; ®¢, M, dy,)

where 0; is the twisting cochain from Construction 5.16. Moreover, Cotory. (Fz,Fa)-module
structure on Cotoryy (Fo, M) agrees with left action of R; on the twisted tensor product R; ®q, M .

Proof. This follows from Lemmas 5.11, 5.17 and Remark 5.15. O

Remark 5.20. For the reader’s convenience, let us describe the resulting complex (R; ®q, M, dy,)
more explicitly. Let M be a Z2-graded left A;-comodule. Consider the tensor product R; ® M;
cohomological grading on R; ®g, M corresponds to deg,-grading on R; and zero grading on M.
The resulting complex (R; ®q, M, dgi) looks as

dy,
50 (R @ M)PE=0 2 (g @ pryden=t 2 (g prydem=2 Dy

or, to write down explicitly the first few terms:

dy. dyg. dg.
.—)0—)M—GL>M®(EBJ‘FQ~Z]')iL)M@(@jlngFg-Zjlsz)—GL)....

Here, every term has an additional Z2-grading (coming from (non deg,) Z?-grading on R; and
the Z2-grading on M).
The complex (R; ®g, M, dy,) is a DG-module over R; (with differential on the latter being 0),
so dp, is linear with respect to all z;’s. On M (in degree 0) dp, is given by the composition
MR oM 22 R e M,
where ¢pr: M — A; ® M is the coaction on M and 6; is the twisting cochain 6;: A; — R;[1].
This defines dy, uniquely.
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5.5. Controlling multiplication. Let A be a (Z2-graded) comodule A;-algebra. Given Corol-
lary 5.19 it is natural to ask if one can enhance the isomorphism in Corollary 5.19 for M = A to
an algebra isomorphism. Unfortunately, the twisted tensor product construction doesn’t inter-
act well with multiplication, and typically there is no natural DG-algebra structure on R; ®q, A
compatible with the multiplication on A.

Nevertheless, here is an observation which partially remedies this problem. Let i € {1,2} and
A be a (Z2-graded) comodule A;-algebra. Recall the subalgebra PA C A of primitive elements
in A; by definition the coaction of A; on PA is trivial. We have a natural map of complexes
given by twisted tensor products

R; ®9, PA —— R; ®p, A.

Since the coaction ¢pps: PA — PA® A; is trivial the differential on R; ®g; PA is zero, and so
R; ®p, PA ~ H*(R; ®p, PA,dp,). We thus get a natural graded map

R;® PA —— R; X9, A == COtOrzi (FQ, A)
Let us endow R; ® PA with the algebra structure induced by algebra structures on R; and PA.
Lemma 5.21. The composite map R; @ PA — Cotor}y (F2, A) is an algebra homomorphism.

Proof. There are many ways to see this, but let us justify the claim using Cobar construction.
Namely we have a roof

Ri® PA <% Cobar,(A;) @, PA — > Cobar(A;) ®g,,, A

with the left arrow induced by the universality of .., (Example 5.4), and where the right
arrow can be identified with the DG-algebra map C} (Fa, PA) — C} (F2, A) (endowed with
Alexander-Whitney product, see Remark 2.12 and Example 5.7). We can rewrite the roof above
as

Ri®PA <2 Cf (Fy, PA) — C3.(Fs, A)
Since the coaction on PA is trivial, there is in fact a quasi-isomorphism of DG-algebras

(as follows e.g. from Remark 2.12). Thus the left arrow above is also a quasi-isomorphism of
DG-algebras by Lemma 5.17. The map in question is given by the map induced on cohomology
by the roof above; since the right map is also a map of DG-algebras (with DG-algebra structures
lifting the multiplication on Cotor) we get that the map R; @ PA — Cotor} (IFg, A) is an algebra
homomorphism. [l

6. DECOMPOSING COMODULE ALGEBRAS

In this section we extend a key computational lemma of Toda that allows to decompose a
graded Ai-comodule algebra A as a tensor product of two simplier things, to graded As-comodule
algebras. This will be used in Sections 7 and 8 to compute the bigrading on the Fs page of the
Eilenberg-Moore spectral sequence for PGLyy,+2 and PSOgp, 4.

Let i € {1,2}. Let A be a Z?-graded left A;-comodule algebra and ¢: A — A; ® A be the
corresponding coaction map.

Assume first that ¢ = 1. Recall that A; ~ Fa[xs|, where x4 is primitive and |zo| = (1,1).
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Construction 6.1. For all j > 0, define linear maps d;: A — A of bidegree (—j, —j) by
o(a) =Y w3 @ dj(a).
Jj=0
For all a,b € A, we have
1+ J
62 d=a = Y d@be.  dd@= (")
i+j=h

Example 6.3. Let us view Ay as Hy; (BGy,/F2) and consider the comodule algebra given by
H;"(BGL, /Fy) =~ Falci,...,cy), as in Section 4.1. Then from Lemma 4.3(a) one sees that

di(cj) = (nffﬂ)cj,i, where we put ¢ == 1.

One has the following lemma by Toda, which allows to decompose A into two simpler parts,
provided that there is an element a; € A satisfying a special condition.

Lemma 6.4. Let q be a power of 2, and let ay € A be a bihomogeneous element such that
dg(ay) =1, dn(ay) =0 for all h > q.

Consider the linear subspace
P,A={aec A:di(a) for alli > q} C A.

Then the map Falz] @ PjA — A with || := |ag| = 2q given by f(xz) @ b — f(ay)b is a bigraded
linear isomorphism. Consequently, the projection A — A/(ay) induces an additive isomorphism
P,A >~ Af(ay).

Proof. This is [Tod87, Lemma 3.7]. Even though A is Z-graded in loc.cit., the same proof works
in the bigraded setting (this is because ay is bigraded, and so the d; are bigraded). Our F,A is
denoted there by B. O

Remark 6.5. The main point of Lemma 6.4 is that it provides a unique lift of an element in
A/(ay) to an element in P;A C A (in other words, to an element of A on which d;’s act by 0 for
i > q).

Construction 6.6. The additive isomorphism P;A ~ A/(ay) induces a new multiplication * on
P,A by setting

(6.7) axa =d"ifad =d” (mod ay).

Remark 6.8. In the case g = 2, following [Tod87, p. 92] there is also an explicit formula for the
x-product:
(6.9) axa =a-d +di(a)-di(d) - a.

Indeed, a * a’ = aa’ (mod ay), so it is just enough to check that the right hand side lies in P> A.
From the relations in (6.2) it is clear that d;(a * a’) = 0 for 7 > 2, while

da(axa') =dy(a-a')+da(di(a) - di(a’) - ay) = di(a) - di(a') + di(a) - di(a") -1 = 0.

It also follows from the formula above that if one of the a or a’ belongs to PA C PA, then
axd =a-d.
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Example 6.10. Continuing Example 6.3, let n = gk where ¢ is a power of 2 and k is odd. Then
qk
dq(Cq) = ( ) cCo = 1.
q
In particular Lemma 6.4 applies to A = H{;"(BGL,, /F2) ~ Fs[cy, ..., c,] where we take ay to be
Cq-

Remark 6.11. It is immediate from the formula for d;d; in Construction 6.1 that d;: A — A
preserves F; A and that d? = 0. Thus d; can be con81dered as a differential on A as well as any
of the subalgebras P,AC A
Note, however, that d; doesn’t satisfy the Leibnitz rule with respect to the *-multiplication
on P,A. Instead, one has the formula
di(a*xb) =dy(a) *xb+axdi(b)+di(a)-di(b)-a
It follows that d; is at least P A-linear.

Remark 6.12. Lemma 6.4 also works in the Z-graded setting, namely when we consider A{°" and
a Z-graded A{°*-comodule algebra A.

Assume now that i = 2. Recall that Ay ~ Fo[z,x2]/(2?), where both z; are primitive and
|$1| = (170)5 |‘T2‘ = (17 1)

Construction 6.13. For all j > 0, define maps daj,daj1: A — A of bidegrees (—j, —j) and
= Zxé ® dgj(a) + Z.CI}L’EJQ ® d2j+1(a).

J=0 J=0
Again, we have

(6.14) do(a) = a and didj(a) = (Z —L_]> diyj(a).

The formula for d;(ab) is, however, different from Construction 6.1, due to the fact that z% =
0 € Ag: namely, for all a,b € A, we still have

donii(ab) = Y di(a)d;(b)

i+j=2h+1

but

(6.15) don(ab) = > dai(a)da;(b
i+j=h

with the terms in the sum only having even indices.
Here is a version of Toda’s lemma for As-comodule algebras.

Lemma 6.16. Let ¢ > 1 be a power of 2, and let ay € A be a bithomogeneous element such that
dg(ay) =1, dn(ag) = 0 for all h > q.

(a) Consider the linear subspace
P,A:={ac A:di(a) =0 for all i > q}.
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Consider the polynomial ring Fo[z], where |x| = |ag| = (¢/2,q/2). Then the map Fa[z] @ PjA —
A given by f(x) ® b f(ay)b is an Fa-linear isomorphism.

(b) If ¢ = 2, then PoA is a subring of A and the map Fao[zx] @ PbA — A in (a) is a ring
isomorphism.

Remark 6.17. Let us point out that there is no analogue of Lemma 6.16(b) in the setting of
Lemma 6.4.

Remark 6.18. As with Lemma 6.4, Lemma 6.16 also works in the Z-graded setting, when we
consider A" and a Z-graded A%°*-comodule algebra A.

Proof. (a) The proof is analogous to that of [Tod87, Lemma 3.6]. To prove injectivity, it suffices
to show the following: if by,...,b, € P;A are bihomogeneous and > aébi = 0, then b =
.-+ = b, = 0. To see this, suppose by contradiction that b, # 0, and let h > 0 be such that
dp(by) # 0 and dps (b)) = 0 for all A’ > h. (Such h exists, because dy(b.) = b,.) Note that by our
assumptions on a4 and multiplicativity (6.15) we have dyq(aj) = dg(ay)” = 1. We then also have

0= drgn(D_ aihi) = drg(af)dn(br) = dn(br) # 0,
=0

a contradiction.

We now prove surjectivity. It suffices to show that every bihomogeneous element a # 0 of
A is in the image. Let h be the maximal integer such that dp(a) # 0, and write h = qj + I/,
where 0 < b/ < ¢. For all s > I/, dydgj(a) is a multiple of dsiq;(a), hence zero. Note that
this means that dg;(a) € P,A. Since ¢ is a power of 2 and &' < ¢, e.g. by Lucas’s formula we
have (qj:[,hl) = 1, and so by (6.14) we have dy/dgj(a) = dp(a). Setting b = dy;(a) € P,A and
a =a— aﬁb, then for all i > 0 we have

h/
di(d') = di(a) = > di_(a)ds(b).
s=0

We now show that d;(a’) = 0 for all # > h. Indeed, if i > h, then i — s > gj for all 0 < s < I/
and so, due to the multiplicativity of ¢, we have di,s(aé) = 0. It follows that d;(a’) = d;(a) =0
for all ¢ > h. On the other hand, when i = h, then

dp(a’) = dn(a) — dgj(a))dp (b) = dn(a) — (dg(a)) dn(a) = du(a) — dn(a) = 0.

Thus a = aﬁb + a’, where d;(a’) = 0 for all 4 > h. Since a, a4 and b are bihomogeneous, aﬁb and
a’ are homogeneous of degree |a|. Therefore, applying the same reasoning to o’ and iterating,
we eventually write a as Y ;_ aébi for some b; € B.

(b) Let a,b € PyA. Then ¢(a) = a + di(a)z; and ¢(b) = b+ di(b)x1. Since 22 = 0, we
obtain ¢(ab) = ¢(a)p(b) = ab + (di(a) + di(b))x1, that is, ab € PyA. It follows that P»A is a
subring of A. It remains to note that the explicit formula for isomorphism in (a) is obviously
multiplicative. O

Remark 6.19. Tt follows from Equation (6.14) that d3 = 0 and that d; preserves P;A. Thus, as
in Remark 6.11, dy defines a differential on both A and P,A C A.
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Remark 6.20. We also get that the differential d; satisfies the following cyclic equation:
(6.21) dq (ab)dl(c) + dl(bc)dl (a) +d; (ac)dl(b) = 0.
Indeed, the latter expression is nothing but d;(d;(abc)), which is equal to 0.

7. HODGE COHOMOLOGY OF BPGLyu 42

The goal of this section is to prove Theorem 7.16, which gives an explicit description of
Hﬂ’*(BPGLLLmH /F2) and Hji (BPGL4y42/F2) as bigraded and graded algebras, respectively.
It also implies Theorem 1.5(1) for G = PGLyy,12. For the proof we use the Eilenberg-Moore
spectral sequence (Theorem 1.3) and the strategy devised by Toda [Tod87] in the topological
setting.

Consider H;‘I’*(BGL4m+2 /F2) as a Hﬂ’*(BGm /Fa)-comodule algebra. By Example 6.10, if we
take ay = c3 € HII{’I(BGL4m+2/F2), then Lemma 6.4 applies.

We will start by identifying the subalgebras

PH;_(I7*(BGL4m+2/IF2) C PQH;I’*(BGL4m+2/F2) C H;_KI’*(BGL4m+2/F2).

Recall that the operation d; (defined in Construction 6.1) induces a PHyy" (BGLuyy42/F2)-linear
differential on PQHE’*(BGL4m+2 /F3); see Remark 6.11.

Lemma 7.1. Assume that n = 4m + 2.
(a) There ezists a unique sequence
1, ..., Camy2 € Hyj" (BGLym42/F2)
such that ¢; has bidegree (i,i) and
(1) ¢; are polynomial generators: Hﬂ’*(BGL4m+2/F2) =TFslc1,¢ ..., Camsal;
(2) Cl = C1, C2 = C2;
(3) for all j > 1, we have
C2j = C2; (mod 02) and Coj € PQHIij(BGL4m+2/F2)
(s0 di(c25) =0 fori>2).

(4) C2j-1 = d1(C25);
C25—1 1S primitive: C2j—1 € PHI?*(BGL4m+2/]F2)

(b) (1) The subalgebra PyHy" (BGLamt2/F2) C Hy (BGLamg2/F2) is freely generated by
C1,C3,C4,C5, - - -, Cam+2 under the x-multiplication (see Construction 6.6);
(2) For all1 < h <2m+ 1 define elements
bh ‘= Caop, * Cop, + C1Co24Cop—1 € HﬁhAh(BGLn/}FQ).
Then by, € PH;™ (in particular, by, € PyHy" and dy(by) = 0) and the natural map
Fale1, ba, ..., bami1] —— H*(PoHy" (BGLym12/F2),d1)
is an tsomorphism.
(¢) For any (unordered) tuple of integers I = {iy, ... i} write [(I) =1 and d(I) ==Y} _ ix.
Define
yr = dy(Co, % ... % Ty, ) € PHEUD 12D (BGL, /Fy).

In particular, yg;y = C2i—1.
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(1) The subalgebra PHy;"(BGL,/Fs) C Hi"(BGL,, /F2) of primitive elements is gen-
erated by c1, by, and yr for I = {1 < iy < ... < i, < 2m + 1}, and the relations

given by
Yrys = Z y(IfK)uJy{kl}--'y{ks}cll(K)il,

0£KCI
for all subsets I,J C {2,...,2m + 1} and where we put

Ylhohtyends} = Y{gends OB T Ylhoj e g Y(n1CL-
(2) PH{;*(BGL,/F2) is a finitely generated module over the polynomial subalgebra
F2[61,63,65, eeoy Com—1, bz, bg, ceey b2m+1] C PH;I’*(BGLTL/FQ).

Analogous statements hold with Hodge cohomology replaced by de Rham cohomology. (In this
case C;, by, yr € Hjg have degrees 2i, 8h and 4d(I) — 2, respectively.)

Proof. We first show the statement for the Z-graded algebra Hj;j(BGL,/F3), that is, we only
keep track of the total grading instead of the bigrading. By Lemma 4.3(b), it suffices to prove
the analogous assertions in the topological setting. Thus (a) and (b1) follow from [Tod87, Propo-
sition 3.7], (b2) is given by [Tod87, Lemma 3.10(ii)], and (c) follows from [Tod87, Proposition
3.11).

It remains to explain the bidegrees of the elements. The ¢; are constructed from the ¢; by
applying Lemma 6.4. In particular, since the isomorphism of Lemma 6.4 respects the bigrading,
¢; and ¢; have the same bidegree (i,7). The #-product preserves bigrading and so we get by, is
homogeneous of bidegree (4h,4h). Similarly d; reduces the bigrading by (1,1) and so we get
lyr| = (2d(I) — 1,2d(I) — 1). Everything works similarly in the de Rham setting where the
degrees of ¢;, by, and y; are given by 2i, 8h and 4d(I) — 2, respectively. O

Remark 7.2. Let us comment upon the logic behind the statements of Lemma 7.1 (and how the
proof could go without appealing to [Tod87]). Having Lemma 6.4, it is more or less immediate
that PyHyy"(BGL,,/F3) is isomorphic to the polynomial ring over ¢,¢3,%4, ..., Camt2 via the
+-multiplication. The subalgebra PH{;*(BGL,, /F2) C PoHy;"(BGL,,/F2) then is identified with
the kernel of the differential d; on PoH{;"(BGL,/F2). One can understand this kernel in two
steps: first, by finding a subalgebra in Ker(d;) that maps isomorphically to the cohomology
H*(PyHy" (BGL,, /F2),dy) of di — this is given by Faler, ba, ..., bam+1]; second, by describing
the image of di — the latter contains elements ¢9;_1, and the whole image is spanned by the
remaining y;’s (with [(I) > 2) over the polynomial algebra Fa[c1,€3,Cs, .. ., Cagr1, 02, - - - b2my1]-

The reader can also look at the proof of the analogous statement for BSOyy, 42 (Lemma 8.5),
which is slightly more natural due to the fact that the *-multiplication on PgHﬁ’*(BSO4m+2 /F2)
coincides with the usual one.

Example 7.3. Formulas for the elements ¢, € PyH;" (BGLap2/F2) C Hjy(BGL4y12/F2) =~

Fale, ..., cam+2] get complicated pretty fast as i grows. Here are the first few of them:
=0 Ca = Co C3 = c3 + mcil)) Cq4=cqg+m(ca+ C%)CQ
G5 = c5 + cqc1 + c3(co + C%) C6 = cg + (ca + c3c1)ca.

Let us also record that

_ _ _ ) ) _
by, = Cop, * Cap, + C1C2pCon—1 = Cap, + Cap_1C2 + C1C24Cop—1
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(here we simply use the explicit formula for *-product from Remark 6.8).

Remark 7.4. Note that since all alements c1, ba, . . ., bap41 are primitive (so lie in PH{;" (BGL,, /F2))
by Lemma 7.1(b) we get that the natural map

PH"(BGLy/F2) —— H*(PHy;"(BGLam2/F2), dv)
induced by embedding PHy;"(BGL,,/F2) C PoH;y" (BGL4m12/F2) is a surjection.
We can now compute the Es-page of the Eilenberg-Moore spectral sequence.

Lemma 7.5. Assume that n = 4m + 2, for some integer m > 0. Then
Cotor};,*(BGm/Fz) (Fo, Hi7" (BGLap12/F2))
is isomorphic, as a 7 @ Z*-graded’ algebra, to
(1® PHy"(BGLay12/F2)) @ (23F2[23] @ Fafer, balp 5 ),

where the gradings of the elements are |c1| = (0,1,1), |by| = (0,4h,4h), |z3| = (1,1,1).
Analogous assertion holds with Hodge cohomology replaced by de Rham cohomology (with the
corresponding Z & Z-gradings |c1| = (0,2), |bn| = (0,8h), |z3] = (1,2)).

Remark 7.6. Here the algebra structure on the direct sum above is induced by the surjective
homomorphism

(77) ¢: PH;I’*(BGL4m+2/F2)) — H*(PQHE’*(BGL4m+2/F2), dl) ~ [Fy [Cl, bh]izg_l,

(the last isomorphism is Lemma 7.1(b)).

More precisely, let ¢: A — B be a homomorphism of L-graded algebras and z a formal
variable; then we can define a (Z @ L)-graded algebra Ay . with the underlying vector space
A® (dj>1B27) as the pull-back

A¢>,Z =A XB B[Z],
where the map A — B is given by ¢, the map B[z] — B sends z to 0 and z has grading (1,07).
One can think of A, as the ring of polynomials {a +b1z+...+b,2"} where a € A, b; € B and
a-z2":= ¢(a)z".

The lemma then claims that Cotorilﬁ,*( (Fs, Hfl’*(BGL4m+2 /F2)) is isomorphic to Ay .

BGm/F2)
for z := z3,

A = PH{;"(BGLym+2/F2)), B = H*(PyHy" (BGLam2/F2), d1) =~ Faler, byl7m3
and ¢ given by (7.7).

Proof. Consider the natural map PHy;" (BGL, /F2)®R; — COtOf*H;(BGm/FQ)(FQ’ H{{(BGL, /F3))
as in Lemma 5.21. We will show that this map induces the required isomorphism. We have a

7Here, the Z?-component of the grading is coming from the bigrading on Hodge cohomology, and Z-component
is the Cotor-grading.
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commutative diagram of graded vector spaces

PH;(BGL,/F2) ® R, ~ PH,  (BGL,(C); Fy) © Ry
H*(Hf(BGLy/F2) ®g, R1) = » H*(Hg,s(BGL,(C); F2) ®g, F1)

| !

Cotor}‘{ﬁ(BGm/]Fz)(IFQ,H;I(BGL,L/IFQ)) — COtor*H;ing(BCX;IFg)(F27 BGL,(C);F3)),

smg(

where the top square is induced by the embeddings PHj;, — Hj; and PHS*1ng — Hg,, and
Lemma 4.3(b), while the vertical identifications in the bottom square come from Corollary 5.19.
Here, the elements z; € Ry, ¢;, by and y; from Lemma 7.1 are getting mapped to the analogous
elements (z;, @;, by and yr) in the notation of [Tod87, Section 3 and (4.7)]. The statement of
the lemma then follows from the analogous description in [Tod87, Section 3 and (4.7)]. To see
that the algebra structure above is the correct one, note that the maps in the outer rectangle in
the above diagram are homomorphisms of algebras by Lemma 5.21, and, by the description in
[Tod87, (4.7)], the composition of the vertical maps on the right is surjective, hence the same is
true for the composition of the two vertical maps on the left. O

Remark 7.8. For the reader’s convenience, let us also sketch the idea behind Toda’s compu-
tation on the topological side. First of all, [Tod87, Theorem 4.1] identifies the cohomology
H*(H, , (BGL,(C);Fy) ®¢, R1) with the cohomology of a subcomplex

sing

C = (P2 Ho (BGL(C); Fa) ® Folzs], do, |y @Fa(zs) C (Hang(BGLA(C); Fa) ®p, R, dp,).

sing

By the definition of dy,, its restriction to C' can be identified with d; ® z3. The cohomology
of C' then can be identified with H:mg(BGLn(C); F3) plus direct sum of infinitely many copies
of H *(PQHS*mg(BGL (C);Fq), d;) multiplied by powers of z3. Using the topological analogue of
Lemma 7.1(b) to describe the latter one arrives at the description of H*(H% _,(BGL,(C);F2) ®g,

sing
Ry) as in Lemma 7.5. Moreover, since H*(P2H,,(BGLy,(C); F2), d1) is generated by classes in
PH} (BGL,(C);F2) one gets that the map

sing
PH* (BGLn(C), Fz) QR —— COtOI‘;I:ing(BCX;FQ)(FQ, smg(BGL ((C), FQ))

sing

is a surjective homomorphism of algebras and one recovers the algebra structure on Cotor as
well.

Remark 7.9. Note that elements y; from Lemma 7.1(c) are defined as images under d; of ¢;, *
.. %G, € PH;"(BGL,/F3), and so they map to 0 under the map (7.7). Consequently, (by
Lemma 7.5) in Cotorj‘w,*(B(G /]FQ)(FQ’H;I’*(BGL4m+2/F2)) we have yyz3 = 0 for any I.
H m

Let us now compute Hodge and de Rham cohomology of BPGL,, for all n in degrees < 3.

Lemma 7.10. We have isomorphisms
(1) HI(_)I(BPGLn/IE‘z) ~ Ty,
(2) Hj(BPGL,/F2) ~ 0,
(3) H3(BPGL, /Fs) ~ HY 1(BPGan/IF‘Q) ~ Fy if n is even and H3(BPGL,/F2) ~ 0 if n is
odd,
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(4) HE(BPGL,/Fy) ~ Hy*(BPGL, /Fy) ~ Fy if n is even and HE(BPGL,/Fq) ~ 0 if n is
odd.

Entirely analogous assertions hold for de Rham cohomology. We will denote by xo and x3 the
unique non-zero elements in Hfl and HE’I in the case n is even.

Proof. By [Tot18, Theorem 2.4] and [CR10, Theorem 1.1] (cf. [Tot18, Theorem 8.1]) for every
split simple k-group G not of type C' we have

H}(BG/k) =H*(BG,0)® H'(BG, Q') @ H°(BG, Q%)
~H*(G, k) ® (g") © H (G, 5°(g"))
~H*(G, k) ® ()",

where g and t are the Lie algebras of G and a maximal torus T' C G, respectively, and where W
is the Weyl group of G. By [Jan03, II, Corollary 4.11], we have H°(G, k) = k and H*(G,k) =0
for ¢ > 0. Setting k = Fy and G = PGL,, yields

(7.11) HZ(BPGL, /Fy) = (t)V.
If G = PGL,,, then W = S,, and the S,,-representation t* fits into a short exact sequence
O—>t*—>F§9”£>IF2—>O,

where S, acts on ]F;e” by permutation and the map 3 is given by the summation of coordinates.
The invariants (F§")%" are spanned by the vector (1,1,...,1) which lies in t* if and only if n is
even. This gives (3); in particular, if n is even there is a unique x5 € (t*)%» ~ H'(BPGL,, Q')
such that

HZ(BPGL, /Fy) = Fy - zo.

To compute the other cohomology groups we will use a Leray-Serre-type spectral sequence.
Namely, let PGL,, act on P"~! as its automorphism group, and let P C PGL,, be the stabilizer
of (1:0:---:0) € P""1(Fy). We have Hj;(P"~1/Fy) = Fa[h]/(h™), where h has Hodge bidegree
(1,1) (meaning h € H*(P"~1, Q1) ~ HZ(P""!/Fs)). The Levi subgroup corresponding to the
parabolic P is isomorphic to GL,_;. Therefore, by [Tot18, Proposition 9.3] we have a spectral
sequence

(7.12) EY = Hy(BPGL,/Fy) @ H}(P""/Fy) = Hjiy(BGL,_1/Fs).
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We know HZ(BGL,—1/F2) = Fy and H(BGL,_1/F2) = 0. From this it is easy to see that the
E5 page of the spectral sequence (7.12) is given in low degrees by

2 h 2 h
1 0 0 1 0 0
0 1 0 @z 3 0 1 0 0 0
0 1 2 3 0 1 2 3
n even n odd
where 3 € H?(BPGLyp 12, Q') is defined by d3(h) = z3. Thus for all n we get
(7.13) HY(BPGL, /Fy) ~ 0.

We also get that
H(BPCGL,/Fs) ~ Hy*(BPGL,, /Fy) ~ Fy - 3
when n is even and
H}(BPGL, /Fy) ~ 0
if n is odd. This gives us the groups HY(BPGL,/Fs) for i < 3. By looking at the bigrad-
ing of generators it is also easy to see that the Hodge-de-Rham spectral sequence necessarily
degenerates in degrees < 3, and so

(7.14) Hj(PGL, /F2) ~ Hig(PGL, /Fy) for all i < 3. O
Now let us compute the rest of the Hodge cohomology ring in the case of BPGLygp, 2.

Remark 7.15. If n is odd, then 2 is not a torsion prime for PGL,, and by the general result
of Totaro [Tot18, Theorem 9.2] one has H{j(BPGL, /F2) ~ Hjy(BPGL,/F2) ~ Falca, ..., ¢y
where |¢;| = 2i. Thus understanding the case n = 4k + 2 is the next natural step.

Theorem 7.16. The bigraded ring H{y"(BPGLyy,42/F2) is generated by elements
w9 € Hyp' (BPGLyp12/Fa), @3 € Hyy>(BPGLyy,y2/Fa),
by € HE M (BPGLyp 2/Fs), yr € HE 2 BPGLyy, 10 /F).

Herel <h<2m+1,1=(i1,...,i5) €{l <iy < -+ <ip <2m+1}, andd(I) =i1+---+i,.
The relations are generated by

(7.17) yiys = Yy y(I—K)uJ?J{kl}~--y{ks}$lz(K)71a

0AKCI

(718) y{h,h,jl,...,js} = y{j1a~~-7js}bh + y{h,j17,,.,js}y{h}x2 = 07
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(7.19) x3yr =0 for all I.
Similarly, the graded ring Hjp (BPGLym42/F2) has generators xo € HgR, T3 € Hg’R, by, € Hgﬁ,
yr € Hﬁg{(l)fz, where h, I and d(I) are as above, and relations generated by (7.17), (7.18)

and (7.19). In particular, we have an isomorphism of graded rings Hjj(BPGLyp42/F2) ~
Hip (BPGLyp 12/ Fo).

Remark 7.20. From Lemma 7.1(c) and the conclusion of Theorem 7.16 one can see that there
is a slightly more compact expression for Hjj(BPGL4y,+2/F2) as the middle term in the short
exact sequence

3. 1w Bp* -
0 — Faolzg, 3,2, . ., bomy1] — Hy(BPGLyyi2/F2) 2 PH*(BGLyp12/Fa) — 0.

Proof of Theorem 7.16. Consider the Eilenberg-Moore spectral sequence of Theorem 1.3 associ-
ated to the short exact sequence

1 — Gpn — GLym+2 LN PGL4ypq2 — 1.

In Section 4.3 we proved that it degenerates on the Fy page, which (by the computation in
Lemma 7.5) is given by

(1 ® PH;I’*(BGL4m+2/F2)) D (Z3F2[Z3] ® g [Cl, b%]i@;l),

with Ey* ~ EQ" ~ (1® PHy* (BGLay42/F2)) and By ~ EX™ o (23F2[23] @ Fa[eq, b, 275 1).

Below let us denote by b}, € PH ﬁh’4h(BGL4m+2 /F3) the elements that we called by, in Lemma 7.5.

Let by, € Hﬁh’4h(BPGL4m+2/F2) be a choice liftings of b}, meaning that Bp*(by) = 1®b), (such a

lifting exists since the spectral sequence degenerates). Note that since Bp* preserves the Hodge

bigrading we can pick by to be bihomogeneous (explicitly, lying in Hﬁh’4h(BPGL4m+2 /F2)).
Recall that (by Remark 3.13) a homogeneous element

S (Cotoriqﬁ,*(BGm)(IFg,Hﬂ’*(BGL4m+2/F2)))h,j ~ (BT

gives a class in gri(Hﬁ’lﬂ (BPGLu4+2/F2)). We let i+ j+h be the “total degree”. For elements
in (1 ® PHy' (BGLyp42/F2)) the Z3-grading (i, j, k) is (0, s, t), while for 23 it is (1,1, 1).

Note that by Lemma 7.5 we have an embedding of the subalgebra Fa[23]®Fa[c1, b, . . ., by, 1] C
EX". Since HE(BPGLyyt2/F2) ~ Fy - zo and Hy(BPGLypi2/F2) ~ Fo - 23 and the ele-
ments ¢; and z3 are the only non-zero elements of total degree 2 and 3, respectively, they
must be the “images” of elements x5 and x3 from Lemma 7.10 in the infinity page Ex .
Here we identify E5° with the associated graded for the spectral sequence filtration, and
by “images” we mean the images in this associated graded. More generally, by definition,
the image of each by, is by, and so the subalgebra Fa[z3] @ Fafcy, by, ..., b5, ] is the im-
age in the associated graded of the subalgebra in Hj;j(BPGLyy,+2/F2) generated by g, x3
and by’s. In particular, we see that there are no non-trivial relations between zo,x3 and
bp’s (otherwise there would be some in the associated graded as well) and we get an embed-
ding Fa[xo, z3,b2, ..., bams1] C Hjj(BPGL4y2/F2). Moreover, looking at the description in

Lemma 7.5 once again, we see that xsFo[xa, x3,ba,. .., bant1] maps isomorphically to Ker Bp*
(indeed, this follows from the isomorphism z3Fa[cy, 23, ba, . . ., bam+1] = EZY* for the associated

graded). We thus have isomorphisms
(7.21) Im Bp* = PHyy" (BGLypy2/F2), Ker Bp* = x3Fa[xo, 23,b2,. .., bamy1].
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To complete the proof of Theorem 7.16, it remains to construct elements y; € H}j(BPGL4y,12/F2)
and show that all relations are generated by (7.17), (7.18), (7.19).
By Lemma 7.1, the subalgebra PH{y"(BGLuyy12/F2) is generated by

yr =y (i1, ..., ip) = dy(Coyy % ... % a5, ), I={i1,...,ir}, 1<i;<2m+1 forallj.

as an Fa[cy, b, ..., by, ]-module (here again we call by y; the elements that were called y; in
Lemma 7.1).

By the degeneration of the spectral sequence, we may pick y; € Hﬁdm_zmm_g(BPGL4m+2)
such that Bp*(yr) = v;. Recall from Remark 3.11 that the spectral sequence filtration on
H{{(BPGL4yy,42/F2) is given by column degree.

Note that E;’“* ~ z§]F‘2[23] ® Falcq, bh,...,b,] and 23 maps to z3 in the associated graded.
By Lemma 7.5 we have (23 ® 1) - (1 ® y7) = 0 in E5, hence z3yr = 0 in the associated graded in
the Eo-page. By Remark 3.11, this means that there exists f € Hjj(BPGL4pm42/F2) such that
z3yr = 23 f in Hjj(BPGL4m+2/F2). Replacing yr by yr — z3f, we now have Bp*(y;) = yr and
x3yr = 0, that is, (7.19) holds for such y;.

To check the relations (7.17) and (7.18) we proceed as follows. By Lemma 7.1(c), the relations
(7.17) and (7.18) hold after we apply Bp*, or, in other words, the difference of the left and right
hand sides lies in Ker Bp*. Since z3y; = 0 and every term in relations (7.17) and (7.18) contains
at least one yy, they are killed by multiplication by x3. However, by (7.21), no element in
Ker Bp* is killed by x3, hence relations (7.17) and (7.18) hold on the nose.

It remains to show that there are no further relations. Since we proved that the relations
in the proposition hold, we have the map from the ring in the statement of the theorem (call
it A*) to Hjj(BPGL4pm+2/F2). The associated graded of A* by the powers of x3 is isomorphic
to A* again and also coincides with the description of Cotor in Lemma 7.5 (via the description
of PH{;{(BGLyj42,F2) from Lemma 7.1) by an easy direct inspection. It follows that the map
to Fo-page is an isomorphism. Since both filtrations are complete, this implies the result for
Hodge cohomology. The proof in de Rham cohomology context is entirely analogous, using
(7.14) as the starting input in degrees < 3. O

Proof of Theorem 1.5(1) for PGL4m+2. The conclusion follows by comparing the explicit de-
scriptions in Theorem 7.16 and [Tod87, Proposition 4.2]. O

8. HODGE COHOMOLOGY OF BPSO4p10

In this section we compute the Hodge cohomology ring of BPSOyy,+2 (Theorem 8.17). This
then implies Theorem 1.5(1) for BPSOyy,42 by explicitly comparing the answers in the singular,
Hodge and de Rham settings. For the computation we again follow Toda’s strategy, but, contrary
to the PGLyy, 12 case, the details will be quite different.

8.1. Cohomology of BO, and BSO,. By the orthogonal group O, over Fy we mean the
corresponding Chevalley model, namely the group scheme of linear transformations of (F3", q)
that preserve the non-singular quadratic form ¢ = z129 + T324 + ... + Tp_2Tp_1 + x% in the
case n is odd and ¢ = x12x2 + ... + T,_1%, in the case n is even. The correct definition of
special orthogonal group SO,, in characteristic 2 is somewhat tricky: namely, if n is odd, SO,
is defined in the usual way as the kernel of the determinant map det: O, — uo, but if n is even
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one considers the “Dickson determinant” D: O, — Z/2 (see [CR10, Section 4.1.2]) instead, and
defines SO,, := ker(D) C O,,.
We briefly recall the structure of Hodge cohomology rings of the corresponding classifying
stacks BO,, and BSO,, established in [Tot18, Section 11]. If n = 2r is even then
H;I’*(BOQT/FQ) ~ Fg[ul,.. .,u2r] and H;I’*(BSOQT/FQ) ':IFQ[’U,Q,...,UQT]

with |uge| = (a,a) and |uget1] = (a,a+ 1). The natural restriction map Hy"(BOs, /F2) —
H{7"(BSO,, /Fs) induced by the embedding SOg, — Og, simply sends u; to 0 (and u; to u; for
i>2).

It is often convenient to pull-back cohomology of BOg, (and BSOy,) to the classifying stack
of a product of several copies of BOy inside. Namely, we have an embedding O5 — Os, which
induces a cover (BO2)" — BOg,. Let s;,t; € Hy"(BO4/Fs) to be the pull-back of uy,us €
H{7"(BO3/F3) under the i-th projection. By [Tot18, Lemma 11.3], the pull-back map

H;I’*(BOQT/FQ) e H;I’*(BOS/IFQ) ~ FQ[Sl, t1,82,t2,...,8p, tr]

is an embedding and sends

r
(8.1) U2q > Z til .. 'tia, U2q+1 Z Sj - Z ti1 s tia
j=1

1<i1 <+ <ig <1 1<ig < <ig<r
ip not equal to j

One can also get similar formulas in the case n = 2r + 1 is odd, but we won’t need them further,
so let us just refer the reader to [Tot18, Section 11].

Finally, let us note that by [Tot18, Theorem 10.1 and Theorem 11.1}, the Hodge-de Rham spec-
tral sequences for BO,,, BSO,, and Bus degenerate and induce natural isomorphisms of graded
rings H{j(BO,/F2) ~ Hip (BO,/F2) and Hf(BSO, /F2) ~ Hj, (BSO, /F3). This way the above
discussion also applies to the de Rham cohomology rings Hj, (BO,, /F2) and Hjg (BSO,, /F2).

8.2. The coaction of Hyj(Bpua/F2). Let n = 2r be an even integer. We have
H;I’*(B/LQ/FQ) ~ Ay = Fg[xl, $2]/($%), H;(I’*(BSOQT/FQ) ~ FQ[UQ, S ,’U,Qr,«],
where
x1 € Hi’(Bug/Fa), w9 € Hy' (Bua/Fa), uze € HY*(BSO,/F2), uzas1 € HE* T (BSO, /Fy).

For even n, the center of SO,, is non-trivial and isomorphic to ue. As in Example 2.14, we
can consider the multiplication map po X SOs,. — SOq,- that induces a ring map

(82) ¢: H;I’*(BSOQT/FQ) —_— H;’*(BMQ/FQ) ®H;I’*(BSOQT/F2)

We view Hyy"(BSOo,/F2) as a Hjy"(Bpusa/F2)-comodule algebra, with the coaction map ¢. Sim-
ilarly, we can consider de Rham cohomology instead of Hodge.
We will first describe the Hyy"(Busa/Fa)-comodule structure on Hyy" (BSOg,/Fa).

Lemma 8.3. Let n = 2r be an even integer, and consider the H{y"(Bpus/F2)-comodule algebra
H{"(BSOs, /Fs), with coaction ¢ as in (8.2). We have

r—7\ r—7\ .
Gluza) = > ( Z.J>a:§®wj+ > ( i]>$§x1®U2j—1

i+j=a i+j=a
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and _
r—3\
P(u2a41) = Z ( ; )1’3 ® u2j41,
i+j=a
where we put uq = 0 and ug = 1.

Proof. Let V. ~ F 352 be the tautological 2-dimensional k-linear representation of O, and let
H C Og be the subgroup isomorphic to Z/27Z X pg, where Z/27 permutes the coordinates of V'
and po acts by scaling. We have

H{{"(B(Z/2Z)[Fs) ~ Faz], Hy"(Bua/Fa) ~ Falry, xo)/(2}), HYy"(BH/Fa) ~ Falz,x1,x0]/(x7),

where z, z2 and x; have bidegrees (0,1), (1,1) and (1,0), respectively.
The coaction Hyy"(BH/Fs) — Hy" (Bua/Fa) @ Hiy*(BH/F3) induced by pus x H — H sends

z— 1Rz, t—1Qxe+22®1l, z1—1Rx+x1®1.

By [Tot18, Discussion above Lemma 11.3],% the pullback map Hjy"(BOs/F2) — Hy"(BH/F>)
sends u; + 2z, ug — x2 + x12. This allows to compute the coaction ¢: Hf_‘l’*(BOQ/IE‘g) —
H;I’*<B/LQ/F2) X HI>‘_<I7*(BOQ/F2) it sends

U =~ 1®u;, u—1Qus+ro®1+ 21 ®up.

Write

HI’TI(BOQ”/IE‘Q) = FQ[Sl, e ,Sm,tl, e ,tm],
where s;,t; are pullbacks of uj,us € Hyy (BO2/F2) along the i-th projection. By the above
computation the coaction Hyy"(BOY'/Fy) — Hyp" (Bua/Fo) ® Hyy " (BOY' /Fa) sends

$i—1®s;, ti—1RL+tR1+v®s;.
Finally, following Equation (8.1), the pullback Hy;"(BOgp,/F2) — Hyy*(BOY'/F2) sends

T
Ugq — Z tiy -+ liyy  U2a+1 HZSJ" Z iy - - ti,
i=1

1< < <ig<m 1<i1 < <ig <M, ip #J

One then checks formulas in statement of the lemma by plugging ¢(¢;) and ¢(s;), and opening
the brackets (this is a direct computation that we leave to the reader).

Finally, following the discussion in Section 8.1, to pass from Os,, to SO9,, C Og,, we just
need to set u; = 0 in all the formulas. O

Remark 8.4. On the topological side we have isomorphisms
* (B(Z/QZ), Fg) >~ FQ[Zl], o (BSOn((C), ]FQ) = FQ[U)Q, N ,wn],

sing sing
where |z1| = 1, and w;, with |w;| = i are the Stiefel-Whitney classes. We immediately see
that H{;(Buz/F2) is not isomorphic to HY ,(B(Z/27);F3) as an algebra. In fact the situation

sing

is even worse: if we take the (unique) isomorphism of Hjj(Bpua/Fo) and HJ (B(Z/27Z);F2)

sin,
as coalgebras (Remark 4.6), it can’t be extended to an isomorphism of the con%odule algebras
H(BSO,/F2) and HE,,,(BSO,(C);F2). This is the reason why the argument from Section 4
doesn’t apply to PSO,, as well. In particular we don’t know yet that the Eilenberg-Moore
spectral sequence collapses on second page (but we will show this in Corollary 8.13).

8In loc. cit. z,x1,x2 are denoted by s, v, t, respectively.
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8.3. Computation of Cotor. Note that A = Hﬂ’*(BSO4m+2/]F2) with ay = uy satisfies the
assumptions of Lemma 6.16 with ¢ = 2. Indeed, d2(u2) = 1, and d;(uz) = 0 for i > 2 by degree
reasons. We now establish an analogue of Lemma 7.1 in the setting of the special orthogonal
group. Namely, we will describe more or less explicitly the subalgebras

PH{"(BSOum2/Fa) C PoHy" (BSOumi2/F2) C Hy"(BSOum+2/Fa),

as well as the cohomology of PngI’*(BSO4m+2 /F2) with respect to the differential induced by
di.
Lemma 8.5. Assume that n = 4m + 2.

(a) There exists a unique sequence
U, ... Usms2 € HY (BSOymy2/F2)

with bidegrees [tg,| = (a,a) and |Goq+1| = (a,a + 1), such that
(1) Uo = Uz,
(2) For all j > 2, w; = u; (mod ug) and u; € PoHy" (BSOum+2/F2),
(3) For all j > 2, Ugj—1 = dl(ﬂ2j>,
(4) Hiy"(BSOum2/F2) = Fo[us, us, . . ., Usm2],
(5) PQH;I’*(BSO4m+2/F2) = Fg[ﬂg,ﬂ4, . 7ﬁ4m+2]-
(b) (1) The elements Us,Us, . . ., Usmt1 and by, = U3, for h > 1 are primitive (equivalently,
they lie in PyHy" and are killed by d ).
(2) The natural map

Falbs, ..., bamy1] — H*(PoHyy" (BSOumi2/F2),d1)
is an isomorphism.
(¢) For any (unordered) tuple of integers I = {i1,... iy}, set d(I) =141+ ...+ iy,
Uy =Ty, - ... - Ui, € PyHAD ) (BSO 0 10/Fy),
and
yr = y(ir, ..., i) = di(ug) € PHIC_II(I)_l’d(I) (BSOuym42/F2).

In particular, Y(iy = U2i—1-

(1) The subalgebra PH{y"(BSOupm+2/F2) C Hjj(BSOum2/F2) of primitive elements is
generated by the by, and the yr for I = {1 < iy < -+ < i, < 2m + 1}, with the
relations generated by

.
(8.6) Y(ir,iv) " Y{grds} = Z?/{n,...,z'hfl,ihﬂ,...,n,jl,...js} “Ylin}s
h=1

where we have yip pi iy = bn - YI-
(2) PHy"(BSOum+2/F2) is a finitely generated module over the polynomial subalgebra
Falts, s, . . ., Uamt1,b2, 03, . . ., bami1] C PH"(BSOum2/F2).

Entirely analogous statements hold with Hodge cohomology replaced by de Rham cohomology.
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Proof. We write A for H{;(BSOu4m+2/F2).
(a) By Lemma 6.16(b) applied to A and as = us, the composite map

PoA < A Af(us)

is a ring isomorphism. Thus we can let Uy = uo and u; € P> A be the inverse image of u;
(mod us) for all j > 2 under this isomorphism. Elements %; satisfy all the properties except,
possibly, 3). For that one, note that by Lemma 8.3 we have d;(u2) = 0 and d;(ug;) = ug;—; for
all j > 1. We have d;(uzj) € P»A and it follows from the above that di(us;) = di(u2;) = ugj—1
(mod UQ) and so dl(ﬂgj) = U2j—1-

(b) Recall that we put by, := u3,. We have dy(by) = 2 - Ugy, - di(Up,) = 0, while dy (Upi—1) =
di(dy(Tu2;)) = 0, so (1) follows. For (2) let us describe the differential d on PyHyy" (BSOum+2/F2) ~
Fg[ﬂg,ﬂ4, . ,ﬂ4m+2]:

di(tgi—1) =0 and di(ug;) = Ugi—1.
Let C' = Fylus,us, ..., Uam+1,b2,b3, ..., bam+1]. Note that C C Kerd;, and so d; is C-linear.

Moreover, elements Uy := ug;, - ... ug;, forall I = {1 <i; <...<i, <2m+ 1} form a basis of
PyH;" (BSOum+2/F2) over C. One can then identify (PyHyy" (BSOu4m+2/F2), d1) with the Koszul
complex over C for the regular sequence w3, Us, - . . , Uam1- Lhis way we get that the cohomology

of (PQH;I’*(BSO4m+2/F2), dl) is given by C/(ﬂg,ﬂ5, ... ,ﬂ4m+1) ~ Fg[bg, bs, ... ,b2m+1].

(c) Recall that PH;"(BSOumi2/F2) is identified with Ker(dy) C PoHyy"(BSOum42/F2). In
(b) we showed that Fa[ba,bs, ..., bopmt1] C Ker(dy) maps isomorphically to the cohomology.
From this we get that the whole Ker(d;) is a direct sum of Fa[bo, b3, ..., bam+1] and the image
Im(d;). By the discussion in b) we have that Im(d;) is spanned over C by yr = di(uy) for
all I = {1 <y < ... <1, <2m+ 1}. Moreover y;; = di(u2;) = Uzi—1 € C, so we get that
PHZ"(BSOum42/F2) is spanned over C' by y;’s with [(I) > 2. It remains to understand the
relations between y;.

First of all, indeed

Ylhhiv,ivy = A1 (W - Ur) =5, - dy (W) = by - y1.
Then, applying (6.21) to a = Up (3, b = U;,, ¢ =y, for any I = {iy,... i} and J = {j1,... s}
we get
Y¢irsir—riicy " Ynsdsl = Yireesivoa} " Yirgrods} T Yfinsivrids} - Yin}:
Applying the same equation again to the first term on the right and continuing, we end up with
(8.6). Taking J = {j} be a l-element set, we get

(8.7) Yir,in )Y = Zy{il,...,is_l,is+1,...,iT,j} “Yfis}-
s=1

Note that this is exactly the relation which is obtained from d%(ﬂ;u{j}) = 0. Indeed, for any
J: {jl?"‘?jr}

(8.8) dy (W) =Y Ty - di(l2s,) = DTGy - Vi
s=1

s=1
Putting J = I U {j} and applying again we exactly get the sum of the left and right hand sides
in Equation (8.7).
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Now, to show that Equations (8.6) generate all the relations assume > fry; = 0 for some
fr € C. Since di(fr) =0 for all I, we get that > fru; € Kerd;. From the proof of b) we know

that we can write
> frar=di() gt + 2,

for some gy € C and z € Fa[ba, bs, ..., bam+1]. Note that di(gs) = 0 and so we get that

o= gsdi(ug) + z.

By the discussion above (8.8) the expression for d;(ur) as a sum of u;’s with coefficients in C'
gives (8.7) after plugging y;’s in place of u;’s. Since uy (with [ = {1 <i; < -+ < i, <2m+1})
form a basis of PoH*™* over the algebra C' we get that Y fry; = 0 in fact is a linear combination
of relations in (8.8) which are a particular case of (8.6). O

Remark 8.9. Note the difference in the formulas for elements by, as defined in Lemma 8.5(b)
and those defined in the topological setting [Tod87, p. 92]. Again, this is due to the fact that
Hf (B2 /F2) and Hg,,,(B(Z/2Z);F2) are not isomorphic as algebras: Lemma 6.16(b), which is
available only for Hjj(Bpua/F2), makes the formula for by, very simple.

We are ready to compute Cotor}lﬁ,* (Fa, Hy7" (BSOum2/F2)).

(Buz2/F2)

Lemma 8.10. For every m > 0, we have an isomorphism of 7. ® Z2-graded’ algebras

COtOI‘EI»fI,*( (FQ, HI§7*(BSO4m+2)) ~ (1 &® PH;I’*(BSO4m+2)) D (ZQFQ [ZQ] ® Fy [bg, ... ,b2m+1]),

Buz)

with the grading of elements given by |z2| = (1,1,0), |by| = (0, 2h, 2h).
Analogous assertion holds with Hodge cohomology replaced by de Rham cohomology (with the
corresponding Z @ Z-gradings given by |za| = (1,1), |bn| = (0,4h)).

Remark 8.11. Analogously to Remark 7.6, the multiplication on the direct sum above is pre-
scribed by the surjective homomorphism

(812) p: PH;I’*(BSO4m+2) —» H*(PQHI?*(BSO4m+2)), dl) ~ ]Fg[bg, Ceey b2m+1].
More precisely, (following the terminology in Remark 7.6) Lemma 8.10 claims that the algebra
Cotor}lﬁ,*(BM)(Fg, H{7" (BSOu4m+2)) is isomorphic to Ay , for z := 29,

A= PH;"(BSOumi2), B = H*"(PaH; (BSOum+2)),d1) = Falcr, bp]275
and ¢ is given by (8.12).

Proof. Let A == H{{(BSO,/F3). By Corollary 5.19, Cotor groups can be computed as the
cohomology H*(Ra ®¢, A,dp,) of the twisted tensor product.

Let us compute the differential dp,: Ro ® A — Ry ® A explicitly. The differential dp, is
Ry ® 1-linear and so it is enough to understand dy, on 1 ® A. Recall that A ~ PyA[ug] by
Lemma 6.16(b). We have ¢(uz) = 1 ® ug + 2 ® 1 and ¢p(ud) = ¢p(u2)? =1 ®@ud + 22 ® 1. By
definition of dp, (see Construction 5.5) and our choice of the twisted cochain (Construction 5.16)

9Where the Z-component in Z @ Z? is the Cotor-grading.
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this shows that dp, (1 ® u3 ) = zyi+141 ® 1 for ¢ > 0. More generally, if we take uj and take the
2-adic expansion n = 21 422 4+ .+ 2 with all i; < iy < ... < %,, then we have

o(us) = $u)” - p(wn)” = (1@ w3 +a3" ©1) - (19w +a3" @ 1),

Opening the brackets, one gets a formula for dy,:
dg, (1 ® uy) ZZQJHH@U;L 29,

Moreover, if a € PyA, then ¢(a) = 1 ® a + 1 ® di(a) and so dy,(a) = z2 ® di(a). Finally,
¢(auy) = ¢(a)p(uy) and by opening the brackets in this product one sees that

dl®@auy)=d(l®a) - 1@uy +1®a-d(uy).
Note that by the above formulas Fa[z0] ® PoA C Ry ® A is closed under the differential, and

so is Fo[z3, 25, 29, . . .] ® Fa[ug] C Ry ® A. Moreover, the partial Leibnitz rule above shows that
there is a decomposition as a tensor product

(R2 X, A, d92) ~ (FQ[ZQ] R PA, d92) ® (FQ[Zg, 25, 29, . . ] &® ]FQ['LLQ], d92).
Fo

We claim that the right term in the tensor product is quasi-isomorphic to Fo in (cohomological)
degree 0. Indeed, consider a tensor product product C' = Ap, (3,5, &, - . .) ® Fa[zs, 25, 29, . . ]
where Ap, (3, &5, o, - . ) is the exterior algebra in variables &; (with same indices as for z; before).
Endow K with the unique Fa[zs, 25, ...]-linear differential dx sending &; to z; and satisfying
Leibnitz rule. The complex (K, dk) is nothing but the Koszul complex (a free resolution of
trivial module Fo over Fa[zs, 25, 29, . ..]) and is quasi-isomorphic to Fy in degree 0. There is a
Fo[zs, 25, 29, . . .|-linear map of complexes

(K, dK) — (FQ[Zg, 25, 29, . - } ® FQ[UQ], d92)
sending &oi+1,1 to 1 ®u2i and extended by multiplicativity (meaning &yii+1,1§gia+1 1 -+ Egig+144

is sent to 1 ® (u3 12242 k)) Since for any n > 0 ujy = u§11+212+“'+2% for a unique distinct set
of natural numbers {i1,...,1ik} (given by powers in the 2-adic expansion for n), this map is an
isomorphism of complexes.

Consequently, we get a quasi-isomorphism

(R2 ®0, A, d92) ~ (Fo [22] ® P A, dy, ’]Fz[zz]@PzA)'
Recall that dg, |, [:,)op,a is sending 25 ® a — 251 @ dy(a). Thus (Fo[ze] @ P2A, dg,) looks like

1@ Pyd 2240, ) z2®PA—>22®d1( ) z2®PA—>Z2®d1(_) .

from which we get that HC(Fa[zs] @ P2A,dy,) ~ 1 ® PA ~ ker(1 ® d;) C 1 ® PA, while
Hi(Fa[20] ® PyA,dy,) ~ 25 @ H*(P2A,dy), which by Lemma 8.5(b2) is isomorphic to 2z ®
Fa[b1,...,by]. Therefore, the algebra structure can be understood via Lemma 5.21: namely, the
map Fa[z2] ® PA — H*(F2[22] ® P2A,dp,) is an algebra homomorphism. O

ey

Corollary 8.13. The Eilenberg-Moore spectral sequence (from Theorem 1.3) for
1— o — SO4k+2 — PSO4k+2 —1

over Fo degenerates on the Eo page.
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Proof. Similarly to Section 4.3 we need to show that the dimensions of terms in the second page
for the Eilenberg-Moore spectral sequence in Hodge and singular cohomology are the same.
Indeed, by Toda’s result [Tod87, Section 4.4] the spectral sequence degenerates on the singu-
lar cohomology side, so by Totaro’s inequality we would get that it should also degenerate for
Hodge and de Rham cohomology. The comparison is established by direct inspection. First,
comparing Lemma 8.5(cl) and [Tod87, Proposition 3.11] one sees that PH};(BSO4x+2/F2) and

PHE, . (BSO4j42(C), F2) are given by the same generators and relations. This gives an isomor-

phism between Eg’* in Hodge and singular cohomology. Finally, one observes E2> %* in both
settings is given by a free module over a polynomial ring with generators in same degrees, see
Lemma 8.10 and [Tod87, Section 4.4], so the dimensions are also the same. O

Remark 8.14. Let us point out that Toda’s strategy of proving degeneration (using pull-back
with respect to the “tensor product” map Oz X SOgy,+1 — SO4m42) doesn’t work in the Hodge
setting: the reason is that the corresponding pull-back map

Hﬁ(BSO4m+2/F2) — Hﬁ(BOQ/Fz) ® Hﬁ(BSOgm_i_l/Fg)
is no longer an embedding.

8.4. Computation of Hodge cohomology of BPSOy;,+2. We begin by understanding the
Hodge cohomology of BPSOs, in low degrees.

Lemma 8.15. We have isomorphisms

(1) HY(BPSOy, /F3) ~ Fy

(2) H%I(BPSOQT/IFQ) ~ 0,
Iy, ifr=2k+1
Fy & IFo, if?“ = 2k.

In the case r = 2k + 1 we let x5 be the (unique) generator of HE&(BPSOup2/F2).

(3) H%(BPSOy, /Fy) ~ HY'(BPSO,, /Fy) ~ {

Proof. As in the proof of Lemma 7.10, using that SO,, (and so PSOy;) is smooth and connected,
we have isomorphisms

Fy i=0
H{y(BPSO,,/Fy) ~ {0 i=1
)" i=2,

where t is the Lie algebra of the maximal torus of PSOs,. and W is the Weyl group. Thus
it remains to show that (tV)" ~ Fy. The maximal torus 7" ~ G;, C SOy, is given by
{(tl,tfl, ooyt t 1} C SOg, (in the basis where the quadratic form g, is given by x1z2 +
...+ 22r—122;). The maximal torus T' C PSOg, is obtained as the quotient of 7" by diagonal
copy of puo. Note that both tori are split and so there is a W-equivariant identification of the Lie
algebras t and t' and the mod 2 reductions X, (T)r, and X.(T")g, of the cocharacter lattices. Let
Xi: Gp — T' be cocharacter corresponding to ¢;; it is not hard to see that X,.(7”) is embedded
into X,(7T') as the lattice Z - x1 @ ... ® Z - x, inside the lattice generated by %(Xl + ...+ Xr)
and ;. The group W is isomorphic to S, x (Z/2Z)"~! where (Z/2Z)" ! acts trivially on X, (T")
(and t') and S, acts by transpositions on x;’s. For X, (T”) we then have a short exact sequence

0=Z-(x1+...+xr) = Xu(T) =L =0
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for a W-module L. This gives a short exact sequence
(8.16) 0—Fy—t —=L/2—0.

Note however that the image of ¥ — t is exactly given by L/2 and so gives a W-equivariant
splitting t ~ Fy @ L/2. In particular, (¢)V ~ ((L/2)V)WV @ F,.
From (8.16) we have a short exact sequence
0— (L/2)Y =tV = TFy —0,
inducing a left-exact sequence

0— (L/2)V)W = ()Y - TFy — ...

By direct inspection t'V ~ F;er is the “permutation module”!? for W and maps to Fy by
(w1,...,2,) = > x;, while (V)W is spanned by the vector (1,1,...,1). So the map (¢¥)V ~ T,
is given by multiplication by 7 and we get that ((L/2)")" is F3 or 0 depending on whether r is
even or odd. O

Theorem 8.17. The bigraded ring H{j(BPSOum42/F2) is generated by
To € Hﬁ’l(BPSO4m+2/F2), by, € HI?Ih72h(BPSO4m+2/F2)7

d(I),d(I)—
Y1 = Ygiy,.ir) € HH(])’ O Y(BPSOup12/Fa).
Herel <h <2m+1, 1= (i1,...,iy), where 1 <iy < --- < i, <2m—+1, and d(I) = i1+ -+1i,.
The relations are generated by

(8.18) T Yy = 0,

.
(8.19) Y{ivoir ) Y ira1,is} — Zy{il7_“71»]__111-],“7__"Z»s}y{ij} fors>r>2,
j=1

with the convention that
(820) y{hvhvjlv---vjs} = y{]h?]&}bh

Similarly, the graded ring Hjp(BPSO4mi2/F2) has generators xo € H?, by, € H*, y; €
H*D=1 where h, I and d(I) are as above, and relations generated by (8.18), (8.20) and (8.19).

In particular, the Hodge-to-de Rham spectral sequence for BPSOymyo degenerates and we have
an isomorphism of graded rings H{j(BPSOumy2/F2) ~ Hip (BPSOypm2/Fo).

Proof. The proof is similar to that of Theorem 7.16. As there, we only prove the theorem for
Hodge cohomology, but a similar argument applies to de Rham cohomology. By Corollary 8.13,
Eilenberg-Moore spectral sequence for

1— Ha — SO4k+2 £> PSO4]€+2 —1
degenerates on the Fo page, which is isomorphic to

1® PHﬁ(BSO4m+2) D Z2F2[22] & F2[bl27 sy l2m+l]

10Meaning (Z/2Z)"~* acts trivially, while there is a choice of 7 vectors that form a basis, such that S, acts on
them by permutations.
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by an explicit computation which we made in Lemma 8.10 (and where we now call b} €
Héh’zh(BSO4m+2/F2) what we called by, in Lemma 8.10(b)). From degeneration, we see that
the pull-back map Bp*: Hjj(BPSOun+2) — 1 ®@ PHF (BSOupmi2) is a surjection. We let
by € H"*" (BPSOypm 12/F2) be any fixed lift of 1 ® b,

The only element of total degree 2 in E3" ~ Ey" is z. Thus it has to be the image of
the class z9 € Hll{’l(BPSO4m+2/]F2) from Lemma 8.15 in EX". Since Fa[zo] @ Fa[b, ..., b5, 1]
embeds into E," we get that the natural map Fa[za] ® Fa[ba, ..., bami1] = Hij(BPSOupms2/Fa)
is an embedding. We also get isomorphisms

(8.21) Im Bp* = PH;I’*(BSO4m+2/IE‘2), Ker Bp* = xoFa[xa, ba, . .., bamt1]-

By Lemma 8.5, the subalgebra PH;*(BSOupm42/F2) is generated by

yr =9 (i1, . i) = dy (Ui, * - . . % sy, ), I={i1,...,ip}, 1<i;<2m+1 forall j.
as an Fa[bh, ..., b5, ]-module (here again we call by y; the elements that were called yr in
Lemma 7.1). Then, as in Theorem 7.16, taking y; € Héd(I)Ad(I)_l(BPSO4m+2/IF2) such that
Bp*(yr) = y; and possibly replacing them by y; — z2f one makes them satisify the relations

Equation (8.18) and Equation (8.19). The same argument as in Theorem 7.16 also shows that
these are the only relations. O

Proof of Theorem 1.5 for PSO4p42. The conclusion follows by comparing the descriptions given
by Theorem 8.17 and [Tod87, Proposition 4.5]. O

9. APPLICATIONS TO REPRESENTATION THEORY

In this section, we reinterpret our computations in terms of representation theory. Let k£ be
a field, G be a connected reductive k-group, I' be a central subgroup of G, and G = G/T be
the adjoint quotient. Recall that by Totaro’s work [Tot18, Corollary 2.2] one has the following
interpretation of the Hodge cohomology of G: for all 4,5 > 0 we have

H"(BG/k) —— H'7'(G,Sym'g"),
where § is the Lie algebra of G. Note that g is also a G-module via the projection G — G.

Since I' is of multiplicative type, the functor of I'-invariants is exact, hence the Hochschild-Serre
spectral sequence for 1 - I' - G — G — 1 provides isomorphisms

Altogether, this shows the following: H*/(BG/k) ~ 0 if i > j, the “pure” part ®;H"'(BG/k)
of Hodge cohomology is isomorphic to the algebra
H(G,Sym*g") =~ (Sym"§")“,

and the “non-pure” part &,.;H"(BG/k) is given by the higher cohomology H>°(G, Sym*g").

Using the computations of Hodge cohomology that we made in previous sections we will
analyze this picture in the case when k = Fo, G is GL4p42, SO4gmq2 or Spyy, o, and I' is the
center of G. Recall that for each of the G under consideration, the Eilenberg-Moore spectral
sequence in Hodge cohomology for 1 - I' - G — G — 1 degenerates at the Fy page. Thus, in

order to calculate the dimensions of H*/(BG /k), it will be enough to compute the dimension of
the corresponding (see Remark 9.1) bigraded component on the Ey page. Following the proofs
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of Theorems 7.16 and 8.17 for PGLyy, 42 and PSOyp,42, the Es page is in fact isomorphic to
Hodge cohomology as a bigraded algebra (so we can also understand the multiplicative structure
on H*(G,Sym*g") this way).

Remark 9.1. Recall that (assuming the degeneration of the Eilenber-Moore spectral sequence)
a homogeneous class

v € (Cotoryye pr) (Fs, Hiy" (BG/F2))" = (EY)"

gives a class in gri(Hﬁ’iﬂ (BG/F3)). Thus the bigrading we are interested in is given by (h, i+ j).
We will call it Hodge bigrading from now on and will denote it by |z|g € Z2.

9.1. Projective linear group. When G = PGL,,, the representation in question is pgl,/. We
have a short exact sequence of GL,-modules

0—Fy — gl,, = pgl, =0,

giving a short exact sequence
0 — pgl — gl — Fy — 0.

Remark 9.2. When n is even this short exact sequence is non-split. Indeed, any such splitting
would induce a Lie algebra direct sum decomposition of gl,, as Fo @ [gl,,, gl,,]. However, when n
is even one has Fo C [gl,, g,,]. Indeed, if n = 2 then

(1) =160)- G 9)l

and the general n = 2r case reduces to this one by considering the analogous block-diagonal
matrices (with r blocks of size 2).

Remark 9.3. We also note that if n is even the representations pgl,, and pglY are not irreducible.
Indeed, the trace function tr: gl, — [y is GL,-invariant and is 0 on scalars Fo C gl,, and so
defines a (non-zero) map pgl,, — Fa. Its kernel, however, is an irreducible GL,-module.

By [Tot18, Theorem 9.1], the higher cohomology of GL,, with coefficients in Sym’ gl is 0.
In contrast, for even n, due to the non-splitness of the above short exact sequence, the higher
cohomology of Sym’ pgl’ become quite complicated. Our computation (Theorem 8.17) of Hodge
cohomology of BPGLyy, 2 allows to describe it fully in the case n = 4m + 2.

Recall that the Eo page for PGLyy,+2 has been computed in Lemma 7.5 as

PH{{(BGLyym42/F2) @ 23F2[z3] @ Falci, bo, . .. bamg1],

where PH{;(BGLuyp+2/F2) is the 0-th column Eg’* and z3Fa[z3] @ Falc1, b, . . ., bam41] gives the
rest. The Hodge-bidegrees here are given as follows: PH;"(BGLap,42/F2) is pure, |z3|u = (1,2),
le1lg = (1,1) and |by|g = (4h,4h). Therefore, we have an isomorphism

H>O(GL4m+2, Sym* pg[Xm-i—Q) ~ z3Fy [23] ® Fy [Cl, ba, ..., b2m+1].

where c1,ba, ..., bamt1 € HO(GLami2, P8l 10) =~ (Sym* pgly,, o) L4m+2 are certain invariant
polynomials of degrees 1,4, 8, . ..,8m+4 (and which can be prlicitly understood via Lemma 7.1)
and™ z3 € H'(GLamt2, P9l 0). This way we get that H'(GLap+2, Sym’ pgly,, . ) has a basis

HThis class is exactly the one that classifies the non-split extension 0 — pgl) — gl — F2 — 0..
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consisting of monomials of the form zg_j f, where f is a monomial in ¢1, b9, ..., b1 of total
degree j —i. Therefore dimg, H*(GLypm12, Sym’ pgly,, ,») equals to the number of ways to write
j —1 as asum

M +462+ 883+ -+ (8m +4)Bom1,

where 71 and the (), are non-negative integers.

9.2. Projective orthogonal group. When G = PSOy,,2, the representation in question is
PS0y,, 5. Since pg is not smooth, the “Lie algebra” of ug is in fact a complex, namely the dual
sz /w, to the cotangent complex Ly, r,. We have H O(Ll\i2 /]FQ) = HY(LY ,. ) =Fy. We have a

w2 /Fo
fiber sequence sz r, 8 g in the derived category of G-modules (where G acts trivially on

letz /IFQ) which gives an exact sequence of SOy, +o-modules
(9.4) 0 = Fo — s09, — pso,, — Fy =0

as the long exact sequence of cohomology. However, for odd r the first map Fo — §044p42 is in
fact split, as the next lemma shows.

Lemma 9.5. The Lie algebra $04,12 over Fo splits as Fo @ | where | ~ [$04,42, 504m+2]. This
splitting is preserved by the SO4m1o-action and gives the decomposition of §04m+o into a sum of
stmple representations.

Proof. By [Hog82, Table 1]'? we have that the center 3(504,,12) and [ := 504,12, 504m 2] are the
only non-trivial Lie ideals in $04,,4+2. In particular, 3(s04m+2) is 1-dimensional and is exactly
given by the image of Fy under the above map. Thus we only need to check that 3($04m42)
doesn’t belong to . Let’s identify a Cartan subalgebra h C s04pm42 with X, (T) ® Fy (where
X.(T) are cocharacters of the maximal torus corresponding to h). E.g. by [Hog82, Section
1] the intersection of [§04y,+2,604m+2] with the Cartan subalgebra b is given by the image
of coroot lattice RY ® Fy — X, (T) ® Fo. In the standard basis for X,(T) (dual to what is
usually denoted denoted 1, ...,e9m+1 € X*(T)) the center 3(s04y,+2) is spanned by the vector
(1,1,...,1,1), while the image of RV ® Fy is described as the kernel of the sum-of-coordinates
map Fy2m+ =, Fs. Since 2m+1 is odd we see that (1,1,...,1,1) doesn’t belong to ker(X), and
S0 504m42 =~ Fo @ 1. The adjoint action of SOy, 2 preserves both the center and the commutator
and so respects this decomposition. It remains to show that [ is irreducible. But, any SOy, o-

invariant subspace would in particular give a Lie ideal in [, of which there aren’t any by [Hog82,
Table 1] again. O

Remark 9.6. Essentially by the definition of roots, the highest weight for [ is the longest root
0 € X.(T) of SOyp+2. Since [ is irreducible we have [ = L(f). Recall that the highest weight
of the dual L(\)Y is —wo\ where wy is the longest element of the Weyl group, and so L(\)Y =~
L(—wpA). Since wpf = —6 we get that L(0)Y ~ L(#) and so [ is self-dual.

Note that by Totaro’s computation H11{’2(BSO4m+2/F2) ~ [y - u3 and that

H?*(BSOum2/F2) =~ HY (SOum2,50% 0 12) = H (SOumi2, 1Y) & H (SOum 2, Fa).

I2Note that we are in the Dy-type £ odd, intermediate case, in the notations of loc.cit.
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Since H'(SO4m12,F2) ~ 0 (either by Kempf vanishing or comparing with Hﬁ’l(BSO4m+2/F2))
we get
H(SOumi2,0) =~ H (SOupy2, 1Y) ~ Fy.
Now, from Lemma 9.5 and (9.4) we get a short exact sequence of SOy4,42-modules:
0—[— psoy, o — Fo—0.

Lemma 9.7. This extension is non-split.

Proof. Due to SO4,42-equivariance, the map psoy,, o — Fa is in fact a map of Lie algebras and
a splitting would also give a decomposition of the Lie algebra psoy,, o as Fo @ [. However, the
center 3(psoy,, o) is trivial (again, see [Hog82, Table 1]), and so this is impossible. O

As a consequence, we get that the SOgp,4o-representation psoy,, s is the unique non-zero
class in Extd imyo(F2, 1) = H 1(SO4m2,1). This class necessarily corresponds to the (unique
non-zero) class ug € H;I’z(BSO4m+2/F2).

Passing to linear duals, we get a short (non-split) exact sequence

0 — Fy — psoy,, o — [— 0.

Since [ is self-dual, by the above discussion we also know that such a non-split extension is
unique.

Remark 9.8. Using [Hog82, Table 1] one can see that the Lie algebra sping,, o is also a non-
split extension of [ by Fy. By uniqueness, we get that the SOy, o-representations psoy, ., 19 and
spiny,, 1o are isomorphic.

Let us now compute the cohomology of Sym* psoy, . 49- By Lemma 8.10 the F page of the
Eilenberg-Moore spectral sequence is given by

PHE(BSO;;erQ) @ zolF9 [ZQ] &® Fg[bg, e b2m+1],

with PH(BSOym+2) being the 0-th column ES™* and zoFs[z5] @ Falba, . . ., bams1] =~ Ey " being
the rest of Fy. The Hodge bigradings here are given by |z2|g = (1,1) and |by|g = (2h,2h). It
follows that the non-pure part of the Hodge cohomology in fact lies in Eg’* and embeds in the
non-pure part of Hodge cohomology of BSO 2.

On the level of representations we get the following: let ¢¥: Sym* psoy,, ., — Sym*soy,
be the natural map induced by psoy, . 19— S0y . +9- Then q" induces an embedding

H>°(SOupm12, Sym* pso),, . 5) = H”(SOum2, Sym* 50}, 5).

Moreover, the image can be described fairly explicitly. Namely, in the notations of Lemma 8.5,
H>Y(SO4m+2, Sym* psoy, . .,) can be identified with the ideal generated by non-pure elements
Uok+1 and yr inside PH;_‘I’*(BSO4m+2). It can be also seen as the intersection of the ideal
(us, us, . . ., Uams1) C Hyy" (SOm+2) (which is isomorphic to H>%(BSOupn42, Sym*(soy,, . 5)) by
Totaro’s computation [Tot18, Theorem 11.1]) and the subalgebra PH;"(BSOup42) of primitive
elements. This reduces the problem of computing H*(BSOyy,12, Sym? (pso), . 42)) to a much
simpler linear algebra computation: namely one just needs to take the corresponding bigraded
component in (ug, us, . . ., Usm+1) C Hyy (BSO4m+2) and compute the intersection of kernels of
d;’s (from Construction 6.13) for all 4 > 0.
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9.3. Projective symplectic group. Assume now that G = PSp,,, 1 9. Similarly to the case of
PSO,, we have an exact sequence of PSp,,, . o-modules

0 —Fo — 5Pyp10 = PSPy — Fo — 0.
which then gives an exact sequence
(9.9) 0 — Fa — pspyio = SPimio — F2 — 0
by passing to duals.

Remark 9.10. In contrast to the SOy, 12-case, the map Fo — spy,, .o is non-split. Indeed,
coroots of Spy,, .o span the coweight lattice X*(T"), which forces the center Fy to lie in the
commutator [Py, o2, 5P, 42| Also, the quotient spy,, ,o/F2 is not irreducible.

For brevity, we only sketch how to compute the second sheet of the Eilenberg-Moore spectral
sequence in this case. Using Lemma 4.7 we can explicitly identify the coaction of Hjj(Bua/F2)
on Hijj(BSpyp42/F2) with the coaction of Hf ,(BZ/2,F2) on Hg ,(BSpsy42(C),F2). This
identification then also induces an isomorphism of the primitive parts PH{j(BSpy,, 2/F2) ~
PHZ (BSpyy,42(C),F2). Moreover the computations of Cotor using the twisted cochains (as

sing
in Corollary 5.19) are also compatible, which allows to identify the algebra structures on

Cotor *HH (Buz/F2) (Fa, Hyy (BSpyym42/F2)) and COtOT’f{;ﬂg (BZ/2,F2) (F2, Hing (BSPapm 12, F2))

via Lemma 5.21 and Lemma 5.21.
This gives an identification

Ey”" =~ (Fal22, 23] ® PHyj(BSpyy,12/F2)) 4 Falzo, 23, 25, b2, b3, - ., bam11],

where by, € PH{"(BSpyy,+2/F2) are certain elements defined similarly to Lemma 7.1 (or [Tod87,
Lemma 3.10]) using the *-product of Construction 6.6 for az = ¢2. However, the twisted
tensor product construction of (5.5) is naturally bigraded, which allows to compute the Hodge
bidegrees (see Remark 9.1) for Ey". Namely, |22|lu = (1,1), |23lu = (1,2), |z5lu = (2,3) and
|br|u = (8h,8h) (more generally, all elements in PH{j(BSpy,, o/F2) are pure).

Remark 9.11. There is another way to understand the bigradings of z;, by computing the Hodge
cohomology of BPSpy,, 5 in low degrees directly. Namely, let I/ be the Lagrangian Grassman-
nian, that is, F = PSpy,, o/P where P C PSpy,, - is the standard right-end root parabolic
subgroup with Levi subgroup isomorphic to GLaj,+1; see [Pra9l, Proposition 6.1]. By [Tot18,
Proposition 9.3] we have a spectral sequence

(9.12) Ey) = Hj{(BPSpyyso/Fa) @ HY(E/Fg) = Hiy(BGLoyy1/Fa).

The bigraded ring H{;"(E/F2) is well understood, as we now explain. By [Tot18, Proposition
7.1], the cycle class map
CH*(E) @z Fy —— Hy(E/F2)

is an isomorphism. In particular, HIZ{J(E /F2) = 0 unless ¢ = j. The Chow group CH*(E) is
torsion-free and can be computed using the cell decomposition; see [Pra91, Corollary 6.3].
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Using (9.12) and the above description of Hjj(E/F3), low-degree computations analogous to
those in Lemma 7.10 show that

Iy ifi=0
0 ifti=1
9.13 Hy;(BPS Fo) =
( ) i Pam+2/F2) Fy (23) fi—3
Fy (23) ifi=4
FQ <.7)2$3, l’5> if i = 5.

Here z2 has bidegree (1, 1), 3 has bidegree (1,2) and x5 has bidegree (2, 3).

Returning to the computation of dimensions of Hodge cohomology, we have that the E., page
of the Eilenberg-Moore spectral sequence is isomorphic to

(]FQ[ZQ, 23] (039 PH;’*(BSp4m+2/F2)) D ]F2[227 23,25, bg, bg, ey b2m+1}.

From the representation-theoretic point of view, we get the following: there are two classes
x5 € HY(SPym2: P5Pimia)s T5 € HY(Spamao, Sym? psp),, o), such that the higher cohomology
H>Y(Spypn2, Sym* psp),. . ») is generated by the ideal

(23, 25) C Fafzs,25] C H”*(SPap2, Sym® pspiy 42)
as a module over the invariants (Sym* pspy,, . ,)5Psm+2. Moreover,

e (Sym* pspy, ,o)°P4m+2 @ x5 - Folxs] embeds into H>0(Spyy,. 0, Sym* pspy,, ) via the ac-

tion map;

e the cokernel of the above map can be described as x5 - Falza, 3, 5, bo, . . ., bop+1], where
Ty € (PsPY40) Pem+2 and by € (Sym®” pspy,, ,)5Psm+2 are fairly explicit invariant poly-
nomials.'3

Remark 9.14. The extension class given by
1,2
x3 € EXtép4m+2 (FQ, p5p>1/m+2) = Hl(sp4m+27 pﬁpXm—l—Q) = HH (BPSpéLerZ/F?)

can be described explicitly. Indeed, the exact sequence (9.9) gives a class in EXt%merz (Fa,Fy),
which is necessarily 0, since Extgp4m+2 (F2,F2) ~ H?(Spymo,Fa) ~ Hﬁ’O(BSp4m+2/IF2) ~ 0.
Thus, (9.9) comes from some Spy,, , o-representation V' with a two-step filtration 0 C V; C V5 C
V and such that V; = Fo, V5 ~ pstmH, V/Vi =~ spyi0 and V/Va ~ Fy. In particular, V fits
into a short exact sequence
0 = pspamio — V — Fa =0,

giving a class [V] € Extémm+2 (F2,psp),, o). Moreover, one sees from Remark 9.10 that this
extension is non-split and thus [V] # 0, which forces it to be equal to z3 since

1,2
EXtépz;m_,_2 (F% pstm+2) = HH (BPSp4m+2/]F2) ~ Fy.

13y particular, o € (pﬁpXm_‘_z)Sp‘lm“ is exactly the image of 1 under the map F2 — psp),.., from Equa-
tion (9.9).
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APPENDIX A. KUNNETH FORMULA FOR DE RHAM COHOMOLOGY

In this section we give a proof of the Kiinneth formula for de Rham cohomology in the context
of Artin stacks. The generality we consider is bigger than what is necessary for the applications
in the body of the paper: this doesn’t really affect the proof and might be useful for a future
use.

Let R be a base ring. We will work in the setting of higher Artin stacks (in the sense of [TV08,
Section 1.3.3], see also [KP21b, Appendix A.1]) these are sheaves of spaces in étale topology
on the site Affg of affine R-schemes, that admit a smooth (n — 1)-representable atlas for some
n # 0 (the latter being an inductively defined notion, see loc. cit. for more details).

Remark A.1. A classical stack X': Aff g — Grpd can be considered as a higher stack via compos-
ing with the nerve functor N: Grpd — Spcs. The image of this functor can be identified with
the subcategory spanned by higher stacks that take values in 1-truncated spaces Spcs<; < Spcs
(a space X € Spcs is called 1-truncated if 7;(X,z) = 0 for i > 1 and any base point = € X).
See e.g. [Hol08].

Construction A.2. A useful fact ([Pril5, Theorem 4.7]) is that for any n-Artin stack X there
exists an (n— 1)-coskeletal smooth hypercover X, — X, such that each X is a (possibly infinite)
union of affine schemes. If we assume that X is smooth itself and, moreover, is quasi-compact
and quasi-separated, the schemes X; can be chosen to be smooth affine schemes.

Example A.3. The classical quotient stack X = [X/G] with X and G being smooth affine
schemes over R is a smooth qcgs 1-Artin stack. In this case a hypercover as in Construction A.2
can be taken to be the Cech nerve of the smooth cover X — [X/G]. We have X, ~ X x G**
with the standard maps.

Given a smooth higher Artin stack X', one can consider its (relative) de Rham cohomology
([KP21a, Defintion 1.1.3]), defined as the homotopy limit

RIgr(X/R) = li RT'4r(S/R).
dr(X/R) (S%X)El&lﬁ%)op dr(S/R)

This functor satisfies étale descent (which follows from the analogous statement for Hodge co-

homology). Since smooth maps are étale surjections, for a smooth qcqs Artin stack X’ one gets
a more economical formula in terms of a hypercover |X,| — X as in Construction A.2:

~

RFdR(X/R) —— Tot RFdR(X./R) S D(MOdR)

the totalization'* of the cosimplicial complex RTqgr(X,./R). Here, RTqr(X,/R) € D(Modg) is
given by the usual de Rham complex

Qg(n/RaQ}(n/RﬁQﬁn/Rﬁ...,

14Or, in other words, limeea-
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and the totalization above can be computed by the means of the corresponding double-complex:

Y oY/

Xo/R Xi1/R

Q —_— le

><>—‘

o/R

0 0
Q%, R Q
In particular, in the case of Example A.3, RT'qg (X' /R) agrees with the definition given by Totaro
in [Tot18]. We also note that RI'qr(X/R) lies in'®> D(Modg)Z° for any (smooth) X.

We are now ready to prove the Kiinneth formula. We say that a ring R is of finite Tor-
dimension if there exists k& > 0 such that for any two (classical) modules M, N € Modpg their

derived tensor product M ®Hé N lies in cohomological degrees > —k.

Proposition A.4 (Kiinneth formula for de Rham cohomology). Let X', Y be smooth qcqs higher
Artin stacks over a base ring R that is of finite Tor-dimension. Then multiplication induces a
natural equivalence

RT4r(X/R) @% RT4r(Y/R) —=> RT4r(X xg Y/R).

Proof. The proof is analogous to [KP21b, Proposition 2.2.15], the main idea being to reduce to
the case of affine schemes. Let X, — X and Y, — ) be hypercovers as in Construction A.2;
this provides a hypercover Xo Xp Ye =& X Xgr Y as well. We have

~

RT4r(X/R) ® RTqr(Y/R) — Tot (RTqr(Xe/R)) @ RTqr(V/R).

Under the Tor-finiteness assumption on R, the derived tensor product — ®H}} RT4r(Y/R) is left
t-exact up to a shift, and thus by [KP21b, Corollary 3.1.13] we can move — ®% RT4qr(YV/R)
inside the totalization:

Tot (RT4r(Xe/R)) ®% RTar(Y/R) —> Tot (RFdR(X./R) oL RFdR(y/R)> .
Now, using the hypercover Y, — ) in the same way, we get

Tot (erR(X. /R) @% RU4r (Y /R)) — i RDa (X /R) ®L RUyr(Ya,/R).

Since A is sifted, the limit over A x A can be computed after restriction to the diagonal

di .
A 2B A x A, and we get an equivalence

lim  RUqr(Xe,/R) ®% RTar(Ye,/R) —— [11122 RT4r(Xe/R) @ RUar(Ye/R).

[.1702]EA><

BHere, D(Modg)Z° € D(Modg) is the full subcategory spanned by complexes M with H~*(M) = 0 for any
1> 0.
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We then have a commutative diagram

RT4r(X/R) ®% RTqr(Y/R) RU4r(X xr V/R)

- -

limp)cn RTar(Xe/R) @ RUar(Ye/R) — limpjca RTar(Xe X Yo/R)

where the horizontal arrows are induced by multiplication, while the vertical ones are induced
by pull-backs. The left vertical map is an equivalence by the above discussion, while the right
one is an equivalence by descent. By [Sta, Tag OFMB] the maps

RT4r(X./R) ®f RUqr(Ye/R) — RUar(Xe g Ye/R)

are equivalences, thus so is the map between the limits. From the commutative diagram we then
deduce the same for the upper horizontal map. O

Corollary A.5. Let R =k be a field and let X, Y be smooth qcqs higher Artin stacks over k.
Then multiplication induces a natural isomorphism of graded k-algebras

Hip(X/k) @, Hig(V/k) —— Hip(X xp Y/k).
Proof. This follows from Proposition A.4 by passing to cohomology. ]
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