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Abstract. Let G be a smooth connected reductive group over a field k and Γ be a central
subgroup of G. We construct Eilenberg-Moore-type spectral sequences converging to the Hodge
and de Rham cohomology of B(G/Γ). As an application, building upon work of Toda and using
Totaro’s inequality, we show that for all m ≥ 0 the Hodge and de Rham cohomology algebras
of the classifying stacks BPGL4m+2 and BPSO4m+2 over F2 are isomorphic to the singular
F2-cohomology of the classifying space of the corresponding Lie group. From this we obtain a
full description of H>0(GL4m+2,Symj(pgl∨4m+2)) and H>0(SO4m+2, Symj(pso∨4m+2)) over F2.
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1. Introduction

Let p be a prime number, and let G be a split reductive group over Z. We denote by BG the
classifying stack of G, and by BG(C) the classifying space of the topological Lie group G(C).
The computation of the mod p singular cohomology ring H∗sing(BG(C);Fp), or equivalently

the determination of mod p characteristic classes of principal G(C)-bundles, is one of the most
classical problems in algebraic topology, with contributions from a long list of illustrious authors.

Recently, in [Tot18], B. Totaro initiated the study of Hodge cohomology H∗H(BG/Fp) and
de Rham cohomology H∗dR(BG/Fp) of the classifying stack BGFp . Similarly to the topological
situation, one can think of elements of these rings as Hodge and de Rham characteristic classes for
GFp-torsors. However, as Totaro showed, H∗H(BG/Fp) also has a purely representation-theoretic
interpretation in terms of rational cohomology of the algebraic group GFp with coefficients

Symi g∨, where g is the adjoint representation of G. In [Tot18, Theorem 9.2], he established a
general result, stating that if p is not a torsion prime1 for G then Hodge and de Rham cohomology
of BGFp are in fact isomorphic to the mod p singular cohomology of BG(C). The subtlety of the
situation, however, is that there is no natural map between Hodge (or de Rham) and singular
cohomology: the above isomorphisms are constructed by explicitly computing and comparing
the two sides.

Totaro also investigated what happens at torsion primes in some particular examples. For
p = 2 and G = SOn he constructed isomorphisms of graded rings

(1.1) H∗H(BSOn/F2) ' H∗dR(BSOn/F2) ' H∗sing(BSOn(C);F2).

On the other hand, he computed that

dimF2 H
32
dR(BSpin11/F2) > dimF2 H

32
sing(BSpin11(C);F2),

showing that Hodge and de Rham cohomology of BGFp are not isomorphic to mod p singular
cohomology of BG(C) in general, even as graded vector spaces. Some further calculations of
H∗H(BG/F2) and H∗dR(BG/F2) have been performed by E. Primozic [Pri19] for G = G2 and
G = Spinn for n ≤ 11.

A general statement which holds even for torsion primes is the inequality of dimensions. First
of all, the existence of the Hodge-to-de Rham spectral sequence implies the inequality

dimFp H
i
H(BG/Fp) ≥ dimFp H

i
dR(BG/Fp).

1A prime p is called torsion if there is non-trivial p-torsion H∗sing(G(C);Z). For any given G there are only

finitely many torsion primes, and there also is a simple recipe to find them all (see [KP21a, Example 6.1.5]).
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Moreover, as conjectured by Totaro and recently proved by A. Prikhodko and the first author
in [KP21b], one also has an inequality

dimFp H
i
dR(BG/Fp) ≥ dimFp H

i
sing(BG(C);Fp).

Therefore

(1.2) dimFp H
i
H(BG/Fp) ≥ dimFp H

i
dR(BG/Fp) ≥ dimFp H

i
sing(BG(C);Fp).

We will refer to (1.2) as Totaro’s inequality.

Main results. The computations of Totaro and Primozic are based on a version of the Hoch-
schild–Serre spectral sequence in Hodge cohomology (see [Tot18, Proposition 9.3]). In this
paper we attempt to compute the Hodge and de Rham cohomology of the classifying stacks
of classical simple adjoint groups PGLn, PSpn, PSOn over F2 by using the Eilenberg-Moore
spectral sequence instead. The Hodge cohomology in these situations can also be reinterpreted
in terms of cohomology of the classical groups GLn, Spn, SOn, but with coefficients in modules
that are slightly more complicated than Symjg∨ (see Section 9 for more details).

Let us describe our setup. Let G be a split connected reductive group over a field k, let Γ ⊂ G
be a central subgroup (so Γ is of multiplicative type) and consider the quotient G := G/Γ. For
example, we could take G = GLn and Γ = Gm, in which case we get G = PGLn. The
multiplication map Γ × G → G defines an action BΓ × BG → BG of the group stack BΓ and
so induces a coaction of the Hopf algebra H∗H(BΓ/k) on H∗H(BG/k). We also get a similar
structure for de Rham cohomology. This coaction can be used to give a first approximation to
H∗H(BG/k), as our first general result shows.

Theorem 1.3 (Eilenberg-Moore spectral sequence). Let k be a field, and consider a short exact
sequence of linear algebraic k-groups

1→ Γ→ G→ G→ 1.

where G and G are smooth and Γ is a central subgroup of multiplicative type. Then we have two
(cohomological) first-quadrant convergent spectral sequences

Ei,j2 :=
(

CotoriH∗H(BΓ/k)(k,H
∗
H(BG/k))

)j
⇒ H i+j

H (BG/k),

Ei,j2 :=
(

CotoriH∗dR(BΓ/k)(k,H
∗
dR(BG/k))

)j
⇒ H i+j

dR (BG/k).

Here k is the trivial comodule over H∗H(BG/k) (and H∗dR(BG/k)) and Cotori are the derived

functors of cotensor product (the definition is essentially dual to Tori in the algebra setting, see
Section 2.2 for a reminder).

Remark 1.4. Recall that Hodge cohomology is in fact a bigraded algebra (see Section 2.1 for
a short reminder). By our construction, in the Hodge setting, the Eilenberg-Moore spectral

sequence Ei,jr splits as a direct sum Ei,jr ' ⊕h(Ei,jr )h where

(Ei,j2 )h :=
(

CotoriH∗,∗H (BΓ/k)(k,H
∗,∗
H (BG/k))

)h,j
⇒ Hh,i+j

H (BG/k).

A spectral sequence analogous to those of Theorem 1.3 for singular cohomology was used
by H. Toda in [Tod87] to compute the F2-singular cohomology of BPGLn(C), BPSpn(C) and
BPSOn(C) when n = 4m+2. The main result of our paper is that the answer for Hodge and de
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Rham cohomology over F2 stays essentially the same. (When n is odd, 2 is not a torsion prime
for any of these groups, and so Hodge and de Rham cohomology are isomorphic to singular
cohomology by the aforementioned result of Totaro.)

Theorem 1.5. (1) Let G be either PSO4m+2 or PGL4m+2. Then we have isomorphisms of
graded rings

H∗H(BG/F2) ' H∗dR(BG/F2) ' H∗sing(BG(C);F2).

(2) In the case G = PSp4m+2 we have an isomorphism of graded vector spaces

H∗H(BG/F2) ' H∗dR(BG/F2) ' H∗sing(BG(C);F2).

We don’t know if there exists an algebra isomorphism in Theorem 1.5(2), the main reason
being that the algebra structure on H∗sing(BPSp4m+2(C);F2) is not fully understood (see e.g.

[Tod87, Proposition 4.7]). In contrast, the algebra structures of H∗sing(BPSO4m+2(C);F2) and

H∗sing(BPGL4m+2(C);F2) can be described explicitly in terms of generators and relations; see

[Tod87, Proposition 4.2, Proposition 4.5].
Let us sketch the main ideas which go into the proof of Theorem 1.5. With Theorem 1.3

at our disposal, one can try to make direct computations similar to the ones in Toda’s work
[Tod87]. After some extra work, this is possible to achieve for PGL4m+2 and PSp4m+2. However,
Toda’s argument doesn’t seem to go through directly for PSO4m+2 (Remark 8.14). Our key
observation is that if we assume the results of [Tod87] as given, there is an easier way: some
parts of Theorem 1.5 are implied by Totaro’s inequality almost for free, while with a little more
computational work one can also get the rest of Theorem 1.5, including the most complicated
case of PSO4m+2. This led us to split the proof of Theorem 1.5 in two parts.

Part 1. Isomorphisms as graded vector spaces for BPGL4m+2 and BPSp4m+2. The main step

in Toda’s computation of H∗sing(BG(C);F2) consists in showing that the Eilenberg-Moore spec-
tral sequence degenerates at the second page. Assuming Toda’s result, it is enough to identify
the second sheets of the Eilenberg-Moore spectral sequences for Hodge and singular cohomology:
indeed, by Totaro’s inequality (1.2) this would immediately imply the degeneration in the Hodge
setting and then also give an equality of dimensions of cohomology. This identification is done
by explicitly comparing the comodule structures on H∗H(BGL4m+2/F2) and H∗H(BSp4m+2/F2)
with the ones for singular cohomology (having identified H∗H(BGm/F2) with H∗sing(BC×,F2) as

Hopf algebras and H∗H(Bµ2/F2) with H∗sing(BZ/2,F2) as coalgebras); see Section 4.
Part 2. Isomorphisms as graded rings for BPGL4m+2 and BPSO4m+2. For BPGL4m+2, the

spectral sequence argument above already produces a ring isomorphism between the Hodge
and singular cohomology, but only after passing to the associated graded. To lift this to an
isomorphism between the original rings we imitate the computation of Toda in the Hodge set-
ting (see Sections 5 and 7). The case of BPSO4m+2 is more difficult, as the comodule struc-
ture on H∗H(BSO4m+2/F2) is not compatible with the one on singular cohomology. Neverthe-
less, we get around this by directly replacing some results on the structure of the comodule
H∗sing(BSO4m+2(C),F2) with suitable Hodge cohomology analogues (see Section 5). In some
ways, the Hodge context actually turns out to be easier for the computation via Toda’s method;
see Remark 8.9. After computing Cotor via the twisted tensor product construction (see Sec-
tion 5.3) we deduce the degeneration of the Eilenberg-Moore spectral sequence in the PSO4m+2-
case by comparing to topological side and using Totaro’s inequality. To conclude, we identify the
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resulting descriptions of Hodge and singular cohomology in terms of generators and relations.
For more details see Section 8.

Even though the algebras H∗H(BSO4m+2(C)/F2) and H∗sing(BSO4m+2(C),F2) are abstractly
isomorphic, there is a rather subtle implicit distinction between topological and Hodge settings.
Namely, the square

H∗H(BPSO4m+2/F2)
Section 7

∼ //

��

H∗sing(BPSO4m+2(C),F2)

��
H∗H(BSO4m+2/F2)

Totaro

∼ // H∗sing(BSO4m+2(C),F2),

induced by pull-back with respect to the map BSO4m+2 → BPSO4m+2 and isomorphism (1.1)
is not commutative.

Applications to representation theory. Recall that the Hodge cohomology of a smooth
algebraic stack X over k comes with a natural bigrading: Hn

H(X/k) ' ⊕i+j=nH i,j(X/k), where
H i,j(X/k) ' Hj(X,Ωi). In [Tot18, Theorem 2.4], Totaro showed that if G is a smooth affine
k-group, one has the following representation-theoretic formula for H i,j(BG/k):

H i,j(BG/k) ' H i−j(G, Symi g∨).

The right hand side denotes the cohomology of G as an algebraic group (sometimes also called
“rational cohomology”), and the G-action on Symi g∨ is the natural adjoint action. This gives a
geometric interpretation of the cohomology of representations like Symi g∨, which Totaro used to
make new computations. If Γ ⊂ G is a central subgroup and G := G/Γ, the Hodge cohomology
of BG can also be interpreted in terms of rational cohomology of G, but with coefficients in
more complicated modules, namely Symi g∨, where g := Lie(G).

Remark 1.6. In order to compute the groups Hj(G, Symi g∨) by the above method, it is necessary
to describe Hodge cohomology of BG as a bigraded algebra. Given the degeneration of the
Eilenberg-Moore spectral sequence, this reduces to understanding the bigraded components
of the cotorsion groups Cotori from Theorem 1.3. In order to keep track of the bigrading,
we compute Cotori via twisted tensor product construction with an explicit twisting cochain,
imitating the original computation of Toda (see Construction 5.16 and Corollary 5.19).

For brevity, let us only discuss the result of the computation in the case G = PGLn here,
and refer the reader to Section 9 for the remaining cases. For every n ≥ 1 we have a short
exact sequence of GLn-modules 0 → F2 → gln → pgln → 0, which is non-split if and only if n
is even. From the Hochschild-Serre spectral sequence in rational cohomology one can see that
H∗(GLn,Symi pgl∨n) ' H∗(PGLn,Symi pgl∨n), and, thus

H i,j(BPGLn/F2) ' Hj−i(GLn,Symi pgl∨n).

From Theorem 7.16, giving the description of the left hand side in the case n = 4m+2, we get
a full computation of higher cohomology (over F2) of GL4m+2 with coefficients in Symi pgl∨n . To
be more precise, there is a certain class z ∈ H1(GL4m+2, pgl

∨
4m+2) and a polynomial subalgebra

A := F2[c1, bi]1≤i≤2m+1 ⊂ (⊕i Symi pgl∨4m+2)GL4m+2 in the GL4m+2-invariants such that for any
j > 0 one has that

Hj(GL4m+2,⊕i Symi pgl∨4m+2)
∼ // A · zj



6 DMITRY KUBRAK AND FEDERICO SCAVIA

is a free A-module of rank 1 generated by zj ∈ Hj(GL4m+2, Symj pgl∨4m+2). Here c1 has degree
1 and each bi has degree 4i. In particular, for all i, j ≥ 0, we get a formula for the dimension of
Hj(GL4m+2,Symi pgl∨4m+2) as the number of ways to write i− j as a sum

γ1 + 4β2 + 8β3 + · · ·+ (8m+ 4)β2m+1,

where γ1 and the βh are non-negative integers. In particular, Hj(GL4m+2, Symi pgl∨4m+2) 6= 0 if
and only if i ≥ j.

Acknowledgements. The first-named author is grateful to Max Planck Institute for the excel-
lent work conditions during his stay there while this work was being written. He would also like
to thank Peter Scholze and Xing Gu for fruitful and helpful conversations. The second-named
author thanks Kęstutis Česnavičius and the Laboratoire de Mathématiques d’Orsay (Université

Paris-Saclay) for hospitality during Summer 2021, and the Institut des Hautes Études Scien-
tifiques for hospitality in the Fall 2021.

2. Preliminaries

2.1. Hodge and de Rham cohomology of stacks. Let k be a field and X be a smooth Artin
stack of finite type over k. For every i, j ≥ 0, we denote by H i(X,Ωj) the i-th cohomology of
the sheaf Ωj of j-differential forms on the big étale site of X (see [Tot18, Section 2]).

We denote by H i,j
H (X/k) := Hj(X,Ωi) and Hn

H(X/k) := ⊕i+j=nH i,j
H (X/k) the (i, j)-th com-

ponent and the total n-th Hodge cohomology group, respectively. The algebra H∗H(X/k) :=

⊕∞n=0H
n
H(X/k) ' ⊕i,j≥0H

i,j
H (X/k) has a natural bigraded k-algebra structure.

We also denote by H∗dR(X/k) the de Rham cohomology of X (which is a Z-graded k-algebra):
it can be defined as the hypercohomology of the (de Rham) complex of sheaves Ω∗dR := Ω0 →
Ω1 → Ω2 → . . . on big étale site of X. See [Tot18, §1] or Appendix A for more details.

The abutment filtration F i(Ω∗dR) := Ω≥idR ⊂ Ω∗dR has the associated graded ⊕iΩi[−i] and
induces the Hodge-de Rham spectral sequence:

Ei,j1 := H i,j
H (X/k)⇒ H i+j

dR (X/k).

Remark 2.1 (Another formula for Hodge cohomology). By flat descent for the cotangent complex,
for any j ≥ 0 one has a quasi-isomorphism

RΓ(X,Ωj)
∼ // RΓ(X,∧jLX/k),

where LX/k ∈ QCoh(X) is the cotangent complex of X (see e.g. [KP21a, Proposition 1.1.4]).

If X = BG for some smooth k-group scheme G then, under the identification QCoh(X)+ '
D(Rep(G))+, one has an equivalence LX/k ' g∨[−1] (see e.g. [KP21b, Example A.3.8]), where g∨

is the coadjoint representation. This leads to an equivalenceRΓ(BG,Ωj)
∼−→ RΓ(G, Symj g∨[−j]),

since ∧j(g∨[−1]) ' (Symj g∨)[−j] by the decalage isomorphism (see e.g. [KP21b, Proposition
A.2.49]). In particular:

H i,j(BG/k) ' H i−j(G,Symi g∨).
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2.2. Cotensor product and Cotor. Our main reference on comodules, coalgebras, cotensor
products and the cobar construction is [Rav86, Appendix A]. As it is mentioned in [Rav86,
Definition A1.1.1], loc.cit. works with coalgebras not only in the ungraded, but also in the
graded or bigraded settings (or, in fact any L-graded setup with L := Zn for some n ≥ 0), even
though some of the statements in [Rav86, Appendix A] that we will refer to do not explicitly
mention this.

Let k be a field and let Λ be an L-graded Hopf k-algebra. A left (resp. right) Λ-comodule is
an L-graded k-vector space M together with a k-linear L-graded map φM : M → Λ⊗kM (resp.
φM : M →M ⊗k Λ) which is coassociative and counital. If M is also an L-graded k-algebra and
φM is a graded k-algebra homomorphism then M is called a left (right) comodule algebra. In
this paper, we will only consider L-graded comodules and coalgebras for L = Zn (n = 0, 1, 2).
When L is clear from context, we will suppress “L-graded” from the notation.

Write ∆: Λ → Λ ⊗k Λ for the comultiplication map of Λ. If V is an L-graded vector space,
we define a comodule structure on Λ⊗k V by ∆⊗ idV . The functor V 7→ Λ⊗k V from L-graded
vector spaces to L-graded Λ-comodules is right adjoint to the forgetful functor; see [Rav86,
Definition A1.2.1].

Lemma 2.2. (a) The category of L-graded left (resp. right) Λ-comodules is abelian.
(b) For every L-graded k-vector space V , since V is injective, Λ⊗k V is an injective L-graded

Λ-comodule.
(c) The category of L-graded left (resp. right) Λ-comodules admits enough injectives.

Proof. We will only consider left Λ-comodules, the case of right Λ-comodules being entirely
analogous. (a) is [Rav86, Theorem A1.1.3], and (b) and (c) are [Rav86, Lemma A1.2.2]. �

Definition 2.3. (1) Let M be a right Λ-comodule and N be a left Λ-comodule. The coten-
sor product of M and N over Λ is defined as the L-graded k-vector space

M�ΛN := Ker(M ⊗k N
φM⊗1−1⊗φN−−−−−−−−−→M ⊗k Λ⊗k N);

see [Rav86, Definition A1.1.4].
(2) Given a left Λ-comodule N , one defines the Λ-subcomodule PN ⊂ N of primitive ele-

ments as

PN := {n ∈ N : φN (n) = 1⊗ n}.

Note that the canonical isomorphism k ⊗k N ' N induces an isomorphism

k�ΛN ' PN.

It is also not hard to see that if N = A is a left Λ-comodule k-algebra, then PA ⊂ A is a
k-subalgebra.

Lemma 2.4. The functor N 7→M�ΛN is left exact in M .

Proof. Consider a short exact sequence of Λ-comodules

0→M ′ →M →M ′′ → 0.
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Since k is a field, the functors M 7→M ⊗kN and M 7→M ⊗k Λ⊗kN are exact in N . We obtain
the following commutative diagram with exact rows:

0 M ′ ⊗k N M ⊗k N M ′′ ⊗k N 0

0 M ′ ⊗k Λ⊗k N M ⊗k Λ⊗k N M ′′ ⊗k Λ⊗k N 0.

φM′⊗1−1⊗φN φM⊗1−1⊗φN φM′′⊗1−1⊗φN

The snake lemma then yields an exact sequence

0→M ′�ΛN →M�ΛN →M ′′�ΛN,

as desired. �

By Lemma 2.4 and Lemma 2.2(c), we may give the following definition.

Definition 2.5. If i ≥ 0 is an integer, we define the i-th cotorsion group CotoriΛ(M,N) as the
i-th right derived functor of M�ΛN , regarded as a left exact additive functor of M with values
in L-graded vector spaces. We also let

Cotor∗Λ(M,N) := ⊕i≥0 CotoriΛ(M,N).

There is a canonical isomorphism

Cotor0
Λ(M,N) 'M�ΛN.

By construction, each CotoriΛ(M,N) is an L-graded vector space.

As the right derived functor, Cotor∗Λ(M,N) can be explicitly computed by picking any in-
jective resolution M → I∗ in the category of right Λ-comodules and taking the cohomology of
I∗�ΛN . There is a preferred such resolution given by the cobar construction.

Construction 2.6 (Cobar construction). Let ∆: Λ→ Λ⊗k Λ and ε : Λ→ k denote the comul-
tiplication and the counit maps of Λ, respectively. If M is an L-graded right Λ-comodule with

the coaction φM : M → M ⊗k Λ, we may construct a cosimplicial right Λ-comodule C̃Λ(M)• as

follows. For all s ≥ 0, set C̃Λ(M)s := M⊗kΛ⊗s+1 with the coaction given by idM⊗. . .⊗idΛ⊗∆Λ.

For every 0 ≤ i ≤ s, the i-th codegeneracy map σsi : C̃Λ(M)s+1 → C̃Λ(M)s is given by

σsi (m⊗ γ0 ⊗ · · · ⊗ γs+1) = ε(γi)m⊗ γ0 ⊗ · · · ⊗ γi−1 ⊗ γi ⊗ · · · ⊗ γs+1

for all γ0, . . . , γs+1 ∈ Λ and m ∈ M . For every 1 ≤ i ≤ s, the i-th coface map δsi : C̃Λ(M)s−1 →
C̃Λ(M)s is given by

δsi (m⊗ γ0 ⊗ · · · ⊗ γs) = m⊗ γ0 ⊗ · · · ⊗ γi−2 ⊗∆(γi−1)⊗ γi ⊗ · · · ⊗ γs
for all γ0, . . . , γs ∈ Λ and m ∈M , and δs0 is given by

δ0
s(m⊗ γ0 ⊗ · · · ⊗ γs) = φM (m)⊗ γ0 ⊗ · · · ⊗ γs.

By definition, the non-normalized cobar resolution of M is the cochain complex C̃∗Λ(M) such

that C̃sΛ(M) = C̃Λ(M)s for all s ≥ 0 and whose differentials are given by the alternating sums of

the coface maps of C̃(M)•.
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Let Λ := Ker(ε) ⊂ Λ, where ε : Λ→ k is the counit map. The unit η : k → Λ defines a splitting
Λ ' k ⊕ Λ (as k-vector spaces) with an isomorphism Λ ' Coker(η). The comultiplication
∆: Λ→ Λ⊗k Λ induces a map ∆: Λ→ Λ⊗k Λ as the composition

Λ ↪→ Λ
∆−→ Λ⊗k Λ� Λ⊗k Λ,

which endows Λ with the structure of non-unital coalgebra over k. For a left (resp. right)
comodule N (resp. M) with the coaction φN : N → Λ ⊗k N (resp. φM : M → M ⊗k Λ) we
will denote by φN (resp. φM ) the corresponding coaction of Λ on N (resp. M) obtained by

composing with the projection (−) : Λ� Λ.
The (normalized) cobar resolution C∗Λ(M) of M is defined as the normalized cochain complex

associated to C̃Λ(M)•, that is, by

CsΛ(M) =
s−1⋂
i=0

(Ker(σs−1
i : CΛ(M)s → CΛ(M)s−1) = M ⊗k Λ

⊗s ⊗k Λ,

where as before Λ ' Ker(ε) ' Coker(η), and differential d : CsΛ(M) → Cs+1
Λ (M) is induced by

the one on C̃∗Λ(M):

d(m⊗ γ1⊗ · · · ⊗ γs+1) := φM (m)⊗ γ1 ⊗ · · · ⊗ γs+1 +(2.7)

+
s∑
i=1

(−1)i−1m⊗ γ1 ⊗ . . .⊗ γi−1 ⊗∆(γi)⊗ γi+1 ⊗ . . .⊗ γs+1

for all γs+1 ∈ Λ, γ1, . . . , γs ∈ Λ and m ∈M . See also [Rav86, Definition A1.2.11] for an analogous
construction for left comodules. It is a part of the cosimplicial Dold-Kan correspondence that the

natural inclusion C∗Λ(M) ↪→ C̃∗Λ(M) is split and a homotopy equivalence; see e.g. [Sta, Lemma
019I, (3)] (the proof is dual to that of [Sta, Lemma 019A]).

The map M → M ⊗k Λ⊗•+1 =: C̃Λ(M)• sending m 7→ m ⊗ 1 ⊗ . . . ⊗ 1 defines a map

of cosimplicial right Λ-comodules M• → C̃Λ(M)• (here M• denotes the constant cosimplicial
object). By passing to normalized cochain complexes we get a map

M → C∗Λ(M)

of complexes of right Λ-comodules (where M is considered as a complex concentrated in degree
0). The complex C∗Λ(M) gives an injective resolution of M ; indeed, all of its terms are injective
right Λ-comodules by Lemma 2.2(b). In particular, given a left Λ-comodule N one can explicitly
compute Cotor∗Λ(M,N) as the cohomology of C∗Λ(M,N) := C∗Λ(M)�ΛN . Let us record that

C∗Λ(M,N) is given explicitly by CsΛ(M)�ΛN 'M⊗kΛ
s⊗kN with the differential d : CsΛ(M,N)→

Cs+1
Λ (M,N) given by

d(m⊗ γ1 ⊗ . . .⊗ γs ⊗ n) :=φM (m)⊗ γ1 ⊗ . . .⊗ γs ⊗ n+ (−1)sm⊗ γ1 ⊗ . . .⊗ γs ⊗ φN (n)

+

s−1∑
i=1

(−1)i−1m⊗ γ1 ⊗ . . .⊗ γi−1 ⊗∆(γi)⊗ γi+1 ⊗ . . .⊗ γs ⊗ n.(2.8)

If Λ, M and N are L-graded, so are C∗Λ(M) and C∗Λ(M)�ΛN ; then H i(C∗Λ(M)�ΛN) computes

CotoriΛ(M,N) as an L-graded vector space.
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Remark 2.9. In [Rav86, Definition A1.2.3], Ravenel defines Cotori(M,N) as the i-th right derived
functor of M�ΛN , but considered as a functor in N . By a standard argument one can show
that it doesn’t matter whether to consider M�ΛN as a functor in M or in N : namely, picking
injective resolutions M → I∗M and N → I∗N as right an left Λ-comodules one has natural quasi-
isomorphisms

I∗M�ΛN
∼−→ I∗M�ΛI

∗
N
∼←−M�ΛI

∗
N

by using the fact that all rows and columns in the bicomplex defined by I∗M�ΛI
∗
N are exact.

2.3. Algebra structure on Cotor. Let mΛ : Λ ⊗k Λ → Λ be the multiplication map. Given
two L-graded left Λ-comodules M and N , we write M ⊗kN for the comodule tensor product of
M and N . By definition, this is the usual tensor product of L-graded k-vector spaces M ⊗k N ,
endowed with the following left coaction of Λ:

M ⊗k N
φM⊗φN // Λ⊗kM ⊗k Λ⊗k N

∼ // Λ⊗k Λ⊗kM ⊗k N
mΛ⊗idM⊗idN // Λ⊗kM ⊗k N .

This definition agrees with [Rav86, Definition A1.1.2]. Let us emphasize that the left coaction
of Λ on M ⊗k N crucially depends on the algebra structure on Λ. Similarly, one defines right
Λ-comodule algebras.

Note that given right Λ-comodules M1,M2 and left Λ-comodules N1, N2 there is a natural
map

(2.10) (M1�ΛN1)⊗k (M2�ΛN2)→ (M1 ⊗kM2)�Λ(N1 ⊗k N2)

of k-vector spaces: indeed, both are subspaces of M1⊗M2⊗N1⊗N2 and one checks easily from
the definitions that the left hand side is the subspace of the right.

Construction 2.11 (External product). If M1 and M2 are L-graded right Λ-comodules and
N1 and N2 are L-graded left Λ-comodules, we have an external cup product map

Cotor∗1Λ (M1, N1)⊗k Cotor∗2Λ (M2, N2) // Cotor∗1+∗2
Λ (M1 ⊗kM2, N1 ⊗k N2),

which can be defined as follows (see also [Rav86, Definition A1.2.13]). Let M1 → I∗M1
and

M2 → I∗M2
be injective resolutions in the category of right Λ-comodules; then I∗M1

⊗ I∗M2
is an

injective resolution for M1 ⊗M2. We have a natural map

(I∗M1
�ΛN1)⊗k (I∗M2

�ΛN2)→ (I∗M1
⊗k I∗M2

)�Λ(N1 ⊗k N2)

given by 2.10.

If A is a right Λ-comodule algebra and B is a left Λ-comodule algebra, then letting M1 =
M2 = A and N1 = N2 = B and composing the external cup product with the map

Cotor∗Λ(A⊗k A,B ⊗k B) // Cotor∗Λ(A,B)

induced by the multiplication maps A ⊗k A → A and B ⊗k B → B gives Cotor∗Λ(A,B) the
structure of a (Z⊕L)-graded k-algebra. (Here CotoriΛ(A,B) has Z-grading i and the L-grading
is the one coming from Λ, M and N .)

More generally, if M (resp. N) is a left A-(resp. B-)module in the category of left (resp.
right) Λ-comodules, then similarly, composing with the map

Cotor∗Λ(A⊗kM,B ⊗k N) // Cotor∗Λ(M,N)

the external cup product endows Cotor∗Λ(M,N) with a natural structure of (Z ⊕ L)-graded
Cotor∗Λ(A,B)-algebra.
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Remark 2.12. It will be useful to lift the above action of Cotor∗Λ(A,B) on Cotor∗Λ(M,N) to an
explicit action of a DG-algebra on a DG-module.

Namely, the map Cotor∗1Λ (M1, N1) ⊗k Cotor∗2Λ (M2, N2) → Cotor∗1+∗2
Λ (M1 ⊗k M2, N1 ⊗k N2)

has a natural lift to the map of complexes

AW: C∗Λ(M1, N1)⊗k C∗Λ(M2, N2) // C∗Λ(M1 ⊗kM2, N1 ⊗kM2)

via the Alexander–Whitney product (see [Rav86, (A1.2.15)]). When M1 = M2 = A and N1 =
N2 = B are Λ-comodule algebras the map AW endows C∗Λ(A,B) with the structure of DG-
algebra (that lifts the algebra structure on Cotor).

We will be particularly interested in the case where the Λ-comodule structure on M1, N1,M2

is trivial. Then the formula for AW simplifies significantly: given m1 ⊗ γ1 ⊗ . . . ⊗ γs ⊗ n1 ∈
CsΛ(M1, N1) and m2 ⊗ γs+1 ⊗ . . .⊗ γs+t ⊗ n2 ∈ CtΛ(M2, N) we simply have

AW((m1 ⊗ γ1⊗ . . .⊗ γs ⊗ n1)⊗ (m2 ⊗ γs+1 ⊗ . . .⊗ γs+t ⊗ n2)) :=

(m1 ⊗m2)⊗ γ1 ⊗ . . .⊗ γs ⊗ γs+1 ⊗ . . .⊗ γs+t ⊗ (n1 ⊗ n2),

where the result is an element of Cs+tΛ (M1⊗kM2, N1⊗kN2). In the caseN1 = N2 = M1 = M2 = k
this map induces a DG-algebra structure on C∗Λ(k, k) lifting the multiplication on Cotor∗Λ(k, k).
For a general left Λ-comodule N it induces a structure of DG-module over C∗Λ(k, k) on C∗Λ(k,N)
which lifts the natural Cotor∗Λ(k, k)-module structure on Cotor∗Λ(k,N).

In the case M1 = M2 = A, N1 = N2 = B are k-algebras considered as Λ-comodule algebras
with trivial actions, composing with the maps A⊗A→ A, B ⊗B → B this gives a DG-algebra
structure on C∗Λ(A,B) (with multiplication given by

AW((a1 ⊗ γ1 ⊗ . . .⊗ γs ⊗ b1)⊗(a2 ⊗ γs+1 ⊗ . . .⊗ γs+t ⊗ b2)) :=

a1a2 ⊗ γ1 ⊗ . . .⊗ γs ⊗ γs+1 ⊗ . . .⊗ γs+t ⊗ b1b2),

lifting the algebra structure on Cotor∗Λ(A,B).

Remark 2.13. We will be working over fields of characteristic 2, so the sign conventions for
multiplication will not matter for us; in particular, if M and N are commutative algebras, then
so will be Cotor∗Λ(M,N).

Example 2.14. If G is a linear algebraic group over a field k and Γ ⊂ G is a central subgroup,
the multiplication map Γ×G→ G is a k-group homomorphism and so induces a morphism of
stacks BΓ×BG→ BG. Passing to Hodge cohomology and applying Künneth’s formula [Tot18,
Proposition 5.1] we obtain a homomorphism of Z2-graded k-algebras

(2.15) H∗,∗H (BG/k) // H∗,∗H (BΓ/k)⊗k H∗,∗H (BG/k).

If G = Γ is commutative, (2.15) makes H∗,∗H (BG/k) into a Z2-graded Hopf algebra over k. If G is
an arbitrary linear algebraic group, (2.15) makes H∗,∗H (BG/k) into a left H∗,∗H (BΓ/k)-comodule
algebra. The same holds for de Rham cohomology, using the Künneth formula (Corollary A.5).
Namely, H∗dR(BΓ/k) is a Z-graded Hopf algebra and H∗dR(BG/k) has a natural left H∗dR(BΓ/k)-
comodule algebra structure.
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3. The Eilenberg-Moore spectral sequence

Let K•• be a first-quadrant double cochain complex, and write Tot(K••) for the associated
total complex. By definition, the first spectral sequence associated toK•• is the spectral sequence

(3.1) Eij1 := Hj(Ki•)⇒ Hn(Tot(K••))

associated to the decreasing filtration F ∗Tot(K••) of Tot(K••) given by column degree, that is

F i Totn(K••) :=
n⊕

p+q=n,p≥i
Kp,q;

see [Sta, 012X].
Let X•• be a bisimplicial scheme and F be an abelian sheaf on the small étale site of X••.

By [Fri82, Proposition 2.6], there exists a first-quadrant spectral sequence

(3.2) Eij1 := Hj(Xi•, F |Xi•)⇒ H i+j(X••, F ),

which is functorial in F . It is defined as the first spectral sequence (3.1) associated to the double
complex K•• = HomAbSh(X••)(ZX∗· , I), where AbSh(X••) is the category of abelian sheaves on
the small étale site of X••, ZX∗• → Z is a certain projective resolution in AbSh(X••) and F → I
is an injective resolution in AbSh(X••). (In [Fri82, Proposition 2.4], the simplicial analogue of
(3.2) is proved with more details than [Fri82, Proposition 2.6].)

Remark 3.3. The spectral sequence (3.2) is compatible with cup products in the following sense:
given a homomorphism of abelian sheaves A ⊗ B → C on the small étale site of X••, there is
a homomorphism from the tensor product of the spectral sequence (3.2) for A and B to the
spectral sequence (3.2) for C, which on the E1-page and on the E∞-page is the one induced by
the map A⊗B → C.

Indeed, let A → IA, B → IB and C → IC be injective resolutions. We may construct a
commutative square

A⊗B //

��

IA ⊗ IB

��
C // IC ,

where the map IA ⊗ IB → IC is uniquely determined up to homotopy. We obtain an induced
homomorphism of double complexes

HomAbSh(X••)(ZX∗· , IA)⊗HomAbSh(X••)(ZX∗· , IB)→ HomAbSh(X••)(ZX∗· , IC).

Now an application of [CE99, XV, Exercises 2, 4] to this homomorphism yields the required cup
products. It is independent of the choice of resolutions A → IA, B → IB and C → IC and of
the map IA ⊗ IB → IC .

For every k-scheme X, there is a simplicial scheme EX whose space of n-simplices (EX)n
is Xn+1; see [Del74, Section 6.1.3]. If G is a linear algebraic k-group, the Čech nerve of the
universal G-torsor Spec k → BG is EG/G, the quotient of EG by the diagonal left G-action:

(3.4) BG Spec koo Goo oo G×k Goooo
oo · · · .oooo

oooo
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(We do not draw the degeneracy maps.) If H is a subgroup of G, the Čech nerve of the G-torsor
G/H → BH is given by EG/H, where H acts diagonally by left multiplication:

(3.5) BH G/Hoo G2/Hoooo G3/Hoo oo
oo · · · .oooo

oooo

Proof of Theorem 1.3. We start by constructing the spectral sequence for Hodge cohomology.
Since Γ is a k-group of multiplicative type, there exist a k-torus T and a k-group embedding
Γ ↪→ T . Define

G̃ := (T ×G)/Γ.

The projection G̃ → G̃/G is a G-torsor. The induced morphism G̃/G → BG is smooth and

surjective, and the Čech nerve of G̃/G→ BG is given by EG̃/G, that is

(3.6) BG G̃/Goo G̃2/Goooo G̃3/Goooo
oo · · · .oooo

oooo

The projection T → T/Γ is a Γ-torsor. The induced morphism T/Γ → BΓ is smooth and
surjective, and the Čech nerve of T/Γ→ BΓ is given by ET/Γ:

(3.7) BΓ T/Γoo T 2/Γoooo T 3/Γoooo
oo · · · .oooo

oooo

For all i ≥ 1, the projection morphism G̃i/G→ G
i
/G is a (T i/Γ)-torsor, hence it is smooth and

surjective, and its Čech nerve is given by

(3.8) G
i
/G T i/Γoo T i/Γ× G̃i/Goooo (T i/Γ)2 × G̃i/Goooo

oo · · · .oooo
oooo

We obtain the following commutative diagram

(3.9)
...

��������

...

��������

...

��������

...

��������
G

3
/G

������

G̃3/G

����������

oo T 3/Γ× G̃3/G

������

oooo (T 3/Γ)2 × G̃3/Goooo
oo

������

· · ·oooo
oooo

G
2
/G

����

G̃2/G

����

oo T 2/Γ× G̃2/G

����

oooo (T 2/Γ)2 × G̃2/Goooo
oo

����

· · ·oooo
oooo

Spec k

��

G̃/G

��

oo T/Γ× G̃/G

��

oooo (T/Γ)2 × G̃/G

��

oooo
oo · · ·oooo

oooo

BG BGoo BΓ×BGoo oo (BΓ)2 ×BGoooo
oo · · · .oooo

oooo

In diagram (3.9), the leftmost column is EG/G, and for all the other columns are the product
of an increasing number of copies of (3.7) and one copy of (3.6). The bottom row is the Čech
nerve of the smooth cover of stacks BG → BG, and the other rows are given by (3.8). Let
X•• be the bisimplicial scheme obtained from (3.9) by removing the left column and bottom
row. The diagram shows that X•• is the Čech nerve of the morphism of simplicial schemes
EG̃/G → EG/G. Since (EG̃/G)i → (EG/G)i is a (T i/Γ)-torsor and T i/Γ is smooth, the
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morphism EG̃/G→ EG/G is a smooth cover. Therefore, for all h ≥ 0, [Fri82, Proposition 3.7]
gives an isomorphism

H∗(EG/G,Ωh)
∼−→ H∗(X••,Ω

h).

Since Spec k → BG is smooth, we have an isomorphism

H∗(BG,Ωh)
∼−→ H∗(EG/G,Ωh).

Moreover, for all i ≥ 0, the simplicial scheme Xi• is the Čech nerve of the (T i × G̃)-torsor

(T/Γ)i × G̃/G→ BΓi ×BG. We obtain the isomorphisms

H∗(BΓi ×BG,Ωh)
∼−→ H∗(Xi•,Ω

h).

Therefore the spectral sequence (3.2) for X•• and F = Ωh takes the form

Eij1 (h) := Hj((BΓ)i ×BG,Ωh)⇒ H i+j(BG,Ωh).

Letting h vary, the spectral sequences Eij(h) assemble into a spectral sequence of graded k-vector
spaces

Eij1 := Hj
H((BΓ)i ×BG/k)⇒ H i+j

H (BG/k).

An application Remark 3.3 to the homomorphisms Ωh ⊗ Ωh′ → Ωh+h′ , where h, h′ ≥ 0, turns
the spectral sequence into a spectral sequence of graded k-algebras.

By the Künneth formula in Hodge cohomology [Tot18, Proposition 5.1], for every i ≥ 0,

Ei∗1 = H∗H(BΓi ×BG/k) ' H∗H(BΓ/k)⊗i ⊗H∗H(BG/k).

This is the non-normalized cobar construction of the H∗H(BΓ/k)-comodule algebra H∗H(BG/k).
Indeed, the differentials are alternating sums of projection maps in (3.9), and using this one may
check that they agree with those of the cobar construction. Therefore, by [Rav86, Corollary
A1.2.12], the E2 page of the spectral sequence computes Cotor∗H∗(BΓ)(k,H

∗
H(BG)).

The construction for the spectral sequence in de Rham cohomology is entirely analogous.
Indeed, while [Fri82, Proposition 2.6, Proposition 3.7] are only phrased for sheaves of abelian
groups, they also hold for complexes of sheaves. For the Künneth formula in de Rham cohomol-
ogy, see Corollary A.5. �

Remark 3.10. If X is a smooth algebraic k-stack, U is a k-scheme, and f : U → X is a morphism,
then the Čech nerve of f can be used to compute the Hodge or de Rham cohomology of X only
when f is smooth and surjective. This explains the introduction of the auxiliary torus T in the
proof of Theorem 1.3: indeed, the morphisms G → G and Spec k → BΓ are Γ-torsors, hence
not necessarily smooth, while the morphisms G̃→ G and T/Γ→ BΓ are torsors under the tori
T/Γ and T , respectively, and so they are smooth.

Remark 3.11. Let K•• be a first-quadrant double cochain complex, and consider the spectral
sequence (3.1) for K••. Let u ∈ F iH i+j(TotK••) and v ∈ F i

′
H i′+j′(TotK••). Then u and

v are represented by classes u ∈ Ei,j∞ and v ∈ Ei
′,j′
∞ . Suppose that u · v = 0 in E∞. This

means that uv ∈ F i+i′+1H i+i′+j+j′(TotK••), and so there exists an integer d ≥ 1 such that the
representative in uv ∈ E∞ of uv has bidegree (i+ j + d, i′+ j′). In other words, if u · v = 0 then
the column degree of uv is strictly greater than the sum of the column degrees of u and v.

Since the Eilenberg-Moore spectral sequence is defined in terms of (3.1), this remark applies
to it. We will make use of this observation during the proof of Theorems 7.16 and 8.17.



EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE COHOMOLOGY 15

Remark 3.12. It follows from the construction of the Eilenberg-Moore spectral sequence in Hodge
cohomology that

E0,∗
2 := Cotor0

H∗H(BΓ/k)(k,H
∗
H(BG/k)) = PH∗H(BG/k),

where we regard H∗H(BG/k) as a left H∗H(BΓ/k)-comodule algebra. The corresponding edge
homomorphism

H∗H(BG/k)→ PH∗H(BG/k) ⊂ H∗H(BG/k)

is exactly the pull-back with respect to the map BG→ BG induced by the projection G→ G.
A similar description holds for de Rham cohomology.

Remark 3.13. Let us emphasize that, taking into account the bigrading on Hodge cohomology

and the construction of the Eilenberg-Moore spectral sequence, Ei,j2 decomposes as a direct sum

Ei,j2 ' ⊕h(Ei,j2 )h where

(Ei,j2 )h :=
(

CotoriH∗H(BΓ/k)(k,H
∗
H(BG/k))

)h,j
⇒ Hh,i+j

H (BG/k).

Here the bigrading on CotoriH∗H(BΓ/k)(k,H
∗
H(BG/k)) is the one coming from H∗,∗H (BΓ/k) and

H∗,∗H (BG/k).

4. Additive part of Theorem 1.5 for projective linear and symplectic groups

The goal of this section is to identify the E2 page of the Eilenberg-Moore spectral sequence for
the Hodge and de Rham cohomology with their topological counterparts in the case of PGLn and
PSpn. This is done by explicitly comparing the coalgebras and comodules that take part in the
Cotor description on both sides. In Section 4.3 we then record how to deduce the degeneration
of the above spectral sequences in the case n = 4m+ 2 from Totaro’s inequality and the results
of Toda [Tod87] for the singular cohomology.

4.1. Projective linear group. Let n ≥ 1 be an integer and p be a prime number. We have
isomorphisms

(4.1) H∗H(BGm/Fp) ' Fp[x2], H∗H(BGLn/Fp) ' Fp[c1, . . . , cn],

where x2 ∈ H1,1
H (BGm/Fp) and ci ∈ H i,i

H (BGLn/Fp). If ι : Tn ↪→ GLn is the diagonal maximal
torus, then by the Künneth formula H∗H(BTn/Fp) is a polynomial ring in n generators t1, . . . , tn
of bidegree (1, 1), and the pullback map

Bι∗ : H∗H(BGLn/Fp) // H∗H(BTn/Fp) ' Fp[t1, . . . , tn]

is injective and identifies ci with the i-th symmetric function on variables ti; see [Tot18, End of
proof of Theorem 9.2].

If we identify Gm with the center of GLn, the multiplication map Gm × GLn → GLn is a
group homomorphism, and so induces a morphism of stacks BGm × BGLn → BGLn. By the
Künneth formula, we obtain a ring homomorphism

(4.2) φ : H∗H(BGLn/Fp)→ H∗H(BGm/Fp)⊗H∗H(BGLn/Fp),

which endows H∗H(BGLn/Fp) with the structure of an H∗H(BGm/Fp)-comodule algebra (as dis-
cussed in Example 2.14).
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Let us explicitly describe the coalgebra structure on H∗H(BGm/Fp). The restriction of the
product map Gm×Gm → Gm to Gm×{1} and {1}×Gm is the identity, hence the comultiplication
map

∆: H2
H(BGm/Fp)→ H2

H(BGm ×BGm/Fp)
Künneth
∼
// H2

H(BGm/Fp)⊕H2
H(BGm/Fp)

is the diagonal embedding. It then follows that the Hopf algebra structure on H∗H(BGm/Fp) '
Fp[x2] is the unique one given by ∆(x2) = x2 ⊗ 1 + 1⊗ x2, namely

∆(xn2 ) =
n∑
i=0

(
n

i

)
xn−i2 ⊗ xi2.

Since H∗,∗H (BGLn/Fp) is concentrated in bidegrees (i, i) and is a polynomial algebra, the
Hodge-de Rham spectral sequence for BGLn degenerates and induces an isomorphism

H∗H(BGLn/Fp) ' H∗dR(BGLn/Fp).

Thus the previous discussion also applies to H∗dR(BGLn/Fp). Below, in this section we will be
giving proofs in the case of Hodge cohomology, but the same arguments then apply to de Rham
context.

We now write

H∗sing(BC×;Fp) ' Fp[xtop
2 ], H∗sing(BGLn(C);Fp) ' Fp[ctop

1 , . . . , ctop
n ],

where |xtop
2 | = 2 and |ctop

i | = 2i. We naturally regard H∗sing(BGLn(C);Fp) as a H∗sing(BC×;Fp)-
comodule algebra, and let φtop be the coaction map. We note that the coalgebra structure on
H∗sing(BC×;Fp) is the unique one given by ∆(xtop

2 ) = xtop
2 ⊗ 1 + 1⊗ xtop

2 .
It is easy to see that there is an isomorphism of Hopf algebras

H∗H(BGm/Fp) ' H∗sing(BC×;Fp)

defined by sending x2 to xtop
2 . The next lemma shows that it can be extended to an isomorphism

between the comodule-algebras H∗H(BGLn/Fp) and H∗sing(BGLn(C);Fp), inducing in particular
an isomorphism of cotorsion groups of our interest.

Lemma 4.3. Consider the H∗H(BGm/Fp)-comodule algebra H∗H(BGLn/Fp) = Fp[c1, . . . , cn],
with the coaction φ of (4.2).

(a) For all i = 1, . . . , n, we have

φ(ci) =
∑

i1+i2=i

(
n− i2
i1

)
xi12 ⊗ ci2 ,

where we use the convention that c0 := 1.
(b) The isomorphisms

H∗H(BGm/Fp)
∼−→ H∗sing(BC×;Fp), H∗H(BGLn/Fp)

∼−→ H∗sing(BGLn(C);Fp)

given by sending x2 7→ xtop
2 and ci 7→ ctop

i induce an isomorphism of bigraded algebras

Cotor∗H∗H(BGm/Fp)(Fp, H
∗
H(BGLn/Fp)) ' Cotor∗H∗sing(BC×;Fp)(Fp, H

∗
sing(BGLn(C);Fp)).

Entirely analogous statements hold with Hodge cohomology replaced by de Rham cohomology.



EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE COHOMOLOGY 17

Proof. (a) The proof is analogous to that of [Tod87, Proposition 3.2]. We have a commutative
diagram

H∗H(BGLn/Fp)
φ //

� _

Bι∗

��

H∗H(BGm/Fp)⊗H∗H(BGLn/Fp)� _

1⊗Bι∗
��

H∗H(BTn/Fp)
φ′ // H∗H(BGm/Fp)⊗H∗H(BTn/Fp),

where φ′ is the coaction map for Tn. We have H∗H(BTn/Fp) = Fp[t1, . . . , tn], where ti has
degree 2 for all i. Recall that ∆: H∗H(BGm/Fp) → H∗H(BGm/Fp) ⊗ H∗H(BTn/Fp) sends x2 to
x2 ⊗ 1 + 1⊗ x2. Thus, for all i = 1, . . . , n, the commutativity of the square

Gm × Ti Ti

Gm ×Gm Gm

id× pri pri

implies that

φ′(ti) = 1⊗ ti + x2 ⊗ 1.

Moreover

Bι∗(
n∑
i=1

ci) =
n∏
i=1

(1 + ti).

Elementary calculations show that

(1⊗Bι)∗φ(
∑

ci) = (1⊗Bι)∗
n∑
j=0

j∑
i=0

(
n− j
i

)
xi2 ⊗ cj .

Now (a) follows from the injectivity of (1⊗Bι)∗.
(b) By (a) and [Tod87, Proposition 3.2], the stated isomorphisms induce a commutative square

H∗H(BGLn/Fp)
φ //

o
��

H∗H(BGm/Fp)⊗H∗H(BGLn/Fp)

o
��

H∗sing(BGLn(C);Fp)
φtop

// H∗sing(BC×;Fp)⊗H∗sing(BGLn(C);Fp),

where vertical maps are the ones in the statement of the proposition. This shows that the
corresponding comodule-algebras are equivalent, and, consequently, one also has an isomorphism
of the corresponding Cotor-algebras. �

4.2. Projective symplectic group. Let n ≥ 1 be an integer. By [Tot18, Theorem 9.2], we
have an isomorphism

H∗H(BSp2n/F2) = F2[q1, . . . , qn],

where qi has bidegree (2i, 2i) for i = 1, . . . , n. By [Tot18, Proposition 10.1], we have an isomor-
phism of Hopf algebras

H∗H(Bµ2/F2) ' F2[x1, x2]/(x2
1),
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where x1 ∈ H1,0
H (Bµ2/F2) and x2 ∈ H1,1

H (Bµ2/F2). We identify µ2 with the center of Sp2n.
Then the multiplication map µ2 × Sp2n → Sp2n induces a ring homomorphism

(4.4) φ : H∗H(BSp2n/F2) // H∗H(Bµ2/F2)⊗H∗H(BSp2n/F2).

We can view H∗H(BSp2n/F2) as an H∗H(Bµ2/F2)-comodule algebra, with coaction map φ.

Lemma 4.5. Let j : Sp2n ↪→ GL2n be the tautological inclusion. Then

Bj∗(c2h) = qh, Bj∗(c2h−1) = 0

for all h = 1, . . . , n. In particular, Bj∗ is injective.

Proof. Let T2n ⊂ GL2n be the diagonal maximal torus, and let T ′2n := j−1(T2n). Then T ′2n is a
maximal torus of Sp2n, and j induces a commutative square

H∗H(BGL2n/F2)
Bj∗ //

� _

��

H∗H(BSp2n/F2)
� _

��
H∗H(BT2n/F2) // H∗H(BT ′2n/F2).

The vertical maps are injective. Indeed, by a theorem of Borel [Bor61] (the computation of tor-
sion primes for all connected compact Lie groups), the classifying spaces BSU(2n) and BSp(2n)
have no torsion primes, hence the injectivity of the two maps follows from [Tot18, End of proof
of Theorem 9.2].

For i = 1, . . . , 2n, let ti ∈ H2(BT2n/F2) be the generator corresponding to the i-th coordinate
of T2n. Then the bottom horizontal arrow gives an identification

H∗H(BT ′2n/F2) ' H∗H(BT2n/F2)/(t1 + tn+1, t2 + tn+2, . . . , tn + t2n).

The conclusion follows from the fact that ci is the i-th symmetric function of t1, . . . , t2n, and
that under the previous identification qi is the i-th symmetric function of t21, . . . , t

2
n; see the last

line of the proof of [CR10, Proof of Theorem 6.6]. �

Let us also identify the coalgebra structure on H∗H(Bµ2/F2). Similarly to the Gm-case one
can see that the comultiplication map

∆: H1
H(Bµ2/Fp) // H1

H(Bµ2 ×Bµ2/Fp)
Künneth
∼
// H1

H(Bµ2/Fp)⊕H1
H(Bµ2/Fp)

is the diagonal embedding, so ∆(x1) = x1⊗1+1⊗x1. The class x2 ∈ H∗H(Bµ2/F2) is the pullback
of the generator of H∗H(BGm/F2) (see the proof of [Tot18, Proposition 10.1]) and so we also have
∆(x2) = x2⊗ 1 + 1⊗ x2. This defines a Hopf-algebra structure on H∗H(Bµ2/F2) ' F2[x1, x2]/x2

1

uniquely.
Recall that H∗sing(BZ/2;F2) ' F2[z], where |z| = 1. The natural Hopf algebra structure here

is uniquely defined by ∆(z) = z ⊗ 1 + 1⊗ z.

Remark 4.6. Note that H∗H(Bµ2/F2) is not isomorphic to H∗sing(BZ/2;F2) as an algebra. Nev-

ertheless, the unique F2-linear map ψ : H∗H(Bµ2/F2)→ H∗sing(BZ/2;F2) which sends a xi2 to z2i

and x1x
i
2 to z2i+1 is easily checked to be an isomorphism of coalgebras.
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Recall that
H∗sing(BSp2n;F2) = F2[qtop

1 , . . . , qtop
n ],

where qtop
i has degree 4i for i = 1, . . . , n.

Lemma 4.7. Consider H∗H(BSp2n/F2) = F2[q1, . . . , qn], with the coaction φ of (4.4).
(a) For all i = 1, . . . , n, we have

φ(qi) =
∑

i1+i2=i

(
n− i2
ii

)
x2i1

2 ⊗ qi2 .

(b) The isomorphism of coalgebras ψ : H∗H(Bµ2/F2)→ H∗sing(BZ/2;F2) together with the map

of comodules H∗H(BSp2n/F2) → H∗sing(BSp2n;F2) sending qi to qtop
i induces an isomorphism of

bigraded F2-vector spaces

Cotor∗H∗H(Bµ2/F2)(F2, H
∗
H(BSp2n/F2)) = Cotor∗H∗sing(B(Z/2Z);F2)(F2, H

∗
sing(BSp2n;F2)).

Proof. (a) Since φ respects the gradings and H∗H(BSp2n/F2) is concentrated in even degrees, the
xi2x1-component of φ(qh) must be zero for all h. To compute the xi2-components, observe that
we have the following commutative square

H∗H(BSp2n/F2) �
� Bj∗ //

��

H∗H(BGL2n/F2)

��
H∗H(Bµ2/F2) // H∗H(BGm/F2),

where Gm is viewed as the center of GL2n and µ2 as the center of Sp2n. The conclusion follows
from Lemma 4.3(a) and Lemma 4.5.

(b) We have

H∗sing(BSp2n;F2) = F2[qtop
1 , . . . , qtop

n ],

where qtop
i has degree 4i for i = 1, . . . , n. The coaction map

φtop : H∗sing(BSp2n;F2)→ H∗sing(B(Z/2Z);F2)⊗H∗sing(BSp2n/F2)

has been computed in [Tod87, Proposition 3.4] and agrees with the formula that we have proved
in part (a). Recall (Remark 4.6) that we have an isomorphism of coalgebras

ψ : H∗H(Bµ2/F2)
∼−→ H∗sing(B(Z/2Z);F2).

Comparison of (a) with Toda’s formula for φtop yields the commutativity of the following
diagram of graded linear maps

H∗H(BSp2n/F2)
φ //

o
��

H∗H(Bµ2/F2)⊗H∗H(BSp2n/F2)

o
��

H∗sing(BSp2n;F2)
φtop

// H∗sing(B(Z/2Z);F2)⊗H∗sing(BSp2n;F2),

where the vertical maps are induced by ψ and the graded algebra isomorphism

H∗H(BSp2n/F2)
∼ // H∗sing(BSp2n;F2), qh 7→ qtop

h .
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This induces the desired isomorphism between Cotor∗ (as graded vector spaces). �

4.3. Proof of the additive part of Theorem 1.5 for general linear and symplectic
groups. Let G be one of the split reductive Z-groups GL4m+2 and Sp4m+2, and let Γ be the
center of G. We now prove that we have isomorphisms of Z-graded F2-vector spaces

H∗H(BG/F2) ' H∗dR(BG/F2) ' H∗sing(BG(C);F2).

In particular, this establishes Theorem 1.5(2).
Consider the Eilenberg-Moore spectral sequence associated by Theorem 1.3 to the central

short exact sequence

(4.8) 1→ ΓF2 → GF2 → GF2 → 1.

By Lemmas 4.3(b) and 4.7(b), its E2 page is isomorphic to the E2 page of the topological
Eilenberg-Moore spectral sequence of [Tod87, (4.1)] for the fibration Γ(C) → G(C) → G(C).
Toda showed that the latter spectral sequence degenerates on the second page; see [Tod87, p.
99, line 8] for G = GL4m+2 and [Tod87, p. 102, line 9] for Sp4m+2. Therefore,

dimF2 H
i
H(BG/F2) ≤ dimF2 H

i
sing(BG(C);F2)

for all i ≥ 0 (where the equality holds for all i if and only if the spectral sequence for Hodge
cohomology also degenerates). On the other hand, by [KP21b, Theorem 5.3.6] and the existence
of the Hodge-de Rham spectral sequence, we have

dimF2 H
i
H(BG/F2) ≥ dimF2 H

i
dR(BG/F2) ≥ dimF2 H

i
sing(BG(C);F2).

We conclude that the algebraic Eilenberg-Moore spectral sequence associated to (4.8) degener-
ates and that we have equality of dimensions, as desired.

Remark 4.9. The same argument would also apply for n 6= 4m+2, if we knew that the Eilenberg-
Moore spectral sequence degenerates on the topological side in this case.

5. Computation of Cotor

In this section we set up the main tool for an explicit computation of Cotor: namely, the
twisted tensor product construction (Construction 5.5).

5.1. Totalizations. Below, we will need the following notation. Let k be a field and let V ∗1,∗2 be
a Z⊕Z-graded vector space over k. Given a bihomogeneous element v ∈ V i1,i2 we denote |v| :=
(deg1(v),deg2(v)) where deg1(v) := i1 and deg2(v) := i2. Given a bigraded vector space V ∗1,∗2 ,
we can associate to it a Z-graded vector space V tot by putting (V tot)i := ⊕i1+i2=iV

i1,i2 . For all
v ∈ V i1,i2 , we denote by |v|tot := deg1(v)+deg2(v) = i1+i2 the total degree of v. The totalization
functor V ∗1,∗2 7→ V tot from Z2-graded vector spaces to Z-graded vector spaces is symmetric
monoidal with respect to monoidal structures given by the Day convolution2. In particular,
given a Z2-graded coalgebra C∗1,∗2 or a Z2-graded algebra A∗1,∗2 , the corresponding totalizations
Ctot and Atot are naturally a Z-graded coalgebra and a Z-graded algebra, respectively. Note
that the underlying (ungraded) coalgebra C and algebra A stay the same:

C := ⊕i1,i2Ci1,i2 ' ⊕i(Ctot)i and A := ⊕i1,i2Ai1,i2 ' ⊕i(Atot)i.

2Namely (V ∗1,∗2 ⊗W ∗1,∗2)i,j :=
⊕

n1+n2=i
m1+m2=j

V n1,n2 ⊗Wm1,m2 and (V ∗ ⊗W ∗)i :=
⊕

n+m=i V
n ⊗Wm.



EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE COHOMOLOGY 21

5.2. Twisting cochains. In this section we briefly remind the concept of twisting cochains
following [Pos11]. All the results hold true in the presence of extra L-grading for any abelian
group L (see [Pos11, Remark in Section (1.1)]). We will assume that k is a field of characteristic
2, so we can ignore all the signs. Given a Z-graded vector space V = ⊕p∈ZV p we denote by V [i]
the i-th shift to the left, so that (V [i])p := V p−i.

Let A a DG-algebra over k. Thus, A = ⊕p∈ZAp is a Z-graded3 associative algebra over k,
endowed with a k-linear map dA : A→ A of degree 1 (in other words a Z-graded map A→ A[1]),
such that d2 = 0 and satisfies the Leibnitz rule dA(ab) = dA(a) · b+ a · dA(b). We will assume A
is augmented, in other words that there is a preferred DG-algebra homomorphism ε : A→ k.

Dually, let C be a coaugmented DG-coalgebra and let η : k → C be the coaugmentation.
One can consider a DG-algebra Homk(C,A)∗ defined as follows: the n-th graded component
Homk(C,A)n ⊂ Homk(C,A) is given by the space of graded maps C → A[n], the differential
d : Homk(C,A)→ Homk(C,A) is given by the formula

d(f) = dC ◦ f + f ◦ dA,

and multiplication is defined by

f ∗ g := mA ◦ (f ⊗ g) ◦∆C .

Here mA and ∆C denote the multiplication and comultiplication maps on A and C correspond-
ingly.

Definition 5.1. A k-linear map θ : C → A is called a twisting cochain if

(1) θ is homogeneous of degree 1: θ ∈ Homk(C,A)1;
(2) ε ◦ θ = θ ◦ η = 0;
(3) dA ◦ θ + θ ∗ θ = 0.

Example 5.2. The zero map 0: C → A[1] is a twisting cochain.

Given a coalgebra C with cougmentation η there is a canonical example of twisting cochain
provided by the Cobar-construction. For simplicity, let us only consider the case when C is
classical: in other words, C = C0 and dC = 0. Let us also denote C := ker(η); non-canonically
one has C ' k ⊕C. The counital comultiplication ∆C : C → C ⊗C induces a well-defined map
∆C : C → C ⊗ C.

First, we recall the definition of Cobar-construction.

Construction 5.3 (DG-algebra Cobarη(C)). To a coaugmented coalgebra (C, η) one can asso-
ciate a natural DG-algebra Cobarη(C) called its Cobar construction. By definition, the under-
lying Z-graded algebra

Cobarη(C) := Tk(C[−1]) ' ⊕n≥0C[−1]⊗n

is the free algebra on C[−1]. Note that various DG-algebra structures lifting the free algebra
structure on Cobarη(C) are in bijection with the graded k-linear maps C[−1] → Cobarη(C);

indeed, the differential extends uniquely from C[−1] via the Leibnitz rule. We put the cor-
responding map C[−1] ⊂ Cobarη(C) to be ∆C : C → C ⊗ C, which defines a Z-graded map

3In the L-graded setting we assume each Ap has an extra L-grading and all linear maps in consideration
preserve this grading.
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C[−1]→ (C[−1]⊗C[−1])[1] ⊂ Cobarη(C)[1]. The augmentation Cobarη(C) is given by projec-
tion to the 0-th summand (given by k).

Explicitly, the underlying complex of Cobarη(C) is given by

0→ k → C → C ⊗ C → C ⊗ C ⊗ C → . . .

with the differential given by

dCobarη(C)(c1 ⊗ . . .⊗ cn) =
n∑
i=1

c1 ⊗ . . .⊗∆C(ci)⊗ . . . cn ∈ C
⊗(n+1)

,

while the multiplication is given by stacking the tensors together:

(c1 ⊗ . . .⊗ ck) · (c′1 ⊗ . . .⊗ c′`) = c1 ⊗ . . .⊗ ck ⊗ c′1 ⊗ . . .⊗ c′` ∈ C
k+`

.

In the case C = Λ has a compatible structure of Hopf algebra, this agrees with the DG-algebra
C∗Λ(k, k) (see Remark 2.12). In particular, upon taking the cohomology we get an isomorphism
of Z-graded algebras

H∗(Cobarη(Λ)) ' Cotor∗Λ(k, k).

Example 5.4 (Universal twisting cochain). There is a natural twisting cochain,

θcan : C → Cobarη(C)[1]

simply given by the composition of the projection C � C and the embedding of the summand
C[−1][1] ' C ↪→ Cobarη(Λ)[1]. One sees that ε ◦ θ = θ ◦ η = 0, and also for c ∈ C

(d ◦ θcan + θcan ∗ θcan)(c) = ∆(c) + ∆(c) = 2∆(c) = 0,

where ∆(c) ∈ C ⊗ C is considered as an element of Cobarη(C).
In fact this twisting cochain is universal: given any other twisting cochain θ : C → A[1] one

gets a map θ[−1] : C[−1] → A, which factors through C[−1], and which then extends to an
algebra map

T(θ[−1]) : Cobarη(C) 99K A

by multiplicativity. To see that it commutes with the differential it is enough to do so when
restricted to C[−1] ⊂ Cobarη(C), where this reduces exactly to Definition 5.1(3):

T(θ[−1])(dCobarη(C)(c)) = T(θ[−1])(∆(c)) = (mA ◦ θ ⊗ θ ◦∆)(c))) = (θ ∗ θ)(c) = dA(θ(c)).

Moreover, by construction, one has θ = T(θ[−1]) ◦ θcan. The other way around, given a DG-
algebra homomorphism τ : Cobarη(C)→ A one sees from the equation above that the restriction

τ [1]|C : C → A[1]

(or rather its composition with C � C) defines a twisting cochain between C and A.
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5.3. Twisted tensor product. The choice of a twisting cochain θ : C → A[1] (Definition 5.1)
allows to define natural functors between the categories of left DG-comodules over C and left
DG-modules over A given by the twisted tensor product.

Construction 5.5 ([Pos11, Section 6.2]). Let (C, η) be a coaugmented DG-coalgebra and let M
be a DG-comodule over C with the coaction map φM : M → C⊗M . Let (A, ε) be an augmented
DG-algebra and let θ : C → A[1] be a twisting cochain. The twisted tensor product A ⊗θ M is
the left A-DG-module given by A⊗M endowed with the natural action of A from the left and
the differential

dθ(a⊗m) = dA(a)⊗m+ a⊗ dM (m) + a · (θ ⊗ idM )(φC(m)).

Remark 5.6. Similarly, if N is a DG-module over A, one defines the C-DG-comodule C⊗θN by
taking C ⊗N with the left coaction of C induced by the one on itself, and with the differential
dθ defined as

dθ(c⊗ n) = dC(c)⊗ n+ c⊗ dM (n) + c⊗ (θ(c) · n).

By [Pos11, Theorem in (6.5)], in the case C is conilpotent, the functor A ⊗θ − is left adjoint
to C ⊗θ −, when considered as functors between the homotopy categories of DG-categories of
A-DG-modules and C-DG-comodules.

Example 5.7. Let C be classical and let θcan : C → A be the universal twisting cochain from
Example 5.4 for A = Cobarη(C). Let M be a classical C-DG-comodule, meaning that M = M0

(with dM ≡ 0) and let φM : M → C ⊗M be the composition of the coaction φM : M → C ⊗M
and the projection C ⊗M → C ⊗M . Unwinding the definitions, the twisted tensor product
A⊗θcan M is identified with the complex

0→M → C ⊗M → C ⊗ C ⊗M → . . .

with the differential dθ given by

dθ(c1 ⊗ . . .⊗ cn ⊗m) = dCobarη(C)(c1 ⊗ . . .⊗ cn)⊗m + c1 ⊗ . . .⊗ cn ⊗ φM (m) =

=
n∑
i=1

c1 ⊗ . . .⊗∆C(ci)⊗ . . . cn ⊗m + c1 ⊗ . . .⊗ cn ⊗ φM (m),

which agrees with C∗Λ(M,N) from Construction 2.6 for Λ = C, N = k and M = M . In particular,
H∗(A⊗θcan M) computes Cotor∗C(k,M), and the natural A-DG-module structure on A⊗θcan M
agrees with the natural action of Cotor∗C(k, k) on Cotor∗C(k,M) by passing to cohomology (using
Remark 2.12).

Sometimes, one can find a smaller DG-model for Cobarη(C) that would still allow to compute
Cotor∗C(k,−). Usually, for that some assumptions on the coalgebra C are also necessary.

Definition 5.8. A twisting cochain θ : C → A[1] is called acyclic if the induced map of DG-
algebras

T(θ[−1]) : Cobarη(C)→ A

from Example 5.4 is a quasi-isomorphism.

Definition 5.9. A classical coalgebra C is called conilpotent if any classical C-comodule M has
an exhaustive filtration indexed by N with the associated graded given by the trivial comodules.4

4Namely, comodules M where the reduced coaction φM : M →M ⊗ C is the zero map.
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Remark 5.10. The underlying coalgebra of the Hopf algebra defining a unipotent group k-scheme
is conilpotent (see [Jan03, I.2.14(8)]).

Lemma 5.11. Let C be a classical conilpotent coalgebra, and let M be a classical C-comodule.
If θ : C → A[1] is an acyclic twisting cochain, then

(1) There is a natural isomorphism

Cotor∗C(k, k) ' H∗(A)

of Z-graded algebras;

(2) There is a natural isomorphism

Cotor∗C(k,M) ' H∗(A⊗θM).

Moreover, the left action of A on A ⊗θ M agrees with the natural action of Cotor∗C(k, k) on
Cotor∗C(k,M) by passing to cohomology.

Proof. The isomorphism in (1) is induced by the DG-algebra map

T(θ[−1]) : Cobarη(C)→ A

after passing to cohomology. Indeed, by the definition of acyclic twisting cochain that map is
an equivalence. Moreover, by functoriality of the twisted tensor product we also get a map of
complexes

Cobarη(C)⊗θcan M → A⊗θM.

Since C is unipotent, M = colimn≥0Mn where Mn/Mn−1 is given by some vector space V
with the trivial coaction. The map above is the colimit of analogous maps for M replaced by
Mn, and since the filtration on M is exhaustive it is enough to show that the map is a quasi-
isomorphism on the associated graded pieces. Since the coaction is trivial we can identify the
map Cobarη(C)⊗θcan grnM → A⊗θ grnM with the tensor product

T(θ[−1])⊗ idgrnM : Cobarη(C)⊗ grnM → A⊗ grnM,

which is a quasi-isomorphism by (1). Finally, the compatibility of the actions follows from the
commutativity of the diagram

Cobarη(C)⊗ Cobarη(C)⊗θcan M
//

��

Cobarη(C)⊗θcan M

��
A⊗A⊗θM // A⊗θM

(with horizontal arrow given by the left action, and vertical one induced by T(θ[−1])) and the
discussion in Example 5.7 by applying H∗(−). �

5.4. Twisting cochains for Λ1 and Λ2. For simplicity5 further we will assume that k = F2.
We regard F2 as a trivial left and right comodule over any Hopf algebra over F2 via the counit
map.

5This way any coefficient in any k-linear expression is either 0 or 1.
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Construction 5.12. Consider the primitively generated Z2-graded Hopf algebras

(5.13) Λ1 := F2[x2], Λ2 := F2[x1, x2]/(x2
1),

where the bigradings of the generators are |x1| := (1, 0) and |x2| := (1, 1). Their total gradings
are |xi|tot = i. As before, by “primitively generated,” we mean that x1 and x2 are primitive
elements, that is, the comultiplication map sends xi to xi ⊗ 1 + 1⊗ xi for i = 1, 2.

Remark 5.14. We note that Λ1 ' H∗,∗H (BGm/F2) and Λtot
1 ' H∗H(BGm/F2) ' H∗dR(BGm/F2),

while Λ2 ' H∗,∗H (Bµ2/F2) and Λtot
1 ' H∗H(Bµ2/F2) ' H∗dR(Bµ2/F2).

Remark 5.15. The affine k-group scheme Spec Λ1 can be identified with Ga, while Spec Λ2 is
naturally isomorphic to Ga × α2. Both group schemes are unipotent, so coalgebras underlying
Λ1 and Λ2 are conilpotent.

We will now define some explicit twisting cochains for Λ1 and Λ2, essentially following [Tod87].
Below we consider Λi (resp. Λtot

i ) as a classical DG-coalgebra in Z2-(resp. Z)-vector spaces.

Construction 5.16 (Twisting cochain for Λi). (1) Consider a Z2-graded polynomial alge-
bra

R1 := F2[z3, z5, . . . , z2h+1, . . . ]

with the bigrading of the variables given by |z2h+1| := (2h−1, 2h−1). The corresponding
total grading is |zi|tot = i−1. We endow R1 with augmentation η1 : R1 → F2 by putting
η1(zi) = 0 for all i.

Let us consider R1 as a DG-algebra in Z2-graded vector spaces by assigning to each
zi a DG-grading 1 (which we will also denote degz further) and letting the differential d
to be 0.

Consider an F2-linear graded6 map θ1 : Λ1 → R1[1] by setting:

• θ1(x2h
2 ) = z2h+1+1;

• θ1(xj2) = 0 if j is not a power of 2.

It induces a map θtot
1 : Λtot

1 → Rtot
1 [1] as well.

(2) Similarly, consider a Z2-graded polynomial algebra

R2 := F2[z2, z3, z5, . . . , z2h+1, . . . ]

with bigrading |z2| = (1, 0) and |z2h+1| = (2h−1, 2h−1) for h ≥ 1. The total gradings
again are given by |zi|tot = i − 1. We endow R2 with augmentation η2 : R2 → F2 by
putting η2(zi) = 0 for all i.

As above, we consider R2 as a DG-algebra in Z2-graded vector spaces by assigning to
each zi grading 1 and putting the differential d to be 0. Define a graded map θ2 : Λ2 →
R2[1] by:
• θ2(x1) = z2,

• θ2(x2h
2 ) = z2h+1+1,

• θ2(xj2) = 0 if j is not a power of 2,
• θ2(x1x

l
2) = 0 for all l ≥ 1.

It also induces a map θtot
2 : Λtot

2 → Rtot
2 [1].

6Here −[1] denotes the shift with respect to the DG-degree.
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Lemma 5.17. The maps θi : Λi → Ri[1] define twisting cochains that are acyclic.
In particular, the corresponding DG-algebra maps T(θi[−1]) : Cobar(Λi) → Ri are quasi-

isomorphisms and induce an algebra isomorphism

Cotor∗Λi(F2,F2) ' Ri
by passing to cohomology.

Proof. Properties (1) and (2) of Definition 5.1 are obvious by construction. Let µRi : Ri⊗Ri →
Ri and ∆Λi : Λi → Λi ⊗ Λi denote the multiplication and comultiplication maps, respectively.
Since dRi ≡ 0, to prove (3) we need to show that

mRi ◦ (θi ⊗ θi) ◦∆Λi = 0.

Suppose first that i = 1. If x =
∑

j x
aj
2 , then

∆Λ1(x) =
∑
j

(x2 ⊗ 1 + 1⊗ x2)aj =
∑

j,0≤h≤aj

(
aj
h

)
xh2 ⊗ x

aj−h
2 .

We have θ1(xh2)⊗ θ1(x
aj−h
2 ) = 0 unless h = 2d and aj − h = 2e for some d, e ≥ 0. In that case

(µR1 ◦ (θ1 ⊗ θ1))(x2d

2 ⊗ x2e

2 ) = z2d+1+1z2e+1+1 = (µR1 ◦ (θ1 ⊗ θ1))(x2e

2 ⊗ x2d

2 ).

Since
(

2d+2e

2d

)
=
(

2d+2e

2e

)
, the contributions of

(
2d+2e

2d

)
x2d

2 ⊗ x2e
2 and

(
2d+2e

2e

)
x2e

2 ⊗ x2d
2 add to zero,

hence (µR1 ◦ (θ1 ⊗ θ1) ◦∆Λ)(x) = 0, as desired.

Suppose now that i = 2. We can write x ∈ Λ2 as x1
∑

i≥0 x
ai
2 +

∑
j≥0 x

bj
2 . Then

∆Λ2(x) = (x1 ⊗ 1 + 1⊗ x1)
∑
i

(x2 ⊗ 1 + 1⊗ x2)ai +
∑
j

(x2 ⊗ 1 + 1⊗ x2)bj =

=

 ∑
i,0≤h≤ai

(
ai
h

)(
x1x

h
2 ⊗ x

ai−h
2 + xh2 ⊗ x1x

ai−h
2

)+
∑

j,0≤h≤bj

(
bj
h

)
xh2 ⊗ x

bj−h
2 .

Again we have that θ2(xh2) ⊗ θ2(x
bj−h
2 ) = 0 unless h = 2d and bj − h = 2e for some d, e ≥ 0,

and so, as above, contributions to mR2 ◦ (θ2 ⊗ θ2) ◦∆Λ2(x) coming from
(

2d+2e

2d

)
x2d

2 ⊗ x2e
2 and(

2d+2e

2e

)
x2e

2 ⊗ x2d
2 cancel each other. Also, θ2(x1x

h
2)⊗ θ2(x

aj−h
2 ) = 0 unless h = 0 and aj = 2n for

some n ≥ 0 and, similarly, θ2(xh2)⊗ θ2(x1x
aj−h
2 ) = 0 unless h = aj and aj = 2n.

It remains to show that the twisting cochains θi are acyclic. By Remark 5.15, Cotor∗Λ1
(F2,F2)

is computed by the group cohomology RΓ(Ga,F2). By [Jan03, Proposition in I.4.27] the latter
is given by the polynomial ring F2[t1, t2, . . .] in infinitely many generators ti ∈ H1(Ga,F2). The
underlying complex of Cobar(Λ1) is given by

0→ F2
d0−→ x2F2[x2]

d1−→ (x2F2[x2])⊗ (x2F2[x2])→ . . .

with d1 sending xn2 to (x2 ⊗ 1 + 1⊗ x2)n − xn2 ⊗ 1− 1⊗ xn2 ∈ x2F2[x2])⊗ (x2F2[x2]). By Lukas’s
theorem for binomial coefficients we get that d1(xn2 ) = 0 if and only if n is a power of 2. Recalling
the definition of θ1 we see that the map

T(θ1[−1]) : Cobar(Λ1)→ R1 ' F2[z3, z5, . . .]
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induces an isomorphism on H1, and, since the cohomology of both sides are polynomial rings in
H1, is a quasi-isomorphism.

Similarly, by Remark 5.15 Cotor∗Λ2
(F2,F2) is computed by the group cohomology RΓ(Ga ×

α2,F2) ' RΓ(Ga,F2)⊗RΓ(α2,F2). By [Jan03, I.4.26(2)] cohomology H∗(α2,F2) is given by the
polynomial ring F2[t0] on a class in degree 1. Consequently, H∗(Ga × α2,F2) ' F2[t0, t1, t2, . . .]
is again a polynomial ring in infinitely many generators. Cobar(Λ2) is given by

0→ F2
d0−→ Λ2

d1−→ Λ2 ⊗ Λ2 → . . .

with d1 sending xn2 to (x2 ⊗ 1 + 1 ⊗ x2)n ≡ (x2 ⊗ 1 + 1 ⊗ x2)n − xn2 ⊗ 1 − 1 ⊗ xn2 ∈ Λ2 ⊗ Λ2,
which is 0 only if n is a power of 2, and x1x

n
2 to (x1⊗ 1 + 1⊗x1)(x2⊗ 1 + 1⊗x2)n which is 0 in

Λ2 ⊗ Λ2 if an only if n = 0. So we get that H1 is generated by x1 and x2h
2 for h ≥ 0. Looking

at the definition of θ2 and arguing as for θ1 we get that the map

T(θ2[−1]) : Cobar(Λ2)→ R2 ' F2[z2, z3, z5, . . .]

is a quasi-isomorphism. �

Remark 5.18. Lemma 5.17 shows that the DG-algebras Cobar(Λi) are formal.

Corollary 5.19. Let M be a graded Λi-comodule. Then there is a natural isomorphism

Cotor∗Λi(F2,M) ' H∗(Ri ⊗θi M,dθi)

where θi is the twisting cochain from Construction 5.16. Moreover, Cotor∗Λi(F2,F2)-module
structure on Cotor∗Λi(F2,M) agrees with left action of Ri on the twisted tensor product Ri⊗θiM .

Proof. This follows from Lemmas 5.11, 5.17 and Remark 5.15. �

Remark 5.20. For the reader’s convenience, let us describe the resulting complex (Ri⊗θiM,dθi)
more explicitly. Let M be a Z2-graded left Λi-comodule. Consider the tensor product Ri ⊗M ;
cohomological grading on Ri ⊗θi M corresponds to degz-grading on Ri and zero grading on M .
The resulting complex (Ri ⊗θi M,dθi) looks as

. . .→ 0→ (Ri ⊗M)degz=0
dθi−−→ (Ri ⊗M)degz=1

dθi−−→ (Ri ⊗M)degz=2
dθi−−→ . . . ,

or, to write down explicitly the first few terms:

. . .→ 0→M
dθi−−→M ⊗ (⊕jF2 · zj)

dθi−−→M ⊗ (⊕j1≤j2F2 · zj1zj2)
dθi−−→ . . . .

Here, every term has an additional Z2-grading (coming from (non degz) Z2-grading on Ri and
the Z2-grading on M).

The complex (Ri⊗θiM,dθi) is a DG-module over Ri (with differential on the latter being 0),
so dθi is linear with respect to all zi’s. On M (in degree 0) dθi is given by the composition

M
φM // Λi ⊗M

θi⊗1// Ri[1]⊗M,

where φM : M → Λi ⊗M is the coaction on M and θi is the twisting cochain θi : Λi → Ri[1].
This defines dθi uniquely.
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5.5. Controlling multiplication. Let A be a (Z2-graded) comodule Λi-algebra. Given Corol-
lary 5.19 it is natural to ask if one can enhance the isomorphism in Corollary 5.19 for M = A to
an algebra isomorphism. Unfortunately, the twisted tensor product construction doesn’t inter-
act well with multiplication, and typically there is no natural DG-algebra structure on Ri⊗θi A
compatible with the multiplication on A.

Nevertheless, here is an observation which partially remedies this problem. Let i ∈ {1, 2} and
A be a (Z2-graded) comodule Λi-algebra. Recall the subalgebra PA ⊂ A of primitive elements
in A; by definition the coaction of Λi on PA is trivial. We have a natural map of complexes
given by twisted tensor products

Ri ⊗θi PA // Ri ⊗θi A.
Since the coaction φPA : PA → PA ⊗ Λi is trivial the differential on Ri ⊗θi PA is zero, and so
Ri ⊗θi PA ' H∗(Ri ⊗θi PA, dθi). We thus get a natural graded map

Ri ⊗ PA // Ri ⊗θi A
∼ // Cotor∗Λi(F2, A).

Let us endow Ri⊗PA with the algebra structure induced by algebra structures on Ri and PA.

Lemma 5.21. The composite map Ri ⊗ PA→ Cotor∗Λi(F2, A) is an algebra homomorphism.

Proof. There are many ways to see this, but let us justify the claim using Cobar construction.
Namely we have a roof

Ri ⊗ PA ∼
q.i.oo Cobarη(Λi)⊗θcan PA

// Cobarη(Λi)⊗θcan A

with the left arrow induced by the universality of θcan (Example 5.4), and where the right
arrow can be identified with the DG-algebra map C∗Λi(F2, PA) → C∗Λi(F2, A) (endowed with
Alexander-Whitney product, see Remark 2.12 and Example 5.7). We can rewrite the roof above
as

Ri ⊗ PA ∼
q.i.oo C∗Λi(F2, PA) // C∗Λi(F2, A)

Since the coaction on PA is trivial, there is in fact a quasi-isomorphism of DG-algebras

C∗Λi(F2, PA) ' C∗Λi(F2,F2)⊗ PA
(as follows e.g. from Remark 2.12). Thus the left arrow above is also a quasi-isomorphism of
DG-algebras by Lemma 5.17. The map in question is given by the map induced on cohomology
by the roof above; since the right map is also a map of DG-algebras (with DG-algebra structures
lifting the multiplication on Cotor) we get that the map Ri⊗PA→ Cotor∗Λi(F2, A) is an algebra
homomorphism. �

6. Decomposing comodule algebras

In this section we extend a key computational lemma of Toda that allows to decompose a
graded Λ1-comodule algebra A as a tensor product of two simplier things, to graded Λ2-comodule
algebras. This will be used in Sections 7 and 8 to compute the bigrading on the E2 page of the
Eilenberg-Moore spectral sequence for PGL4m+2 and PSO4m+2.

Let i ∈ {1, 2}. Let A be a Z2-graded left Λi-comodule algebra and φ : A → Λi ⊗ A be the
corresponding coaction map.

Assume first that i = 1. Recall that Λ1 ' F2[x2], where x2 is primitive and |x2| = (1, 1).
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Construction 6.1. For all j ≥ 0, define linear maps dj : A→ A of bidegree (−j,−j) by

φ(a) =
∑
j≥0

xj2 ⊗ dj(a).

For all a, b ∈ A, we have

(6.2) d0(a) = a, dh(ab) =
∑
i+j=h

di(a)dj(b), didj(a) =

(
i+ j

i

)
di+j(a)

Example 6.3. Let us view Λ1 as H∗,∗H (BGm/F2) and consider the comodule algebra given by
H∗,∗H (BGLn/F2) ' F2[c1, . . . , cn], as in Section 4.1. Then from Lemma 4.3(a) one sees that

di(cj) =
(
n−j+i

i

)
cj−i, where we put c0 := 1.

One has the following lemma by Toda, which allows to decompose A into two simpler parts,
provided that there is an element a] ∈ A satisfying a special condition.

Lemma 6.4. Let q be a power of 2, and let a] ∈ A be a bihomogeneous element such that

dq(a]) = 1, dh(a]) = 0 for all h > q.

Consider the linear subspace

PqA := {a ∈ A : di(a) for all i ≥ q} ⊂ A.

Then the map F2[x] ⊗ PqA → A with |x| := |a]| = 2q given by f(x) ⊗ b 7→ f(a])b is a bigraded
linear isomorphism. Consequently, the projection A� A/(a]) induces an additive isomorphism
PqA ' A/(a]).

Proof. This is [Tod87, Lemma 3.7]. Even though A is Z-graded in loc.cit., the same proof works
in the bigraded setting (this is because a] is bigraded, and so the di are bigraded). Our PqA is
denoted there by B. �

Remark 6.5. The main point of Lemma 6.4 is that it provides a unique lift of an element in
A/(a]) to an element in PqA ⊂ A (in other words, to an element of A on which di’s act by 0 for
i ≥ q).

Construction 6.6. The additive isomorphism PqA ' A/(a]) induces a new multiplication ∗ on
PqA by setting

(6.7) a ∗ a′ := a′′ if aa′ ≡ a′′ (mod a]).

Remark 6.8. In the case q = 2, following [Tod87, p. 92] there is also an explicit formula for the
∗-product:

(6.9) a ∗ a′ = a · a′ + d1(a) · d1(a′) · a].

Indeed, a ∗ a′ ≡ aa′ (mod a]), so it is just enough to check that the right hand side lies in P2A.
From the relations in (6.2) it is clear that di(a ∗ a′) = 0 for i > 2, while

d2(a ∗ a′) = d2(a · a′) + d2(d1(a) · d1(a′) · a]) = d1(a) · d1(a′) + d1(a) · d1(a′) · 1 = 0.

It also follows from the formula above that if one of the a or a′ belongs to PA ⊂ P2A, then
a ∗ a′ = a · a′.
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Example 6.10. Continuing Example 6.3, let n = qk where q is a power of 2 and k is odd. Then

dq(cq) =

(
qk

q

)
· c0 = 1.

In particular Lemma 6.4 applies to A = H∗,∗H (BGLn/F2) ' F2[c1, . . . , cn] where we take a] to be
cq.

Remark 6.11. It is immediate from the formula for didj in Construction 6.1 that d1 : A → A
preserves PqA and that d2

1 = 0. Thus d1 can be considered as a differential on A as well as any
of the subalgebras PqA ⊂ A.

Note, however, that d1 doesn’t satisfy the Leibnitz rule with respect to the ∗-multiplication
on PqA. Instead, one has the formula

d1(a ∗ b) = d1(a) ∗ b+ a ∗ d1(b) + d1(a) · d1(b) · a1.

It follows that d1 is at least PA-linear.

Remark 6.12. Lemma 6.4 also works in the Z-graded setting, namely when we consider Λtot
1 and

a Z-graded Λtot
1 -comodule algebra A.

Assume now that i = 2. Recall that Λ2 ' F2[x1, x2]/(x2
1), where both xi are primitive and

|x1| = (1, 0), |x2| = (1, 1).

Construction 6.13. For all j ≥ 0, define maps d2j , d2j+1 : A → A of bidegrees (−j,−j) and
(−j − 1,−j) by

φ(a) =
∑
j≥0

xj2 ⊗ d2j(a) +
∑
j≥0

x1x
j
2 ⊗ d2j+1(a).

Again, we have

(6.14) d0(a) = a and didj(a) =

(
i+ j

i

)
di+j(a).

The formula for di(ab) is, however, different from Construction 6.1, due to the fact that x2
1 =

0 ∈ Λ2: namely, for all a, b ∈ A, we still have

d2h+1(ab) =
∑

i+j=2h+1

di(a)dj(b),

but

(6.15) d2h(ab) =
∑
i+j=h

d2i(a)d2j(b),

with the terms in the sum only having even indices.

Here is a version of Toda’s lemma for Λ2-comodule algebras.

Lemma 6.16. Let q > 1 be a power of 2, and let a] ∈ A be a bihomogeneous element such that

dq(a]) = 1, dh(a]) = 0 for all h > q.

(a) Consider the linear subspace

PqA := {a ∈ A : di(a) = 0 for all i ≥ q}.
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Consider the polynomial ring F2[x], where |x| := |a]| = (q/2, q/2). Then the map F2[x]⊗PqA→
A given by f(x)⊗ b 7→ f(a])b is an F2-linear isomorphism.

(b) If q = 2, then P2A is a subring of A and the map F2[x] ⊗ P2A → A in (a) is a ring
isomorphism.

Remark 6.17. Let us point out that there is no analogue of Lemma 6.16(b) in the setting of
Lemma 6.4.

Remark 6.18. As with Lemma 6.4, Lemma 6.16 also works in the Z-graded setting, when we
consider Λtot

2 and a Z-graded Λtot
2 -comodule algebra A.

Proof. (a) The proof is analogous to that of [Tod87, Lemma 3.6]. To prove injectivity, it suffices
to show the following: if b1, . . . , br ∈ PqA are bihomogeneous and

∑r
i=0 a

i
]bi = 0, then b1 =

· · · = br = 0. To see this, suppose by contradiction that br 6= 0, and let h ≥ 0 be such that
dh(br) 6= 0 and dh′(br) = 0 for all h′ > h. (Such h exists, because d0(br) = br.) Note that by our
assumptions on a] and multiplicativity (6.15) we have drq(a

r
]) = dq(a])

r = 1. We then also have

0 = drq+h(
r∑
i=0

ai]bi) = drq(a
r
])dh(br) = dh(br) 6= 0,

a contradiction.
We now prove surjectivity. It suffices to show that every bihomogeneous element a 6= 0 of

A is in the image. Let h be the maximal integer such that dh(a) 6= 0, and write h = qj + h′,
where 0 ≤ h′ < q. For all s > h′, dsdqj(a) is a multiple of ds+qj(a), hence zero. Note that
this means that dqj(a) ∈ PqA. Since q is a power of 2 and h′ < q, e.g. by Lucas’s formula we

have
(
qj+h′

h′

)
= 1, and so by (6.14) we have dh′dqj(a) = dh(a). Setting b := dqj(a) ∈ PqA and

a′ := a− aj]b, then for all i ≥ 0 we have

di(a
′) = di(a)−

h′∑
s=0

di−h′(a
j
])ds(b).

We now show that di(a
′) = 0 for all i ≥ h. Indeed, if i > h, then i − s > qj for all 0 ≤ s ≤ h′

and so, due to the multiplicativity of φ, we have di−s(a
j
]) = 0. It follows that di(a

′) = di(a) = 0

for all i > h. On the other hand, when i = h, then

dh(a′) = dh(a)− dqj(aj])dh′(b) = dh(a)− (dq(a]))
jdh(a) = dh(a)− dh(a) = 0.

Thus a = aj]b+ a′, where di(a
′) = 0 for all i ≥ h. Since a, a] and b are bihomogeneous, aj]b and

a′ are homogeneous of degree |a|. Therefore, applying the same reasoning to a′ and iterating,
we eventually write a as

∑r
i=0 a

i
]bi for some bi ∈ B.

(b) Let a, b ∈ P2A. Then φ(a) = a + d1(a)x1 and φ(b) = b + d1(b)x1. Since x2
1 = 0, we

obtain φ(ab) = φ(a)φ(b) = ab + (d1(a) + d1(b))x1, that is, ab ∈ P2A. It follows that P2A is a
subring of A. It remains to note that the explicit formula for isomorphism in (a) is obviously
multiplicative. �

Remark 6.19. It follows from Equation (6.14) that d2
1 = 0 and that d1 preserves PqA. Thus, as

in Remark 6.11, d1 defines a differential on both A and PqA ⊂ A.
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Remark 6.20. We also get that the differential d1 satisfies the following cyclic equation:

(6.21) d1(ab)d1(c) + d1(bc)d1(a) + d1(ac)d1(b) = 0.

Indeed, the latter expression is nothing but d1(d1(abc)), which is equal to 0.

7. Hodge cohomology of BPGL4m+2

The goal of this section is to prove Theorem 7.16, which gives an explicit description of
H∗,∗H (BPGL4m+2/F2) and H∗dR(BPGL4m+2/F2) as bigraded and graded algebras, respectively.

It also implies Theorem 1.5(1) for G = PGL4m+2. For the proof we use the Eilenberg-Moore
spectral sequence (Theorem 1.3) and the strategy devised by Toda [Tod87] in the topological
setting.

Consider H∗,∗H (BGL4m+2/F2) as a H∗,∗H (BGm/F2)-comodule algebra. By Example 6.10, if we

take a] = c2 ∈ H1,1
H (BGL4m+2/F2), then Lemma 6.4 applies.

We will start by identifying the subalgebras

PH∗,∗H (BGL4m+2/F2) ⊂ P2H
∗,∗
H (BGL4m+2/F2) ⊂ H∗,∗H (BGL4m+2/F2).

Recall that the operation d1 (defined in Construction 6.1) induces a PH∗,∗H (BGL4m+2/F2)-linear
differential on P2H

∗,∗
H (BGL4m+2/F2); see Remark 6.11.

Lemma 7.1. Assume that n = 4m+ 2.

(a) There exists a unique sequence

c1, . . . , c4m+2 ∈ H∗,∗H (BGL4m+2/F2)

such that ci has bidegree (i, i) and
(1) ci are polynomial generators: H∗,∗H (BGL4m+2/F2) = F2[c1, c2 . . . , c4m+2];
(2) c1 := c1, c2 := c2;
(3) for all j > 1, we have

c2j ≡ c2j (mod c2) and c2j ∈ P2H
j,j
H (BGL4m+2/F2)

(so di(c2j) = 0 for i ≥ 2).
(4) c2j−1 = d1(c2j);

c2j−1 is primitive: c2j−1 ∈ PH∗,∗H (BGL4m+2/F2).

(b) (1) The subalgebra P2H
∗,∗
H (BGL4m+2/F2) ⊂ H∗,∗H (BGL4m+2/F2) is freely generated by

c1, c3, c4, c5, . . . , c4m+2 under the ∗-multiplication (see Construction 6.6);
(2) For all 1 < h ≤ 2m+ 1 define elements

bh := c2h ∗ c2h + c1c2hc2h−1 ∈ H4h,4h
H (BGLn/F2).

Then bh ∈ PH∗,∗H (in particular, bh ∈ P2H
∗,∗
H and d1(bh) = 0) and the natural map

F2[c1, b2, . . . , b2m+1] // H∗(P2H
∗,∗
H (BGL4m+2/F2), d1)

is an isomorphism.

(c) For any (unordered) tuple of integers I = {i1, . . . , ir} write l(I) := r and d(I) :=
∑r

k=1 ik.
Define

yI := d1(c2i1∗ . . . ∗ c2ir) ∈ PH
2d(I)−1,2d(I)−1
H (BGLn/F2).

In particular, y{i} = c2i−1.
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(1) The subalgebra PH∗,∗H (BGLn/F2) ⊂ H∗,∗H (BGLn/F2) of primitive elements is gen-
erated by c1, bh and yI for I = {1 < i1 < . . . < ir ≤ 2m + 1}, and the relations
given by

yIyJ =
∑
∅6=K⊂I

y(I−K)∪Jy{k1} . . . y{ks}c
l(K)−1
1 ,

for all subsets I, J ⊂ {2, . . . , 2m+ 1} and where we put

y{h,h,j1,...,js} := y{j1,...,js}bh + y{h,j1,...,js}y{h}c1.

(2) PH∗,∗H (BGLn/F2) is a finitely generated module over the polynomial subalgebra

F2[c1, c3, c5, . . . , c4m−1, b2, b3, . . . , b2m+1] ⊂ PH∗,∗H (BGLn/F2).

Analogous statements hold with Hodge cohomology replaced by de Rham cohomology. (In this
case ci, bh, yI ∈ H∗dR have degrees 2i, 8h and 4d(I)− 2, respectively.)

Proof. We first show the statement for the Z-graded algebra H∗H(BGLn/F2), that is, we only
keep track of the total grading instead of the bigrading. By Lemma 4.3(b), it suffices to prove
the analogous assertions in the topological setting. Thus (a) and (b1) follow from [Tod87, Propo-
sition 3.7], (b2) is given by [Tod87, Lemma 3.10(ii)], and (c) follows from [Tod87, Proposition
3.11].

It remains to explain the bidegrees of the elements. The ci are constructed from the ci by
applying Lemma 6.4. In particular, since the isomorphism of Lemma 6.4 respects the bigrading,
ci and ci have the same bidegree (i, i). The ∗-product preserves bigrading and so we get bh is
homogeneous of bidegree (4h, 4h). Similarly d1 reduces the bigrading by (1, 1) and so we get
|yI | = (2d(I) − 1, 2d(I) − 1). Everything works similarly in the de Rham setting where the
degrees of ci, bh and yI are given by 2i, 8h and 4d(I)− 2, respectively. �

Remark 7.2. Let us comment upon the logic behind the statements of Lemma 7.1 (and how the
proof could go without appealing to [Tod87]). Having Lemma 6.4, it is more or less immediate
that P2H

∗,∗
H (BGLn/F2) is isomorphic to the polynomial ring over c1, c3, c4, . . . , c4m+2 via the

∗-multiplication. The subalgebra PH∗,∗H (BGLn/F2) ⊂ P2H
∗,∗
H (BGLn/F2) then is identified with

the kernel of the differential d1 on P2H
∗,∗
H (BGLn/F2). One can understand this kernel in two

steps: first, by finding a subalgebra in Ker(d1) that maps isomorphically to the cohomology
H∗(P2H

∗,∗
H (BGLn/F2), d1) of d1 — this is given by F2[c1, b2, . . . , b2m+1]; second, by describing

the image of d1 — the latter contains elements c2i−1, and the whole image is spanned by the
remaining yI ’s (with l(I) ≥ 2) over the polynomial algebra F2[c1, c3, c5, . . . , c4k+1, b2, . . . , b2m+1].

The reader can also look at the proof of the analogous statement for BSO4m+2 (Lemma 8.5),
which is slightly more natural due to the fact that the ∗-multiplication on P2H

∗,∗
H (BSO4m+2/F2)

coincides with the usual one.

Example 7.3. Formulas for the elements ci ∈ P2H
∗,∗
H (BGL4m+2/F2) ⊂ H∗H(BGL4m+2/F2) '

F2[c1, . . . , c4m+2] get complicated pretty fast as i grows. Here are the first few of them:

c1 = c1 c2 = c2 c3 = c3 +mc3
1 c4 = c4 +m(c2 + c2

1)c2

c5 = c5 + c4c1 + c3(c2 + c2
1) c6 = c6 + (c4 + c3c1)c2.

Let us also record that

bh = c2h ∗ c2h + c1c2hc2h−1 = c2
2h + c2

2h−1c2 + c1c2hc2h−1
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(here we simply use the explicit formula for ∗-product from Remark 6.8).

Remark 7.4. Note that since all alements c1, b2, . . . , b2m+1 are primitive (so lie in PH∗,∗H (BGLn/F2))
by Lemma 7.1(b) we get that the natural map

PH∗,∗H (BGLn/F2) // H∗(P2H
∗,∗
H (BGL4m+2/F2), d1)

induced by embedding PH∗,∗H (BGLn/F2) ⊂ P2H
∗,∗
H (BGL4m+2/F2) is a surjection.

We can now compute the E2-page of the Eilenberg-Moore spectral sequence.

Lemma 7.5. Assume that n = 4m+ 2, for some integer m ≥ 0. Then

Cotor∗H∗,∗H (BGm/F2)(F2, H
∗,∗
H (BGL4m+2/F2))

is isomorphic, as a Z⊕ Z2-graded7 algebra, to

(1⊗ PH∗,∗H (BGL4m+2/F2))⊕ (z3F2[z3]⊗ F2[c1, bh]2m+1
h=2 ),

where the gradings of the elements are |c1| = (0, 1, 1), |bh| = (0, 4h, 4h), |z3| = (1, 1, 1).
Analogous assertion holds with Hodge cohomology replaced by de Rham cohomology (with the

corresponding Z⊕ Z-gradings |c1| = (0, 2), |bh| = (0, 8h), |z3| = (1, 2)).

Remark 7.6. Here the algebra structure on the direct sum above is induced by the surjective
homomorphism

(7.7) φ : PH∗,∗H (BGL4m+2/F2)) // // H∗(P2H
∗,∗
H (BGL4m+2/F2), d1) ' F2[c1, bh]2m+1

h=2 ,

(the last isomorphism is Lemma 7.1(b)).
More precisely, let ϕ : A → B be a homomorphism of L-graded algebras and z a formal

variable; then we can define a (Z ⊕ L)-graded algebra Aφ,z with the underlying vector space
A⊕ (⊕j≥1Bz

j) as the pull-back

Aφ,z := A×B B[z],

where the map A→ B is given by φ, the map B[z]→ B sends z to 0 and z has grading (1, 0L).
One can think of Aφ,z as the ring of polynomials {a+ b1z+ . . .+ bnz

n} where a ∈ A, bi ∈ B and
a · zn := φ(a)zn.

The lemma then claims that Cotor∗
H∗,∗H (BGm/F2)

(F2, H
∗,∗
H (BGL4m+2/F2)) is isomorphic to Aφ,z

for z := z3,

A = PH∗,∗H (BGL4m+2/F2)), B = H∗(P2H
∗,∗
H (BGL4m+2/F2), d1) ' F2[c1, bh]2m+1

h=2 ,

and ϕ given by (7.7).

Proof. Consider the natural map PH∗,∗H (BGLn/F2)⊗R1 → Cotor∗H∗H(BGm/F2)(F2, H
∗
H(BGLn/F2))

as in Lemma 5.21. We will show that this map induces the required isomorphism. We have a

7Here, the Z2-component of the grading is coming from the bigrading on Hodge cohomology, and Z-component
is the Cotor-grading.
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commutative diagram of graded vector spaces

PH∗H(BGLn/F2)⊗R1 PH∗sing(BGLn(C);F2)⊗R1

H∗(H∗H(BGLn/F2)⊗θ1 R1) H∗(H∗sing(BGLn(C);F2)⊗θ1 R1)

Cotor∗H∗H(BGm/F2)(F2, H
∗
H(BGLn/F2)) Cotor∗H∗sing(BC×;F2)(F2, H

∗
sing(BGLn(C);F2)),

∼

∼

o o

∼

where the top square is induced by the embeddings PH∗H ↪→ H∗H and PH∗sing ↪→ H∗sing and

Lemma 4.3(b), while the vertical identifications in the bottom square come from Corollary 5.19.
Here, the elements zi ∈ R1, ci, bh and yI from Lemma 7.1 are getting mapped to the analogous
elements (zi, ai, bh and yI) in the notation of [Tod87, Section 3 and (4.7)]. The statement of
the lemma then follows from the analogous description in [Tod87, Section 3 and (4.7)]. To see
that the algebra structure above is the correct one, note that the maps in the outer rectangle in
the above diagram are homomorphisms of algebras by Lemma 5.21, and, by the description in
[Tod87, (4.7)], the composition of the vertical maps on the right is surjective, hence the same is
true for the composition of the two vertical maps on the left. �

Remark 7.8. For the reader’s convenience, let us also sketch the idea behind Toda’s compu-
tation on the topological side. First of all, [Tod87, Theorem 4.1] identifies the cohomology
H∗(H∗sing(BGLn(C);F2)⊗θ1 R1) with the cohomology of a subcomplex

C := (P2H
∗
sing(BGLn(C);F2)⊗ F2[z3], dθ1 |P2H∗sing⊗F2[z3]) ⊂ (H∗sing(BGLn(C);F2)⊗θ1 R1, dθ1).

By the definition of dθ1 , its restriction to C can be identified with d1 ⊗ z3. The cohomology
of C then can be identified with H∗sing(BGLn(C);F2) plus direct sum of infinitely many copies

of H∗(P2H
∗
sing(BGLn(C);F2), d1) multiplied by powers of z3. Using the topological analogue of

Lemma 7.1(b) to describe the latter one arrives at the description of H∗(H∗sing(BGLn(C);F2)⊗θ1
R1) as in Lemma 7.5. Moreover, since H∗(P2H

∗
sing(BGLn(C);F2), d1) is generated by classes in

PH∗sing(BGLn(C);F2) one gets that the map

PH∗sing(BGLn(C);F2)⊗R1
// Cotor∗H∗sing(BC×;F2)(F2, H

∗
sing(BGLn(C);F2))

is a surjective homomorphism of algebras and one recovers the algebra structure on Cotor as
well.

Remark 7.9. Note that elements yI from Lemma 7.1(c) are defined as images under d1 of ci1 ∗
. . . ∗ cir ∈ P2H

∗,∗
H (BGLn/F2), and so they map to 0 under the map (7.7). Consequently, (by

Lemma 7.5) in Cotor∗
H∗,∗H (BGm/F2)

(F2, H
∗,∗
H (BGL4m+2/F2)) we have yIz3 = 0 for any I.

Let us now compute Hodge and de Rham cohomology of BPGLn for all n in degrees ≤ 3.

Lemma 7.10. We have isomorphisms

(1) H0
H(BPGLn/F2) ' F2,

(2) H1
H(BPGLn/F2) ' 0,

(3) H2
H(BPGLn/F2) ' H1,1

H (BPGLn/F2) ' F2 if n is even and H2
H(BPGLn/F2) ' 0 if n is

odd,
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(4) H3
H(BPGLn/F2) ' H1,2

H (BPGLn/F2) ' F2 if n is even and H3
H(BPGLn/F2) ' 0 if n is

odd.

Entirely analogous assertions hold for de Rham cohomology. We will denote by x2 and x3 the
unique non-zero elements in H2

H and H3
H in the case n is even.

Proof. By [Tot18, Theorem 2.4] and [CR10, Theorem 1.1] (cf. [Tot18, Theorem 8.1]) for every
split simple k-group G not of type C we have

H2
H(BG/k) =H2(BG,O)⊕H1(BG,Ω1)⊕H0(BG,Ω2)

'H2(G, k)⊕ (g∗)G ⊕H−2(G,S2(g∗))

'H2(G, k)⊕ (t∗)W ,

where g and t are the Lie algebras of G and a maximal torus T ⊂ G, respectively, and where W
is the Weyl group of G. By [Jan03, II, Corollary 4.11], we have H0(G, k) = k and H i(G, k) = 0
for i > 0. Setting k = F2 and G = PGLn yields

(7.11) H2
H(BPGLn/F2) = (t∗)W .

If G = PGLn, then W = Sn and the Sn-representation t∗ fits into a short exact sequence

0→ t∗ → F⊕n2
Σ−→ F2 → 0,

where Sn acts on F⊕n2 by permutation and the map Σ is given by the summation of coordinates.
The invariants (F⊕n2 )Sn are spanned by the vector (1, 1, . . . , 1) which lies in t∗ if and only if n is
even. This gives (3); in particular, if n is even there is a unique x2 ∈ (t∗)Sn ' H1(BPGLn,Ω

1)
such that

H2
H(BPGLn/F2) = F2 · x2.

To compute the other cohomology groups we will use a Leray-Serre-type spectral sequence.
Namely, let PGLn act on Pn−1 as its automorphism group, and let P ⊂ PGLn be the stabilizer
of (1 : 0 : · · · : 0) ∈ Pn−1(F2). We have H∗H(Pn−1/F2) = F2[h]/(hn), where h has Hodge bidegree
(1, 1) (meaning h ∈ H1(Pn−1,Ω1) ' H2

H(Pn−1/F2)). The Levi subgroup corresponding to the
parabolic P is isomorphic to GLn−1. Therefore, by [Tot18, Proposition 9.3] we have a spectral
sequence

(7.12) Ei,j2 := H i
H(BPGLn/F2)⊗Hj

H(Pn−1/F2)⇒ H∗H(BGLn−1/F2).
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We know H2
H(BGLn−1/F2) = F2 and H3

H(BGLn−1/F2) = 0. From this it is easy to see that the
E2 page of the spectral sequence (7.12) is given in low degrees by

n even

2 h · ·

1 0 0 ·

0 1 0 x2 x3

0 1 2 3
n odd

2 h · ·

1 0 0 ·

0 1 0 0 0

0 1 2 3

where x3 ∈ H2(BPGL4m+2,Ω
1) is defined by d3(h) = x3. Thus for all n we get

(7.13) H1
H(BPGLn/F2) ' 0.

We also get that

H3
H(BPGLn/F2) ' H1,2

H (BPGLn/F2) ' F2 · x3

when n is even and
H3

H(BPGLn/F2) ' 0

if n is odd. This gives us the groups H i
H(BPGLn/F2) for i ≤ 3. By looking at the bigrad-

ing of generators it is also easy to see that the Hodge-de-Rham spectral sequence necessarily
degenerates in degrees ≤ 3, and so

�(7.14) H i
H(PGLn /F2) ' H i

dR(PGLn /F2) for all i ≤ 3.

Now let us compute the rest of the Hodge cohomology ring in the case of BPGL4m+2.

Remark 7.15. If n is odd, then 2 is not a torsion prime for PGLn and by the general result
of Totaro [Tot18, Theorem 9.2] one has H∗H(BPGLn/F2) ' H∗dR(BPGLn/F2) ' F2[c2, . . . , cn]
where |ci| = 2i. Thus understanding the case n = 4k + 2 is the next natural step.

Theorem 7.16. The bigraded ring H∗,∗H (BPGL4m+2/F2) is generated by elements

x2 ∈ H1,1
H (BPGL4m+2/F2), x3 ∈ H1,2

H (BPGL4m+2/F2),

bh ∈ H4h,4h
H (BPGL4m+2/F2), yI ∈ H2d(I)−1,2d(I)−1

H (BPGL4m+2/F2).

Here 1 < h ≤ 2m+1, I = (i1, . . . , ir) ∈ {1 < i1 < · · · < ir ≤ 2m+1}, and d(I) := i1 + · · ·+ ir.
The relations are generated by

(7.17) yIyJ =
∑
∅6=K⊂I

y(I−K)∪Jy{k1} . . . y{ks}x
l(K)−1
2 ,

(7.18) y{h,h,j1,...,js} = y{j1,...,js}bh + y{h,j1,...,js}y{h}x2 = 0,
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(7.19) x3yI = 0 for all I.

Similarly, the graded ring H∗dR(BPGL4m+2/F2) has generators x2 ∈ H2
dR, x3 ∈ H3

dR, bh ∈ H8h
dR,

yI ∈ H
4d(I)−2
dR , where h, I and d(I) are as above, and relations generated by (7.17), (7.18)

and (7.19). In particular, we have an isomorphism of graded rings H∗H(BPGL4m+2/F2) '
H∗dR(BPGL4m+2/F2).

Remark 7.20. From Lemma 7.1(c) and the conclusion of Theorem 7.16 one can see that there
is a slightly more compact expression for H∗H(BPGL4m+2/F2) as the middle term in the short
exact sequence

0→ F2[x2, x3, b2, . . . , b2m+1]
·x3−−→ H∗H(BPGL4m+2/F2)

Bp∗−−→ PH∗,∗H (BGL4m+2/F2)→ 0.

Proof of Theorem 7.16. Consider the Eilenberg-Moore spectral sequence of Theorem 1.3 associ-
ated to the short exact sequence

1→ Gm → GL4m+2
p−→ PGL4m+2 → 1.

In Section 4.3 we proved that it degenerates on the E2 page, which (by the computation in
Lemma 7.5) is given by

(1⊗ PH∗,∗H (BGL4m+2/F2))⊕ (z3F2[z3]⊗ F2[c1, b
′
h]2m+1
h=2 ),

with E0,∗
2 ' E0,∗

∞ ' (1⊗PH∗,∗H (BGL4m+2/F2)) and E>0,∗
2 ' E>0,∗

∞ ' (z3F2[z3]⊗F2[c1, b
′
h]2m+1
h=2 ).

Below let us denote by b′h ∈ PH
4h,4h
H (BGL4m+2/F2) the elements that we called bh in Lemma 7.5.

Let bh ∈ H4h,4h
H (BPGL4m+2/F2) be a choice liftings of b′h, meaning that Bp∗(bh) = 1⊗b′h (such a

lifting exists since the spectral sequence degenerates). Note that since Bp∗ preserves the Hodge

bigrading we can pick bh to be bihomogeneous (explicitly, lying in H4h,4h
H (BPGL4m+2/F2)).

Recall that (by Remark 3.13) a homogeneous element

x ∈ (CotoriH∗,∗H (BGm)(F2, H
∗,∗
H (BGL4m+2/F2)))h,j ' (Ei,j∞ )h

gives a class in gri(H
h,i+j
H (BPGL4m+2/F2)). We let i+ j+h be the “total degree”. For elements

in (1⊗ PHs,t
H (BGL4m+2/F2)) the Z3-grading (i, j, k) is (0, s, t), while for z3 it is (1, 1, 1).

Note that by Lemma 7.5 we have an embedding of the subalgebra F2[z3]⊗F2[c1, b
′
2, . . . , b

′
2m+1] ⊂

E∗,∗∞ . Since H2
H(BPGL4m+2/F2) ' F2 · x2 and H3

H(BPGL4m+2/F2) ' F2 · x3 and the ele-
ments c1 and z3 are the only non-zero elements of total degree 2 and 3, respectively, they
must be the “images” of elements x2 and x3 from Lemma 7.10 in the infinity page E∗,∗∞ .
Here we identify E∗,∗∞ with the associated graded for the spectral sequence filtration, and
by “images” we mean the images in this associated graded. More generally, by definition,
the image of each bh is bh′ , and so the subalgebra F2[z3] ⊗ F2[c1, b

′
2, . . . , b

′
2m+1] is the im-

age in the associated graded of the subalgebra in H∗H(BPGL4m+2/F2) generated by x2, x3

and bh’s. In particular, we see that there are no non-trivial relations between x2, x3 and
bh’s (otherwise there would be some in the associated graded as well) and we get an embed-
ding F2[x2, x3, b2, . . . , b2m+1] ⊂ H∗H(BPGL4m+2/F2). Moreover, looking at the description in
Lemma 7.5 once again, we see that x3F2[x2, x3, b2, . . . , b2m+1] maps isomorphically to KerBp∗

(indeed, this follows from the isomorphism z3F2[c1, z3, b2, . . . , b2m+1] ' E>0,∗
∞ for the associated

graded). We thus have isomorphisms

(7.21) ImBp∗ = PH∗,∗H (BGL4m+2/F2), KerBp∗ = x3F2[x2, x3, b2, . . . , b2m+1].
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To complete the proof of Theorem 7.16, it remains to construct elements yI ∈ H∗H(BPGL4m+2/F2)
and show that all relations are generated by (7.17), (7.18), (7.19).

By Lemma 7.1, the subalgebra PH∗,∗H (BGL4m+2/F2) is generated by

y′I = y′(i1, . . . , ir) := d1(c2i1∗ . . . ∗ c2ir), I = {i1, . . . , ir}, 1 < ij ≤ 2m+ 1 for all j.

as an F2[c1, b
′
2, . . . , b

′
2m+1]-module (here again we call by y′I the elements that were called yI in

Lemma 7.1).

By the degeneration of the spectral sequence, we may pick yI ∈ H4d(I)−2,4d(I)−2
H (BPGL4m+2)

such that Bp∗(yI) = y′I . Recall from Remark 3.11 that the spectral sequence filtration on
H∗H(BPGL4m+2/F2) is given by column degree.

Note that E>k,∗∞ ' zk3F2[z3] ⊗ F2[c1, b
′
2, . . . , b

′
h] and x3 maps to z3 in the associated graded.

By Lemma 7.5 we have (z3 ⊗ 1) · (1⊗ y′I) = 0 in E2, hence x3yI = 0 in the associated graded in
the E∞-page. By Remark 3.11, this means that there exists f ∈ H∗H(BPGL4m+2/F2) such that
x3yI = x2

3f in H∗H(BPGL4m+2/F2). Replacing yI by yI − x3f , we now have Bp∗(yI) = yI and
x3yI = 0, that is, (7.19) holds for such yI .

To check the relations (7.17) and (7.18) we proceed as follows. By Lemma 7.1(c), the relations
(7.17) and (7.18) hold after we apply Bp∗, or, in other words, the difference of the left and right
hand sides lies in KerBp∗. Since x3yI = 0 and every term in relations (7.17) and (7.18) contains
at least one yI , they are killed by multiplication by x3. However, by (7.21), no element in
KerBp∗ is killed by x3, hence relations (7.17) and (7.18) hold on the nose.

It remains to show that there are no further relations. Since we proved that the relations
in the proposition hold, we have the map from the ring in the statement of the theorem (call
it A∗) to H∗H(BPGL4m+2/F2). The associated graded of A∗ by the powers of x3 is isomorphic
to A∗ again and also coincides with the description of Cotor in Lemma 7.5 (via the description
of PH∗H(BGL4k+2,F2) from Lemma 7.1) by an easy direct inspection. It follows that the map
to E∞-page is an isomorphism. Since both filtrations are complete, this implies the result for
Hodge cohomology. The proof in de Rham cohomology context is entirely analogous, using
(7.14) as the starting input in degrees ≤ 3. �

Proof of Theorem 1.5(1) for PGL4m+2. The conclusion follows by comparing the explicit de-
scriptions in Theorem 7.16 and [Tod87, Proposition 4.2]. �

8. Hodge cohomology of BPSO4m+2

In this section we compute the Hodge cohomology ring of BPSO4m+2 (Theorem 8.17). This
then implies Theorem 1.5(1) for BPSO4m+2 by explicitly comparing the answers in the singular,
Hodge and de Rham settings. For the computation we again follow Toda’s strategy, but, contrary
to the PGL4m+2 case, the details will be quite different.

8.1. Cohomology of BOn and BSOn. By the orthogonal group On over F2 we mean the
corresponding Chevalley model, namely the group scheme of linear transformations of (F⊕n2 , q)
that preserve the non-singular quadratic form q = x1x2 + x3x4 + . . . + xn−2xn−1 + x2

n in the
case n is odd and q = x1x2 + . . . + xn−1xn in the case n is even. The correct definition of
special orthogonal group SOn in characteristic 2 is somewhat tricky: namely, if n is odd, SOn

is defined in the usual way as the kernel of the determinant map det : On → µ2, but if n is even
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one considers the “Dickson determinant” D : On → Z/2 (see [CR10, Section 4.1.2]) instead, and
defines SOn := ker(D) ⊂ On.

We briefly recall the structure of Hodge cohomology rings of the corresponding classifying
stacks BOn and BSOn established in [Tot18, Section 11]. If n = 2r is even then

H∗,∗H (BO2r/F2) ' F2[u1, . . . , u2r] and H∗,∗H (BSO2r/F2) ' F2[u2, . . . , u2r]

with |u2a| = (a, a) and |u2a+1| = (a, a+ 1). The natural restriction map H∗,∗H (BO2r/F2) →
H∗,∗H (BSO2r/F2) induced by the embedding SO2r → O2r simply sends u1 to 0 (and ui to ui for
i ≥ 2).

It is often convenient to pull-back cohomology of BO2r (and BSO2r) to the classifying stack
of a product of several copies of BO2 inside. Namely, we have an embedding Or

2 → O2r which
induces a cover (BO2)r → BO2r. Let si, ti ∈ H∗,∗H (BOr

2/F2) to be the pull-back of u1, u2 ∈
H∗,∗H (BO2/F2) under the i-th projection. By [Tot18, Lemma 11.3], the pull-back map

H∗,∗H (BO2r/F2) // H∗,∗H (BOr
2/F2) ' F2[s1, t1, s2, t2, . . . , sr, tr]

is an embedding and sends

(8.1) u2a 7→
∑

1≤i1<···<ia≤r
ti1 · · · tia , u2a+1 7→

r∑
j=1

sj · ∑
1≤i1<···<ia≤r
ih not equal to j

ti1 · · · tia

 .

One can also get similar formulas in the case n = 2r+1 is odd, but we won’t need them further,
so let us just refer the reader to [Tot18, Section 11].

Finally, let us note that by [Tot18, Theorem 10.1 and Theorem 11.1], the Hodge-de Rham spec-
tral sequences for BOn, BSOn and Bµ2 degenerate and induce natural isomorphisms of graded
rings H∗H(BOn/F2) ' H∗dR(BOn/F2) and H∗H(BSOn/F2) ' H∗dR(BSOn/F2). This way the above
discussion also applies to the de Rham cohomology rings H∗dR(BOn/F2) and H∗dR(BSOn/F2).

8.2. The coaction of H∗H(Bµ2/F2). Let n = 2r be an even integer. We have

H∗,∗H (Bµ2/F2) ' Λ2 := F2[x1, x2]/(x2
1), H∗,∗H (BSO2r/F2) ' F2[u2, . . . , u2r],

where

x1 ∈ H1,0
H (Bµ2/F2), x2 ∈ H1,1

H (Bµ2/F2), u2a ∈ Ha,a
H (BSOn/F2), u2a+1 ∈ Ha,a+1

H (BSOn/F2).

For even n, the center of SOn is non-trivial and isomorphic to µ2. As in Example 2.14, we
can consider the multiplication map µ2 × SO2r → SO2r that induces a ring map

(8.2) φ : H∗,∗H (BSO2r/F2) // H∗,∗H (Bµ2/F2)⊗H∗,∗H (BSO2r/F2).

We view H∗,∗H (BSO2r/F2) as a H∗,∗H (Bµ2/F2)-comodule algebra, with the coaction map φ. Sim-
ilarly, we can consider de Rham cohomology instead of Hodge.

We will first describe the H∗,∗H (Bµ2/F2)-comodule structure on H∗,∗H (BSO2r/F2).

Lemma 8.3. Let n = 2r be an even integer, and consider the H∗,∗H (Bµ2/F2)-comodule algebra
H∗,∗H (BSO2r/F2), with coaction φ as in (8.2). We have

φ(u2a) =
∑
i+j=a

(
r − j
i

)
xi2 ⊗ u2j +

∑
i+j=a

(
r − j
i

)
xi2x1 ⊗ u2j−1
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and

φ(u2a+1) =
∑
i+j=a

(
r − j
i

)
xi2 ⊗ u2j+1,

where we put u1 := 0 and u0 := 1.

Proof. Let V ' F⊕2
2 be the tautological 2-dimensional k-linear representation of O2, and let

H ⊂ O2 be the subgroup isomorphic to Z/2Z× µ2, where Z/2Z permutes the coordinates of V
and µ2 acts by scaling. We have

H∗,∗H (B(Z/2Z)/F2) ' F2[z], H∗,∗H (Bµ2/F2) ' F2[x1, x2]/(x2
1), H∗,∗H (BH/F2) ' F2[z, x1, x2]/(x2

1),

where z, x2 and x1 have bidegrees (0, 1), (1, 1) and (1, 0), respectively.
The coaction H∗,∗H (BH/F2)→ H∗,∗H (Bµ2/F2)⊗H∗,∗H (BH/F2) induced by µ2 ×H → H sends

z 7→ 1⊗ z, t 7→ 1⊗ x2 + x2 ⊗ 1, x1 7→ 1⊗ x1 + x1 ⊗ 1.

By [Tot18, Discussion above Lemma 11.3],8 the pullback map H∗,∗H (BO2/F2) → H∗,∗H (BH/F2)
sends u1 7→ z, u2 7→ x2 + x1z. This allows to compute the coaction φ : H∗,∗H (BO2/F2) →
H∗,∗H (Bµ2/F2)⊗H∗,∗H (BO2/F2): it sends

u1 7→ 1⊗ u1, u2 7→ 1⊗ u2 + x2 ⊗ 1 + x1 ⊗ u1.

Write
H∗H(BOm

2 /F2) = F2[s1, . . . , sm, t1, . . . , tm],

where si, ti are pullbacks of u1, u2 ∈ H∗,∗H (BO2/F2) along the i-th projection. By the above
computation the coaction H∗,∗H (BOm

2 /F2)→ H∗,∗H (Bµ2/F2)⊗H∗,∗H (BOm
2 /F2) sends

si 7→ 1⊗ si, ti 7→ 1⊗ ti + t⊗ 1 + v ⊗ si.
Finally, following Equation (8.1), the pullback H∗,∗H (BO2m/F2)→ H∗,∗H (BOm

2 /F2) sends

u2a 7→
∑

1≤i1<···<ia≤m
ti1 · · · tia , u2a+1 7→

r∑
j=1

sj ·

 ∑
1≤i1<···<ia≤m,ih 6=j

ti1 · · · tia

 .

One then checks formulas in statement of the lemma by plugging φ(ti) and φ(si), and opening
the brackets (this is a direct computation that we leave to the reader).

Finally, following the discussion in Section 8.1, to pass from O2m to SO2m ⊂ O2m we just
need to set u1 = 0 in all the formulas. �

Remark 8.4. On the topological side we have isomorphisms

H∗sing(B(Z/2Z);F2) ' F2[z1], H∗sing(BSOn(C);F2) = F2[w2, . . . , wn],

where |z1| = 1, and wi, with |wi| = i are the Stiefel-Whitney classes. We immediately see
that H∗H(Bµ2/F2) is not isomorphic to H∗sing(B(Z/2Z);F2) as an algebra. In fact the situation

is even worse: if we take the (unique) isomorphism of H∗H(Bµ2/F2) and H∗sing(B(Z/2Z);F2)

as coalgebras (Remark 4.6), it can’t be extended to an isomorphism of the comodule algebras
H∗H(BSOn/F2) and H∗sing(BSOn(C);F2). This is the reason why the argument from Section 4
doesn’t apply to PSOn as well. In particular we don’t know yet that the Eilenberg-Moore
spectral sequence collapses on second page (but we will show this in Corollary 8.13).

8In loc.cit. z, x1, x2 are denoted by s, v, t, respectively.
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8.3. Computation of Cotor. Note that A = H∗,∗H (BSO4m+2/F2) with a] := u2 satisfies the
assumptions of Lemma 6.16 with q = 2. Indeed, d2(u2) = 1, and di(u2) = 0 for i > 2 by degree
reasons. We now establish an analogue of Lemma 7.1 in the setting of the special orthogonal
group. Namely, we will describe more or less explicitly the subalgebras

PH∗,∗H (BSO4m+2/F2) ⊂ P2H
∗,∗
H (BSO4m+2/F2) ⊂ H∗,∗H (BSO4m+2/F2),

as well as the cohomology of P2H
∗,∗
H (BSO4m+2/F2) with respect to the differential induced by

d1.

Lemma 8.5. Assume that n = 4m+ 2.

(a) There exists a unique sequence

u2, . . . , u4m+2 ∈ H∗,∗H (BSO4m+2/F2)

with bidegrees |u2a| = (a, a) and |u2a+1| = (a, a+ 1), such that
(1) u2 = u2,
(2) For all j ≥ 2, uj ≡ uj (mod u2) and uj ∈ P2H

∗,∗
H (BSO4m+2/F2),

(3) For all j ≥ 2, u2j−1 = d1(u2j),
(4) H∗,∗H (BSO4m+2/F2) = F2[u2, u3, . . . , u4m+2],
(5) P2H

∗,∗
H (BSO4m+2/F2) = F2[u3, u4, . . . , u4m+2].

(b) (1) The elements u3, u5, . . . , u4m+1 and bh := u2
2h for h > 1 are primitive (equivalently,

they lie in P2H
∗,∗
H and are killed by d1).

(2) The natural map

F2[b2, . . . , b2m+1] // H∗(P2H
∗,∗
H (BSO4m+2/F2), d1)

is an isomorphism.

(c) For any (unordered) tuple of integers I = {i1, . . . , ir}, set d(I) := i1 + . . .+ ir,

uI := u2i1 · . . . · u2ir ∈ P2H
d(I),d(I)
H (BSO4m+2/F2),

and

yI = y(i1, . . . , ir) := d1(uI) ∈ PH
d(I)−1,d(I)
H (BSO4m+2/F2).

In particular, y{i} = u2i−1.

(1) The subalgebra PH∗,∗H (BSO4m+2/F2) ⊂ H∗H(BSO4m+2/F2) of primitive elements is
generated by the bh and the yI for I = {1 < i1 < · · · < ir ≤ 2m + 1}, with the
relations generated by

(8.6) y{i1,...,ir} · y{j1,...js} =

r∑
h=1

y{i1,...,ih−1,ih+1,...,ir,j1,...js} · y{ih},

where we have y{h,h,i1,...,ir} = bh · yI .
(2) PH∗,∗H (BSO4m+2/F2) is a finitely generated module over the polynomial subalgebra

F2[u3, u5, . . . , u4m+1, b2, b3, . . . , b2m+1] ⊂ PH∗,∗H (BSO4m+2/F2).

Entirely analogous statements hold with Hodge cohomology replaced by de Rham cohomology.
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Proof. We write A for H∗H(BSO4m+2/F2).
(a) By Lemma 6.16(b) applied to A and a] = u2, the composite map

P2A ↪→ A→ A/(u2)

is a ring isomorphism. Thus we can let u2 := u2 and uj ∈ P2A be the inverse image of uj
(mod u2) for all j ≥ 2 under this isomorphism. Elements uj satisfy all the properties except,
possibly, 3). For that one, note that by Lemma 8.3 we have d1(u2) = 0 and d1(u2j) = u2j−1 for
all j > 1. We have d1(u2j) ∈ P2A and it follows from the above that d1(u2j) ≡ d1(u2j) ≡ u2j−1

(mod u2) and so d1(u2j) = u2j−1.

(b) Recall that we put bh := u2
2h. We have d1(bh) = 2 · u2h · d1(u2h) = 0, while d1(u2i−1) =

d1(d1(u2i)) = 0, so (1) follows. For (2) let us describe the differential d1 on P2H
∗,∗
H (BSO4m+2/F2) '

F2[u3, u4, . . . , u4m+2]:

d1(u2i−1) = 0 and d1(u2i) = u2i−1.

Let C := F2[u3, u5, . . . , u4m+1, b2, b3, . . . , b2m+1]. Note that C ⊂ Ker d1, and so d1 is C-linear.
Moreover, elements uI := u2i1 · . . . · u2ir for all I = {1 < i1 < . . . < ir ≤ 2m+ 1} form a basis of
P2H

∗,∗
H (BSO4m+2/F2) over C. One can then identify (P2H

∗,∗
H (BSO4m+2/F2), d1) with the Koszul

complex over C for the regular sequence u3, u5, . . . , u4m+1. This way we get that the cohomology
of (P2H

∗,∗
H (BSO4m+2/F2), d1) is given by C/(u3, u5, . . . , u4m+1) ' F2[b2, b3, . . . , b2m+1].

(c) Recall that PH∗,∗H (BSO4m+2/F2) is identified with Ker(d1) ⊂ P2H
∗,∗
H (BSO4m+2/F2). In

(b) we showed that F2[b2, b3, . . . , b2m+1] ⊂ Ker(d1) maps isomorphically to the cohomology.
From this we get that the whole Ker(d1) is a direct sum of F2[b2, b3, . . . , b2m+1] and the image
Im(d1). By the discussion in b) we have that Im(d1) is spanned over C by yI := d1(uI) for
all I = {1 < i1 < . . . < ir ≤ 2m + 1}. Moreover y{i} = d1(u2i) = u2i−1 ∈ C, so we get that

PH∗,∗H (BSO4m+2/F2) is spanned over C by yI ’s with l(I) ≥ 2. It remains to understand the
relations between yI .

First of all, indeed

y{h,h,i1,...,ir} = d1(u2
h · uI) = u2

h · d1(uI) = bh · yI .

Then, applying (6.21) to a = uI\{ir}, b = uir , c = uJ , for any I = {i1, . . . , ir} and J = {j1, . . . js}
we get

y{i1,...,ir−1,ir} · y{j1,...js} = y{i1,...,ir−1} · y{ir,j1,...js} + y{i1,...,ir−1,j1,...js} · y{ir}.
Applying the same equation again to the first term on the right and continuing, we end up with

(8.6). Taking J = {j} be a 1-element set, we get

(8.7) y{i1,...,ir}y{j} =
r∑
s=1

y{i1,...,is−1,is+1,...,ir,j} · y{is}.

Note that this is exactly the relation which is obtained from d2
1(uI∪{j}) = 0. Indeed, for any

J = {j1, . . . , jr}

(8.8) d1(uI) =
r∑
s=1

uJ \{js} · d1(u2js) =
r∑
s=1

uJ \{js} · yjs .

Putting J = I ∪ {j} and applying again we exactly get the sum of the left and right hand sides
in Equation (8.7).
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Now, to show that Equations (8.6) generate all the relations assume
∑
fIyI = 0 for some

fI ∈ C. Since d1(fI) = 0 for all I, we get that
∑
fIuI ∈ Ker d1. From the proof of b) we know

that we can write ∑
fIuI = d1(

∑
gJuJ) + z,

for some gJ ∈ C and z ∈ F2[b2, b3, . . . , b2m+1]. Note that d1(gJ) = 0 and so we get that∑
fIuI =

∑
gJd1(uJ) + z.

By the discussion above (8.8) the expression for d1(uI) as a sum of uJ ’s with coefficients in C
gives (8.7) after plugging yJ ’s in place of uJ ’s. Since uI (with I = {1 < i1 < · · · < ir ≤ 2m+ 1})
form a basis of P2H

∗,∗ over the algebra C we get that
∑
fIyI = 0 in fact is a linear combination

of relations in (8.8) which are a particular case of (8.6). �

Remark 8.9. Note the difference in the formulas for elements bh as defined in Lemma 8.5(b)
and those defined in the topological setting [Tod87, p. 92]. Again, this is due to the fact that
H∗H(Bµ2/F2) and H∗sing(B(Z/2Z);F2) are not isomorphic as algebras: Lemma 6.16(b), which is

available only for H∗H(Bµ2/F2), makes the formula for bh very simple.

We are ready to compute Cotor∗
H∗,∗H (Bµ2/F2)

(F2, H
∗,∗
H (BSO4m+2/F2)).

Lemma 8.10. For every m ≥ 0, we have an isomorphism of Z⊕ Z2-graded9 algebras

Cotor∗H∗,∗H (Bµ2)(F2, H
∗,∗
H (BSO4m+2)) ' (1⊗ PH∗,∗H (BSO4m+2))⊕ (z2F2[z2]⊗ F2[b2, . . . , b2m+1]),

with the grading of elements given by |z2| = (1, 1, 0), |bh| = (0, 2h, 2h).
Analogous assertion holds with Hodge cohomology replaced by de Rham cohomology (with the

corresponding Z⊕ Z-gradings given by |z2| = (1, 1), |bh| = (0, 4h)).

Remark 8.11. Analogously to Remark 7.6, the multiplication on the direct sum above is pre-
scribed by the surjective homomorphism

(8.12) ϕ : PH∗,∗H (BSO4m+2)� H∗(P2H
∗,∗
H (BSO4m+2)), d1) ' F2[b2, . . . , b2m+1].

More precisely, (following the terminology in Remark 7.6) Lemma 8.10 claims that the algebra
Cotor∗

H∗,∗H (Bµ2)
(F2, H

∗,∗
H (BSO4m+2)) is isomorphic to Aφ,z for z := z2,

A = PH∗,∗H (BSO4m+2), B = H∗(P2H
∗,∗
H (BSO4m+2)), d1) ' F2[c1, bh]2m+1

h=2 ,

and ϕ is given by (8.12).

Proof. Let A := H∗H(BSOn/F2). By Corollary 5.19, Cotor groups can be computed as the
cohomology H∗(R2 ⊗θ2 A, dθ2) of the twisted tensor product.

Let us compute the differential dθ2 : R2 ⊗ A → R2 ⊗ A explicitly. The differential dθ2 is
R2 ⊗ 1-linear and so it is enough to understand dθ2 on 1 ⊗ A. Recall that A ' P2A[u2] by

Lemma 6.16(b). We have φ(u2) = 1⊗ u2 + x2 ⊗ 1 and φ(u2i
2 ) = φ(u2)2i = 1⊗ u2i

2 + x2i
2 ⊗ 1. By

definition of dθ2 (see Construction 5.5) and our choice of the twisted cochain (Construction 5.16)

9Where the Z-component in Z⊕ Z2 is the Cotor-grading.



EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE COHOMOLOGY 45

this shows that dθ2(1⊗ u2i
2 ) = z2i+1+1 ⊗ 1 for i ≥ 0. More generally, if we take un2 and take the

2-adic expansion n = 2i1 + 2i2 + . . .+ 2ir with all i1 < i2 < . . . < ir, then we have

φ(un2 ) = φ(u2)2i1 · . . . · φ(u2)2ir = (1⊗ u2i1
2 + x2i1

2 ⊗ 1) · . . . · (1⊗ u2ir
2 + x2ir

2 ⊗ 1).

Opening the brackets, one gets a formula for dθ2 :

dθ2(1⊗ un2 ) =

r∑
j=1

z
2ij+1+1

⊗ un−2ij
2 .

Moreover, if a ∈ P2A, then φ(a) = 1 ⊗ a + x1 ⊗ d1(a) and so dθ2(a) = z2 ⊗ d1(a). Finally,
φ(aun2 ) = φ(a)φ(un2 ) and by opening the brackets in this product one sees that

d(1⊗ aun2 ) = d(1⊗ a) · 1⊗ un2 + 1⊗ a · d(un2 ).

Note that by the above formulas F2[z2] ⊗ P2A ⊂ R2 ⊗ A is closed under the differential, and
so is F2[z3, z5, z9, . . .] ⊗ F2[u2] ⊂ R2 ⊗ A. Moreover, the partial Leibnitz rule above shows that
there is a decomposition as a tensor product

(R2 ⊗θ2 A, dθ2) ' (F2[z2]⊗ P2A, dθ2)
⊗
F2

(F2[z3, z5, z9, . . .]⊗ F2[u2], dθ2).

We claim that the right term in the tensor product is quasi-isomorphic to F2 in (cohomological)
degree 0. Indeed, consider a tensor product product C = ∧F2(ξ3, ξ5, ξ9, . . .) ⊗ F2[z3, z5, z9, . . .]
where ∧F2(ξ3, ξ5, ξ9, . . .) is the exterior algebra in variables ξi (with same indices as for zi before).
Endow K with the unique F2[z3, z5, . . .]–linear differential dK sending ξi to zi and satisfying
Leibnitz rule. The complex (K, dK) is nothing but the Koszul complex (a free resolution of
trivial module F2 over F2[z3, z5, z9, . . .]) and is quasi-isomorphic to F2 in degree 0. There is a
F2[z3, z5, z9, . . .]–linear map of complexes

(K, dK)→ (F2[z3, z5, z9, . . .]⊗ F2[u2], dθ2)

sending ξ2i+1+1 to 1⊗u2i
2 and extended by multiplicativity (meaning ξ2i1+1+1ξ2i2+1+1 . . . ξ2ik+1+1

is sent to 1⊗ (u2i1+2i2 ...+2ik
2 )). Since for any n ≥ 0 un2 = u2i1+2i2+...+2ik

2 for a unique distinct set
of natural numbers {i1, . . . , ik} (given by powers in the 2-adic expansion for n), this map is an
isomorphism of complexes.

Consequently, we get a quasi-isomorphism

(R2 ⊗θ2 A, dθ2) ' (F2[z2]⊗ P2A, dθ2 |F2[z2]⊗P2A).

Recall that dθ2 |F2[z2]⊗P2A is sending zk2 ⊗ a 7→ zk+1
2 ⊗ d1(a). Thus (F2[z2]⊗ P2A, dθ2) looks like

1⊗ P2A
z2⊗d1(−)−−−−−−→ z2 ⊗ P2A

z2⊗d1(−)−−−−−−→ z2
2 ⊗ P2A

z2⊗d1(−)−−−−−−→ . . . ,

from which we get that H0(F2[z2] ⊗ P2A, dθ2) ' 1 ⊗ PA ' ker(1 ⊗ d1) ⊂ 1 ⊗ P2A, while
H i(F2[z2] ⊗ P2A, dθ2) ' zi2 ⊗ H∗(P2A, d1), which by Lemma 8.5(b2) is isomorphic to zi2 ⊗
F2[b1, . . . , bh]. Therefore, the algebra structure can be understood via Lemma 5.21: namely, the
map F2[z2]⊗ PA→ H∗(F2[z2]⊗ P2A, dθ2) is an algebra homomorphism. �

Corollary 8.13. The Eilenberg-Moore spectral sequence (from Theorem 1.3) for

1→ µ2 → SO4k+2 → PSO4k+2 → 1

over F2 degenerates on the E2 page.
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Proof. Similarly to Section 4.3 we need to show that the dimensions of terms in the second page
for the Eilenberg-Moore spectral sequence in Hodge and singular cohomology are the same.
Indeed, by Toda’s result [Tod87, Section 4.4] the spectral sequence degenerates on the singu-
lar cohomology side, so by Totaro’s inequality we would get that it should also degenerate for
Hodge and de Rham cohomology. The comparison is established by direct inspection. First,
comparing Lemma 8.5(c1) and [Tod87, Proposition 3.11] one sees that PH∗H(BSO4k+2/F2) and
PH∗sing(BSO4k+2(C),F2) are given by the same generators and relations. This gives an isomor-

phism between E0,∗
2 in Hodge and singular cohomology. Finally, one observes E>0,∗

2 in both
settings is given by a free module over a polynomial ring with generators in same degrees, see
Lemma 8.10 and [Tod87, Section 4.4], so the dimensions are also the same. �

Remark 8.14. Let us point out that Toda’s strategy of proving degeneration (using pull-back
with respect to the “tensor product” map O2 × SO2m+1 → SO4m+2) doesn’t work in the Hodge
setting: the reason is that the corresponding pull-back map

H∗H(BSO4m+2/F2)→ H∗H(BO2/F2)⊗H∗H(BSO2m+1/F2)

is no longer an embedding.

8.4. Computation of Hodge cohomology of BPSO4m+2. We begin by understanding the
Hodge cohomology of BPSO2r in low degrees.

Lemma 8.15. We have isomorphisms

(1) H0
H(BPSO2r/F2) ' F2

(2) H1
H(BPSO2r/F2) ' 0,

(3) H2
H(BPSO2r/F2) ' H1,1

H (BPSO2r/F2) '

{
F2, if r = 2k + 1

F2 ⊕ F2, if r = 2k.

In the case r = 2k + 1 we let x2 be the (unique) generator of H2
H(BPSO4k+2/F2).

Proof. As in the proof of Lemma 7.10, using that SOn (and so PSO2r) is smooth and connected,
we have isomorphisms

H i
H(BPSO2r/F2) '


F2 i = 0

0 i = 1

(t∨)W i = 2,

where t is the Lie algebra of the maximal torus of PSO2r and W is the Weyl group. Thus
it remains to show that (t∨)W ' F2. The maximal torus T ′ ' Gr

m ⊂ SO2r is given by
{(t1, t−1

1 , . . . , tr, t
−1
r )} ⊂ SO2r (in the basis where the quadratic form q2r is given by x1x2 +

. . . + x2r−1x2r). The maximal torus T ⊂ PSO2r is obtained as the quotient of T ′ by diagonal
copy of µ2. Note that both tori are split and so there is a W -equivariant identification of the Lie
algebras t and t′ and the mod 2 reductions X∗(T )F2 and X∗(T

′)F2 of the cocharacter lattices. Let
χi : Gm → T ′ be cocharacter corresponding to ti; it is not hard to see that X∗(T

′) is embedded
into X∗(T ) as the lattice Z · χ1 ⊕ . . . ⊕ Z · χr inside the lattice generated by 1

2(χ1 + . . . + χr)

and χi. The group W is isomorphic to Srn (Z/2Z)r−1 where (Z/2Z)r−1 acts trivially on X∗(T
′)

(and t′) and Sr acts by transpositions on χi’s. For X∗(T
′) we then have a short exact sequence

0→ Z · (χ1 + . . .+ χr)→ X∗(T
′)→ L→ 0
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for a W -module L. This gives a short exact sequence

(8.16) 0→ F2 → t′ → L/2→ 0.

Note however that the image of t′ → t is exactly given by L/2 and so gives a W -equivariant
splitting t ' F2 ⊕ L/2. In particular, (t∨)W ' ((L/2)∨)W ⊕ F2.

From (8.16) we have a short exact sequence

0→ (L/2)∨ → t′∨ → F2 → 0,

inducing a left-exact sequence

0→ ((L/2)∨)W → (t′∨)W → F2 → . . .

By direct inspection t′∨ ' F⊕r2 is the “permutation module”10 for W and maps to F2 by
(x1, . . . , xn) 7→

∑
xi, while (t′∨)W is spanned by the vector (1, 1, . . . , 1). So the map (t′∨)W ' F2

is given by multiplication by r and we get that ((L/2)∨)W is F2 or 0 depending on whether r is
even or odd. �

Theorem 8.17. The bigraded ring H∗H(BPSO4m+2/F2) is generated by

x2 ∈ H1,1
H (BPSO4m+2/F2), bh ∈ H2h,2h

H (BPSO4m+2/F2),

yI = y{i1,...,ir} ∈ H
d(I),d(I)−1
H (BPSO4m+2/F2).

Here 1 < h ≤ 2m+1, I = (i1, . . . , ir), where 1 < i1 < · · · < ir ≤ 2m+1, and d(I) := i1 + · · ·+ir.
The relations are generated by

(8.18) x2 · yI = 0,

(8.19) y{i1,...,ir}y{ir+1,...,is} =
r∑
j=1

y{i1,...,ij−1,ij+1,...,is}y{ij} for s > r ≥ 2,

with the convention that

(8.20) y{h,h,j1,...,js} = y{j1,...,js}bh.

Similarly, the graded ring H∗dR(BPSO4m+2/F2) has generators x2 ∈ H2, bh ∈ H4h, yI ∈
H2d(I)−1, where h, I and d(I) are as above, and relations generated by (8.18), (8.20) and (8.19).
In particular, the Hodge-to-de Rham spectral sequence for BPSO4m+2 degenerates and we have
an isomorphism of graded rings H∗H(BPSO4m+2/F2) ' H∗dR(BPSO4m+2/F2).

Proof. The proof is similar to that of Theorem 7.16. As there, we only prove the theorem for
Hodge cohomology, but a similar argument applies to de Rham cohomology. By Corollary 8.13,
Eilenberg-Moore spectral sequence for

1→ µ2 → SO4k+2
p−→ PSO4k+2 → 1

degenerates on the E2 page, which is isomorphic to

1⊗ PH∗H(BSO4m+2)⊕ z2F2[z2]⊗ F2[b′2, . . . , b
′
2m+1]

10Meaning (Z/2Z)r−1 acts trivially, while there is a choice of r vectors that form a basis, such that Sr acts on
them by permutations.
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by an explicit computation which we made in Lemma 8.10 (and where we now call b′h ∈
H2h,2h

H (BSO4m+2/F2) what we called bh in Lemma 8.10(b)). From degeneration, we see that
the pull-back map Bp∗ : H∗H(BPSO4m+2) � 1 ⊗ PH∗,∗H (BSO4m+2) is a surjection. We let

bh∈H2h,2h
H (BPSO4m+2/F2) be any fixed lift of 1⊗ b′h.

The only element of total degree 2 in E∗,∗∞ ' E∗,∗2 is z2. Thus it has to be the image of

the class x2 ∈ H1,1
H (BPSO4m+2/F2) from Lemma 8.15 in E∗,∗∞ . Since F2[z2] ⊗ F2[b′2, . . . , b

′
2m+1]

embeds into E∗,∗2 we get that the natural map F2[x2]⊗F2[b2, . . . , b2m+1]→ H∗H(BPSO4m+2/F2)
is an embedding. We also get isomorphisms

(8.21) ImBp∗ = PH∗,∗H (BSO4m+2/F2), KerBp∗ = x2F2[x2, b2, . . . , b2m+1].

By Lemma 8.5, the subalgebra PH∗,∗H (BSO4m+2/F2) is generated by

y′I = y′(i1, . . . , ir) := d1(u2i1∗ . . . ∗ u2ir), I = {i1, . . . , ir}, 1 < ij ≤ 2m+ 1 for all j.

as an F2[b′2, . . . , b
′
2m+1]-module (here again we call by y′I the elements that were called yI in

Lemma 7.1). Then, as in Theorem 7.16, taking yI ∈ H4d(I),4d(I)−1
H (BPSO4m+2/F2) such that

Bp∗(yI) = y′I and possibly replacing them by yI − x2f one makes them satisify the relations
Equation (8.18) and Equation (8.19). The same argument as in Theorem 7.16 also shows that
these are the only relations. �

Proof of Theorem 1.5 for PSO4m+2. The conclusion follows by comparing the descriptions given
by Theorem 8.17 and [Tod87, Proposition 4.5]. �

9. Applications to representation theory

In this section, we reinterpret our computations in terms of representation theory. Let k be
a field, G be a connected reductive k-group, Γ be a central subgroup of G, and G := G/Γ be
the adjoint quotient. Recall that by Totaro’s work [Tot18, Corollary 2.2] one has the following
interpretation of the Hodge cohomology of G: for all i, j ≥ 0 we have

H i,j(BG/k)
∼ // Hj−i(G, Symi g∨),

where g is the Lie algebra of G. Note that g is also a G-module via the projection G � G.
Since Γ is of multiplicative type, the functor of Γ-invariants is exact, hence the Hochschild-Serre
spectral sequence for 1→ Γ→ G→ G→ 1 provides isomorphisms

H∗(G, Symi g∨)
∼ // H∗(G,Symi g∨).

Altogether, this shows the following: H i,j(BG/k) ' 0 if i > j, the “pure” part ⊕iH i,i(BG/k)
of Hodge cohomology is isomorphic to the algebra

H0(G, Sym∗ g∨) ' (Sym∗ g∨)
G
,

and the “non-pure” part ⊕i 6=jH i,j(BG/k) is given by the higher cohomology H>0(G,Sym∗ g∨).
Using the computations of Hodge cohomology that we made in previous sections we will

analyze this picture in the case when k = F2, G is GL4m+2, SO4m+2 or Sp4m+2, and Γ is the
center of G. Recall that for each of the G under consideration, the Eilenberg-Moore spectral
sequence in Hodge cohomology for 1→ Γ→ G→ G→ 1 degenerates at the E2 page. Thus, in
order to calculate the dimensions of H i,j(BG/k), it will be enough to compute the dimension of
the corresponding (see Remark 9.1) bigraded component on the E2 page. Following the proofs
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of Theorems 7.16 and 8.17 for PGL4m+2 and PSO4m+2, the E2 page is in fact isomorphic to
Hodge cohomology as a bigraded algebra (so we can also understand the multiplicative structure
on H∗(G, Sym∗ g∨) this way).

Remark 9.1. Recall that (assuming the degeneration of the Eilenber-Moore spectral sequence)
a homogeneous class

x ∈ (CotoriH∗,∗H (BΓ)(F2, H
∗,∗
H (BG/F2)))h,j ' (Ei,j∞ )h

gives a class in gri(H
h,i+j
H (BG/F2)). Thus the bigrading we are interested in is given by (h, i+j).

We will call it Hodge bigrading from now on and will denote it by |x|H ∈ Z2.

9.1. Projective linear group. When G = PGLn, the representation in question is pgl∨n . We
have a short exact sequence of GLn-modules

0→ F2 → gln → pgln → 0,

giving a short exact sequence
0→ pgl∨n → gl∨n → F2 → 0.

Remark 9.2. When n is even this short exact sequence is non-split. Indeed, any such splitting
would induce a Lie algebra direct sum decomposition of gln as F2 ⊕ [gln, gln]. However, when n
is even one has F2 ⊂ [gln, gln]. Indeed, if n = 2 then(

1 0
0 1

)
=

[(
0 1
0 0

)
,

(
0 0
1 0

)]
,

and the general n = 2r case reduces to this one by considering the analogous block-diagonal
matrices (with r blocks of size 2).

Remark 9.3. We also note that if n is even the representations pgln and pgl∨n are not irreducible.
Indeed, the trace function tr : gln → F2 is GLn-invariant and is 0 on scalars F2 ⊂ gln and so
defines a (non-zero) map pgln → F2. Its kernel, however, is an irreducible GLn-module.

By [Tot18, Theorem 9.1], the higher cohomology of GLn with coefficients in Symj gl∨n is 0.
In contrast, for even n, due to the non-splitness of the above short exact sequence, the higher
cohomology of Symj pgl∨n become quite complicated. Our computation (Theorem 8.17) of Hodge
cohomology of BPGL4m+2 allows to describe it fully in the case n = 4m+ 2.

Recall that the E2 page for PGL4m+2 has been computed in Lemma 7.5 as

PH∗H(BGL4m+2/F2) ⊕ z3F2[z3]⊗ F2[c1, b2, . . . , b2m+1],

where PH∗H(BGL4m+2/F2) is the 0-th column E0,∗
2 and z3F2[z3]⊗F2[c1, b2, . . . , b2m+1] gives the

rest. The Hodge-bidegrees here are given as follows: PH∗,∗H (BGL4m+2/F2) is pure, |z3|H = (1, 2),
|c1|H = (1, 1) and |bh|H = (4h, 4h). Therefore, we have an isomorphism

H>0(GL4m+2,Sym∗ pgl∨4m+2) ' z3F2[z3]⊗ F2[c1, b2, . . . , b2m+1].

where c1, b2, . . . , b2m+1 ∈ H0(GL4m+2, pgl
∨
4m+2) ' (Sym∗ pgl∨4m+2)GL4m+2 are certain invariant

polynomials of degrees 1, 4, 8, . . . , 8m+4 (and which can be explicitly understood via Lemma 7.1)
and11 z3 ∈ H1(GL4m+2, pgl

∨
4m+2). This way we get that H i(GL4m+2,Symj pgl∨4m+2) has a basis

11This class is exactly the one that classifies the non-split extension 0→ pgl∨n → gl∨n → F2 → 0..
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consisting of monomials of the form zi−j3 f , where f is a monomial in c1, b2, . . . , b2m+1 of total

degree j− i. Therefore dimF2 H
i(GL4m+2,Symj pgl∨4m+2) equals to the number of ways to write

j − i as a sum

γ1 + 4β2 + 8β3 + · · ·+ (8m+ 4)β2m+1,

where γ1 and the βh are non-negative integers.

9.2. Projective orthogonal group. When G = PSO4m+2, the representation in question is
pso∨4m+2. Since µ2 is not smooth, the “Lie algebra” of µ2 is in fact a complex, namely the dual

L∨µ2/F2
to the cotangent complex Lµ2/F2

. We have H0(L∨µ2/F2
) = H1(L∨µ2/F2

) = F2. We have a

fiber sequence L∨µ2/F2
→ g→ g in the derived category of G-modules (where G acts trivially on

L∨µ2/F2
) which gives an exact sequence of SO4m+2-modules

(9.4) 0→ F2 → so2r → pso2r → F2 → 0

as the long exact sequence of cohomology. However, for odd r the first map F2 → so4m+2 is in
fact split, as the next lemma shows.

Lemma 9.5. The Lie algebra so4m+2 over F2 splits as F2 ⊕ l where l ' [so4m+2, so4m+2]. This
splitting is preserved by the SO4m+2-action and gives the decomposition of so4m+2 into a sum of
simple representations.

Proof. By [Hog82, Table 1]12 we have that the center z(so4m+2) and l := [so4m+2, so4m+2] are the
only non-trivial Lie ideals in so4m+2. In particular, z(so4m+2) is 1-dimensional and is exactly
given by the image of F2 under the above map. Thus we only need to check that z(so4m+2)
doesn’t belong to l. Let’s identify a Cartan subalgebra h ⊂ so4m+2 with X∗(T ) ⊗ F2 (where
X∗(T ) are cocharacters of the maximal torus corresponding to h). E.g. by [Hog82, Section
1] the intersection of [so4m+2, so4m+2] with the Cartan subalgebra h is given by the image
of coroot lattice R∨ ⊗ F2 → X∗(T ) ⊗ F2. In the standard basis for X∗(T ) (dual to what is
usually denoted denoted ε1, . . . , ε2m+1 ∈ X∗(T )) the center z(so4m+2) is spanned by the vector
(1, 1, . . . , 1, 1), while the image of R∨ ⊗ F2 is described as the kernel of the sum-of-coordinates

map F⊕2m+1
2

Σ−→ F2. Since 2m+1 is odd we see that (1, 1, . . . , 1, 1) doesn’t belong to ker(Σ), and
so so4m+2 ' F2⊕ l. The adjoint action of SO4m+2 preserves both the center and the commutator
and so respects this decomposition. It remains to show that l is irreducible. But, any SO4m+2-
invariant subspace would in particular give a Lie ideal in l, of which there aren’t any by [Hog82,
Table 1] again. �

Remark 9.6. Essentially by the definition of roots, the highest weight for l is the longest root
θ ∈ X∗(T ) of SO4m+2. Since l is irreducible we have l = L(θ). Recall that the highest weight
of the dual L(λ)∨ is −w0λ where w0 is the longest element of the Weyl group, and so L(λ)∨ '
L(−w0λ). Since w0θ = −θ we get that L(θ)∨ ' L(θ) and so l is self-dual.

Note that by Totaro’s computation H1,2
H (BSO4m+2/F2) ' F2 · u3 and that

H1,2
H (BSO4m+2/F2) ' H1(SO4m+2, so

∨
4m+2) ' H1(SO4m+2, l

∨)⊕H1(SO4m+2,F2).

12Note that we are in the D`-type ` odd, intermediate case, in the notations of loc.cit.
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Since H1(SO4m+2,F2) ' 0 (either by Kempf vanishing or comparing with H0,1
H (BSO4m+2/F2))

we get

H1(SO4m+2, l) ' H1(SO4m+2, l
∨) ' F2.

Now, from Lemma 9.5 and (9.4) we get a short exact sequence of SO4m+2-modules:

0→ l→ pso4m+2 → F2 → 0.

Lemma 9.7. This extension is non-split.

Proof. Due to SO4m+2-equivariance, the map pso4m+2 → F2 is in fact a map of Lie algebras and
a splitting would also give a decomposition of the Lie algebra pso4m+2 as F2 ⊕ l. However, the
center z(pso4m+2) is trivial (again, see [Hog82, Table 1]), and so this is impossible. �

As a consequence, we get that the SO4m+2-representation pso4m+2 is the unique non-zero

class in Ext1
SO4m+2

(F2, l) ' H1(SO4m+2, l). This class necessarily corresponds to the (unique

non-zero) class u3 ∈ H1,2
H (BSO4m+2/F2).

Passing to linear duals, we get a short (non-split) exact sequence

0→ F2 → pso∨4m+2 → l→ 0.

Since l is self-dual, by the above discussion we also know that such a non-split extension is
unique.

Remark 9.8. Using [Hog82, Table 1] one can see that the Lie algebra spin4m+2 is also a non-
split extension of l by F2. By uniqueness, we get that the SO4m+2-representations pso∨4m+2 and
spin4m+2 are isomorphic.

Let us now compute the cohomology of Sym∗ pso∨4m+2. By Lemma 8.10 the E2 page of the
Eilenberg-Moore spectral sequence is given by

PH∗H(BSO4m+2)⊕ z2F2[z2]⊗ F2[b2, . . . , b2m+1],

with PH∗H(BSO4m+2) being the 0-th column E0,∗
2 and z2F2[z2]⊗F2[b2, . . . , b2m+1] ' E>0,∗

2 being
the rest of E2. The Hodge bigradings here are given by |z2|H = (1, 1) and |bh|H = (2h, 2h). It

follows that the non-pure part of the Hodge cohomology in fact lies in E0,∗
2 and embeds in the

non-pure part of Hodge cohomology of BSO4m+2.
On the level of representations we get the following: let q∨ : Sym∗ pso∨4m+2 → Sym∗ so∨4m+2

be the natural map induced by pso∨4m+2 → so∨4m+2. Then q∨ induces an embedding

H>0(SO4m+2, Sym∗ pso∨4m+2) ↪→ H>0(SO4m+2, Sym∗ so∨4m+2).

Moreover, the image can be described fairly explicitly. Namely, in the notations of Lemma 8.5,
H>0(SO4m+2, Sym∗ pso∨4m+2) can be identified with the ideal generated by non-pure elements

u2k+1 and yI inside PH∗,∗H (BSO4m+2). It can be also seen as the intersection of the ideal
(u3, u5, . . . , u4m+1) ⊂ H∗,∗H (SO4m+2) (which is isomorphic to H>0(BSO4m+2,Sym∗(so∨4m+2)) by

Totaro’s computation [Tot18, Theorem 11.1]) and the subalgebra PH∗,∗H (BSO4m+2) of primitive

elements. This reduces the problem of computing H i(BSO4m+2, Symj(pso∨4m+2)) to a much
simpler linear algebra computation: namely one just needs to take the corresponding bigraded
component in (u3, u5, . . . , u4m+1) ⊂ H∗,∗H (BSO4m+2) and compute the intersection of kernels of
di’s (from Construction 6.13) for all i > 0.
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9.3. Projective symplectic group. Assume now that G = PSp4m+2. Similarly to the case of
PSOn we have an exact sequence of PSp4m+2-modules

0→ F2 → sp4m+2 → psp4m+2 → F2 → 0.

which then gives an exact sequence

(9.9) 0→ F2 → psp∨4m+2 → sp∨4m+2 → F2 → 0

by passing to duals.

Remark 9.10. In contrast to the SO4m+2-case, the map F2 → sp4m+2 is non-split. Indeed,
coroots of Sp4m+2 span the coweight lattice X∗(T ), which forces the center F2 to lie in the
commutator [sp4m+2, sp4m+2]. Also, the quotient sp4m+2/F2 is not irreducible.

For brevity, we only sketch how to compute the second sheet of the Eilenberg-Moore spectral
sequence in this case. Using Lemma 4.7 we can explicitly identify the coaction of H∗H(Bµ2/F2)
on H∗H(BSp4m+2/F2) with the coaction of H∗sing(BZ/2,F2) on H∗sing(BSp4m+2(C),F2). This

identification then also induces an isomorphism of the primitive parts PH∗H(BSp4m+2/F2) '
PH∗sing(BSp4m+2(C),F2). Moreover the computations of Cotor using the twisted cochains (as

in Corollary 5.19) are also compatible, which allows to identify the algebra structures on

Cotor∗H∗H(Bµ2/F2)(F2, H
∗
H(BSp4m+2/F2)) and Cotor∗H∗sing(BZ/2,F2)(F2, H

∗
sing(BSp4m+2,F2))

via Lemma 5.21 and Lemma 5.21.
This gives an identification

E∗,∗2 ' (F2[z2, z3]⊗ PH∗H(BSp4m+2/F2)) + F2[z2, z3, z5, b2, b3, . . . , b2m+1],

where bh ∈ PH16h
H (BSp4m+2/F2) are certain elements defined similarly to Lemma 7.1 (or [Tod87,

Lemma 3.10]) using the ∗-product of Construction 6.6 for a] := q2. However, the twisted
tensor product construction of (5.5) is naturally bigraded, which allows to compute the Hodge
bidegrees (see Remark 9.1) for E∗,∗2 . Namely, |z2|H = (1, 1), |z3|H = (1, 2), |z5|H = (2, 3) and
|bh|H = (8h, 8h) (more generally, all elements in PH∗H(BSp4m+2/F2) are pure).

Remark 9.11. There is another way to understand the bigradings of zi, by computing the Hodge
cohomology of BPSp4m+2 in low degrees directly. Namely, let E be the Lagrangian Grassman-
nian, that is, E := PSp4m+2/P where P ⊂ PSp4m+2 is the standard right-end root parabolic
subgroup with Levi subgroup isomorphic to GL2m+1; see [Pra91, Proposition 6.1]. By [Tot18,
Proposition 9.3] we have a spectral sequence

(9.12) Ei,j2 := H i
H(BPSp4m+2/F2)⊗Hj

H(E/F2)⇒ H∗H(BGL2m+1/F2).

The bigraded ring H∗,∗H (E/F2) is well understood, as we now explain. By [Tot18, Proposition
7.1], the cycle class map

CH∗(E)⊗Z F2
// H∗H(E/F2)

is an isomorphism. In particular, H i,j
H (E/F2) = 0 unless i = j. The Chow group CH∗(E) is

torsion-free and can be computed using the cell decomposition; see [Pra91, Corollary 6.3].
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Using (9.12) and the above description of H∗H(E/F2), low-degree computations analogous to
those in Lemma 7.10 show that

(9.13) H i
H(BPSp4m+2/F2) =



F2 if i = 0

0 if i = 1

F2 〈x2〉 if i = 2

F2 〈x3〉 if i = 3

F2

〈
x2

2

〉
if i = 4

F2 〈x2x3, x5〉 if i = 5.

Here x2 has bidegree (1, 1), x3 has bidegree (1, 2) and x5 has bidegree (2, 3).

Returning to the computation of dimensions of Hodge cohomology, we have that the E∞ page
of the Eilenberg-Moore spectral sequence is isomorphic to

(F2[z2, z3]⊗ PH∗,∗H (BSp4m+2/F2))⊕ F2[z2, z3, z5, b2, b3, . . . , b2m+1].

From the representation-theoretic point of view, we get the following: there are two classes
x3 ∈ H1(Sp4m+2, psp

∨
4m+2), x5 ∈ H1(Sp4m+2,Sym2 psp∨4m+2), such that the higher cohomology

H>0(Sp4m+2,Sym∗ psp∨4m+2) is generated by the ideal

(x3, x5) ⊂ F2[x3, x5] ⊂ H>0(Sp4m+2, Sym∗ psp∨4m+2)

as a module over the invariants (Sym∗ psp∨4m+2)Sp4m+2 . Moreover,

• (Sym∗ psp∨4m+2)Sp4m+2 ⊗ x3 · F2[x3] embeds into H>0(Sp4m+2, Sym∗ psp∨4m+2) via the ac-
tion map;
• the cokernel of the above map can be described as x5 ·F2[x2, x3, x5, b2, . . . , b2m+1], where
x2 ∈ (psp∨4m+2)Sp4m+2 and bh ∈ (Sym8h psp∨4m+2)Sp4m+2 are fairly explicit invariant poly-

nomials.13

Remark 9.14. The extension class given by

x3 ∈ Ext1
Sp4m+2

(F2, psp
∨
4m+2) ' H1(Sp4m+2, psp

∨
4m+2) ' H1,2

H (BPSp4m+2/F2)

can be described explicitly. Indeed, the exact sequence (9.9) gives a class in Ext2
Sp4m+2

(F2,F2),

which is necessarily 0, since Ext2
Sp4m+2

(F2,F2) ' H2(Sp4m+2,F2) ' H2,0
H (BSp4m+2/F2) ' 0.

Thus, (9.9) comes from some Sp4m+2-representation V with a two-step filtration 0 ⊂ V1 ⊂ V2 ⊂
V and such that V1 ' F2, V2 ' psp∨4m+2, V/V1 ' sp4m+2 and V/V2 ' F2. In particular, V fits
into a short exact sequence

0→ psp∨4m+2 → V → F2 → 0,

giving a class [V ] ∈ Ext1
Sp4m+2

(F2, psp
∨
4m+2). Moreover, one sees from Remark 9.10 that this

extension is non-split and thus [V ] 6= 0, which forces it to be equal to x3 since

Ext1
Sp4m+2

(F2, psp
∨
4m+2) ' H1,2

H (BPSp4m+2/F2) ' F2.

13In particular, x2 ∈ (psp∨4m+2)Sp4m+2 is exactly the image of 1 under the map F2 → psp∨4m+2 from Equa-

tion (9.9).
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Appendix A. Künneth formula for de Rham cohomology

In this section we give a proof of the Künneth formula for de Rham cohomology in the context
of Artin stacks. The generality we consider is bigger than what is necessary for the applications
in the body of the paper: this doesn’t really affect the proof and might be useful for a future
use.

Let R be a base ring. We will work in the setting of higher Artin stacks (in the sense of [TV08,
Section 1.3.3], see also [KP21b, Appendix A.1]) these are sheaves of spaces in étale topology
on the site AffR of affine R-schemes, that admit a smooth (n− 1)-representable atlas for some
n 6= 0 (the latter being an inductively defined notion, see loc. cit. for more details).

Remark A.1. A classical stack X : AffR → Grpd can be considered as a higher stack via compos-
ing with the nerve functor N : Grpd → Spcs. The image of this functor can be identified with
the subcategory spanned by higher stacks that take values in 1-truncated spaces Spcs≤1 ↪→ Spcs
(a space X ∈ Spcs is called 1-truncated if πi(X,x) = 0 for i > 1 and any base point x ∈ X).
See e.g. [Hol08].

Construction A.2. A useful fact ([Pri15, Theorem 4.7]) is that for any n-Artin stack X there
exists an (n−1)-coskeletal smooth hypercover X• → X, such that each Xi is a (possibly infinite)
union of affine schemes. If we assume that X is smooth itself and, moreover, is quasi-compact
and quasi-separated, the schemes Xi can be chosen to be smooth affine schemes.

Example A.3. The classical quotient stack X = [X/G] with X and G being smooth affine
schemes over R is a smooth qcqs 1-Artin stack. In this case a hypercover as in Construction A.2
can be taken to be the Čech nerve of the smooth cover X → [X/G]. We have X• ' X × G×•
with the standard maps.

Given a smooth higher Artin stack X , one can consider its (relative) de Rham cohomology
([KP21a, Defintion 1.1.3]), defined as the homotopy limit

RΓdR(X/R) := lim
(S→X )∈(Affsm

/X )op
RΓdR(S/R).

This functor satisfies étale descent (which follows from the analogous statement for Hodge co-
homology). Since smooth maps are étale surjections, for a smooth qcqs Artin stack X one gets
a more economical formula in terms of a hypercover |X•| → X as in Construction A.2:

RΓdR(X/R)
∼ // TotRΓdR(X•/R) ∈ D(ModR)

the totalization14 of the cosimplicial complex RΓdR(X•/R). Here, RΓdR(Xn/R) ∈ D(ModR) is
given by the usual de Rham complex

Ω0
Xn/R

→ Ω1
Xn/R

→ Ω2
Xn/R

→ . . . ,

14Or, in other words, lim[•]∈∆.
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and the totalization above can be computed by the means of the corresponding double-complex:

...
...

...

Ω2
X0/R

OO

// Ω2
X1/R

OO

// Ω2
X2/R

OO

// . . .

Ω1
X0/R

OO

// Ω1
X1/R

OO

// Ω1
X2/R

OO

// . . .

Ω0
X0/R

OO

// Ω0
X1/R

OO

// Ω0
X2/R

OO

// . . .

In particular, in the case of Example A.3, RΓdR(X/R) agrees with the definition given by Totaro
in [Tot18]. We also note that RΓdR(X/R) lies in15 D(ModR)≥0 for any (smooth) X .

We are now ready to prove the Künneth formula. We say that a ring R is of finite Tor-
dimension if there exists k ≥ 0 such that for any two (classical) modules M,N ∈ ModR their
derived tensor product M ⊗L

R N lies in cohomological degrees ≥ −k.

Proposition A.4 (Künneth formula for de Rham cohomology). Let X , Y be smooth qcqs higher
Artin stacks over a base ring R that is of finite Tor-dimension. Then multiplication induces a
natural equivalence

RΓdR(X/R)⊗L
R RΓdR(Y/R)

∼ // RΓdR(X ×R Y/R).

Proof. The proof is analogous to [KP21b, Proposition 2.2.15], the main idea being to reduce to
the case of affine schemes. Let X• → X and Y• → Y be hypercovers as in Construction A.2;
this provides a hypercover X• ×R Y• → X ×R Y as well. We have

RΓdR(X/R)⊗L
R RΓdR(Y/R)

∼ // Tot (RΓdR(X•/R))⊗L
R RΓdR(Y/R).

Under the Tor-finiteness assumption on R, the derived tensor product −⊗L
R RΓdR(Y/R) is left

t-exact up to a shift, and thus by [KP21b, Corollary 3.1.13] we can move − ⊗L
R RΓdR(Y/R)

inside the totalization:

Tot (RΓdR(X•/R))⊗L
R RΓdR(Y/R)

∼ // Tot
(
RΓdR(X•/R)⊗L

R RΓdR(Y/R)
)
.

Now, using the hypercover Y• → Y in the same way, we get

Tot
(
RΓdR(X•/R)⊗L

R RΓdR(Y/R)
)

∼ // lim
[•1,•2]∈∆×∆

RΓdR(X•1/R)⊗L
R RΓdR(Y•2/R).

Since ∆ is sifted, the limit over ∆ × ∆ can be computed after restriction to the diagonal

∆
diag−−→ ∆×∆, and we get an equivalence

lim
[•1,•2]∈∆×∆

RΓdR(X•1/R)⊗L
R RΓdR(Y•2/R)

∼ // lim
[•]∈∆

RΓdR(X•/R)⊗L
R RΓdR(Y•/R).

15Here, D(ModR)≥0 ⊂ D(ModR) is the full subcategory spanned by complexes M with H−i(M) = 0 for any
i > 0.
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We then have a commutative diagram

RΓdR(X/R)⊗L
R RΓdR(Y/R) //

∼
��

RΓdR(X ×R Y/R)

∼
��

lim[•]∈∆RΓdR(X•/R)⊗L
R RΓdR(Y•/R) // lim[•]∈∆RΓdR(X• ×R Y•/R)

where the horizontal arrows are induced by multiplication, while the vertical ones are induced
by pull-backs. The left vertical map is an equivalence by the above discussion, while the right
one is an equivalence by descent. By [Sta, Tag 0FMB] the maps

RΓdR(X•/R)⊗L
R RΓdR(Y•/R) // RΓdR(X• ×R Y•/R)

are equivalences, thus so is the map between the limits. From the commutative diagram we then
deduce the same for the upper horizontal map. �

Corollary A.5. Let R = k be a field and let X , Y be smooth qcqs higher Artin stacks over k.
Then multiplication induces a natural isomorphism of graded k-algebras

H∗dR(X/k)⊗k H∗dR(Y/k)
∼ // H∗dR(X ×k Y/k).

Proof. This follows from Proposition A.4 by passing to cohomology. �
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[Del74] Pierre Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. No. 44 (1974), 5–77. 12

[Fri82] Eric M. Friedlander. Étale homotopy of simplicial schemes, volume 104 of Annals of Mathematics Studies.
Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. 12, 14

[Hog82] G.M.D. Hogeweij. Almost-classical Lie algebras. I. Indagationes Mathematicae (Proceedings), 85(4):441–
452, 1982. 50, 51

[Hol08] Sharon Hollander. A homotopy theory for stacks. Israel Journal of Mathematics, 163(1):93–124, 2008.
54

[Jan03] Jens Carsten Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, second edition, 2003. 24, 26, 27, 36

[KP21a] Dmitry Kubrak and Artem Prikhodko. Hodge-to-de Rham Degeneration for Stacks, 05 2021. arxiv
preprint arXiv:1910.12665. Accepted by IMRN. 2, 6, 54

[KP21b] Dmitry Kubrak and Artem Prikhodko. p-adic Hodge theory for Artin stacks. arXiv preprint
arXiv:2105.05319, 2021. 3, 6, 20, 54, 55

[Pos11] Leonid Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule corre-
spondence. Mem. Amer. Math. Soc. 212 (2011), no. 996. 21, 23

[Pra91] Piotr Pragacz. Algebro-geometric applications of Schur S- and Q-polynomials. In Topics in invariant
theory (Paris, 1989/1990), volume 1478 of Lecture Notes in Math., pages 130–191. Springer, Berlin,
1991. 52

[Pri15] J.P. Pridham. Presenting higher stacks as simplicial schemes. Advances in Mathematics, 238:184–245,
2015. 54



EILENBERG-MOORE SPECTRAL SEQUENCE AND HODGE COHOMOLOGY 57

[Pri19] Eric Primozic. Computations of de Rham cohomology rings of classifying stacks at torsion primes. arXiv
preprint arXiv:1909.13413, 2019. 2

[Rav86] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure and
Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986. 7, 9, 10, 11, 14

[Sta] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 9, 12, 56
[Tod87] Hiroshi Toda. Cohomology of classifying spaces. In Homotopy theory and related topics (Kyoto, 1984),

volume 9 of Adv. Stud. Pure Math., pages 75–108. North-Holland, Amsterdam, 1987. 3, 4, 15, 17, 19,
20, 25, 29, 31, 32, 33, 35, 39, 44, 46, 48, 52

[Tot18] Burt Totaro. Hodge theory of classifying stacks. Duke Math. J., 167(8):1573–1621, 2018. 2, 3, 5, 6, 11,
14, 15, 17, 18, 36, 37, 40, 41, 48, 49, 51, 52, 55
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