NEW EXPLICIT CONSTRUCTIONS OF SURFACES OF GENERAL TYPE

LEV BORISOV AND ENRICO FATIGHENTI

ABSTRACT. We discover a simple construction of a four-dimensional family of smooth surfaces of
general type with py(S) = ¢(S) = 0, K% = 3 with cyclic fundamental group C14. We use a degeneration
of the surfaces in this family to find (complicated) explicit equations of six new pairs of fake projective
planes. Our methods for finding new fake projective planes involve nontrivial computer calculations
which we hope will be applicable in other settings.

1. INTRODUCTION

Classification of surfaces of general type is one of the most active areas of algebraic geometry. Many
examples are known, but a detailed classification is still lacking, and multiple hard problems remain
open.

The study of the birational class of a surface S is often reduced to the study of its minimal model.
This is especially effective when the Kodaira dimension satisfies k(S) > 0, since in this case the
minimal model is unique. Surfaces of general type have maximal (that is, 2) Kodaira dimension. The
number of different deformation families is infinite, but still very few examples are known.

To each minimal surface S of general type one associates a triple of numerical invariants, (py, ¢, K %),
where p, := h%(S, Kg) and ¢ := h'(S,Og). These integers determine all other classical numerical
invariants, such as eiop(S) = 12x(Og) — K2 and Pp(S) := h°(S,mKgs) = x(Os) + (5)K%. Two
widely used ways to produce surfaces of general type are complete intersections of sufficiently high
multi-degree or products of curves of genus g > 2. The resulting surfaces have either large p, or large
q. This is a particular manifestation of a more general phenomenon: producing examples of surfaces of
general type with low pgy and ¢ is indeed quite difficult, and a complete classification appears beyond
currently available techniques. The most extreme case is that of p, = ¢ = 0. Surfaces with such
invariants are amongst the most famous, since they historically represented counterexamples to the
famous Max Noether’s conjecture, that stated that any surface S with these prescribed invariants
needs to be rational. The Bogomolov-Miyaoka-Yau inequality, that states K% < 9x(Og), implies
K2 <9.

The first example of such a surface is due to Godeaux, and is realized as the quotient Y5/Cj,
where Y5 C P3? is a quintic surface in P3 on which the cyclic group Cj acts freely. Surfaces with
pg =q =0, ng = 1 are therefore called (numerical) Godeauz surfaces. Similarly one can construct
explicit examples of a surface with p, = ¢ = 0, K% = 2 as quotients by a C7 action. Surfaces with
these prescribed invariants are called (numerical) Campedelli surfaces. For 3 < K g < 8 the situation

is in general much less understood. For a recent survey on the surfaces of general type we refer to
[BCP11].

The extreme case of surfaces with p;, = ¢ = 0 and K% = 9 is that of the famous fake projective
planes, i.e. surfaces of general type with Hodge diamond equal to that of CP2. First example of such
surface has been given by Mumford [Mu79]. Subsequent work of multiple authors [K103, TK98, Ke06,
KKO02, PY07, PY10, CS11] culminated in the classification by Cartwright and Steger [CS11] which
found that there are exactly 50 complex conjugate pairs of fake projective planes. These planes are
computed as free quotients of the two-dimensional complex ball by explicit arithmetic groups.

Cartwright and Steger observed that one can obtain many families of surfaces with p, = ¢ = 0
and Kg = 3 as smooth deformations of the quotients of the fake projective planes by a Cs action. In
1
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particular, one should find a family of surfaces with K§ = 3 with the fundamental groups C14. We
have stumbled upon such family in our research and then used it to construct a fake projective plane
with first homology C14 and symmetry group C5 x C3. Afterwards, we found explicit equations of five
more (pairs of) fake projective planes in the same class.

Computer-based approach to constructing specific surfaces of general type. Modern
software and hardware have made possible breakthroughs in the problems of explicitly constructing
surfaces of general type. In particular, in [BK19], the authors have constructed the first equations of a
fake projective plane; in [BY18] the authors found the equations of a related Cartwright-Steger surface.
The results of [BK19, BY 18] were subsequently used in [Ril19] and [Y19] to fill a gap in the proof of the
paper [Y17] on surfaces with maximum degree of the canonical map. However, these computational
techniques are still in their infancy, and constructions typically require subtle geometric ideas in order
to succeed. One can view this paper as another successful step in developing this emerging field.

The paper is organized as follows. We start in Section 2 with an almost classical, but apparently
novel, observation that one can construct surfaces with p; = ¢ =0, K 2 = 3 and cyclic fundamental
group C'4 as free quotients of complete intersections of seven special Pliicker hyperplanes in Gr(3, Vg).
In Section 3 we follow the remarks of [Kel2] to find a quotient of a fake projective plane by Cj.
In Section 4 we explain the key step that allowed us (with great difficulty) to recover the above
fake projective plane. In Section 5 we describe the ensuing construction and the (computer-based)
verification of the statement that the surface we found is indeed an FPP. Section 6 explains how we
managed to recover five other pairs of FPPs in the same commensurability class. Finally, Section 7
contains a long list of further directions that are naturally inspired by our calculation.

Acknowledgments. We thank JongHae Keum and Gopal Prasad for interest in this work, and
John Cremona for allowing us the use of the Number Theory server at Warwick. L.B. has been
partially supported by the National Science Foundation grant DMS-1601907, E.F. has been supported
by an EPSRC Doctoral Prize Fellowship based at Loughborough University.

2. A FAMILY OF SURFACES WITH py = ¢ = 0 AND K?=3

The first construction of our paper produces a family of surfaces S of general type with py(S) =
q(S) =0, K% = 3 and cyclic fundamental group C14. This will be done by considering of a family
of surfaces W C P2 such that ¢(W) = 0, p,(W) = 13, K% = 42 which are equipped with a free
action of C14. The surface S will then be realized as the quotient S = W/C14. A surface with the
same invariants as W appeared in two recent works [BY18] and [Fal8], constructed in different ways.
Understanding the connection between these approaches was the initial motivation behind this project.

Let Vi be a complex vector space of dimension 6 and V'V be its dual, with the basis =1, ..., x.
We equip V'V with the action of the cyclic group C; with the generator acting by x; s iz where
€ is a primitive 7-th rooth of 1. This action induces a natural action on A® V! by @i A i A xg
gititkg, A xj AN xg. It is easy to see that Gr(3,Vs) in its Pliicker embedding is preserved under the
induced action on P A3 Vg.

The vector space /\3 Vg splits into the eigenspaces with respect to the weights for the C7 action.
In the table below and for the rest of the paper we denote by z;;;, := x; A x; A . The basis of each
eigenspace is given by the corresponding column of the table.

0 1 2 3 4 ) 6

T124 T125 L126 T136 T245 T345 X123
356 X134 L135 T145 T146 T156 X346
Tas6 X234 X235 L236 T246 T256
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Consider now a non-degenerate Cr-invariant skew form w on V given by
w=x1 Nxg+ T2 NT5+ T4 N\ 3.

We will later use that w is invariant under the order three map (x1,...,x6) — (x2, x4, x¢, 1, T3, T5)
which multiplies the subscript by 2 modulo 7. The form w determines a splitting of A3 V! = Us® Una,
where

3 3 _
(1) Us .= Image(VE;v AL /\Vﬁv), Uy := Ker(/\ Vav JL; VGV)7

with o w™! denoting the contraction of a 3-vector by the inverse symplectic form w™! € A? V. Since w
is C7 invariant, the action of C7 on A3 Vg’ induces one on Uy4. Explicitly, Uy4 splits into 2-dimensional
eigenspaces with the basis vectors listed in the table below.

0 1 2 3 4 b} 6

T124 125 + T134 X126 — 234 X136 — 235 X146 — L245 T156 — L345 T256 T T346
T356 T456 T135 X145 X236 X246 123

We get our family of W by the following surprisingly simple definition.

Definition 2.1. Consider the splitting U4 = @?:0 Hi, where H; denotes the eigenspace with respect
to the eigenvalue €. For any choice of H; € H; we define W as

W:GI‘(?),VE;)QH()H...HHG.

The motivation behind the above definition is the following. The skew form w induces a canonical
involution (the annihilator involution) acting as (—1) on Ug and 1 on Uy4. It is easy to see by an explicit
calculation that this action is induced from the involution on Gr(3, Vi) which sends a dimension three
subspace to its annihilator with respect to w. Together with C7, this involution generates the cyclic
group Chy. L' Tt is clear that W is C4 invariant and we can and will consider the quotient. We are
now ready to state the main result of this section.

Theorem 2.2. Let S := W/Ch4, for a sufficiently general choice of H;. Then S is a smooth surface
of general type with p, = q =0, K* = 3 and cyclic fundamental group of order 14.

Proof. We recall that Gr(3, V) is a Fano variety of dimension 9, index 6 and degree 42. Suppose we can
prove that W is a smooth surface with C14 acting freely. The adjunction formula implies K3, = 42,
SO Kg = 3. We also have py(W) = 0 by the Lefschetz hyperplane theorem, which also implies
py(S) = 0. The global sections of the canonical class of W can be identified with HO(W,O(1)) =
A*Vy//(CHy @ --- @ CHg), which has dimension 13. As a result, x(W, Ow) = 1+ h%2(W) = 14, so
X(S,Og) = 1 which leads to ¢(S) = 0.

We will now verify the technical statement that W is smooth for general choices of H; € H;,
and moreover that the action of Cj4 on W is free. This can be easily accomplished by a computer
calculation as below, but it would be interesting to find a computer-free argument.

Smoothness of W, for a sufficiently general choice of coeflicients, can be checked in affine coordinate
patches on PA3 V. As a first step, we will write the equations of W as

W = V(pox124 + X356, D156 + T125 + T134, P22135 — T234 + T126, —Pa%236 + T146 + T245,

— P3T145 — T136 + T235, P5T246 — L345 + L156, D6L123 + Tase + T346) C Gr(3, V),

INote that, unlike the case of [Fal8] the involution is not induced from Vs: this is eventually the key to the freeness
of the action.
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where p; € C* are sufficiently general (in particular, not all of them equal). To check the smoothness of
W in the affine patch x193 # 0, observe that the corresponding Schubert cell in Gr(3, V) is isomorphic
to CY. Every point in this cell is the linear span of the rows of the matrix M below.

1 00 Uy U2 U3
M=10 10 Uq4 U5 Ug
0 0 1 Uy uUg U9

In this Schubert cell, the coordinates x;;, are the (ijk) minors of M. The defining of equations of
W are then (nonhomogeneous) equations in u;, with degree up to three. One can then check directly
the smoothness of this affine chart of W by computing the Jacobian matrix and its size seven minors.
This procedure is then repeated for each of the 20 coordinate charts.

It is easy to show by hand that the action of C; C C14 on W is free. Indeed, the fixed points of C7
on Gr(3, V) are the Cr-invariant subspaces. Since the weights of C; action on Vi are all distinct, these
are precisely the coordinate subspaces of V5. The corresponding points in P( A3 V) have all but one of
the z;;, coordinates zero. By direct examination, we see that these points do not lie on a generic W.

It remains to check that the action of the involution in C1y4 is free. To do this, recall that ¢+ acts as
the identiy on U4 and as (—1) on Ug, the latter being defined in the equation (1). From the explicit
presentation of these subspaces given above we can write this action in the coordinate charts and
check that the fixed locus of ¢ on the ambient P2 is given by the intersection of W and the disjoint
union of P* LIP~, these being given by the following equations

+

P =V (z125 + T134, T126 — T234, T136 — T235, T146 — £245, 156 — L£345, L256 + L£346)

P~ =V (—x125 + 134, T126 + 234, T136 + Z235, L146 + T245, T156 + L345, —T256 + T346,
456, L135, L145, L2365 L246, L123, L124, 96356)-

Using a computer we can check that, for example if not all p; = 1, then the intersection of both P+
and P~ with W is empty. ]

Corollary 2.3. The Euler characteristic of S is 9 and h'''(S) = 7.

The family of S that we have defined depends on 4 parameters. More precisely, we have 7 dimen-
sional space of choices for the H; € H;. However, there is a (C*)? symmetry group of Vg

-1 “1 -1
(@1,...,26) = (AMx1, Ao, A3x3, A5 24, Ay x5, A\] " 6)

that preserves the action of C7 and the form w. This scaling does not change the surface, and
therefore we have as a naive moduli count 7-3=4 parameters. Notice that this coincides with the
expected number of moduli M of S

RY(S,Ts) > dim M > h'(S, Ts) — h*(S, Ts) = 10x(Og) — 2K% = 4.

There is another less heuristic way of checking that our construction actually gives a four dimensional
family. Let Ay denote the affine cone over W. The (Z-graded) space Tj == Extl(Qi‘W,OAW)
parametrises the deformation of the affine cone, and its degree 0 component represents in particular
the deformation of the couple (W, O (1)). One can compute, for example using the package "Ver-
salDeformations" of Macaulay2, that this space is 56 dimensional, with its C'4 invariant subspace being
exactly 4 dimensional. However there is no way of making this lengthy computation computer—free.

To check unobstructedness in the above formula, since 7 : W — S is a finite map, it suffices to
check that H?(Ty) = 0. There are several ways of proving this, for example using the Borel-Bott—
Weil theorem as follows. Although this is a priori valid only for a general section, it is valid in our
case since x(Ty ) is constant in fibers and W is of general type. Alternatively one can compute the
relevant graded component of Tflw as above.

Lemma 2.4. Let W C G = Gr(3, V) be a smooth complete intersection of seven sections of O (1)7.
Then the deformations for W are unobstructed, i.e. H*(Ty) = 0.
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Proof. Let F = Og(1)®7. Consider first the tangent sequence for W, that is
0—Tw — Talw — Flw — 0.
Since Ox(1) is ample H'(F|w ) = 0. Therefore we have
0 — H*(Tw) — H*(Te|lw) — H*(Flw) — 0.

A first observation is that the canonical bundle of W is wy = Oy (1). Therefore H?(Oy (1)) =
H?(wy) = C. This implies H(F|w) = C”. In order to compute H?(Tg|w ) we need to use the Koszul
complex for W, twisted by T, namely

0= Tg(=7) = Ta(—6)" = ... = Tg(-2)** = To(-1)" = Tg — Tglw — 0

It is easy to check using Borel-Bott-Weil that H'(Tg) = 0 for @ > 0 and that T(—i) are acylic
for i = 1,...,5,7. Denote indeed by R the tautological bundle of Gr(3,Vs) and by Q its (ample)
quotient. Any irreducible homogeneous bundle can therefore be represented in terms of Schur functor
as XoQ ® YgR. We denote by v = («|8). Denote by § = (5,4,3,2,1,0). By Borel-Bott—Weil
theorem any irreducible homogeneous vector bundle will be acylic if v + § has repeated entries. The
tangent bundle Ty to Gr(3,Vs) is isomorphic to Hom(R,Q) = RY ® Q. Therefore the partition
associated to it is (1,0,0,0,0, —1), or equivalently (2,1,1,1,1,0) if we use natural dualities. Twisting
by Og(—i) = (A>R)® is equivalent to consider the partition (i) = (2,1,1,1 + 4,1 +4,4). It is
immediate to check that for ¢ = 1,...,5,7 (i) + § has repeated entries. For i = 0 there are no
repeated entries. The (unique) degree where the bundle has cohomology is therefore identified by the
number of disorder of the partitions, namely the number of negative differences in the sequence (which
is zero in this case).

The last case is for i = 6, where we have H3(Tg @ A®(Oq(—1)7)) = C7. Indeed, since \° Ty =
Oc(6), we get H3(G, T @ Og(—6)) = HY(G,0%,) = C. This implies H*(Tg|w) = C7, and in turn
H?(Ty) 0. O

Remark 2.5. We point out that there is another surface with the same invariants as W: this is
given by a codimension eight linear cut W' of the Grassmannian Gr(2,7). This surface was already
considered in [Fal8]. The relation between W and W' is still unknown, and we plan to explore it
further.

We point out that finding an involution that leaves no point fixed on W’ could be extremely tricky,
if not impossible. Via character theory we can indeed prove that such involution cannot extend to the
whole of Gr(2,7). Indeed it is classically known (see [Co89]) that Aut(Gr(2,7)) = PGL(V7), whereas
on Gr(3,6), PGL(V;) is a subgroup of index two of the automorphism group. In particular in our
construction above our involution was indeed not induced from V.

3. A SURFACE WITH K? = 3 AND THREE Ay SINGULARITIES

In this section we will describe the computer calculations that lead to constructing a quotient of
a fake projective plane by a cyclic group C'3. The Mathematica calculations are available in the file
[BF19, Section3.nb].

In the previous section we constructed a dimension four family of complete intersections in Gr(3, Vg)
which admit a free action of the cyclic group C14. The quotient surfaces have numerical invariants
pg=q=0, K 2 = 3. Tt was remarked in [BCP11] that some such surfaces can be constructed as a
deformation of a C3 quotient of a certain fake projective plane. So it was only natural to postulate
that our family is indeed this family and to look for degenerations of the surfaces that would be Cs
quotients of fake projective planes with fundamental group C14.

By the classification of Cartwright and Steger, there is one such fake projective plane, up to con-
jugation. It has a larger symmetry group Cs x C3, but only one copy of Cs acts trivially on the
torsion of its Picard group. This motivated us to look for our complete intersections which have an
additional condition of having an order 3 automorphism. We also expected that the quotient has
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three As singularities. We made an ultimately successful guess to study the two-parameter family of
complete intersections in Gr(3, Vi) given by the equations

0 = por124 + x356,0 = T456 + T125 — T143,0 = x135 + T243 — T216,0 = T263 + T416 — T425,

0 = p3415 + T316 — 325, P3T246 + T543 — 516, 0 = P3T123 + Te2s — Te43-
Here pg and p3 are the parameters of the family. We use the convention z;;;, = —z ;1 = —2;; to make
explicit the C3 action that multiplies indices by 2 mod 7.

Remark 3.1. One can observe that the transformation of parameters (po,ps) — (pglpg,pg) leads to
an isomorphic complete intersection. This symmetry is induced by the coordinate change xp — x7_}.

In order to find a surface with Ay singularities, we first tried to determine the locus of singular
complete intersections. This was a non-trivial endeavor, since the equations in question were too
complicated to be solved directly, at least with our hardware and software. To overcome this difficulty,
we first computed the special case p3 = 1 to observe that the above complete intersections are singular
for eight values of pg which are roots of the equation

0 = 999 — 4950po + 13739p% — 23670p3 + 28532pa — 23670p7 + 13739p§ — 4950p7 + 999p5.

We then replaced p3 = 1 by p3 = 1 + € for € = 10720, We used the gradient descent method built
into Mathematica’s FindRoot command to calculate the corresponding 8 roots that deform the above
ones. After postulating that there is a polynomial in (pg,p3) with reasonably small coefficients that
describes the locus of singular complete intersections in Gr(3, V) we found this polynomial to be

0 = 1280p5 — 6144plps + 4608pSps + 10240pSp2 — 18176pfp2 + T424pp3 — 8192p3p3 + 41984pSp3
—30976p{p3 + 7040p5p3 + 4096paps — 44032p5p3 + 75328pSp; — 34560pTp3 + 4320pSps + 28672pdps—
108288p3p3 + 92448pSp3 — 25568pTp3 + 1760pSps — 8192p3pS + 89600pipS — 155264ppS + 77760p8ps
—12784p7p§ + 464p§pS§ — 44032p3pT + 169216p3ps — 147984p3p] + 46624pSpl — 4320pTps + T2p§p}
+10240p2p3 — 108288p3pS + 190656pipS — 100696ppS + 19440p8ps — 968p7ps + 5pips + 41984p2pd
—155264p3p3 + 149952pap3 — 50348pips + 5778pSp3 — 142pTps — 6144pepi® + 75328p3pa° — 147984p3pi°
+85745papi0 — 18498p3pi + 1177pSpi0 — 12p7pt® — 18176ppit + 92448p2pil — 100696p3pit
+37488pipil — 4852p3pit + 164pSpit + 1280pi2 — 30976popi? + 77760p2pi? — 50348p3pi?
+11916pgpi? — 846p3pi2 + 10p§pi? + 4608pi3 — 34560pepi® + 46624p2pi3 — 18498pgpi® + 2644pgpi?
—86pgpit + 7424pi* — 25568popit + 19440p2pi* — 4852p3pi* + 350papit — 4pdpi® + 7040pL°
—12784pop3® + 5778pgps® — 846pps° + 28pgps® + 4320p3° — 4320pop3® + 1177pgps® — 86pips° + pops”
+1760py" — 968popl™ + 164pgpy™ — 4pips® + 464p3® — 142pop3® + 10pgp3° + 72p3° — 12pop3” + 5p3°.
After finding the above locus of singular complete intersections, we made an educated guess to look
for singularities of the above curve in hopes of finding complete intersections with singular points of
type Ao. This was a straightforward computer calculation that lead to twelve singular points, which
we then looked at in detail. Up to complex conjugation and symmetry of Remark 3.1, there was one
solution defined over the expected field, with the expected 42 singularities of type Ao, which form one
orbit of the semidirect product of C14 and C5. Specifically, we got
po = %(—2475 +49iV/7 — 35iv/15 + 231V/105), p3 = %(—17 + 7iV/15).
In what follows we will denote this surface by Wg,. It is worth mentioning that the ratios of the
Pliicker coordinates x;;; of the 42 singular points of W, are not at all pleasant. Some of them are
roots of equations of degree 168 with coefficients that are tens of digits long. Nonetheless, we were
able to verify by computer that these are indeed Ay singularities.

We will now focus our attention on the quotient surface W, /C14 which is a singular surface with
K? = 3 and three A singularities. Such surfaces have been shown in [Kel2] to be quotients of fake
projective planes by a cyclic group Cs. For our purposes, it will be convenient to work with the
unramified double cover X = Wg,/C7 of Wa,/C14 which is a surface with K? = 6 and six singular
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points of type As. We found equations of this surface by the following method, using Mathematica,
analogous to [BK19]. It should also be possible to use symbolic rather than numerical methods for it,
or at the very least check symbolically that the invariants of C7 action satisfy these equations. Notice
that a smoothing of this surface gives us equations of the surface constructed in [Fal8|.

(1) Construct multiple points on the surface W, numerically with several hundred digit accuracy.
The points are generated randomly.

(2) Construct sections of 2K x as quadratic polynomials in Pliicker coordinates on W, which are
invariant under C7. There is an 8-dimensional space of these sections. We initially picked the
basis

(Us..... Ur) = (§(-~8925 — 1561iv/T + 1115i/T5 + 833v/105) 3,4, 32(7 — iv/T5) zserns,
32(7 — iv/15) w135T246, 32(7 — iV 15) 2637415, 128 2456 (T625 + T643), 128 2135(T543 + T516),
128 w263 (2316 + 325), 5 (136 — 56iV/15) (w123 (2125 + T143) + D246 (T243 + T216) + Ta15(Ta16 + T425))

+128(z 456 (z625 + T643) + T135(2543 + T516) + T263(T316 + 96325))))

in order to simplify the resulting degree two equations.

(3) Use the aforementioned points of W, to find a basis of equations of degree 2 and 3 among
the sections of Kx, numerically.

(4) Identify the coefficients of these equations with algebraic numbers. These numbers are guar-
anteed to be in the field Q(v/—15, v/—7), which provides a good check of the calculations. The
equations of X in terms of U; are presented in the accompanying file [BF19, EquationsOfXin-
termsofU].

(5) Calculate the Hilbert polynomial of the scheme cut out by these equations to ensure that they
cut out the surface X scheme-theoretically.

Remark 3.2. [t is currently a bit of an art to find the generators of the ideal of the relations on U;
that are relatively simple. Our approach involved looking for equations with relatively few terms and
picking ones of low length, until they generate the space of equations.

Remark 3.3. The residual Cy action has variables Uy, ...,Us as even and Uy, ...,Ur as odd. There
is also a C3 action

(Uo:...:U7)i—><U0:U2:U31U1:U5:U62U42U7)
The coordinates Uy, . ..,Us can be viewed as sections of the bicanonical class on Wgy/Ch4. There is

a dimension three space of even degree two relations, which are not predicted by the Hilbert function
considerations. There are additional spaces of degree three relations of dimension four (even) and two
(odd). This gives us a total of nine equations in 8 homogeneous variables. The size of the equation file
s about 30Kb, so, while it is small by computer standards, it is not worth presenting in printed form.

Importantly, equations of X in terms of U; have coefficients in the field of Q(v/—15, /=7). However,
we observed that it was possible to make a linear change of variables to new coordinates (W, ..., Wr)
so that the equations are defined over Q(1/—15), with the file size of about 20Kb [BF19, Equation-
sOfXintermsofW]. 2 The linear change was designed to send the six singular points (whose coordinates
are complicated in the U-basis) to

(0:1:0:0:£1:0:0:0), (0:0:1:0:0:+1:0:0), (0:0:0:1:0:0:+£1:0)

and to make the tangent spaces at the points defined over Q(v/—15). The C5 action on W is again
given by
(o (WO sy W7) — (W07 W27 W37 W17 W5a W67 W47 W7)

Unfortunately, the equations are still too lengthy to be presented in a printed version of the paper.

2We list these equations in the Appendix, but they are not exactly human-usable.
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Remark 3.4. We have verified that these equations cut out the scheme with the expected Hilbert
polynomial h(n) = 12n? — 6n + 2 of a surface with K? = 6 in its bicanonical embedding for n > 5, see
[BF19, EquationsOfXmagma).

Remark 3.5. The embedding by W; is not projectively normal. In particular, not all degree two
sections of O(2) can be written as quadratic polynomials in W;. This makes working with sections
of O(2) more complicated, as one needs to represent some of them as rational functions in W; with
degree three numerators and degree one denominators.

4. FINDING THE TRIPLE COVER: THE KEY STEP

This section is devoted to the key step of the construction of the fake projective plane P?ake which
is a Galois triple cover of Wg,/C14 = X/Cs. Finding a smooth Galois triple cover of a surface with
singular points of type As involves finding Weil divisors which are not Cartier which could in general
be difficult. This was an extremely delicate calculation that took about six months and multiple dead
ends before introduction of several important ideas. The process is described below and is implemented
in the accompanying Mathematica file [BF19, Section4.nb].

The approach. Suppose that we have a fake projective plane P?‘ake with a ('3 x C3 automorphism
group such that the quotient by the first C3 is isomorphic to the quotient of X

P?‘ake/c?) = ‘Xr/cf2

with the above Cy action. The second C5 induces the action on X/Cy coming from the above permu-
tation o of W; coordinates. Let 4H be a divisor on }P’?ake where H is satisfies 3H = KP? .- We may

moreover assume that the automorphism group C3 x C5 of P?ake fixes 4H and therefore produces a

projective action on H° (]P’?ake, 4H) = C3. Tt can be shown that the action of the second C3 permutes

the eigenvectors ug, u1, us of the first Cs, with weights 1, exp(%), exp(—%).

The cubes ug,u$,u3 will be sections of 12H = 4K which will descend to Cy invariant (=even)
sections of O(2) on X. In view of the C3 action, these will be f,o(f),o?(f) for some section f.
Importantly, the product upujug will be an even Cj invariant section d of O(2) and there must hold

(2) fo(fa*(f) = d°.
Knowledge of f and d allowed us to find the triple cover fairly easily as is explained in the next section.

How we found f and d. In addition to the equation (2), we know that {f = 0} must pass
through (0:1:0:0:1:0:0:0)and (0:0:1:0:0:1:0:0). Its proper preimage on the
blowup of the singularity will have multiplicity 2 and 1, and 1 and 2 on the corresponding pairs of
exceptional curves. In the notations of the diagram below, the preimage of the divisor {f = 0} on X
on the minimal resolution is given by 3C + 241 + By + 2By + As, where A;, B; are the exceptional
curves. The preimage of the divisor {d = 0} is C + o(C) + 0%(C) + X2, (A; + By).
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a*(C) B

By

C 42

Remark 4.1. The automorphism group of the minimal resolution of X does not switch the exceptional
lines over a singular point, so there is a meaningful choice here which of the lines is A1 and which is
By, with the other choices then fized by C5 symmetry.

Remark 4.2. The divisor of f =0 on X/Cs is 3C where C' is a Weil divisor which is not Cartier.
Indeed, its preimage on the blowup of X/Cy is numerically equivalent to C' + %Al + %Bl + %Bg + %Ag
in the notations of the above diagram.

To solve (2), we start by computing the dimension 19 space of sections HO(P?ake/Cg, 4K]P>?‘ake/c3).

These are realized as elements of H(X, Ox(2)) which are even with respect to the covering involution.
A dimension 17 subspace of H(X, Ox(2)) is given by the even quadratic polynomials in (Wy, ..., Wr)
subject to three quadratic relations of [BF19, EquationsOfXintermsofW]. We augment it to the whole
space by calculating two additional basis elements of the form P(W')/(Wy + W5 4+ Ws) where P is a
degree three polynomial in W; which vanishes on {0 = Wy + W5 + Ws} N X and is odd with respect
to the involution.

The requirement of {f = 0} passing through the singular points as above reduces the dimension of
the space of sections f from 19 to 13. Similarly, {d = 0} must pass through all three singular points,
which reduces the dimension from dim H°(X/Cy, ©O(2))“® = 7 to 6. So the pair (f,d) can be described
by 13 + 6 = 19 parameters, up to scaling.

The equation (2) is cubic in the coordinates of f and d. It takes place in the space H°(X/Cs, O(6))¢*
of dimension 67, so we have 67 cubic equations in 19 variables. with coefficients in Q[v/—15]. The above
linear conditions on f and d reduced these 67 equations to 58. We then used Smith decomposition and
a version of LLL algorithm (both built into Mathematica) to find a basis of the space of equations with
smaller coefficients. Specifically, given a list of polynomials with coefficients in Z[y/—15] we find find
the corresponding matrix of real and imaginary parts of these equations and the ones multiplied by
v/ —15, then find a small basis of the saturation of its row span and transform it back to the equations.
The resulting file of 58 cubic equations [BF19, 58CubicRels] was approximately 3.3Mb long. It was too
big to be solved by Mathematica or Magma, however there were further simplifications that allowed
us to do it.

If p is a fixed point of the C3 action on X/Cy, then we see that f3(p) = d3(p). This cubic equation
can be reduced to a linear equation (in one of three ways). There are three fixed points, and we
picked the conditions which had coefficients in Q[/—15]. Only one of several possible choices led to
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an eventual solution. This reduced the number of unknowns to 19 — 3 = 16 and the number of cubic
equations to 55.

We computed the neighborhoods of the blowups of exceptional lines. At a preimage of a singular
point with two exceptional lines A; and Bj the section f = ug must locally look like By + 24, + 3C
where C' is some curve that intersects A; at a point. The section d locally looks like A; + B + C.
Starting from the equations of f and d we can compute the restrictions of 3C' and C to the exceptional
curve Aj, respectively. The polynomial coming from f is up to a constant the cube of the polynomial
coming from d, which leads to 6 quadratic equations for each of the two points (0:1:0:0:1:0:0:0)
and (0:0:1:0:0:1:0:0). Specifically, if the restrictions of f and d to the exceptional curve are
ao + art + ast® + ast® and by + byt respectively, then the equations are

0= 3a3b0 - agbl = a2b0 - a161 = a1b0 — 3a0b1 = 9a0a3 — a1ay = 3a0a2 — a2 = 3a1a3 — a2.
1 2

We have thus constructed a system of 12 quadratic and 55 cubic equations in 16 variables, with
coefficients in Q[v/—15]. The size of the file [BF19, Rels23withrr| containing these equations was
approximately 5.1 Mb, and standard Mathematica software and basic hardware were not fast enough to
solve them.

We then employed a natural, yet amusing, trick. Magma has readily computed the Hilbert poly-
nomial of the reduction of the above system modulo 19 with /—15 set as 2 mod 19. It was precisely
1, which meant that the system had a unique solution. By adding linear relations and rechecking
the Hilbert polynomial, it was easy to find that solution modulo 19. This then allowed us to induc-
tively find a solution modulo 19*, since increasing k by 1 leads to simple linear equations modulo 19
(we used an appropriate square root of (—15)). After computing it up to k& = 200, we had enough
information to find f and d, on the assumption that the coefficients had reasonable numerators and
denominators. We verified that they satisfy the 12 quadratic and 55 cubic equations precisely by a
symbolic calculation. Specifically, we obtained that d, up to scaling, is

42318123032W2 + 2256004(—23709 — 333551v/15) Wo (W1 + Wa + Wa) + 4512008(—369999 — 115101iv/T5) (W1 Wa + W1 W + WaWs)

+4512008(—134064 — 81144iV15) (W2 + W + WZ — W2 — W2 — W2) + 6008(—60345558 — 90294750i/15) (W4 + W5 + We) W+
+ (457763819877 — 572077298835i1/15) W2

while f is given by a notably more complicated formula.
5. FINDING THE TRIPLE COVER AND VERIFICATION OF FPP cLAIM

In this section we discuss the construction of the triple cover and the verification that it is indeed a
fake projective plane. We recall that we have constructed a surface X in P7 cut out by three quadratic

and six cubic equations in coordinates (Wp : ... : W7) in the Appendix. It has a free action of Cy
Wo:ooo : W)= (Wo oo Wa: =Wy, ...: —=W5). It is also acted on by a cyclic group of order three
given by

O'(W():...:W7):(W0:W2:W3:W1:W5:W6:W4:W7).

The quotient X/Co has three singular points of type Ag, permuted by Cs5. We have also found an
even section f of Ox(2) and an even Cs-invariant section of Ox(2) such that fo(f)o?(f) = d® and
the divisor of f is 3C where C' is Weil but not Cartier, see Remark 4.2.

Once we have found f and d, constructing equations of the triple cover IP’?C ke 18 fairly straightforward,
similar to [BK19]. We consider the normalization Z of X/Cy in the field obtained by attaching an
algebraic function z which satisfies

(3) 2= o).
This field has a C3 x ('3 automorphism group. Namely, there is an action of the covering C3 given by
2 e3™y, g — g for g € Rat(X/Cs).
There is also a commuting action of the lift C3 given by
2 do(f) 'z, g o(g) for g € Rat(X/Cy).
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Indeed, we get
2 da(f)7°2 = (fa(Na®(N)a(f)Pa(Nf = (fo(f) ™ =ala(f)f)

so (3) is preserved by the above action.

Remark 5.1. The usual convention is that the action of C3 on points of X is induced by

a(9)(p) = g(e(p))

50

o(f)p) =0 <= f(o(p) =0 <= o(p) €C = ped’(C).
Therefore, the divisor of o(f) is 302(C) and the divisor of o*(f) is 30(C). The (Weil) divisor of z
on X/Cy makes sense and is given by o2(C) — C.

Since we know what {f = 0} looks like locally at singular points, we see that the cyclic triple cover
Z given above is smooth and X/Cy is Z/C5 for the covering C3. We are interested in describing Z
explicitly by the equations on sections of H(Z,2K7).

Note that 2Kc, is O(1). The covering C3 induces an action on H%(Z,2Kyz) which splits it
into three eigenspaces. The invariant subspace is naturally identified with the global sections of
HY(X/Cy,0(1)) and has a basis {Wy, Wy, Wa, W3}

The additional sections in HY(Z,2K) for the two other eigenspaces of the covering C3 action on
Z can be thought of as spaces of zg or z~'g with g a meromorphic section of O(1) on Z which is
a pullback of one from X/Cjy. For the first of these eigenspaces, the condition of holomorphicity
of zg is ordp(g) > —ordp(z) for all divisors D. This means that g is a section of the reflexive
sheaf O(1)(0?(C) — C) on X/Ca, in view of Remark 5.1. As a consequence, gd will be a section of
O(3)(0?(C) — C) which vanishes at C + o(C) + 0%(C), i.e. a section of O(3)(—2C — o(C)). This can
be identified as the linear subspace of H%(X,0(3))“2 cut out by conditions of vanishing twice at C
and once at o(C). These are readily calculated numerically by finding a number of random points
on these curves. The other eigenspace of the covering ('3 is determined similarly, and we see that
H°(Z,2K7) is naturally identified with

HY(X,00))% @ (2d ™ HO(X, 0(3)(—2C = (C))®) @@ (=71 d " HO (X, 0(3)(~20*(C) — 0 (C))) )

One can write these sections as rational functions in Wy, ..., Wx of total degree one and evaluate them
on points of X. When looking for relations among them, one must ensure that the total degree in z
is divisible by 3 and that 23 is converted into o(f)f~' (or alternatively one can construct multiple
points on 7).

We would like to have the basis of H°(Z,2K7) which is nice with respect to the lift C3 action.
Observe that
o (24T HO(X, 0(3) (20 — 0(C))%) = (zdo(f))d " HO(X,0(3)(0*(~2C — o(C))
=2d 1 (do(f)7!) HY(X,0(3)(—20%(C) — C))“"
= 2d "HY(X,0(3)((20%(C) — 0(C) — C) — 202(C) — C))*2
= 2d 'HY(X,0(3)(-2C — ¢(C))“?
and similarly for z='d=*H°(X, O(3)(~202(C) — 0(C)))2. So we can take one of the elements of the
eigenspace and make the others by applying oyg. This gives us a basis (P, ..., Py) of H*(Z,2Kz)
which has C3 x C3 action given by
4 4, . 4. 2, 2, 2, .
Ucovering(POu o 7P9) - (P07 P17 P27 P37 e§7T1P47 egﬂlP57 e§7nP6) egﬂ-lP'?? egﬂ-lPSa egﬂ’lPQ)y
oite (P, - - -, Po) = (Po, Po, Ps, P1, Ps, Ps, Py, Py, Py, 7).

We have implemented the above in [BF19, Section5.nb].



12 LEV BORISOV AND ENRICO FATIGHENTI

Remark 5.2. We were hampered slightly by the lack of projective normality of X. In fact, only a
codimension two subspace of even sections of HY(X,O(3) can be written as a polynomial in Wy, . .., Wr.
Fortunately, this was still enough to find one element in each of the three-dimensional eigenspaces of
H(Z,2K7), and then oy gave us the basis of the space.

Remark 5.3. As has been observed before, one of the difficulties is finding a good basis of sections of
2K and a good basis in the space of equations, in order to have the coefficients of manageable length.
After we found the equations, we have made a linear change of variables with coefficients in Q[v/—15]
to get a nicer description of the fized points of C3 x C3 while preserving the shape of the group action.
This has only lead to a moderate improvement in the size of the coefficients. This is also implemented
in [BF19, Sectionb.nb], with the resulting file [BF19, EqsFppd3D3]

Remark 5.4. We also use the knowledge of f and d to construct the double cover of P?‘ake obtained
from X by attaching the above function z. This double cover is given in its 2K embedding by 20
variables and 100 quadratic equations. It will be very useful in the next section.

Since our computations often involved approximate points, and one should generally be wary of
long computer code (that took a fair bit of time to debug), we have spent some time directly verifying
that our 84 cubic equations cut out a fake projective plane. Specifically, we saved the equations in the
Magma format and over the field Q(1/—15) that the 84 cubic relations cut out a scheme with Hilbert
polynomial p(n) = 18n% — 9n + 1, as expected. We then verified that they generate a prime ideal I
and that H'(Z,0z) = H*(Z,Oyz) = 0 by working over a finite field and using semicontinuity.

We also verify smoothness as follows. The scheme in question is smooth if and only if the radical
of the ideal generated by I and the 7 x 7 minors of the 84 x 10 Jacobian matrix Jac of the generators
of I is the irrelevant ideal. It is is impossible to calculate all of the minors in any reasonable amount
of time, even over a finite field. We used the following trick. We picked random 84 x 84 and 10 x 10
matrices A and B over a finite field and looked at the first 7 x 7 minor of the matrix A Jac B
to get a reasonably generic linear combination of the minors of Jac. We repeated it three times,
added the resulting minors to I and verified that the resulting ideal has zero Hilbert polynomial.
We had to use a powerful computer cluster (the "Galois" server based at Warwick University) in
order to do this calculation in a reasonable amount of time. The relevant Magma code is in [BF19,
EqsFPPd3D3Magma and EqsFPPd3D3MagmaFinite].

Once we know that Z is a smooth surface with H'(Z, 0z) = H?(Z,0z) = 0, the Hilbert polynomial
implies that the hyperplane class D on Z satisfies D> = 36, KzD = 18. To show that Z is a fake
projective plane and D is twice the canonical class we only needed to show that x(Z, O(2Kz)) = 10 and
hY(Z,0z(D — K)) = 0 as in [BK19]. We used the "Galois" server and Macaulay2 for this calculation.

6. CONSTRUCTING FIVE MORE PAIRS OF FAKE PROJECTIVE PLANES

Cartwright and Steger [CS11+] have discovered the following ball quotients in the same commen-
surability class as the fake projective plane we have found so far. The labels are the shorthand for
their more extensive notation. For example, the FPP we have found is FPP: (C2,p=2,0), d3D3) in the
notation of [CS11+] and is d3Ds3 in the diagram below. The quotient of the complete intersection of
Grassmannian in Section 3 is Dj.

All of the arrows correspond to degree three maps. The thicker arrows indicate Galois covers, i.e.
quotient maps for some C3 action.
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FPP: Xo (d®D)sX3 (dD)3X3 D3X3 d3Ds X}
FPP/3: X3 (@2D);  (dD) ds
FPP/9

We will now describe the main idea used to construct the other surfaces in the above diagram and,
in particular, all of the other fake projective planes in this class.

Suppose that we have constructed (i.e. have explicit equations of) a fake projective plane P; with a
('3 action and suppose that there is another FPP P, which covers the quotient of P; /C3 as a non-Galois
triple cover. Then we can try to construct P, as follows.

At the level of the fundamental groups, we have P; = 32 /T where I'y and 'y are index three
subgroups of a larger group I' that corresponds to P;/Cs. However, I'; is a normal subgroup of I" and
I’y is not. The kernel of the action of I' on the cosets of I'y is a normal subgroup I's of I" of index six
with I's/I" 2 S3, which is contained in I'y. It is not contained in I'y and, therefore, the intersection
I'y =T'1 NIy is a normal subgroup of I' of index 18 which is contained in both I'y and I's.

In terms of the surfaces, we have a smooth surface P, = B2 /T4 which is a six-fold unramified cover
of both P; and P». There is an action of S3 x C3 on Py such that P; is the quotient of Py by S5 and P
is the quotient of Py by Cy x C3 where (5 is a subgroup of S3. Both of these quotients are unramified.
We will also consider a double cover of P;/C3 which corresponds to taking quotient of Py by C3 x Cs.

We will denote this (singular) surface by P;/Cj.

We have, x(Py, Kp,) = 6x(P1,Kp,) = 6. We will assume 3 that the surface Py is regular, so the
dimension of V' = H(Py, Kp,) is exactly 5. The Holomorphic Lefschetz formula implies that the
traces of the action on V of the nonidentity elements of S3 and C3 are —1 due to the trivial action on
H?(Py, Kp,). Therefore, as an S3 representation, V' is isomorphic to the direct sum

V=VieVeV,

where V; is the one-dimensional sign representation and V5 and V4 are two copies of the dimensional
representation of S3. Since the actions of C3 and S3 commute, the Cs-eigenspaces must be represen-
tations of S3. The dimensions of weight 1, w, w? eigenspaces are 1,2, 2 respectively, so we may assume
that V7 is trivial under C3 action and V5 and Vi are eigenspaces of weight w and w’.

The dimension two representation of S has a basis (71, 72) such that (1,2,3)r; = wry, (1,2,3)ry =
w?ry, (1,2)r1 = 72, (1,2)r2 = r1. Consider such basis (r1,72) of V2 and similarly (r},75) of VJ. The
following observation is key.

Proposition 6.1. In these notations, s1 = rirhy and sy = ror] are (pullbacks of) elements of
HO(P1/03,2KP o2 )) Moreover, the covering involution on P;/Cs — Py/C3 permutes them. Simi-

larly, s3 = riro and sy = rirh are (pullbacks of) sections of H°(Py,2Kp,) of weights w? and w with
respect to the Cs action on Py. The following equation holds on Py/Cs:

§189 = 8354.

Proof. This statement follows immediately from the description of the group action on 7;. O

3This is a natural assumption, which gets justified a posteriori by the success of the process.
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Proposition 6.1 gives us a way to find the divisors of r; and r}. Namely, we can solve for all linear
relations on

Sym? (HO(P1/Cs,2K ;= )) €D (HO(P1, 2K 7 )2 @ HO (P 2K p, o)

and impose the conditions that the right hand side is decomposable (the corresponding matrix is of
rank one) and the left hand side is of rank at most two. This allows us to find sq,. .., s4 and then the
divisors of r1,...,r5. For example, we can find r; = 0 as the intersection of s; = 0 and s3 = 0.

Then we can construct the surface Py and finally get P» as its quotient. Specifically, the difference
between the divisors of 71 and r9 is an order three torsion bundle on the double cover of FPP/3. In
order to construct the FPP, we will consider the sections of 2K on this triple cover as follows. We can
look at sections of 3K that vanish on 1 = 0 and others at o = 0. This requires constructing sections
of 3K. One way is to look at sections of 4K which are zero on the anti-invariant section of K (all of

this is done on the double cover m of FPP/3).

We have used this method successfully to construct five more pairs of fake projective planes, see
[BF19, Section6D3X3.nb, Section6twin.nb, Section6X3prime.nb, Section6X9.ub ]. Specifically, we used
the C3 x C3 action on the FPP d3 D3 to get D3 X3 (and its unramified double cover), as well as (dD)3 X3
and (d?D)3X3 (twin FPPs) and X}. Then we used D3Xj3 surface to get Xo. The verification of the
smoothness and the fact that these are indeed FPPs was done similarly to the d3Ds case in Section 5.

Remark 6.2. There were some technical issues that we were not able to resolve to our complete
satisfaction. Specifically, our method a priori produces equations over an algebraic extension of the
original field Q(v/—15), often by adding the cube root of unity w. We were able to find an appropriate
linear change of coordinates to get the field to be Q(v/—15) for D3X3. The twin pairs of (d>D)3X3
and (dD)3 X3 are defined over Q(v/—15,+/=3), and we are unable to distinguish one from the other
with our method. We are hopeful that the FPPs X% and Xg can be defined over Q(v/—15), but we were
unable to find a linear change of the coordinates to do so. We were also unable to successfully control
the size of the coefficients. For example, coefficients for Xg are several thousand decimal digits long

in the natural basis {1,v/5,v/—3,v/—15}.

7. FURTHER DIRECTIONS

In this section we list several open problems that we have not addressed in our research, together
with plausible approaches to them.

e It would be interesting to find a way to distinguish between the two surfaces (d?>D)3X3 and
(dD)3X3 and to match our equations with the calculations of Cartwright and Steger. One
approach could be based on finding the fundamental group of our FPPs. It can be done by
picking a base point, then making a hyperplane cut and looking at generators coming from the
fundamental groups of the corresponding complex curves. However, we have not attempted it
and do not know if this is feasible.

e Unfortunately, we were only able to construct the equations of the fake projective planes X}
and Xg with coefficients in the field Q(y/—15, v/—3). However, it may be possible to find such
equations with coefficients in Q(v/—15). In a similar vein, we would like to be able to find
shorter equations of all of the surfaces involved, even though this might be impossible.

e It has been conjectured that fake projective planes do not have any effective curves in classes
H and 2H, up to torsion. This question can, in theory, be addressed for the fake projective
planes we have constructed in this paper as follows. As a byproduct of our computation of
the triple cover d3Ds — D3, we have found the sections of 4H on the fake projective plane
dsDs. We can also trace the C14 torsion in the Picard group of this fake projective plane to
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the Grassmannian construction. This should, in theory, allow one to verify the conjecture for
dsDs. We have not attempted to verify the torsion calculations of Cartwright and Steger for
the other FPPs. One approach is the following. If a fake projective plane has a double cover
Y — ]P)?”ake’ then all but one nontrivial torsion divisor classes L on IP)? oke 2ive rise to the spaces
HY(Y, Ky +L) and H'(Y, Ky — L) of dimension at least two, with each eigenspace of dimension
at least one (the dimensions of the eigenspaces are exactly one iff h!(Y, Ky + L) = 0). If we
pick sections u4r, 4+ in the corresponding eigenspaces, then

S1=uL+uU-—p+, S2 ' =UL,-U_[, —, S3:=ULLU_[ —, S4:=UL -U_[ +
satisfy
5182 = 5354

with s; and sy even sections of H°(Y, Ky) and s3 and s4 odd sections of H°(Y, Ky). Thus we
may look for such relations to uncover torsion line bundles. It is not clear if this approach is
feasible in practice. For example, one can define t| = s1+5S9,to = §1—892,t3 = S3+54,t4 = S3—84
to rewrite (4) as

2 2 2 2

tl—t2:t3_t4.

Each t; is in a linear space of dimension 10, so we end up with quadratic equations in 40
variables. If P?ake has additional symmetries one could likely restrict their attention to some
eigenspaces in (4).

This paper got its start in the construction of surfaces with p, = ¢ = 0, K 3 = 3 and fun-
damental group C14. There are many other surfaces with these numerical invariants but a
different fundamental group that also come from smoothing away the singularities of C3 quo-
tients of fake projective planes. One can try to emulate this construction to get such surfaces
as complete intersections in homogeneous varieties.

In the opposite direction, we have constructed multiple fake projective planes with C5 action.
It is worthwhile to try to deform the FPP/3 surfaces X3, (d?D)3, (dD)s and d3 to get smooth
surfaces with ng = 3 and p; = ¢ = 0 with other fundamental groups.

We have technically not proved that the fake projective planes we have constructed are non-
isomorphic to each other. It is clear from our method, but some of the intermediate calculations
are done with random points, which are less certain than symbolic computations. There does
not appear to be a simple a posteriori calculation that would establish it, although computing
various invariants may suffice. A natural approach of looking for linear changes of variables in
|2K| embedding would lead to equations in 99 variables, which is far beyond what is currently
feasible, even over a finite field.

8. APPENDIX. EQUATIONS OF X

Equations of the surface X which is a double cover of P?ake /C3 in its bicanonical embedding are

the following. First, there are three even quadratic equations, where we use the notation o(Wy : - - :
Wi)= Wy : Wy : Wa: Wy : Wy : W : Wy Wr).

€q1 =

€qz =
€qs =

(53321 — 119409iV15)Wo W + T99064W ] + (—140437 + 134429iv/15)WoWa + (10514 — 1103970iv/15) W, Wa + (87116
—15020iv/15)Wo W3 + (—4478964 + 441588iv/15)W; Wi + (4468450 + 662382iv/15)Wa W3 — 799064W3 — 799064 W7+
(—1461446 + 31542iV/15) W4 W5 + (—94626 + 346962iv15)W4Ws + (1556072 — 378504iv/15) W5 Ws + 799064WZ + (3552360
—255192iv/15) W, Wr + (—331128 4 358680iv/15) W5 W7 + (—3221232 — 103488iv/15)Ws W+

o(eq1)

02(eq1)
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Then there are two odd cubic equations (in addition to products of odd variables and even quadratic
equations). These equations happen to be Cs-invariant.

eqa = (—98948224478443260 — 3058298456825380iv/15)Wo (W1 Wi + WoWs + W3Ws) + (—1690952291170184385+
369304304128884495iv/15) W4 W5 W + (81462632898956280 — 23953315200421720iv/15) Wy (Wa Wy + WaWs + W1 W)
—(1094836267717214400 + 398810644281337680iv/15) (W1 WaWy + WoWsWs + W1 WsWs) + (—1543563136889220—
50501498192304700iv/15)Wo (W3 Wy + Wi Ws + WaWs) 4+ (—1695126293066323845 — 246880524310909965i+/15) (Wa W Wy
+WiW3Ws + Wi WaWe) + (—551526491689636680 + 326575488081046680iv/15) (W3 Wa + WEWs + W3 We)+
138080956729877280(W3 W5 + Wi Ws + W3 Wa) + (1373637819762610920 + 199151284945609080iv/15)(Wa W3 W + W1 W3 Wy
+W1WaWs) + (—5328591207840000 + 2144900495488320ivVI5WEWr) + (—688957430544122040
—158946397497914040iV/15) (W + W2 + W2)Wr + (284310840392140950 + 106996549176297210iv/15)Wo Wr (W1 + Wa + W3)
+(1200158218487790765 — 641150643161964915iv/15) (W1 Wa + W1 W3 + WaWs) Wy + (1808067319615295865
—379632318487526223iV/15) (W4 W5 + WaWs + W5 We) Wy + (—1999928222013559005 + 443220177629557755iv/15) (Wi + Wi
+We)WZ + (2471992417171938465 — 903652627464942327iv/15) W2

eqs = (4624568052886208 + 1836658084768192iv/15)Wo (W1 Wy + WaWs + W W) + (—25723910738105944
—4926352855196696iv/15) Wo (Wa Wy + WsWs + W1 W) + (307036825631433576 + 57793461876095400iv/15) (W1 Wa Wy
+WaWsWs + W1 WaWe) + (—42812288376882136 — 3212847068911256iv/15)Wo(Ws Wy + WoWs + W1 We)+
(146468880652808448 — 67854829136903424iv/15) (W1 W Wy + W1 WaWs + WaWaWe) + (—263825659127933973
+97123836640946787iv/15) (Wo W Wy + W1 W3 Ws + W1 WoWe) + (244274695087257576 + 52031300557563432iv/15) (W2 W,
+WEWs + W2Ws) + 1753408974347648WE (W4 + Wi + W) + (413162544996145035 + 86812915194403587iv/15) W4 W5 W
+(—2219261238917376 + 41371720329984i/15)WZ W7 + (112661548728436848 — 15940846449910032iv/15) Wo Wy (Wy + Wa + W3)
+(—668268262244236563 — 103644995514656715iv/15) (W1 Wa + WaWs + W1 W3) Wy + (—123783199950329640
+32171290678282392iv/15) (W2 + W2 + W2)Wy + (—574830176340661227 — 133758869453715555iv/15) (W4 W5 + W5 W
+ W4 W)Wy + (642303707483671947W, W2 + 13464794544032947517/15(Wy + Wi 4+ We)W2 + (—1138685084396455995
—184628475341453619iv/15) W3

Finally, there are four even cubic equations (again, in addition to products of even variables and degree
two equations).

egs = (—1666764770896080 + 24780099758160iv/15) W + (—26655160103850225 — 1410994667916551v/15)WZ Wi + (68978091270130770
—43638746552374050iv/15) Wo W7 + (—14960300456911665 + 2436005355443451v/15) W5 Wa + (—136997854837433730
+100084814202953370iv/15) Wo W1 W2 + (—2166930718788380580 — 114990006031685820iv/15)WZWo + (188045734378652430
—11700924076935870iv15)Wo W3 + (—334721551455006660 + 371044998805248180iv/15) W1 W3 + (—3471146893213005
+3488453404965845iv/15) WZ W3 4 (370759844061735240 + 142387946334768960i+/15) Wo W1 W3 + (1178593751048740740
+258386774372850060iv/15) W W3 4 (337733550357073080 — 23905566679900920iv/15) WoWa W3 + (3735489413393712765
—810504711260264475iv/15) W1 Wa W3 + (—1479640375942060500 — 541366284526196220iv/15) W3 W3 4 (88187928349336200
+45648803952015264iv/15) W Wy W5 + (—25167050881043400 + 54618239319319368iv/15) W1 W4 W5 4 (691467466176945360
—135405264642391296iv/15) Wa W4 W5 + (731586446190101565 — 1574206617704518351v/15) W3 Wy W + (—22789739259859320
+14076296148587904iv/15) W Wy Ws + (471919011020770320 — 286625927180712672iv/15) W1 W4 W 4 (—52065650645825355
—336326621647458771iv/15)Wa W4 We + (—71375582659697820 4 34183213308069084iv/15)WoWs W + (544930562815031925
—262568409537346227iv/15) W1 W5 W + (—773851724743350960 — 167052236438578176iv/15)Wa W5 W + (—83927877818450400
—17377009952576400iv/15) Wo W4 W7 + (—36849898243929960 + 28649673281993400iv/15) W1 W4 W5 + (—549479940520862295
+243736669319493105iv/15) Wo W4 Wy + (—796822141111243695 + 45136039971948345iv/15) W3 W4 W+ 4 (53307405771262020
—21625406694472140iv/15) Wo W5 W7 + (832604580620480745 4 48931912928647665iv/15) W1 W5 W+ 4 356264465750010720Ws W5 W
+(—313200156644634105 4 130270143553698015iv/15) W3 W5 Wy + (42156434307162420 4 3936635595601380iv/15) Wo We Wi
+(—1166733390875518935 + 266638938070257585i/15) W1 We Wy + (988209940857367095 + 425481801320871855i1/15) W2 WeWr
+(—142547635521932760 — 5281782721276824iv/15)Wo W2 4 (232999883627690025 — 74107682752546863iv/15) W1 W2
+(—876915653107092165 — 319487180407733709iv/15)Wo W2 + (314943079584183435 — 119573778905614845iv/15) W3 W2

eq7 = o(eqe)

eqr = o°(eqe)

eqo = (324554939451 — 707950975231V 15) W3 4 (1529614704078 — 1205210352894iv15) W (W1 4+ Wa + W) + (—5415939170712
+1474501654360iv/15)Wo (W2 + W2 4+ W2) 4 (—62405246503404 — 10367134749412iv/15)Wo (W1 Wa + Wo W3 + W1 W3)
+180800780856192(W2Wo + W2 W3 + Wi W1) + (—146202216215328 — 15520405118400iv15) (W1 W3 + WaW3 + W3 W2)
+(—341956310464440 + 182430423393624i+/15) W1 Wa W3 + (—24797684639448 — 4795122965976i/15) Wo (W1 Ws + WsWs
+ W4 We) + (—36568462213584 + 31673565214704iv/15) (WaWaWs + WaWsWe + Wi WeWy) + (—58201519194000
+40317236988336iv/15) (W WaWs + W1 WsWe + WaWeWy) + (19496920450896 + 2134605859344i1/15)Wo Wy (W4 + Ws + We)
+(21063286582128 — 6992925745680iv/15) (W1 Wy + WaWs + Wa W)Wy + (99385147864044 — 46684295204148i1/15)(Wa W,
+W3Ws + W1 We) Wy + (1823973493356 — 15659763667380iv/15) (W3 Wy + W1 Wi + WaWe) Wy + (—95094214488
—2876821724952iv/15)WoW2 + (—38259379316088 + 23825658096072iv/15) (W1 + Wa + W3) W2
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