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A B S T R A C T   

SARS-CoV-2 as a severe respiratory disease has been prevalent around the world since its first discovery in 2019. 
As a single-stranded RNA virus, its high mutation rate makes its variants manifold and enables some of them to 
have high pathogenicity, such as Omicron variant, the most prevalent virus now. Research on the relationship of 
these SARS-CoV-2 variants, especially exploring their difference is a hot issue. In this study, we constructed a 
geometric space to represent all SARS-CoV-2 sequences of different variants. An alignment-free method: natural 
vector method was utilized to establish genome space. The genome space of SARS-CoV-2 was constructed based 
on the 24-dimensional natural vector and the appropriate metric was determined through performing phylo
genetic analysises. Phylogenetic trees of different lineages constructed under the selected natural vector and 
metric coincided with the lineage naming standards, which means lineages with same alphabetical prefix cluster 
in phylogenetic trees. Furthermore, the relationships between the various GISAID clades as depicted by the 
natural graph primarily matched the description provided in the GISAID clade naming.The validity of our 
geometric space was demonstrated by these phylogenetic analysis results. So in this research, we constructed a 
geometry space for the genomes of the novel coronavirus SARS-CoV-2, which allows us to compare the different 
variants. Our geometric space is valuable for resolving the issues insides the virus.   

1. Introduction 

SARS-CoV-2, the novel coronavirus that broke out at the end of 2019 
has been continuously spreading globally Asselah et al. (2021), and has 
not completely disappeared for more than three years, with a continuous 
increase in confirmed cases and deaths Adil et al. (2021). Some vaccines 
have been successfully developed, but the constantly mutating virus 
poses great challenges to vaccine application Vasireddy et al. (2021). 
The current epidemic has had a serious impact on global economic 
development and people’s lives in various countries Zhang et al. (2020), 
and it is still unpredictable when the epidemic will end. Up to now, new 
variants continue to occur, such as Omicron variant. Thus, researches on 
SARS-CoV-2, including genomic analysis, classification of virus variants, 
and analysis of its characteristics, are crucial for understanding the 
pathophysiology of viruses as well as for preventing and controlling 
infections. 

According to the World Health Organization, there are 13 variants of 
SARS-CoV-2: Omicron, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, 

Theta, Iota, Kappa, Lambda, Mu; https : //www.who.int/en/activities/
tracking − SARSCoV − 2variants/. According to the classification standard 
of GISAID, SARS-CoV-2 can be divided into 12 evolutionary branches: G, 
GH, GK, GKA, GR, GR, GR, GV, L, O, S, V; In addition, there are also 
Pango lineages categories https : //cov − lineages.org/lineage list.html. 
The division and naming of these variants of SARS-CoV-2 are based on 
sequence alignment algorithms to study their differences. Moreover, due 
to the increasing speed of virus mutations, the emergence of new vari
ants is becoming more and more rapid. A method for quickly studying 
the relationship between different variants and accurately classifying 
them is very important. For example, when a new virus sequence ap
pears, its relationship with existing variants is needed to be quickly 
determined. Our article proposes a geometric space based on non- 
alignment algorithms to achieve this. 

In revealing the relationship of different variants, traditional align
ment methods (BLAST Altschul et al. (1997), MAFFT Katoh et al. (2009)) 
are time-consuming, also the evolutionary relationships of different 
variables cannot be intuitively represented. Through alignment-free 
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natural vector method Deng et al. (2011), which was proposed by Yau 
and his colleagues to represent one protein/gene sequence by one 
mathematical vector, we can establish a space belonging to SARS-CoV-2, 
where sequences intuitively correspond to points in the Euclidean space. 
Our research focuses on the construction of the geometric space of the 
SARS-CoV-2 sequence in Euclidean space. The similarity of the original 
sequences can be reflected through the vectors’ similarity in the geo
metric space, then the study on the sequences can be transformed into 
the study on vectors in Euclidean space. All of these are based on a 
fundamental premise that natural vectors and sequences are one to one 
correspondence, which has been proven in the previous study Deng et al. 
(2011). In this paper, through convex hull analysis and the nearest 
neighbor classification, we found sequences belonging to the same 

variants naturally cluster together. Furthermore, we can study evolu
tionary relationships by studying the distance relations of the points 
from different variants. For points that are closer in space, their bio
logical relationships are closer. This is the purpose of constructing this 
geometric space. 

Our data set was downloaded from GISAID and included 115390 
whole-genome sequences covering all variants of SARS-CoV-2. Convex 
hulls constructed by natural vectors with high orders showed that se
quences from different variants had different features and their convex 
hulls were naturally disjoint. Based on k-mer natural vector method and 
KNN(K-NearestNeighbor) classification analysis Guo et al. (2003), we 
chose 7-mer natural vector for its highest accuracy of classification, 
which could reach 0.9824. Additionally, we analyzed the phylogenetic 
relationships between SARS-CoV-2 variants from the perspectives of two 
different classification standards (GISAID and Pango lineages). Our re
sults have demonstrated the effectiveness of the 7-mer natural vector in 
solving COVID-19 cases. This vector has been successfully applied in 
many research fields Zhao et al. (2018, 2019, 2021). 

2. Materials and methods 

2.1. Sequence coding and feature generation 

2.1.1. Natural vector 
The original natural vector is a 12-dimensional numerical vector 

used to encode a DNA sequence and describe the distribution of the 
nucleotides A, G, C, and T.Deng et al. (2011). The definition is as fol
lows. Given a sequence with a length of n: S = s1s2…sn,si ∈ {A,G,C,T}, 
the indicator functions for A, C, G, T (wk(.),k ∈ {A,G,C,T}) are defined 
as: 

wk(si) =

{
1, if si = k
0, otherwise  

The indication functions describe the position information of the four 
nucleotides in sequences. The components of the natural vector can be 
calculated based on these functions:  

• The counts of nucleotides, denoted as nk, are given by nk =
∑n

i=1wk(si);  
• The average locations, denoted as μk, are given by μk =

∑n
i=1i wk(si)

nk
; 

• The second central moment of positions, denoted as Dk
2, are deter

mined by =
∑n

i=1
(i− μk)

2wk(si)

nkn . 

The 12-dimensional natural vector is composed by these three 

components: 

(nA, nG, nC, nT , μA, μG, μC, μT ,D
A
2 ,DG

2 ,D
C
2 ,DT

2 ).

The counts, average locations and the central moments of four nucleo
tides A, G, C, T are natural parameters associated to a DNA sequence. 
And these combined numerical parameters are sufficient to characterize 
each DNA sequence, so These parameters give a complete understanding 
of four nucleotides A, G, C and T. 

Natural vector with high order moments can also be considered: 
Dk

m =
∑n

i=1
(i− μk)

mwk(si)

nm− 1
k nm− 1 , which contain more information of nucleotide 

distribution. For example, 24 dimensional natural vector with 2-th to 5- 
th order moments is:  

2.1.2. K-mer Natural Vector 
The k-mer natural vector further takes into account the distribution 

of k-mers across the entire sequence. K-mer is a contiguous subsequence 
of length k that serves as a tool for estimating genomic characteristics 
Liu (2013). For each given k, the number of k-mer is fixed. There consists 
of 4k k-mers for a DNA sequence. The specific definition of k-mer natural 
vector is similar to the original natural vector. 

For the same sequence: S = s1s2…sn,si ∈ {A,G,C,T},Stri(1⩽i⩽n − k +

1)is the i-th continuous sub-sequence of length k: Str1 = s1s2…sk,Str2 =

s2s3…sk+1, …, Strn− k+1 = sn− k+1sn− k+2…sn. The indicator functions for 
each k-mer kStr is defined firstly: 

wkStr(Stri) =

{
1, if Stri = kStr
0, otherwise  

Is describe the position information of the k-mers in sequences. Then the 
components of the k-mer natural vector are:  

• The counts of k-mers kStr are given by nkStr =
∑n− k+1

i=1 wkStr(Stri);  
• The average positions of k-mers kStr are given by μkStr =

∑n− k+1
i=1 i wkStr(Stri)

nkStr
;  

• The second central moment of positions for k-mers kStr are given by 

DkStr
2 =

∑n− k+1
i=1

(i− μkStr)
2wkStr(Stri)

nkStr ∗n . 

Then a DNA sequence can be mapped into 3 ∗ 4k-dimensional 
Euclidean space: 

(nkStr1 , nkStr2 ,…, nkStr4k , μkStr1
, μkStr2

,…, μkStr4k
,DkStr1

2 ,DkStr2
2 ,…,DkStr4k

2 ).

2.2. Convex hull construction and convex hull principle 

2.2.1. Convex hull definition 
Convex hull of a point set C = {x1, x2,…, xn} is the minimal convex 

set that contains all these points. The convex hull can be represented as: 
convC = {θ1x1 + θ2x2 + … + θnxn|θ1 + θ2 + … + θn = 1,0⩽θi ≤ 1, i ∈
{1,2…,n}}, which is the linear combination of n points. Here, xi is the 
natural vector. 

2.2.2. Convex hull principle 
Based on natural vectors with high order moments, we can convert 

nucleotide sequences to points in Euclidean space. Points from the same 
biological group can then form a convex hull. Convex Hull Principle 
states that convex hulls constructed from sequences belonging to distinct 

(nA, nG, nC, nT , μA, μG, μC, μT ,D
A
2 ,D

G
2 ,DC

2 ,D
T
2 ,D

A
3 ,D

G
3 ,DC

3 ,D
T
3 ,D

A
4 ,D

G
4 ,DC

4 ,D
T
4 ,D

A
5 ,D

G
5 ,DC

5 ,D
T
5 ).
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COVID-19 clades or lineages are mutually disjoint. 

2.2.3. Convex hull intersection detection 
Linear programming method can be applied to check convex hull 

intersection Sun et al. (2021). Given two finite point sets A = {a1, a2,… 
, am} and B = {b1, b2,…, bn} (ai,bj ∈ RN, i ∈ {1,2,…,n}, j ∈ {1,2,…,m}), 
their corresponding linear combinations meet the formula 

∑n
i=1αiai =

∑m
j=1βjbj if two convex hulls intersect, αi and βj are non-negative co

efficients that suit 
∑n

i=1αi = 1,
∑m

j=1βj = 1. So we can check the convex 
hull intersection through solving the following linear programming: 

min 0 (1)  

s.t.
∑n

i=1
αiai =

∑m

j=1
βjbj

∑n

i=1
αi = 1, αi⩾0, j = 1, 2, 3…, n

∑m

j=1
βj = 1 βj⩾0, j = 1, 2, 3…,m

. (2)  

If the linear programming problem has feasible solution, the two convex 
hulls, convA, convB, intersect with each other, otherwise they are 
disjoint. 

3. Dataset 

We retrieved all complete genome sequences of SARS-CoV-2 from 
GISAID https://gisaid.org/ as of June 4, 2022, all originating from 
human hosts. To ensure the accuracy of the analysis, low-quality se
quences were removed from the dataset, retaining a total of 115,390 
sequences belonging to 12 GISAID clades. Details for each clade are 
presented in Table 1. Additionally, only 81,033 sequences from 115,390 
have WHO labels, and the information of each label is provided in 
Table 2. 

The total of 115,390 sequences spans six continents, with 27,665 
genomes from Asia, 50,643 from Europe, 2,801 from Africa, 6,454 from 
South America, 27,775 from North America, and only 40 genomes from 

Table 1 
The number of sequences for the 12 Clades based on the GISAID classification 
criteria.   

GISAID Clade Number of Sequences Number of Filtered Sequences 

1 G 9495 4839 
2 GH 18952 9722 
3 GK 115669 50444 
4 GKA 4 3 
5 GR 38378 25081 
6 GRA 11389 3027 
7 GRY 27820 16917 
8 GV 2739 1724 
9 L 594 460 
10 O 2812 1596 
11 S 1866 1483 
12 V 134 94  

Total 229852 115390  

Table 2 
The number of sequences for the 12 WHO labels based on the WHO classification 
criteria.   

WHO 
Label 

Main Pango Lineages Number of Filtered 
Sequences 

1 Alpha B.1.1.7  + Q.* 20168 
2 Beta B.1.351  + B.1.351.2  +

B.1.351.3 
675 

3 Delta B.1.617.2  + AY.* 50894 
4 Epsilon B.1.427  + B.1.429 605 
5 Eta B.1.525 75 
6 Gamma P.1  + P.1.* 4406 
7 Iota B.1.526 215 
8 Kappa B.1.617.1 85 
9 Lambda C.37  + C.37.1 75 
10 Mu B.1.621  + B.1.621.1 397 
11 Omicron B.1.1.529 + BA.* 3001 
12 Zeta P.2 437  

Total  81033  

Fig. 1. Global Distribution of Data: regions marked in red indicate higher distribution, while those in blue indicate lower distribution.  
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Fig. 2. Comparative analysis of ACGT counts between the five countries with the highest number of genomes and the Reference Sequence. The ACGT count for each 
country represents the average count of nucleotides. 

Fig. 3. Heatmap illustrating the difference in the ACGT’s distribution characteristics for the 12 GISAID clades compared to the reference sequence. The horizontal 
axis includes 12 distribution statistics: the counts of ACGT (nA,nC,nG,nT), the average location of ACGT (μA,μC,μG,μT), and the second central moment of ACGT (DA,
DC,DG,DT). The vertical axis represents the 12 GISAID clades. 
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Oceania. The SARS-CoV-2 dataset is widely distributed globally as 
shown in Fig. 1. France has the highest count with 27,034 sequences, 
followed by Mexico with 14,694 genomes, Japan with 9,484 genomes, 
the USA with 7,499 genomes, Italy with 4,980 genomes, Brazil with 
4,369 genomes, Malaysia with 3,482 genomes, Austria with 3,329 ge
nomes, Spain with 2,905 genomes, and Indonesia with 2,470 genomes. 

4. Results 

4.1. Statistical analysis 

To discover the differences between our data set and reference 
sequence of SARS-CoV-2, we conducted a comparative analysis of the 
distributions of nucleotides AGCT from various perspectives, including 
countries, GISAID clades, and genders. 

Fig. 4. Heatmap of the difference in the ACGT’s distribution characteristics of top five countries compared to the reference sequence. The horizontal axis includes 12 
statistics of distribution: the number of ACGT(nA,nC,nG,nT), the average location of ACGT(μA,μC,μG,μT), the second central moment of ACGT(DA,DC,DG,DT). The 
vertical axis represents the five countries. 

Table 3 
Subtype composition of top five countries.   

France Mexico Japan USA Italy 

V 0.026 0.000 0.021 0.013 0.120 
S 0.518 0.204 1.698 0.333 0.060 
O 0.303 0.163 1.223 0.373 0.622 
L 0.007 0.007 1.329 0.067 0.000 
GV 1.025 0.034 0.000 0.040 10.442 
GRY 20.807 4.206 1.223 10.215 34.478 
GRA 0.884 2.627 1.729 2.200 1.426 
GR 2.734 26.323 87.801 8.975 11.486 
GKA 0.011 0.000 0.000 0.000 0.000 
GK 66.808 57.425 2.6360 39.712 35.402 
GH 5.0011 3.219 0.928 33.751 1.345 
G 1.875 5.791 1.413 4.321 4.618  

Fig. 5. Comparison of the number of nucleotides ACGT between Famale/Male and reference sequence: the number of nucleotides ACGT of each gender is the average 
number of nucleotides. 
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There was no statistically significant difference in the counts of 
ACGT between the five countries and the reference sequence, as depic
ted in Fig. 2. Except for Italy, the number of ACGT decreased slightly in 
other four countries. There was an increase in nucleotide T compared to 
the reference sequence for Italy. 

Considering the average location and second-order central moments 
of the four nucleotides, we compared these statistics of the twelve 
GISAID clades with those of reference sequence. The heatmap in Fig. 3 
showes that in vertical comparison, the difference between clades and 
reference sequence mainly resides nA,μA,μG, and μT. The distribution of 
adenine A in all clades significantly differs from that of reference 
sequence. The color of nA is darker than the number of T,C,G for all 
clades, as is the case with uA,DA, which implies that adenine A of these 
clades is worthy of our attention. In horizontal comparison, the most 
substantial difference is observed between clade GRA and reference 
sequence, which agrees with the fact that GRA, being an Omicron strain, 
is highly infective and pathogenic due to its numerous mutation sites in 
Spike protein. 

Fig. 4 illustrates the differences of ACGT’s distribution characteris
tics between the top five countries or regions with the maximum data 
volume and reference sequence. In vertical comparison, the gaps be
tween these countries and reference sequence mainly lie in nA, uA, uG, 
and uT, especially in the nA, the gap between these countries and 
reference sequence is greatest, which agrees with the result of heatmap 
3. Horizontal comparison reveals that there is a significant difference 
between France, Japan and reference sequence. By analyzing the pro
portion of clades in these countries, as presented in Table 3: we discover 
that with regard to France, the clades with the highest proportion are GK 
(Delta dominated) and GRY (Alpha), which differ significantly from 
reference sequence and the differences are visible on the heatmap of 
twelve GISAID clades. For Japan, the clade with the highest proportion 
is GR (Gamma, Alpha), which is also significantly different from refer
ence sequence. Thus, the percentages of their clade composition can 

account for the significant difference between France, Japan, and 
reference sequence. 

From the perspective of genders, 47,465 sequences of the total data 
set were males, 47,778 sequences were females and genders of the rest 
were unknown. Firstly, we created a histogram of the ACGT counts Fig. 5 
as well as a histogram of the differences in the ACGT distributions 
(counts, average positions, and center moments) between the males, 
females, and reference sequence groups Fig. 6. Both genders have fewer 
nucleotide counts than reference sequence, according to the ACGT dis
tribution histogram. Taking first-order and second-order moments into 
consideration, it is observed that, while there is no significant difference 
between males and females and reference sequence overall, the differ
ence between females and reference sequence is greater than that of 
males. The specific difference is that, except for the number and second- 
order moment of thymine T, the difference in females is greater than that 
in males and reference sequence.. 

4.2. Convex hull analysis 

For each SARS-CoV-2 genome sequence, we calculated its natural 
vectors with different order central moments, and constructed the 

Fig. 6. Difference in the ACGT’s distribution characteristics of Famale/Male and the reference sequence: red star represents the greater difference between two 
genders compared to reference sequence. 

Table 4 
Intersection results of different spaces with different order central moments(j is 
the highest order in natural vector).  

Euclidean space j =
2 

j =
3 

j =
4 

j =
5 

j =
6 

j =
7 

j =
8  

R12 R16 R20 R24 R28 R32 R36 

No.of disjoint convex hull 
pairs 

14 18 18 66 66 66 66 

No.of intersectant convex 
hull pairs 

52 48 48 0 0 0 0  
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Table 5 
The classification results of four metrics: k values range from 1 to 7, two weights (1/2n,1/n2), and two norms (L-1 norm and L-2 norm)  

L1-norm Weight D1 D2 D3 D4 D5 D6 D7  

1/2n 0.9144 0.9575 0.9681 0.9700 0.9704 0.9710 0.9810  
1/n2 0.9144 0.9558 0.9681 0.9699 0.9705 0.9709 0.9781          

L2-norm Weight D1 D2 D3 D4 D5 D6 D7  

1/2n 0.9100 0.9558 0.9633 0.9669 0.9673 0.9709 0.9824  
1/n2 0.9100 0.9479 0.9622 0.9671 0.9674 0.9686 0.9788  

Fig. 7. The phylogenetic BME tree using FastME(by Tree refinement with Subtree Pruning and Regrafting) on 78 lineages shown in Table S1.  
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convex hull of each GISAID clade in corresponding euclidean space. In 
the original 12-dimensional space, 14 pairs out of 66 pairs of convex 
hulls intersect with each other. As the higher order central moments are 
added to natural vector, the number of intersectant convex hull pairs 
decline and all pairs are disjoint in 24-dimensional space, where natural 
vector covers second to fifth order central moments. Table 4 displays the 
intersection results of several spaces in detail. The findings demonstrate 
that in order to define sequences, the fifth order central moment is 
required. 

4.3. 1-Nearest neighbor analysis 

To examine the classification performance of the SARS-CoV-2 se
quences, both natural vectors and k-mer natural vectors were applied. 
The 1-nearest neighbor algorithm(1NN) was used to classify the se
quences to different GISAID clades. In an attempt to determine which 
metric had the best classification accuracy, we experimented with 
several k values, weights (1/2n,1/n2), and two norms (L-1 norm and L-2 
norm). We employed four metrics, which are mixtures of several k-mer 
distances: 

L1 − normwith1
/

2n weight : Dn = d1 + 1
/

2 ∗ d2 + … + 1
/

2k ∗ dk,

di = ‖vec1 − vec2‖1
L1 − normwith1

/
n2 weight : Dn = d1 + 1

/
22 ∗ d2 + … + 1

/
k2 ∗ dk,

di = ‖vec1 − vec2‖1
L2 − normwith1

/
2n weight : Dn = d1 + 1

/
2 ∗ d2 + … + 1

/
2k ∗ dk,

di = ‖vec1 − vec2‖2
L2 − normwith1

/
n2 weight : Dn = d1 + 1

/
22 ∗ d2 + … + 1

/
k2 ∗ dk,

di = ‖vec1 − vec2‖2,

(3)  

di is the distance between two i-mer natural vectors. The classification 
results are shown in Table 5. 

The highest accuracy is 0.9824 under the L2-norm metric using 1/2n 

weighted 1 to 7 mer natural vectors, which means 98.24% of sequences 
are correctly classified into their respective GISAID clades. The classi
fication accuracy of natural vectors alone is not high, only 0.9127 for 12- 
dimensional natural vectors. 

4.4. Phylogenetic tree and natural graph 

The good performance of L2-norm metric using 1/2n weighted 1 to 7 
mer natural vectors provides a fancy tool to carry out phylogenetic 
analysis. Similar sequences with the same label are expected to cluster 
together, and established classification standards like the GISAID and 
WHO labels can serve as normative references for sequence clustering. 

Fig. 8. The phylogenetic NJ tree using FastME(by Tree refinement with Subtree Pruning and Regrafting) on 146 lineages shown in Table S2.  
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Lineages are named using an alphabetical prefix (such as B or BA) and 
numerical suffix (such as ”.1” or ”.1.1.5”)lineages (2021). When a new 
lineage is defined, the Pango system assigns an additional number to the 
name of its parent lineage (e.g.. BA.2.75 is a sublineage of BA.2). As the 
virus continues to change, the Pango lineage names can become very 
long. Lineages with longer names may be given alphabetic aliases and 
numbering continues (e.g.. ”BA” stands for ”B.1.1.529,” thus BA.2 is the 
same as B.1.1.529.2). In this section, we hope that lineages with the 

same alphabetical prefix cluster in phylogenetic trees generated by our 
alignment-free approach and selected metric, which will intuitively 
depict the relationships between Pango lineages. To do this, we repre
sented each Pango lineage using its average vector. 

Certain lineages in the SARS-CoV-2 data set contain limited data, so 
in order to create phylogenetic trees, we used lineages with considerable 
data volume. Two lineage sets were chosen for the phylogenetic tree 
construction, the specific lineage information is shown in 

Fig. 9. The natural graph of twelve GISAID clades of total data set, the blue lines represent the 1-level connected components and the red ones 2-level.  

Fig. 10. The natural graph of twelve GISAID clades of females, the blue lines represent the 1-level connected components and the red ones 2-level.  
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Supplementary materials. The phylogenetic tree 7 indicates that two 
primary branches are formed by lineages with the alphabetical prefixes 
’AY’ and ’B’. Furthermore, ’BA’ lineage clusters, ’P’ lineage with the 
exception of ’P.2’ gathers together, and ’P.2’ lineage is not distant from 
’P’ branch. A clustering pattern can also be observed that all lineages 
with prefix ’B.1.1.’ distribute in a single branch. The Supplementary 
materials contain a list of the sequences covered by phylogenetic tree 7. 
(see Fig. 8). 

There are additional lineages with other alphabetical prefixes (e.g.. 
XB,C) among the 146 lineages. In the phylogenetic tree containing 146 
lineages, ’AY’ lineage forms one branch with shorter branch length 
compared to the others. Lineage ’A’, ’Q’, ’P’, ’BA’ respectively gather 
together and they are closer to lineage ’B’. Therefore, both phylogenetic 
trees support the usefulness of our weighted metric and k-mer natural 
vector. 

Another graphical tool for describing the distance relationships be
tween sets is the natural graph, which was initially shown by Yu et al. 
(2013). Drawing a two-level natural graph requires two steps, which 
correspond to two levels of the graph. Level-1: This is the result of the 
first step to find the closest elements to all the points. Then the drawn 
lines which directs to their nearest points are called level-1. The direc
tion in the graph can show the closest elements of each element based on 
their biological distances. Level-2:After the first turn to link the nearest 
points in the graph, we get many sub-graphs. We compute the distance 
matrix for these graphs. The distance between two graphs is defined as 
the minimum of all distance between any element in one graph and any 
element in the other graph. Then the lines linked different graphs are 
called level-2. In this section, we drew one natural graph of all sequences 
and separate natural graphs for both genders. The natural graphs can 
roughly reflect the spatial distribution of twelve GISAID clades. 

The natural graph 9 shows that: In level-1, GK and GKA are closest to 
each other. GRA,GRY are closest to GR. GV, GH are closest to G in level- 
1, GK is linked to G in level-2, which means it was further away from G. 
The natural graph of females 10 shows little change compared to the 
overall one, with the following differences: Clade S is connected to G. S 
is closest to G in level-1. 1-level structure GK-GKA is connected to clade 

O. In level-2, the GK-GKA sub- graph is connected to clade O, which 
means it is closest to O in level-2. It is different from the overall graph, in 
which the level-2 closest clade is G. The 1-level structures of GR, GRY, 
and GRA, as well as GK and GKA, are still maintained locally, and there 
haven’t been any notable modifications to the overall structure. The 
differences between natural graphs of all sequences and males 11 lie in: 
Clade L, GR are directly connected to G, while clade O is directly con
nected to L. The 1-level structures of GR, GRY and GRA; GK and GKA are 
still maintained locally. L,GR are closest to G in level-1. O is closest to L 
and not the center point of the natural graph. 

Overall, the natural graphs we obtained are consistent with 
description that given in GISAID clade naming. Starting from S and L 
Tang et al. (2020), S continues to be at a moderate level, L splits into 
initial versions of G and V, G further splits into GR and GH, and later GV. 
According to observations, GR splits into GRY. Later, a new branch splits 
out from the basic branch G, forming branch GK. More information of 
these lineage naming standards are shown in the supplementary 
material. 

5. Discussion 

Overall, our research determined the SARS-CoV-2 geometric space 
using the natural vector approach. As a subspace in the Euclidean space, 
the distances between points corresponding to different SARS-CoV-2 
sequences reflect their biological distances, the efficiency and depend
ability of this geometric space and the distances have been proven by 
phylogenetic and 1-NN(1-nearest neighbor) classification analyses. This 
space also enables mathematical techniques like linear programming 
and convex hulls to be applied in the further research. Moreover, our 
findings imply that the L2-norm metric with 1/2n weighted 1 to 7 mer 
natural vectors has the best performance. This can handle the complex 
calculations when MSA(Multiple Sequence Alignment) is used to deal 
with long sequences or large data volume. When a new mutation 
sequence appears, quick comparison with all other SARS-CoV-2 se
quences can be finished based on our geometric space, just by calcu
lating their Euclidean distances. Then an initial prediction can be made 

Fig. 11. The natural graph of twelve GISAID clades of males, the blue lines represent the 1-level connected components and the red ones 2-level.  
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and targeted treatment methods can be considered. Our research have 
shown some significant discoveries, but they have also had certain 
drawbacks. First, the data scale has an impact on classification perfor
mance; for instance, small set size will result in low accuracy because 
one misclassified point will drastically decrease the accuracy.For our 
paper, we have downloaded as many reliable sequences as possible. 
Perhaps we can calculate classification accuracy by removing 5%, 10%, 
20% of the sequences from our data set to improve the performance. 
Second, the next nearest neighbor would be overlooked because our 
natural graph is limited to showing the distance relationships between 
the two closest sets. Perhaps future research will lead to the creation of a 
better natural graph model. 

6. Conclusion 

In this work, we established convex hulls for various clades by 
analyzing the SARS-CoV-2 data set using natural vectors with intro
duced high order central moments. We found that convex hulls of 
different clades did not intersect in 24-dimensional euclidean space 
(including 5th order moments), meeting convex hull principle. This 
suggests that the information covered by our natural vectors varies 
amongst sequences belonging to distinct clades. Furthermore, we per
formed 1NN classification at the clade level using k-mer natural vectors. 
Using 1/2n weighted 1 to 7 mer natural vectors, the L2-norm metric is 
selected to achieve the highest classification accuracy. Under this 
metric, the classification accuracy reaches 0.9824. In order to demon
strate the relationships between different clades, we established phylo
genetic trees and natural graphs under selected metrics, and discovered 
the relationships between clades, for example, Fig. 9 shows that GRA 
and GRY, are clades derived from GR and are closest to GR. Conse
quently, this validates the efficacy of our chosen metric and natural 
vectors. The geometric space is an effective tool in SARS-CoV-2 sequence 
analysis. 

Author Contributions 

SS-TY conceived the project and designed the study. NS collected 
data and MC carried out the data analysis including figures drawing and 
wrote the preliminary version of the paper. All authors have read and 
agreed to the published version of the manuscript. 

Funding 

This work is supported by National Natural Science Foundation of 
China (NSFC) grant (12171275) and Tsinghua University Education 
Foundation fund (042202008). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

SS-TY is grateful to the National Center for Theoretical Sciences 
(NCTS) for providing an excellent research environment while part of 
this research was done. 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.gene.2024.148291. 

References 

Adil, M.T., Rahman, R., Whitelaw, D., Jain, V., Al-Taan, O., Rashid, F., Munasinghe, A., 
Jambulingam, P., 2021. Sars-cov-2 and the pandemic of covid-19. Postgraduate Med. 
J. 97 (1144), 110–116. 
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