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Abstract 
Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach 
significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or 
deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the 
neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the 
limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game 
representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-
the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary 
information enhances the model’s accuracy, with transfer learning further extending its adaptability. Furthermore, experimental 
results confirm CAPE’s efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive 
modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico 
directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be 
found in our GitHub repository https://github.com/BobYHY/CAPE. 
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Introduction 
In the field of synthetic biology, precise characterization of reg-
ulatory elements is of paramount importance for the design of 
synthetic gene circuits [1, 2]. Such characterization can signifi-
cantly advance many critical domains, including pharmaceutical 
synthesis [3, 4], metabolic engineering [5], and material produc-
tion [6, 7]. Among the various regulatory elements, promoters play 
a pivotal role in synthetic biology [8], as they exert significant 
control over the expression level of downstream genes [9, 10]. 
Therefore, identifying a promoter with the appropriate strength is 
crucial for constructing expression vectors, and the optimization 
of promoter sequences is a key task in synthetic biology. 

Conventional promoter engineering relies on experimen-
tal techniques for identifying suitable promoters, including 
mutagenesis [11, 12], sequence combinations [13], etc. One 
commonly adopted method involves random mutagenesis of 
promoters through error-prone Polymerase Chain Reaction (PCR), 
followed by the selection of mutants with increased strength 
[14]. This iterative process is often referred to as the directed 
evolution of promoters. Nevertheless, experimental methods are 
frequently characterized by high levels of unpredictability and 
labor intensiveness. 

The development of artificial intelligence has created the foun-
dation for in silico directed evolution of promoters, with a key 
prerequisite being the establishment of an accurate regression 
model that correlates promoter sequences with their strengths. 
There has been some related research on computational models 
for prokaryotic promoters, including machine learning or deep 
learning models. However, many models are used to identify 
whether a given sequence can serve as a promoter [15–17]. For 
promoter strength prediction, most of the existing models are 
classification models, used to predict whether a promoter is 
strong or weak [18–20]. Currently, there is still a lack of accurate 
regression models in this regard. It is worth mentioning that Wang 
et al. combined a deep generative model with a predictive model 
to preselect the most promising synthetic promoters [21]. This 
is an important pioneering work in the field of deep generative 
models for promoters. However, due to the difficulty of avoid-
ing noise interference, the Pearson correlation coefficient (PCC) 
of their Convolutional Neural Network (CNN)-based predictive 
model was around 0.25, suggesting a pressing need for substantial 
improvement. 

Understanding the evolutionary history of corresponding pro-
moters plays a crucial role when aiming for directed promoter
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evolution. The significance of evolutionary information in deep 
learning models has been successfully demonstrated in fields 
such as protein structure prediction [22] and protein-protein inter-
action prediction [23]. However, in the field of promoter design, 
suitable evolutionary information features have yet to be suc-
cessfully applied. The limited availability of promoter data poses 
a challenge for feature extraction using traditional alignment 
algorithms, as finding an adequate number of suitably similar 
promoters proves to be difficult. Leveraging the alignment-free 
chaos game representation [24] allows us to extract the inherent 
evolutionary information within promoters with only local or 
moderate similarity, offering valuable support to enhance the 
model’s effectiveness. 

In this paper, we propose the Chaos-Attention net for Promoter 
Evolution (CAPE), which features the incorporation of merged 
chaos game representation and the utilization of modified 
DenseNet [25] and Transformer [26]. CAPE is a highly accurate 
regression model that establishes correlations between promoter 
sequences and their strengths, leading to state-of-the-art (SOTA) 
performance. Through the evolutionary information extracted 
from promoter sequences, our deep learning model achieved a 
PCC of 0.52 on the dataset from [27] by a five-fold cross-validation, 
significantly surpassing 0.24 by Wang et al.’s method [21] and  
0.27 by the predictor of DeepSEED [28] on the same dataset 
with the same cross-validation. Furthermore, we implemented 
transfer learning to enhance the model’s adaptability for other 
downstream tasks, for example, the strength prediction task 
of the trc promoters. The original trc promoter is a synthetic 
composite of trp and lac promoters [29, 30]. It is an important 
synthetic promoter, and therefore many researchers have studied 
the strength of its variants, resulting in relatively abundant data 
[31, 32]. When applied to predict the strength of trc promoters, 
our model achieved an R-squared (R2) value of 0.68, signifying a 
substantial improvement over Zhao et al.’s methods (0.63 for the 
best one) [31] and six EVMP-based algorithms (0.63 for the best 
one) [32]. This underscores the considerable superiority of our 
model structure. Finally, we conducted biological experiments 
on two different kinds of promoters(constitutive promoter and 
inducible promoter), and the results indicate that our model is 
indeed capable of efficiently evolving promoters. 

In summary, we harnessed evolutionary information to con-
struct a deep learning model CAPE, which enabled us to attain 
SOTA performance in predicting prokaryotic promoter strength. 
We confirmed the model’s effectiveness and wide applicability in 
simulating the directed evolution of promoters in silico through 
biological experiments. We also developed a website for conve-
nient implementation of directed evolution on promoters. 

Materials and methods 
Dataset 
In our research, we utilized three datasets, which are as follows: 

The first dataset, named dataset_pro, is derived from the PPD 
database and comprises 129 148 experimentally validated pro-
moter sequences across 63 prokaryotic species [33]. We conducted 
sequence alignment within dataset_pro to identify similar pro-
moter sequences for investigating the evolutionary history of the 
studied promoters in other datasets. Please note that dataset_pro 
only contains experimentally confirmed promoter sequences, but 
does not include the corresponding strengths of the promoters. 
Therefore, we did not design any training tasks based on this 
dataset. Instead, we used it as a database to search for similar 
sequences to the promoters we want to study. 

The second dataset, dataset_Ecoli, contains 11 884 artificially 
defined promoter sequences of Escherichia coli, along with the 
corresponding gene expression strengths measured by dRNA-seq. 
Since prokaryotes do not have many regulatory elements like 
eukaryotic enhancers, the expression level of their corresponding 
genes can be indirectly regarded as the strength of the pro-
moter. This dataset originated from Thomason et al. [27] and was  
employed by Wang et al. [21] for predictive model. We also used 
dataset_Ecoli to train our model. Please note that we refer to the 
task designed based on dataset_Ecoli as Task1. 

The third dataset, dataset_trc, comprises 3665 mutated trc 
promoter sequences and their corresponding promoter strengths. 
This dataset, introduced by Zhao et al. [31], was constructed using 
83 rounds of mutation-construction-screening-characterization 
engineering cycles. The strength of the promoters was deter-
mined by fluorescent protein intensity. We employed dataset_trc 
to validate the transfer learning capability of our constructed 
predictive model and test the predictive performance after fine-
tuning. Please note that we refer to the task designed based on 
dataset_trc as Task2. 

Overview of the model architecture 
The architecture of CAPE is as follows (Fig. 1): 

First, we employed Basic Local Alignment Search Tool (BLAST) 
[34] and the Needleman–Wunsch (NW) algorithm [35] to search 
for sequences exhibiting a certain level of similarity with the 
target promoter within a prokaryotic promoter database [33]. 
Subsequently, we applied a novel method firstly introduced in 
this paper, referred to as merged CGR, to convert the promoter 
sequence into image data capturing evolutionary informa-
tion. Alongside image information, we applied the kmer2vec 
method [36] to extract textual information from the promoter 
sequences. 

The above two types of information will be input into two dif-
ferent deep learning networks, namely DenseNet [25] and Trans-
former [26], respectively. We adapted the structure of DenseNet 
and Transformer to suit our tasks. The results processed by both 
models are fed into a fully connected network for integration. 
Finally, our model can output the predicted strengths of given pro-
moter sequences. Moreover, we introduced a fine-tuning network 
for transfer learning, which enhances the model’s ability to adapt 
to various downstream tasks. 

Merged chaos game representation 
Merged Chaos Game Representation, abbreviated as Merged CGR, 
is a novel feature extraction method proposed for the first time in 
this paper. This approach is built upon the conventional Chaos 
Game Representation [24] and extends its applicability to not 
only the given sequence but also its related sequences, converting 
them into a unified matrix (Fig. 2a). Subsequently, this matrix is 
input into the DenseNet [25] for further processing. Notably, this 
representation method functions as an alternative to the widely 
employed position-specific scoring matrix (PSSM) found in other 
related studies. 

For a sequence s = (s1s2 . . . sn), generating the corresponding 
Merged CGR involves three steps. The first step is to transform 
the sequence into a matrix using conventional CGR. The CGR 
sequence corresponding to s, Xi = (xi, yi) where i = 1, ..., n, is  
given by 

X0 =
(

1 
2 

, 
1 
2

)
, Xi = 

1 
2

(
Xi−1 + Wi

)
(1)
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Figure 1. Overview of the model architecture. 

where Wi equals to (0, 0), (1, 0), (0, 1), (1, 1) if si is A, T, C, G respec-
tively. By uniformly subdividing the unit square into L2 subsquares 
and calculating the number of points within each subdivision, the 
CGR sequence can be further transformed into a CGR matrix with 
L rows and L columns, denoted as CGR(s) (L = 20). The second step 
involves using BLAST [34] (blastn-short, evalue = 1) to search for 
matching sequences s(1), ..., s(m) in dataset_pro. Subsequently, the 
NW algorithm [35] is applied to confirm their similarity to s. The  
similarity is calculated as the sum of the scores in the pairing, 
where both mismatch and gap have a score of -1, and match has 
a score of 1. This sum is then divided by the promoter length of 50, 
resulting in similarity scores a1, ..., am (ai ≤ 1). Finally, considering 
all sequences with similarity scores greater than 0, the Merged 
CGR matrix is computed as CGR(s) + ∑m 

i=1 aiCGR(s(i) )1{ai>0}. 
We have chosen to apply Merged CGR instead of PSSM to 

extract the evolutionary information for promoters for the follow-
ing reason. We aim to restrict our search for related sequences to 
the promoter region. Considering the relatively limited availability 
of promoter data, which frequently includes orphan promoters, it 
becomes challenging to identify highly similar sequences suitable 
for PSSM generation. In contrast, our Merged CGR method excels 
in integrating sequences exhibiting moderate or localized similar-
ity, thereby accommodating such orphan promoter scenarios. 

Word2vec word embedding 
DNA sequences can be divided into a series of k-mers [37–39], 
allowing the sequence to be treated as text where the k-mers serve 
as words. Accordingly, we can use word embedding techniques 
from natural language processing (NLP) to represent these k-mers 
numerically. 

The word2vec method, proposed by Mikolov et al. [40, 41], 
embeds words into meaningful high-dimensional numerical vec-
tors. The neural network structure includes the continuous bag-
of-word (CBOW) model or the skip-gram model. During training, 
CBOW mainly predicts a word from its context, while skip-gram 
predicts the context words, given a certain word. For instance, 
given a sequence of training words w1, w2, w3, . . . , wT, the objective 
of the skip-gram model is to maximize the average log probability 
described as follows: 

1 
T 

T∑
t=1

∑
−c≤j≤c, j �=0 

log p(wt+j | wt) (2) 

where c is the size of the training context (which can be a function 
of the center word wt). The probability is defined as: 

p(wO|wI) = 
exp

(
(v′

wO 
)�vwI

)
∑W 

w=1 exp
(
(v′

w)�vwI

) (3) 

where vw and v′
w represent the ‘input’ and ‘output’ vector rep-

resentations of w, respectively, and W is the total number of 
words in the vocabulary. Each word’s vector representation during 
training is influenced by its surrounding vocabulary. If two words 
have similar contextual vocabulary, their word vectors will also be 
similar. 

To better extract textual information from promoter sequences, 
we employed the word2vec method to obtain k-mer word 
embeddings in promoter sequences, following the specific 
strategies of the kmer2vec method [36]. Initially, we divided 
all promoter sequences in dataset_pro into a series of 3-
mers using an overlapping division, treating them as complete 
text. Subsequently, we conducted training (window_size = 24; 
vector_size = 100; the skip-gram algorithm) on the text created 
from dataset_pro. This method allows us to leverage the kmer2vec 
approach for representing k-mer sequences in DNA, capturing 
both sequence similarity and functional characteristics within 
the evolutionary context of promoters. 

DenseNet 
DenseNet (Densely Connected Convolutional Network) [25] is a  
deep learning algorithm designed for processing matrix data. It 
serves as an extension of traditional CNNs, with its most promi-
nent feature being the dense connections between layers. These 
connections enable comprehensive information exchange among 
layers, allowing shallow-level information to be retained even 
after passing through multiple layers. This, in turn, allows for the 
training of deeper networks. Unlike ResNet [42], where connec-
tions involve addition, DenseNet employs a different approach 
by concatenating data across the channel dimension. Specifically, 
for the lth layer, it takes the outputs of all preceding l-1 layers as 
inputs, that is, 

xl = Hl([x1, ..., xl−1]) (4)
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Figure 2. Modules of the model. (a) Merged CGR. (b) DenseNet. (c) The original fully connected network. (d) The fully connected network for fine-tuning. 

where Hl is the function corresponding to the lth layer. The 
channel output of Hl assumes a crucial role in DenseNet, repre-
senting the growth rate of channels within the network (growth 
rate = 16 in this paper). Due to limitations in the data size, we 
do not employ the deep network structure as in the original 
work. Instead, we embed a relatively shallow network into the 
DenseNet architecture, as illustrated in Fig. 2(b). Each layer in this 
study comprises four fundamental components. In addition to the 

standard components commonly found in CNNs, including the 
convolution part, Batch Normalization, and the activation part 
(ReLU), an additional dropout component [43] has been intro-
duced to address overfitting. 

Transformer 
The Transformer [26] is a deep learning algorithm extensively 
employed in processing sequential data. Its core concept is the
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attention mechanism. Specifically, each element in sequential 
data, such as words, is transformed into vectors using techniques 
like word embedding. These vectors are further mapped to corre-
sponding query (Q), key (K), and value (V) through various linear 
transformations. This allows each word to establish connections 
with all other words, as defined by the following equation: 

Attention(Q, K, V) = softmax

(
QKT√

dk

)
V (5) 

where dk is the dimension of Q and K. This attention mechanism 
is more capable of capturing longer-range information compared 
to traditional RNN-based algorithms [44, 45]. Furthermore, the 
Transformer employs a multi-head strategy, linearly projecting 
the Q, K, V multiple times with different learned linear projections, 
enhancing the richness of information capture. In other words, we 
have 

MultiHead(Q, K, V) =Concat(head1, ..., headh)WO 

headi = Attention(QWQ 
i , KWK 

i , VWV 
i ) 

(6) 

where WO is also a learned parameter matrix. 
Transformer employs an encoder-decoder structure, with each 

part consisting of multiple Transformer blocks. Within each block, 
the Transformer combines the attention mechanism with resid-
ual networks, transforming the output into the input for the next 
block. In this paper, because we do not need to convert sequences 
into sequences, but only into real numbers, we have exclusively 
employed the encoder. The encoder consists of two Transformer 
blocks, with the number of attention heads set to 8. 

Fully connected network 
The fully connected network is utilized to combine the graphical 
evolutionary information processed by DenseNet and the sequen-
tial linguistic information processed by Transformer. A single-
layer network suffices for the original model (Fig. 2c). Throughout 
the fine-tuning process, we maintain the parameters of the pre-
ceding model as existing knowledge and solely replace the fully 
connected network for retraining. Therefore, to enhance flexi-
bility, multiple layers of fully connected networks are employed 
(Fig. 2d). 

Directed evolution of promoters 
Using our model to perform promoter directed evolution in silico 
requires the following two steps. 

Step 1 (Random Mutation): First, we should choose the target 
promoter and its evolution direction. For example, in our project, 
we intended to evolve the promoter PnisA to have a stronger 
strength. If the sequence length is largar than 50 bp, we only 
consider the last 50 bp. We then used a program to randomly 
mutate the sequence of this promoter, and the number of mutated 
bases can be adjusted (usually ≤ 5).  We can then obtain a large  
number of mutated sequences on the basis of the original pro-
moter sequence. 

Step 2 (Strength Screening): We input the large number of 
mutant sequences into our model and selected the top sequences 
with the highest predicted strength based on the model feedback. 
In this way, we completed the directed evolution of the promoter 
in silico, which can then be tested experimentally. 

Bacterial strains and cultivation 
The E. coli Stbl3 strain was used for plasmid cloning and fluores-
cent protein expression analysis. Inocula were cultured in 5 mL of 
Luria Bertani (LB) medium containing antibiotics (kanamycin for 
the pET28A plasmid and carbenicillin for the pBV220 plasmid) in 
15 mL shaking culture tubes at 200 rpm, 37◦C. For gene expression 
analysis, with respect to constitutive promoters, we inoculated 
50 μL of bacterial culture into 1 mL of LB medium containing 
antibiotics and incubated at 37◦C with shaking at 200 rpm for 12-
14 hours to ensure bacterial growth in the logarithmic phase. For 
the heat-inducible PL promoter, we initially inoculated 50 μL of  
bacterial culture into 1 mL of LB medium containing antibiotics 
and incubated at 37◦C with shaking at 200 rpm for 4–6 hours. Sub-
sequently, cells were induced expression by placing the culture in 
a 42◦C water bath for 1 hour and then returned it to 37◦C with 
shaking at 200 rpm for 10–12 hours. All strains and plasmids are 
listed in Supplementary Table 1. 

Plasmid construction 
The PnisA promoter was ligated into the pET28a-GST-mCherry 
vector. Specific promoter mutation primers were designed for 
each promoter (Supplementary Table 2). PCR amplification 
was performed using Q5� High-Fidelity DNA Polymerase (NEB 
#M0491L). The original vector was digested with the restriction 
enzyme DpnI (NEB #R0176S) for 4 hours at 37◦C. Subsequently, 
the amplified PCR fragments were separated by 1.5% agarose gel 
electrophoresis, and gel purification was carried out using the 
NucleoSpin.Gel and PCR clean-up kit (MN #740609.25). The PCR 
fragments and linearized pET28a-GST-mCherry vector were then 
subjected to homologous recombination using the NEBuilder�
HiFi DNA Assembly Master Mix (NEB #E2621L) to obtain the ligated 
product. For the PL promoter, specific promoter mutation primers 
were designed (Supplementary Table 2). Q5� High-Fidelity DNA 
Polymerase (NEB #M0491L) was used for circular PCR on the 
pBV220-mCherry vector, resulting in the pBV220-PL-mCherry 
plasmid. The original vector was digested with the restriction 
enzyme DpnI (NEB #R0176S) for 4 hours at 37◦C. The ligated 
products obtained were transformed into E. coli Stbl3 strain using 
the heat shock method. The sequence accuracy was confirmed 
through Sanger sequencing. 

Fluorescence expression assay 
For constitutive promoter PnisA, 50 μL of bacterial culture was 
inoculated at a 1:50 dilution into 2.5-mL LB medium containing 
kanamycin, and the culture was placed on a shaker at 200 rpm 
and 37◦C for 14 hours to allow the cells to enter the logarithmic 
growth phase. For the temperature-inducible PL promoter, after 
reaching the logarithmic growth phase, the culture was induced 
using the method described above, followed by incubation on 
a shaker at 200 rpm and 37◦C for an additional 10–12 hours. 
Subsequently, 0.5 mL of the bacterial culture was centrifuged 
at 4000 rpm for 5 minutes, the supernatant was discarded, and 
the pellet was resuspended in 1 mL of PBS buffer. After another 
centrifugation at 4000 rpm for 5 minutes and discarding the 
supernatant, the pellet was resuspended in 0.2 mL of PBS. The 
mCherry fluorescence and OD600 were then measured using a 
microplate reader. 

Flow cytometry 
E. coli in the logarithmic growth phase were harvested, centrifuged 
at 4000 rpm for 5 minutes, and resuspended in PBS buffer. Flow 
cytometry data were collected using BD Fortessa or Thermo Fisher
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Attune NxT flow cytometers and analyzed with FlowJo software 
(BD Biosciences). 

Results 
Performance on two prediction tasks 
To validate the effectiveness of CAPE, we conducted tests for 
two prediction tasks. The dataset for Task1, named dataset_Ecoli, 
comprises 11 884 promoter sequences along with their corre-
sponding strengths. Each promoter is artificially defined as the 
50 bp sequence preceding the transcription start site. These pro-
moter sequences exhibit significant diversity, corresponding to 
different genes, allowing the use of dataset_Ecoli for the model’s 
general training. By using a five-fold cross-validation, our model 
achieved an average PCC of 0.52 and an average SCC (Spear-
man Correlation Coefficient) of 0.39 in Task1, surpassing (PCC = 
0.24, SCC = 0.21) by Wang et al.’s method [21] and (PCC = 0.27, 
SCC = 0.20) produced by the predictor of DeepSEED [28]. Our 
model’s performance is about 2 times higher than that of the 
previous best-performing model (Fig. 3e). The model’s substantial 
enhancement is impressive, significantly improving the capacity 
to extract information and avoid extensive noise. In Fig. 3(a), we 
present the scatter plot of the model’s predictions on the training 
and test sets in a fold. In Fig. 3(c), we show that our split is 
random enough, resulting in a reasonably consistent distribution 
of promoter strengths between the training and test sets. 

In synthetic biology, Escherichia coli stands as an indisputable 
model organism in prokaryotes, and many other prokaryotic pro-
moters demonstrate functionality in E. coli. Therefore, the model 
trained on dataset_Ecoli can aid in predicting prokaryotic pro-
moter strength. Moreover, it can simulate mutational screening 
and directed evolution based on the predicted strengths. 

As the strengths of promoters in dataset_Ecoli were mea-
sured by dRNA-seq, this measurement method might introduce 
some noise. Currently, most promoter strength tests in experi-
ments use fluorescent proteins (such as green fluorescent pro-
tein or monomeric Cherry fluorescent protein) as downstream 
reporters. We sought to understand whether our model is suit-
able for datasets using fluorescent protein strength as the pro-
moter strength. Hence, we conducted Task2 test. We selected 
dataset_trc, containing 3665 promoter sequences along with their 
corresponding strengths. The trc promoter is a synthetic compos-
ite of trp and lac promoters [29, 30]. Though it can be induced, 
Zhao et al., [31] considered the trc promoter as a constitutive 
promoter for strength screening (by removing lacI). These 3665 
promoters are variant strains of the original trc promoter, dis-
playing different strengths. Notably, Task2 differs significantly 
from Task1. The promoter sequences in Task1 dataset show con-
siderable diversity, while those in Task2 have minor differences, 
demanding higher precision from the model in recognizing these 
distinctions. In addition, dataset_trc utilizes fluorescent protein 
strength to represent promoter strength, likely resulting in less 
noise. 

To assess the model’s transfer learning capability, as the pro-
moter length in Task1 was 50 bp, we needed to maintain consis-
tency between both tasks. Here, we characterized the last 50 bp of 
the 74-bp trc promoter sequences in the dataset, as bases closer to 
the transcription start site typically have a more substantial influ-
ence. In pre-training, we transferred the model obtained from 
Task1, fixing all parameters before the fully connected network, 
as we believed these parameters contained a significant amount 
of information regarding prokaryotic promoters. Subsequently, 
we employed a pyramid-shaped fully connected layer as the 

fine-tuning network, replacing the original fully connected net-
work. Only the parameters of the fine-tuning layer were modified 
during training. Similar to all other research in dealing with 
dataset_trc, we choose R2 score to be the main evaluation metric 
to compare the results. By using a five-fold cross-validation, our 
model achieved an average R2 score of 0.68. By the same cross-
validation, Zhao et al.’s methods’ [31] R2 values range from 0.38 
to 0.63 and six EVMP-based algorithms’ [32] R2 values range from 
0.56 to 0.63. This demonstrates that our model achieved an overall 
improvement of 8.0% compared to the previously best-performing 
model, showcasing exceptional transfer learning capability. To 
better compare these methods, we also included PCC, Spearman 
correlation coefficient (SCC), mean squared error (MSE), and mean 
absolute error (MAE) as auxiliary metrics in Table 1. The visualiza-
tion of the table is shown in Fig. 3(f) by a radar chart. The scatter 
plot of the model’s predictions on the training and test sets as 
well as the violin plot for the random split in a fold are displayed 
in Fig. 3(b) and (d), respectively. 

In addition, we found that if the same model is used without 
adopting the transfer learning approach, i.e. without leveraging 
the knowledge learned from dataset_Ecoli, the R2 score would 
be 0.65. This result indicates that our model outperforms other 
models even without transferring knowledge from other datasets. 
It also suggests that although dataset_Ecoli and dataset_trc differ 
significantly in experimental types and subjects, the informa-
tion embedded in the former still contributes to the modeling 
of the latter. In summary, we validated the model’s transfer 
learning ability, showcasing that our model could utilize general 
information from Task1 to make more specific predictions such 
as Task2. 

To better understand the role of each part of our model CAPE, 
we also conducted ablation experiments. Since CAPE employs 
an overall process including general training and fine-tuning, to 
comprehensively assess the roles of each module, we used the 
results after final fine-tuning for testing. From the data in Table 2, 
it can be observed that when considering all modules together 
(complete CAPE), the model achieves an R2 of 0.68 for fine-tuning 
Task2. If we remove the image information part (Merged CGR + 
DenseNet) and only retain the textual information part (kmer2vec 
+ Transformer), the model achieves an R2 of 0.61 for Task2. 
Conversely, if we remove the textual information part (kmer2vec + 
Transformer) and only retain the image information part (Merged 
CGR + DenseNet), the model achieves an R2 of 0.65 for Task2. 
This indicates that both parts play important roles in the model’s 
effectiveness, with the introduction of evolutionary information 
in the image information part being relatively more crucial, which 
aligns perfectly with our previous speculation. 

Experimental results 
To further validate the accuracy of CAPE, we proceeded to conduct 
verification experiments in the E. coli Stbl3 strain, utilizing con-
stitutive promoter PnisA, as well as the heat-inducible promoter 
PL. Please note that the PnisA promoter is an nisin-induced pro-
moter in Lactococcus lactis. However, due to its baseline expression 
after introduction into E. coli, it is considered as a constitutive 
promoter in our research. The flowchart of the experimental 
process is shown in Fig. 4(a). We used the original sequences 
as input to generate top-performing sequences through in sil-
ico directed evolution for each promoter. These sequences are 
detailed in Supplementary Table 2. Subsequently, we successfully 
employed molecular cloning techniques to construct the mutated 
promoters alongside the gene of mCherry fluorescent protein into 
pET28A and pBV220 plasmid vectors. The experimental results
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Figure 3. Performance of the model. (a) The scatter plot for model prediction on Task1. (b) The scatter plot for model prediction on Task2. (c) The violin 
plot for true promoter strengths on Task1 in a fold. (d) The violin plot for true promoter strengths on Task2 in a fold. (e) Average PCC and SCC for the test 
set on Task1. In Task1, previous models are compared through PCC, so we used PCC as well as SCC, the correlation coefficient used for nonlinear cases, 
to measure the methods to maintain consistency. PCC: Pearson correlation coefficient, SCC: Spearman correlation coefficient. (f) Radar chart based on  
five metrics in Task2. We linearly normalize the values from Table 1 by setting the best score for each metric to 1 and the worst score to 0. For clarity in 
visualization, we only display CAPE as well as the best methods from Zhao et al.’s methods’ series and EVMP methods’ series. 

indicate that, fluorescence intensity analysis demonstrated a 
significant increase in promoter strength for the PnisA promoter. 
The highest fluorescence/OD600 (defined as unit fluorescence 
intensity), in comparison to the original sequence, increased to 
234% ( Fig. 4b). Furthermore, 37.5% of the mutated promoters 

demonstrated enhanced expression strength when compared to 
the original promoter (Fig. 4b). We also get similar results by 
single-cell fluorescence intensity detection in flow cytometry, and 
half of the mutated promoters (4/8) showed mCherry expression 
levels exceeding those of the original promoter, with the highest
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Table 1. Model performance comparison on Task2. R2: R-squared, PCC: Pearson correlation coefficient, SCC: Spearman correlation 
coefficient, MSE: mean squared error, MAE: mean absolute error. RF: Random Forest, Adaboost: Adaptive Boosting, XGBoost: eXtreme 
Gradient Boosting, GDBT: Gradient Boosting Decision Trees, SVM: Support Vector Machine, LSTM: Long Short-Term Memory 

Model R2 PCC SCC MSE MAE 

CAPE 0.68 0.83 0.81 1.39 0.79 
CAPE (no pre-training) 0.65 0.81 0.80 1.52 0.82 
Zhao RF 0.59 0.77 0.74 1.77 0.91 
Zhao Adaboost 0.38 0.66 0.63 2.67 1.28 
Zhao Xgboost 0.63 0.80 0.78 1.59 0.89 
Zhao GDBT 0.62 0.79 0.78 1.66 0.94 
EVMP RF 0.60 0.77 0.75 1.60 0.86 
EVMP Xgboost 0.63 0.79 0.78 1.47 0.82 
EVMP GBDT 0.62 0.79 0.77 1.50 0.85 
EVMP SVM 0.57 0.77 0.75 1.69 0.88 
EVMP LSTM 0.56 0.81 0.79 1.49 0.75 
EVMP Transformer 0.57 0.81 0.79 1.60 0.76 

Table 2. Ablation experiments. R2: R-squared, PCC: Pearson correlation coefficient, SCC: Spearman correlation coefficient, MSE: mean 
squared error, MAE: mean absolute error 

Model R2 PCC SCC MSE MAE 

CAPE 0.68 0.83 0.81 1.39 0.79 
CAPE (no image way) 0.61 0.79 0.76 1.67 0.90 
CAPE (no textual way) 0.65 0.81 0.79 1.51 0.85 

Median Fluorescence Intensity (MFI) surpassing the original pro-
moter to 443% ( Fig. 4b). 

In addition to the constitutive promoters, we also obtained sat-
isfactory results for the heat-inducible PL promoter. The induced 
fluorescence per OD600, compared to the wild-type, showed a 
maximum 497% increase, with 35.7% of the mutated promoters 
surpassing the wild-type expression level (Fig. 4c). During flow 
cytometry detection, 57.1% of the mutant PL promoters showed 
higher mCherry expression after induction than the original pro-
moter after induction, with the highest MFI exceeding the original 
promoter to 857% (Fig. 4c). Please note that we also observed some 
leakage (it refers to the phenomenon where some optimized PL 
promoters, which are inducible promoters, exhibit higher expres-
sion levels before induction compared to the original promoter 
before induction) in the mutated promoters before induction 
(see Supplementary Materials). This is a very normal occurrence 
because our model’s optimization process only considers the final 
expression levels after induction, and the pre-induction expres-
sion levels were not accounted for in the model design or training 
process. 

In conclusion, our biological experiments confirmed the effec-
tiveness and reliability of our model, which can significantly 
enhance the expression strength of prokaryotic promoters. 

The experimental results demonstrate that an important appli-
cation of our model is the in silico directed evolution of promoters. 
To facilitate biologists’ free use of our model, we have built a 
website, as shown in Fig. 5. The user only needs to input some key 
parameters such as the promoter sequence, the desired muta-
tion sites and frequency, to utilize the model for promoter 
optimization. 

Discussions 
From our perspective, CAPE can potentially play a pivotal role in 
several areas, including but not limited to the following: 

(1) In silico directed evolution and library construction of pro-
moters: Our model accurately assesses promoter strength and 
can precisely identify minor differences in promoter sequences. 
Hence, we can conduct in silico directed evolution of promoters to 
obtain the desired sequences, facilitating our model’s crucial role 
in promoter optimization. Our model’s proficiency in directed evo-
lution has been confirmed through multiple experiments. Addi-
tionally, should datasets containing mutated promoter strengths 
exist, integrating them with our model can refine and tailor more 
precise models, facilitating the development of experimental pro-
moter libraries. 

(2) Enhancing the effectiveness of promoter generation mod-
els: Some research focuses on promoter generation models to 
produce synthetic promoters with improved functionality [21, 28, 
46]. These models always face a selection step requiring pre-
cise prediction of promoter strength, where our model is likely 
to enhance the effectiveness of existing promoter generation 
models. 

(3) Other promoter strength-related issues: Numerous issues 
are related to prokaryotic promoters. For instance, many drugs 
and metabolites are produced using model organisms like E. 
coli [47, 48]. If our model is employed to direct the evolution of 
promoters, enhancing their strength, it could potentially reduce 
the manufacturing costs of related drugs and metabolites in the 
future. 

Regarding the applicability, our CAPE model can be used not 
only for E. coli but also for other prokaryotes. This expansion can 
be achieved mainly on two levels. First, it has been experimentally 
confirmed that many promoters from other prokaryotes can func-
tion in E. coli, such as the PnisA promoter we tested. Therefore, it is 
possible to directly use our trained model to optimize promoters 
from other prokaryotes and then introduce them into E. coli to 
function (because our model predicts the relative strength of 
promoters in E. coli to some extent). Second, if promoter sequences 
and their corresponding strength data from other prokaryotes are
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Figure 4. Experimental results. (a) Flowchart of experimental process. (b) Results of PnisA promoter. (c) Results of PL Promoter. Please note that for the  
data measured by the microplate reader, we had two sets of replicates for each experiment. In the data measured by flow cytometry, MFI refers to the 
Median Fluorescence Intensity. 
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Figure 5. Website Page. Users can click the ‘HELP’ button to view the website usage guide. Follow the prompts on the web page and enter the required 
parameters step by step, clicking the ‘CONTINUE’ button after each item to move on to the next item. Once all the parameters have been entered and 
checked, click the ‘BEGIN EVOLUTION’ button to get the results. More detailed instruction and the address of the website can be found in https://github. 
com/BobYHY/CAPE. 

available, the CAPE model can be retrained based on the sequence 
and strength data to enable its application in other species. 

Of course, there are some other things to be noticed. Currently, 
our model only accepts 50-bp sequences for prediction. For larger 
promoters, using sequences closer to the transcription start site 
as a substitute has been proven effective. The sequence length 
limitation primarily stems from the dataset constraints. If more 
diverse datasets are integrated in the future, our model can 
further improve by overcoming this limitation through Natural 
Language Processing (NLP) methods such as padding [26]. 

In addition, our method primarily focuses on predicting the 
strength of constitutive promoters and inducible promoters after 
induction. However, we observed some leakage in the mutated 
promoters before induction (see Supplementary Materials). This 
phenomenon can be attributed to sequence alterations that 
reduced the binding affinity of the original repressor protein 
with the promoter region, as anticipated. Nevertheless, we also 
identified mutated promoters that exhibited less pronounced 
leakage but a significant increase in expression levels after 
induction. This suggests that we may need to consider the specific 
kinetic dynamics of the inducible promoters in our subsequent 
work to enhance the model’s reliability. Designing a separate dual-
task model based on our model structure could likely help address 
this issue. Furthermore, excessive leakage can potentially allow 
us to employ in silico directed evolution to transform inducible 
promoters into constitutive promoters, thereby achieving long-
term stable gene expression. 

In summary, we proposed a powerful and useful tool, CAPE, 
to predict the strength of prokaryotic promoters, achieving SOTA 
performance in two distinct tasks. We have also validated the 
effectiveness and robustness of this tool through successful 
fluorescence expression assays. This deep learning model com-
prehensively understands the essence of promoters by leveraging 

evolutionary information, holding significant importance. By 
grasping the biological essence of ‘evolution’, we have advanced 
breakthroughs in promoter design and optimization. Additionally, 
we have provided a website for users to freely utilize our tool. 

Key Points 
• A deep learning model, CAPE, was constructed using a 

novel feature extraction method based on evolutionary 
information to predict promoter strength. 

• Our model achieves state-of-the-art results on two dis-
tinct types of promoter strength prediction tasks. 

• Experimental results of fluorescent protein assay con-
firm the efficacy of CAPE in simulating in silico directed 
evolution of promoters. 
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