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 A B S T R A C T

The genome sequences of organisms form a large and complex landscape, presenting a significant challenge 
in bioinformatics: how to utilize mathematical tools to describe and analyze this space effectively. The ability 
to compare relationships between different organisms depends on creating a rational mapping rule that can 
uniformly encode genome sequences of varying lengths as vectors in a measurable space. This mapping would 
enable researchers to apply modern mathematical and machine learning techniques to otherwise challenging 
genomic comparisons. The natural vector method has been proposed as a concise and effective approach to 
accomplish this. However, its various iterations have certain limitations. In response, we carefully analyze the 
strengths and weaknesses of these natural vector methods and propose an improved version—an asymmetric 
covariance natural vector method (ACNV). This new method incorporates k-mer information alongside 
covariance computations with asymmetric properties between base positions. We tested ACNV on microbial 
genome sequence datasets, including bacterial, fungal, and viral sequences, evaluating its performance in terms 
of classification accuracy and convex hull separation. The results demonstrate that ACNV effectively captures 
sequence characteristics, showcasing its robust sequence representation capabilities and highlighting its elegant 
geometric properties.
1. Introduction

The size of genomic data continues to increase with advances in 
high-throughput sequencing technology and biology itself. As early as 
the last century, many computational biologists have done a lot of work 
on similarity comparisons between sequences, proposing a variety of 
methods including multiple sequence comparison (Vinga and Almeida, 
2003). But the fact that sequence data themselves are of varying 
lengths and some sequences can be very long leads to an obvious 
efficiency bottleneck in analyzing and storing genomic data in the form 
of sequences. In addition, traditional sequence alignment algorithms 
such as MUSCLE (Edgar, 2004), ClustalW (Thompson et al., 1994), 
MAFFT (Katoh et al., 2002), have high time complexity and can be very 
time-consuming when faced with large-scale datasets. Therefore, the 
rapid construction of vectorized representations of biological sequence 
data of varying lengths that are easy to compute and store is of unique 
research value (Sarumi et al., 2024). For this reason, scholars have 
proposed many ‘‘alignment-free’’ methods to overcome the efficiency 
problems of sequence matching methods (Zielezinski et al., 2019).
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A large number of alignment-free methods are aimed at constructing 
a vector representation of the DNA sequence for further analysis. This 
process can be described as an ‘embedding’ problem in the mathe-
matical sense: consider the complete genome sequences of different 
organisms as a series of points in some space  called genome space, 
where a point represents a species. If there is a metric in this space, then 
this metric represents the evolutionary relationship between species, 
with the closer the distance the closer the evolutionary relationship 
between species. This is an idealized assumption, and in fact the space 
 does not exist for current researchers. We can only look for a ‘mea-
surable’ space  and a mapping rule 𝑓 ∶  →  such that: by means 
of the rule 𝑓 , we can transform organisms in  into points in , and 
we can measure the closeness of evolutionary relationships between 
organisms by means of metrics defined on . Although evolutionary 
relationships between species can be analyzed more easily in space 
using metric tools, the accuracy of the results of such analyses requires 
that the continuity of the mapping rule 𝑓 is as good as possible, in other 
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words that species that are close together in space  are also as close 
together in space  as possible.

In general, these sequence-based embedding methods can be cate-
gorized as follows based on how the embedding representation is com-
puted (Zhou et al., 2024): Sequence descriptors. There are numerous 
descriptive-features-based methods for sequence analysis, leveraging 
various approaches such as word frequencies, the length of matching 
words, informational content between sequences, chaos game repre-
sentation, and graphical representation of DNA sequences (Zielezinski 
et al., 2019). For instance, Blaisdell employed the k-mer model based 
on the classic string representation for genome sequence compari-
son (Blaisdell, 1986). Qi et al. introduced Composition Vector Tree 
(CVTree) using a composition vector approach (Qi et al., 2004). Kan-
torovitz utilized k-mer counts for comparing regulatory sequences. Sims
et al. utilized feature (or k-mer) frequency profiles (FFP) of whole 
genomes for genome comparison (Sims et al., 2009). Word2vec-like 
k-mer embeddings. For example, Patrick Ng migrated the word2vec 
method from natural language processing to DNA and proposed the 
dna2vec method, which splits the sequence into k-mer fragments and 
then trains a neural network to construct the embedding representa-
tion (Ng, 2017), a similar approach is seen in Ren et al. (2022). Han
et al. proposed a method of applying word2vec to k-mer information, 
and then selecting some dimensions to feed into a recurrent neural net-
work via SVM (Han et al., 2022). However, word2vec-like approaches 
tend to suffer from longer model training times for k-mer embedding 
representations, which reduces their usefulness (Yu et al., 2023). Foun-
dation models. With the great success of the large language model, 
this modeling paradigm began to spread to the front lines of research 
in a variety of fields and became known as the Foundational Model. 
A growing number of base models have also emerged in the field of 
sequence comparison. For example, Ji et al. in analogy to bert, proposed 
a bi-directional encoder-based pre-training model for DNA sequence 
encoding (Ji et al., 2021), and Zhou et al. strengthened the inter-species 
discrimination ability of the resulting embedding vectors by employing 
a comparative learning paradigm based on DNABert-2 (Zhou et al., 
2023) to obtain DNABert-S (Zhou et al., 2024).

Each of these methods has its own problems, for example, methods 
based on sequence descriptive quantities are relatively simple and 
straightforward, but it is often difficult to extract information in a more 
comprehensive way, thus leading to a limitation of their descriptive 
power. Methods similar to word2vec act as a prequel to the base model 
class of methods, and tend to be less effective and generalizable than 
the base model while paying a price in training time. As for base 
models, some studies have found that they do not perform so well in 
some cases either, and they tend to be relatively devoid of biological 
interpretability (Zhou et al., 2024). Although there have been some 
modeling studies that emphasize interpretability (Elmarakeby et al., 
2021; van Hilten et al., 2021, 2024), work in this area has been 
primarily directed at somewhat more specific genomics tasks, and the 
interpretability is more in the model (e.g., model weights) than in 
the embedding vectors. To summarize, despite the existence of a wide 
variety of approaches, it is still problematic, from both a mathematical 
and a biological point of view, how to implement vector representations 
of genome sequences in a way that combines both elegant mathematical 
properties and good biological interpretability to effectively distinguish 
sequences of different organisms.

Descriptor-based methods tend to have the best interpretability, 
but their weakness usually lies in the fact that the limited manual 
setting leads to not enough information being accommodated (Zhou 
et al., 2024). Among the descriptor-based approaches, there is a class of 
methods named natural vector methods that establish a relatively well-
developed framework. Deng et al. proposed the natural vector method 
for biological sequences in 2011 (Deng et al., 2011), providing a the-
oretical framework for a unified vectorized representation of genome 
sequences. The method is computationally simple and scalable, and it 
has clear biological significance and sound mathematical properties. 
2 
Subsequent further research has developed several variants of this 
method, making the natural vector method more and more sophisti-
cated. For example, the k-mer natural vector method proposed by Wen
et al. in 2014 introduces k-mer information into the computation of 
natural vectors (Wen et al., 2014). In addition, it has been shown that 
a proper choice of the method of calculating the natural vectors can 
lead to the so-called convex hull principle: the convex hulls formed by 
the natural vectors of the genome sequences of differently categorized 
organisms are non-intersecting with each other (Tian et al., 2018). This 
suggests that the natural vector method has good properties from the 
geometric point of view and the potential to be further investigated. 
Against this background, we are more interested in the apparent sim-
plicity (computationally efficient) and interpretability (clear biological 
significance) of this kind of descriptive characterization based methods.

Another class of sequence comparison methods does not construct 
a vectorized representation of the sequences, but rather computes 
the similarity or distance matrix between the sequences directly. For 
example, Co-phylog (Yi and Jin, 2013) generates ‘microcomparisons’ by 
using ‘context’ at each ‘object’ of a sequence to estimate evolutionary 
distances, while andi (Haubold et al., 2015) uses an augmented suffix 
array to detect pairs of maximal unique matches, and then counts 
the number of substitutions at each position to estimate the evolu-
tionary distance between genomes. Some of the new comparison-free 
methods proposed recently also fall into this category, such as the 
PEAFOWL (Zahin et al., 2025) method, which encodes the presence or 
absence of k-mers in a genome sequence into a binary matrix and uses 
maximum likelihood to estimate a phylogenetic tree, and the TF–IDF 
method (Delibaş, 2025), which represents DNA sequences as n-grams 
and then applies the Term Frequency–Inverted Document Frequency 
(TF–IDF) of the Natural Language Processing algorithm to construct the 
sequence similarity matrix. While such methods can be designed from 
different perspectives of sequence similarity comparison (e.g., homol-
ogy, context matching), they lack the possibility of exploring further 
mathematical properties and their utility as sequence encoding plug-
ins, as they do not directly construct a mathematical representation of 
the sequence.

1.1. Statistical-descriptors-based representation

The use of statistical descriptors to compress sequence information 
is a very common tool to build representation of DNA/RNA sequences 
in bioinformatics (Fan et al., 2015; Lu et al., 2017; Chan et al., 2014; 
Murray et al., 2017). These descriptors can both form a vector represen-
tation of DNA/RNA sequences or serve as features for machine learning 
algorithms. We mainly consider the former scenario, when the main 
challenge is to compress as much sequence information as possible in 
an interpretable form in a rather limited number of vector dimensions.

Let us start with a few basic examples. Taking DNA as an example, 
and considering it as a language, then a genome sequence can be 
considered as a long sentence, and after determining the word list, 
we can construct statistical descriptors based on certain probability 
distributions of the word list. Let 𝑆 = 𝑠1𝑠2 ⋯ 𝑠𝑛 be a DNA sequence 
of length 𝑛, 𝑠𝑖 ∈ 𝐿, where 𝐿 is the word list (e.g., 𝐿 = {𝐴,𝐶,𝐺, 𝑇 }). 
Let 𝑒𝑙(⋅) ∶ 𝐿 → {0, 1} be an indicator function such that 𝑒𝑙(𝑠𝑖) = 1
if 𝑠𝑖 = 𝑙 ∈ 𝐿 and 0 if not. Then we can construct some statistical 
descriptors around the distribution of elements in the word list:

• Frequency of occurrence of words. Define 

𝑛𝑙 =
𝑛
∑

𝑖=1
𝑒𝑙(𝑠𝑖), ∀ 𝑙 ∈ 𝐿, (1)

then 𝑛𝑙 represents the occurrence time of word 𝑙 ∈ 𝐿.
• Positional distribution of words.
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1. Mean. Define 

𝜇𝑙 =
𝑛
∑

𝑖=1
𝑖 ⋅ 𝑒𝑙(𝑠𝑖), ∀ 𝑙 ∈ 𝐿, (2)

then 𝜇𝑙 represents the average occurrence position of word 
𝑙 ∈ 𝐿.

2. Variance. Define 

𝐷𝑙 =
1
𝑛𝑙

𝑛
∑

𝑖=1
(𝑖 − 𝜇𝑙)2 ⋅ 𝑒𝑙(𝑠𝑖), ∀ 𝑙 ∈ 𝐿, (3)

then 𝐷𝑙 represents the variance of the occurrence position 
of word 𝑙 ∈ 𝐿.

The above definition does not restrict word lists, so the above 
statistical descriptors apply to any meaningful word list, allowing the 
derivation of additional descriptors. In particular, the word list com-
monly used in genome sequence analysis is k-mer, where k takes a 
positive integer. We denote the k-mer word list as 𝐿𝑘.

Natural vectors

Natural vector (basic form). Natural vector method was firstly devel-
oped by Deng et al. in 2011 (Deng et al., 2011). Taking the word list as 
𝐿1 and combining the statistical descriptors above gives the most basic 
version of the natural vector which is a 12-dimensional vector: 
𝒗 = (𝑛𝐴, 𝑛𝐶 , 𝑛𝐺 , 𝑛𝑇 , 𝜇𝐴, 𝜇𝐶 , 𝜇𝐺 , 𝜇𝑇 , 𝐷𝐴

2 , 𝐷
𝐶
2 , 𝐷

𝐺
2 , 𝐷

𝑇
2 )

′, (4)

where 𝐷𝑙
2 is the modified variance: 

𝐷𝑙
2 =

1
𝑛
𝐷𝑙 =

1
𝑛𝑛𝑙

𝑛
∑

𝑖=1
(𝑖 − 𝜇𝑙)2 ⋅ 𝑒𝑙(𝑠𝑖). (5)

The introduction of sequence length as an additional scaling factor is 
intended to reduce the size of this item.
Natural vector with higher-order moments. If we do not limit ourselves 
to second-order moment statistics, then we can expand the dimension 
of the basic natural vectors by the size of the word list and the order of 
the highest-order moment. Define the high-order components of natural 
vector as 

𝐷𝑙
𝑝 =

1
𝑛𝑝−1𝑛𝑝−1𝑙

𝑛
∑

𝑖=1
(𝑖 − 𝜇𝑙)𝑝 ⋅ 𝑒𝑙(𝑠𝑖). (6)

Then the natural vector with high-order moments is given by 
𝒗ℎ = (𝑛𝐴, 𝑛𝐶 , 𝑛𝐺 , 𝑛𝑇 ,𝜇𝐴, 𝜇𝐶 , 𝜇𝐺 , 𝜇𝑇 , 𝐷𝐴

2 , 𝐷
𝐶
2 , 𝐷

𝐺
2 , 𝐷

𝑇
2 ,

⋯ , 𝐷𝐴
𝑚 , 𝐷

𝐶
𝑚 , 𝐷

𝐺
𝑚 , 𝐷

𝑇
𝑚)

′.
(7)

K-mer natural vector. If we do not restrict ourselves to the most basic 
word list 𝐿 = {𝐴,𝐶,𝐺, 𝑇 }, but take as words strings of nucleotide bases 
of length 𝑘 (k-mer), then k-mer natural vectors can be defined in a 
similar way to basic natural vectors. Specifically, denote the word list 
as 𝐿𝑘 = {𝑙1, 𝑙2,… , 𝑙4𝑘} and define indicating function 

𝑒𝑙𝑖 (𝑗) =

{

1 if 𝑠𝑗𝑠𝑗+1 ⋯ 𝑠𝑗+𝑘−1 =∶ 𝑠𝑗∶𝑗+𝑘−1 = 𝑙𝑖
0 otherwise.

(8)

Then we can define the components of the k-mer natural vector after 
the basic natural vector as follows:

• K-mer occurrence: 

𝑛𝑙𝑖 =
𝑛−𝑘+1
∑

𝑗=1
𝑒𝑙𝑖 (𝑗). (9)

• K-mer positional mean: 

𝜇𝑙𝑖 =
1
𝑛

𝑛−𝑘+1
∑

𝑖 ⋅ 𝑒𝑙𝑖 (𝑗). (10)

𝑙𝑖 𝑗=1

3 
• K-mer positional variance (or high-order moments): 

𝐷𝑙𝑖
𝑝 = 1

(𝑛 − 𝑘 + 1)𝑝−1𝑛𝑝−1𝑙𝑖

𝑛−𝑘+1
∑

𝑗=1
(𝑗 − 𝜇𝑙𝑖 )

𝑝 ⋅ 𝑒𝑙𝑖 (𝑗). (11)

Notice that a sequence of length n has only 𝑛− 𝑘+1 consecutive k-mer 
fragments, so the upper bound of the summation in the above equations 
is 𝑛 − 𝑘 + 1. Then one can define the k-mer natural vector as 
𝒗𝑘 = (𝑛𝑙1 , 𝑛𝑙2 ,… , 𝑛𝑙4𝑘 , 𝜇𝑙1 , 𝜇𝑙2 ,… , 𝜇𝑙4𝑘 , 𝐷

𝑙1
2 , 𝐷

𝑙2
2 ,… , 𝐷

𝑙4𝑘
2 )′. (12)

Natural vector with covariance. There is a limitation of only raising 
the order of moments. In fact, the moments of each order, including 
mean and variance, mainly reflect the characteristics of the positional 
distributions of individual words, but do not reflect the correlation of 
the positional distributions among different words. The covariance, as 
a commonly used statistic, can reflect the similarity of the trend of 
change between two variables, and is very suitable as a supplement 
to the elements in the natural vector. In the field of bioinformatics, 
covariance has been more widely used (Price, 1970; Shen and Li, 2016), 
but it is not common to use it directly for the inscription of word 
distribution information in sequences. To compute the covariance for 
the distributional positions of words in the sequence, there are several 
problems to overcome. The first is that the classical definition of a 
discrete covariance requires that the two discrete variables have the 
same number of samples, but this may not be satisfied in the case 
of DNA sequences. Secondly we also need to make the covariance 
compatible with the previously defined variance terms.

Zhao et al. first introduced covariance into the natural vector 
method in 2018 (Tian et al., 2018). In order to overcome the constraint 
that classical discrete covariance imposes on the set of values taken 
by two variables to be of the same size, they propose an averaging 
approach to compute the covariance for the positional distributions 
of two different words: suppose the position sets of word 𝑙1 is 𝐴 =
{𝑎1, 𝑎2,… , 𝑎𝑚} and that of 𝑙2 is 𝐵 = {𝑏1, 𝑏2,… , 𝑏𝑛} where 𝑚 > 𝑛, and the 
sequence length is 𝑁 , then 

𝐶𝑜𝑣(𝑙1, 𝑙2) =
1

𝑁 ⋅ 𝐶𝑛
𝑚

∑

𝐴∗⊂𝐴,|𝐴∗|=𝑛
𝐶𝑜𝑣(𝐴∗, 𝐵)

= 1
𝑁 ⋅ 𝐶𝑛

𝑚

∑

𝐴∗⊂𝐴,|𝐴∗|=𝑛

1
𝑛

𝑛
∑

𝑗=1
(𝑎∗𝑗 − 𝜇∗

𝑙1
)(𝑏𝑗 − 𝜇𝑙2 ),

(13)

where 𝑎∗𝑗 ∈ 𝐴∗ indicates the sampled 𝑛 positions from original position 
set 𝐴 of the word 𝑙1, and 𝜇∗

𝑙1
 is the corresponding mean position. 

Based on this way of definition, it both generalizes the classical discrete 
covariance so that it can be applied to the positional distributions of 
two different words in a sequence, and is compatible with the variance, 
i.e., the above definition is equivalent to the original definition of 
the variance when 𝑙1 = 𝑙2. However, the calculations in this way of 
definition are relatively cumbersome, and this calculation does not 
facilitate a biological interpretation of its meaning.

Sun et al. in 2022 proposed a new way of defining the covariance 
between word distributions in a sequence (Sun et al., 2022), which is 
significantly simplified in form compared to the previous definition: 

𝐶𝑜𝑣(𝑙1, 𝑙2) =
1

𝑛√𝑛𝑙1𝑛𝑙2

𝑛
∑

𝑖=1
(𝑖 − 𝜇𝑙1 )(𝑖 − 𝜇𝑙2 ) ⋅ 𝑒𝑙1𝑙2 (𝑠𝑖), (14)

where 𝑒𝑙1𝑙2 (𝑠𝑖) = 1 if 𝑠𝑖 = 𝑙1 or 𝑠𝑖 = 𝑙2, otherwise 𝑒𝑙1𝑙2 (𝑠𝑖) = 0. 
The covariance term is added to the basic natural vector so that an 
18-dimensional vector is obtained: 
𝒗𝑐 = (𝑛𝐴,… , 𝑛𝑇 ,𝜇𝐴,… , 𝜇𝑇 , 𝐷

𝐴
2 ,… , 𝐷𝑇

2 , 𝐶𝑜𝑣(𝐴,𝐶), 𝐶𝑜𝑣(𝐴,𝐺),

𝐶𝑜𝑣(𝐴, 𝑇 ), 𝐶𝑜𝑣(𝐶,𝐺), 𝐶𝑜𝑣(𝐶, 𝑇 ), 𝐶𝑜𝑣(𝐺, 𝑇 ))′.
(15)

This definition has the same symmetry as the classical covariance and 
shows a clean and beautiful form. Sun et al. applied this method to 
the classification study of some microbial datasets and found that the 
introduction of the covariance led to a significant improvement in 
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the classification of the traditional natural vector method on these 
datasets (Sun et al., 2022). In addition, the authors also point out in the 
paper that the method can be further defined for k-mer, e.g., for 2-mer, 
𝐶𝑜𝑣(𝐴𝐴,𝐴𝐶) can be computed in one unit of two consecutive positions 
using almost exactly the same formula. However, when this approach is 
really expanded in combination with k-mer, the dimensionality increase 
is on the level of the square of the number of k-mer fragments, and 
it is easy to be confronted with extremely high variable dimensions 
(e.g., defining covariance for 2-mer introduces an additional 16 ∗ 16 =
256 dimensions).

To summarize, the introduction of the covariance term can bring 
new information to the natural vectors besides the descriptive statistics 
of ‘‘individual word position distribution’’ such as the moments of 
each order, which is beneficial to the application of the natural vector 
method, but there are some problems with the existing methods.

1.2. Convex Hull principle

Convex hull. The continuity of the mapping from genome space  to 
vector space  cannot be described directly and can often only be 
judged by flanking. For example, evaluation metrics based on genome 
classification tasks (e.g., accuracy, F1 score, etc.), and evaluation met-
rics based on genome clustering tasks (e.g., purity, ASI index, etc.). But 
let us focus on the embedding vectors themselves, and if there exists 
a natural mathematical structure such that the differences between 
the embedding vectors of different kinds of organisms are naturally 
described by that structure, then the effectiveness of this embedding 
vector approach can be demonstrated to some extent. The smallest 
convex set containing a set of points is called the convex hull formed by 
this set of points. More precisely, let 𝑃 = {𝒑1,𝒑2,… ,𝒑𝑚} with 𝒑𝑖 ∈ R𝑘

be a point set in Euclidean space, then the convex hull spanned by this 
point set is defined by 
Conv(𝑃 ) = {𝜆1𝒑1 + 𝜆2𝒑2 +⋯ + 𝜆𝑚𝒑𝑚 | 𝒑𝑖 ∈ 𝑃 ,

0 ≤ 𝜆𝑖 ≤ 1,∀ 1 ≤ 𝑖 ≤ 𝑚,  and 𝜆1 + 𝜆2 +⋯ + 𝜆𝑚 = 1}.
(16)

In the usual Euclidean space, a convex hull can be visualized as a 
convex polyhedron (convex polygon). In two-dimensional Euclidean 
space, a convex hull can be visualized as a ring of rubber bands 
enclosing a number of nails nailed to a flat wooden board.
Convex hull principle. As the saying goes, ‘‘Birds of a feather flock 
together’’, if there is some commonality between a set of genomic 
sequences, then the corresponding ‘‘nails’’ should be nailed to similar 
areas of the plank, while the ‘‘rubber band surroundings’’ formed by 
different types of genomic sequences should not overlap each other. 
This intuition corresponds to the so-called convex hull principle. Tian
et al. proposed the convex hull principle of the natural vector method in 
2018 (Tian et al., 2018), which states that the convex hulls formed by 
the natural vectors of the genome sequences of organisms belonging to 
different classes (e.g., families or genus) taxonomically do not intersect 
with each other, and that the specific choices of the natural vectors 
here may vary somewhat with the type of organisms (e.g., the natural 
vectors with higher-order moments of different orders) (Wang et al., 
2019; Zhao et al., 2019; Sun et al., 2021). In non-mathematical lan-
guage, the convex hull principle based on the natural vector method is 
like placing the genome sequence data of organisms in a small universe, 
where each sequence of organisms is analogous to a star, and the 
convex hull is a nebula formed by the stars of a class of organisms, 
and the convex hull principle suggests that these nebulae are separated 
from each other. If this principle always holds true, then we can even 
look for unknown stars from known nebulae, in other words, for as-
yet-undiscovered genome sequences of known types of organisms. This 
theoretical paradigm clearly has applications (e.g., in the case of high-
variability epidemic outbreaks), and there is already a body of work 
devoted to theorizing about it (Zhao et al., 2020; Jiao et al., 2021).
4 
2. Results

2.1. Natural vector with asymmetric covariance

Limitations of existing natural vector forms. Despite the fact that there 
are already many members of the natural vector family, there are still 
some limitations of such methods. For example, while natural vectors 
with covariance complement the statistical correlation between the 
positional distributions of different words, and k-mer natural vectors 
complement the distributional information of k-mer fragments, the two 
approaches are not yet well compatible. This is because if the covari-
ance is defined directly for k-mer, on the one hand the interpretability is 
rather limited (in other words, not sufficiently biologically motivated), 
and on the other hand this would cause the vector dimension to grow 
rapidly, which would be inconvenient for practical use. In view of the 
above, we would like to propose a scheme to combine the properties 
of several different forms of natural vectors above.

Moreover, in most of the previous work on the convex hull principle, 
natural vectors with higher-order moments are used to construct con-
vex hulls, but the higher-order moments portion of the vectors exhibits 
significant numerical degeneracy with increasing order (i.e., it is very 
close to zero compared to the first number of dimensional components 
of the vectors), which may introduce additional computational errors 
to the test of the convex hull principle. Therefore, we hope to over-
come the above problems encountered in the traditional natural vector 
dimensioning process in a new way.

For natural vector with covariance, the covariance term is added 
mainly to reflect the statistical correlation of the positional distributions 
of different words, there is no qualification imposed on the positional 
distributions here, and the two words used to calculate the covariance 
are computationally equivalent, so we can call it a ‘natural vector 
with symmetric covariance’. In k-mer natural vectors, k-mer fragments, 
which are widely used in bioinformatics, are chosen as word lists to 
construct natural vectors, which leads to a natural expansion of vector 
dimensions and the amount of embedded information. Then, we can 
consider combining the k-mer and covariance elements, e.g., by defin-
ing the ‘2-mer covariance’, which means the computation of covariance 
is conditioned on the 2-mer composed by two specific letters. Based 
on these considerations, we have drawn on the properties of existing 
natural vector forms to devise a new way of calculating the covariance.
Introduction of asymmetric covariance. In equation [wq], the covariance 
term is defined as 
𝐶𝑜𝑣(𝐴,𝐶) = 1

𝑛 ∗
√

𝑛𝐴 ∗
√

𝑛𝐶

∑

𝑠𝑖∈{𝐴,𝐶}
(𝑖 − 𝜇𝐴)(𝑖 − 𝜇𝐶 ). (17)

It is easy to see that the positions of A,C can be exchanged in this equa-
tion without changing the value of the equation, i.e. it is symmetric. If 
we want to incorporate the k-mer information, for example, we can 
then add a ‘2-mer condition’ to the result of this unconditional calcula-
tion: the letters involved in the covariance calculation must appear in 
the 2-mer 𝐴𝐶(∈ 𝐿2). Then we get a ‘complete 2-mer condition’ version 
of the asymmetric covariance: 

𝐶𝑜𝑛𝑑 − 𝐴𝐶𝑜𝑣(𝐴,𝐶) = 1
𝑛 ∗ √

𝑛𝐴|𝐴𝐶 ∗ √

𝑛𝐶|𝐴𝐶
∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶 or 𝑠𝑖−1𝑠𝑖=𝐴𝐶
(𝑖 − 𝜇𝐴|𝐴𝐶 )(𝑖 − 𝜇𝐶|𝐴𝐶 ),

(18)

where the conditional operator ‘‘|𝐴𝐶 ’’ means to restrict the calculation 
post-fixed by this operator to all 2-mer 𝐴𝐶 ’s in the sequence. However, 
in this way of definition, we completely discard the positions of letters 
of the same type appearing outside the 2-mer in the sequence, which 
may bring about incomplete information. In fact, we have the following 
observations: 
𝑛 = 𝑛 = 𝑛 , 𝜇 = 𝜇 + 1 = 𝜇 + 1, (19)
𝐴|𝐴𝐶 𝐶|𝐴𝐶 𝐴𝐶 𝐶|𝐴𝐶 𝐴|𝐴𝐶 𝐴𝐶
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where 𝑛𝐴𝐶 and 𝜇𝐴𝐶 are both terms defined according to the description 
of k-mer natural vectors in the previous subsection. However, by a 
simple mathematical derivation we find that this fully conditional form 
does not give us new information compared to the traditional k-mer 
natural vector components, which suggests that it is not desirable to 
rigidly add the k-mer condition to the covariance formula: 

𝐶𝑜𝑛𝑑 − 𝐴𝐶𝑜𝑣(𝐴,𝐶)

= 1
𝑛 ∗ 𝑛𝐴𝐶

[

∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶
(𝑖 − 𝜇𝐴𝐶 )(𝑖 − 𝜇𝐴𝐶 − 1)+

∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶
(𝑖 + 1 − 𝜇𝐴𝐶 )(𝑖 + 1 − 𝜇𝐴𝐶 − 1)

]

= 1
𝑛 ∗ 𝑛𝐴𝐶

∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶
(𝑖 − 𝜇𝐴𝐶 )[(𝑖 − 𝜇𝐴𝐶 − 1) + (𝑖 + 1 − 𝜇𝐴𝐶 )]

= 2
𝑛 ∗ 𝑛𝐴𝐶

∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶
(𝑖 − 𝜇𝐴𝐶 )2

= 2 ∗ 𝐷𝐴𝐶
2 .

(20)

Similar to [eq], it can be shown to hold for the general k-mer case, 
except that the final product coefficient changes from 2 to 𝑘. Thus, if the 
full k-mer condition is added directly to the covariance, the covariance 
degenerates into the variance of the k-mer position, which defeats the 
idea of combining information from both the k-mer and the covariance.

Inspired by this, the asymmetric covariance that we are trying to 
propose takes a ‘‘non-complete k-mer condition’’ approach. To be more 
precise, we adopt a combination of local information (the distribution 
of the positions of the letters in the constraints of the 2-mer condition) 
and global information (the distribution of the positions of all the 
individual letters in the sequence): 

𝐴𝐶𝑜𝑣(𝐴,𝐶) = 1
𝑛 ∗

√

𝑛𝐴 ∗
√

𝑛𝐶

∑

𝑠𝑖𝑠𝑖+1=𝐴𝐶 or 𝑠𝑖−1𝑠𝑖=𝐴𝐶
(𝑖 − 𝜇𝐴)(𝑖 − 𝜇𝐶 ). (21)

In short, we let the local conditional operator act only on the individual 
letter positions involved in the summation, while retaining the global 
computation of the two statistics, the number of letters appearing in the 
equation and the average letter position. This combination of local k-
mer word position conditioning and global mean word position avoids 
degradation of the covariance itself (unless the words in the sequence 
that participate in the covariance computation appear only in the k-mer 
used as conditioning).

Numerical example. To make it clearer, let us consider a simple exam-
ple. Let 𝑆 = 𝐴𝐶𝐶𝑇𝐺𝐴𝐶 be a DNA sequence, we focus on the covariance 
of letter 𝐴 and letter 𝐶. Clearly we have 𝑛 = 7 and

• 𝑛𝐴 = 2 and 𝑛𝐴|𝐴𝐶 = 2;
• 𝑛𝐶 = 3 but 𝑛𝐶|𝐴𝐶 = 2;
• 𝜇𝐴 = (1 + 6)∕2 = 3.5 and 𝜇𝐴|𝐴𝐶 = (1 + 6)∕2 = 3.5;
• 𝜇𝐶 = (2 + 3 + 7)∕3 = 4 but 𝜇𝐶|𝐴𝐶 = (2 + 7)∕2 = 4.5.

so one can calculate that

𝐶𝑜𝑣(𝐴,𝐶) = 1

7
√

6

∑

𝑖∈{1,2,3,6,7}
(𝑖 − 3.5)(𝑖 − 4), (22)

𝐶𝑜𝑛𝑑 − 𝐴𝐶𝑜𝑣(𝐴,𝐶) = 1
14

∑

𝑖∈{1,2,6,7}
(𝑖 − 3.5)(𝑖 − 4.5), (23)

𝐴𝐶𝑜𝑣(𝐴,𝐶) = 1

7
√

6

∑

𝑖∈{1,2,6,7}
(𝑖 − 3.5)(𝑖 − 4). (24)

The third equation above is our proposed asymmetric covariance term. 
We can figuratively say that ‘the local information brought about by the 
2-mer condition is all under the summation symbol’. The asymmetry 
here stems directly from the ordering of the 2-mer condition itself, 
i.e., AC and CA as 2-mer are distinct fragments. Clearly one can see 
5 
that 
𝐴𝐶𝑜𝑣(𝐴,𝐶) = 1

7
√

6

∑

𝑖∈{1,2,6,7}
(𝑖 − 3.5)(𝑖 − 4) ≈ 68.89,

𝐴𝐶𝑜𝑣(𝐶,𝐴) = 1

7
√

6

∑

𝑖∈∅
(𝑖 − 3.5)(𝑖 − 4) = 0.

(25)

Higher-order forms. Moreover, since k-mer is not restricted to be 2-mer, 
we can further define the asymmetric (generalized) covariance between 
𝑘 letters. Let 𝑙𝑗 = (𝑡1𝑡2 ⋯ 𝑡𝑘) ∈ 𝐿𝑘 be an arbitrary k-mer, then 

𝐴𝐶𝑜𝑣(𝑡1, 𝑡2,… , 𝑡𝑘)

= 1
𝑛
∏𝑘

𝑠=1
√𝑛𝑡𝑠

∑

𝑖∈𝑷𝒐𝒔𝑘,𝑙𝑗

(𝑖 − 𝜇𝑡1 )(𝑖 − 𝜇𝑡2 )⋯ (𝑖 − 𝜇𝑡𝑘 )

= 1
𝑛
∏𝑘

𝑠=1
√𝑛𝑡𝑠

𝑘
∑

𝑝=1

𝑛𝑡𝑝 |𝑙𝑗
∑

𝑖=1

𝑘
∏

𝑝=1
(𝑖 − 𝜇𝑡𝑝 ),

(26)

where 𝑷𝒐𝒔𝑘,𝑙𝑗  consists of each position of all instances of all occurrences 
of 𝑙𝑗 ∈ 𝐿𝑘 in the sequence 𝑆.

After adding the components of the asymmetric covariance to 
the first eight base dimensions of the natural vector, we get a 24-
dimensional vector. In general, adding higher order asymmetric covari-
ance components gives us a vector of dimension 

8 + 42 + 43 +⋯ + 4𝑘 = 8 + 1
3
(4𝑘+1 − 16) = 1

3
(4𝑘+1 + 8), (27)

where 𝑘 corresponds to the local k-mer condition chosen for the com-
putation of the highest order asymmetric covariance component in the 
vector. We point out again that the additional dimensionality associated 
with the extension of their proposed covariance over k-mer in Sun et al. 
(2022) would be of the order of the square of the above equation.

2.2. Convex Hull principle test

Convex hull principle. For each dataset, we first compute the vector 
representations of all the sequences, and then determine whether the 
two convex hulls in any convex hull pair intersect or not, here a convex 
hull corresponds to a family in taxonomy. According to the article that 
proposes the convex hull principle, the number of pairs of intersecting 
convex hulls should get smaller and smaller as the dimensionality of the 
natural vector rises until it goes to 0, and thus the convex-hull principle 
is fully established.

It should be noted that, as an empirical rule, the convex hull 
principle does not guarantee that any vector representation will satisfy 
the convex hull principle for any dataset, but if a vector representation 
can bring the number of intersecting convex hull pairs to a known 
minimum, or even to 0 in order to truly establish the convex hull princi-
ple, then we can assume that such a vector representation can be very 
effective for the refinement of sequence information, and has a good 
ability to classify sequences. We can understand this from a different 
perspective. In the transformer structure widely used in modern deep 
learning, what the attention module is doing is also ‘‘constructing’’ a 
convex hull of intermediate-level vector representations (values) based 
on the input content, and then convexly combining (attention scores) 
the elements in it to generate vector representations of more elements, 
and the training process of this model can be regarded as a loss-
driven optimization of the ‘‘semantic convex hulls’’. Thus, there is good 
reason to use the convex hull principle to test the validity of the vector 
representation. Starting from the convex hull principle, as a measure 
of the validity of the vector representation, we can define the ratio of 
the number of disjoint convex hull pairs to the total number of convex 
hull pairs under a vector representation as the ‘‘convex hull principle 
validity ratio’’ for each dataset. The results of convex hull principle test 
is displayed in Table  1.
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Table 1
Convex hull principle validation ratio on 3 datasets. DCH: number of disjoint convex 
hull pairs; CHPVR: convex hull principle validation ratio.
 Dataset Indicators Dimension of ACNV (with k-mer condition)
 24 (2-mer) 88 (3-mer) 344 (4-mer) 1368 (5-mer) 
 Fungi DCH 99,986 108,400 108,810 108,811  
 CHPVR 91.89% 99.62% 99.99% 100.00%  
 Virus DCT 3384 3400 3403  
 CHPVR 99.44% 99.91% 100.00%  
 Bacteria DCH 15,746 15,753  
 CHPVR 99.96% 100.00%  

Fungi DNA barcodes. The Fungi DNA barcodes dataset has a total of 
467 distinct families, corresponding to 𝐶2

467 = 108811 convex hull pairs. 
As a comparison, in Tian et al. (2018), their dataset contains 448 
families, corresponding to 𝐶2

448 = 100128, while in Sun et al. (2022), 
their dataset contains 467 families. Our dataset is much closer to Sun 
et al. (2022) (this is mainly due to the fact that Sun et al. (2022) was 
more updated and the version of the database is much closer to the 
current version), so we compare our results with (Sun et al., 2022). In 
their work, they tried both classical 12-dimensional natural vectors and 
18-dimensional natural vectors with covariance, and for all 108,811 
convex hull pairs, they obtained 75,237 and 88,719 disjoint convex hull 
pairs in both cases, which correspond to 69.14% and 81.53% of the 
convex hull principle validity ratio, respectively. We performed tests 
using the proposed asymmetric covariance natural vectors (ACNV) and 
finally achieved a 100% verification ratio of the convex hull principle.

Viral genome sequences. The viral genome sequences dataset has a total 
of 83 distinct families, corresponding to 𝐶2

83 = 3403 convex hull pairs, 
which is the same as (Sun et al., 2022). In their work, the classical 
natural vectors and natural vectors with covariance give 3321 and 
3322 disjoint convex hull pairs, corresponding to 97.59% and 97.62% 
validation ratios of the convex hull principle, respectively. With our 
proposed ACNV, it is still possible to achieve a 100% validation ratio 
of convex hull principle can also be achieved.

Bacterial genome sequences. The bacterial genome sequences dataset 
has a total of 178 distinct families, corresponding to 𝐶2

178 = 15, 753
convex hull pairs, which is the same as (Sun et al., 2022). In Sun 
et al. (2022), the classical natural vectors and natural vectors with 
covariance give 14,565 and 15,160 disjoint convex hull pairs, corre-
sponding to 92.46% and 96.24% validation ratios of the convex hull 
principle, respectively. And with the use of our proposed ACNV, a 100% 
validation ratio of convex hull principle can also be achieved (see Table 
1). In summary, it can be seen that based on ACNV, we can realize the 
complete convex hull principle for three different microbial genome se-
quence datasets, which surfaces that ACNV has obvious effectiveness in 
extracting sequence information, especially with the beautiful convex 
separation geometric property in the vector representation space.

2.3. Bacterial genome sequence classification

Of the three datasets used for the convex hull principle experiments, 
the bacteria dataset has the widest range of sequence lengths and is 
relatively rich in the number of sequence families, making it one of the 
more challenging datasets from a sequence categorization perspective. 
In order to more directly reflect the potential of ACNV for sequence 
classification, we apply them to the sequence classification task on 
the bacterial genome sequence dataset by combining them with MLP 
and XGBoost, two common machine learning classification models. In 
both experiments, we used only 24-dimensional asymmetric covariance 
natural vectors (i.e., under the 2-mer condition).
6 
Table 2
Classification model training settings. BS: batch size; LR: learning rate; Opt: optimizer; 
MD: max depth.
 MLP Epochs BS LR Opt  
 1000 16 0.0005 Adam 
 XGBoost # of Estimators MD LR  
 250, 350, 500, 550 5, 20, 40, 60 0.05, 0.10, 0.15  

MLP model settings. We use a simple MLP model to perform sequence 
classification task. The model consists of four hidden layers and a 
softmax classification layer. The dimensions of the four hidden layers 
are 1024, 512, 256, and 128, and all of them use the ReLu activation 
function, layernorm, and dropout of 0.5. The 16373 sequences in the 
dataset are divided into training, evaluation, and test sets in the ratio 
of 75:20:5. The other settings of the training process are listed in Table 
2

XGBoost model settings. We used the XGBoost library to create the clas-
sifiers and GridSearchCV to perform a grid search on the hyperparame-
ters of the model to find the best combination of hyperparameters. The 
dataset is divided into training, validation and test sets in the ratio of 
90:9:1 after removing labels with less than 100 sequence entries, leav-
ing 13135 sequences. Further information on model hyperparameters 
is given in Table  2.
Classification results. The trained MLP model and the best XGBoost 
model obtained through parameter search were used to test the classi-
fication accuracy on the test set. The predicted labels of the prediction 
set predicted after model training are compared with the correct labels 
and the proportion of labels predicted accurately is calculated. The MLP 
model gave 96% classification accuracy on the test dataset consisting 
of 819 sequences, while the XGBoost model gave 98% classification 
accuracy on the test dataset consisting of 132 sequences. In contrast, 
classical 12-dimensional natural vector, 18-dimensional natural vector 
with covariance, and 48-dimensional 2-mer natural vector achieved 
classification accuracies of 72%,90%, 81%,90% and 89%,93%, respec-
tively. This shows that ACNV has better representation ability than the 
other three natural vector methods. In order to see the potential of 
ACNV in sequence classification more graphically, we used UMAP and 
tSNE to visualize the dimensionality reduction of the ACNV correspond-
ing to the labels of the top five sequence counts, and it can be seen from 
the figure that the ACNV distinguishes different types of sequences very 
well: (see Fig.  1).

In these two experiments, we have still only used a 24-dimensional 
ACNV, and the results may be further improved if the model is trained 
with an ACNV with higher-order k-mer conditions. We believe this 
demonstrates the potential of ACNV as a powerful tool for sequence 
classification/clustering tasks.

3. Discussion

Non-degeneracy of ACNV components. One of the biggest improvements 
of ACNV over other versions of the natural vector method is the 
ability to combine covariance with k-mer information without losing 
information and keeping the values of the individual components from 
varying too much. This is particularly useful when verifying the convex 
hull principle, since numerical instability of the vector components can 
seriously affect the correctness of the results of the convex hull intersec-
tion determination algorithm. Most of the validation of the convex hull 
principle in previous work has used natural vector representations with 
higher-order moments (Tian et al., 2018; Zhao et al., 2019; Sun et al., 
2021), which carry indices of sequence length and word frequency as 
denominators in their definitions that can lead to the phenomenon of 
degeneracy of a large number of vector components after a certain 
order - i.e., the appearance of values that are almost zero. If the k-
mer natural vectors or natural vectors with covariance are used to 
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Fig. 1. T-SNE and UMAP visualization of the ACNV corresponding to the labels of the top five sequence counts.
Fig. 2. Line and bar plots of the average values of the vector components, each dimension is displayed by averaging the computed results over all 3411735 sequences. (a) ACNV 
under 2-mer condition (dim=24). (b) Natural vector with 5-order moments (dim=24). It is clear that the higher-order moment part of the natural vector has significant numerical 
degeneracy, whereas ACNV has no such problem.
 

construct the convex hull principle, it is often limited by the fact that 
the vectors contain incomplete information leading to problems such as 
incomplete separation of the convex hull pairs or high dimensionality 
(e.g., when trying to combine the k-mer with the covariance). ACNV, 
on the other hand, can introduce the covariance information between 
word distributions while keeping the same dimension as the k-mer 
natural vectors, which overcomes the lack of complete information and 
also avoids the degradation of the vector components.

We tested the SARS-CoV-2 spike gene nucleotide sequence dataset 
consists of 3411735 sequences. It can be seen in Fig.  2(b) that if a 
24-dimensional natural vector with 5-order moments used, the com-
ponents from the 13th dimension onwards begin to differ significantly 
in numerical magnitude from the first 12 dimensions, resulting in a 
degenerate effect. However, in Fig.  2(a), the differentiation effect of 
each dimension is maintained by ACNV, so we say that ACNV has non-
degeneracy in vector components. And the numerical non-degeneracy 
of the vector components can still be guaranteed even in the 1368-
dimensional ACNV, as is shown in Fig.  3. We speculate that this is 
one of the reasons why ACNV is able to realize the fully convex hull 
principle in our experiments. In addition, we note that the value of 
the 15th dimension covariance in Fig.  2(a) is significantly smaller 
compared to the other covariance dimensions. The 2-mer sequence 
corresponding to this dimension is ‘‘CG’’, and this small value may 
indicate a relatively weak preference for codons containing ‘‘CG’’ in the 
spike gene sequence of the SARS-CoV-2, which is supported by other 
studies (Fumagalli et al., 2023).
Further research directions. Based on the good representation ability 
and beautiful geometric properties of ACNV, we believe that some of 
the following further studies (applied or exploratory) can be carried out 
based on ACNV:
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• As a plug-and-play tool for any sequence-comparison type task: 
based on ACNV’s fast algorithms and sequence representation 
capabilities, we can use ACNV to quickly construct a uniform 
dimensional vector representation of biological sequence data of 
any length, which is plug-and-play for all kinds of sequence com-
parison tasks. From the perspective of convenient application, for 
human/mouse latest version gene database, we have calculated 
the ACNVs for gene sequences, and can provide the service or 
online dynamic calculating of ACNV upon input an fasta gene 
sequence in our upcoming releases. For example, natural vectors 
can be used as data encoders in deep learning models based 
on biological sequences, which may be able to accelerate model 
convergence.

• Construction of gene correlation network diagram based on ACNV:
by calculating the ACNVs of the gene sequences, and then further 
calculating the correlation between the ACNVs (e.g., by Pearson 
correlation coefficient, etc.) to form a correlation matrix, we can 
use the ACNVs as the points and the correlation matrix as the 
edges to construct a gene association network, which can provide 
a basic tool for the study of gene interactions and other aspects.

• Solving the vector-to-sequence problem via the convex hull prin-
ciple under ACNV: since ACNV has the potential representation 
capability to guarantee that the convex hull principle holds, we 
can first construct a convex hull using ACNV for the sequence 
dataset of interest, and then search for new ACNV points in 
the convex hull, solving the inverse problem of ACNV-to-seq 
for the purpose of searching for new sequences that have not 
yet been discovered. There is some theoretical difficulty in this 
application because the scattering points within a convex packet 
in a high-dimensional space tend to be distributed at the edges 
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Fig. 3. Line and bar plots of the values of the components of ACNV with 5-mer conditioned asymmetric covariance (dim=1368), each dimension is displayed by averaging the 
computed results over all 3411735 sequences. (a) First 344 dimensional components; (b) 345th to 1368th dimensional components. It can be seen that the introduction of higher 
dimensions does not lead to a significant numerical degradation effect either.
of the packet, and thus it is not easy to find new points in it. 
Deep learning based methods usually produce high dimensional 
embedding representations and have not been verified for the 
convex envelope principle. However, ACNV combines the geo-
metric property of the convex packet principle with the ability 
to represent it efficiently in low dimensions, and thus has the 
potential to be applied to this problem.

4. Conclusions

In this paper, we introduce asymmetric covariance natural vector 
(ACNV), an improved version of natural vectors. This method firstly 
overcomes the problem that natural vectors with higher-order moment 
statistics alone cannot imply the correlation of the positional distri-
butions of different words. Secondly, it combines the natural vectors 
with covariance and the k-mer natural vectors in a form of ‘‘k-mer 
conditioned’’, so that ACNV can combine the information of covariance 
between the positional distributions of words and the k-mer fragments 
of the words while maintaining the same dimensionality as the k-mer, 
which further overcomes the problem that the traditional covariance 
natural vector method is not well compatible with k-mer. Through ex-
periments on microbial (bacterial, fungal, and viral) genome sequence 
datasets, ACNV has achieved 100% validation rate of the convex hull 
principle, which reflects the beautiful geometric properties of the ACNV 
method in constructing vector representations of sequences and its 
excellent ability to characterize the differences of biological taxa, and 
also provides a new tool for subsequent research on biological sequence 
data.

5. Materials and methods

Methods. See the first subsection of Results, ’Natural Vector with Asym-
metric Covariance’, for an analysis of the definition of ACNV; see the 
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third subsection of Results for a description of the training and evalu-
ation of the sequence classification models covered in the paper. For a 
description of the training and evaluation of the sequence classification 
model described in the paper, see Section 3 of the Results, ’Bacterial 
Genome Sequence Classification’.
Materials. Our method is based on the development of the natural 
vector method, and the most direct way to test the capability of the 
method itself is to make a direct comparison with other natural vector 
methods that have been previously proposed on the same dataset. To 
this end, we fused the datasets used in the two previously mentioned 
prior works that introduced covariance into the natural vector method, 
and tested our proposed new method on these datasets for sequence 
classification tasks. Our dataset consists of three main types: bacteria, 
fungi, and viruses. After the data were downloaded, five types of pre-
processing were performed: (1) filtering out the data without taxonomic 
tags; (2) filtering out all the sequence data of the family containing 
less than 3 sequence entries; (3) filtering out the mixed mitochondrial 
sequence data in the bacterial dataset; (4) de-weighting the dataset; and 
(5) filtering out the sequence data containing ambiguous bases (e.g., N, 
Y, R, etc.).

More specifically, the three basic types of data are as follows:

• Fungi DNA barcode dataset, which was used in Tian et al. (2018), 
Sun et al. (2022) at the same time. This dataset was downloaded 
from the Barcode of Life Data System (BLDS) database, and after 
preprocessing, it yielded 73,140 non-repetitive sequence data, 
which belonged to 467 families.

• Bacterial genome sequence dataset, which was used in the ar-
ticle by Sun et al. (2022). This dataset was downloaded from 
the National Center for Biotechnology Information (NCBI) ref-
seq database, and after preprocessing, 16,373 sequences were 
obtained, which belong to 178 families.

• Viral genome sequence dataset, which was used in Sun et al. 
(2022). This dataset was downloaded from the refseq database 
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of the National Center for Biotechnology Information (NCBI), and 
after preprocessing, 7382 sequences were obtained, which belong 
to 83 families.

These sequences vary in length from a few hundred bp (e.g. fungi 
barcodes) to tens of millions of bp (e.g. bacterial genome sequences), 
and thus there is a clear requirement for length adaptation of the 
method itself for sequence classification tasks. Sequences from bacterial 
genome and viral genome datasets can be downloaded from the NCBI 
database while sequences from fungi DNA barcodes can be downloaded 
from the BLDS database; see supplementary tables I-(1-3) for detailed 
accession numbers.

We also used the spike gene coding sequence dataset of SARS-CoV-
2 to demonstrate the numerical non-degeneracy of the components of 
ACNV. This dataset was downloaded from GISAID database of the five 
main variants: Alpha (206,520 sequences), Beta (16,383 sequences), 
Gamma (37,754 sequences), Delta (1,242,249 sequences) and Omicron 
(1,908,829 sequences), and in total 3,411,735 sequences.

Algorithm for computing ACNV. ACNV does have a slight computational 
disadvantage over existing natural vector methods, and in general it 
is not as fast as classical natural vectors and k-mer natural vectors. 
However, we have been developing a fast algorithm for ACNV and have 
achieved some results. This may limit the further application of the 
ACNV method to larger datasets. In this study, we used a fixed-length 
sliding window algorithm to construct ACNV. Based on this algorithm, 
we can complete the calculation of a ACNV in only single traversal. The 
idea behind the fast calculating algorithm is that during the iteration 
process, for any one pair of adjacent subsequences, the calculated value 
of the previous subsequence is used to continue calculating the next 
one, thereby decreasing computational complexity.

Specifically, for each pair of adjacent subsequences, the only dif-
ference between them is the single characters on the left and right 
sides, so it is not difficult to find that the calculating of adjacent 
subsequences have a high degree of repeatability. Therefore, According 
to the decomposition of formulas mentioned above, we sequentially 
traverse and calculate the subsequences. When we calculate the next 
subsequence, we remove the left character of the previous subsequence 
and add the adjacent right character. Finally, the sum of all same-
subsequence values is divided by the number of relevant nucleic acids 
to complete the calculation.

We could assume that the average length of the nucleic acids 
sequence is 𝐿, and we need to calculate a k-mer asymmetric natural 
vector 𝑘, 𝐿 ∈ N+, where 𝐿 ≥ 𝑘 for each sequence. The computational 
complexity of using brute force algorithm for direct enumeration is 
𝑂(𝑘𝐿), while the computational complexity of this fast algorithm is 
only 𝑂(𝐿). We will soon present an article on ACNV computation on 
large-scale genome sequence data based on this fast algorithm.

Algorithm to determine whether two convex hulls intersect. We follow (Sun 
et al., 2021; Tian et al., 2018) to use a linear programming based 
method to decide whether two convex hulls intersect with each other. 
Let 𝑃 = {𝒑1,𝒑2,… ,𝒑𝑚} and 𝑄 = {𝒒1, 𝒒2,… , 𝒒𝑛} be two point sets in R𝑘, 
then Conv(𝑃 ) ∩ Conv(𝑄) = ∅ is equivalent to that the following linear 
programming problem has no feasible solution: 
min 0,

s.t.
𝑚
∑

𝑖=1
𝜆𝑖𝒑𝑖 =

𝑛
∑

𝑗=1
𝜇𝑗𝒒𝑗 ,

𝑚
∑

𝑖=1
𝜆𝑖 =

𝑛
∑

𝑗=1
𝜇𝑗 = 1.

(28)

We implemented the above algorithms in python, using the linprog 
library in scipy.optimize for the linear programming solver (Virtanen 
et al., 2020).
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