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With the rapid development of genome sequencing technology, ge-
nomic sequence analysis has become an important field in modern
biological research. However, sequencing errors, repetitive regions,
and complex biological processes often lead to missing or ambigu-
ous bases in genomic sequences, which are typically represented
by non-standard symbols (such as R, Y, S, W, K, etc.). These
issues severely affect the accuracy of genomic data, especially in
tasks such as gene assembly and variant detection. To address this
issue, this study proposes an encoding method based on asymmet-
ric covariance natural vectors to characterize genomic sequences
and predict ambiguous bases using Gated RecurrentUnit(GRU).
Experimental results demonstrate that, compared with traditional
encoding methods (such as One-hot encoding), the asymmetric co-
variance natural vector can more effectively utilize the information
surrounding missing nucleotides for prediction, showing significant
advantages in recovering nucleotides missing from intermediate po-
sitions. Additionally, this method also performs well on the SARS-
CoV-2 Alpha variant dataset, with an error rate of only 1.09% in
predicting non-standard bases during the encoding recovery pro-
cess, further validating its effectiveness and potential for practical
genomic data analysis.

Keywords and phrases: Gene Recovery, Natural Vector, GRU, SARS-
CoV-2.

1. Introduction

In recent years, the rapid development of genome sequencing technology has
facilitated the accumulation of large-scale genomic data, providing unprece-
dented opportunities for biological research [1, 2, 3]. However, genomic se-
quences often contain missing or ambiguous bases due to sequencing errors,
sample contamination, the presence of repetitive regions, and complex bio-
logical processes. These bases are typically represented by IUPAC codes[4],
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which pose challenges to tasks such as gene assembly and variant detection,
thereby affecting the accuracy of the data and the reliability of downstream
bioinformatics analyses.

Figure 1 shows the S protein data of different SARS-CoV-2 strains down-
loaded from the GISAID database [5] as of October 2024. We calculated the
missing rate by identifying sequences that contained at least one non-standard
base (i.e., any character other than A, G, C, or T). A sequence was considered
‘missing’ if it contained at least one such character, and the reported missing
rate represents the proportion of these sequences in the total sample.

The results show that the missing rate in all strains is nearly over 70%,
with Beta and Omicron strains reaching up to 85%. This indicates that a
large number of missing regions exist in the SARS-CoV-2 genome, which
may affect the accuracy of downstream analyses. Therefore, how to effectively
recover missing or ambiguous bases to improve the integrity of genomic data
has become an important issue that needs to be addressed urgently in current
research.

Currently, there are various methods for handling missing or ambiguous
bases in genomic sequences. For example, IMGT/GENE-DB [6] can be used to
identify the correct immunogenome and perform gene recovery. However, this
method is computationally intensive and time-consuming, and the recovery

Figure 1: Comparison of Base Deletions in S protein Among Different SARS-
CoV-2 Strains.
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results may be uncertain. In recent years, deep learning has been widely ap-
plied in genomic sequence analysis[7, 8, 9]. For example, a common approach
is to perform One-hot encoding of the nucleotides A, G, C, and T, and use
deep learning models to predict missing bases. However, deep learning mod-
els typically require a fixed input dimension, which means that truncation or
padding is needed when processing genomic sequences. This may lead to in-
formation loss or the introduction of noise[10, 11], thereby affecting prediction
accuracy.

Therefore, a new encoding method is needed to reduce information loss
and improve prediction accuracy. In recent years, Alignment-free methods
have gained increasing attention. These methods map genomic sequences of
arbitrary length to fixed-dimension vectors based on the statistical features of
nucleotides, thereby reducing information loss to some extent. For example,
the Natural Vector method converts genomic sequences into fixed-dimension
vectors by extracting their statistical features [12]. The Covariance Natural
Vector further incorporates the covariance information between nucleotides,
thereby enhancing the representation of sequence features [13]. However, these
methods primarily focus on the statistical relationships between nucleotides
and fail to fully consider the directionality information of nucleotides. Direc-
tionality information is crucial in the recovery of genomic sequences, and its
absence may affect the accurate prediction of missing bases. Therefore, how
to effectively integrate directionality information to improve the accuracy of
genomic sequence recovery remains an urgent issue to be addressed.

This study proposes a method based on the Asymmetric Covariance Nat-
ural Vector (ACNV) [14], which further improves the accuracy of recovering
missing bases by incorporating the directionality information of nucleotides.
We first encoded the genomic sequences using the Asymmetric Covariance
Natural Vector and then trained a deep learning model to learn the cor-
respondence between DNA sequences and their natural vector representa-
tions, thereby predicting ambiguous nucleotides in genomic sequences. Ex-
perimental results show that, compared with traditional One-hot encoding,
this method performs particularly well in predicting nucleotides at intermedi-
ate positions, indicating its ability to more effectively utilize information from
neighboring nucleotides to improve prediction accuracy. This method provides
a powerful technical support for the integrity repair and further analysis of
genomic data.
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2. Materials and Methods

2.1. Methods

Natural Vector The Natural Vector is a method that converts nucleotide
sequences into numerical form to characterize the distribution features of ge-
nomic sequences [12]. For example, for any genomic sequence S = s1, s2, . . . , sn

(with length n), where each nucleotide si belongs to the set L = {A, C, G, T/U},
the indicator function Ik(·) : L → {0, 1} is defined for a nucleotide k ∈ L,
with the expression:

(1) Ik(si) =
{

1, if si = k,

0, otherwise.

Let si ∈ L, where i = 1, 2, . . . , n denotes the i-th nucleotide in the sequence.
We define the following statistical metrics:

• The occurrence count of nucleotide k in sequence S:

(2) nk =
n∑

i=1
Ik(si)

• The average position of nucleotide k in sequence S:

(3) µk = 1
nk

n∑
i=1

i · Ik(si)

• The j-th central moment of the positions of nucleotide k in sequence S:

(4) Dj
k =

n∑
i=1

(i − µk)jIk(si)
nj−1

k nj−1
, j = 2, . . . , nk

Here, j denotes the order of the central moment. When j = 2, a 12-
dimensional Natural Vector is obtained, representing the counts, average po-
sitions, and second-order central moments of the four nucleotides in the se-
quence, as follows:

(nA, nC , nG, nT , µA, µC , µG, µT , D2
A, D2

C , D2
G, D2

T )
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Symmetric Covariance Natural Vector The 12-dimensional Natural
Vector can be used to describe the distribution features of individual nu-
cleotides in genomic sequences, but it fails to effectively represent the inter-
relationships between nucleotides, thereby limiting its application in genomic
sequence analysis. To address this issue, Sun et al. [13] introduced covari-
ance to describe the interrelationships between nucleotide positions, thereby
enhancing the representation capability of sequence features. For nucleotides
k, l ∈ L, the indicator functions are defined as follows:

(5) Ikl(si) = Ilk(si) =
{

1, if si = k or si = l,

0, otherwise.

The covariance of nucleotide positions Cov(k, l) for nucleotides k and l is
defined as follows:

Cov(k, l) = 1
n

n∑
i=1

[i − µk][i − µl]Ikl(si)√
nk

√
nl

, nk ̸= 0 and nl ̸= 0

Here, µk and µl represent the average positions of nucleotides k and l in
the sequence, while nk and nl represent their respective occurrence counts.
The covariance quantifies the positional correlation between nucleotides k
and l in the genomic sequence. Therefore, any genomic sequence can be rep-
resented by an 18-dimensional Natural Vector, as follows:

(nA, nC , nG, nT , µA, µC , µG, µT , D2
A, D2

C , D2
G, D2

T , Cov(A, C), Cov(A, G), . . . , Cov(G, T ))

Asymmetric Covariance Natural Vector The Symmetric Covariance
Natural Vector only focuses on the positional relationships between nucleotides
and fails to capture their directionality information. However, in nucleotide
sequences, the order of adjacent nucleotides {si, sj} and {sj , si} may have
different biological implications. The Asymmetric Covariance Natural Vector
can distinguish directional relationships such as A→C and C→A, effectively
capturing the sequential features of nucleotide arrangements.

Let the nucleotide sequence be S = s1s2 . . . sn, where si ∈ {A, C, G, T/U}.
For adjacent nucleotide pairs (si, si+1), the indicator function of nucleotide
pairs Im1m2(sisi+1) is defined as follows:

(6) Im1m2(sisi+1) =
{

1, if m1m2 = sisi+1,

0, otherwise.
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Here, the indicator function Im1m2(si, si+1) takes a value of 1 when (si, si+1) =
(m1, m2), and 0 otherwise. Based on this indicator function, the Asymmetric
Covariance a-Cov(m1, m2) between nucleotides m1 and m2 is defined as:
(7)

a-Cov(m1, m2) = 1
n

n−1∑
i=1

[i − µm1 ][i − µm2 ]Im1m2(sisi+1)
√

nm1
√

nm2

, nm1 ̸= 0 and nm2 ̸= 0

Here, nm1 and nm2 represent the occurrence counts of nucleotides m1 and
m2, while µm1 and µm2 represent their average positions.

Therefore, any given genomic sequence can be characterized by the Asym-
metric Covariance Natural Vector, as follows:

(nA, nC , nG, nT , µA, µC , µG, µT , a-Cov(A, C), . . . , a-Cov(C, A), . . . , a-Cov(G, T )) .

Here, nA, nC , nG, nT represent the counts of these nucleotides in the sequence,
while µA, µC , µG, µT represent the position means of these nucleotides in the
sequence. The remaining part of the vector represents the Asymmetric Co-
variance between nucleotide pairs with respect to their positional information.

Example Below, we illustrate the calculation process using the nucleotide
sequence ACGGTAGTCA as an example. First, we calculate the counts and
average positions of each nucleotide:

nA = 3, nC = 2, nG = 3, nT = 2,

µA = 5.67, µC = 5.5, µG = 4.67, µT = 6.5

According to Equation (6), the indicator functions of nucleotides are calcu-
lated, as shown in the following table:

Table 1: Indicator function between nucleic acids

sequence A C G G T A G T C A

Position encoding 1 2 3 4 5 6 7 8 9 10

IAC(si, si+1) 1 0 0 0 0 0 0 0 0 0
IAG(si, si+1) 0 0 0 0 0 1 0 0 0 0
ICA(si, si+1) 0 0 0 0 0 0 0 0 1 0
ICG(si, si+1) 0 1 1 0 0 0 0 0 0 0
IGG(si, si+1) 0 0 1 0 0 0 0 0 0 0
IGT (si, si+1) 0 0 0 1 0 0 1 0 0 0
IT A(si, si+1) 0 0 0 0 1 0 0 0 0 0
IT C(si, si+1) 0 0 0 0 0 0 0 1 0 0
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Using the data from the above table and combining it with Equation (7),
the Asymmetric Covariance values for each nucleotide pair can be calculated
step by step:

a-Cov(A, C) =
∑

i∈{1,2}

[i − 5.67][i − 5.5]
10 ·

√
3 ·

√
2

= 1.381,

a-Cov(A, G) =
∑

i∈{6,7}

[i − 5.67][i − 4.67]
12 ·

√
2 ·

√
3

= 0.119,

a-Cov(G, G) =
∑

i∈{3,4}

[i − 4.67][i − 4.67]
10 ·

√
3 ·

√
3

= 0.107,

a-Cov(G, T ) =
∑

i∈{4,5,7,8}

[i − 4.67][i − 6.5]
10 ·

√
3 ·

√
2

= 0.299,

· · ·,

a-Cov(C, A) =
∑

i∈{9,10}

[i − 5.5][i − 5.67]
10 ·

√
2 ·

√
3

= 1.272

Therefore, the nucleotide sequence ACGGTAGTCA can be represented by a
24-dimensional Asymmetric Covariance Natural Vector as follows:

(3, 2, 3, 2, 5.67, 5.5, 4.67, 6.5, 0, 0.119, 1.381, 0, 0, 0.107, 0, 0.299, 1.272, 0.551, 0, 0, 0.034, 0, 0.625, 0).

High-Dimensional Extension of ACNV Asymmetric Covariance has
significant advantages in the high-dimensional extension of feature space.
Symmetric Covariance only considers the relationships between nucleotide
pairs, and its feature dimensions are limited by the combination numbers
(e.g., C2

4 = 6, C3
4 = 4, and C4

4 = 1), making it difficult to fully represent
the relationships among multiple nucleotides. In contrast, Asymmetric Co-
variance introduces directionality information, allowing 2-mers to generate
4 × 4 = 16 features and 3-mers to expand to 43 = 64, significantly enhancing
feature representation capabilities.

Traditional k-mer approaches construct features by counting the frequen-
cies of subsequences of length k, but they fail to effectively capture direc-
tionality information and often result in redundant positional information. In
comparison, the Asymmetric Covariance Natural Vector inherits the feature
richness of k-mer approaches and combines directional indicator functions
with positional information to enhance the representation capability of ge-
nomic sequences.
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To achieve high-dimensional feature space extension, the formula for k-
mer Asymmetric Covariance is provided below. For any nucleotide sequence
fragment of length k, m1, · · · , mk, the Asymmetric Covariance is defined as
follows:

(8)

a-Cov(m1, · · · , mk) = 1
n

n−k+1∑
i=1

k∏
j=1

[i − µmj ] · Im1,··· ,mk
(sj · · · sj+k−1)

√
nmj

, nmj ̸= 0.

Here, the indicator function Im1,··· ,mk
(sj · · · sj+k−1) is defined as:

(9) Im1,··· ,mk
(sj · · · sj+k−1) =

{
1, if sj · · · sj+k−1 = m1, · · · , mk

0, otherwise

2.2. Data

HIV Dataset The HIV dataset is sourced from the HIV Database (https:
//www.hiv.lanl.gov), containing 5666 genomic sequences with lengths ranging
from 8023 to 10280, and an average length of 8998. Each sequence was seg-
mented into subsequences of length 32, resulting in a total of 1257470 samples.
After deduplication and preprocessing, a total of 740051 unique subsequences
were retained for experimentation.

SARS-CoV-2 Dataset The SARS-CoV-2 dataset was sourced from the
GISAID database (https://www.gisaid.org). Using the EPICOV interface,
we downloaded the relevant FASTA files and metadata. After preprocessing,
a total of 16902654 sequences were obtained. For ease of analysis, the data
were categorized by variant type, with the following counts: Delta (4624735),
Omicron (7755563), Alpha (1212374), Gamma (136649), Beta (44918) and
Other (3128415), where "other" represents an uncertain strain type. Based on
this, we extracted the S protein sequences for each category and performed
deduplication. The statistical results after deduplication are shown in Table
2.
Table 2: SPotein data statistics

Category Pre-deduplication count Post-deduplication count Deduplication ratio (%)
alpha S protein 1191343 206826 17.4
delta S protein 4500061 1242423 27.6
gamma S protein 134204 37802 28.2
beta S protein 35986 16432 45.7
omicron S protein 7496995 1911689 25.5
other S protein 2959606 1089979 36.8

https://www.hiv.lanl.gov
https://www.hiv.lanl.gov
https://www.gisaid.org
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In the experiment, we selected the S protein sequences of both the Alpha
and Delta variants for analysis.

3. Results

3.1. Distribution Characteristics of ACNV in Gene Sequence
Recovery

Dataset and Experimental Setup. In this experiment, we used the HIV
dataset and segmented each genomic sequence into subsequences of length 32.
Subsequently, nucleotides in each subsequence were sequentially replaced with
“N” from left to right to simulate gene sequence missingness. The label for
each sample was the original nucleotide sequence that had not been replaced
with "N". To evaluate the effectiveness of the Asymmetric Covariance Nat-
ural Vector (ACNV) encoding method, we compared it with the traditional
Natural Language Processing (NLP) embedding encoding method [15, 16].

First, we encoded the genomic sequences using the Asymmetric Covari-
ance Natural Vector with k-mer = 3. The input sequences, consisting of
{A, G, C, T, N}, generated 160-dimensional feature vectors, calculated as:

10 + 52 + 53 = 160

where:

• The 10 represents the counts of nucleotides A, C, G, T , and N along
with their average positional information.

• The term 52 corresponds to the second-order asymmetric covariance
calculation for nucleotide pairs (k = 2).

• The term 53 corresponds to the third-order asymmetric covariance cal-
culation (k = 3).

Since ’N’ does not carry any meaningful biological information, directly
using the 160-dimensional features containing ’N’ as input may lead the model
to overemphasize missing data, thereby affecting its performance. Therefore,
we removed the values associated with ’N’ and retained 88 valid features,
which helps reduce computational noise and ensures that the model focuses
on informative sequence features, ultimately improving prediction accuracy.

Therefore, the final input features consist of an 88-dimensional feature
vector, which are computed as follows:

8 + 42 + 43 = 88
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This follows the same principles, with the nucleotide set being {A, G, C, T}.
In practice, the input feature for each sample is reshaped to a tensor of shape
B × 88 × 1, where B denotes the batch size.

For a detailed list of all possible 3-mer combinations and the correspond-
ing dimension calculations, please refer to Appendix A.

Model Training and Evaluation The model was trained and evaluated
using GRU [17]. We converted the Asymmetric Covariance Natural Vector
into the input dimensions required by the GRU (num2seq), which include
batch size, natural vector length (88 in this experiment), and feature di-
mension (set to 1). Additionally, we used traditional NLP encoding method
(seq2seq) to encode the genomic sequences and conducted a comparison ex-
periment. For all experiments, the learning rate was set to 0.0001, the batch
size was 128, two GRU layers were used, each with 1024 hidden units, the
activation function was tanh, and the loss function was CrossEntropyLoss.

The experimental results are shown in Figure 2, where we tested two
cases with sequence lengths of 32 and 64. When comparing seq2seq with our

Figure 1: Matching ratio distributions for different encoding methods

(a) seq2seq GRU 32-d (b) num2seq GRU 32-d

(c) seq2seq GRU 64-d (d) num2seq GRU 64-d

1

Figure 2: Matching ratio distributions for different encoding methods
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num2seq method, both achieved similar overall accuracy. For 32-length se-
quences, the highest match ratio was 92.97% vs 92.42%, and for 64-length
sequences, it was 93.84% vs 92.94%. However, our num2seq method shows a
slight advantage in predicting central positions. As seen in the figure, com-
pared to the seq2seq, the asymmetric natural vector encoding method exhibits
a more stable match ratio. Specifically, the asymmetric natural vector encod-
ing method shows a gradual and stable increase in accuracy from both sides
toward the center, particularly at positions 16 and 17, where the prediction
accuracy improves significantly. Additionally, the prediction results exhibit
characteristics of a normal distribution (Figures b and d). This suggests that
the method effectively utilizes information from adjacent positions to accu-
rately predict the characteristics of the central positions, leading to more
stable prediction results.

In contrast, the traditional seq2seq method shows higher accuracy at the
central positions, but its performance lacks consistency. As shown in Figure
a, although the highest accuracy occurs at the very center, the entire process
does not demonstrate a stable increasing trend. Furthermore, in Figure d,
the seq2seq method does not achieve the highest accuracy at the central
position, and in some cases, its prediction accuracy exceeds that at the central
positions.

This disparity highlights the advantages of the asymmetric natural vector
encoding method. Through a stable growth trend, this method requires only
the information from adjacent positions of the missing base to accurately
predict its value, while also demonstrating a high degree of stability in the
prediction results.

3.2. Base Recovery of SARS-CoV-2 Variant Using ACNV

Model Setup. To evaluate the superiority of the Asymmetric Covariance
Natural Vector method in gene sequence recovery, we used the S protein gene
sequences of the SARS-CoV-2 Alpha and Delta variant from the dataset to
further validate its performance in recovering missing bases. During the train-
ing phase, given the presence of numerous missing bases in the dataset, we
first removed sequences containing non-standard bases. Based on preliminary
experimental analysis, we replaced the bases in the center of each sequence
with ’N’ to simulate missing bases and trained the model using a GRU net-
work. For all experiments, the learning rate was set to 0.0001, the batch
size was 128, two GRU layers were used, each with 1024 hidden units, the
activation function was tanh, and the loss function was CrossEntropyLoss.
Using the best-performing model obtained from training, we predicted the
non-standard bases replaced with "N".
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Prediction on Non-Standard Bases. To further validate the model’s
performance on real-world data, we applied the trained GRU model to se-
quences containing non-standard bases for prediction. First, we selected se-
quences containing non-standard bases and replaced these bases with "N".
Subsequently, we used the trained GRU model to predict these modified se-
quences and checked the prediction results against the IUPAC rules (see Ta-
ble A1 in Appendix A) to ensure compliance with standard base encoding
criteria.

In the Alpha dataset, we first replace each non-standard base with "N"
and then predict the scores for each category using the model. The highest
SoftMax score is selected as the prediction for the non-standard base, as
shown in step 1 of Figure 3. Next, we perform a table lookup comparison of
the predicted results based on the IUPAC rules and count the samples that
conform and do not conform to the IUPAC rules, as shown in step 2 of Figure
3.

Figure 3: Flowchart of non-standard base prediction. Step 1: First, extract
the sequences of equal length from both sides of the non-standard base, then
replace them with “N”. The sequences are then encoded using asymmetric
natural vectors, and the model predicts the corresponding AGCT sequence.
Step 2: Query and determine compliance based on the IUPAC rules. If com-
pliant, the prediction is considered correct.

The left panel of Figure 4 shows the SoftMax scores of the predicted re-
sults that conform to the IUPAC rules for both the Alpha and Delta datasets.
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Figure 4: Average probability scores for predicting special characters in the
invalid and validation datasets.

As observed, the majority of predictions have scores exceeding 95%, suggest-
ing that our method has high confidence in restoring missing bases. The right
panel displays the predicted results that do not conform to the IUPAC rules,
where the maximum SoftMax scores are lower, likely due to the limitations of
sequencing technology, which may prevent accurate restoration of standard
bases.

Finally, we calculated the proportion of predictions that did not conform
to the IUPAC rules. In the Alpha dataset, there are 47,915 samples that
conform to the IUPAC rules and 52 that do not, resulting in an error rate of
0.11% (52 / (52 + 48,392)). In the Delta dataset, there are 329,791 samples
that conform to the IUPAC rules and 717 that do not, resulting in an error
rate of 0.22% (717 / (717 + 329,791)). These results demonstrate that the
asymmetric covariance natural vector method has a low error rate in restoring
missing bases, validating its effectiveness across different datasets.

4. Discussion

This study proposes a method based on the Asymmetric Covariance Nat-
ural Vector, combined with Recurrent Neural Networks (GRU), to predict
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missing bases in gene sequences. Compared to traditional NLP embedding
encoding methods, Asymmetric Covariance Natural Vector introduces direc-
tionality information, overcoming the limitations of these methods in captur-
ing the relative relationships between nucleotides. In gene sequences, the order
of adjacent nucleotides may carry important biological information. There-
fore, directionality information is crucial for improving prediction accuracy.
Asymmetric Covariance Natural Vector effectively captures these sequential
relationships, thereby significantly enhancing the precision of missing base
recovery.

On the HIV dataset, this method outperforms traditional NLP embedding
encoding methods in recovering missing bases at the most central positions,
where Asymmetric Covariance Natural Vector significantly improves recovery
accuracy. For the SARS-CoV-2 Alpha variant dataset, Asymmetric Covari-
ance Natural Vector achieves a recovery error rate of only 0.11% under the
IUPAC encoding rules. For the Delta dataset, Asymmetric Covariance Natu-
ral Vector achieves a recovery error rate of 0.22%. These results demonstrate
that Asymmetric Covariance Natural Vector effectively enhances prediction
accuracy when dealing with gene sequences containing missing bases, meeting
the accuracy requirements for practical applications.

Despite its promising performance in this study, Asymmetric Covariance
Natural Vector still has some limitations. First, the current study is based on
fixed-length gene fragments of 32 nucleotides for prediction. Future research
needs to explore how to handle longer gene sequences, such as increasing the
sequence length to 512 and sampling by randomly masking 1-2 positions, to
further enhance the model’s robustness and generalization ability. Second,
although the method achieved excellent results on the SARS-CoV-2 Alpha
and Delta variant dataset, its applicability and stability need further valida-
tion on other viral strains or more complex genomic data, such as the human
genome.

Future research can further improve the Asymmetric Covariance Natural
Vector method in several aspects. First, the applicability of the method can be
expanded to more complex genomic data, such as the human genome and bac-
terial genomes. Second, integrating more advanced deep learning techniques,
such as the self-attention mechanism (Transformer), can improve the model-
ing capability for long sequences and further enhance the model’s prediction
accuracy.

In summary, the Asymmetric Covariance Natural Vector Asymmetric Co-
variance Natural Vector provides an effective encoding method for gene se-
quence analysis, particularly excelling in the recovery of missing bases. The
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experimental results validate its potential for repairing the integrity of ge-
nomic data and provide technical support for further genomic data analy-
sis tasks. Future work will focus on expanding the application scope of this
method, improving its computational efficiency, and exploring how to achieve
better performance in a broader range of genomic data analyses.

Data, Materials, and Software Availability

The code used for implementing experimental methods and evaluating valida-
tion algorithms has been uploaded to the GitHub repository (https://github.
com/karlieswift/ACNVMaskRecover). All other relevant data are described
in the manuscript.

Appendix A. Supplementary Information

A.1. IUPAC Base Encoding Rules

Table A1: IUPAC Nucleotide Base Encoding Rules

Symbol Corresponding Bases Description

A Adenine (A)
C Cytosine (C)
G Guanine (G)
T Thymine (T)
U Uracil (U) Used only in RNA
R Adenine (A) or Guanine (G) Purine (A or G)
Y Cytosine (C) or Thymine (T) Pyrimidine (C or T)
S Guanine (G) or Cytosine (C) Strong interaction (G or C)
W Adenine (A) or Thymine (T) Weak interaction (A or T)
K Guanine (G) or Thymine (T) Keto bases (G or T)
M Adenine (A) or Cytosine (C) Amino bases (A or C)
B Cytosine (C), Guanine (G), or Thymine (T) Not Adenine (A)
D Adenine (A), Guanine (G), or Thymine (T) Not Cytosine (C)
H Adenine (A), Cytosine (C), or Thymine (T) Not Guanine (G)
V Adenine (A), Guanine (G), or Cytosine (C) Not Thymine (T)
N Any base (A, T, C, or G) Any nucleotide

Appendix B. Detailed Explanation of 3-mer Combinations
and Feature Dimension Calculation

In this appendix, we provide a detailed explanation of how to calculate gene
sequences containing standard bases (A, C, G, T ) and non-standard bases (N)

https://github.com/karlieswift/ACNVMaskRecover
https://github.com/karlieswift/ACNVMaskRecover
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using the Asymmetric Covariance Natural Vector.

B.1. Calculation Process of Asymmetric Covariance Natural
Vector

Masked gene sequences consist of elements from the set S = {A, C, G, T, N},
where A, C, G, T represent the four standard nucleotides, and N represents
masked positions (i.e., uncertain bases).

For asymmetric 2-mers, the total number of possible combinations is 10+
5 × 5 = 35, as shown below:

AA, AC, AG, AT, AN

CA, CC, CG, CT, CN

GA, GC, GG, GT, GN

TA, TC, TG, TT, TN

NA, NC, NG, NT, NN

The combinations containing N are in the 5th, 10th, 15th, 20th, 25th,
30th, 31th, 32th, 33th, 34th, and 35th positions. Thus, the number of ef-
fective 2-mer combinations is 35 − 11 = 24. For the output sequence set
S = {A, C, G, T}, the dimension contribution is:

8 + 42 = 8 + 16 = 24

In this experiment, we used the Asymmetric Covariance Natural Vector
with k = 3 to recover missing bases. For input sequences composed of the set
{A, C, G, T, N}, the number of possible 3-mer combinations is 53 = 125.

Ultimately, the feature dimensions of the Asymmetric Covariance Natural
Vector are calculated by summing the contributions of base frequencies, av-
erage positions, and 2-mer and 3-mer combinations. The specific calculation
steps are as follows:

• For the input sequence set S = {A, C, G, T, N}, the dimension
contribution is:

10 + 52 + 53 = 10 + 25 + 125 = 160

• For the valid input sequence set S = {A, C, G, T}, the dimension
contribution is:

8 + 42 + 43 = 8 + 16 + 64 = 88
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