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Abstract: The rapid expansion of biological data in recent decades

has highlighted the need for efficient methods in sequence analysis.

Traditional pairwise alignment approaches are both time-consuming

and memory-intensive. Alignment-free methods such as Natural

Vector and k-mer operate on a one-dimensional framework, inter-
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2 1 INTRODUCTION

preting DNA primarily as a linear string of nucleotides. To achieve

a more comprehensive interpretation of molecular structure, this

study incorporates the three-dimensional architectural features of

DNA and introduces a novel alignment-free method named Multi-

perspective Natural Vector (MNV). The MNV method maps genome

sequences of varying lengths to points within a unified geometric

space, facilitating large-size data processing tasks such as variant

classification and clustering. Across datasets of different sizes and

types, MNV attains 100% convex hull separation ratio in lower di-

mensions compared with widely-used methods Natural Vector and

k-mer methods. In neural network classification, MNV achieves bet-

ter classification accuracy of 99.55% and 98.78% on SARS-CoV-2

and Poliovirus datasets respectively, demonstrating its effectiveness

in viral genome analysis while maintaining computational efficiency.

1 Introduction

The molecular-level study of pathogenic viruses is essential for deciphering the

mechanisms underlying their pathogenicity. Since the 1980s, the advent of gene

sequencing technologies has catalyzed an exponential growth in available genome

sequences. This surge has spurred the development of alignment-based sequence

analysis tools, including BLAST (Altschul et al., 1997), FASTA (Pearson et al.,

1988), MUSCLE (Edgar, 2004), and ClustalW (Larkin et al., 2007). Since

these methods leverage the sequence collinearity assumption that homologous

sequences contain linearly arranged conserved regions, they face critical limita-

tions in practical applications (Zielezinski et al., 2017). Viral genomes, charac-

terized by high mutation rates and extensive variations in base composition and

arrangement (Duffy, 2018), frequently violate collinearity assumptions. More-
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over, alignment-based approaches suffer from computational inefficiency: the

multiple sequence alignment problem is NP-hard without approximation (Just,

2001), and alignment complexity increases rapidly with the length of sequence

(Zielezinski et al., 2017). Even when alignments are available, the absence of

numerical sequence representations still forces pairwise comparisons to classify

novel sequences, limiting large-scale genomic analysis (Bohnsack et al., 2022).

In response to these challenges, alignment-free (AF) methods have emerged

as powerful alternatives, particularly for sequences that are large in size or ex-

hibit complex relationships between sequence regions (Hu et al., 2019). AF

methods convert biological sequences into numerical embeddings, facilitating

rapid similarity computations between multiple sequences. A prominent exam-

ple is the k-mer approach, which maps nucleotide sequences to word sequences

over the nucleotide alphabet and then calculates the frequency of all k-length

words (Blaisdell, 1991). However, we notice that k-mer methods sometimes

fail to distinguish between sequences with minor mutational differences. Natu-

ral Vector (NV) (Deng et al., 2011) method proposed by Yau et al. considers

higher order statistical information to extract sequence features. NV embeds

sequences in a Euclidean space based on nucleotide distribution statistics. The

original 12 dimensional Natural Vector incorporates nucleotide counts, aver-

age position, and second-order moments, with extensions to higher dimensions

through additional central moments. NV is effective in sequence comparison

and classification. Both k-mer and NV approaches represent DNA sequences

solely as ordered linear strings of nucleotides, treating them as one-dimensional

symbolic sequences. However, this abstraction fails to capture the structural

and topological properties of DNA molecules in their native three-dimensional

conformation.

The three-dimensional architecture of DNA is critical to understanding its bi-
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ological properties. Studies have demonstrated the periodicity of approximately

10 to 11 base pairs in eukaryotic sequences and prokaryotic coding sequences

(Zhurkin, 1981), which is thought to arise from the physical properties of the

DNA chain, including the dynamics of helix folding and amphipathic interac-

tions of the α helix in the corresponding protein sequences (Herzel et al., 1999).

To better capture such structural periodicities, we propose the Multi-perspective

Natural Vector (MNV) method. By integrating trigonometric functions directly

into the NV framework, MNV explicitly incorporates the three-dimensional ar-

chitectural features of DNA, enabling a more semantically informative encoding

of viral genome sequences.

In this study, we present MNV as a novel alignment-free method for precise

viral classification and clustering at family and subtype levels. Our approach

demonstrates superior performance compared to traditional Natural Vector and

k-mer methods across diverse datasets, establishing a robust framework for

large-scale viral genome analysis.

2 Methods

2.1 Traditional Natural Vector

A DNA sequence is made up of nucleotides, each consisting of three components:

a nitrogenous base, a pentose sugar, and a phosphate group. The nitrogenous

bases include adenine (A), guanine (G), cytosine (C), and thymine (T) (Watson

et al., 1953).

The Natural Vector is a (4+4m) dimensional numerical coding of nucleotide

sequences defined as follows. For a DNA sequence of length n, S is composed of

nucleotides s1, s2, ..., sn arranged sequentially, where si ∈ L = {A,C,G, T}, i =
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1, 2, ..., n. Define the indicator functions ωk : L → {0, 1},

ωk (si) =

 1, if si = k,

0, otherwise.

where si ∈ L, i = 1, 2, ..., n and k ∈ L.

The count of nucleotide k in the sequence S is:

D0
k = nk =

n∑
i=1

ωk (si) .

The average location of nucleotide k is:

D1
k = µk =

n∑
i=1

i
ωk (si)

nk
.

The central moments from the second to the m-th order are:

Dj
k =

n∑
i=1

(i− µk)
jωk (si)

nj−1
k nj−1

, j = 2, ...,m.

The denominator is designed to ensure the convergence of central moments

as j approaches infinity (Deng et al., 2011).

By concatenating the values calculated above, we obtain the (4 + 4m) di-

mensional Natural Vector of the sequence S. For example, when m = 2, the

12-dimensional Natural Vector is

(nA, nC , nG, nT , µA, µC , µG, µT , D
2
A, D

2
C , D

2
G, D

2
T )

In numerical experiments, lower-order expansions of the NV method are

commonly used, with second-order moments being the most frequently applied.
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2.2 Multi-perspective Natural Vector

Traditional Natural Vector method utilizes polynomials to capture sequence

features. Although incorporating higher-order moments can enhance the NV

method’s classification performance, it significantly increases computational com-

plexity. Consequently, two principal research directions have been explored to

further advance the capabilities of lower-order NV methods:

• Transforming the sequence into its k-mer representation and calculating

the NV of the k-mer representation (Wen et al., 2014).

• Extending the moment-based approach, such as incorporating covariance

components into NV (Sun et al., 2022).

Differently, in this study, we introduce a novel conceptual pathway by in-

tegrating trigonometric moments based on sin(x) and cos(x) functions into the

NV framework. This Multi-perspective NV (MNV) method is inspired by the

three-dimensional double-helix structure of DNA.

DNA is a double-helix polymer, consisting of two complementary strands

wound around each other in a spiral (Watson et al., 1953). Geometrically, a

single strand can be modeled as a regular cylindrical helix, parameterized as

follows: 
x(t) = r cos(t)

y(t) = r sin(t)

z(t) = ct

where r and c are constants. For illustration, setting r=1 and c=1 yields the

helix depicted in Figure 1. This figure serves as a conceptual representation of

the MNV framework. At key points (θ = π/2, π, 3π/2, 2π), the MNV embedding

comprises both the z-coordinate projection (encoding sequential positions in

traditional NV) and the new XY-projection (incorporating structural context).
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Figure 1: Conceptual Helix Model for Multi-perspective Embedding

This geometric analogy underscores the motivation behind our method: just

as the helical structure of DNA combines linear and rotational information,

our trigonometric moment-based MNV captures both sequential and structural

features in an integrated manner.

Although certain viruses utilize RNA as their genetic material, the univer-

sality of DNA’s role in biological information processing is declared in the cen-

tral dogma, from the original formulation crick1958protein to its refined frame-

work crick1970central. Therefore, our proposed MNV framework offers a unified

mathematical representation for analyzing all types of biological sequences.

MNV is implemented through an expansion of the function space that com-

bines both polynomial and trigonometric components. Crucially, these trigono-

metric functions exhibit transcendental properties that make their moment rep-

resentations fundamentally irreducible to finite polynomial expansions.

{1, x, x2, ..., xm, sin(x), cos(x)}
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In the new function space, we introduce a trigonometric version of mean and

moments of the Natural Vector. To address potential confounding effects from

heterogeneous sequence lengths during comparative analyses, we implement a

normalization protocol that projects all genetic sequences onto a standardized

trigonometric domain spanning the interval [0, 2π] through linear length scaling.

For a DNA sequence of length n, the complete MNV embedding is derived by

augmenting NV with the following components:

Posn(i) =
2πi

n

D1
k
cos

= µcos
k =

n∑
i=1

cos(Posn(i))
ωk (si)

nk

D1
k
sin

= µsin
k =

n∑
i=1

sin(Posn(i))
ωk (si)

nk

Dj
k

cos
=

n∑
i=1

(cos(Posn(i))− µcos
k )jωk (si)

nk
, j = 2, ...,m

Dj
k

sin
=

n∑
i=1

(sin(Posn(i))− µsin
k )jωk (si)

nk
, j = 2, ...,m

Finally, we map the original sequence to a (4 + 12m) dimensional natural

vector. If m = 2, the 20-dimensional Multi-perspective Natural Vector is

(nA, nC , nG, nT , µA, µ
cos
A , µsin

A , µC , µ
cos
C , µsin

C ,

µG, µ
cos
G , µsin

G , µT , µ
cos
T , µsin

T , D2
A, D

2
A
cos

, D2
A
sin

,

D2
C , D

2
C
cos

, D2
C
sin

, D2
G, D

2
G
cos

, D2
G
sin

, D2
T , D

2
T
cos

, D2
T
sin

)

The advantage of the updated version of mean and moments is that they are

insensitive to the position of variations. In other words, a single nucleotide vari-
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ation occurring at the first position or the last position of a sequence does not

introduce significant differences. As a result, MNV focuses more on the types

and quantities of variations than on the absolute position of mutations. By in-

corporating trigonometric functions, MNV also introduces periodic components

to the embedding.

2.3 Convex Hull Classification Method

A convex hull of a given set of points is defined as the smallest convex set

that contains all the points. For a finite point set A = {a1, a2, ..., as} in the

Euclidean space Rd, the convex hull of A is the smallest convex polygon (d = 2)

or polyhedron (in higher dimensions) that encloses all the points in A:

CovA ={λ1a1 + λ2a2 + . . .+ λsas : ai ∈ A, λ1 + λ2 + . . .+ λs = 1,

λi ≥ 0, i = 1, 2, . . . , s}

The intersection between the convex hull ofA = a1, a2, . . . , as and the convex

hull of another set B = b1, b2, . . . , bt implies that there exist coefficients λi and

µj such that:

s∑
i=1

λiai =

t∑
j=1

βjbj

s∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, . . . , s

t∑
j=1

βj = 1, βj ≥ 0, j = 1, 2, . . . , t

(1)

The convex hull principle asserts that convex hulls corresponding to different

families or variants are pairwise disjoint tian2018convex. Checking whether two

convex hulls intersect is equivalent to solving a feasibility problem to find a set

of constants satisfying the constraints in (1).

By computing convex hulls for a dataset of genetic variants, we can establish
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decision boundaries in the Euclidean space that enable the precise classification

of novel sequences. Additionally, convex hull analysis offers a novel method

for identifying new sequences that belong to a biological group by examining

possible points contained within the group’s convex hull.

2.4 Clustering Method

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) es-

ter1996density is a widely used clustering technique known for its simplicity

and efficiency in identifying clusters in complex datasets. We assessed the qual-

ity of DBSCAN clusters through three quantitative indices: ARI, NMI and

FMI.

Adjusted Rand Index (ARI) is a normalized version of the Rand Index, de-

signed to measure the degree of agreement between two partitions hubert1985comparing.

Given two partitions A = A1, A2, . . . , Ar and B = B1, B2, . . . , Bs of n objects,

the calculation formula of ARI is defined as follows:

ARI =

∑
i

(
nij

2

)
− [

∑
i (

ni
2 )

∑
j (

nj
2 )]

(n2)

1
2

[∑
i

(
ni

2

)
+

∑
j

(
nj

2

)]
− [

∑
i (

ni
2 )

∑
j (

nj
2 )]

(n2)

where nij is the number of observations in Ai ∩ Bj , ni =
∑

j nij , and nj =∑
i nij . Suppose that A is the ground truth class assignment and B is the

clustering result. A higher absolute value of the ARI indicates better clustering

performance.

Normalized Mutual Information (NMI) fred2005combining is an information-

theoretic metric that quantifies the information shared between two data dis-

tributions. It is based on entropy, which in information theory measures the

amount of information contained in a distribution. For two clusters U and V

with label assignments, their corresponding entropyH(U) andH(V ) are defined
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as follows:

H(U) = −
|U |∑
i=1

P (i) log (P (i))

H(V ) = −
|V |∑
j=1

P ′(j) log (P ′(j))

I(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)

where P (i, j) = |Ui ∩ Vj | /N represents the probability that an object picked

at random falls into both classes Ui and Vj . The NMI is defined as follows. A

higher value indicates a better similarity between the two clusters.

NMI(U, V ) =
2I(U, V )

H(U) +H(V )

Fowlkes–Mallows Index (FMI) fowlkes1983method is defined to determine

the similarity between two clusterings.

FMI =

√
TP

TP + FP
· TP

TP + FN

FMI value ranges from 0 to 1. A higher value indicates a better similarity

between the two clusters.

3 Datasets

The Multi-perspective Natural Vector method was tested on three types of data.

Virus Genome Dataset We downloaded all reference sequences of virus

genomes from National Center for Biotechnology Information (NCBI), specifi-

cally from the index of /refseq/release/viral up to 30 May 2024. To ensure data

reliability, we filtered out sequences that met any of the following criteria:

(1) sequences lacking family taxonomic information.
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(2) sequences that contain undefined nucleotides other than A, C, G, T.

(3) sequences in the family that have fewer than three sequences.

Following filtration, the final dataset comprises 10,652 viral genome se-

quences from 169 taxonomic families.

SARS-CoV-2 Genome Dataset Severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded

positive-sense RNA virus in Coronaviridae family. A SARS-CoV-2 sequence is

approximately 30000 bases in length. We downloaded all SARS-CoV-2 genome

sequences of the five most concerning variants from NCBI up to August 14,

2024, including a total of 65516 sequences.

Table 1: SARS-CoV-2 Dataset

Variants Pango lineage Number of Sequences

Alpha B.1.1.7 54197
Beta B.1.351 353
Delta B.1.617.2 4909
Gamma P.1 5040
Omicron B.1.1.529 1017

Poliovirus Genome Datasets Poliovirus, the causative agent of poliomyeli-

tis(polio), is a single-strand positive-sense RNA virus in the family of Picor-

naviridae. It comprises three serotypes, numbered 1, 2, and 3. A Poliovirus

sequence is about 7500 bases in length. We downloaded all available genome

sequences of poliovirus from NCBI up to May 30, 2024, including a total of 1147

sequences in the three serotypes.

Table 2: Poliovirus Dataset

Serotypes Number of Sequences

Poliovirus 1 225
Poliovirus 2 712
Poliovirus 3 210
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4 Results

Codes for the experiments are available at https://github.com/xiangShi22/Multi-

Perspective-Natural-Vector.

4.1 Convex Hull Classification

For each dataset - where labels correspond to a specific taxonomic level such

as family or variant - we calculated the (4 + 12m) dimensional MNV for each

sequence for m from 2 to 4, and then constructed a convex hull for each class.

Next, we employed the linear programming (LP) method to determine whether

the convex hulls of different classes were pairwise disjoint. For comparison,

embeddings based on traditional Natural Vector and k-mer representations were

also generated and evaluated under the same convex hull framework.

We observed that for NV, MNV and k-mer, the disjoint ratio of convex hull

pairs does not decrease as the dimensionality increases; instead, it eventually

reaches 100%, which further proves the convex hull principle in taxonomy.

Table 3: Virus Family Convex Hull
Classification Results

Methods Dimension Disjoint ratio

2mer 16 0.9905
3mer 64 0.9999
NV 124 0.9949
MNV 124 1
4mer 256 1

As illustrated in Tables 3-5, MNV achieves pairwise disjoint results for dif-

ferent families and variants at lower dimensions compared with NV and k-mer

methods. As a result, the convex hull classification results demonstrate that

MNV more effectively distinguishes viral families and subtypes than NV and

k-mer methods, further confirming its superior ability to map sequences in a
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Table 4: SARS-CoV-2 Variant Convex
Hull Classification Results

Methods Dimension Disjoint ratio

2mer 16 0.1000
NV 52 0.7000
MNV 52 1
3mer 64 1

Table 5: Poliovirus Subtype Classifi-
cation Results

Methods Dimension Disjoint ratio

2mer 16 0.3333
NV 28 0.6667
MNV 28 1
3mer 64 1

manner that preserves their taxonomic distinctions.

To validate the biological significance of the observed convex hull separation,

we performed a randomized label-shuffling experiment on SARS-Cov-2 and Po-

liovirus Dataset. The Virus Genome Dataset was excluded due to an insufficient

number of sequences per family. After 10 shuffling iterations, the average dis-

joint ratio was significantly lower than that under the true labels (shown in

Supplementary Table 15), confirming that the observed convex hull separation

reflects meaningful biological classification rather than random chance.

4.2 Cluster Analysis and Neural Network Classification

To systematically evaluate the performance of MNV, NV and k-mer methods,

we implemented a dual-validation framework including DBSCAN clustering and

neural network classification on SARS-CoV-2 and Poliovirus Datasets. The vi-

ral family-level dataset was excluded from model training due to limited sam-

ple sizes (n≤10 in many families), which violates the minimum requirement

for robust machine learning applications. DBSCAN enables the assessment of
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intrinsic pattern separation. The neural network architecture comprises a three-

layer fully connected network (FCNN) trained on feature embeddings generated

by each method, with classification accuracy (correct predictions/total samples

×100%) as the main metric.

To ensure a reliable neural network evaluation, we performed 5-fold cross-

validation on both datasets. To mitigate the pronounced class imbalance in the

SARS-CoV-2 Dataset, larger classes were first downsampled randomly to match

the size of the smallest class while the Poliovirus Dataset retained in its original

form. Subsequently, a stratified K-fold splitting method was applied, ensuring

that each fold maintained the same proportional distribution of variants as the

dataset before splitting. During cross-validation, four folds were used for train-

ing and one for validation in each independent iteration. This approach ensured

strict separation between training and validation data, providing a robust and

unbiased performance estimate for neural network classification tasks.

Table 6: SARS-CoV-2 Variant Clustering and Classification Re-
sults

Methods ARI NMI FMI Classification Accuracy

2mer 0.0108 0.0078 0.8348 0.9796
52d-NV 0.0291 0.0238 0.8364 0.9898
52d-MNV 0.6858 0.6037 0.9182 0.9955
3mer 0.6293 0.5157 0.8625 0.9949

Table 7: Poliovirus Subtype Clustering and Classification Results

Methods ARI NMI FMI Classification Accuracy

2mer 0.0508 0.0463 0.6758 0.9730
28d-NV 0.3150 0.2637 0.6828 0.9817
28d-MNV 0.4535 0.4300 0.7489 0.9878
3mer 0.1009 0.3320 0.5019 0.9869

Table 6 and Table 7 show that MNV achieves the best performance among

the three methods on the SARS-Cov-2 and Poliovirus Datasets. For DBSCAN
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clustering, we searched for and applied the best hyper-parameters of every

experiment, which are illustrated in Table 13 in Supplementary. The hyper-

parameters of FCNN are illustrated in Table 14 in Supplementary. The FCNN

classification and DBSCAN clustering results further demonstrate the enhance-

ment of MNV method in feature extraction of viral genomes.

4.3 Uniqueness of the embedding

Extended investigation reveals that MNV method fundamentally overcomes the

limitations of the k-mer method in capturing subtle sequence variations. To

detect collision, embeddings of each dataset were converted and stored in a

hash set. Hashing techniques were applied to quickly compare and identify

embeddings that are exact duplicates of previously encountered ones. As a

result, no embedding collisions were observed for MNV or NV across our three

datasets. Notably, k-mer embeddings fail to achieve this essential uniqueness

property. Especially when k is small, certain distinct sequences share identical

k-mer representations.

To systematically characterize this degeneracy, we analyzed sequence clus-

ters sharing identical k-mer embeddings. A representative example from the

Poliovirus dataset (Table 8) demonstrates that 2-mer embeddings fail to distin-

guish sequences that harbor single-base antipodal mutations. This phenomenon

extends across viral variants: the analysis of SARS-CoV-2 uncovered widespread

duplication in both 2-mer and 3-mer embeddings. As shown in Tables 9 and 10,

three or more distinct sequences are embedded to identical 2-mer or 3-mer vec-

tors. Notably, Table 11 presents two striking case in which three independent

sequences are mapped to the same 3-mer embedding.

In summary, both MNV and NV methods map each genomic sequence to a

unique point in Euclidean space, whereas the k-mer method lacks this unique-
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Table 8: Mutation Sites of Poliovirus Se-
quences with the Same 2-mer Embedding

Type Accession Site 1 Site 2

Subtype 1
KJ170477.1 4515: T 5047: C
KJ170481.1 4515: C 5047: T

Subtype 2
KJ170548.1 4324: T 5046: C
KJ170553.1 4324: C 5046: T

Subtype 3
KJ170591.1 2464: T 3611: C
KJ170615.1 2464: C 3611: T

Subtype 3
KJ170618.1 346: C 2870: T
KJ170619.1 346: T 2870: C

Table 9: Number of Duplicate 2-mer Embedding Groups and Cor-
responding Sequences in SARS-Cov-2 Dataset

Variant #Duplicate Embeddings #Corresponding Sequences

Alpha 1037 2410
Beta 0 0
Gamma 33 70
Delta 54 121
Omicron 2 4

Table 10: Number of Duplicate 3-mer Embeddings and Corre-
sponding Sequences in SARS-Cov-2 Dataset

Variant #Duplicate Embeddings #Corresponding Sequences

Alpha 89 180
Beta 0 0
Gamma 1 2
Delta 7 14
Omicron 0 0

ness. This duplication problem in the k-mer method demonstrates its limitation

in capturing minor variations such as single nucleotide variants (SNVs). In con-

trast, MNV and NV ensure the uniqueness of sequence embeddings, preserving

the distinctness of each sequence and thereby proving significantly more effec-

tive at discriminating between highly similar sequences in rapidly evolving viral

genomes.
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Table 11: Mutation Sites of SARS-Cov-2 Sequences with
the Same 3-mer Embedding

Variant Accession Site 1 Site 2 Site 3

Alpha
MZ970789.1 1465: C 12352: C 14586: T
MZ454153.1 1465: C 12352: T 14586: C
MW906170.1 1465: T 12352: C 14586: C

Alpha
MZ131919.1 14742: T 15986: C 24570: C
MW842371.1 14742: C 15986: C 24570: T
MW841804.1 14742: C 15986: T 24570: C

4.4 Computing Time Analysis

The proposed MNV method incorporates an optimized algorithmic implemen-

tation that achieves significant speed advantages over baseline approaches.

Table 12: Time Comparison of the Three Methods

Dataset/Seconds MNV NV 3mer

Virus Genome Dataset 111.15(124d) 2349.48(124d) 268.48(64d)

SARS-CoV-2 Genome Dataset 285.79(52d) 4825.99(52d) 1049.52(64d)

Poliovirus Genome Dataset 3.96(28d) 19.01(28d) 7.73(64d)

Table 12 compares the processing times of the MNV, NV, and 3-mer methods

across the three benchmark datasets. All computations were executed on iden-

tical hardware configurations featuring an Intel(R) Xeon(R) Platinum 8352V

CPU and an NVIDIA GeForce RTX 4090 GPU, ensuring fair performance com-

parisons. All methods comfortably executed within 0.95 GB RAM.

Benchmarking on three diverse datasets demonstrates significantly faster

processing compared to both standard 3-mer enumeration and NV methods,

establishing MNV as a computationally efficient solution for large-scale genomic

analysis.
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5 Discussion

In this study, we present the Multi-perspective Natural Vector (MNV), a novel

alignment-free method for differentiating viral genomes at both the family and

subtype levels. MNV enhances the traditional Natural Vector (NV) method

by incorporating trigonometric functions, capturing not only the distribution

of nucleotides along the linear sequence but also the spatial and periodic char-

acteristics inherent in the three-dimensional structure of the DNA molecule.

This extension enables MNV to provide a richer, more robust representation

of genomic sequences. In our experiments, we found that MNV outperforms

both NV and k-mer methods, as evidenced by the improved convex hull sep-

aration, neural network classification and clustering results on multiple viral

datasets, including virus reference genomes, SARS-CoV-2 and Poliovirus. In

contrast to k-mer method, MNV method maps each sequence to a unique point

in Euclidean space, enabling unambiguous identification of single base mutations

through quantitative vector analysis.

While this study demonstrates MNV’s effectiveness in taxonomic classifica-

tion and clustering tasks, these represent relatively straightforward discrimina-

tive applications. Validation on more complex generative tasks - particularly

sequence prediction - remains unexplored. This limitation stems from our initial

focus on establishing MNV’s representational capacity for viral discrimination.

Future work will extend this framework to predictive modeling, for example, pre-

dicting immunogenic regions from sequence-structure embeddings and modeling

mutation impacts on viral fitness. Such applications would more rigorously test

MNV’s ability to capture functional sequence determinants beyond taxonomic

signatures.

In conclusion, MNV offers a powerful approach for genomic sequence anal-

ysis, making it a promising tool for viral taxonomy, evolutionary studies, and
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large-scale data processing. The effectiveness in extracting meaningful features

from genomic sequences highlights its potential for broader applications in bioin-

formatics.
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Supplementary

The DBSCAN clustering hyper-parameters of each method are illustrated in

Table 13. The hyper-parameters of FCNN are illustrated in Table 14.

Dataset Method ϵ Min Samples

SARS-CoV-2

2mer 2.0 6
52d-NV 2.5 13
52d-MNV 2.5 13
3mer 3.5 5

Poliovirus

2mer 3.6 6
28d-NV 3.0 11
28d-MNV 3.4 5
3mer 2.0 7

Table 13: DBSCAN Parameters

Dataset Learning Rate Hidden Dim Weight Decay Epochs
SARS-CoV-2 0.001 256 1e-6 1000
Poliovirus 0.001 128 1e-6 1000

Table 14: Neural Network Parameters

To validate the biological significance of the observed convex hull separation,

we performed a randomized label-shuffling experiment on SARS-Cov-2 and Po-

liovirus Dataset. After 10 shuffling iterations, the average disjoint ratios are

illustrated in Table 15.

Dataset Method Before Shuffle After Shuffle

SARS-CoV-2

2mer 0.1 0
52nv 0.6 0
52mnv 1 0
3mer 1 0

Poliovirus

2mer 0.3333 0
28nv 0.6667 0.0333
28mnv 1 0
3mer 1 0

Table 15: Average Disjoint Ratio before and after Label-shuffling
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