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Abstract This is an addendum to the beautiful paper by Little and Schwarz (Appl
Algebra Eng Commun Comput 18:349–367, 2007) in which one case of toric surface
codes of dimension 5 was missing in their classification result of toric surface codes
of dimension less than 6. Our main purpose is to fill the gap of this paper. We find that
our new code C

P(7)
5

enjoys more symmetry, and it has more codewords of minimum

distance in general. However, over some special fields F2m , C
P(5)

5
and C

P(7)
5

have the

same number of the codewords of minimum distance.

1 Introduction

In [3,4], Hansen introduces the evaluation codes defined over some toric surfaces. He
uses the proper combinational techniques of toric surfaces to estimate the parame-
ters of these codes toric surface codes. Actually toric codes are in a sense a natural
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176 S. S.-T. Yau, H. Zuo

extension of Reed-Solomon codes. In this paper we focus only on toric surface codes.
We will follow the terminology and notation for toric codes from [7].

The properties of these codes are closely tied to the geometry of the toric surface
X P associated with the normal fan �P of the polygon P . For example, Ruano [8] esti-
mated the minimum distance using intersection theory and mixed volumes, extending
the methods of Hansen for plane polygons. In [6] Little and Schenck obtained upper
and lower bounds on the minimum distance of a toric code constructed from a poly-
gons of P . The most interesting things was that Little and Schwarz [7] provided a good
approach that applies quite well to many high dimensional toric codes. Their methods
are based on a sort of multivariate generalization of vandermonde determinants that
has also been used in the study of multivariate polynomial interpolation. They used
these vandermonde determinants to determine the minimum distance of toric codes
from simplices and rectanglur polytopes, and proved a general result showing that
if there is a unimodular integer affine transformation taking one polytopes P1 to a
second P2, then the corresponding toric codes are monomially equivalent (hence have
the same parameters). The most important thing is that they also used those tools
to classify the toric surface codes with small dimension. However, the classification
results in [7] is not complete. One case of toric code of dimension 5 was missing in
their classification of toric surface codes. In this paper, our main purpose is to supply
the missing case and finish the proof of classification of toric codes of dimension less
than 6. Between C

P(5)
5

and C
P(7)

5
, we also find a interesting fact. Since our new code

C
P(7)

5
enjoys more symmetry, it has more codewords of minimum distance in general.

However, over some special field F2m , these two codewords have the same number of
the codewords of minimum distance. The main results in this paper are the following
theorems.

Theorem 1.1 Every toric surface code with 3 ≤ k ≤ 5, where k is the dimension of
the code, is monomially equivalent to one constructed from the one of the polygons in
Figs. 1, 2, 3 or 4.

Remark In [7], there is only 12 pictures, however we have 13 pictures here. Figure 4
was missing in [7].

Theorem 1.2 Let q > 5. No two of the toric codes C p(Fq) constructed from the
polygons in Theorem 1.1 are monomially equivalent.

Fig. 1 Polygons yielding toric codes with k = 3
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Notes on classification of toric surface codes of dimension 5 177

Fig. 2 Polygons yielding toric codes with k = 4

Fig. 3 Polygons yielding toric codes with k = 5

Fig. 4 A polygon yielding toric
codes with k = 5
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178 S. S.-T. Yau, H. Zuo

2 Preliminaries

In this section, we shall recall some basic definitions and results which are needed in
this paper.

2.1 Minkowski sum and minimum distance of toric codes

Definition 2.1 Let P and Q be two subsets of R
n . The Minkowski sum is obtained

by taking the pointwise sum of P and Q:

P + Q = {x + y | x ∈ P, y ∈ Q}.

For a polygon P , let I (P) denote the number of lattice points in the interior of P .

Theorem 2.2 [6] Let Fq be a finite field and let P ⊂ R
2 be an integral convex poly-

gon strictly contained in �q−1. Assume that q ≥ (4I (P) + 3)2 (the lower bound on
q will rarely be sharp), let � bet the largest positive integer such that there is some
P ′ ⊆ P such that P ′ is decomposed as a Minkowski sum P ′ = P1 + P2 + · · · + P�

with nontrival Pi (i.e. Pi is not a point). Then

d(CP (Fq)) ≥
�∑

i=1

d(CPi (Fq)) − (� − 1)(q − 1)2.

Let Pk,� be the rectangular Pk,� = conv{(0, 0), (k, 0), (0, �), (k, �)} be the convex
hull of the vectors (0, 0), (k, 0), (0, �), (k, �). We have the following theorem about
CPk,�

.

Theorem 2.3 [7] Let k, � < q − 1, so that Pk,� ⊂ �q−1 ⊂ R
2. Then the minimum

distance of the toric surface code CPk,�
is

d(CPk,�
) = (q − 1)2 − (k + l)(q − 1) + κ� = ((q − 1) − k)((q − 1) − �).

Remark There are a similar results to high dimensional toric codes associated to rect-
angular polytope [0, k1], . . . , [0, km] ⊂ �q−1 ⊂ R

m .

2.2 Some theorems about classification of toric codes

Definition 2.4 Let C1 and C2 be two codes of block length n and dimension k over
Fq . Let G1 be a generator matrix for C1. Then C1 and C2 are said to be monomially
equivalent if there is an invertible n × n diagonal matrix � and an n × n permutation
matrix � such that

G2 = G1��

is a generator matrix for C2.
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Notes on classification of toric surface codes of dimension 5 179

It is easy to see that monomial equivalence is actually an equivalence relation on
codes since a product �� equals �′� for another invertible diagonal matrix �′. It is
also a direct consequence of the definition that monomially equivalent codes C1 and
C2 have the same dimension and the same minimum distance (indeed, the same full
weight enumerator).

An affine transformation of R
m is a mapping of the form T (x) = Mx+λ, where λ is

a fixed vector and M is an m×m matrix. The affine mappings T , where M ∈ GL(m, Z)

(so Det (M) = ±1 ) and λ have integer entries, are precisely the bijective affine map-
pings from the integer lattice Z

m to itself.

Definition 2.5 We will say that two integral convex polytopes P1 and P2 in R
m are

lattice equivalent if there exists an invertible integer affine transformation T as above
such that T (P1) = P2.

In [7], the authors proved the following three results.

Theorem 2.6 If two polytopes P1 and P2 are lattice equivalent, then the toric codes
CP1 and CP2 are monomially equivalent.

Proposition 2.7 Every toric surface code C p with k = 2 is monomially equivalent to
the toric code CP2 for P2 = conv{(0, 0), (1, 0)}.
Theorem 2.8 Let q > 5, no two of the toric codes CP (Fq) constructed from the
polytopes in Figs. 1, 2, 3 are monomially equivalent.

2.3 Two general theorems

Theorem 2.9 [1] If Y is a absolutely irreducible but possibly singular curves, g is the
arithmetic genus of Y , Y (Fq) is the Fq−rational points of curve, then

1 + q − 2g
√

q ≤ |Y (Fq)| ≤ 1 + q + 2g
√

q.

These two bounds are called the Hasse–Weil bounds.

Theorem 2.10 [2] Let F(X, Y ) = 0 define an irreducible curve X over an algebrai-
cally closed field. Then the genus g of the nonsingular model of X satisfies

g ≤ 1 + area �(F) − 1

2
{number of integral points on ∂�(F)}.

This last expression is equal to the number of integral points in the interior of �(F).

3 Proof of the theorem

Proof of Theorem 1.1 Basing on Proposition 2.7, the next step is to find a “nice”
lattice polygon in each possible lattice equivalence class with #(P) = 3, 4, 5. One
way is to add additional points to P2. Using Pick’s Theorem:“A(P) = #(P)+ 1

2∂(P)−
1”(where ∂(P) is the number of Lattice points in the boundary of P ) and the fact that
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180 S. S.-T. Yau, H. Zuo

affine transformation preserves the collinear points and concurrent lines, one sees that
polygons are exactly 13 pictures in Figs. 1, 2, 3 or 4 up to lattice equivalence.

In order to classify the toric surface codes of dimension less than 6. The final step
is to show that no two of the toric surface codes constructed from these polygons can
be monomially equivalent.

Proof of Theorem 1.2 According Theorem 2.8, we only need to prove that C
P(7)

5
is

not monomially equivalent to C
P(i)

3
for i = 1, 2, C

P(i)
4

for 1 ≤ i ≤ 4, and C
P(i)

5
for 1 ≤ i ≤ 6. If the dimensions are different, the toric codes are certainly not
monomially equivalent. Hence we only need to consider C

P(7)
5

is not monomially

equivalent to C
P(i)

5
for 1 ≤ i ≤ 6. In [7], the authors showed that d(CP5

(1) ) =
(q −1)2 −4(q −1), d(CP5

(2) ) = (q −1)2 −3(q −1), d(CP5
(i) ) = (q −1)2 −2(q −1),

for 3 ≤ i ≤ 6. We claim that d(CP5
(7) ) = (q − 1)2 − 2(q − 1). Observe that d(CP5

(7) )

has a subpolygon P ′ = conv{(−1, 0), (1, 0)}. Let P1 = conv{(−1, 0), (0, 0)}, P2 =
conv{(0, 0), (1, 0)}. Since P ′ = P1 + P2, by Theorem 2.2 we have d(CP5

(7) ) ≥
d(CP1) + d(CP2) − (q − 1)2 for q ≥ 49. In view of Theorem 2.3 (with � = 0)
d(C pi ) = (q − 1)2 − (q − 1), i = 1,2. So d(CP5

(7) ) ≥ (q − 1)2 − 2(q − 1) for q ≥ 49.

On the other hand, we have codewords ev(b(x−a1)(x−1−a2))where b, a1, a2 ∈ (F∗
q)2

and a1 	= a−1
2 . Since the weight of these codewords are all (q − 1)2 − 2(q − 1), so

d(CP5
(7) ) ≤ (q−1)2−2(q−1). Therefore for q ≥ 49, d(CP5

(7) ) = (q−1)2−2(q−1).

For 5 < q < 49, we verify directly that d(CP5
(7) ) = (q − 1)2 − 2(q − 1), using the

Magma code (or programs) from [5]. The results are given in Table 1.

Table 1 d(CP5
(7) (Fq ))

q d(CP5
(7) (Fq )) (q − 1)2 − 2(q − 1)

7 24 24

8 35 35

9 48 48

11 80 80

13 120 120

16 195 195

17 224 224

19 288 288

23 440 440

25 528 528

29 728 728

31 840 840

37 1,224 1,224

41 1,520 1,520

43 1,680 1,680

47 2,024 2,024
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Notes on classification of toric surface codes of dimension 5 181

Next step is to show that the C
P(7)

5
with d = (q −1)2 −2(q −1) are not monomially

equivalent to C
P(i)

5
for 3 ≤ i ≤ 6 with d = (q − 1)2 − 2(q − 1). There are two cases

to be considered.

Case 1 C
P(7)

5
is not monomially equivalent to C

P(i)
5

, for i = 3, 4, 6.

We need to look at a finer invariant than before. More precisely, CP5
(7) can be

distinguished from the CP5
(3) ,CP5

(4) and CP5
(6) by the number of words of minimum

weight. In CP5
(7) , there are two different sets of three collinear lattice points while

in the CP5
(i) for i = 3, 4, 6 there is only one. This means that there will be more

codewords of the minimum weight in CP5
(7) than those in CP5

(i) for i = 3, 4, 6. CP5
(7)

has at least 2
(q−1

2

)
(q − 1) such codewords because there are two distinct families

of reducible functions: b(x − a1)(x−1 − a2) with b, ai ∈ F
∗
q and a1 	= a−1

2 , and

b(y − a1)(y−1 − a2) with b, ai ∈ F
∗
q and a1 	= a−1

2 . Since each of these two families

of functions has (a1, bi ) and (a−1
2 , bi ), bi ∈ F

∗
q or (bi , a1) and (bi , a−1

2 ), bi ∈ F
∗
q

zeroes, so they give minimal weight . On the other hand, in [7], the authors showed
that CP5

(i) for i = 3, 4, 6 have only
(q−1

2

)
(q − 1) such codewords for sufficient large

q. For q small, the number of such codewords maybe more than
(q−1

2

)
(q − 1), but it

is strictly less than 2
(q−1

2

)
(q − 1) (see Table 2). Therefore C

P(7)
5

is not monomially

equivalent to C
P(i)

5
, for i = 3, 4, 6.

Case 2 C
P(7)

5
is not monomially equivalent to C

P(5)
5

.

In this case, since both CP5
(7) and CP5

(5) have two different sets of three collinear
lattice points, so we should use the more symmetry geometry properties of polygon
P(7)

5 which means CP5
(7) has more codewords of minimum weight theoretically.

For CP5
(5) , there are two different sets of three collinear lattice points. This means

that CP5
(5) has at least 2

(q−1
2

)
(q−1) codewords of minimum weight (q−1)2−2(q−1),

because there are two different families of reducible polynomials: b(x − a1)(x − a2)

with b, a1, a2 ∈ F
∗
q and a1 	= a2 and b(y − a1)(y−1 − a2) with b, a1, a2 ∈ F

∗
q and

a1 	= a−1
2 . In fact, for any q > 5 we claim that there are exactly 2

(q−1
2

)
(q − 1) such

codewords. Firstly we prove that for sufficiently large q, there are exactly 2
(q−1

2

)
(q−1)

such codewords. We claim that codewords of minimum weight (q − 1)2 − 2(q − 1)

come only from evaluations ev(b(x − a1)(x − a2)) and ev(b(y − a1)(y−1 − a2)). To
see this we need to show that any other such codewords could come only from evalu-
ating a linear combination a + bx + cx2 + dy + ey−1 of {1, x, x2, y, y−1}, in which
x2, y, y−1 all appear with nonzero coefficients. If c = 0, since P(5)

5 with the vertex
x2 deleted is lattice equivalent to P4

(2), so we may consider ev(a + bx + dy + ey−1)
as a codeword of CP4

(2) . From [7] we know that all the minimum codewords of CP4
(2)

are the ev(b(x − a1)(x − a2)) with b, a1, a2 ∈ F
∗
q and a1 	= a2 which are in a previ-

ous covered case. Thus c 	= 0. Similarly we can show that d 	= 0 and e 	= 0. Since
c, d, e 	= 0, so a+bx +cx2+dy+ey−1 defines a curve ay+bxy+cx2 y+dy2+e = 0
and this curve is absolutely irreducible, of arithmetic genus Pa ≤ 1 (because of the
one interior lattice points in this case, see Theorem 2.10). If Pa = 1, by Theorem
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182 S. S.-T. Yau, H. Zuo

Table 2 Weight enumerators
Over F7

P5
(3) : 1 + 90x24 + 648x25 + · · ·

P5
(4) : 1 + 90x24 + 216x25 + · · ·

P5
(5) : 1 + 180x24 + 324x26 + · · ·

P5
(6) : 1 + 90x24 + 432x26 + · · ·

P5
(7) : 1 + 288x24 + 108x26 + · · ·

Over F8

P5
(3) : 1 + 147x35 + 1029x36 + · · ·

P5
(4) : 1 + 147x35 + 343x36 + · · ·

P5
(5) : 1 + 294x35 + 343x37 + · · ·

P5
(6) : 1 + 147x35 + 1029x37 + · · ·

P5
(7) : 1 + 294x35 + 343x36 + · · ·

Over F9

P5
(3) : 1 + 224x48 + 1536x49 + · · ·

P5
(4) : 1 + 224x48 + 512x49 + · · ·

P5
(5) : 1 + 448x48 + 512x51 + · · ·

P5
(6) : 1 + 224x48 + 512x50 + · · ·

P5
(7) : 1 + 704x48 + 256x50 + · · ·

Over F11

P5
(3) : 1 + 450x80 + 3000x81 + · · ·

P5
(4) : 1 + 450x80 + 1000x81 + · · ·

P5
(5) : 1 + 900x80 + 1500x84 + · · ·

P5
(6) : 1 + 650x80 + 1000x82 + · · ·

P5
(7) : 1 + 1400x80 + 500x82 + · · ·

Over F13

P5
(3) : 1 + 792x120 + 5184x121 + · · ·

P5
(4) : 1 + 792x120 + 1728x121 + · · ·

P5
(5) : 1 + 1584x120 + 7776x126 + · · ·

P5
(6) : 1 + 792x120 + 1728x125 + · · ·

P5
(7) : 1 + 2448x120 + 864x122 + · · ·

Over F16

P5
(3) : 1 + 1575x195 + 10125x196 + · · ·

P5
(4) : 1 + 1575x195 + 3375x196 + · · ·

P5
(5) : 1 + 3150x195 + 13500x203 + · · ·

P5
(6) : 1 + 2250x195 + 13500x203 + · · ·

P5
(7) : 1 + 3150x195 + 3375x196 + · · ·

Over F17

P5
(3) : 1 + 1920x224 + 12288x225 + · · ·

P5
(4) : 1 + 1920x224 + 4096x225 + · · ·

P5
(5) : 1 + 3840x224 + 5120x232 + · · ·
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Notes on classification of toric surface codes of dimension 5 183

Table 2 continued
P5

(6) : 1 + 1920x224 + 4096x230 + · · ·
P5

(7) : 1 + 5888x224 + 2048x226 + · · ·
Over F19

P5
(3) : 1 + 2754x288 + 17496x289 + · · ·

P5
(4) : 1 + 2754x288 + 5832x289 + · · ·

P5
(5) : 1 + 5508x288 + 32076x298 + · · ·

P5
(6) : 1 + 2754x288 + 5832x294 + · · ·

P5
(7) : 1 + 8424x288 + 2916x290 + · · ·

Over F23

P5
(3) : 1 + 5082x440 + 31944x441 + · · ·

P5
(4) : 1 + 5082x440 + 10648x441 + · · ·

P5
(5) : 1 + 5508195 + 32076x298 + · · ·

P5
(6) : 1 + 5082x440 + 154396x450 + · · ·

P5
(7) : 1 + 15488x440 + 5324x442 + · · ·

2.9 there are at most 1 + q + 2
√

q rational points in such curve. a simple argument
shows that 1 + q + 2

√
q < 2q − 2 for all q ≥ 11. This means that the weight of

corresponding codewords is at least (q −1)2 − (1+q +2
√

q) > (q −1)2 −2(q −1).
Similarly, if Pa = 0, then there are 1 + q rational points in such curve. Note that
for q > 5, 1 + q < 2q − 2, so the weight of corresponding codewords is at least
(q − 1)2 − (1 + q) > (q − 1)2 − 2(q − 1). Hence there are exactly 2

(q−1
2

)
(q − 1)

codewords of minimum weight (q − 1)2 − 2(q − 1), for q ≥ 11. Secondly for smaller
values of q, we verify directly from the weight enumerators of CP5

(5) (Fq), to see

that the number of codewords of minimum weight also satisfies 2
(q−1

2

)
(q − 1) (see

Table 2).
We now claim that CP5

(5) contains no codewords of weight (q − 1)2 − (2q − 3).
Firstly If q is sufficiently large, we show that CP5

(5) contains no codewords of weight

(q −1)2 − (2q −3). Similarly as above, we shall show that any such codewords could
come only from a linear combination a + bx + cx2 + dy + ey−1 of {1, x, x2, y, y−1}
in which x2, y, y−1 all appear with nonzero coefficients. If c = 0, we may consider
ev(a + bx + dy + ey−1) as a codeword of CP4

(2) . We know that CP4
(2) does not have

codeword of weight (q − 1)2 − (2q − 3) [7]. Thus c 	= 0. Similarly we can show that
d 	= 0 and e 	= 0. Since c, d, e 	= 0, so a + bx + cx2 + dy + ey−1 defines a curve
ay + bxy + cx2 y + dy2 + e and this curve is absolutely irreducible, of arithmetic
genus Pa ≤ 1 as before. If Pa = 1, by Theorem 2.9 there are at most 1 + q + 2

√
q

rational points in such curve. a simple argument shows that 1 + q + 2
√

q < 2q − 3
for all q ≥ 11. This means that the weight of corresponding codewords is at least
(q − 1)2 − (1 + q + 2

√
q) > (q − 1)2 − (2q − 3). Similarly, if Pa = 0, then there are

1+q rational points in such curve. Note that for q > 5, 1+q < 2q −3, so the weight
of corresponding codewords is at least (q −1)2 −(1+q) > (q −1)2 −(2q −3). Hence
there are no codewords of weight (q −1)2 −(2q −3) for q ≥ 11. Secondly for smaller
values of q we again verify directly that CP5

(5) (Fq) does not have codewords of weight
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184 S. S.-T. Yau, H. Zuo

(q − 1)2 − (2q − 3) (see Table 2). Therefore CP5
(5) (Fq) contains no codewords of

weight (q − 1)2 − (2q − 3) for any q > 5.
For CP5

(7) , we assume α is a primitive element of Fq , then (Fq)∗ =
〈1, α, α2, . . . , αq−2〉 is a cyclic group. There are two cases to be considered.

Case A CP5
(7) over Fq where q 	= 2m, m > 3.

We claim that in this case CP5
(7) cannot be monomially equivalent to CP5

(5) over
Fq where q 	= 2m, m > 3.

Since CP5
(5) has exactly 2

(q−1
2

)
(q − 1) codewords of minimum weight, so we only

need to show that the number such codewords in CP5
(7) is strictly more 2

(q−1
2

)
(q −1).

If we translate P(7)
5 by (1,1) to place it in �q−1, then we evaluate polynomials in

Span{x, y, xy, x2 y, xy2} to get the codewords of the corresponding code which is
monomially equivalent to CP5

(7) . Observe that there are three distinct families of poly-
nomials: bx(y −a1)(y −a2) with b, a1, a2 ∈ F

∗
q and a1 	= a2, by(x −a1)(x −a2) with

b, a1, a2 ∈ F
∗
q and a1 	= a2, and b(y − a1x)(a2 − xy) with b, a1, a2 ∈ F

∗
q , a1 	= a2

and a1
a2

	= α2i for 1 ≤ i ≤ q − 2. It should be pointed out that the third family does

not always yield codewords of weight (q − 1)2 − 2(q − 1). It depends on the field Fq .
The point is whether the curves y = a1x and xy = a2 can intersect in the torus T , and
that happens if and only if x2 = a2

a1
, or a2

a1
is a square in Fq . Equivalently, a1

a2
= α2i ,

for some i, 1 ≤ i ≤ q − 2.
In case q 	= 2m , and we can find a pair (a1, a2) ∈ (F∗

q)2 such that a1, a2 satisfy
a1 	= a2, a1

a2
	= α2i for 1 ≤ i ≤ q − 2, for instance, (a1, a2) = (α, 1) is such a

pair. For any such pair, we can get q − 1 polynomials b(y − a1x)(a2 − xy) whose
evaluation correspond codewords of minimum weight (q − 1)2 − 2(q − 1). Noting
that the number of codewords of the first two families is 2

(q−1
2

)
(q −1), thus CP5

(7) has

strictly more than 2
(q−1

2

)
(q −1) codewords of minimum weight, while CP5

(5) has only

2
(q−1

2

)
(q − 1) such codewords. This means CP5

(7) cannot be monomially equivalent
to CP5

(5) .

Case B CP5
(7) over Fq where q = 2m, m > 3.

We claim that in this case CP5
(7) cannot be monomially equivalent to CP5

(5) over
Fq where q = 2m, m > 3.

In this case, we cannot find a pair (a1, a2) ∈ (F∗
q)2 such that a1, a2 satisfy a1 	=

a2, a1
a2

	= α2i for 1 ≤ i ≤ q − 2. This implies CP5
(7) and CP5

(5) have the same num-
ber of codewords of minimum weight. Since CP5

(5) contains no codewords of weight

(q − 1)2 − (2q − 3), so if we can prove that there exists at least one codeword of
weight (q − 1)2 − (2q − 3) in CP5

(7) , then CP5
(7) is not monomially equivalent to

CP5
(5) . The existence of such codewords can be constructed in the following way. Let

(a1, a2) = (1, α), the zeroes of (y − x)(α − xy) is

{ (αi , αi ), i = 0, 1, . . . , 2m − 2 ; (α j , α2m− j ), j = 0, 1, . . . , 2̂m−1, . . . , 2m − 2 },

where 2̂m−1 means 2m−1 is omitted. Since this set has (2q −3) elements, so ev((y−x)

(α − xy)) at (F∗
q)2 is a codeword of weight (q − 1)2 − (2q − 3) in CP5

(7) .
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Remark Table 2 gives the first three nonzero terms in the weight enumerators:

WC (x) =
(q−1)2∑

i=0

Ai xi ,

where Ai = |{w ∈ C : wt (w) = i}|, for the k = 5 toric codes with d = (q − 1)2 −
2(q − 1). These were all computed using Magma code from [5].
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