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ABSTRACT
Ever since Brockett, Clark andMitter introduced the estimation algebramethod, it becomes a powerful tool
to classify the finite-dimensional filtering system. In this paper,we investigate finite-dimensional estimation
algebra with non-maximal rank. The structure of Wong matrix� will be focused on since it plays a critical
role in the classification of finite-dimensional estimation algebras. In this paper, we first consider general
estimation algebra with non-maximal rank and determine the linear structure of the submatrix of � by
using rank condition and property of Euler operator. In the second part, we proceed to consider the case
of linear rank n−1 and prove the linear structure of �. Finally, we give the structure of finite-dimensional
filters which implies the drift termmust be a quadratic function plus a gradient of a smooth function.
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1. Introduction

Filtering problem refers to estimating the state of a stochas-
tic dynamical system by using the information of observa-
tion history. In the 1960s, a breakthrough in estimation tech-
nique which is a well-known Kalman–Bucy filter (Kalman
& Bucy, 1961) appeared. Linear Kalman filtering motivated
numerous research in the study of nonlinear filtering. In the
sense of mean square error, optimal estimate of nonlinear fil-
tering is the conditional expectation E[φ(Xt) |Yt], where Xt
denotes the state of system and Yt denotes the history of obser-
vations. φ is a smooth function. Obviously, conditional den-
sity ρ(t, x) contains full information of nonlinear filtering. In
the 1960s. Kushner–Stratonovich equation was proposed which
describes the evolution of conditional density. However, Kush-
ner equation is hard to solve directly because it is a nonlin-
ear stochastic partial differential equation. In the late 1960s,
Duncan–Mortensen–Zakai (DMZ) equation (Zakai, 1969) was
proposed and described the evolution of unnormalised condi-
tional densityσ(t, x). DMZequation is a linear stochastic partial
differential equation and it is easier to deal with.

Currently there are basically four ways of solving nonlin-
ear filtering problems. The first one is based on the projection
method, e.g. extended Kalman filter and geometric projection
filter (Brigo et al., 1998). Projection algorithms aim to project
the nonlinear system to a well-studied system approximately.
The second approach is the particle evolution method. Here
different particles {Xi} will be created and evolved according
to the governing stochastic differential equation. Then empir-
ical distribution is used to approximate the conditional density
ρ ≈ 1

N
∑N

i=1 δ(x − Xi). Typical algorithms include ensemble
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Kalman filter (Epstein, 1969) and feedback particle filter (Yang
et al., 2013). The third aspect is to reformulate the original
filtering system to an optimisation framework. Most recently
developed and popular techniques include optimal control and
optimal transportation (Kim et al., 2019; Zhang et al., 2021). The
fourth aspect is based on the solution of DMZ which will be
explained in detail below.

By a reversible exponential mapping (Rozovsky, 1972), a
path-wise robust version of DMZ equation was proposed which
is a deterministic PDE with time-varying coefficients. In recent
decades, numerous works were developed based on the solu-
tion of robust DMZ equation. Yau and Yau (1996) discussed the
general Kolmogorov equation when observation is always zero
and find a fundamental solution of Kolmogorov equation. Yau
and Yau (2004) proceeded and restricted the system to finite-
dimensional case and obtained the fundamental solution of
Schrodinger equation. Subsequently, this fundamental solu-
tion technique was extended to a time-varying filtering sys-
tem (Chen et al., 2017) and is named ‘Direct method’ (Chen
et al., 2017; Shi et al., 2018). In 2008, Yau-Yau filtering
algorithm (Yau & Yau, 2008) was proposed and robust DMZ
equation was transformed to a series of Kolmogorov equations.
Yau–Yau algorithm separated the filtering process to on-line and
off-line parts. Later, Hermite spectral method (HSM) was pro-
posed to effectively solve forward Kolmogorov equation (Luo
& Yau, 2013), which is an off-line part of Yau–Yau algorithm.
HSM is an effective method and has complete theoretical anal-
ysis for filtering problems.

It is noted that DMZ equation is a linear SPDE and
Wei–Norman approach can be applied to solve it in principle.

© 2023 Informa UK Limited, trading as Taylor & Francis Group
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This motivated the establishment of estimation algebra method
proposed by Brockett (1981); Brockett and Clark (1980); Mit-
ter (1980) in the 1970s. Once estimation algebra of system is
a finite-dimensional Lie algebra, Wei–Norman approach will
reduce the solution ofDMZequation to aKolmogorov equation,
a system of ordinary differential equations (ODEs) and several
first-order linear partial differential equations (PDEs). There-
fore, DMZ equation can be solved completely and universal
recursive filters can be constructed successfully.

In the International Congress of Mathematicians of 1983,
Brockett proposed the program of classifying all finite-
dimensional estimation algebra. In the 1990s, through persis-
tent efforts, Yau et al. finished the complete classification of
maximal rank estimation algebras (Chen & Yau, 1996; Chiou
& Yau, 1994; Yau, 1994, 2003; Yau & Hu, 2005). Since the
beginning of twentieth century, Yau et al. have been devoted
to the study of nonmaximal rank finite-dimensional estima-
tion algebra. In the classification of full-rank estimation algebra,
a critical step is that Yau can prove that entries of � are all
affine functions. This linear structure of � is a key towards
Mitter conjecture. This linear structure is also found in the
low-dimensional non-maximal rank estimation algebra. More
precisely, Wu and Yau (2006) have finished the classification of
estimation algebra with state dimension 2 and rank 1 in 2006. In
2017, Shi and Yau studied the situation of state dimension 3 and
rank 2 and proved the linear structure of � (Shi & Yau, 2017).
Based on linear structure of �, they succeeded to prove Mitter
conjecture (Shi & Yau, 2017). However, in the high-dimensional
situationwith state dimension larger than 3, whether� can keep
linear structure remains unknown and is an important open
problem in the field of finite-dimensional filters. In this paper,
we will give a positive answer for case with state dimension n
and linear rank n−1.

Complex structure of � matrix has been investigated in
many papers (Jiao&Yau, 2020; Shi et al., 2017). It is a known fact
that under non-maximal rank case estimation algebra,� could
possess polynomial or even smooth function. In this paper, we
will focus on the special case of non-maximal rank estimation
algebra, i.e. r = n−1. Our ultimate goal in this paper is to prove
entries of� ∈ R

n×n are all affine functions. To this end, we will
finish in two major steps as below.

Step 1. General finite-dimensional estimation algebra with
non-maximal rank r(≤ n − 1) will be investigated. We will
prove the partially linear structure of �, i.e. upper-left cor-
ner submatrix with size r × r possesses linear structure. The
techniques used here include linear rank and quadratic rank
properties as well as the property of Euler operator theory. This
result will provide a common starting point for further study on
nonmaximal rank cases.

Step 2. With the partially linear structure of �, we con-
sider the case of linear rank r = n−1. We show that remain-
ing part of � has an affine structure. The main method used
here is to construct infinite sequences in the estimation alge-
bra. Once infinite sequence is obtained, certain restriction about
� will be obtained due to the assumption of finite dimen-
sionality of estimation algebra. Following this procedure and
utilising contradiction, we will reduce the degree of � step
by step. Finally, under the help of a lot of useful intermedi-
ate conclusions, the degree of � eventually can be reduced to
just 1.

This paper is organised as follows. In Section 2, we intro-
duce some basic concepts of nonlinear filtering and preliminary
results about estimation algebras. In Section 3, the general non-
maximal rank case is considered and it demonstrates that sub-
matrix of � is an affine matrix. In Section 4, nonmaximal rank
estimation algebrawith linear rank n−1 is considered and linear
structure of� is proven. In Section 5, the structure of drift func-
tion in the filtering system is shown. In Section 6, we will give
a summary. Appendix contains the detailed proofs of related
results.

2. Basic concepts and preliminaries

Basic notations: The set of real numbers is denoted by R. R
k

refers to k-dimensional Euclidean space. A = (aij) denotes a
matrix A with i,j-entry aij. rank(A) denotes the rank of matrix
A. In denotes the identity matrix of size n × n. δij denotes Kro-
necker symbol which means δij = 1 if i = j otherwise δij =
0. diag(λ1, λ2, . . . , λn) represents a diagonal matrix . A1≤i,j≤r
denotes submatrix consisting of first r rows and columns of
A. Let C∞(U) be the set of smooth function defined on U.
span{v1, . . . , vk} refers to a linear space spanned by vectors
{v1, v2, . . . , vk}. Pk(xi1 , . . . , xim) denotes the set of polynomial of
degree no more than k in variable xi1 , . . . , xim . polk(xi1 , . . . , xim)
represents a polynomial in set Pk(xi1 , . . . , xim). For an polyno-
mialφ,φ(k) denotes the homogeneous degree kpart ofφ. deg(φ)
denotes the degree of a polynomial φ. Jξ = (

∂2ξ
∂xi∂xj ) denotes the

Hessian matrix of function ξ . const denotes a constant number.
In this paper, we consider the following time-invariant non-

linear filtering system:{
dx(t) = f (x(t)) dt + g(x(t)) dw(t), x(0) = x0 ∈ R

n,
dy(t) = h(x(t)) dt + dv(t), y(0) ∈ R

m,
(1)

where x(t) = (x1, . . . , xn) ∈ R
n, y(t) = (y1, . . . , ym) ∈ R

m rep-
resents the state and observation vectors in Euclidean space. f :
R
n → R

n denotes the drift mapping. h : R
n → R

m denotes the
observation function. g : R

n → R
n×p represents the diffusion

coefficient. f = (fi), h = (hi), g = (gij) are all assumed smooth
vector fields. w(t) ∈ R

p, v(t) ∈ R
m are mutually independent

standard Wiener process, i.e. E[dwdwT] = Indt,E[dvdvT] =
Imdt. Define coefficient matrix C = (Cij) := ggT ∈ R

n×n.
For a continuous filtering system, the ultimate goal is to

determine the conditional expectation E[φ(xt) |Yt], where φ
is a C∞ function and Yt := σ {ys : 0 ≤ s ≤ t} is the filtration of
observation. Under the sense of mean square error, conditional
expectation E[xt |Yt] is the optimal estimate for the state of
system. Therefore, conditional density ρ(t, x) given the obser-
vation history includes complete information of the filtering
system.

Mathematically, unnormalised conditional density σ(t, x) is
described by the following Duncan–Mortensen–Zakai (DMZ)
equation:

dσ(t, x) = L0σ dt + σ(t, x)hTt ◦ dyt , (2)

where

L0(◦) := 1
2

n∑
i,j=1

Cij
∂2(◦)
∂xi∂xj

−
n∑
i=1

∂(fi◦)
∂xi

− 1
2
hTh(◦). (3)
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Note that DMZ equation is formulated by the form of
Stratonovich stochastic integral. We can find the singularity of
matrix C = (Cij) will influence the second-order differential
operator term in L0. In this paper, we assume diffusion coef-
ficient g is an orthogonal matrix which will lead to C = In. It
means that we consider the case of non-degenerated state noise.

Next we can reformulate forward differential operator L0 as

L0 = 1
2

n∑
i=1

∂2

∂x2i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi

− 1
2

m∑
i=1

h2i . (4)

And we define Li := hi, 1 ≤ i ≤ m is the zero degree differential
operator of multiplication by hi.

Let

Di := ∂

∂xi
− fi, 1 ≤ i ≤ n,

η :=
n∑

i=1

∂fi
∂xi

+
n∑

i=1
f 2i +

m∑
i=1

h2i ,
(5)

then we can obtain a more compact form of L0,

L0 = 1
2

( n∑
i=1

D2
i − η

)
. (6)

Next we give some basic concepts related to Lie algebra.

Definition 2.1: If X and Y are differential operators, the Lie
bracket of X and Y, [X,Y], is defined by [X,Y]φ = X(Yφ)−
Y(Xφ) for any C∞ function φ.

Definition 2.2: Avector spaceF with the Lie bracket operation
F × F → F denoted by (x, y) �−→ [x, y] is called a Lie algebra
if the following axioms are satisfied:

(1) The Lie bracket operation is bilinear.
(2) [x, x] = 0 for all x ∈ F .
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ F .

Definition 2.3: Let g and g̃ be two Lie algebras. An isomor-
phism f : g → g̃ is a linear map and satisfies

(1) f is a bijection.
(2) f is a homomorphism of Lie algebras, i.e. f [g1, g2] =

[f (g1), f (g2)] for any g1, g2 ∈ g.

If there exists an isomorphism, we denote g is isomorphic to
g̃, i.e. g ∼= g̃.

Remark 2.1: If two Lie algebras are isomorphic, then they have
the same Lie algebra structure.

Next we introduce the concept of estimation algebra related
to the filtering system.

Definition 2.4: The estimation algebra E of a filtering sys-
tem (1) is defined to be the Lie algebra generated by
{L0, L1, . . . , Lm}, i.e. E = 〈L0, h1, . . . , hm〉L.A..

Remark 2.2: In the whole paper, we assume E is a finite-
dimensional Lie algebra.

Definition 2.5: Let L(E) ⊂ E be the vector space consisting of
all the homogeneous degree 1 polynomials in E. Then the lin-
ear rank of estimation algebra E is defined by r := dim L(E).
If r = n, we call E has maximal rank. Otherwise, E has non-
maximal rank.

Definition 2.6: For a given function h ∈ E, we consider
homogenous quadratic part h(2) = xTAx. We define quadratic
rank of h is λ(h) : rank(A). Then quadratic rank of estimation
algebra E is defined as the maximal rank of function in E, i.e.
λ(E) := maxh∈E λ(h).

Especially, we should note that the structure of linear rank
and quadratic rank play quite important roles in the classifica-
tion of known non-maximal rank estimation algebra.

Definition 2.7: The Wong’s �-matrix is the matrix � = (ωij),
where

ωij = ∂fj
∂xi

− ∂fi
∂xj

, ∀1 ≤ i, j ≤ n. (7)

Obviously, ωij = −ωji, i.e.� is an antisymmetric matrix.

It is worth noting that elements of � matrix satisfy the
following cyclical condition, which can be obtained by direct
calculations.

∂ωij

∂xl
+
∂ωjl

∂xi
+ ∂ωli
∂xj

= 0, for 1 ≤ i, j, l ≤ n. (8)

Remark 2.3: The structure of � matrix influences the form of
drift term f. If � = 0, it corresponds to Benes filter, i.e. f =
∇φ where φ ∈ C∞(Rn). In Benes filtering system, drift vec-
tor field has a potential which is a meaningful nonlinear case
such as electronic field case. If we consider more general situa-
tion � is a constant matrix, then drift vector field corresponds
to f (x) = Lx + l + ∇φ, where L ∈ R

n×n, l ∈ R
n,φ ∈ C∞(Rn).

This type of filter is called Yau filtering system which contains
Kalman–Bucy filter and Benes filter as special cases. Yau filter-
ing system plays an important role in the study of maximal and
non-maximal rank estimation algebras.

Definition 2.8: Let U be the vector space of differential opera-
tors in the form

A =
∑

(i1,i2,...,in)∈IA
ai1,i2,...,inD

i1
1 D

i2
2 · · ·Din

n , (9)

where functions ai1,i2,...,in ∈ C∞(Rn) are smooth and IA ⊂ Nn

is the finite set of A. For i = (i1, i2, . . . , in) ∈ Nn, denote |i| :=∑n
k=1 ik. The order of A is defined by ord(A) := maxi |i|. Let

Uk denote differential operator in E with order no more than k.
Especially, U0 denotes smooth function in E.

Basic notations related to Lie bracket: Let A,B ∈ E and V is a
subspace of E. Then we define an equivalence relation A = B,
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mod V if A − B ∈ V . We define adjoint map Ad : E × E → E
by AdAB = [A,B] and AdkAB = [A,AdK−1

A B]. Euler operator is
ES :=

∑
l∈S xl

∂
∂xl

, where S is an index subset of {1, 2, . . . , n}.
Estimation algebra is an operator algebra. The following cal-

culation rule is useful in exploring the structure of estimation
algebra.

Lemma 2.9 (Yau, 1994): Let E be an estimation algebra for
the filtering problem (1). � = (ωij) is defined as in 2.7. Assume
X,Y ,Z ∈ E and g, h ∈ C∞(Rn). Then

(1) [XY ,Z] = X[Y ,Z] + [X,Z]Y;
(2) [gDi, h] = g ∂h

∂xi ;
(3) [gDi, hDj] = ghωji + g ∂h

∂xi Di − h ∂g
∂xj Di;

(4) [gD2
i , h] = 2g ∂h

∂xi Di + g ∂
2h
∂x2i

;

(5) [D2
i , hDj] = 2 ∂h

∂xi DiDj + 2hωjiDi + ∂2h
∂x2i

Dj + h ∂ωji
∂xi ;

(6) [D2
i ,D

2
j ] = 4ωjiDjDi + 2 ∂ωji

∂xj Di + 2 ∂ωji
∂xi Dj + ∂2ωji

∂xi∂xj + 2ω2
ji;

(7) [D2
k, hDiDj] = 2 ∂h

∂xk
DkDiDj + 2hωjkDiDk + 2hωikDkDj +

∂2h
∂x2k

DiDj + 2h ∂ωjk
∂xi Dk + h ∂ωjk

∂xk
Di + h ∂ωik

∂xk
Dj +h ∂2ωjk

∂xi∂xk
;

(8) [gDiDj, hDk] = g ∂h
∂xj DiDk + g ∂h

∂xi DjDk − h ∂g
∂xk

DiDj +
ghωkjDi + ghωkiDj + g ∂2h

∂xi∂xj Dk + gh ∂ωkj
∂xi .

Following technical results of brackets appear frequently in
estimation algebra.

Lemma 2.10: (1) [L0, xi] = Di;
(2) [[L0,φ],φ] = |∇φ|2 = ∑n

i=1(
∂φ
∂xi )

2;

(3) [L0,Dj] = ∑n
i=1 ωjiDi + 1

2
∂η
∂xj + 1

2
∑n

i=1
∂ωji
∂xi ;

(4) [L0, x2j ] = 2xjDj + 1.

Some known results used in this paper are listed.

Theorem2.11 (Ocone, 1981): Let E be a finite-dimensional esti-
mation algebra. If a function ξ is in E, then ξ is a polynomial of
degree at most 2.

Following theorem proposed by Wu and Yau illustrates the
coefficients of highest order term of a differential operator in E
must be polynomials.

Theorem 2.12 (Wu&Yau, 2006): Let E be a finite-dimensional
estimation algebra. If l ≥ 0 and

A =
∑

|(i1,i2,...,in)|=l+1

ai1,i2,...,inD
i1
1 D

i2
2 · · ·Din

n , mod Ul ∈ E,

(10)

then coefficients ai1,i2,...,in are polynomials.

A trivial extension of TheoremsA2 andA3 inYau andRasou-
lian (1999) about Euler operator can be written down.

Theorem 2.13: Let Euler operator ES :=
∑

l∈S xl
∂
∂xl

, where S
is an index subset of {1, 2, . . . , n}. Set m is a positive constant.
Suppose ES(ζ )+ mζ ∈ Pk(x). Then ζ ∈ Pk(x).

Theorem 2.14: Let Euler operator ES :=
∑

l∈S xl
∂
∂xl

, where S is
an index subset of {1, 2, . . . , n}. Suppose ES(ζ ) ∈ Pk(x). Then ζ ∈
Pk(x)+ a(xj, j /∈ S), where a is a smooth function.

3. Finite-dimensional estimation algebra of
non-maximal linear rank

It has been proven that constant structure of � matrix plays
an important role in maximal rank classification of estima-
tion algebra. One key step in maximal rank classification is to
determine the linear structure of �. As an extension, in this
section, we will consider general finite-dimensional estimation
algebra with non-maximal rank. Our goal in this section is to
determine the linear structure of submatrix of � as shown in
Section 3.6. The techniques used here include the structure of
linear rank and quadratic rank and property of Euler opera-
tor. This result will provide a common starting point for further
study on nonmaximal rank cases.

First, we make an assumption:

Assumption 3.1: linear rank ν(E) = r ≤ n − 1.

Without loss of generality, we assume x1, x2, . . . , xr ∈ E and
xr+1, . . . , xn /∈ E. It can be easily checked that 1 ∈ E since
[[L0, x1], x1] = 1 ∈ E.

Next due to the structure of linear rank, we can give a restric-
tion for homogeneous quadratic part of a function inE. Detailed
proof can be found in Appendix.

Lemma3.1: Letφ(x) ∈ E be a function in E. Then homogeneous
quadratic part of φ must be a block diagonal form, i.e.

φ(2)(x) = xT
(
A1 0
0 A2

)
x, (11)

where A1 and A2 are symmetric matrices with size r × r and (n −
r)× (n − r), x = (x1, x2, . . . , xn)T.

Brockett (1979) proved that if one performs a smooth non-
singular change of variable z = F(x), this mapping will lead
to an isomorphism of estimation algebra. Then if we consider
making an orthogonal transformation and translation, the esti-
mation algebra will extend an isomorphism.

Next we denote that quadratic rank of E is λ(E) = k. By
definition, we can find a quadratic polynomial φ ∈ E such that

φ(2)(x) = xT
(
A1 0
0 A2

)
x, (12)

and rank(A1)+ rank(A2) = k. Under an appropriate block
diagonal orthogonal transformation

T =
(
U1 0
0 U2

)
, (13)

quadratic part φ(2) can be diagonalised as

φ(2) =
⎛
⎝D1 0 0

0 0 0
0 0 D2

⎞
⎠ , (14)
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where D1,D2 are diagonal matrices with non-zero diagonal
elements. Wu and Yau (2006, Theorem 3.7) used the tech-
nique of translation of variable and Vandermonde matrix then
proved that there exists quadratic function p0 = ∑k1

i=1 x
2
i +∑n

i=n−k2+1 x
2
i ∈ E, where k1 + k2 = k, k1 ≤ r and k2 ≤ n − r.

Note that p0 has greatest quadratic rank k in E, i.e. λ(p0) = k.

Remark 3.1: Note that such orthogonal transformation (13)
and translation of variable xi �−→ xi + const do not change the
basis of L(E).

For convenience, we define index set S := {1, . . . , k1, n −
k2 + 1, . . . , n}. Here we note

(i) if k1 = 0, S = {n − k2 + 1, . . . , n};
(ii) if k2 = 0, S = {1, . . . , k1};
(iii) if k1 = k2 = 0, S = ∅.

Following lemma describes the structure of homogeneous
part of any function in E. The proof appears in the Appendix.

Lemma 3.2: If p ∈ E is a quadratic function, then homogeneous
quadratic part p(2)(x) is independent of xj for j /∈ S, i.e. ∂p

(2)(x)
∂xj =

0 for j = k1 + 1, . . . , n − k2.

By using the technique of Lemma 3.2 and cyclic condition
satisfied by�, we can further describe the structure of elements
of�. The proof can be found in the Appendix.

Lemma3.3: Suppose E is a finite-dimensional estimation algebra
of linear rank r and quadratic rank k = k1 + k2, where k1, k2 are
defined in p0. Then

(i) ω
(2)
ij only depends on x1, . . . , xk1 , xn−k2+1, . . . , xn for 1 ≤

i, j ≤ r.
(ii) ω

(2)
ij only depends on xn−k2+1, . . . , xn for k1 + 1 ≤ i, j ≤ r.

(iii)
∂ω

(1)
ij

∂xl
+ ∂ω

(1)
jl

∂xi + ∂ω
(1)
li

∂xj = 0 for 1 ≤ i, j, l ≤ r.

(iv)
∂ω

(2)
ij

∂xl
+ ∂ω

(2)
jl

∂xi + ∂ω
(2)
li

∂xj = 0 for 1 ≤ i, j, l ≤ r.

To find more information about elements of �, we define
following function for 1 ≤ i ≤ r:

E � αi := 1
2
[[L0,Di], p0]

= 1
2

[ n∑
l=1

ωilDl, mod U0, p0

]

= 1
2

n∑
l=1

[ωilDl, p0]

= 1
2

n∑
l=1

ωil
∂p0
∂xl

=
∑
l∈S

xlωil. (15)

By Theorem 2.11 (Ocone), αi’s are polynomials of degree at
most 2 in x1, . . . , xn. In the next lemma, we will find the relation
between αi and (ωij) by taking derivative in terms of x. Detailed
proof can be found in the Appendix.

Lemma 3.4: Assume S �= ∅. For 1 ≤ i ≤ r, αi :=
∑

l∈S ωilxl ∈
E are degree at most 2 polynomials in x. Then

(i) ES(ωij)+ 2ωij = ∂αi
∂xj − ∂αj

∂xi , for 1 ≤ i, j ≤ k1.

(ii) ES(ωij)+ ωij = ∂αi
∂xj − ∂αj

∂xi , for 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ r.

(iii) ES(ωij)+ ωij = ∂αi
∂xj − ∂αj

∂xi , for 1 ≤ j ≤ k1, k1 + 1 ≤ i ≤ r.

(iv) ES(ωij) = ∂αi
∂xj − ∂αj

∂xi , for k1 + 1 ≤ i, j ≤ r.

Next based on Lemma 3.4, we utilise the tool of Euler oper-
ator to simplify (ωij). In the following, we use�1≤i,j≤r to repre-
sent a submatrix which is the intersection of the first r rows and
columns of�. Proof appears in the Appendix.

Lemma 3.5: Under Assumption 1, we have

�1≤i,j≤r =
(

P1(x) P1(x)
P1(x) P1(x)+ P2(xk1+1, . . . , xn−k2)

)
, (16)

i.e. ωij are polynomials of degree 1 in x1, x2, . . . , xn for 1 ≤ i, j ≤
k1 or 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ r or 1 ≤ j ≤ k1, k1 + 1 ≤ i ≤ r.
ωij are polynomials of degree 1 in x1, x2, . . . , xn plus polynomials
of degree 2 in xk1+1, . . . , xn−k2 variables for k1 + 1 ≤ i, j ≤ r.

In Lemma 3.5, �1≤i,j≤r has been partitioned to four blocks.
From left to right and from top to bottom, sizes of subma-
trices are k1 × k1, k1 × (r − k1), (r − k1)× k1, (r − k1)× (r −
k1). To obtain a more meticulous structure, we improve
Lemma 3.5 by using linear and quadratic rank structures. And
finally it implies the linear structure of �1≤i,j≤r. Proof can be
checked in the Appendix.

Theorem 3.6: Under Assumption 1, we have

�1≤i,j≤r =
(

P1(x1, x2, . . . , xk1) P1(x1, x2, . . . , xk1)
P1(x1, x2, . . . , xk1) P1(xk1+1, . . . , xr)

)
,

(17)

i.e. (i) ωij are polynomials of degree 1 in x1, x2, . . . , xk1 for 1 ≤
i, j ≤ k1 or 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ r or 1 ≤ j ≤ k1, k1 + 1 ≤
i ≤ r.

(ii) ωij are polynomials of degree 1 in xk1+1, . . . , xr for k1 +
1 ≤ i, j ≤ r.

Following result can be directly obtained by Theorem 3.6.

Corollary 3.7: Under Assumption 1, submatrix �1≤i,j≤r has
linear structure.

4. Finite-dimensional estimation algebra of state
dimension n and linear rank n−1

In this section, we discuss the situation of linear rank r = n−1,
where n is state–space dimension. In Section 3, partial linear
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structure of � has been obtained. Under the assumption linear
rank r = n−1, �1≤i,j≤n−1 has been proven linear structure. In
this section, we will further investigate remaining part of� and
prove the linear structure of �. The main method is infinite
sequence technique.

By definition of linear rank, without loss of generality, we
assume x1, . . . , xn−1 ∈ E. It follows [L0, xi] = Di ∈ E for 1 ≤
i ≤ n − 1. By Theorem 3.6, ωij’s are affine functions in x for
1 ≤ i, j ≤ n − 1 and�must be of the partitioned form.

� =

⎛
⎜⎜⎜⎜⎜⎝
P1(x1, x2, . . . , xk1) P1(x1, x2, . . . , xk1)
P1(x1, x2, . . . , xk1) P1(xk1+1, . . . , xn−1)

ω1n
ω2n
...

ωn−1,n
ωn1 ωn2 · · · ωn,n−1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(18)

where k1 ≤ n − 1. Next we calculate Yi = [L0,Di] ∈ E for 1 ≤
i ≤ n − 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = ω12D2 + ω13D3 + · · · + ω1,n−1Dn−1

+ ω1,nDn, mod U0 ∈ E,

Y2 = ω21D1 + ω23D3 + · · · + ω2,n−1Dn−1

+ ω2,nDn, mod U0 ∈ E,

· · ·
Yn−1 = ωn−1,1D1 + ωn−1,2D2 + · · · + ωn−1,n−2Dn−2

+ ωn−1,nDn, mod U0 ∈ E.
(19)

If we consider any differential operator in E,

A =
∑

|(i1,...,in)|=l+1

ai1,...,inD
i1
1 · · ·Din

n , mod Ul ∈ E. (20)

Theorem 2.12 stated that the coefficients of the highest order
term of operator A must be polynomials. Therefore Yn−1 ∈ E
implies thatωin’s are polynomials in variables x for 1 ≤ i ≤ n −
1. And our goal is transformed to show in fact ωin’s are affine
functions for 1 ≤ i ≤ n − 1.

To deal with {Yi} uniformly, we define differential operator,

Y := w1D1 + w2D2 + · · · + wn−1Dn−1 + wnDn, mod U0 ∈ E,
(21)

where wi are affine functions in x1, . . . , xn−1 for 1 ≤ i ≤ n − 1
and wn is a polynomial of x = (x1, x2, . . . , xn). If we can prove
deg(wn) ≤ 1, since Y1,Y2, . . . ,Yn−1 are all special cases of Y,
then ωi,n are degree 1 polynomials for 1 ≤ i ≤ n − 1. Our main
theorem is as below.

Theorem 4.1 (Main theorem): Let E be the finite-dimensional
estimation algebra with state dimension n and linear rank n−1.
Assume coefficients of operator Y in (21) satisfy that wi are affine
function in x1, x2, . . . , xn−1 for 1 ≤ i ≤ n − 1 and wn is a poly-
nomial of x1, x2, . . . , xn. Then wn is a degree at most 1 polynomial
of x.

Above main theorem can directly imply the following linear
structure of�.

Corollary 4.2 (Linear structure of �): Let E be the finite-
dimensional estimation algebra with state dimension n and linear
rank n−1. ThenWong’s�-matrix has linear structure, i.e. all the
entries in the �-matrix are degree 1 polynomials. Furthermore,
ωij ∈ P1(x1, . . . , xn−1) for 1 ≤ i, j ≤ n − 1.

In the following, we will start the proof of main theorem.
First we prepare the following useful lemma about calcu-

lations of differential operators. Proof can be found in the
Appendix.

Lemma 4.3: Suppose E is finite dimensional and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K := const · Dl1+2
n + (B1x̄ + const)D1Dl1+1

n

+ (B2x̄ + const)D2Dl1+1
n + · · ·

+ (Bn−1x̄ + const)Dn−1Dl1+1
n

+ terms with lower order in Dn,mod Ul1+1 ∈ E,

Z1 := (B1x̄ + const)Dl2+1
n + terms with lower order

in Dn,mod Ul2 ∈ E,

Z2 := (B2x̄ + const)Dl2+1
n + terms with lower order

in Dn,mod Ul2 ∈ E,

...

Zn−1 := (Bn−1x̄ + const)Dl2+1
n + terms with lower order

in Dn,mod Ul2 ∈ E,
(22)

where const means a constant number, x̄ = (x1, x2, . . . , xn−1)
T ∈

R
(n−1). l1, l2 ≥ 0 are nonnegative integers. Bi ∈ R

1×(n−1) are
constant row vectors for 1 ≤ i ≤ n − 1. Define block matrix B =
(Bij) as below,

B :=

⎛
⎜⎜⎜⎝

B1
B2
...

Bn−1

⎞
⎟⎟⎟⎠ . (23)

If B is a real symmetric matrix, then B = 0.

Remark 4.1: Note that Lemma 4.3 holds only under the
assumption of finite dimensionality of E and independent of lin-
ear rank condition. Then it can be applied in any nonmaximal
rank estimation algebra. This lemma is quite an important tool
in the calculation of estimation algebra.

It is noted that x1, . . . , xn−1 play the same role in Lemma 4.3
and we do not use the special information of xn. Therefore, by
symmetry, if we simply replace index n by any 1 ≤ α ≤ n − 1,
x̄ by (x1, . . . , xα−1, xα+1, . . . , xn), same results hold as follows.

Lemma 4.4: Suppose E is finite-dimensional estimation algebra
and 1 ≤ α ≤ n,

K := const · Dl1+2
α + (B1x̄ + const)D1Dl1+1

α + · · ·
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+ (Bα−1x̄ + const)Dα−1Dl1+1
α + (Bα+1x̄

+ const)Dα+1Dl1+1
α + (Bnx̄ + const)DnDl1+1

α

+ terms with lower order in Dα , mod Ul1+1 ∈ E,

Z1 := (B1x̄ + const)Dl2+1
α + terms with lower order

in Dα , mod Ul2 ∈ E,

· · ·
Zα−1 := (Bα−1x̄ + const)Dl2+1

α + terms with lower order

in Dα , mod Ul2 ∈ E,

· · ·
Zα+1 := (Bα+1x̄ + const)Dl2+1

α + terms with lower order

in Dα , mod Ul2 ∈ E,

· · ·
Zn := (Bnx̄ + const)Dl2+1

α + terms with lower order

in Dα , mod Ul2 ∈ E, (24)

where const means constant number, x̄ = (x1, . . . , xα−1,
xα+1 · · · , xn)T ∈ R

n−1. l1, l2 ≥ 0 are nonnegative integers. Bi ∈
R
1×(n−1) are constant row vectors. Define block matrix B as

below,

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1
· · ·
Bα−1
· · ·
Bα+1
· · ·
Bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

If B is a symmetric matrix, then B = 0.

To explore the algebraic structure of wn, we first expand wn
to a polynomial in terms of xn with polynomial coefficients of
x1, . . . , xn−1. Following Lemma 4.5 shows that the coefficient of
the highest degree term of xn must be degree 1 polynomial of
x1, . . . , xn−1. Proof can be found in the Appendix.

Lemma 4.5: Since wn is a polynomial of x1, x2, . . . , xn, we may
assume that

wn = alxln + · · · + a1xn + a0, (26)

where ai are polynomials of x1, x2, . . . , xn−1 for 0 ≤ i ≤ l. Assume
al �= 0. If l ≥ 1, then al ∈ P1(x1, x2, . . . , xn−1).

Next we consider the simplified situation of our main
Theorem 4.1. By using the method developed in Lemma 4.3,
we will prove main theorem holds when wi = 0 for 1 ≤ i ≤
n − 1 in the following Theorem 4.6. The proof appears in the
Appendix and is long and full of techniques.

Theorem 4.6: Suppose E is a finite-dimensional estimation alge-
bra of dimension n and linear rank n−1. If the following differen-
tial operator is contained in estimation algebra,

M0 = α(x1, x2, . . . , xn)Dn, mod U0 ∈ E, (27)

where α is a polynomial of x1, x2, . . . , xn. Then α is an affine
function in variables x1, x2, . . . , xn.

Different from expanding wn in terms of xn in Lemma 4.5,
following Lemma 4.7 shows that the coefficient of the highest
degree is also an affine function if we consider expanding wn in
terms of xj for 1 ≤ j ≤ n − 1. Lemma 4.7 is a direct result from
Theorem 4.6. Proof appears in the Appendix.

Lemma 4.7: Suppose 1 ≤ j ≤ n − 1 and

wn = αkjx
kj
j + · · · + α1xj + α0, kj ≥ 1, αkj �= 0, (28)

where αi are polynomials of x1, . . . , xj−1, xj+1, . . . , xn for 0 ≤ i ≤
kj. Then αkj ∈ P1(x1, . . . , xj−1, xj+1, . . . , xn).

In the following, we proceed to extend Lemma 4.5. We will
prove the degree of wn with respect to xn is no more than 1 in
the following two lemmas.

Lemma 4.8: Suppose that

wn = alxln + · · · + a1xn + a0, l ≥ 1, al �= 0, (29)

where ai are polynomials of x1, x2, . . . , xn−1 for 0 ≤ i ≤ l. If there
exists 1 ≤ j ≤ n − 1, wn contains xj component, i.e.

wn = αkjx
kj
j + · · · + α1xj + α0, kj ≥ 1, αkj �= 0, (30)

then l = 1.

Lemma 4.9: Suppose that

wn = alxln + · · · + a1xn + a0, l ≥ 1, al �= 0, (31)

where ai are polynomials of x1, x2, . . . , xn−1 for 0 ≤ i ≤ l. Then
l = 1.

Based on Lemma 4.9, we can assume

wn = a1(x1, . . . , xn−1)xn + a0(x1, . . . , xn−1),

where a1 ∈ P1(x1, . . . , xn−1). Remaining question is to reduce
the degree of a0. In the next lemma, we can prove a0 is a
polynomial of degree at most 2. Proof appears in the Appendix.

Lemma 4.10: Assume wn = a1xn + a0, where a1 ∈ P1(x1, . . . ,
xn−1). Then a0 ∈ P2(x1, . . . , xn−1).

Up to now, we have proved that wn is a polynomial of degree
at most 2. Next we will further reduce degree of wn to at most
1 and this will finish the proof of main theorem. Proof can be
found in the Appendix.

Theorem 4.11 (Main theorem): wn is degree at most 1 polyno-
mial of x.

Corollary 4.12 (Linear structure of �): Let E be the finite-
dimensional estimation algebra with state dimension n and linear
rank n−1. Then Wong’s �-matrix has a linear structure; i.e. all
the entries in the�-matrix are degree 1 polynomials.
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5. Structure of finite-dimensional filtering systems

In this section, we will proceed based on the results of Section 4.
We give the structure of drift function in the following theorem.
Proof appears in the Appendix.

Theorem 5.1: ∂fj
∂xi − ∂fi

∂xj = cij + DT
ij x, where Dij ∈ R

n, x = (x1,
x2, . . . , xn)T for all 1 ≤ i, j ≤ n if and only if

(f1, . . . , fn) = (l1, . . . , ln)+
(
∂ψ

∂x1
, . . . ,

∂ψ

∂xn

)
, (32)

where l1, . . . , ln are degree at most 2 polynomials and ψ is a C∞
function.

6. Conclusion

This paper mainly focuses on the linear structure of� on non-
maximal rank estimation algebra. Section 3 gives a linear struc-
ture of submatrix of�. This would be useful and a starting point
for the hereafter study of nonmaximal rank case. In Section 4,
based on the general result of Section 3, the linear structure of
� is obtained for the case with rank n−1. It is a critical step
for overcoming the classification of nonmaximal rank case. And
it provides a base for exploring the Mitter conjecture of non-
maximal rank case. Proving theMitter conjecture for estimation
algebra with rank n−1 is our future work. Finally, the structure
of drift function in the case of linear rank n−1 is determined.
This would provide a guidance for finding efficient numerical
algorithms for finite-dimensional filter with linear rank n−1.
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