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Preface

Nonlinear filtering theory explores how to estimate the value of a stochastic
process based on generative models of the process, noisy observations, and initial
probability distributions. Estimation is of importance in any applied area involving
the processing of noisy signals. In fact, it is a fundamental tool in modern industry
addressing a wide range of challenges from aircraft navigation and guidance,
satellite orbit determination, radar tracking, and solar mapping. Historically it goes
back to Gauss on astronomical observations. In the first half of the last century,
Wiener and Kolmogorov initiated the subject by estimating the trajectories of
aircraft from the ground.

Basically, we are given a vector valued stochastic process x(t) generated by the
output of system excited by white noise. Suppose we observe a noisy version of a
function of the signal corrupted by the addition of a second white noise. The goal
of nonlinear filtering theory is to find the probability density of x(t), conditioned on
the available past observations, in a real time manner.

In the early 1960s, the Kalman-Bucy filter gave a fundamental solution to the
problem of the finite dimensional recursive estimation of a signal observed in noise.
This basic result requires the signal to be generated by a finite dimensional linear
system with Gaussian initial condition. However, the effort to provide a complete
theory and efficient computational methodology for filters in the nonlinear case has
been a challenging area of systems and control for more than six decades.

In the late 1970s, Brockett, Clark, and Mitter proposed the classification problem
for finite dimensional filters from the Lie algebraic point of view. This classification
of the so-called estimation algebras is quite important since the filters are finite
dimensional whenever the algebras are.

For filtering system with no finite dimensional filter, it becomes essential to
study the evolution equation for the probability density of x(t), conditioned on the
available past observations. In 1959, Stratonovich in the USSR and subsequently
Kushner in the USA derived a stochastic partial differential equation to describe the
evolution of this conditional density function. The general Stratonovich-Kushner
equation is a nonlinear equation. In the mid-sixties, Duncan, Mortensen, and Zakai
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viii Preface

derived a linear stochastic partial differential equation for unnormalized conditional
density.

Recent years have witnessed substantial growth in filtering theory, prompting the
need for a contemporary resource. While existing classical textbooks like Bain and
Crisan’s “Fundamentals of Stochastic Filtering” (2009) and Jazwinski’s “Stochastic
Processes and Filtering Theory” (1970) offer valuable insights, they lack the updated
methodologies and applications crucial in today’s landscape. This book aims to fill
this gap by providing a comprehensive yet accessible treatment of filtering theory,
balancing rigorous mathematical foundations with practical methods, including
novel algorithms based on deep learning techniques.

This book is structured into three parts. In the initial part, we lay the groundwork
by reviewing the basic concepts in probability theory (Chap. 1), stochastic processes
(Chap. 2), stochastic differential equations (Chap. 3), and optimization (Chap. 4).
While these topics serve as a foundation for the subsequent discussions, experienced
readers familiar with this theoretical framework may wish to skip to the following
sections.

The second part of the book rigorously explores filtering theory, offering a
comprehensive examination of filtering equations (Chap. 5), which are satisfied
by the conditional probability density of state conditioned on the available past
observations. Additionally, we also introduce the estimation algebra (Chap. 6),
which are used in construction and classification of finite-dimensional filters from
geometric and algebraic aspects.

In the final part, we delve into the practical realm by introducing a spectrum of
numerical filtering algorithms. These include the Yau-Yau algorithm (Chap. 7) and
direct methods (Chap. 8) grounded in filtering equations. Furthermore, we delve into
classical filtering methods (Chap. 9) such as the extended Kalman filter, unscented
Kalman filter, and particle filter. Embracing the forefront of innovation, we also
present algorithms using newly developed deep learning techniques (Chap. 10), thus
providing readers with a holistic view of contemporary filtering methodologies.

I taught the Nonlinear Filtering Theory based on the material of this book at
University of Illinois at Chicago and Tsinghua University in various years. The final
version grows out from the course which I taught in the Spring of 2020 at Tsinghua
University. It was coordinated by my student Dr. Xiuqiong Chen and written by my
students Xiaopei Jiao, Jiayi Kang, Zeju Sun, Yangtianze Tao, and Xiuqiong Chen.

The first principle guiding the preparation of the book was to include those
important theories not previously available in the book format. Indeed, the finite
dimensional filter theory is the first time appeared in the book format. We also
incorporate our recently developed theory, which utilizes neural networks to address
filtering problems in this book. The second guiding principle was to ensure that the
book is self-contained.

Beijing, China Stephen S.-T. Yau
Spring, 2024



Contents

Part I Preliminary Knowledge

1 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Jointly Distributed Random Variables . . . . . . . . . . . . . . . . . . . . . 14

1.3 Numerical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Definition and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Conditional Probability Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Limit Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.1 Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.2 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1 Introduction to Stochastic Processes and Filtrations. . . . . . . . . . . . . . . . 35

2.1.1 Discrete and Continuous Stochastic Processes . . . . . . . . . . . . 36
2.1.2 Sameness Between Two Processes . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Filtrations and Measurement of Processes . . . . . . . . . . . . . . . . 37
2.1.4 Stopping Time and Associated σ -Fields . . . . . . . . . . . . . . . . . . 40

2.2 Discrete Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3 Continuous Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Introduction of Continuous Martingales. . . . . . . . . . . . . . . . . . . 49
2.3.2 The Important Inequalities for Martingales . . . . . . . . . . . . . . . 51
2.3.3 The Doob-Meyer Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Continuous Local Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



x Contents

2.5 Square-Integrable Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.1 The Quadratic Variation of a Continuous Martingale . . . . . 64
2.5.2 The Quadratic Variation of a Continuous Local

Martingale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Construction of Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1.2 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1.3 Girsanov’s Theorem and Novikov Condition . . . . . . . . . . . . . 81
3.1.4 Burkholder-Davis-Gundy Inequality . . . . . . . . . . . . . . . . . . . . . . 89
3.1.5 Stratonovich’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Formulations of Stochastic Differential Equations . . . . . . . . . . . . . . . . . 95
3.2.1 Strong Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.2 Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.3 The Martingale Problem of Stroock and Varadhan . . . . . . . 101

3.3 Connections Between Stochastic Differential Equations
and Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.1 Feynman-Kac Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.2 Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.1 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Optimal Condition and Duality Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.1 Optimal Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.2 Constraint Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.3 Duality Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Convex Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.1 Basic Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.2 Optimal Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.4 Quadratic Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Non-convex Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.1 Newton-Lagrange Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.2 SQP Constrained by Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



Contents xi

Part II Filtering Theory

5 Filtering Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.1 Introduction to Filtering Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 The Change of Probability Measure Method . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 The DMZ Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 The Innovation Process Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5 The Density Function of Conditional Distribution . . . . . . . . . . . . . . . . . 157
5.6 Robust DMZ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Estimation Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Basic Concepts and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3 Algebraic Classification of Finite-Dimensional Filter . . . . . . . . . . . . . . 178

6.3.1 Maximal Rank Classification: Structures of
Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.2 Maximal Rank Classification: Hessian Matrix
Nondecomposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.3 Maximal Rank Classification: Complete
Classification Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.4 Wei-Norman Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.5 Classification with Nonmaximal Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.5.1 State Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5.2 State Dimension 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.6 Novel Finite-Dimensional Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.6.1 State Dimension 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.6.2 Arbitrary State Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Part III Numerical Algorithms

7 Yau-Yau Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.2 The Formulation of Yau-Yau Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.3 L1-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.4 Lower Bound Estimation of Density Function. . . . . . . . . . . . . . . . . . . . . . 276
7.5 Algorithm in Time-Variant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.6 Numerical Methods for Solving Parabolic Differential Equations. 283
7.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



xii Contents

8.2 Explicit Solution of DMZ Equation for
Finite-Dimensional Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

8.3 Direct Method for Yau Filtering System with Nonlinear
Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.4 Nonlinear Filtering and Time-Varying Schrödinger
Equation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

8.5 Nonlinear Filtering and Time-Varying Schrödinger
Equation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

8.6 Nonlinear Filtering and Time-Varying Schrödinger
Equation III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9 Classical Filtering Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.2 Filtering Algorithm Based on Bayesian Framework . . . . . . . . . . . . . . . 341

9.2.1 Linear System and KF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.2.2 Discrete KF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.2.3 From KF to EKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.2.4 UKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
9.2.5 Discrete Particle Methods for Filtering . . . . . . . . . . . . . . . . . . . . 351

9.3 Filtering Algorithm of DMZ Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
9.3.1 DMZ Equation After Applying the Hopf-Cole

Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
9.3.2 Linear Filtering System and KBF. . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.3.3 From KBF to Continuous EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
9.3.4 Control-Oriented Particle Filtering for

Multidimensional System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
9.4 Robust Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

9.4.1 Nonlinear Regression Form and Robust
Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

9.4.2 Iterative Outlier-Robust Extended Kalman Filtering . . . . . 366
9.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

9.5.1 Linear Filtering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
9.5.2 Nonlinear Filtering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

10 Estimation Algorithms Based on Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 385
10.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
10.2 Estimation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

10.2.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.2.3 Dual Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

10.3 Feedforward Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
10.3.1 Mathematical Forms for FNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387



Contents xiii

10.3.2 Universal Approximation Theorem for FNNs . . . . . . . . . . . . 389
10.4 Optimization and Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

10.4.1 Optimization Algorithms for Neural Networks . . . . . . . . . . . 393
10.4.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

10.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.5.1 Mathematical Forms for Networks . . . . . . . . . . . . . . . . . . . . . . . . 397
10.5.2 Universal Approximation Theorem for RNNs . . . . . . . . . . . . 398

10.6 The Application of Deep Learning in Nonlinear Filtering . . . . . . . . . 400
10.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
10.6.2 Universal Approximation Theorem for RNN

with Stochastic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10.6.3 RNN-Based Filtering for Discrete-Time Systems . . . . . . . . 409
10.6.4 RNN-Based Yau-Yau Algorithm for

Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
10.6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

11 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Problems of Chap. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Problems of Chap. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Problems of Chap. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Problems of Chap. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Problems of Chap. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Problems of Chap. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Problems of Chap. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Problems of Chap. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Problems of Chap. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Problems of Chap. 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470



Acronyms

D(f ) The domain of the function f

C∞(U) The set of smooth functions defined on U

Cp(U) The set of p-times differentiable functions defined on U

C0(U) The sets of compactly supported continuous functions defined
on U

Cb(U) The set of bounded continuous functions defined on U

B Borel σ -algebra
det Determinant
Lp(U) p-times Lebesgue integrable functions on U

P Probability measure
exp Exponential function
E [ · ] The expectation of a random variable
Rn Euclidean space with dimension n

R+ The positive real numbers
Sn The set of n × n symmetric matrix defined on R

Sn+ The set of n × n positive semi-definite matrix defined on R

Sn++ The set of n × n positive definite matrix defined on R

F The σ− algebra
Ft The filtrations
Yt The filtrations generated by the process {Yt }
v And other lower Latin letters denote the vectors of corre-

sponding dimensions
v� The transpose of a vector v

Xt , ξt And other capital Latin letters or lower Greek letters (·)t
denotes the stochastic process and the corresponding lower
Latin letters denotes a particular trajectory of the stochastic
process

Mt,Nt Especially, the continuous martingales
Wt, Vt Especially, the Brownian motions
M The set of all finite measures

xv



xvi Acronyms

Mc
2 The set of continuous, square-integrable martingales

Mc,loc The set of continuous local martingales
〈M〉 The quadratic variation process of a martingale M

〈M,N〉 The cross variation process of two martingale M and N

L (M) The set of all progressively measurable processes which
are square-integrable with respect to the quadratic variation
process of M

RCLL The abbreviation of ‘right-continuous with left limits’
P − a.s. The abbreviation of ‘almost surely’ under the probability

measure P

a.e. The abbreviation of ‘almost everywhere’
‖ · ‖p (or ‖ · ‖Lp(·)) the p-norm of a function, with 1 ≤ p ≤ ∞
L2(p) A weighted square-integrable function space with the norm

‖ · ‖L2(p) := ∫
Rn(·)2pdx

δa,b The Kronecker notation, in which δa,b = 1 if a = b, and
δa,b = 0, otherwise

∫ T

0 YsdXs The Itô stochastic integration of Ys with respect to the semi-
martingale Xs∫ T

0 Ys ◦ dXs The Stratonovich stochastic integration of Ys with respect to
the semi-martingale Xs

� A partition 0 = t0 < t1 < · · · tn = T of the time interval
[0, T ]

|�| The maximal distance between the nodes of the partition �

∇ The gradient operator
∇x The gradient operator with respect to x

∇· The divergence operator
� The Laplacian operator
∧ The wedge product among differential forms
V ol(U) The volume of a bounded subset U
IA The indicator of the set A
A The second-order elliptic differential operator
E Estimation algebra
� = (ωij ) Wong’s matrix
[ ·, · ] Lie bracket
g Lie algebra
Uk The linear space of differential operators with order no more

than k, especially U0 := C∞(Rn)

(·) mod Ul A member of the affine class of operators obtained by adding
members of Ul to the argument

AdAB The adjoint map between Lie algebra, i.e., AdAB = [A,B]
Ek An Euler operator in x1, · · · , xk variables, i.e.,



Acronyms xvii

Ek :=
k∑

j=1

xj

∂

∂xj

deg The degree of a polynomial
Pk(x1, x2, · · · , xj ) The set of degree k polynomials in variable x1, · · · , xj

const Certain constant number
X1:k The discrete random processes X1, · · · , Xk

p(Xk|Y1:k) The condition density function for Xk given Y1, · · · , Yk

μk|l The mean of the condition density function p(Xk|Y1:l )
Pk|l The covariance of the condition density function p(Xk|Y1:l)
In The n × n identity matrix
δ(·) The standard Dirac distribution



Part I
Preliminary Knowledge



Chapter 1
Probability Theory

In this chapter, we will introduce some basic concepts and conclusions about
measure theoretical foundations of probability theory. The purpose of this chapter is
to provide a background for readers who are not familiar with measure theory and
probability theory before. We only introduce those topics to readers that are highly
relative and necessary to subsequent chapters. Main results in this chapter come
from the references [1–3]. This chapter is organized as follows. In Sect. 1.1, we
define and introduce some basic concepts and properties about probability space.
In Sect. 1.2, we introduce random variables defined on probability space. Then
in Sect. 1.3, we give some numerical characteristics about random variables. In
Sect. 1.4, we discuss conditional probability and expectation, which are important
contents for subsequent filtering theory. Finally, in Sect. 1.5, we introduce two
classical limit theorems.

1.1 Probability Space

A probability space is described by a triple (�,F, P ). � is a set, which represents
possible “experimental outcomes” in trials. F is a set of “events,” which will be
defined explicitly later. P : F → [0, 1] is a function that assigns probabilities to
events. Next we shall introduce the important concept appeared in the probability
triple.

Definition 1.1 (Algebra) I, as a collection of subsets of �, is called an algebra if
it satisfies:

(1) ∅, � ∈ F.
(2) If A ∈ F, then the complement Ac ∈ F.
(3) If A,B ∈ F, then A ∪ B ∈ F.
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4 1 Probability Theory

Definition 1.2 (σ -algebra) F, as a collection of subsets of �, is called a σ -algebra
if it satisfies:

1. ∅, � ∈ F.
2. If A ∈ F, then the complement Ac ∈ F.
3. If A1, A2, · · · ∈ F, then ∪∞

k=1Ak ∈ F.

Example 1.1 Consider the experiment of rolling a die. The probability space can
be defined as � = {1, 2, 3, 4, 5, 6}. If we define F as the set of all subsets of �,
then F is a σ -algebra. If we define F = {∅, {1, 3, 5}, {2, 4, 6},�}, then F is also a
σ -algebra. However, if we take F = {∅, {1, 3, 5}, {2, 4, 6}, {1, 2}}, then F is not a
σ -algebra.

Definition 1.3 Borel σ -algebra B is defined by the smallest σ -algebra containing
all the open subsets of Rn.

If we do not consider P , (�,F) is called a measurable space, and we can put a
measure on this space.

Definition 1.4 Let F be a σ -algebra of subsets of �. We call P : F → [0, 1] a
probability measure if P satisfies

(i) P(∅) = 0, P (�) = 1. For any set A ∈ F, P(A) ≥ 0.
(ii) If A1, A2, · · · are disjoint sets in F, then

P

( ∞⋃

k=1

Ak

)

=
∞∑

k=1

P(Ak). (1.1)

Next we give the exact definition of the probability space.

Definition 1.5 A triple (�,F, P ) is called a probability space provided � is any
set, F is a σ -algebra of subsets of �, and P is a probability measure on F.

Next we introduce some useful terminologies.

Definition 1.6

(i) A set A ∈ F is called an event; points ω ∈ � are sample points.
(ii) P(A) represents the probability of the event A.

(iii) An event is said to hold almost surely (abbreviated as “a.s.”) if it happens with
probability 1.

For a given physical experiment, at the beginning, probability space should be
specified. And the probability space is not unique and not determined by the physical
experiment itself. If probability space is not specified, sometimes, it will cause a
paradox such as the well-known Bertrand’s paradox [3]. Furthermore, we notice
that P(A) = 0 does not imply that A = ∅. For instance, if we define � as the set
of all real numbers in Example 1.1 and denote P {(a, b)} as probability, that die lies
in interval (a, b). Then, for example, we have P {(8, 9)} = 0. However, (8, 9) itself
is an open interval and is not an empty set. Similarly, P(A) = 1 does not represent
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that A = �. For example, we assume A = (0, 9); then P(A) = 1. However, A is
not a whole set �.

The next result gives some basic properties of the probability measure. In all
cases, we assume that the sets we mention are in F.

Theorem 1.1 Let (�,F, P ) be a probability space, then

(i) monotonicity: A ⊂ B 	⇒ P(A) ≤ P(B).
(ii) subadditivity: P(∪∞

m=1Am) ≤∑∞
m=1 P(Am).

(iii) continuity from below. Ai ↑ A (i.e., A1 ⊂ A2 ⊂ · · · and ∪∞
i=1 Ai = A) 	⇒

P(Ai) ↑ P(A).
(iv) continuity from above. Ai ↓ A (i.e., A1 ⊃ A2 ⊃ · · · and ∩∞

i=1 Ai = A) 	⇒
P(Ai) ↓ P(A).

Proof

(i) If A ⊂ B, then B = A ∪ (B\A) and A ∩ (B\A) = 0. By definition, we obtain

P(B) = P(A) + P(B\A) ≥ P(A). (1.2)

(ii) Let Dn =⋃n
i=1 Ai and denote Fn = Dn − Dn−1 for all n ≥ 2, then

P

(
n⋃

i=1

Ai

)

=P(Dn)

=P(A1) + P

(
n⋃

i=2

Fi

)

≤P(A1) +
n∑

i=2

P(Ai)

=
n∑

i=1

P(Ai).

(1.3)

Subadditivity can be obtained if we let n → ∞.
(iii) Let A0 = ∅, Bm = Am\Am−1 for m ≥ 1. Since Ai satisfies that A1 ⊂ A2 ⊂

· · · and ∪∞
i=1 Ai = A, then Bi’s are disjoint and satisfy

A = lim
m→∞

m⋃

i=1

Ai = lim
m→∞ Am

= lim
m→∞

m⋃

i=1

Bi =
∞⋃

i=1

Bi.

(1.4)
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Then we obtain

P(A) =P(

∞⋃

i=1

Bi)

=
∞∑

i=1

P(Bi)

= lim
m→∞

m∑

i=1

P(Bi)

= lim
m→∞ P(Am).

(1.5)

Notice that Am ⊂ A; then P(Am) ≤ P(A). Therefore, P(Am) ↑ P(A).
(iv) Let Bi = A1\Ai . Then B1 ⊂ B2 ⊂ · · · and

m⋃

i=1

Bi =
m⋃

i=1

A1\Ai = A1

⋃
(

m⋂

i=1

Ai

)c

= A1\
m⋂

i=1

Ai. (1.6)

Then ∪∞
i=1Bi = A1\A. By using Theorem 1.1 (iii), we obtain P(A1\A) =

limi→∞ P(Bi). Then P(A1) − P(A) = limi→∞(P (A1) − P(Ai)). Therefore,

P(A) = lim
i→∞ P(Ai). (1.7)

Considering P(Ai) ≥ P(A), we have P(Ai) ↓ P(A).
��

1.2 Random Variables

1.2.1 Definition and Properties

In this section, we will introduce some basic concepts and results about random
variables. In the previous section, we have defined probability space, which is a
triple (�,F, P ). However, probability space itself is abstract and not “observable”
for us. In order to observe “events” more clearly, we introduce a mapping X from
sample points set � to Rn, i.e., X : � → Rn. With the help of mapping X, we can
use subset of Rn to represent events in probability space.

Definition 1.7 Let (�,F, P ) be a probability space. A mapping

X : � → Rn (1.8)
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is called an n-dimensional random variable if for each B ∈ B, we have

X−1(B) ∈ F. (1.9)

When we require to emphasize σ -algebra, equivalently, we say that X is F-
measurable.

In the following sections, we use capital letters to represent random variables.
Lowercase letters denote sample values or realizations of the random variable.
For example, X denotes a random variable, and X(ω) = x is realization of X.
Traditionally, we denote P(X−1(B)) as P(X ∈ B), which represents the probability
that X is in B. In many cases, the random variable is denoted by abbreviation “r.v.”

Lemma 1.1 Let X : � → Rn be a random variable. Then

F(X) := {X−1(B)|B ∈ B} (1.10)

is a σ -algebra, called the σ -algebra generated by X. This is the smallest sub-σ -
algebra of F with respect to which X is measurable.

Proof First we notice for any B,B1, B2, · · · ∈ B,

X−1

( ∞⋃

i=1

Bi

)

=
∞⋃

i=1

X−1(Bi)

X−1(Bc) =(X−1(B))c.

(1.11)

(i) Due to X−1(Rn) = � ∈ F(X), then X−1(∅) = ∅ ∈ F(X).
(ii) If B ∈ B, then Bc ∈ B. Then

(X−1(B))c = X−1(Bc) ∈ F(X). (1.12)

(iii) Due to B1, B2, · · · ∈ B, we have ∪∞
i=1Bi ∈ B. Thus

∞⋃

i=1

X−1(Bi) = X−1

( ∞⋃

i=1

Bi

)

∈ F(X). (1.13)

By using Definition 1.2, we deduce that F is a σ -algebra. Next we assume
G is any sub-σ -algebra of F with respect to which X is measurable. Clearly,
G ⊃ F(X). Therefore, F(X) is smallest sub-σ -algebra of F with respect to
which X is measurable.

��
Remark 1.1 In probability theory, σ -algebra F(X) essentially reflects “complete
information” about random variable X.
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Lemma 1.2 Let X be a random variable and Y is a function of X, i.e., Y = �(X).
If for any B ∈ B, �−1(B) ∈ B, then Y is F(X)-measurable.

Proof For any B ∈ B, we calculate

Y−1(B) = (� ◦ X)−1(B) = X−1(�−1(B)). (1.14)

Due to �−1(B) ∈ B, then Y−1(B) ∈ F(X) for any B ∈ B. Therefore, Y is F(X)-
measurable. ��
Next we give some examples of random variables.

Example 1.2 Let A ∈ F. We can define indicator function of A as below,

χA(ω) :=
{

1, if ω ∈ A,

0, if ω /∈ A,
(1.15)

which is a random variable.

Example 1.3 Let A1, A2, · · · , Am ∈ F and Ai ∩ Aj = ∅ for any 1 ≤ i, j ≤ m.
Assume a1, a2, · · · , am are n real numbers. Then

X =
m∑

i=1

aiχAi
(ω) (1.16)

is a random variable and is called a simple function. A simple function is
superposition of some indicator functions.

Let (�,F, P ) be a probability space and X is a random variable from � to Rn.
Let x = (x1, x2, · · · , xn) ∈ Rn, y = (y1, y2, · · · , yn) ∈ Rn. We denote that x ≤ y

means xi ≤ yi, 1 ≤ i ≤ n. Based on the definition of the random variable, we can
define distribution function.

Definition 1.8 Distribution function of the random variable X is defined by

FX(x) := P(X ≤ x). (1.17)

where x ∈ Rn.

In the following sections, if without special explanation, generally we consider
the scalar random variable. Next we introduce some basic properties of distribution
function.

Theorem 1.2 Any distribution function F of scalar random variable has the
following properties:

(i) F is monotone, non-decreasing.
(ii) limx→∞ F(x) = 1, limx→−∞ F(x) = 0
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(iii) F is right continuous, i.e., limy↓x F (y) = F(x).
(iv) If F(x−) = limy↑x F (y) then F(x−) = P(X < x)

(v) P(X = x) = F(x) − F(x−)

Proof

(i) Let x1 ≤ x2. Then {X ≤ x1} ⊆ {X ≤ x2}. By applying Theorem 1.1 (i), we
obtain P(X ≤ x1) ≤ P(X ≤ x2).

(ii) By using

lim
x→∞ P(X ≤ x) =P(�) = 1,

lim
x→−∞ P(X ≤ x) =P(∅) = 0,

(1.18)

we obtain (ii).
(iii) If y ↓ x, then {X ≤ y} ↓ {X ≤ x}. Then by Theorem 1.1 (iv), we obtain

lim
y↓x

P (X ≤ y) = P(X ≤ x), (1.19)

i.e.,

lim
y↓x

F (y) = F(x). (1.20)

(iv) If y ↑ x, then {X ≤ y} ↑ {X < x}. Then

lim
y↑x

P (X ≤ y) = P(X < x), (1.21)

i.e.,

P(X < x) = lim
y↑x

F (y) = F(x−). (1.22)

(v) We notice

P(X = x) =P(X ≤ x) − P(X < x)

=F(x) − F(x−). (By definition and (iv))
(1.23)

Then we obtain (v).
��

Remark 1.2 (v) means that if FX(·) is discontinuous at point x, then its jump is
equal to probability P(X = x).

Next we can do some basic calculations using Theorem 1.2.

{x1 ≤ X ≤ x2} = {X = x1} ∪ {x1 < X ≤ x2}, (1.24)
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so that

P(x1 ≤ X ≤ x2) =FX(x1) − FX(x1−) + FX(x2) − FX(x1)

=FX(x2) − FX(x1−).
(1.25)

Similarly,

P(X < x1) =FX(x1−),

P (X ≥ x1) =1 − FX(x1−),

P (X > x1) =1 − FX(x1).

(1.26)

More similar results can be done by readers.

Definition 1.9 Suppose X is a scalar random variable and F = FX is its
distribution function. If there exists a nonnegative, integrable function p : Rn → R

such that

FX(x) =
∫ x

−∞
pX(y)dy, (1.27)

then pX is called the density function of random variable X. Meanwhile, X is called
a continuous random variable.

If the distribution function is absolutely continuous, the density function exists.
In this case, the numbers of points at which FX(x) is not differentiable are at
most countable. By Definition 1.9, if density function of random variable X exists,
distribution function FX(x) is continuous at all x due to absolute continuity of
integration. And

pX(x) = d

dx
FX(x) (1.28)

holds at all points at which the derivative exists.
Since FX(x) is continuous, by Theorem 1.2 (v), we deduce

P(X = x) = 0 (1.29)

for any x ∈ R. Due to monotonicity of distribution function, by (1.28), we deduce

pX(y) ≥ 0. (1.30)

In view of Theorem 1.2 (ii),

∫ ∞

−∞
pX(y)dy = 1. (1.31)
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By using (1.25) and let x1 < x2,

P(x1 ≤ X ≤ x2) =FX(x2) − FX(x1)

=
∫ x2

x1

pX(y)dy.
(1.32)

Above equation can be extended to vector case naturally,

P(X ∈ B) =
∫

B

pX(y)dy for all B ∈ B, (1.33)

where X is a n-dimensional random variable and y = (y1, · · · , yn). This formula
is highly important. The left-hand side of equation is probability measure of event
X−1(B) defined in probability space. The right-hand side of equation is integral
defined on Euclidean space and can be calculated directly.

By Definition 1.9, the density function can determine distribution function, then
density function can completely characterize properties of a continuous random
variable. In the following sections, we only concern about continuous random
variables. Therefore, we make assumption that the density function satisfies all
smoothness properties that we require. All quantities that we are interested in can
be calculated by density function. Equivalently, we shall specify a random variable
with a density function.

Definition 1.10 The expectation of a continuous random variable X is defined by

EX :=
∫ ∞

−∞
xpX(x)dx. (1.34)

Example 1.4 Let X : � → Rn be a random variable with distribution function FX

and density pX. Suppose f : Rn → R, and

Y = f (X) (1.35)

is integrable. Then

EY =
∫

Rn

f (x)p(x)dx. (1.36)

Definition 1.11

(i) The n-th moment of a random variable X is defined as

E(Xn) :=
∫

xnpX(x)dx. (1.37)

Especially, E(X2) is called mean square value of X.
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(ii) The n-th central moment of a random variable X is defined as

E (X − E(X))n :=
∫

(x − EX)npX(x)dx. (1.38)

Especially, the second central moment is called variance of X:

var(X) := E(X − EX)2 = E(X2) − (EX)2. (1.39)

(iii) Standard deviation of X is defined as

σ(X) := √var(X), (1.40)

which measures dispersion between samples and its mean value.

Lemma 1.3 (Chebyshev’s Inequality) IfX is a random variable and 1 ≤ m < ∞,
then

P(|X| ≥ λ) ≤ 1

λm
E(|X|m) for all λ > 0. (1.41)

Proof We calculate

E(|X|m) =
∫

|x|mpX(x)dx

≥
∫

|x|≥λ

|x|mpX(x)dx

≥λm

∫

|x|≥λ

pX(x)dx

=λmP (|X| ≥ λ).

(1.42)

Then we obtain

P(|X| ≥ λ) ≤ 1

λm
E(|X|m) for all λ > 0. (1.43)

��
Lemma 1.4 Let X be a random variable and c be a fixed constant. If

E(X − c)2 = 0, (1.44)

then X = c, a.s..
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Proof If X = c, a.s. does not hold, we assume that ∃ ε > 0, P (|X − c| > ε) > 0,
i.e.,

∫

(−∞,c−ε)∪(c+ε,∞)

pX(x)dx > 0. (1.45)

Then

E(X − c)2 =
∫

R

(x − c)2pX(x)dx

≥
∫

(−∞,c−ε)∪(c+ε,∞)

(x − c)2pX(x)dx

>ε2
∫

(−∞,c−ε)∪(c+ε,∞)

pX(x)dx

>0.

(1.46)

This is contradictory to E(X − c)2 = 0. Therefore, X = c, a.s. holds. ��
Next we introduce some common probability distributions.

Example 1.5 Uniform distribution on (0, 1). Density is p(x) = 1 for x ∈ (0, 1)

and 0 otherwise. Distribution function is shown below.

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1.

(1.47)

Example 1.6 Exponential distribution with rate λ. Let density be p(x) = λe−λx

for x ≥ 0 and 0 otherwise. Distribution function is

F(X) =
{

0, x < 0,

1 − e−x, x ≥ 0.
(1.48)

Example 1.7 Gaussian distribution or, equivalently, normal distribution. A
random variable is Gaussian if its density function is given by

pX(x) = 1√
2πσ

exp

[

−1

2

(
x − m

σ

)2
]

, (1.49)

where m and σ > 0 are mean value and standard deviation. m and σ completely
characterize the properties of Gaussian distribution. If a random variable X is
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Gaussian, we usually denote

X ∼ N(m, σ 2). (1.50)

Distribution function is given by

FX(x) = 1√
2πσ

∫ x

−∞
exp

[

−1

2

(
t − m

σ

)2
]

dt. (1.51)

Example 1.8 Vector-valued Gaussian random variable. Let X : � → Rn be a
n-dimensional random variable. X is a vector-valued Gaussian random variable if
its density function is given by

pX(x) = 1√
(2π)n det C

exp

[

−1

2
(x − m)T C−1(x − m)

]

, (1.52)

where m ∈ Rn and C is a symmetric positive definite matrix.

In probability theory, the random variable with finite second-order moment is a
class of important random variables. We use L2(�) to represent this class of random
variables with finite second-order moment on probability space {�,F, P }. If X ∈
L2(�), i.e.,

∫

�

X2dP < ∞, (1.53)

we can introduce norm in this linear space,

‖X‖ =
(∫

�

X2dP

) 1
2

. (1.54)

If we introduce inner product in L2(�) as follows, for any X, Y ∈ L2(�), we define

(X, Y ) =
∫

�

XYdP, (1.55)

then L2(�) will become a Hilbert space.

1.2.2 Jointly Distributed Random Variables

In this section, we consider n (continuous) scalar random variables X1, X2, · · · , Xn.
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Definition 1.12 Let X1, X2, · · · , Xn be n random variables. Jointly distribution
function is defined as

FX1,X2,··· ,Xn(x1, x2, · · · , xn) := P(X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn). (1.56)

Definition 1.13 Suppose X1, X2, · · · , Xn are n random variables and FX1,X2,··· ,Xn

is its distribution function. If there exists a nonnegative, integrable function
pX1,X2,··· ,Xn : Rn → R such that

FX1,X2,··· ,Xn(x1, x2, · · · , xn) =
∫ x1

−∞
· · ·
∫ xn

−∞
pX1,X2,··· ,Xn(ξ1, ξ2, · · · , ξn)dξ1 · · · dξn.

(1.57)

then pX1,X2,··· ,Xn is called the jointly density function of random variables X1, X2,
· · · , Xn.

Then we deduce

pX1,X2,··· ,Xn(x1, · · · , xn) = ∂n

∂x1, · · · , ∂xn

FX1,X2,··· ,Xn(x1, x2, · · · , xn),

(1.58)

holds at all points at which the derivative exists. The probability properties
of X1, X2, · · · , Xn can be completely characterized by their jointly distribution
function or joint density function.

Sometimes, we only need to consider a part of random variables X1, X2, · · · , Xn,
i.e., X1, X2, · · · , Xm,m < n. In order to describe the distribution of X1, X2, · · · ,

Xm, we calculate marginal distribution function, i.e.,

FX1,X2,··· ,Xm(x1, x2, · · · , xm) = FX1,X2,··· ,Xn(x1, x2, · · · , xm,∞, · · · ,∞).

(1.59)

Corresponding marginal density function can be calculated by differentiating (1.59),
then we have

pX1,X2,··· ,Xm(x1, x2, · · · , xm) =
∫ ∞

−∞
pX1,X2,··· ,Xn(x1, x2, · · · , xn)dxm+1 · · · dxn.

(1.60)

Definition 1.14 For 1 ≤ i ≤ k, the l-th moment of Xk is defined as

E(Xl
k) =

∫
· · ·
∫

xl
kpX1,X2,··· ,Xn(x1, x2, · · · , xn)dx1 · · · dxn. (1.61)

where l is a positive integer.



16 1 Probability Theory

Definition 1.15 For 1 ≤ k, l ≤ n, the covariance of Xk,Xl is defined as

cov(Xk,Xl) :=E(Xk − EXk)(Xl − EXl)

=E(XkXl) − EXk · EXl.
(1.62)

Definition 1.16 For 1 ≤ k, l ≤ n, the correlation coefficient of Xk,Xl is defined as

ρ(Xk,Xl) = cov(Xk,Xl)

σ (Xk)σ (Xl)
, (1.63)

where we assume that σ(Xk), σ (Xl) < ∞. If EX2
k , EX2

l < ∞ and cov(Xk,Xl) =
0, Xk,Xl are called uncorrelated.

Finite estimation of moments is an important problem. Next we develop some
inequalities as tools.

Lemma 1.5 Let X and Y be two scalar random variables and a, b be two real
numbers; then

(i) (Linearity) E(aX + bY ) = aEX + bEY .
(ii) (Schwarz’s inequality)

E2(XY ) ≤ E(X2)E(Y 2). (1.64)

(iii) (Triangle inequality)

E(|X + Y |) ≤ E|X| + E|Y |. (1.65)

(iv)

E(|X + Y |2) ≤ 2E|X|2 + 2E|Y |2. (1.66)

Proof

(i)

E(aX + bY ) =
∫ ∫

(ax + by)pXY (x, y)dxdy

= a

∫ ∫
xpXY (x, y)dxdy + b

∫ ∫
ypXY (x, y)dxdy

= a

∫
xpX(x)dx + b

∫
ypY (y)dy

= aEX + bEY.

(1.67)
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(ii) We consider

E(a|X| − |Y |)2 = a2E|X|2 − 2aE(|XY |) + E|Y |2 ≥ 0. (1.68)

This is a nonnegative quadratic function in terms of a. Discriminant is
nonpositive, i.e.,

E2(XY ) − E(X2)E(Y 2) ≤ 0, (1.69)

which leads to Schwarz’s inequality.
(iii) It can be easily obtained by using triangle inequality of real numbers.
(iv)

E|X + Y |2 =E|X|2 + E|Y |2 + 2E|XY |

≤E|X|2 + E|Y |2 + 2
√

E|X|2E|Y |2

≤2E|X|2 + 2E|Y |2.
(1.70)

��
Dealing with several scalar random variables is equivalent to dealing with

a vector-valued random variable; if we arrange these scalar random variables
X1, X2, · · · , Xn to a vector, then we have

X =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

Xn

⎤

⎥
⎥
⎥
⎦

. (1.71)

Definition 1.17 If X is a random vector, its expectation can be defined as

EX :=

⎡

⎢
⎢
⎢
⎣

EX1

EX2
...

EXn

⎤

⎥
⎥
⎥
⎦

, (1.72)

which is usually called mean vector of X.

Definition 1.18 Let X be a random vector. Its covariance matrix, which is usually
denoted by PX, is defined as
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PX :=[cov(Xi,Xj )]
=E(X − EX)(X − EX)T

=

⎡

⎢
⎢
⎢
⎣

var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn,X1) cov(Xn,X2) · · · var(Xn)

⎤

⎥
⎥
⎥
⎦

.

(1.73)

By definition, covariance matrix is a symmetric, positive semidefinite matrix.
Let X, Y be two n-dimensional random variables. Y is a function of X. If the

density function of X is known, we can derive density function of Y by the following
theorem.

Theorem 1.3 Let X, Y be two n-dimensional random variables with Y = f (X).
Suppose f −1 exists and both f and f −1 are continuously differentiable. Then

pY (y) = pX(f −1(y))

∥
∥
∥
∥
∂f −1(y)

∂y

∥
∥
∥
∥ , (1.74)

where
∥
∥
∥ ∂f −1(y)

∂y

∥
∥
∥ > 0 is the absolute value of the Jacobian determinant.

Proof For any set S ∈ Rn, we have

P(Y ∈ S) = P(f (X) ∈ S) = P(X ∈ f −1(S)). (1.75)

Next we calculate both sides in above equation by definition and obtain

P(Y ∈ S) =
∫

S

pY (y)dy, (1.76)

and

P(X ∈ f −1(S)) =
∫

f −1(S)

pX(x)dx

=
∫

S

pX(f −1(y))

∥
∥
∥
∥
∂f −1(y)

∂y

∥
∥
∥
∥ dy.

(1.77)

Then we have

∫

S

[

pY (y) − pX(f −1(y))

∥
∥
∥
∥
∂f −1(y)

∂y

∥
∥
∥
∥

]

dy = 0 (1.78)

holds for any set S ∈ Rn. Next we suppose (1.74) is not true. Without loss of
generality, we assume there exists a point y0 such that the integrand in (1.78)
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is positive. Due to continuity of integrand, there exists a small region in which
integrand is always positive. Then (1.78) does not hold. Contradiction! ��

1.3 Numerical Characteristics

1.3.1 Characteristic Function

In this section, we introduce a tool called characteristic function, which is helpful
for us to calculate properties of random variables.

Definition 1.19 Let X = [X1, · · · , Xn]T be a Rn-valued random variable and u =
[u1, · · · , un]T ∈ Rn. Then characteristic function of X is defined by

ϕX(u) := E(eiuT X), (1.79)

or equivalently,

ϕX1,··· ,Xn(u1, · · · , un) := E

⎛

⎝exp

⎛

⎝i

n∑

j=1

ujXj

⎞

⎠

⎞

⎠ . (1.80)

where i denotes imaginary unit.

Characteristic function always exists, since

|E(eiuT X)| ≤ E|eiuT X| = 1. (1.81)

Following theorem gives some important properties of characteristic function.

Lemma 1.6

(i) If X1, · · · , Xn are independent random variables, then for each u ∈ Rn,

ϕX1+···+Xn(u1, · · · , un) = ϕX1(u1) · · · ϕXn(un). (1.82)

(ii) If X is a real-valued random variable and ϕ is differentiable, then

ϕ(k)(0) = ikEXk, k = 0, 1, · · · . (1.83)

(iii) If X and Y are two random variables and

ϕX(u) = ϕY (u) for all λ, (1.84)
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then

FX(x) = FY (x) for all x. (1.85)

Assertion (iii) says that the characteristic function can completely determine
the distribution of a random variable.

(iv) If density function exists, then Fourier transformation relation between density
function and characteristic function is

ϕX(u) =
∫ ∞

−∞
eiuXpX(x)dx, (1.86)

and

pX(x) = 1

2π

∫ ∞

−∞
e−iuXϕX(u)du. (1.87)

Proof

(i) Due to independence of X1, · · · , Xn, we have

ϕX1+···+Xn(u1, · · · , un) =E

⎛

⎝exp

⎛

⎝i

n∑

j=1

ujXj

⎞

⎠

⎞

⎠

=E

⎛

⎝
n∏

j=1

eiuj Xj

⎞

⎠

=
n∏

j=1

E
(
eiuj Xj

)

=
n∏

j=1

ϕXj
(uj ).

(1.88)

(ii) The derivative can be calculated by definition,

dk

duk
ϕX(u) = ikE(XkeiuX), k ≥ 0. (1.89)

Therefore

ϕ
(k)
X (0) = ikE(Xk), k ≥ 0. (1.90)

(iii) See [1] for the proof of (iii).
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(iv) By Definition 1.19, we deduce characteristic function is Fourier transform
of density. Therefore, density function is the inverse Fourier transform of
characteristic function.

��

1.3.2 Examples

Next we give some examples to show the properties of characteristic function.

Example 1.9

(i) Let X be a scalar Gaussian random variable with mean m and variance σ 2. Then
its characteristic function is

ϕX(u) = 1√
2πσ

∫ ∞

−∞
exp

[

iux − 1

2

(
x − m

σ

)2
]

dx. (1.91)

Let y = x−m
σ

, then

ϕX(u) = 1√
2π

exp (ium)

∫ ∞

−∞
exp

(

iuσy − 1

2
y2
)

dy

= 1√
2π

exp

(

ium − 1

2
u2σ 2

)∫ ∞

−∞
exp

[

−1

2
(y − iuσ )2

]

dy

= exp

(

ium − 1

2
u2σ 2

)

.

(1.92)

(ii) Let X be a n-dimensional Gaussian random variable. Its characteristic function
is

ϕX(u) = E(exp (iuT X)), (1.93)

where XT = [X1, · · · , Xn] and uT = [u1, · · · , un]. Similarly to the scalar
case, characteristic function of X is

ϕX(u) = exp

(

iuT EX − 1

2
uT PXu

)

, (1.94)

where PX is the covariance matrix of X.
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1.4 Conditional Probability

1.4.1 Definition and Independence

Let (�,F, P ) be a probability space and A,B ∈ F be two events. We define �̃ :=
B, F̃ = {C∩B|C ∈ F}, P̃ = P

P(B)
, where P(B) > 0. Then {�̃, F̃, P̃ } consists a new

probability space. The new probability measure P̃ is corresponding to conditional
probability.

Definition 1.20 Conditional probability of event A given event B is defined by

P(A|B) := P̃ (A ∩ B) = P(A ∩ B)

P (B)
if P(B) > 0. (1.95)

Definition 1.21 Two events A and B are called independent if

P(A ∩ B) = P(A)P (B), (1.96)

or equivalently,

P(A|B) = P(A). (1.97)

For more than two events, we have similar definition of independence.

Definition 1.22 Let A1, A2, · · · be events. These events are called mutually inde-
pendent if for all choices 1 ≤ k1 < k2 < · · · < km, we have

P(Ak1 ∩ · · · ∩ Akm) = P(Ak1) · · · P(Akm). (1.98)

Next we can extend this definition to σ -algebras:

Definition 1.23 Let Fi ∈ F be σ -algebras, for i = 1, · · · . {Fi}∞i=1 are called
independent if for all choices of 1 ≤ k1 < k2 < · · · < km and of any events
Aki

∈ Fki
, we have

P(Ak1 ∩ · · · ∩ Akm) = P(Ak1) · · · P(Akm). (1.99)

Furthermore, we define independence of two random variables.

Definition 1.24 Two continuous jointly distributed random variables X1, X2 are
independent if

FX1,X2(x1, x2) = FX1(x1)FX2(x2), (1.100)

if density function exists, equivalently we have

pX1,X2(x1, x2) = pX1(x1)pX2(x2). (1.101)
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Theorem 1.4 Let X1, X2 are two independent, real-valued random variables, with

E|X1|, E|X2| < ∞, (1.102)

then E|X1X2| < ∞ and

E(f (X1)g(X2)) = E(f (X1))E(g(X2)), (1.103)

where f, g are fixed (non-random) functions.

Proof By definition of expectation, we calculated

E(f (X1)g(X2)) =
∫ ∫

f (x1)g(x2)pX1X2(x1, x2)dx1dx2

=
∫ ∫

f (x1)g(x2)pX1(x1)pX2(x2)dx1dx2

=
∫

f (x1)pX1(x1)dx1 ·
∫

g(x2)pX2(x2)dx2

=E(f (X1))E(g(X2)).

(1.104)

��
Theorem 1.5 Let X1, X2 be two independent, real-valued random variables, with

var(X1), var(X2) < ∞, (1.105)

then

var(X1 + X2) = var(X1) + var(X2). (1.106)

Proof Let m1 = EX1,m2 = EX2. By definition of variance, we have

var(X1 + X2) =
∫ ∫

(X1 + X2 − m1 − m2)
2pX1X2(x1, x2)dx1dx2

=
∫ ∫

(X1 − m1)
2pX1X2(x1, x2)dx1dx2

+
∫ ∫

(X2 − m2)
2pX1X2(x1, x2)dx1dx2

+ 2
∫ ∫

(X1 − m1)(X2 − m2)pX1X2(x1, x2)dx1dx2

=var(X1) + var(X2) + 2E(X1 − m1)E(X2 − m2)

=var(X1) + var(X2).

(1.107)
��
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Similarly, for more than two random variables, independence can be introduced.

Definition 1.25 Jointly distributed random variables X1, X2, · · · , Xn are mutually
independent if

FX1,··· ,Xn(x1, · · · , xn) = FX1(x1) · · · FXn(xn), (1.108)

or equivalently,

pX1,··· ,Xn(x1, · · · , xn) = pX1(x1) · · · pXn(xn). (1.109)

Definition 1.26 Random variables X1, X2, · · · , Xn are jointly independent of
random variables Y1, Y2, · · · , Yn if

FX1,··· ,Xn,Y1,··· ,Yn(x1, · · · , xn, y1, · · · , yn)

= FX1,··· ,Xn(x1, · · · , xn)FY1,··· ,Yn(y1, · · · , yn),
(1.110)

or equivalently,

pX1,··· ,Xn,Y1,··· ,Yn(x1, · · · , xn, y1, · · · , yn)

= pX1,··· ,Xn(x1, · · · , xn)pY1,··· ,Yn(y1, · · · , yn).
(1.111)

Example 1.10 Let X, Y be independent, real-valued random variables, and if X ∼
N(m1, σ

2
1 ), Y ∼ N(m2, σ

2
2 ), then we calculate characteristic function of X + Y ,

ϕX+Y (u) =ϕX(u)ϕY (u)

= exp

(

ium1 − 1

2
u2σ 2

1

)

exp

(

ium2 − 1

2
u2σ 2

2

)

= exp

[

iu(m1 + m2) − 1

2
u2(σ 2

1 + σ 2
2 )

]

.

(1.112)

Then we can deduce that X +Y is a Gaussian random variable, with mean m1 +m2
and variance σ 2

1 + σ 2
2 , i.e.,

X + Y ∼ N(m1 + m2, σ
2
1 + σ 2

2 ). (1.113)

1.4.2 Conditional Probability Density

Let X, Y be two jointly distributed random variables. First, we formally derive the
conditional probability density. Let events A = {X ≤ x} and B = {y ≤ Y ≤
y + �y}. By Definition 1.20, we obtain



1.4 Conditional Probability 25

P(X ≤ x|y ≤ Y ≤ y + �y) = P(X ≤ x, y ≤ Y ≤ y + �y)

P (y ≤ Y ≤ y + �y)
. (1.114)

By definition of distribution function, we obtain

FX,y≤Y≤y+�y(x|y ≤ Y ≤ y + �y) =FX,Y (x, y + �y) − FX,Y (x, y)

FY (y + �y) − FY (y)

=[FX,Y (x, y + �y) − FX,Y (x, y)]/�y

[FY (y + �y) − FY (y)]/�y
.

(1.115)

Formally let �y → 0, we deduce

FX,Y (x|y) =∂FX,Y (x, y)

∂y
/
∂FY (y)

∂y

=
∫ x

−∞ pX,Y (ξ, y)dξ

pY (y)
,

(1.116)

where

pY (y) =
∫

pX,Y (x, y)dx (1.117)

is the marginal density function. Then we differentiate (1.115) from both sides
of (1.116) and obtain

pX|Y (x|y) =pX,Y (x, y)

pY (y)

= pX,Y (x, y)
∫

pX,Y (x, y)dx

(1.118)

Therefore, we have

pX,Y (x, y) = pX|Y (x|y)pY (y). (1.119)

Similarly, we exchange the role of X and Y and get

pX,Y (x, y) = pY |X(y|x)pX(x). (1.120)

By combining these two equations, we obtain

pX|Y (x|y) = pY |X(y|x)pX(x)

pY (y)
, (1.121)

which is the well-known Bayes’ formula.
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Similarly, if X, Y are two n,m-dimensional random variables, respectively, then
the conditional density (1.118) can be defined as

pX1,··· ,Xn|Y1,··· ,Ym(x1, · · · , xn|y1, · · · , ym)

=pX1,··· ,Xn,Y1,··· ,Ym(x1, · · · , xn, y1, · · · , ym)

pY1,··· ,Ym(y1, · · · , ym)

= pX1,··· ,Xn,Y1,··· ,Ym(x1, · · · , xn, y1, · · · , ym)
∫ · · · ∫ pX1,··· ,Xn,Y1,··· ,Ym(ξ1, · · · , ξn, y1, · · · , ym)dξ1 · · · dξn

.

(1.122)

1.4.3 Conditional Expectation

In this subsection, we introduce the concept of conditional expectation, which is
highly important to the later filtering theory. First we should give the definition.

Definition 1.27 Let X be a random variable and B ∈ F be an event. Conditional
expectation of X given B is defined as

E(X|B) =
∫

B

XdP̃

= 1

P(B)

∫

B

XdP.

(1.123)

A more meaningful quantity is conditional expectation of random variable X

given by random variable Y . If we give a realization Y (ω) for a sample point ω ∈ �,
by Definition 1.27, E(X|Y (ω)) will be a real number. Then we can extend this idea
to the definition of E(X|Y ). If Y is a random variable, then E(X|Y ) should be
a random variable that satisfies some properties. Actually, E(X|Y ) represents our
best estimation for X by giving some information of Y . Next we give a reasonable
definition of conditional expectation.

Definition 1.28 Let X, Y be random variables. Then E(X|Y ) is called conditional
expectation of X given by Y , if:

(i) E(X|Y ) is any F(Y )-measurable random variable.
(ii)

∫

A

XdP =
∫

A

E(X|Y )dP for all A ∈ F(Y ). (1.124)

Example 1.11 Let (�,F, P ) be a probability space. Y is a simple random variable
defined on this probability space, i.e.,
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Y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 on A1,

a2 on A2,

· · ·
am on Am,

(1.125)

where A1, A2, · · · , Am are disjoint events inF and a1, a2, · · · , am are real numbers.
For an any random variable X defined on �, our best estimation for X depends on
realization of Y . Thus, we can define conditional expectation as

E(X|Y ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
P(A1)

∫
A1

XdP on A1,

1
P(A2)

∫
A2

XdP on A2,

· · ·
1

P(Am)

∫
Am

XdP on Am.

(1.126)

We can clearly find E(X|Y ) is a random variable satisfying Definition 1.28.

We notice E(X|Y ) essentially is defined by using σ -algebra generated by random
variable Y . Furthermore, we can extend this definition to sub-σ -algebra of F.

Definition 1.29 Let (�,F, P ) be a probability space and suppose V is a sub-σ -
algebra, V ⊂ F. If X : � → Rn is an integrable random variable, we define
conditional expectation

E(X|V) (1.127)

to be any random variable on � satisfying:

(i) E(X|V) isV-measurable
(ii)

∫
A

XdP = ∫
A

E(X|V)dP for all A ∈ V.

Remark 1.3 We can understand conditional expectation E(X|V) as follows. Our
goal is to find best estimation of X given V. V can be regarded as observations.
Then E(X|V) should be constructed from the information of V, which is exactly
(i). Furthermore, X and our best estimation E(X|V) should be consistent, at least
on events in V, which is (ii). Therefore, (i) and (ii) extract two basic properties of
conditional expectation.

Conditional expectation has many nice properties, and some of them are listed in
the following theorem.

Theorem 1.6 ([3])

(i) If X isV-measurable, then E(X|V) = X a.s.
(ii) If a, b are constants, E(aX + bY |V) = aE(X|V) + bE(Y |V) a.s.
(iii) If X isV-measurable and XY is integrable, then E(XY |V) = XE(Y |V) a.s.
(iv) If X is independent ofV, then E(X|V) = E(X) a.s.
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(v) IfW ⊂ V, we have

E(X|W) = E(E(X|V)|W) = E(E(X|W)|V) a.s. (1.128)

(vi) The inequality X ≤ Y a.s. implies E(X|V) ≤ E(Y |V) a.s.

Proof

(i) It can be obtained by definition of conditional expectation.
(ii) For any A ∈ V, we calculate

∫

A

[aE(X|V) + bE(Y |V)]dP =a

∫

A

E(X|V)dP + b

∫

A

E(Y |V)dP

=a

∫

A

XdP + b

∫

A

YdP

=
∫

A

(aX + bY )dP.

(1.129)
By definition, we have

∫

A

E[aX + bY |V]dP =
∫

A

(aX + bY )dP. (1.130)

Hence by uniqueness, we obtain E(aX+bY |V) = aE(X|V)+bE(Y |V) a.s.,
which means condition expectation has linearity for first variable.

(iii) By uniqueness a.s. of E(XY |V), we just need to prove, for any A ∈ V,
∫

A

XYdP =
∫

A

XE(Y |V)dP . (1.131)

We first prove it by assuming X is a simple function, i.e.,

X =
n∑

i=1

biχBi
, (1.132)

where Bi ∈ V. Then

∫

A

XE(Y |V)dP =
n∑

i=1

bi

∫

A

χBi
E(Y |V)dP

=
n∑

i=1

bi

∫

A∩Bi

E(Y |V)dP

=
n∑

i=1

bi

∫

A∩Bi

YdP (A ∩ Bi ∈ V)

=
∫

A

XYdP.

(1.133)
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If X is a general measurable function in probability space (�,V, P ), we can
approximate it by simple functions.

(iv) We just need to prove, for any A ∈ V,
∫

A

E(X)dP =
∫

A

XdP. (1.134)

Next we calculate
∫

A

XdP =
∫

�

χAXdP

=E(χAX)

=P(A)E(X)

=
∫

A

E(X)dP.

(1.135)

(v) We first try to prove E(X|W) = E(E(X|V)|W). The only thing is to prove,
for any A ∈W,

∫

A

E(E(X|V)|W)dP =
∫

A

XdP. (1.136)

By definition, for any A ∈W, we have

∫

A

E(E(X|V)|W)dP =
∫

A

E(X|V)dP . (1.137)

Since A ∈W ⊂ V, we have

∫

A

E(X|V)dP =
∫

A

XdP. (1.138)

Combining (1.137) and (1.138), we finish the proof. The proof of E(X|W) =
E(E(X|W)|V) is similar.

(vi) Due to X ≤ Ya.s., for any A ∈ V, we have

∫

A

E(Y |V) − E(X|V)dP =
∫

A

E(Y − X|V)dP

=
∫

A

(Y − X)dP ≥ 0.

(1.139)

Then we take A = {E(Y |V) − E(X|V) < 0} ∈ V. By inequality (1.139),
if P(A) > 0, then the left side of (1.139) will be negative contradiction!
Therefore, P(A) = 0, which deduce E(Y |V) ≥ E(X|V), a.s.

��
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1.5 Limit Theorem

In this section, we consider a model of “repeated and independent experiments.”
We consider a sequence of random trials. In every trial, we will obtain a random
“outcome.” If we denote Xn as the n-th outcome, we will obtain a sequence of
random variables, X1, X2, · · · , Xn, · · · .

Definition 1.30 A sequence X1, X2, · · · , Xn, · · · of random variables are called
independent and identically distributed if X1, X2, · · · , Xn, · · · are mutually inde-
pendent and

FX1(x) = FX2(x) = · · · = FXn(x) = · · · , for all x. (1.140)

1.5.1 Strong Law of Large Numbers

Following theorem shows that for almost all ω ∈ �, the average of
X1, X2, · · · , Xn, · · · will converge to real mean value.

Theorem 1.7 (Strong Law of Large Numbers) Let X1, X2, · · · , Xn, · · · be a
sequence of independent, identically distributed, integrable real-valued random
variables defined on the same probability space. Then

P

(

lim
n→∞

X1 + X2 + · · · + Xn

n
= E(Xi)

)

= 1, (1.141)

which means that X1+X2+···+Xn

n
→ E(Xi) a.s. n → ∞.

Proof By the Kolmogorov inequality, the following inequality holds for arbitrary
a > 0,

P( max
1≤j≤n

|
j∑

i=1

Xi − E(Xi)

i
| ≥ a) ≤ 1

a2

n∑

i=1

DXi

i2
(1.142)

Then

P(max
j≥1

|
j∑

i=1

Xi − E(Xi)

i
| ≥ a) ≤ 1

a2

∞∑

i=1

DXi

i2 (1.143)

So we shall get

P(

∞∑

i=1

Xi − E(Xi)

i
< a) ≥ P(max

j≥1
|

j∑

i=1

Xi − E(Xi)

i
| < a) ≥ 1 − 1

a2

∞∑

i=1

DXi

i2

(1.144)
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Due to
∑∞

i=1
DXi

i2 < ∞, let a → ∞, which will lead to the following:

P(

∞∑

i=1

Xi − E(Xi)

i
< ∞) = 1 (1.145)

By the Kronecker lemma which states if
∑∞

k=1
ck

k
< ∞, then 1

n

∑n
k=1 ck → 0.

Finally we shall get

1

n

n∑

i=1

(Xi − EXi) → 0, a.s. (1.146)

which finishes the proof. ��

1.5.2 Central Limit Theorem

In the previous subsection, we notice Strong Law of Large Numbers shows
convergence of average value of the random sequence. In this subsection, we
introduce Central Limit Theorem, which reflects the fluctuation of the random
sequence X1, X2, · · · , Xn, · · · from mean value.

Theorem 1.8 (Central Limit Theorem) Let X1, X2, · · · , Xn be independent,
identically distributed, real-valued random variables with

E(Xi) = μ,V (Xi) = σ 2 > 0. (1.147)

for i = 1, · · · , n. Set

Sn :=
n∑

k=1

Xi. (1.148)

Then for all −∞ < a < b < ∞

lim
n→∞ P

(

a ≤ Sn − nμ√
nσ

≤ b

)

= 1√
2π

∫ b

a

e− x2
2 dx. (1.149)

Proof To begin with, we shall denote Qk = Xk−μ

σ
√

n
, which has density function qk .

Let Tn = ∑n
k=1 Qk and its associated probability density fn. The whole proof will

contain three steps.
Step 1. It can be directly obtained that fn = q1 ∗ q2 ∗ · · · ∗ qn, where ∗ denotes

the convolution. By the convolution formula, we shall get fn = F−1�n
k=1F(qk).
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Step 2. The cumulative density function of Qk is denoted as Q. By definition,
we shall get

Q(q) = P(
Xk − μ

σ
√

n
≤ q) =

∫ σ
√

nq+μ

−∞
f (t)dt =

∫ q

−∞
σ
√

nf (σ
√

nt + μ)dt

(1.150)
This leads to the probability density function q(t) = σ

√
nf (σ

√
nt +μ). Its Fourier

transformation can be written down

F(ω) =
∫ ∞

−∞
q(t)e−jωtdt

=
∫ ∞

−∞
f (x)e

−jω
x−μ

σ
√

n dx

=1 − ω2

2n

(1.151)

Step 3. Finally, by convolution formula, we shall get

f (t) = lim
n→∞ fn(t)

= lim
n→∞F

−1(Fn(ω))

= 1

2π

∫ ∞

−∞
e− ω2

2 ejωtdω

= 1

2π
e− t2

2

(1.152)

That finishes the whole proof. ��
Remark 1.4 The Central Limit Theorem is a significantly important theorem in the
probability theory. Many practical models can be appropriated by a mathematical
model “repeated and independent experiment.” From the Central Limit Theorem,
we can know that the average value of outcome of repeated trials will appropriately
obey a Gaussian distribution. This provides useful guidance for physics and
engineering technology.

1.6 Exercises

1. Let � = {1, 2, 3, 4} and denote I = {{1}, {3}}. Write down the sigma algebra
σ(I) generated by I.

2. Denote a sequence of subsets of � as I1,I2, · · · , which satisfies In ⊂ In+1
for any n. If each of In is a σ -algebra, show that the infinite union ∪∞

n=1In may
not be a σ -algebra.
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3. Assume that f (x) = a0 + a1x + a2x
2 is a quadratic polynomial in R. Find

the necessary and sufficient condition of coefficients {ai} so that the equation
E(f (αX)) = α2E(f (X)) holds for arbitrary α and random variable X.

4. X and Y are general random variables. Prove inequality

|Corr(X, Y )| ≤ 1. (1.153)

5. Show that two discrete random variables with same mean and the same variance
may not have the same distributions.

6. Consider two random variables X1 and X2 satisfy the following distributions:

P(X1) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4 , X1 = −1
1
2 , X1 = 0
1
4 , X1 = 1

(1.154)

and

P(X2) =
{

1
2 , X2 = 0
1
2 , X2 = 1

(1.155)

and P {X1 = 0, X2 = 0} = 0. (1) Write down the joint distribution of X1 and
X2. (2) Show whether X1, X2 are independent.

7. Let ξ = (ξ1, · · · , ξn)
T satisfy n-dimensional Gaussian distributionN(μ,�). C

is arbitrary matrix with size m × n. Prove that η = Cξ satisfies m dimensional
Gaussian distribution N(Cμ,C�CT ).

8. Prove that sufficient and necessary condition of Gaussian variables
ξ1, ξ2, · · · , ξn being independent is that each two of them are irrelevant.

9. Characteristic function of n-dimensional Gaussian distribution is

f (t) = exp{iμ�t − 1

2
t��t}. (1.156)

10. Let ξ be a continuous random variable with density function p(x). Assume
η = g(ξ) where g is strictly monotonically increasing and g−1 has continuous
derivative. Prove that η has the following density function:

p(g−1(y))|g−1(y)′| (1.157)
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Chapter 2
Stochastic Processes

This chapter provides a comprehensive overview of stochastic processes, an essen-
tial concept in probability theory and its applications. Beginning with an introduc-
tion to both discrete and continuous stochastic processes, we explore fundamental
aspects of process similarity, filtrations, and the crucial concept of stopping times.
The exposition then transitions to a detailed discussion on martingales, a class of
stochastic processes with profound implications in financial mathematics, signal
processing, and beyond. We delve into discrete martingales before extending our
analysis to continuous martingales, where we introduce the core inequalities and
the pivotal Doob-Meyer decomposition. The narrative further unfolds to encompass
continuous local martingales, setting the stage for an in-depth examination of
square-integrable martingales. Here, the focus sharpens on the quadratic variations
of continuous martingales and local martingales, revealing the intricate behavior
of stochastic processes over time. This chapter aims to equip the reader with a
solid foundation in understanding and analyzing the dynamic nature of stochastic
processes, underpinning much of modern probability theory and its diverse applica-
tions.

2.1 Introduction to Stochastic Processes and Filtrations

Throughout this chapter, we consider a probability space (�,F, P ). In this section,
we shall provide several important results on the following topic:

• What is the discrete or continuous stochastic process?
• What is discrete or continuous martingale?
• What is square-integrable martingale?

The basic theorems used in filtering on stochastic process and martingale shall be
introduced in detail in this section.
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2.1.1 Discrete and Continuous Stochastic Processes

A stochastic process X = (Xt ), t ∈ T is a mathematical model for the occurrence,
at each moment after the initial time, of a random phenomenon. The randomness is
captured by the introduction of a measurable space (�,F ), called the sample space,
on which probability measures can be placed.

Definition 2.1 (Discrete and Continuous Stochastic Processes) The stochastic
process is a collection of random variables X = (Xt ), t ∈ T , where T is a set
of real numbers, on (�,F ). They take values in a second measurable space (E,E),
called the state space. Usually, we will consider that the state space (E,E) will be
the d-dimensional Euclidean space equipped with the σ−field of Borel sets. And
the index t ∈ T of the random variables Xt admits a convenient interpretation as
times.

Especially, if the set T is a discrete set of R+, the stochastic process is discrete;
if the set T is an interval of R+, the stochastic process is continuous.

Then for a fixed sample point ω ∈ �, the function t → Xt(ω) is the sample path
of the process X associated with ω. If the sample path is right continuous for almost
ω ∈ �, then we call the process right continuous and left limits (RCLL) exists. So
we have a new way to understand the stochastic process.

2.1.2 Sameness Between Two Processes

Similarly in probability theory, we need to define the sameness between two random
processes. Let us consider two stochastic processes Xt and Yt defined on the same
probability space (�,F, P , t ∈ T ). When they are regarded as functions of t and ω,
we sayXt and Yt were the same if and only ifXt(ω) = Yt (ω) for all the t ≥ 0 and all
the ω ∈ �. However, in the presence of the probability measure P , we could weaken
the requirement in at least three different ways to obtain three related concepts of
sameness between the two processes. And we focus on the case T = [0,∞).

Definition 2.2 (Modification) Yt is a modification of Xt if, for every t ≥ 0, we
have P [Xt = Yt ] = 1

Definition 2.3 (Same Finite-Dimensional Distributions) Xt and Yt have the same
finite-dimensional distributions if, for any integer n ≥ 1, the real numbers 0 ≤ t1 <

t2, · · · < tn < ∞, A ∈ E1 × · · · × En, where × denotes direct product and the Ei is
the σ−algebra of Xti for 1 ≤ i ≤ n, we have:

P [(Xt1 , . . . , Xtn) ∈ A] = P [(Yt1, . . . , Ytn) ∈ A].
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Definition 2.4 (Indistinguishable) Xt and Yt are called indistinguishable if almost
all their sample paths agree:

P [Xt = Yt ; 0 ≤ t < ∞] = 1.

The third property is the strongest; it implies trivially the first one, which in turn
yields the second. On the other hand, two processes can be modifications of one
another and yet have completely different sample paths. Here is a standard example:

Example 2.1 Consider a positive random variable T with a continuous distribution,

put Xt = 0, and let Yt =
{
0; t �= T

1; t = T
. Yt is a modification of Xt , since for

every t ≥ 0, we have P [Yt = Xt ] = P [T �= t] = 1. But on the other hand,
P [Yt (ω) = Xt(ω); 0 ≤ t] = P [T /∈ R+] = 0, the Xt is not indistinguishable with
Yt .

Proposition 2.1 Let Yt be a modification of Xt , and suppose that both processes
have right-continuous sample paths. Then Xt and Yt are indistinguishable.

Proof Consider a dense countable subset D = {t1, . . . , tn, · · · } of R+. Because the
sample path is right-continuous so for every t ∈ [0,∞), we have a sub-sequence{
tim
}∞
m=1, which will have limm→∞ tim = t+. It is obvious that

{ω|Xt(ω) = Yt (ω); t ∈ [0,∞)} ⊂ {ω|Xt(ω) = Yt (ω); t ∈ D} .

And from the above limit, we can have

{ω|Xt(ω) = Yt (ω); t ∈ D} ⊂ {ω|Xt(ω) = Yt (ω); t ∈ [0,∞)} .

	

Remark 2.1 We will get the same result when the sample paths are left-continuous
or continuous.

From Proposition 2.1, we can know that the modification is equivalent to
indistinguishable under the regularity on the sample path (here we need the sample
path to be right/left continuous).

2.1.3 Filtrations and Measurement of Processes

As a function of two variables based on measurable space, we can naturally define
measurable random processes.
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Definition 2.5 (Measurable) A stochastic process X = (Xt ), t ≥ 0 with values in
a measurable space (E,E)is said to be measurable if the mapping

(ω, t) → Xt(ω)

defined on � × R+ equipped with the product σ−field F ⊗ B(R+) is measurable.
(We recall that B(R+)stands for the Borel σ -field of R+.)

As the index t represents the time. The random process at a fixed time must have
its past history, so the Xt should be measurable in any σ−field Es associated with
the time 0 ≤ s ≤ t . In this way, it is natural to define the filtration of the random
process.

Definition 2.6 (Filtration) A filtration on (�,F, P ) is a collection (Ft )0≤t≤∞
indexed by [0,∞] of sub σ−field of F, such that Fs ⊂ Ft for every s ≤ t ≤ ∞.

We have thus, for every 0 ≤ s < t ,

F0 ⊂ Fs ⊂ Ft ⊂ F∞ ⊂ F

We also say that (�,F, (Ft ),P) is a filtered probability space.

Let (Ft )0≤t≤∞ be a filtration on (�,F,P). We set, for every t ≥ 0,

Ft+ =
⋂

s>t

Fs .

and F∞+ = F∞. Note that Ft ⊂ Ft+ for every t ∈ [0,∞]. The collection
(Ft+)0≤t≤∞ is also a filtration. We say that the filtration (Ft ) is right-continuous
if

Ft+ = Ft , t ≥ 0.

By construction, the filtration (Ft+)0≤t≤∞ is right-continuous.
Let (Ft )0≤t≤∞ be a filtration and let N be the class of all (F∞, P )−negligible

sets (i.e., A ∈ N if there exists an A
′ ∈ F∞ such that A ⊂ A

′
and P(A

′
) = 0). The

filtration is said to be complete if N ⊂ F0.
If (Ft )0≤t≤∞ is not complete, it can be completed by setting Ft

′ = Ft ∨ σ(N ),
for every t ∈ [0,∞), using the notation Ft ∨ σ(N ) for the smallest σ−field
that contains bath Ft and σ(N ). We will often apply this completion procedure
to the canonical filtration of a random process Xt and call the resulting filtration the
completed canonical filtration of X.

If we have an increasing flow of information, naturally we can require that
the random variable at each moment be measurable in the corresponding σ−field,
which is adaption.
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Definition 2.7 (Adaption) A random process (Xt )t≥0 with values in a measurable
space (E,E) is called adapted to filtration (Ft )0≤t≤∞ if, for every t ≥ 0, Xt is
Ft−measurable.

More efficiently, we can define stronger measurability for our processes.

Definition 2.8 (Progressively Measurable) This process is said to be progres-
sively measurable if, for every t ≥ 0, the mapping

(ω, s) → Xs(ω)

defined on � × [0, t] is measurable for the σ -field Ft ⊗ B([0, t]).
Note that a progressively measurable process is both adapted and measurable.

So naturally, if the process is measurable and adapted, how do we make sure the
process is progressively measurable?

Proposition 2.2 Let (Xt )t≥0 be a random process with values in a metric space
(E,E)(equipped with its Borel σ -field). Suppose that Xt is adapted and that the
sample paths of Xt are right-continuous (i.e., for every ω ∈ �, t → Xt(ω) is right-
continuous). Then Xt is progressively measurable. The same conclusion holds if one
replaces right-continuous with left-continuous.

Proof We treat the case of right continuity. With t > 0, n ≥ 1, k = 0, 1, . . . , 2n−1,
and 0 ≤ s ≤ t , we define:

X(n)
s (ω) = X(k+1)t

2n
(ω) f or

kt

2n
< s ≤ (k + 1)t

2n

as well as X
(n)
0 (ω) = X0(ω). The so-constructed map (s, ω) → X

(n)
s (ω) from

[0, t] × � into Rd is demonstrably B([0, t]) ⊗ Ft -measurable. Besides, by right-
continuity, we have: limn→∞ X

(n)
s (ω) = Xs(ω), (s, ω) ∈ [0, t] × �. Therefore, the

map (s, ω) → Xs(ω) is also B([0, t]) ⊗ Ft -measurable.
	


Without using the regularity of the sample paths, we have an important result

Proposition 2.3 Let (Xt )t≥0 be a random process with values in a metric space
(E,E)(equipped with its Borel σ -field). Then, Xt is progressively measurable.

Proof To show that (Xt )t≥0 is progressively measurable, we need to demonstrate
that for each t ≥ 0, the mapping X : [0, t] × � → E, defined by (s, ω) �→ Xs(ω),
is B([0, t]) ⊗Ft -measurable, where B([0, t]) is the Borel σ -field on [0, t] and Ft is
the filtration to which Xt is adapted.

Since Xt is a random process with values in (E,E), by definition, for each fixed
t , Xt is Ft -measurable. This means that for any B ∈ E, the set {ω ∈ � : Xt(ω) ∈ B}
is in Ft .

To extend this to the progressive measurability over [0, t] × �, we consider the
product σ -field B([0, t]) ⊗ Ft . For each s ∈ [0, t], since Xs is Fs-measurable and
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Fs ⊆ Ft for s ≤ t due to the filtration being increasing, Xs is also Ft -measurable.
Therefore, the pre-image of a Borel set B ∈ E under Xs is an element of Ft , making
the mapping X : [0, t] × � → E measurable with respect to B([0, t]) ⊗ Ft .

Thus, (Xt )t≥0 is progressively measurable, completing the proof. 	


2.1.4 Stopping Time and Associated σ -Fields

Definition 2.9 (Stopping Time and Optional Time) A random variable T : � →
[0,∞] is a stopping time of the filtration (Ft ) if {T ≤ t} ∈ Ft , for every t ≥ 0.The
σ−field of the past before T is then defined by

FT = {A ∈ F∞ : t ≥ 0, A ∩ {T ≤ t} ∈ Ft } .

A random variable T : � → [0,∞] is an optional time of the filtration (Ft ) if
{T < t} ∈ Ft , for every t ≥ 0.The σ−field of the past before T is then defined by

FT = {A ∈ F∞ : t ≥ 0, A ∩ {T < t} ∈ Ft } .

In what follows, “stopping time” will mean the stopping time of the filtration
(Ft ) otherwise specified. If T is a stopping time, we also have {T < t} ∈ Ft for
every t > 0.

Proposition 2.4 Every random time equal to a non-negative constant is a stopping
time. Every stopping time is optional, and the two concepts coincide if the filtration
is right-continuous.

Proof To prove this proposition, we need to establish two main points:
1. Every constant time is a stopping time: Let τ be a random time equal to a

non-negative constant c. By definition, a stopping time with respect to a filtration
{Ft }t≥0 is a random time τ such that for every t ≥ 0, the event {τ ≤ t} is in Ft .
Since τ is a constant, {τ ≤ t} is trivially in Ft for all t ≥ 0 (it is either the entire
sample space or the empty set). Therefore, τ is a stopping time.

2. Every stopping time is optional; the concepts coincide if the filtration is
right-continuous: A stopping time τ is said to be optional if the stochastic process
1{τ≤t} is adapted to the filtration {Ft }t≥0. Since {τ ≤ t} ∈ Ft for a stopping time τ ,
it follows that 1{τ≤t} is Ft -measurable, making τ optional.

If the filtration {Ft }t≥0 is right-continuous, i.e., Ft = Ft+ for all t , then the
concepts of stopping times and optional times coincide. This is because the right-
continuity of the filtration ensures that the measurability conditions for stopping
times and optional times are equivalent.

Thus, we have shown that every random time equal to a non-negative constant
is a stopping time and that every stopping time is optional. Moreover, these two
concepts coincide if the filtration is right-continuous. 	
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Let us establish some simple properties of stopping times.

Lemma 2.1 If T and S are stopping times, then so are T S, T ∨ S, and T + S.

Proof The first two assertions are trivial by using the definition. For the third one,
start with the decomposition, valid for t > 0:

{T + S > t}
= {T = 0, S > t} ∪ {0 < T < t, T + S > t} ∪ {T > t, S = 0} ∪ {T ≥ t, S > 0}

The {T = 0, S > t}, {T > t, S = 0} and {T ≥ t, S > 0} events in this decomposi-
tion are in Ft , either trivially. As for the second event, we rewrite it as:

⋃

r∈Q+,0<r<t

{t > T > r, S > t − r}

where Q+ is the set of rational numbers in [0,∞). Membership in Ft is now
obvious. 	

Lemma 2.2 Let {Tn}∞n=1 be a sequence of optional times; then so are

sup
n≥1

Tn, inf
n≥1

Tn, lim
n→∞ Tn, lim

n→∞
Tn

Furthermore, if the Tns are stopping times, then so is supn≥1 Tn.

Proof From the identities

{

sup
n≥1

Tn ≤ t

}

=
∞⋂

n=1

{Tn ≤ t} and
{

inf
n≥1

Tn < t

}

=
∞⋃

n=1

{Tn < t} ,

we can obtain the desired results. 	

Then we consider the associated σ -fields.

Proposition 2.5 Consider a complete filtration (Ft , t ∈ [0,∞]), and we define Gt ,
which satisfies Gt = Ft+ for t ∈ [0,∞].

Let T be a stopping time of the filtration (Gt ); then

FT = {A ∈ F∞ : t ≥ 0, A ∩ {T ≤ t} ∈ Ft }

is a σ−field, and

GT = {A ∈ F∞|t > 0, A ∩ {T < t ∈ Ft }} .

Here, we can have FT + := GT .
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Proof To prove that FT is a σ -field, we need to show that it is non-empty, closed
under complementation, and closed under countable unions.

• Non-emptiness is guaranteed since ∅ ∈ FT as ∅ ∩ {T ≤ t} = ∅ belongs to Ft for
all t .

• Closure under complementation: If A ∈ FT , then Ac ∈ F∞, and for all t ≥ 0,
(Ac ∩ {T ≤ t}) = (A ∩ {T ≤ t})c ∈ Ft since Ft is a σ -field.

• Closure under countable unions: If Ai ∈ FT for all i ∈ N, then ⋃i Ai ∈ F∞,
and for all t ≥ 0,

(⋃
i Ai

) ∩ {T ≤ t} =⋃i (Ai ∩ {T ≤ t}) ∈ Ft .

Thus, FT satisfies all the conditions of a σ -field.
Now, considering GT , by definition, for any A ∈ GT , and for all t > 0, we have

A∩{T < t} ∈ Ft+ . Since Ft+ = Gt by the filtration’s definition, and T is a stopping
time with respect to Gt , it follows that GT is equivalent to FT + .

Therefore, FT + = GT as required. 	

In the following, some properties of stopping times and of associated σ -fields are

given, which are necessary for the rest of the chapter.

Proposition 2.6 (Properties of Stopping Times and of the Associated σ -fields
[2])

(a) For every stopping time T , we have FT ⊂ FT + . If the filtration (Ft ) is right-
continuous, we have FT = FT + .

(b) If T = t is a constant stopping time, then FT = Ft , and FT + = Ft+ .
(c) Let T be a stopping time. Then T is FT -measurable.
(d) Let T be a stopping time and A ∈ F∞. Set:

T A(ω) =
{

T (ω) if ω ∈ A.

+∞ if ω /∈ A

Then A ∈ FT if and only if T A is a stopping time.
(e) Let S, T be two stopping times such that S ≤ T . Then FS ⊂ FT , and FS+ ⊂
FT + .

(f) If (Sn) is a monotone decreasing sequence of stopping times, then S =
limn→∞ Sn is a stopping time of the filtration (Ft+)(the definition of Ft+ is
given in Proposition 2.5).

FS+ =
⋂

n

FSn
+

(g) If (Sn) is a monotone decreasing sequence of stopping times, which is also
stationary (in the sense that, for every ω, there exists an integer N(ω) such that
Sn(ω) = S(ω) for every n ≥ N(ω)), then S = limn→∞ Sn is also a stopping
time.

FS =
⋂

1≤n

FSn
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(h) Let T be a stopping time. A function ω → Y (ω) defined on the set {T < ∞}and
taking values in the measurable set (E,E) is FT -measurable if and only if, for
every t ≥ 0, the restriction of Y to the set is FT -measurable.

Proof

(a), (b), and (c) are almost immediately from our definitions. Let us prove the other
statements.

(d) For every t ≥ 0,

{
T A ≤ t

}
= A ∩ {T ≤ t}

and the result follows from the definition of FT .
(e) It is enough to prove that FS ⊂ FT . If A ∈ FS , we have

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft ,

hence A ∈ FT .

(f) We have for every t ≥ 0,

{S ≤ t} =
⋂

1≤n

{Sn ≤ t} ∈ Ft .

(g) Similarly

{S < t} =
⋃

1≤n

{Sn < t} ∈ Ft .

Then by (e), we have FS+ ⊂ FS+
n
for every n. And conversely, if A ∩n FS+

n
,

A ∩ {S < t} =
⋃

1≤n

(A ∩ {Sn < t}) ∈ Ft ,

hence A ∈ FS+ .
(h) First assume that, for every t ≥ 0, the restriction of Y to {T ≤ t} is
Ft−measurable subset A of E,

{Y ∈ A} ∩ {T ≤ t} ∈ Ft

Letting t → ∞, we first obtain that {Y ∈ A} ∈ F∞, and then we deduce from
the previous display that {Y ∈ A} ∈ FT and thus {Y ∈ A} ∩ {T ≤ t} ∈ Ft ,
giving the desired result.
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2.2 Discrete Martingales

We use the notation N = {0, 1, 2, 3, . . . }. Let us start by recalling the basic
definitions. We consider a probability space (�,F, P ), and we fix a discrete
filtration, that is, an increasing sequence (Gn)n∈N of sub-σ -fields of F. We also
let

G∞ =
∞⋃

n=0

Gn

Definition 2.10 A sequence (Yn)n∈N of integrable random variables, such that Yn

is Gn-measurable for every n ∈ N, is called:
• a martingale if, whenever 0 ≤ m < n, E[Yn|Gm] = Ym;
• a supermartingale if, whenever 0 ≤ m < n, E[Yn|Gm] ≤ Ym;
• a submartingale if, whenever 0 ≤ m < n, E[Yn|Gm] ≥ Ym.

All these notions depend on the choice of the filtration Gn, which is fixed in what
follows.

Theorem 2.1 (Maximal Inequality) If (Yn)n∈N is a submartingale, then, for every
λ > 0 and every k ∈ N,

λP

(

sup
n≤k

|Yn| > λ

)

≤ E[|Yk|]

Proof Define the stopping time τ = min{n ≤ k : |Yn| > λ}, with the convention
that min ∅ = ∞. Consider the stopped process Y τ

n = Ymin(n,τ ). By the optional
stopping theorem, since (Yn) is a supermartingale and τ is a bounded stopping time,
we have E[Yτ ] ≤ E[Y0].

For any n ≤ k, if τ ≤ k, then |Yτ | > λ. Thus,

λP

(

sup
n≤k

|Yn| > λ

)

= λP (τ ≤ k) ≤ E[|Yτ |].

Since |Yτ | ≤ |Yk| for τ ≤ k, and E[|Yτ |] ≤ E[|Yk|] for τ > k (as (Yn) is a
supermartingale), we conclude

E[|Yτ |] ≤ E[|Yk|].

Combining the inequalities, we get

λP

(

sup
n≤k

|Yn| > λ

)

≤ E[|Yk|].

This completes the proof of the maximal inequality for supermartingales. 	
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Theorem 2.2 (Doob’s Inequality in Lp) If (Yn)n∈N is a martingale, and every
k ∈ N, p > 1, we have

E

[

sup
n≤k

|Yn|p
]

≤
(

p

p − 1

)p

E[|Yk|p]

Proof To prove this inequality, we use the Doob’s maximal inequality for martin-
gales and the concept of conjugate exponents. Let q be such that 1

p
+ 1

q
= 1. By

integration by part and for any random variable X, r > 1, we can have

E[|X|r ] =
∫ ∞

0
rxr−1P(|X| ≥ x)dx.

Now, consider the supermartingale Y ∗
k := supn≤k |Yn|, and we choose r = p,

which yields

E[|Y ∗
k |p] = p

∫ ∞

0
λp−1p

(|Y ∗
k | ≥ λ

)
dλ ≤ p

∫ ∞

0
λp−1 · 1

λ

(∫

{|Y ∗
k |≥λ}

|Yk|dλ

)

,

(2.1)

where the last inequality holds that by Doob’s maximal inequality.

Now, we consider to estimate the p
∫∞
0 λp−1 · 1

λ

(∫
{|Y ∗

k |≥λ} |Y ∗
k |dλ
)
. Using the

switch two integration, we have

p

∫ ∞

0
λp−1 · 1

λ

(∫

{|Yk |≥λ}
|Yk|dλ

)

= p

∫

�

Yk

∫ ∞

0
λp−21{|Y ∗

k |≥λ}dλdP

= p

∫

�

(

|Yk|
∫ n+2

0
λp−2 dλ

)

dP = p · E

[

Yk ·
∫ |Yk |

0
λp−2 dλ

]

= p

p − 1
E[Yk|Yk|(p−1)] ≤ p

p − 1
E[|Yk|p] 1

p · E[|Y ∗
k |(p−1)q ] 1

q

(2.2)

where the inequality uses the Holder inequality and 1
p

+ 1
q

= 1. Here, we divide

the E[|Y ∗
k |(p−1)q ] 1

q = E[|Y ∗
k |p] 1

q , and combining (2.1) and (2.2), we can finish the
proof. 	


If y = (yn)n∈N is a sequence of real numbers, and a< b, the crossing number
of this sequence along [a, b] before time n, denoted by UF (a, b, n), is the largest
integer k such that there exists a strictly increasing finite sequence

m1 < n1 < m2 < n2 < · · · < mk < nk
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of nonnegative integers smaller than or equal to n with the properties ymi
≤ a

and yni
≥ b, for every i ∈ {1, 2, . . . k}. In what follows, we consider a sequence

Y = (Yn)n∈N of real random variables, and the associated upcrossing number
UF (a, b, n) is then an integer-valued random variable.

Theorem 2.3 (Doob’s Upcrossing Inequality for Continuous-Time Submartin-
gales) If (Xt )t∈R is a submartingale with right-continuous sample paths, then for
every a < b and letting [σ, τ ] be a subinterval of [0,∞),

E[D[σ,τ ](a, b, n)] ≤
(

1

b − a

)

E[(Xτ − a)+],

E[U[σ,τ ](a, b, n)] ≤
(

E[X+
τ ] + ‖a‖
b − a

)

.

Proof To extend the discrete version of Doob’s upcrossing inequality to the
continuous setting, we first define the continuous-time analogues of upcrossings
and downcrossings within the interval [σ, τ ].

Step 1: Approximation by discretization. Consider a sequence of partitions of
the interval [σ, τ ] with mesh going to zero. For each partition, define a discrete-
time process by sampling Xt at the partition points. Each sampled process is a
submartingale by the submartingale property of Xt .

Step 2: Application of discrete upcrossing inequality. For each discrete
approximation, apply the discrete version of Doob’s upcrossing inequality to obtain:

E[DF (a, b, n)] ≤
(

1

b − a

)

E[(Xτ − a)+] for downcrossings,

E[UF (a, b, n)] ≤
(

E[X+
τ ] + ‖a‖
b − a

)

for upcrossings.

Step 3: Passing to the limit. As the mesh of the partition goes to zero, the
expected number of upcrossings and downcrossings in the discrete approxima-
tions converge to the expected number of upcrossings and downcrossings in the
continuous-time process. The right-continuous sample paths of Xt ensure that the
limits of the expectations on the right-hand side converge to the corresponding
expectations for the continuous-time process.

Thus, we conclude that:

E[D[σ,τ ](a, b, n)] ≤
(

1

b − a

)

E[(Xτ − a)+],

E[U[σ,τ ](a, b, n)] ≤
(

E[X+
τ ] + ‖a‖
b − a

)

.
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This completes the proof by showing that the continuous-time upcrossing and
downcrossing expectations are bounded as stated. 	


This inequality is a crucial tool for proving the convergence theorems for
discrete-time martingales and supermartingales. Let us recall two important
instances of these theorems.

Theorem 2.4 (Convergence Theorem for Discrete-Time Submartingales [1]) If
(Yn)n∈N is a submartingale, and if the sequence (Yn)n∈N is bounded in L1,then
then there exists a random variable Y∞ ∈ L1 such that

lim
n→∞ Yn = Y∞ a.s.

Proof Given that (Yn)n∈N is bounded in L1, it follows that supn E[|Yn|] < ∞.
This implies, by the Markov inequality, that for any ε > 0, P(|Yn| > K) ≤ E[|Yn|]

K

for any K > 0, which can be made arbitrarily small by choosing K large enough.
Hence, (Yn)n∈N is uniformly integrable.

By Doob’s upcrossing inequality, for any a < b and n ∈ N,

E[UF (a, b, n)] ≤
(

1

b − a

)

E[(Yn − a)+].

As (Yn)n∈N is uniformly integrable and bounded in L1, the expected number of
upcrossings is finite. This implies that the number of upcrossings of any interval
[a, b] by the sequence (Yn) is almost surely finite. Therefore, (Yn) must converge
almost surely to a limit Y∞.

To show Y∞ ∈ L1, we use the fact that (Yn)n∈N is uniformly integrable. This
implies that the limit Y∞ is also integrable, and hence Y∞ ∈ L1. This completes the
proof of the convergence theorem for discrete-time submartingales. 	

Theorem 2.5 (Convergence Theorem for Uniformly Integrable Discrete-Time
Martingales [1])

If (Yn)n∈N is a martingale, then the following assertions are equivalent:

(i) The martingale (Yn,Gn, P )n∈N is closed, in the sense that there exists a
random variable Z ∈ L1(�,F, P ) such that Yn = E[Z|Gn] for every n ∈ N.

(ii) The sequence (Yn)n∈N converges a.s. and in L1.
(iii) The sequence (Yn)n∈N is uniformly integrable.

Proof (i) ⇒ (ii): If there exists a random variable Z ∈ L1(�,F, P ) such that
Yn = E[Z|Gn] for every n ∈ N, then by the Martingale Convergence Theorem,
(Yn)n∈N converges almost surely and in L1 to E[Z|G∞], where G∞ is the sigma-
algebra generated by

⋃∞
n=1 Gn.

(ii) ⇒ (iii): If (Yn)n∈N converges almost surely and in L1, then by Vitali’s
convergence theorem, the sequence is uniformly integrable.



48 2 Stochastic Processes

(iii) ⇒ (i): If (Yn)n∈N is uniformly integrable, then again by the Martingale
Convergence Theorem, there exists a random variable Y∞ such that (Yn)n∈N
converges to Y∞ almost surely and in L1. Define Z = Y∞, which belongs to
L1(�,F, P ); hence, for each n, Yn = E[Z|Gn]. This completes the proof of the
equivalence of the three conditions. 	


We now recall two versions of the optional stopping theorem in discrete time. A
(discrete) stopping time is a random variable T with values in N ∩ {∞}, such that
{T = n} ∈ Gn for every n ∈ N. The σ -field of the past before T is then GT =
{A ∈ G∞|A ∩ {T ≤ n} ∈ Gn for every n ∈ N}.
Theorem 2.6 (Optional Stopping Theorem for Uniformly Integrable Discrete-
Time Martingales [1]) Let (Yn)n∈N be a uniformly integrable martingale, and let
Y∞ be the a.s. limit of Yn when n → ∞. Then, for every choice of the stopping times
S and T such that S ≤ T , we have YT ∈ L1 and

YS = E[YT |GS]

with the convention that YT = Y∞ on the event {T = ∞}, and similarly for YS .

Proof Since (Yn)n∈N is uniformly integrable, it converges both almost surely and
in L1 to Y∞. This uniform integrability also ensures that for any stopping time T ,
the stopped process YT is integrable, i.e., YT ∈ L1.

For stopping times S and T with S ≤ T , the martingale property and uniform
integrability imply that for any n ≥ S,

E[Yn∧T |GS] = YS.

Taking the limit as n → ∞ and using the Dominated Convergence Theorem, we
obtain

E[YT |GS] = YS,

where we have used the fact that Yn∧T converges to YT as n → ∞, and the
conditional expectation is well-defined due to the uniform integrability of the
martingale sequence.

This establishes that YS = E[YT |GS], completing the proof. The convention that
YT = Y∞ on the event {T = ∞} ensures that the theorem also applies in cases
where the stopping time T may be infinite. 	

Theorem 2.7 (Optional Stopping Theorem for Discrete-Time Supermartin-
gales (Bounded Case))

Let (Yn)n∈N be a supermartingale, and for every choice of the bounded stopping
times S and T such that S ≤ T , we have

YS ≥ E[YT |GS].
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Proof Given that (Yn)n∈N is a supermartingale, it follows that for all n ≥ m,

E[Yn|Gm] ≤ Ym.

Now, consider two bounded stopping times S and T with S ≤ T . We aim to show
that

YS ≥ E[YT |GS].

Since S and T are bounded, there exists a maximum time N such that S, T ≤ N

for all ω ∈ �. We proceed by conditioning on the filtration GS and utilizing the
supermartingale property as follows:

E[YT |GS] = E[E[YT |GN ]|GS] ≤ E[YS |GS] = YS,

where the inequality E[YT |GN ] ≤ YS for S ≤ N uses the supermartingale property
and the fact that S ≤ T ≤ N . This inequality holds because conditioning on a later
time (GN ) and then taking the conditional expectation given an earlier time (GS)
preserve the supermartingale inequality due to the tower property of conditional
expectation.

Thus, we have shown that for any two bounded stopping times S and T with
S ≤ T , the value of the supermartingale at time S is greater than or equal to the
expected value of the supermartingale at time T , conditioned on the information
available at time S. This completes the proof of the optional stopping theorem for
discrete-time supermartingales in the bounded case. 	


2.3 Continuous Martingales

2.3.1 Introduction of Continuous Martingales

Recall that we have fixed a filtered probability space (�,F, (Ft ),P). In the
remaining part of this chapter, all processes take values in R. The following is an
obvious analog of the corresponding definition in discrete time.

Definition 2.11 A sequence (Xt )t∈R of integrable random variables, such that Xt

is Fn-measurable for every n ∈ N, is called:
(1) a martingale, if, whenever 0 ≤ s < t , E[Xt |Fs] = Ys ;
(2) a supermartingale, if, whenever 0 ≤ s < t , E[Yt |Fs] ≤ Ys ;
(3) a submartingale, if, whenever 0 ≤ s < t , E[Yt |Fs] ≥ Ys ;

Example 2.2 We say that a process (Zt )t≥0 with values in R or in Rd has
independent increments with respect to the filtration (Ft ) if Z is adapted and if,
for every 0 ≤ s < t, Zt − Zs is independent of (Fs) (for instance, a Brownian
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motion has independent increments with respect to its canonical filtration). If Z is a
real-valued process having independent increments with respect to (Ft ), then

(i) if Zt ∈ L1 for every t ≥ 0, then Z̃t = Zt − E[Zt ] is a martingale.
(ii) if Zt ∈ L2 for every t ≥ 0, then Yt = Z̃2

t − E[Z̃2
t ] is a martingale.

(iii) if, for some θ ∈ R, we have E[eθZt ] < ∞ for every t ≥ 0, then

Xt = eθZt

E[eθZt ]
is a martingale.

Our next goal is to study the regularity properties of sample paths of martingales
and supermartingales. We first establish continuous time analogs of classical
inequalities in the discrete-time setting.

Theorem 2.8 (Maximal Inequality [1]) If (Xt )t∈R+ is a submartingale with right-
continuous sample paths, then, for every λ > 0 and every t > 0,

λP

(

sup
0≤s≤t

|Xs | > λ

)

≤ E[X+
t ]

Proof Let the finite set F consist of 0, t , and a finite subset of [0, t] ∩Q. We obtain
from [1]: μP [maxt∈F Xt > μ] ≤ E(X+

τ ) By considering an increasing sequence
{Fn}∞n=1 of finite sets whose union is the whole of ([0, t]∩Q)∪{0, t}we may replace
F by this union in the preceding inequalities. The right-continuity of sample paths
implies that μP [sup0≤s≤t Xs > μ] ≤ E(X+

t ). 	

Theorem 2.9 (Doob’s Inequality in Lp) If (Xt )t∈R+ is a martingale with right-
continuous sample paths, then, for every t > 0, p > 1,

E

[

sup
0≤s≤t

|Xs |p
]

≤
(

p

p − 1

)p

E[|Xt |p]

Proof From the discrete martingales result, we can have, for every m ≥ 1,

E

[

sup
s∈Dm

|Xs |p
]

≤ (
p

p − 1
)pE[|Xt |p].

where theDm = {t0, t1, . . . , tm
}
. It is an increasing union of a sequence (Dm)m≥1 ⊂

D, in which D is a countable dense subset of R+.
Then, we just have to let m tend to infinity, using the monotone convergence

theorem and then the identity

sup
s∈D∩[0,t]

|Xs | = sup
s∈[0,t]

|Xs |.
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2.3.2 The Important Inequalities for Martingales

Let X = {Xt ; 0 ≤ t < ∞} be a real-valued stochastic process. As a < b, the up-
crossing number of this sequence along [a, b]with a finite subset F of [0,∞], which
is denoted by UF (a, b,X(ω)).

τ1(ω) = min {t ∈ F ;Xt(ω) ≤ a}

and define for j = 1, 2, . . . .

σj = min {t ∈ F ;Xt(ω) > b} .

τj+1 = min {t ∈ F ;Xt(ω) ≤ a} .

The convention here is that the minimum of the empty set is +∞, and we denote
by UF (a, b,X(ω)) the largest integer j for which σj (ω) < ∞. If I ⊂ [0,∞) is not
necessarily finite, we define

UI (a, b;X(ω)) = sup {UF (a, b;X(ω;F ⊂ I, F is f inite))} .

Theorem 2.10 Let (Xt )t≥0 be a supermartingale, and let D be a countable dense
subset of R+.

(i) For almost every ω ∈ �, the restriction of the function s → Xs(ω) to the set D
has a right-limit

Xt+(ω) := lim
s∈D→t+

Xs(ω)

at every t ∈ [0,∞), and a left-limit

Xt−(ω) := lim
s∈D→t−

Xs(ω).

(ii) For every t ∈ R+, Xt+ ∈ L1 and

Xt ≥ E[Xt+|Ft ]

with equality, if the function t → E[Xt ] is right-continuous (in particular if
X is a martingale). The process Xt is a supermartingale with respect to the
filtration. It is a martingale if X is a martingale.
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Proof

(i) Fix D. We have:

sup
s∈D∩[0,t]

|Xs | < ∞. a.s.

We can choose a sequence Dm,m ≥ 1 of finite subsets of D that increase to
D ∩ [0, T ] and are such that 0, T ∈ Dm. Doob’s upcrossing inequality for
discrete supermartingales gives, for every a < b and every m ≥ 1,

E[UDm(a, b)] ≤ 1

b − a
E[(XT − a)−].

We let m → ∞ and get by monotone convergence

E[U{[0,T ]∩D}(a, b)] ≤ 1

b − a
E[(XT − a)−] < ∞.

We thus have

U[0,T ]∩D(a, b) ≤ ∞.

Set

N =
⋃

T ∈D

{

sup
t∈D∩[0,T ]

|Xt | = ∞
}
⋃
⎛

⎝
⋃

a<b∈Q

{
UD∩[0,T ] = ∞}

⎞

⎠ . (2.3)

Then P(N) = 0 by the preceding considerations. On the other hand, if ω /∈ N ,
the function t → Xt(ω) helps us easily get the conclusion.

(ii) To define Xt+(ω) for every ω ∈ � and not only on �/N , we set

Xt+(ω) =
{
lims→t,s∈D if the limit exits

0 otherwise

By definition,Xt+ isFt+−measurable. Fix t ≥ 0 and choose a sequence (tn)n≥0
in D such that tn decreases strictly to t as n → ∞. Then, by construction, we
have a.s.

Xt+ = lim
n→∞ Xtn.

Set Yk = Xt−k for every integer k ≤ 0; then Y is a backward supermartingale
concerning the (backward) discrete filtration, and we have supk≤0 E[|Yk|] < ∞.
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Then the convergence theorem for backward supermartingales implies that the
sequence Xtn converges to Xt+ in L1. In particular, Xt+ ∈ L1. Thanks to the L1-
convergence, we can pass to the limit n → ∞ in the inequality Xt ≥ E[Xtn |Ft ] and
get

Xt ≥ E[Xt+|Ft ]

	

The number of downcrossings DI (a, b;X(ω)) is defined similarly.

Theorem 2.11 (Doob’s Upcrossing Inequality [3]) If (Xt )t∈R is a submartingale
with right-continuous sample paths, then for every a < b and letting [σ, τ ] be a
subinterval of [0,∞),

E[D[σ,τ ](a, b, n)] ≤
(

1

b − a

)

E[(Xτ − a)+],

E[U[σ,τ ](a, b, n)] ≤ (
E[X+

τ ] + ‖a‖]
b − a

).

Proof The proof of Doob’s upcrossing inequality in a continuous setting can be
conceptually tied back to its discrete counterpart. However, given the statement
involves a continuous-time process, we will sketch an approach that leverages
a discretization argument, which indirectly invokes the essence of the discrete
upcrossing inequality.

1. Discretization: Approximate the continuous-time submartingale (Xt )t∈[σ,τ ] by
a discrete-time submartingale (Xtn)

N
n=0, where σ = t0 < t1 < · · · < tN = τ and

each tn is a rational number in [σ, τ ]. The right-continuous sample paths ensure
that we can make this approximation arbitrarily close by refining the partition.

2. Applying discrete upcrossing inequality: For each discrete approximation,
apply the known discrete version of Doob’s upcrossing inequality to obtain

E[D[σ,τ ](a, b, n)] ≤
(

1

b − a

)

E[(XtN − a)+],

E[U[σ,τ ](a, b, n)] ≤
(

E[X+
tN

] + ‖a‖
b − a

)

,

where D[σ,τ ](a, b, n) and U[σ,τ ](a, b, n) are the downcrossing and upcrossing
numbers for the discretized process.
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3. Taking limits: As the partition gets finer, tN → τ , and by the right-continuity
of the sample paths and the Dominated Convergence Theorem, we can pass the
limits inside the expectations

E[D[σ,τ ](a, b, n)] ≤
(

1

b − a

)

E[(Xτ − a)+],

E[U[σ,τ ](a, b, n)] ≤
(

E[X+
τ ] + ‖a‖
b − a

)

.

This approach effectively bridges the discrete and continuous realms by lever-
aging the right-continuous nature of the sample paths to apply discrete martingale
results and then transitioning back to the continuous setting. The key step is the
discretization and the careful limit process, which ensures the inequalities hold in
the continuous setting as well. 	


We shall find that RCLL is very important. Next we will give a valid criterion for
RCLL.

Theorem 2.12 Let X = {Xt ;Ft , 0 ≤ t < ∞} be a submartingale, and assume
the filtration (Ft ) satisfies the usual conditions. Then the process X has a right-
continuous modification if and only if the function t → EXt from [0,∞) to R is
right-continuous. If this right-continuous modification exists, it can be chosen to be
RCLL and adapted to (Ft ), hence a submartingale concerning (Ft ).

Proof Please refer to Theorem 3.18 in [3].
Necessity: Assume X has a right-continuous modification Y . Since Y is right-
continuous and adapted to (Ft ), for every t , Yt is Ft -measurable and E|Yt | < ∞.
As Xt and Yt are modifications of each other, E[Xt ] = E[Yt ] for all t . The right-
continuity of t → EYt follows from the right-continuity of Y and Dominated
Convergence Theorem, showing that t → EXt is right-continuous.
Sufficiency: Suppose the function t → EXt is right-continuous. We construct a
right-continuous modification of X by considering the regular conditional probabil-
ity distribution given Ft . Due to the submartingale property and the right-continuity
of EXt , we can apply a version of the Doob-Dynkin lemma to obtain a sequence
of simple processes that converge uniformly to a limit process Y , which is right-
continuous.

For the RCLL property, we utilize the fact that every right-continuous function
can be approximated by functions that are right-continuous with left limits. Specifi-
cally, we can define

Yt = lim
s↓t

sup
u∈Q,u>s

Xu,

where the limit is taken over the rationals. This definition ensures that Yt is
right-continuous with left limits. The adaptiveness of Y to (Ft ) follows from



2.3 Continuous Martingales 55

the measurability of the supremum of a countable set of Ft -measurable random
variables.

Finally, to show that Y is a submartingale with respect to (Ft ), we need to verify
that E[Yt |Fs] ≥ Ys for s ≤ t . This follows from the construction of Y as a limit of
Ft -measurable random variables and the submartingale property of X.

Thus, we have shown that if t → EXt is right-continuous, then X has an RCLL
modification that is a submartingale with respect to (Ft ). 	


We start with a convergence theorem for martingales.

Theorem 2.13 (Submartingale Convergence [2]) Let X = {Xt ;Ft , 0 ≤ t < ∞}
be a right-continuous submartingale, and assume C := supt≥0 E(X+

t ) < ∞. Then
X∞(ω) := limt→∞ Xt(ω) exists, and E|X∞| < ∞.

Proof The proof involves several steps and utilizes key properties of submartingales
and the assumption on the uniform integrability criterion.

Step 1: Uniform integrability. The condition C := supt≥0 E(X+
t ) < ∞ implies

that the positive part of the submartingale is uniformly integrable. This is because,
for any ε > 0, there exists a constant K such that for all t , E[X+

t 1{X+
t >K}] < ε, due

to the uniform integrability criterion.
Step 2: Doob’s martingale convergence theorem. By Doob’s martingale con-

vergence theorem, since (Xt ) is a right-continuous submartingale and is uniformly
integrable, it converges almost surely and in L1 to a limit X∞ as t → ∞.

Step 3: Existence of X∞. The almost-sure convergence guarantees that
X∞(ω) = limt→∞ Xt(ω) exists for almost every ω ∈ �.

Step 4: Finiteness of E|X∞|. The convergence in L1 implies that E|X∞| =
limt→∞ E|Xt | ≤ lim supt→∞ E[X+

t ] ≤ C < ∞, ensuring that the expected value
of the limit is finite.

Thus, under the condition that supt≥0 E(X+
t ) < ∞, a right-continuous sub-

martingale (Xt ) converges almost surely and in L1 to a limit X∞, for which
E|X∞| < ∞. 	

Theorem 2.14 ([2]) If (Xt )t∈R+ is a martingale with right-continuous sample
paths, then the following assertions are equivalent:

(i) The martingale (Xt )t∈R+ is closed.
(ii) The sequence (Xt )t∈R+ converges a.s. and in L1.
(iii) The sequence (Xt )t∈R+ is uniformly integrable.

Proof We prove the equivalence by showing (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (i).
(i)⇒ (ii): If the martingale (Xt )t∈R+ is closed, it means there exists an integrable

random variable X∞ such that for every t , Xt = E[X∞|Ft ]. By the Martingale
Convergence Theorem, (Xt ) converges almost surely and in L1 to X∞, proving (ii).

(ii) ⇒ (iii): Assuming (ii) that (Xt ) converges almost surely and in L1 to some
limitX∞, we can argue that (Xt ) is uniformly integrable. Convergence inL1 implies
supt E[|Xt |] < ∞, and almost-sure convergence along with Vitali’s convergence
theorem ensures that the family (Xt ) is uniformly integrable.



56 2 Stochastic Processes

(iii) ⇒ (i): Assuming (iii) that (Xt ) is uniformly integrable, we apply the
Uniform Integrability Convergence Theorem. This theorem states that if a family
of integrable random variables is uniformly integrable and converges almost surely,
then it also converges in L1. By the Doob’s Martingale Convergence Theorem,
(Xt ) converges almost surely to some limit X∞. The uniform integrability of (Xt ),
combined with its almost-sure convergence, implies that X∞ is integrable and
E[X∞|Ft ] = Xt for all t . Thus, (Xt ) is closed, proving (i).

Therefore, we have shown that (i), (ii), and (iii) are equivalent for a martingale
(Xt )t∈R+ with right-continuous sample paths. 	


We will now use the optional stopping theorems for discrete martingales and
supermartingales in order to establish similar results in the continuous-time setting.
Let (Xt )t∈R be a martingale or a supermartingale with right-continuous sample
paths, such that Xt converges a.s. as t → ∞ to a random variable denoted by
X∞. Then, for every stopping time T , we write XT for the random variable

XT (ω) = 1{T (ω)<∞}XT (ω)(ω) + 1{T (ω)=∞}X∞(ω).

The random variableXT was only defined on the subset {T (ω) < ∞}XT (ω) of ω.
With this definition, the random variable XT is still FT -measurable: Use Theorem
3.7 and we can easily verify the fact that 1T (ω)=∞X∞(ω) is FT -measurable.

Theorem 2.15 (Optional Sampling) Let X = {Xt ;Ft , 0 ≤ t < ∞} be a right-
continuous submartingale, and let the last time element X∞ and S ≤ T be two
optional times of the filtration (Ft ). We have

E(XT |FS+) ≥ XS a.s.P .

If S is a stopping time, then FS can replace FS+ above. In particular, EXT ≥ EX0.

Proof We divide the proof into two parts: the case where S and T are bounded
stopping times and the general case.

Part 1: Bounded stopping times. Assume S and T are bounded by some
constant N < ∞. By the submartingale property, for any t ≥ 0, E(Xt+ε |Ft ) ≥ Xt

a.s. for any ε > 0. Letting ε → 0, and using the right-continuity of X, we have
E(Xt+|Ft ) ≥ Xt a.s., where Xt+ = limε→0+ Xt+ε . Since S and T are optional
times, they are Ft -measurable, and we can apply the tower property of conditional
expectation and the submartingale property to getE(XT |FS+) ≥ E(XS |FS+) = XS

a.s., where the equality follows from the fact that XS is FS+ -measurable.
Part 2: General optional times. For the general case, approximate S and T

by bounded stopping times Sn = min{S, n} and Tn = min{T , n}, which converge
to S and T , respectively, as n → ∞. Apply the result from Part 1 to Sn and Tn,
yielding E(XTn |FS+

n
) ≥ XSn a.s. By the right-continuity of X and the dominated

convergence theorem, we can take limits as n → ∞ to conclude E(XT |FS+) ≥ XS

a.s.
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If S is a stopping time, FS+ = FS because FS contains all null sets of F, and
any event in FS+ depends on events strictly before S and thus is measurable with
respect to FS .

Finally, by taking S = 0 and noting that X0 is F0-measurable, we obtain
E(XT |F0) ≥ X0 a.s., which implies EXT ≥ EX0 since X0 is constant. 	


2.3.3 The Doob-Meyer Decomposition

Definition 2.12 Consider a probability space (�,F, P ) and a random sequence
(An)

∞
n=0 adapted to the discrete filtration (Fn)

∞
n=0. The sequence is called increas-

ing, if for P a.e. ω ∈ � we have 0 = A0(ω) ≤ A1(ω) ≤ . . . , and E[An] < ∞
holds for every n ≥ 1.

Definition 2.13 An increasing sequence {An,Fn; n = 0, 1, . . . } is called natural if
for every bounded martingale {Mn,Fn; n = 0, 1, . . . } we have

E(MnAn) = E

n∑

k=1

Mk−1(Ak − Ak−1), n ≥ 1

Proposition 2.7 An increasing sequence {An,Fn; n = 0, 1, . . . } is predictable if
and only if it is natural.

Proof We prove this proposition in two parts: showing that every predictable
sequence is natural and then showing that every natural sequence is predictable.

Predictable ⇒ Natural: Assume {An,Fn; n = 0, 1, . . . } is predictable. This
means that for all n, An is Fn−1-measurable. Let X = {Xn, n = 0, 1, . . . } be a
bounded martingale. We need to show that the sequence {AnXn} is a martingale,
which would imply that {An} is natural.

Since An is Fn−1-measurable and Xn is a martingale, we have

E[AnXn|Fn−1] = AnE[Xn|Fn−1] = AnXn−1.

This shows that E[AnXn] = E[An−1Xn−1], proving that {AnXn} is a martingale,
and thus {An} is natural.

Natural⇒ Predictable:Assume {An,Fn; n = 0, 1, . . . } is natural. This implies
that for any bounded martingale {Xn}, the product {AnXn} is a martingale. To show
predictability, we must demonstrate that An is Fn−1-measurable for all n.

Consider a martingale {Xn} where Xn = 1{An>a} for some a ∈ R. Since {An} is
natural, {AnXn} is a martingale. Observe that

E[AnXn+1|Fn] = AnE[Xn+1|Fn] = AnXn,
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which implies An = E[An|Fn−1] for all n. Hence, An is Fn−1-measurable, proving
that {An} is predictable.

Therefore, we conclude that an increasing sequence {An,Fn; n = 0, 1, . . . } is
predictable if and only if it is natural. 	

Definition 2.14 An adapted process A is called increasing if for ω ∈ � we have:

1. A0(ω) = 0
2. t → At(ω) is a nondecreasing, right-continuous function, and E(At) < ∞ holds

for every t ∈ [0,∞). An increasing process is called integrable if E(A∞) < ∞,
where A∞ = limt→∞ At .

Definition 2.15 An increasing process A is called natural if for every bounded
right-continuous martingale {Mt,Ft ; 0 ≤ t < ∞} we have

E

∫

(0,t]
MsdAs = E

∫

(0,t]
Ms−dAs, f or every 0 < t < ∞. (2.4)

Remark 2.2

(i) if A is an increasing measurable process and X is a measurable process, then
with ω ∈ � fixed, the sample path {Xt(ω); 0 ≤ t < ∞} is a measurable
function from [0,∞) into R. It follows that the Lebesgue-Stieltjes integrals

I±
t (ω) :=

∫

(0,,t]
X±

s (ω)dAs(ω)

are well-defined. IfX is progressively measurable, and if It = It
+−It

− is well
defined and finite for all t ≥ 0, then I is right-continuous and progressively
measurable.

(ii) Every continuous, increasing process is natural. Indeed then, for P -a.e ω ∈ �,
we have

∫

(0,t]
(Ms(ω) − Ms−(ω))dAs(ω) = 0 f or every 0 < t < ∞,

because every path {Ms(ω); 0 ≤ s < ∞} has only countably many discontinu-
ities points due to that Ms is RCLL.

(iii) It can be shown that every natural increasing process is adapted to the filtration
{Ft−}.

Lemma 2.3 In Definition 2.15, Eq. (2.4) is equivalent to

E(MtAt ) = E

∫

(0,t]
Ms−dAs. (2.5)
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Proof To show the equivalence, we start with the left-hand side of (2.5) and apply
the integration by parts formula for semimartingales, which gives

MtAt =
∫

(0,t]
Ms−dAs +

∫

(0,t]
As−dMs + [M,A]t , (2.6)

where [M,A]t denotes the quadratic covariation of M and A.
Since A is an increasing process, it is of finite variation, and thus the quadratic

covariation [M,A]t is zero. Moreover, because A is increasing, As− = As for all s,
making the second integral on the right-hand side of (2.6) equal to zero when M is
a martingale (due to the martingale property E(dMs |Fs−) = 0).

Therefore, Eq. (2.6) simplifies to

MtAt =
∫

(0,t]
Ms−dAs. (2.7)

Taking expectations on both sides, and noting that Mt is bounded and At is of
finite variation, we get

E(MtAt ) = E

(∫

(0,t]
Ms−dAs

)

, (2.8)

which shows that Eq. (2.4) is equivalent to Eq. (2.5). 	

Definition 2.16 Let us consider the class Pa of stopping times T of the fil-
tration {Ft } which satisfy P(T < ∞) = 1. The right-continuous process
{Xt,Ft ; 0 ≤ t < ∞} is said to be of class D, if the family {XT }T ∈P is uniformly
integrable; of class DL, if the family {XT }T ∈Pa

is uniformly integrable, for every
0 < a < ∞.

Theorem 2.16 (Doob-Meyer Decomposition) Let {Ft } satisfy the usual condition.
If the right-continuous submartingale X = {Xt ;Ft , 0 ≤ t < ∞} is of class DL,
then it admits the decompositionXt = Mt+At (Mt is a right-continuous martingale
and At is an increasing process). The latter can be taken to be natural; under this
additional condition, the decomposition is unique. Further, if X is of class D, then
M is a uniformly integrable martingale and A is integrable.

Proof For the uniqueness, let us assume that X admits both decompositions Xt =
M

′
t + A

′
t = Mt + At , then

{
Bt = A

′
t − At = Mt − M

′
t ; 0 ≤ t < ∞

}
is martingale,

and for all bounded and right-continuous martingale (δ)t , we have

E[δt (A
′
t − At)] = E

∫

(0,t]
δs−dBs = lim

n→∞

mn∑

j=1

δ
t
(n)
j−1

[B
t
(n)
j

− B
t
(n)
j−1

],
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where 
n =
{
t
(n)
0 , . . . , t

(n)
mn

}
, n ≥ 1 is a sequence of partitions of [0, t] with

‖
n‖ = max1≤j≤mn(t
(n)
j − t

(n)
j−1) converging to zero as n → ∞, and as such,

each 
n+1 is a refinement of 
n. But now

E

[

δ
t
(n)
j−1

[B
t
(n)
j

− B
t
(n)
j−1

]
]

= 0, and thus E[δt (A
′
t − At)] = 0,

For an arbitrary bounded random variable δt , we can select {δ,Ft } to be a right-
continuous modification of (E[δ|Ft ],Ft ), and we obtain that E[δ(A′

t − At)] = 0
because of the right-continuity now gives us their indistinguishability.

For the existence of the decomposition, please find a detailed proof in book [3].
	


Definition 2.17 A submartingale {Xt(ω); 0 ≤ t < ∞} is called regular if for every
a > 0 and every nondecreasing sequence of stopping times (Tn)

∞
n=1 ⊂ Pa with

T = limn→∞ Tn, we have limn→∞ E(XTn) = E(XT ).

Theorem 2.17 Suppose that {Xt(ω); 0 ≤ t < ∞} is a right-continuous submartin-
gale of class DL with respect to the (Ft ), which satisfies the usual conditions,
and let {At, 0 ≤ t < ∞} be the natural increasing process in the Doob-Meyer
decomposition. The process A is continuous if and only if X is regular.

Proof Given the Doob-Meyer decomposition Xt = Mt + At , where X is a right-
continuous submartingale of class DL, Mt is a right-continuous martingale, and At

is a natural increasing process.
To prove that A is continuous if and only if X is regular, we proceed as follows:
(⇒) Assume A is continuous. By the definition of a regular submartingale, for

every predictable stopping time τ , it holds that E[Xτ |Fτ−] ≥ Xτ−. Since A is
continuous, Aτ = Aτ− for every predictable stopping time τ , implying that the
jumps of X at predictable stopping times come solely from M . However, M being a
martingale implies E[Mτ |Fτ−] = Mτ−. Thus, the continuity of A ensures that the
jumps of X are controlled, making X regular.

(⇐) Conversely, assume X is regular. This implies that for any predictable
stopping time τ , the potential discontinuities of X are controlled, which in turn
restricts the behavior of A, given that M is a martingale and thus has predictable
jumps that are compensated. The regularity of X ensures that its discontinuities are
such that they do not contribute to an increase in A in a way that would result in A

being discontinuous. Therefore, the only way to maintain the regularity ofX through
all predictable stopping times is if A itself is continuous, as any discontinuity in A

would contradict the submartingale property of X in the context of its predictability
and the martingale property of M .

Hence, we conclude that A is continuous if and only if X is regular, completing
the proof. 	
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2.4 Continuous Local Martingale

We consider again a filtered probability space (�,F, (Ft ), P ). If T is a stopping
time, and if X = (Xt )t≥0 is an adapted process with continuous sample paths, we
will write XT for process X stopped at T , defined by XT

t = Xt∧T for every t ≥ 0.
It is useful to observe that if S is another stopping time, then

(XT )S = (XS)T = XS∧T .

Definition 2.18 An adapted process M = (Mt)t≥0 with continuous sample paths
and such that M0 = 0 a.s. is called a continuous local martingale if there exists a
non-decreasing sequence (Tn)n≥0 of stopping times such that Tn → ∞(i.e.,n →
∞) for every ω) and, for every n, the stopped process MTn is a uniformly integrable
martingale.

Remark 2.3

(i) We do not requireMt is inL1 in the definition of a continuous local martingale.
(compare with the definition of martingales). In particular, the variableM0 may
be any F0-measurable random variable.

(ii) Any martingale with continuous sample paths is a continuous local martingale
(see property (a) below), but the converse is false, and for this reason, we will
sometimes speak of “true martingales” to emphasize the difference with local
martingales. Let us give a few examples of continuous local martingales that
are not (true) martingales. If B is an Ft -Brownian motion started from 0, and
Z is an F0-measurable random variable, the process Mt = Z + Bt is always
a continuous local martingale, but is not a martingale if E[|Z|] = 1. If we
require the property M0 = 0, we can also consider Mt = ZBt , which is always
a continuous local martingale.

(iii) One can define a notion of local martingale with RCLL sample paths. In this
course, however, we consider only continuous local martingales.

Proposition 2.8 ([4]) Let M be a martingale. Then the following properties
hold:

(a) A martingale with continuous sample paths is a continuous local martingale.
(b) In the definition of a continuous local martingale starting from 0, one can

replace “uniformly integrable martingale” with “martingale” (indeed, one can
then observe thatMTn∧n is uniformly integrable, and we still have Tn∧n → ∞).

(c) If M is a continuous local martingale, then, for every stopping time T , MT is a
continuous local martingale.

(d) If (Tn) reducesM and if (Sn) is a sequence of stopping times such that Sn → ∞,
then the sequence Tn ∧ Sn also reduces M .

(e) The space of all continuous local martingales is a vector space.
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Proof

(a) By definition, a martingale M with continuous sample paths satisfies for all
t ≥ 0, E[Mt |Fs] = Ms for s ≤ t , and the continuity of paths implies it is also
a continuous local martingale since it can be approximated locally by bounded
martingales due to its continuous paths.

(b) Starting from 0, a continuous process M is a local martingale if there exists
a sequence of stopping times (Tn) increasing to infinity such that MTn is a
martingale for each n. If M is a martingale, then MTn∧n is also a martingale,
and since Tn ∧ n → ∞, it implies that M can be considered a continuous
local martingale. The uniform integrability follows from the fact that MTn∧n

is bounded for each n by the martingale property and Doob’s martingale
convergence theorem.

(c) Given a continuous local martingale M and a stopping time T , the stopped
process MT is defined by MT (t) = M(t ∧ T ). Since the stopping at T

preserves the martingale properties and continuity, MT remains a continuous
local martingale.

(d) If (Tn) reduces M and (Sn) is such that Sn → ∞, then for each n, MTn∧Sn is a
martingale because both Tn and Sn are stopping times, and their minimum also
constitutes a stopping time. The fact that Tn ∧ Sn increases to infinity ensures
that M is locally a martingale with respect to this new sequence, thus reducing
M .

(e) To prove that continuous local martingales form a vector space, we need to
show that the sum of two continuous local martingales is again a continuous
local martingale and that scalar multiples of continuous local martingales are
also continuous local martingales. This follows from the linearity of expectation
and the preservation of the martingale property under linear operations.

	

Proposition 2.9

(i) A nonnegative continuous local martingale M such that M0 ∈ L1 is a
supermartingale.

(ii) A continuous local martingale M such that there exists a random variable
Z ∈ L1 with |Mt | ≤ Z for every t ≥ 0 (in particular a bounded continuous
local martingale) is a uniformly integrable martingale.

(iii) If M is a continuous local martingale and M0 = 0 (or more generally M0 ∈
L1, the sequence of stopping times

Tn = inf {t ≥ 0; |Mt | ≥ n}

reduces M .
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Proof

(i) Write Mt = M0 + Nt . By definition, there exists a sequence (Tn) of stopping
times that reduce N . Then, if s ≤ t , we have for every n

Ns∧Tn = E[Nt∧Tn |Fs].

We can add on both sides the random variable M0 (which is F0-measurable
and in L1 by assumption), and we get

Ms∧Tn = E[Mt∧Tn |Fs],

since M takes nonnegative values, we can now let n tend to ∞ and apply the
version of Fatou’s lemma for conditional expectations, which gives

Ms ≥ E[Mt |Fs].

Taking s = 0, we get E[Mt ] ≤ E[M0] < ∞; hence, Mt ∈ L1 for every t ≥ 0.
The previous inequality now shows that M is a supermartingale.

(ii) By the same argument as in (i), we get for 0 ≤ s ≤ t ,

Ms∧Tn = E[Mt∧Tn |Fs], (2.9)

Since |Mt∧Tn | ≤ Z, we can use dominated convergence to obtain that the
sequence Mt∧Tn converges to Mt in L1. We can thus pass to the limit n → ∞
in Theorem 2.9 and get that Ms = E[Mt |Fs].

(iii) Suppose that M0 = 0. The random times Tn are stopping times. The desired
result is an immediate consequence of (ii) since MTn is a continuous local
martingale and |MTn | ≤ n. If we only assume that M0 ∈ L1, we observe that
MTn is dominated by n + |M0|.

	

Theorem 2.18 Let M be a continuous local martingale. Assume that M is also a
finite variation process (in particular M0 = 0). Then Mt = 0 for every t ≥ 0, a.s.

Proof Set

τn = inf

{

t ≥ 0 :
∫ t

0
|dMs | ≥ n

}

.

For every integer n ≥ 0, τn is a stopping time (recall that
∫ t

0 |dMs | is an increasing
process if M is a finite variation process). Fix n ≥ 0 and set N = Mτn . Note that,
for every t ≥ 0,

|Nt | = |Mt∧τn | ≤
∫ t∧τn

0
|dMs | ≤ n.
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By Proposition 2.8, N is a martingale. Let t ≥ 0 and 0 = t0 < t1 < · · · < tp = t be
any subdivision of [0, t]. Then, we have

E[N2
t ] =

p∑

i=1

E[(Nti − Nti−1)
2] (2.10)

≤ E[( sup
1≤i≤p

|Nti − Nti−1 |)
p∑

i=1

|Nti − Nti−1 |] (2.11)

≤ nE[ sup
1≤i≤p

|Nti − Nti−1 |], (2.12)

noting that
∫ t

0 |dNs | ≤ n by the definition of τ .
We now apply the preceding bound to a sequence 0 = tk0 < tk1 < · · · < tkpk

= t of
subdivisions of [0, t] whose mesh tends to 0. Using the continuity of sample paths,
and with the fact that N is bounded (to justify dominated convergence), we get

lim
k→∞ E[ sup

1≤i≤pk

|Ntki
− Ntki−1

|] = 0.

We then conclude that E[N2
t ] = 0; hence, Mt∧n = 0. Letting n tend to ∞, we get

that Mt = 0. 	


2.5 Square-Integrable Martingale

2.5.1 The Quadratic Variation of a Continuous Martingale

Definition 2.19 Let X = {Xt ;Ft , 0 ≤ t < ∞} be a right-continuous martingale.
We say that X is square-integrable if EX2

t < ∞ for every t ≥ 0. If, in addition,
X0 = 0, we write X ∈M2 (or X ∈Mc

2, if X is also continuous).

Definition 2.20 For X ∈ M2, we define the quadratic variation of X to be the
process 〈X〉t := At , where A is the natural increasing process in the Doob-Meyer
decomposition of X2.

Definition 2.21 For two martingales X, Y ofM2, we define the cross variation of
X to be the process 〈X, Y 〉t by

〈X, Y 〉t = 1

4
(〈X + Y 〉t − 〈X − Y 〉t )

and observe that XtYt − 〈X, Y 〉t is a martingale. Two elements X, Y of M2 are
called orthogonal if 〈X, Y 〉t = 0 for every 0 ≤ t < ∞.

Easily we can find the important properties for 〈·, ·〉



2.5 Square-Integrable Martingale 65

Proposition 2.10 ([2]) 〈·, ·〉 is a bilinear form onM2, i.e., for any membersX, Y,Z

ofM2 and real numbers a, b, we have:

(i) 〈aX + bY,Z〉 = a 〈X,Z〉 + b 〈Y,Z〉 ,

(ii) 〈X, Y 〉 = 〈Y,X〉 ,

(iii) | 〈X, Y 〉 |2 ≤ 〈X,X〉 〈Y, Y 〉.
Proof They follow from (aX + bY )Z = aXZ + bYZ, XY = YX, X2 ≥ 0 and
Cauchy-Schwarz inequality. 	


The use of the term quadratic variation may appear to be unfounded. Indeed, a
more conventional use of this term is the following: Let X = {Xt ;Ft , 0 ≤ t < ∞}
be a process, and it is a partition of [0, t]. Define the p-th variation of X of over the
partition 
 to be

V
(p)
t (
) =

m∑

k=1

|Xtk − Xtk−1 |p.

Now define the mesh of the partition 
 as ‖
‖ = max1≤k≤m |tk − tk−1|. If
V

(2)
t (
) converges in some sense as ‖
‖ → 0, the limit is called the quadratic

variation of X on [0, t].
Theorem 2.19 ([3]) Let X be in F2, and it is continuous. For 
 of [0, t], we have
lim‖
‖→0 V

(2)
t (
) = 〈X〉, (in probability); for every ε > 0, η > 0, there exists

δ > 0 such that ‖
‖ < δ implies

P [|V (2)
t (
) − 〈X,X〉t | > ε] < η.

Proof Let X = {Xt ;Ft , 0 ≤ t < ∞} be a continuous process in F2. Consider a
partition 
 = {0 = t0 < t1 < . . . < tm = t} of the interval [0, t].

The p-th variation of X over the partition 
 is defined as

V
(p)
t (
) =

m∑

k=1

|Xtk − Xtk−1 |p.

We focus on p = 2, which gives us the quadratic variation.
Assume that ‖
‖ = max1≤k≤m |tk − tk−1| → 0. We want to show that V (2)

t (
)

converges to 〈X〉t in probability.
Given any ε > 0 and η > 0, we will demonstrate that there exists δ > 0 such

that if ‖
‖ < δ, then P [|V (2)
t (
) − 〈X,X〉t | > ε] < η.

By definition of quadratic variation for continuous semimartingales, we know
that as ‖
‖ → 0, the sums

∑m
k=1(Xtk −Xtk−1)

2 approximate the increasing process
〈X〉t , which is the limit of these sums as the mesh of the partition goes to zero,
reflecting the accumulated “energy” of the process X over [0, t].
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The convergence in probability follows from the fact that, for continuous
processes, the variance of these sums (which measure the mean quadratic fluctuation
of the process around its path) tends to zero as the mesh of the partition goes to
zero. This is due to the continuity of the sample paths of X and the properties of the
predictable quadratic variation process 〈X〉t associated with X.

Therefore, by taking δ sufficiently small, we ensure that the probability that the
quadratic variation V

(2)
t (
) deviates from 〈X,X〉t by more than ε is less than η,

which proves the theorem. 	

Definition 2.22 For any X ∈M2, and 0 ≤ t < ∞, we define

‖X‖t :=
√

E[X2
t ].

We also set

‖X‖ :=
∞∑

n=1

‖X‖n ∧ 1

2n
.

Proposition 2.11 Under the preceding metric,M2 is a complete metric space, and
Mc

2 a closed subspace ofM2.

Proof Let M2 denote the space of square-integrable martingales and Mc
2 the

subspace consisting of continuous square-integrable martingales. We define the
metric on M2 by d(X, Y ) = (E[〈X − Y,X − Y 〉∞])1/2, where 〈·, ·〉 denotes the
quadratic variation.

Completeness ofM2: To show thatM2 is complete, consider a Cauchy sequence
(Xn)n∈N inM2. For every ε > 0, there exists N ∈ N such that for all m, n ≥ N ,
d(Xn,Xm) < ε. This implies that (Xn)n∈N converges in L2 to some limit process
X. Since the space of square-integrable martingales is closed under L2 convergence,
X ∈M2, proving thatM2 is complete.

Closedness of Mc
2: To prove that Mc

2 is a closed subspace, let (Xn)n∈N be a
sequence inMc

2 converging to some limit X in the metric ofM2. The convergence
in L2 implies that Xn → X in probability, and since each Xn is continuous, it
follows that X is also continuous almost surely. Therefore, X ∈ Mc

2, proving that
Mc

2 is a closed subspace ofM2. 	


2.5.2 The Quadratic Variation of a Continuous Local
Martingale

From now on until the end of this chapter, we assume that the filtration Ft

is complete. The next theorem will play a very important role in forthcoming
developments.
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Let M = (Mt)t≥0 be a continuous local martingale. There exists an increasing
process denoted by (〈M,M〉t )t≥0, which is unique up to indistinguishability, such
that M2

t − 〈M,M〉t is a continuous local martingale. Furthermore, for every fixed
t > 0, if 0 = tn0 < tn1 < . . . tnpn

= t is an increasing sequence of subdivisions of
[0, t] with mesh tending to 0, we have

Proposition 2.12 For a martingale M , the quadratic variation of M is defined as

〈M,M〉t = lim
n→∞

pn∑

i=1

(Mtni
− Mtni−1

)2 (2.13)

in probability, where (〈M,M〉t )t≥0 is called the quadratic variation of M .

Proof The definition of the quadratic variation 〈M,M〉t directly leads to its
representation as the limit of the sum of squared increments of the martingale M

as the partition gets finer, in the sense of probability.
Given a sequence of partitions of the interval [0, t] with the n-th partition

given by 0 = tn0 < tn1 < . . . < tnpn
= t and the mesh of the partition

‖
n‖ = max1≤i≤pn |tni − tni−1| → 0 as n → ∞, we consider the sums Sn =
∑pn

i=1(Mtni
− Mtni−1

)2.
By Theorem 2.19, for every martingale M that is continuous and belongs to F2,

it has been established that

lim‖
n‖→0
Sn = 〈M,M〉t

in probability. This convergence implies that, for any ε > 0 and η > 0, there exists
an N such that for all n ≥ N ,

P
(∣∣Sn − 〈M,M〉t

∣
∣ > ε

)
< η,

demonstrating that the sum of the squared increments of M over increasingly
finer partitions converges in probability to the quadratic variation 〈M,M〉t . This
convergence in probability is what defines the quadratic variation of the martingale
M over the interval [0, t].

Thus, the proposition is proved using the definition and Theorem 2.19 on the
convergence of the quadratic variation. 	

Proposition 2.13 Let M be a continuous local martingale and let T be a stopping
time. Then we have a.s. for every t ≥ 0,

〈
MT ,MT

〉

t
= 〈M,M〉t∧T .

Proof This follows from the fact that M2
t∧T − (〈M,M〉t∧T is a continuous local

martingale (cf. property (c) of continuous local martingales). 	
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Proposition 2.14 Let M be a continuous local martingale and M0 = 0. Then we
have 〈M,M〉 = 0 if and only if M = 0.

Proof Suppose that 〈M,M〉 = 0. Then M2
t is a nonnegative continuous local

martingale, M2
t is a supermartingale, and hence E[M2

t ] ≤ E[M2
0 ] = 0, so that

Mt = 0 for every t . The converse is obvious. 	

Theorem 2.20 Let M be a continuous local martingale with M0 ∈ L2.

(i) The following assertions are equivalent:

(a) M is a martingale bounded in L2.
(b) E[〈M,M〉∞] < ∞. Furthermore, if these properties hold, the process

M2
t − 〈M,M〉t is a uniformly integrable martingale, and in particular

E[M2∞] = E[M2
0 ] + E[〈M,M〉∞].

(ii) The following assertions are equivalent:

(a) M is a martingale and Mt ∈ L2 for every t ≥ 0.
(b) E[〈M,M〉t ] < ∞ for every t ≥ 0.

Furthermore, if one of (i) and one of (ii) are held, the process M2
t − 〈M,M〉t is a

martingale.

Proof Replacing M by M − M0, we may assume that M0 = 0 in the proof. Let
us first assume that M is a martingale bounded in L2. Doob’s inequality in L2.
Proposition 2.9(ii) shows that, for every T > 0,

E

[

sup
0≤t≤T

M2
t

]

≤ 4E[M2
T ].

By letting T go to ∞, we have

E

[

sup
t≥0

M2
t

]

≤ 4 sup
t≥0

E[M2
t ] := C < ∞.

Set Sn = inf
{
t ≥ 0 : 〈M,M〉t ≥ n

}
. Then the continuous local martingaleM2

t∧Sn
−

〈M,M〉t∧Sn
is dominated by the variable

sup
s≥0

M2
s + n

which is integrable. From Proposition 2.9, we get that this continuous local
martingale is a uniformly integrable martingale; hence,

E[〈M,M〉t∧Sn
] = E[M2

t∧Sn
] ≤ E

[

sup
s≥0

M2
s

]

≤ C.

By letting n and t tend to infinity, and using monotone convergence, we get
E[〈M,M〉∞] ≤ C < ∞.
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Conversely, assume that E
[〈M,M〉∞

]
< ∞. Set Tn = inf {t ≥ 0 : |Mt | ≥ n} .

Then the continuous local martingale M2
t∧Tn

− 〈M,M〉t∧Tn
is dominated by the

variable

n2 + 〈M,M〉∞ ,

which is integrable. From Proposition 2.9(ii) again, this continuous local martingale
is a uniformly integrable martingale; hence, for every t ≥ 0,

E[M2
t∧Tn

] = E[〈M,M〉t∧Tn
] < 1

By letting n → ∞ and using Fatou’s lemma, we get E[M2
t ] ≤ C

′
, so that the

collection (Mt)t≥0 is bounded in L2. We have not yet verified that (Mt)t≥0 is a
martingale. However, the previous bound on E[M2

t∧Tn
] shows that the sequence

(Mt∧Tn) is uniformly integrable and therefore converges both a.s. and in L1 to
Mt , for every t0. Recalling that MTn is a martingale (Proposition 2.9(iii)), the L1-
convergence allows us to pass to the limit n → ∞ in the martingale property
E[Mt∧Tn |Fs] = Ms∧Tn , for 0 ≤ s < t , and to get that M is a martingale.

Finally, if properties (a) and (b) hold, the continuous local martingale M2 −
〈M,M〉, Mi is dominated by the integrable variable

sup
t≥0

M2
t + 〈M,M〉∞ ,

and is therefore (by Proposition 2.9(ii)) a uniformly integrable martingale.
(ii) It suffices to apply (i) to (Mt∧a)t≥0for every choice of a ≥ 0. 	


2.6 Exercises

1. Show that a sum of martingales is a martingale
2. (1) Is any Markovian process a martingale? If yes, prove it. Otherwise, construct

a counterexample.
(2) Is any martingale Markovian? If yes, prove it. Otherwise, construct a

counterexample.
3. Given that {Xn, n ≥ 1} are independent random variables with E[Xi] = mi ,

Var(Xi) = σ 2
i , and i ≥ 1, let Sn =∑n

i=1 Xi and Fn = σ(X1, . . . , Xn).

(1) Find sequences (bn), (cn) of real numbers such that S2
n + bnSn + cn is an

Fn-martingale.
(2) Assume moreover that λ ∈ R such that exp(λXi) ∈ L1 for any i ≥ 1,

and set Gi(λ) = E[exp(λXi)], i ≥ 1. Find a sequence (aλn)n≥0 such that{
exp(λSn − aλn)

}
n≥0 is an Fn-martingale.
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4. Let M = {Mt : t ∈ {0, 1, 2, . . . }} be a square-integrable martingale existing on
a filtered probability space (�,F,Ft , P ), where F = {Ft : t ∈ {0, 1, 2, . . . }}
denotes the filtration.
The predictable process � = {�t : t ∈ {0, 1, 2, . . . }} is constructed on the same
space. For all t ∈ {1, 2, . . . }, �t is Ft−1-measurable, and �0 is F0-measurable.
We also assume that for all t ∈ {0, 1, 2, . . . }, the random variable �t is square-
integrable, meaning E[|�t |2] < ∞.
We aim to show that the process N = {Nt : t ∈ {0, 1, 2, . . . }} defined as

Nt = N0 +
t∑

k=1

�k(Mk − Mk−1),

is a martingale, provided that N0 is F0-measurable.
5. LetX be a square-integrable random variable constructed on a filtered probability

space (�,F, {Ft }, P ) with E[|X|] < ∞. We aim to prove that the stochastic
process {Mt : t ∈ {0, 1, 2, . . . }} defined as

Mt = EP [X | Ft ], t ≥ 0,

is a martingale.
6. Consider a probability space (�,F, P ) on which two filtrations are constructed,

{Ft : t ≥ 0} and {Gt : t ≥ 0}, satisfying Ft ⊆ Gt for all t .

(1) Let M = {Mt : t ≥ 0} be a {Ft }-martingale, and let N = {Nt : t ≥ 0} be a
{Gt }-martingale. We are to determine if M is a {Gt }-martingale and if N is a
{Ft }-martingale.

(2) Let τ be a {Ft }-stopping time and σ be a {Gt }-stopping time. We need to
check if σ is a {Ft }-stopping time and if τ is a {Gt }-stopping time.

7. Let {Fn} be a filtration and {Mn} a uniformly integrable (UI) {Fn}-martingale.
Show that {Mn, n ≥ 0} converges almost surely (a.s.) and in L1 toward a limiting
M∞. Also, show that for any n ∈ N, Mn = E[M∞|Fn].

8. Set X0 = 0, and for k ≥ 0, define the transition probabilities:

P(Xk+1 = 1 | Xk = 0) = P(Xk+1 = −1 | Xk = 0) = 1

2k
,

P (Xk+1 = 0 | Xk = 0) = 1 − 1

2k
,

P (Xk+1 = kXk | Xk �= 0) = 1

k
,

P (Xk+1 = 0 | Xk �= 0) = 1 − 1

k
.

Show that {Xn, n ≥ 0} is a martingale. Does it converge almost surely? In
probability? In L1?
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9. Let {Vi, i ≥ 1} be nonnegative i.i.d. random variables, such that E[Vi] = 1 and
P(Vi = 1) < 1. We define X0 = 1, Xn =∏n

i=1 Vi , and Fn = σ(Vi, i ≤ n).

(1) Show that {Xn} is a {Fn}-martingale.
(2) Does {Xn} converge? In what sense?
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Chapter 3
Stochastic Differential Equations

In this chapter, we will give a very general review to the main results in the subject
of stochastic differential equation (SDE), which are important in stochastic filtering
theory. We will start from the theory of stochastic integral, which serves to be a
foundation in the development of SDEs. The famous Itô’s formula and Girsanov’s
change-of-measure method, as well as the Burkholder-Davis-Gundy inequality, are
presented here and will be applied in the derivation of filtering equations in Chap. 5.
Next, different kinds of formulations to the SDEs will be summarized, and the
relationship between SDEs and partial differential equations (PDEs) will also be
studied. As a special reminder, for most theorems mentioned in this chapter, we
will only give a brief sketch of the proofs or simply omit the proofs. We highly
recommend interested readers to refer to monographs such as [5] and [6] for
detailed proofs. Also, advanced readers may skip this chapter or regard it as a quick
reference.

3.1 Stochastic Integral

The concept of stochastic integral is quite common in natural science, engineering,
and finance, when it comes to representing cumulative effects of random phenomena
in the real world. Historically, the rigorous mathematical formulation of stochastic
integral was proposed by K. Itô in 1942, and fruitful theoretical and practical results
based on this formulation have been achieved during the last decades.

In comparison with traditional Riemann-Stieltjes integral and Lebesgue integral,
a major difference for stochastic integral is that the paths of most important
stochastic processes that we are interested in, such as Brownian motion, are
almost surely nowhere differentiable. If we make an attempt to construct stochastic
integrals based on traditional deterministic ones, we will soon find out that the
Riemann-Stieltjes sums do not converge and the paths of the process cannot generate
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a measure as functions with bounded variation do in the measure theory. Therefore,
K. Itô introduced a novel definition of stochastic integral quite different from
traditional, deterministic ones.

In this section, we will first summarize the construction procedure of stochastic
integral based on the work of Karatzas and Shreve [6] and then introduce the famous
Itô’s change-of-variable formula. After that, we will focus on some basic properties
and results of stochastic integral that are useful and important in SDE and stochastic
filtering theory. Finally, we will give a brief introduction of another definition of
stochastic integral, Stratonovich’s integral, and its relationship with that of Itô sense.

3.1.1 Construction of Stochastic Integral

In the construction of Lebesgue integral in measure theory, we first define simple
functions from characteristic functions, 1B(x), B ∈ B

(
Rd
)
, and define the

integral of simple functions. Next, with the approximation of Lebesgue measurable
functions by simple functions, we generate the definition of integration to a broader
case.

Similarly, when constructing the stochastic integrals, we also first introduce the
concept of simple processes defined below, which play the role of simple functions
in the construction of Lebesgue integral in measure theory.

Definition 3.1 A process X is called simple if there exists a strictly increasing
sequence of real numbers {tn}∞n=0 with t0 = 0 and lim

n→∞ tn = ∞, as well as a

sequence of random variables {ξn}∞n=0 and a nonrandom constant C < ∞ with
supn≥0 |ξn(ω)| ≤ C, for every ω ∈ �, such that ξn is Ftn-measurable for every
n ≥ 0 and

Xt = ξ01{0}(t) +
∞∑

i=0

ξi1(ti ,ti+1](t), 0 ≤ t < ∞. (3.1)

The next Lemma shows that a large number of processes can be approximated by a
series of simple processes.

Lemma 3.1 Let X be a bounded, measurable, {Ft }-adapted process. Then there
exists a series of simple processes {X(m)}∞m=1, such that

sup
T >0

lim
m→∞ E

∫ T

0

∣
∣
∣
∣X

(m)
t − Xt

∣
∣
∣
∣

2

dt = 0. (3.2)

Proof We will briefly present the procedure of constructing the series of simple
processes here, and for detailed proof, interested readers can refer to Karatzas and
Shreve [6].
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For each T > 0, we can first define a sequence of simple processes {X(n,T )}∞n=1
by

X
(n,T )
t = X01{0}(t) +

2n−1∑

k=0

XkT/2n1(kT /2n,(k+1)T /2n](t); n ≥ 1.

Then for each bounded, adapted, and continuous process X, we have from the
bounded convergence theorem that

lim
n→∞ E

∫ T

0

∣
∣
∣
∣X

(n,T )
t − Xt

∣
∣
∣
∣

2

dt = 0

Thus, for each m ∈ N, there exists nm ∈ N, such that

E

∫ m

0

∣
∣
∣
∣X

(nm,m)
t − Xt

∣
∣
∣
∣

2

dt <
1

m

and the series {X(nm,m)} can be used to approximate the continuous process X in the
sense of Eq. (3.2).

For a general bounded measurable and adapted process X, we can first approx-
imate it with a continuous process and then approximate the continuous process
with simple ones. Therefore, each bounded measurable and adapted process can be
approximated by a series of simple processes in the sense of Eq. (3.2). ��
For simple process X defined in (3.1), we can define its stochastic integral with
respect to a continuous, square-integrable martingale as follows.

Definition 3.2 Let M = {Mt,Ft ; 0 ≤ t < ∞} ∈ Mc
2 be a continuous,

square-integrable martingale, and X is a simple process defined by (3.1). Then the
stochastic integral of X with respect to martingale M is defined by the following
martingale transform IM(X) = {IM

t (X); 0 ≤ t < ∞}:

IM
t (X) =

∫ t

0
XsdMs �

∞∑

i=0

ξi(Mt∧ti+1 − Mt∧ti ), 0 ≤ t < ∞. (3.3)

Definition 3.2 shows that the stochastic integral of simple processes is defined by a
form of Riemann-Stieltjes sum. However, instead of choosing the value of integrand
arbitrarily in each small interval [ti , ti+1], as it does in standard Riemann-Stieltjes
sum, the value of integrand in the sum in the stochastic integral is fixed to be the
value at the left point of each interval.

Just as we did in the Lebesgue integration theory, stochastic integrals of a larger
group of processes are defined to be the limits of integrals of simple processes.

Definition 3.3 For a bounded, measurable, {Ft }-adapted process X and a con-
tinuous square-integrable martingale M = {Mt,Ft ; 0 ≤ t < ∞} ∈ Mc

2, the
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stochastic integral IM(X) of X with respect to M is defined to be the unique process
that satisfies limn→∞|I (X(n)) − I (X)| = 0, for every series of simple processes
{X(n)}∞n=1 satisfying (3.2). We denote

It (X) =
∫ t

0
XsdMs; 0 ≤ t < ∞.

With the definitions above, the stochastic integral we introduce in this section
enjoys many good properties, which are summarized in the following theorem.

Theorem 3.1 Let M = {Mt,Ft ; 0 ≤ t < ∞}, N = {Nt,Ft ; 0 ≤ t < ∞} be
two continuous, square-integrable martingales, and X = {Xt ; 0 ≤ t < ∞} and
Y = {Yt ; 0 ≤ t < ∞} are two bounded measurable, {Ft }-adapted process. Then,
the following properties hold for the stochastic integral process defined above:

(1) IM
0 (X) = 0, a.s. P;

(2) IM(X) = {IM
t (X),Ft ; 0 ≤ t < ∞} is a continuous square-integrable

martingale, i.e.

E

[

IM
t (X)

∣
∣
∣
∣Fs

]

= IM
s (X), a.s. P, 0 ≤ s ≤ t < ∞; (3.4)

(3) 〈IM(X),N〉t = ∫ t

0 Xsd〈M,N〉s , a.s. P, 0 ≤ t < ∞;

(4) 〈IM(X), IN(Y )〉t = ∫ t

0 XsYsd〈M,N〉s , a.s. P, 0 ≤ t < ∞;
(5) IM(αX + βY ) = αIM(X) + βIM(Y ).

Proof Here, we only need to prove the above properties for any simple process
X defined by (3.1), and for the general case, we can get these properties through
approximation.

(1) is obvious, and (5) can be obtained directly from the definition of stochastic
integral.

For properties (2) to (4), we first notice that the stochastic integral process
{IM

t (X); 0 ≤ t < ∞} is an adapted, continuous process. In order to prove the
martingale property, we can assume that s and t are two positive numbers with
0 ≤ s < t < ∞ and tm ≤ s < tm+1 and tn ≤ t < tn+1, where m, n ∈ N, with
m ≤ n; then, because ξi is Fti - measurable and M is a martingale, we have

E

[

(IM
t (X) − IM

s (X))

∣
∣
∣
∣Fs

]

=
∞∑

i=0

ξiE

[

Mt∧ti+1 + Ms∧ti+1 − Mt∧ti − Ms∧ti

∣
∣
∣
∣Fs

]

.

The right-hand side of the above equation is equal to zero because of the martingale
property of M . Thus, the process IM(X) is a continuous martingale.
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For property (3), let’s first calculate the following conditional expectation:

E

[

(IM
t (X) − IM

s (X))(Nt − Ns)

∣
∣
∣
∣Fs

]

. (3.5)

The two terms in the brackets can be expanded as follows:

IM
t (X) − IM

s (X) = ξm−1(Mtm − Ms) +
n−1∑

i=m

ξi(Mti+1 − Mti ) + ξn(Mt − Mtn),

Nt − Ns = (Ntm − Ns) +
n−1∑

i=m

(Nti+1 − Nti ) + (Nt − Ntn).

Next, notice that when we substitute the expansion form back to Eq. (3.5), because
of the martingale property of M and N , the following terms

E

[

ξi(Mti+1 − Mti )(Ntj+1 − Ntj )

∣
∣
∣
∣Fs

]

with i �= j all become zero. Therefore, we have

E

[

(IM
t (X) − IM

s (X))(Nt − Ns)

∣
∣
∣
∣Fs

]

=E

[
n∑

i=m−1

ξi(Mti+1 − Mti )(Nti+1 − Nti )

∣
∣
∣
∣Fs

]

with the convenient notation tn+1 = t and tm−1 = s. Because of the definition of
cross variation, we have

E

[

(IM
t (X) − IM

s (X))(Nt − Ns)

∣
∣
∣
∣Fs

]

= E

[
n∑

i=m−1

ξi(〈M,N〉ti+1 − 〈M,N〉ti )
∣
∣
∣
∣Fs

]

= E

[∫ t

s

Xud〈M,N〉u
∣
∣
∣
∣Fs

]

.

Therefore,

〈IM(X),N〉t =
∫ t

0
Xsd〈M,N〉s .

With similar calculations, we can prove property (4). Take N = M and X = Y , and
the square-integrability of IM(X) is obtained. ��
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For the detailed proof of Theorem 3.1 and further properties of stochastic integrals,
one can refer to monographs about stochastic calculus theory, and for us, the above
discussion on the construction of stochastic integrals is enough for the development
of stochastic differential equation and stochastic filter theory. We would like to finish
the construction of stochastic integrals with the following two remarks.

Remark 3.1 In fact, Theorem 3.1 (3) can also be regarded as a characterization
of the stochastic integral, that is, the stochastic integral IM(X) is the unique
continuous, square-integrable martingale � ∈Mc

2, such that

〈�,N〉t =
∫ t

0
Xsd〈M,N〉s; 0 ≤ t < ∞, a.s. P,

for every N ∈Mc
2

Remark 3.2 The construction of stochastic integral can be generated to a broader
class of processes. We denote by L (M) the set of all progressively measurable
processes satisfying

E

∫ T

0
X2

s d〈M〉s < ∞, ∀T > 0.

It can be proved that each process in classL (M) can be approximated by a series
of simple processes in the sense of Eq. (3.2). Therefore, the stochastic integral of
X ∈ L (M) with respect to M can be defined similarly, and the stochastic integral
also satisfies the properties summarized in Theorem 3.1.

Moreover, according to the standard localization procedure, the definition of
stochastic integral can be further broadened for continuous local martingale M ∈
Mc,loc and processes X ∈ L (M), satisfying

P

[∫ T

0
X2

s d〈M〉s < ∞
]

= 1, ∀T ≥ 0.

However, in this case, the stochastic integral process IM(X) is a local martingale,
rather than a martingale. Nevertheless, properties (1), (3), (4), and (5) also hold with
〈·, ·〉 denoting the cross-variation of local martingales.

3.1.2 Itô’s Formula

One of the most important theorem in calculus is the famous Newton-Leibnitz
formula, which serves to be a connection between differentiation and integration
and makes a great number of integrals computable.

Itô’s formula, which will be introduced next, enjoys the same status in stochastic
calculus as Newton-Leibnitz formula in calculus. It is a stochastic version of change-
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of-variable formula and introduces the “chain rule” to a large group of processes,
called semimartingale. In order to introduce the Itô’s formula, we first give the
definition of semimartingales.

Definition 3.4 A continuous semimartingale X = {Xt,Ft ; 0 ≤ t < ∞} is an
adapted process that has the decomposition, P a.s.,

Xt = X0 + Mt + Bt ; 0 ≤ t < ∞, (3.6)

where M = {Mt,Ft ; 0 ≤ t < ∞} ∈ Mc,loc and B = {Mt,Ft ; 0 ≤ t < ∞} is the
difference of continuous, nondecreasing, adapted processes {A±

t ,Ft ; 0 ≤ t < ∞},
with A±

0 = 0, P a.s., i.e.

Bt = A+
t − A−

t , 0 ≤ t < ∞

With the concept of semimartingales, we can introduce the famous Itô’s formula
as follows.

Theorem 3.2 Let f : R → R be a C2 function and let X = {Xt,Ft ; 0 ≤ t < ∞}
be a continuous semimartingale with decomposition (3.6). Then, P a.s.,

f (Xt ) = f (X0) +
∫ t

0
f ′(Xs)dMs +

∫ t

0
f ′(Xs)dBs

+ 1

2

∫ t

0
f ′′(Xs)d〈M〉s , 0 ≤ t < ∞,

(3.7)

where 〈·〉 means the square variation of martingales.

Proof We will summarize the main idea of the above theorem, and for the detailed
proof, readers can also refer to monographs in stochastic calculus.

The main idea of the proof is to expand the difference f (Xt ) − f (X0) as a
Riemann sum and approximate the sum by Taylor’s expansion.

Firstly, let n ∈ N and 0 = t0 ≤ t1 ≤ · · · ≤ tn = t be a partition of [0, t]; then,
we can write

f (Xt ) − f (X0) =
n−1∑

i=0

f (Xti+1) − f (Xti ) (3.8)

For each term in the right-hand summation, because f is a C2 function, we can
do the Taylor’s expansion as follows:

f (Xti+1) − f (Xti ) = f ′(Xti )(Xti+1 − Xti ) + 1

2
f ′′(Xti )(Xti+1 − Xti )

2

+ o((Xti+1 − Xti )
2).

(3.9)
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Let’s denote λ = max1≤i≤n(ti − ti−1); then as λ → 0, from the definition of
stochastic integral, the summation of the first two terms will converge to the right
hand of Eq. (3.5),

n−1∑

i=0

f ′(Xti )(Xti+1 − Xti ) →
∫ t

0
f ′(Xs)dMs +

∫ t

0
f ′(Xs)dBs,

n−1∑

i=0

1

2
f ′′(Xti )(Xti+1 − Xti )

2 → 1

2

∫ t

0
f ′′(Xs)d〈M〉s .

(3.10)

The convergence above is at least in the sense of convergence in probability. Besides,
the summation of the third term in the right hand of Eq. (3.9) will converge to zero.
Therefore, the right-hand side of Eq. (3.8) will converge to the right-hand side of
Eq. (3.5) as λ → 0, and this proves Itô’s formula. ��
Exercise 3.1 Provide a mathematically rigorous proof for the two formulae
in (3.10) in the sense of convergence in probability, i.e., for an arbitrary ε > 0,
we have

lim
λ→0

P

[∣∣
∣
∣

n−1∑

i=0

f ′(Xti )(Xti+1 − Xti ) −
∫ t

0
f ′(Xs)dMs −

∫ t

0
f ′(Xs)dBs

∣
∣
∣
∣ > ε

]

= 0,

lim
λ→0

P

[∣∣
∣
∣

n−1∑

i=0

1

2
f ′′(Xti )(Xti+1 − Xti )

2 − 1

2

∫ t

0
f ′′(Xs)d〈M〉s

∣
∣
∣
∣ > ε

]

= 0.

(3.11)
with λ = max1≤i≤n(ti − ti−1) defined in the proof of Theorem 3.2

Remark 3.3 Formally, we can denote formula (3.7) in differential form as

df (Xt ) = f ′(Xt )dXt + 1

2
f ′′(Xt )d〈X〉t . (3.12)

Itô’s formula can also be promoted to multi-dimensional vectors of semimartin-
gales, where we only need to change the derivatives into partial derivatives and
square variations into cross variations.

Theorem 3.3 Let {Mt � (M
(1)
t ,M

(2)
t , · · · ,M

(d)
t ),Ft ; 0 ≤ t < ∞} be a vector

of continuous local martingales and {Bt � (B
(1)
t , B

(2)
t , · · · , B

(d)
t )} a vector of

adapted process of bounded variation with B0 = 0, and set Xt = X0 + Mt + Bt ,
0 ≤ t < ∞, where X0 is an F0-measurable random vector in Rd . Let f (t, x) :
[0,∞) × Rd → R be a C1,2 function. Then, P a.s.,

f (t,Xt ) =f (0, X0) +
∫ t

0

∂

∂t
f (s,Xs)ds +

d∑

i=1

∫ t

0

∂

∂xi

f (s,Xs)dXi
s (3.13)
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+ 1

2

d∑

i=1

d∑

j=1

∫ t

0

∂2

∂xi∂xj

f (s,Xs)d〈Xi,Xj 〉s , 0 ≤ t < ∞. (3.14)

where 〈·, ·〉 means the cross variation of the two processes.

Proof The idea to prove this theorem is quite similar to the one-dimensional case.
We can get formula (3.13) from the same partition and Taylor expansion procedure
as in the proof of Theorem 3.2. Therefore, we skip the proof of this theorem. ��
Exercise 3.2 Imitate the proof in Theorem 3.2, and give a sketch of the proof of
Itô’s formula for multi-variate case (Theorem 3.3).

Theorems 3.2 and 3.3 also show that smooth functions of semimartingales are also
semimartingales. Therefore, a large number of processes are contained in the group
of semimartingales, and from now on, we will focus our attention to this kind of
processes.

3.1.3 Girsanov’s Theorem and Novikov Condition

With the definition of stochastic integral and Itô’s formula, we can develop
fundamental additional feature about semimartingales that are useful in solving
stochastic differential equations and filtering theory.

Here, we will introduce Girsanov’s change-of-measure method. The main pur-
pose of this method is to construct a new probability measure, under which a
semimartingale or a solution to a stochastic equation can be converted to be a
Brownian motion.

Let W = {Wt = (W 1
t ,W 2

t , · · · ,Wd
t ),Ft ; 0 ≤ t < ∞} be a d-dimensional

standard Brownian motion defined on probabilistic space {�,F, P } and X = {Xt =
(X1

t , X
2
t , · · · , Xd

t ),Ft ; 0 ≤ t < ∞} a vector of measurable, adapted processes
satisfying

P

[∫ T

0
(Xi

s)
2ds < ∞

]

= 1, ∀T ≥ 0. (3.15)

Therefore, according to Remark 3.2, for each i, the stochastic integral IW(i)
(X(i)) is

well defined and is a continuous local martingale.
We define the process Z = {Zt ; 0 ≤ t < ∞} with

Zt = exp

[
d∑

i=1

∫ t

0
Xi

sdWi
s − 1

2

∫ t

0
|Xs |2ds

]

. (3.16)
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According to Itô’s formula, we have

Zt = 1 +
d∑

i=1

∫ t

0
ZsX

i
sdWi

s . (3.17)

Therefore, Z = {Zt ,Ft ; 0 ≤ t < ∞} is a continuous local martingale with Z0 = 1.
Let us first assume that Z is in fact a martingale and the required conditions will

be discussed later. Since EZt = EZ0 = 1, ∀t ≥ 0, we can define, for each T > 0,
a probability measure P̃T on FT as follows:

P̃T (A) = E[1AZT ]; A ∈ FT . (3.18)

Because of the martingale property, for 0 ≤ t ≤ T , we have

P̃T (A) = E[1AZT ] = E[E[1AZT |Ft ]] = E[1AZt ] = P̃t (A)

The following theorem shows that under the probability measure P̃T , we can
construct a new Brownian motion from the process W and X.

Theorem 3.4 (Girsanov [4]) Assume that Z defined by (3.16) is a martingale, then
the process W̃ = {W̃t = (W̃

(1)
t , W̃

(2)
t , · · · , W̃

(d)
t ),Ft ; 0 ≤ t ≤ T } defined by

W̃
(i)
t = W

(i)
t −

∫ t

0
X(i)

s ds; 1 ≤ i ≤ d, 0 ≤ t ≤ T

is a standard d-dimensional Brownian motion on probabilistic space (�,FT , P̃T ),
∀T > 0.

In order to prove the above theorem, we need to first introduce two lemmas. The
first one is about a Bayesian-like formula, which presents relationships between
conditional expectations under probability measures P and P̃T .

Lemma 3.2 For a fixed 0 ≤ T < ∞, if Z defined by (3.16) is a martingale and,
thus, P̃T defined in (3.18) is a probability measure, then, for any 0 ≤ s ≤ t ≤ T , and
Ft -measurable random variable Y , satisfying ẼT |Y | < ∞, we have the following
equation:

ẼT [Y |Fs] = 1

Zs

E[YZs |Fs], a.s. P and P̃T . (3.19)

Here, ẼT denotes the expectation operator with respect to P̃T .

Proof The result in Lemma 3.2 can be derived directly from the definition of
conditional expectations.
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Notice that the right-hand side in Eq. (3.19) is Fs-measurable. Besides, for any
A ∈ Fs ,

ẼT

[

1A

1

Zs

E[YZt |Fs]
]

= E

[

1A

ZT

Zs

E[YZs |Fs]
]

= E

[[

1A

ZT

Zs

E[YZt |Fs]
]

|Fs

]

= E

[

1A

1

Zs

E[YZt |Fs]E[ZT |Fs]
]

= E[1AYZt ] = ẼT [1AY ].

According to the definition of conditional expectations, Eq. (3.19) holds a.s. P and
P̃T . ��
The next lemma gives another characterization of Brownian motion using the
concept of cross variations.

Lemma 3.3 Let X = {Xt = (X
(1)
t , X

(2)
t , · · · , X

(d)
t ),Ft , 0 ≤ t < ∞} be a vector

of continuous local martingales, and cross variations are given by

〈X(k), X(j)〉t = δkj t; 1 ≤ k, j ≤ d

where δkj is the Kronecker-delta notation. Then, {Xt,Ft ; 0 ≤ t < ∞} is a d-
dimensional Brownian motion.

Proof According to the definition of Brownian motion, we only need to show that
increments Xt − Xs and (0 ≤ s < t < ∞) are independent of Fs and have the
d-dimensional normal distribution N(0, (t − s)I ).

Besides, since the distribution can be totally determined by its characteristic
function, we only need to prove the following equation for every u ∈ Rd ,

E

[

ei(u,Xt−Xs)

∣
∣
∣
∣Fs

]

= e
1
2 |u|2(t−s). (3.20)

To this end, we can apply Itô’s formula in Theorem 3.3 to function f (x) = ei(u,x).

ei(u,Xt ) = ei(u,Xs)+i

d∑

j=1

uj

∫ t

s

ei(u,Xv)dM(j)
v − 1

2

d∑

j=1

u2j

∫ t

s

ei(u,Xv)dv. (3.21)

Here we use the fact that 〈X(k), X(j)〉t = δkj t; 1 ≤ k, j ≤ d.
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Because the stochastic integral in Eq. (3.21) is a martingale, the expectation of
that term is zero. If we multiply (3.21) by e−i(u,Xs)1A for every A ∈ Fs , we have

E

[

ei(u,Xt−Xs)1A

]

= P(A) − 1

2
|u|2

∫ t

s

E

[

ei(u,Xv−Xs)1A

]

dv, (3.22)

which is an integral equation for t → E[ei(u,Xt−Xs)1A]. Therefore, we have

E

[

ei(u,Xt−Xs)1A

]

= P(A)e
1
2 |u|2(t−s). (3.23)

Because A ∈ Fs is arbitrarily chosen, we have proved Eq. (3.20), and thus X is a
d-dimensional Brownian motion. ��
With the above two lemmas, we can start to prove Girsanov’s theorem.

Proof We will use Lemma 3.3 to prove that the new process W̃ is a Brownian
motion under probability measure P̃t .

Firstly, each W̃ (i), 1 ≤ i ≤ d is a continuous local martingale under P̃t . This is
because from Itô’s formula, the product ZtW̃

(i)
t is a local martingale under P :

d(ZtW̃
(i)
t ) = ZtdW̃

(i)
t + W̃

(i)
t dZt + d〈Z, W̃ (i)〉t

= ZtdW
(i)
t − ZtX

(i)
t dt + W̃

(i)
t

d∑

j=1

ZtX
(j)
t dW

(j)
t + ZtX

(i)
t dt

= ZtdW
(i)
t + W̃

(i)
t

d∑

j=1

ZtX
(j)
t dW

(j)
t ,

where we use the fact that dZt = ∑d
j=1 ZtX

(j)
t dW

(j)
t .

With the Bayesian rule we derived in Lemma 3.2, if W̃ (i) is bounded, we have

ẼT

[

W̃
(i)
t

∣
∣
∣
∣Fs

]

= 1

Zs

E

[

ZtW̃
(i)
t

∣
∣
∣
∣Fs

]

= 1

Zs

ZsW̃
(i)
s = W̃ (i)

s . (3.24)

This shows that the new process W̃ is a martingale. Through a standard localization
procedure, we can show that W̃ is a local martingale under P̃T .

Next, we need to compute cross variations between W̃ (k) and W̃ (j). Since W is a
Brownian motion under P , we only need to show that

〈W̃ (k), W̃ (j)〉t = 〈W(k),W(j)〉t . (3.25)
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Here, we use Itô’s formula again,

W̃
(k)
t W̃

(j)
t − 〈W(k),W(j)〉t =

∫ t

0
W(k)

s dW
(j)
s +

∫ t

0
W

(j)
s dW(k)

s

−
∫ t

0

(
W(k)

s X
(j)
s + W

(j)
s X(k)

s

)
ds.

Then

Zt [W̃ (k)
t W̃

(j)
t − 〈W(k)

t ,W
(j)
t 〉t ] =

∫ t

0
ZsW

(k)
s dW

(j)
s +

∫ t

0
ZsW

(j)
s dW(k)

s

+
∫ t

0
[W̃ (k)

s W̃
(j)
s − 〈W(k),W(j)〉s]

d∑

i=1

ZsX
(i)
s dW(i)

s ,

which is also a martingale under P . Therefore, the Bayesian rule in Lemma 3.3 also
implies that

ẼT

[

W̃
(k)
t W̃

(j)
t − 〈W(k)

t ,W
(j)
t 〉t

∣
∣
∣
∣Fs

]

= [W̃ (k)
s W̃

(j)
s − 〈W(k)

s ,W
(j)
s 〉t ], (3.26)

which means that [W̃ (k)
t W̃

(j)
t −〈W(k)

t ,W
(j)
t 〉t ] is a P̃T -martingale. According to the

definition of cross variation, we have

〈W̃ (k), W̃ (j)〉t = 〈W(k),W(j)〉t , a.s. P and P̃T (3.27)

We have now proved that W̃ is a d-dimensional standard Brownian motion under
probability measure P̃T . ��
In comparison with an arbitrary semimartingales, Brownian motion is simpler
and easier to analyze. The above theorem is useful in solving stochastic differ-
ential equations and has an important application in the development of Duncan-
Mortensen-Zakai equation (DMZ equation, for short), which will be introduced in
the next part.

However, in order to use Theorem 3.4, we must check that the local martingale
Z is indeed a martingale. Novikov’s condition, which is summarized in the next
theorem, is a useful approach to prove the martingale property of process Z.

Theorem 3.5 (Novikov [7]) W = {Wt = (W 1
t ,W 2

t , · · · ,Wd
t ),Ft ; 0 ≤

t < ∞} is a d-dimensional standard Brownian motion and X = {Xt =
(X1

t , X
2
t , · · · , Xd

t ),Ft ; 0 ≤ t < ∞} a vector of measurable, adapted processes
satisfying (3.15). If

E

[

exp

(
1

2

∫ T

0
|Xs |2ds

)]

< ∞; 0 ≤ T < ∞, (3.28)
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then Z defined by (3.16) is a martingale. Condition (3.28) is called Novikov’s
condition.

For the proof of this theorem, we need to use tools of stopping time as well as the
famous martingale representation theorems for Brownian motion. We would like to
concisely summarize the proof of this theorem and leave some technical procedures
as exercises. In the meantime, interested readers can find the proof of the theorem
in the original papers as well as many monographs in stochastic calculus.

Proof We first show that the process {Zt : t ≥ 0} is a supermartingale. Consider
the stopping times

Tn = inf

{

t ≥ 0 : max
1≤i≤d

∫ t

0
(ZsX

(i)
s )2ds = n

}

. (3.29)

Let Z(n) = {Z(n)
t = Zt∧Tn : t ≥ 0}; then Z(n) are martingales, and we have

E[Zt∧Tn |Fs] = Zs∧Tn, 0 ≤ s ≤ t, n ≥ 1. (3.30)

According to Fatou’s lemma, as n → ∞, we have

E[Zt |Fs] ≤ Zs, 0 ≤ s ≤ t, (3.31)

which shows that {Zt : t ≥ 0} is a supermartingale.
In order to prove that {Zt : t ≥ 0} is indeed a martingale, we only need to show

that EZt = 1, for all 0 ≤ t < ∞.
The procedure of showing EZt = 1 for all 0 ≤ t < ∞ is technical. The idea

is to construct a new Brownian motion according to the martingale representation
theorem.

Let us denote by

Mt :=
d∑

i=1

∫ t

0
Xi

sdWi
s (3.32)

the local martingale in the exponential of Zt , and let T (s) = inf{t ≥ 0 : 〈M〉t > s}
be a set of stopping times. Then the time-changed process (Bs,Gs , s ≥ 0) given by

Bs = MT (s), Gs = FT (s), s ≥ 0, (3.33)

is a Brownian motion.
For b < 0, consider the stopping time for {Gs} given by

Sb = inf{s ≥ 0 : Bs − s = b}. (3.34)
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Then,

EZt = E

[

exp

(

Mt − 1

2
〈M〉t

)]

= E

[

1{Sb≤〈M〉t } exp
(

Mt − 1

2
〈M〉t

)]

+ E

[

1{Sb>〈M〉t } exp
(

Mt − 1

2
〈M〉t

)]

= E

[

1{Sb≤〈M〉t } exp
(

b + 1

2
Sb

)]

+ E

[

1{Sb>〈M〉t } exp
(

Mt − 1

2
〈M〉t

)]

,

(3.35)

where the last equality holds because {exp(Bs − 1
2 s) : s ≥ 0} is a martingale and

Mt = B〈M〉t . We can also check that 〈M〉t is a stopping time of {Gs}, and therefore,
according to the optimal sampling theorem,

E

[

1{Sb≤〈M〉t } exp
(

Mt − 1

2
〈M〉t

)]

= E

[

1{Sb≤〈M〉t } exp
(

B〈M〉t − 1

2
〈M〉t

)]

= E

[

1{Sb≤〈M〉t } exp
(

BSb
− 1

2
Sb

)]

= E

[

1{Sb≤〈M〉t } exp
(

b + 1

2
Sb

)]

(3.36)

The first term in (3.35) is bounded above by

ebE[exp(1
2
〈M〉t )] = ebE

[

exp

(
1

2

∫ t

0
|Xs |2ds

)]

.

The expectation is finite for all t ≥ 0 according to the Novikov condition (3.28),
and thus the first term tends to zero as b → −∞.

For the second term, as b → −∞, it tends to EZt according to the monotone
convergence theorem, and therefore, we have proved that EZt = 1, for all t ≥ 0.

��
Exercise 3.3 Check that B〈M〉t = Mt , for all t ≥ 0.

Exercise 3.4 Prove that 〈M〉t is a stopping time of {Gs}. (Hint: check that the event
{〈M〉t > s} is Gs-measurable for all s ≥ 0.)

Exercise 3.5 Prove that the time-changed process (Bs,Gs , s ≥ 0) defined
by (3.33) is a Brownian motion. (Hint: check the conditions in Lemma 3.3 hold
for (Bs,Gs , s ≥ 0))



88 3 Stochastic Differential Equations

Sometimes, the above Novikov’s condition is hard to verify. To this end, we will
use another useful condition when using Girsanov’s theorem.

Theorem 3.6 (Bain and Crisan [1]) Let X = {Xt,Ft ;≤ t < ∞} be a continuous,
d-dimensional, adapted process such that

E

[∫ T

0
|Xs |2ds

]

< ∞ (3.37)

and Zt is defined by

Zt = exp

[
d∑

i=1

∫ t

0
Xi

sdWi
s − 1

2

∫ t

0
|Xs |2ds

]

(3.38)

If for all T ≥ 0,

E

[
d∑

i=1

∫ T

0
Zs(X

(i)
s )2ds

]

< ∞, (3.39)

then Z = {Zt ,Ft ; 0 ≤ t < ∞} is a martingale.

Proof Similar to the proof of Theorem 3.5, it suffices to show that EZt = 1 for all
t ≥ 0.

Consider the auxiliary process Zt

1+εZt
for a given ε > 0, according to Itô’s

formula,

Zt

1 + εZt

= 1

1 + ε
+

d∑

i=1

∫ t

0

Zs

(1 + εZs)2
Xi

sdWi
s

−
d∑

i=1

∫ t

0

εZ2
s

(1 + εZs)3
(Xi

s)
2ds.

(3.40)

According to condition (3.39), the second term on the right-hand side of (3.40) is a
martingale, and thus we have

E

[
Zt

1 + εZt

]

= 1

1 + ε
− E

d∑

i=1

∫ t

0

εZ2
s

(1 + εZs)3
(Xi

s)
2ds (3.41)

The desired result EZt = 1 follows from the dominated convergence theorem with
ε → 0. ��
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Exercise 3.6 Prove that the second term on the right-hand side of (3.40) is a
martingale by showing that the quadratic variation term is finite, i.e.,

E

[ d∑

i=1

∫ t

0

(
Zs

(1 + εZs)2

)2

(Xi
s)

2ds

]

< ∞, (3.42)

for all ε > 0 and t ≥ 0.

3.1.4 Burkholder-Davis-Gundy Inequality

In this subsection, we provide a useful inequality called Burkholder-Davis-Gundy
inequality (BDG inequality, for short) [2, 3]. The inequality is useful in moment
estimation of local martingales and the development of existence and uniqueness
theory of stochastic (partial) differential equations.

LetM ∈Mc,loc be a continuous local martingale. We can define a nondecreasing
process

M∗
t = max

0≤s≤t
|Ms |; 0 ≤ t < ∞. (3.43)

The following theorem shows that the moments of M∗
t can be bounded by the

moments of the square variation 〈M〉t .
Theorem 3.7 Let M ∈ Mc,loc, and M∗

t is defined as in (3.43). For every m > 0,
there exist universal positive constants km and Km (depending only on m), such that

kmE[〈M〉mt ] ≤ E[(M∗
t )2m] ≤ KmE[〈M〉mt ] (3.44)

holds for every t ≥ 0.

Proof In order to prove Theorem 3.7, we first consider the following non-negative
process:

Yt = δ + ε〈M〉t + M2
t , (3.45)

where δ > 0 and ε > 0 are non-negative constants to be determined later.
Applying Itô’s formula to f (x) = xm and process {Yt ; 0 ≤ t < ∞}, we have

Ym
t = δm + m(1 + ε)

∫ t

0
Ym−1

s d〈M〉s + 2m(m − 1)
∫ t

0
Ym−2

s M2
s d〈M〉s

+ 2m
∫ t

0
Ym−1

s MsdMs, 0 ≤ t < ∞.

(3.46)
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According to a standard localization procedure, we can, without loss of generality,
only consider the case where M and 〈M〉 are bounded processes, and therefore, M
and stochastic integrals with respect to M are all martingales. In this case, according
to Doob’s maximal inequality, we only need to prove

kmE[〈M〉mt ] ≤ E[(Mt)
2m] ≤ KmE[〈M〉mt ]. (3.47)

Taking expectations to both sides of Eq. (3.46), we have

EYm
T = δm + m(1 + ε)E

∫ T

0
Ym−1

s d〈M〉s

+2m(m − 1)E
∫ T

0
Ym−2

s M2
s d〈M〉s .

(3.48)

Take δ ↓ 0 in Eq. (3.48), and we have

E
[
ε〈M〉T + M2

T

]m =m(1 + ε)E

∫ T

0

[
ε〈M〉s + M2

s

]m−1
d〈M〉s

+ 2m(m − 1)E
∫ T

0

[
ε〈M〉s + M2

s

]m−2
M2

s d〈M〉s .
(3.49)

Next, we need to divide the proof into five cases according to the value of m.
Case 1: 0 < m ≤ 1, the upper bound of E(M2m

T ).
In this case, the second term on the right-hand side of (3.49) is non-positive.

Therefore,

E
[
ε〈M〉T + M2

T

]m ≤ m(1 + ε)E

∫ T

0

[
ε〈M〉s + M2

s

]m−1
d〈M〉s

≤ m(1 + ε)εm−1E

∫ T

0
〈M〉m−1

s d〈M〉s

= (1 + ε)εm−1E(〈M〉mT ).

Also, when 0 < m ≤ 1, for every x, y ≥ 0,

(x + y)m ≥ 2m−1(xm + ym)

Then,

εmE(〈M〉mT + E(M2m
T )) ≤ E

[
ε〈M〉T + M2

T

]m ≤ (1 + ε)
(ε

2

)m−1
E(〈M〉mT ),

E(M2m
T ) ≤

(

(1 + ε)
(ε

2

)m−1 − εm

)

E(〈M〉mT ). (3.50)
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Case 2: m > 1, the lower bound of E(M2m
T ).

This case is quite similar to Case 1. Here, we can repeat the estimation in Case 1
and only change some symbols to fit the condition m > 1. Then we have the lower
bound

E(M2m
T ) ≥

(

(1 + ε)
(ε

2

)1−m − εm

)

E(〈M〉mT ). (3.51)

Case 3: 1
2 < m ≤ 1, the lower bound of E(M2m

T ).
If we take ε = 0 and let δ ↓ 0 in Eq. (3.45), we have from Eq. (3.46) that

E(M2m
T ) = 2m

(

m − 1

2

)

E

∫ T

0
M2(m−1)

s d〈M〉s . (3.52)

Meanwhile, the discussion in Case 1 shows that

2m−1
[
εmE(〈M〉mT ) + E(M2m

T )
]

≤ m(1 + ε)E

∫ T

0
M2(m−1)

s d〈M〉s . (3.53)

Combining Eqs. (3.52) and (3.53), we have

E(M2m
T ) ≥ εm

(
(1 + ε)21−m

2m − 1
− 1

)−1

E(〈M〉mT ). (3.54)

Case 4: m > 1, the upper bound of E(M2m
T ).

This case is also quite similar to Case 3, except that the inequality (3.53) is
reversed; thus, we have

E(M2m
T ) ≤ εm

(
(1 + ε)21−m

2m − 1
− 1

)−1

E(〈M〉mT ). (3.55)

for all ε > 0 such that the right-hand side of (3.55) is positive.
Case 5: 0 < m ≤ 1

2 , the lower bound of E(M2m
T ).

For the proof of this case, we need to first introduce the following lemma.

Lemma 3.4 Let X = {Xt,Ft ; 0 ≤ t < ∞} be a continuous, non-negative process
with X0 = 0 a.s. and A = {At,Ft ; 0 ≤ t < ∞} a continuous increasing process
for which

E(XT ) ≤ E(AT )

for every bounded stopping time T . With the same notation in (3.43), for every
continuous increasing function F : [0,∞) → [0,∞) with F(0) = 0, and G(x) =
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2F(x) + x
∫∞
x

1
u
dFu, we have

EF(X∗
T ) ≤ EG(AT ) (3.56)

for any stopping time T.

Proof of the Lemma For every ε > 0 and δ > 0, we first define two stopping times
as follows:

Hε = inf{t ≥ 0;Xt ≥ ε}; Sδ = inf{t ≥ 0;At ≥ δ}.
Define Tn := T ∧ n ∧ Hε = min{T , n,Hε} to be a bounded stopping time; then

εP [X∗
Tn

≥ ε] ≤ E[XTn1{X∗
Tn

≥ε}] ≤ E[XTn ] ≤ E[ATn ] ≤ E[AT ]

as n → ∞, we have

P [X∗
T ≥ ε] ≤ 1

ε
E(AT ).

Therefore,

P [X∗
T ≥ ε,AT < δ] ≤ P [X∗

T ∧Sδ
≥ ε] ≤ 1

ε
E(AT ∧Sδ ) = 1

ε
E(δ ∧ AT ).

Using the fact that

F(x) =
∫ ∞

0
1x≥udFu,

we have

E[F(X∗
T )] =

∫ ∞

0
P [X∗

T ≥ u]dFu ≤
∫ ∞

0
(P [X∗

T ≥ u,AT < u] + P [AT ≥ u])dFu

≤
∫ ∞

0

{
E(u ∧ AT )

u
+ P(AT ≥ u)

}

dFu

=
∫ ∞

0

[

2P(AT ≥ u) + 1

u
E[AT 1{AT <u}]

]

dFu

= E

[

2F(AT )+ AT

∫ ∞

0

1

u
dFu

]

=E[G(AT )].

Back to the Proof of Case 5: Since we have proved the theorem for Case 1 and Case
3, we can use the fact that

k1E〈M〉t ≤ E[(M∗
t )2]. (3.57)
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Taking X = k1〈M〉, A = (M∗)2, and F(x) = xm, with 0 < m ≤ 1
2 in Lemma 3.4,

we have

G(x) = 1 − m

2 − m
xm

and

1 − m

2 − m
km
1 E〈M〉mt ≤ E[(M∗

t )2m]. (3.58)

Combining (3.50), (3.51), (3.54), (3.55), and (3.58), we can get the desired
result (3.47) for every m > 0 and thus conclude the proof. ��

3.1.5 Stratonovich’s Integral

In the construction of Itô’s stochastic integral, we mentioned that Itô’s integral roots
from the Riemann-Stieltjes sum where the left point values of the integrand are
involved in each small interval.

Although Itô’s integral satisfies many notable features as we introduced in
Theorem 3.1 and is widely used in many areas, it also suffers from a drawback that
Itô’s formula, i.e., the change-of-variable formula, is different from the traditional
chain rules in calculus. In this subsection, we will introduce another construction of
stochastic integral, called Stratonovich’s integral, which satisfies the chain rule and
is, to some extent, more convenient in modeling.

The definition of Stratonovich’s integral is as follows, where we have to restrict
the integrands to semimartingales.

Definition 3.5 Let X and Y be two semimartingales with the following decompo-
sitions:

Xt = X0 + Mt + Bt , Yt = Y0 + Nt + Ct ; 0 ≤ t < ∞.

Stratonovich’s integral of Y with respect to X is defined by

∫ t

0
Ys ◦ dXs �

∫ t

0
YsdXs + 1

2
〈X, Y 〉s , 0 ≤ t < ∞, (3.59)

where the first term of the right-hand side means the stochastic integral in Itô’s
sense.

Just as in the above definition, Stratonovich’s integral is defined based on Itô’s
integral. However, the next theorem shows that the change-of-variable formula of
Stratonovich’s version is formally the same as the chain rules in calculus.
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Theorem 3.8 Let X = (X(1), X(2), · · · , X(d)) be a vector of continuous semi-
martingales with decompositions

X
(i)
t = X

(i)
0 + M

(i)
t + B

(i)
t ; 1 ≤ i ≤ d. (3.60)

If f : Rd → R is a C3 function, then

f (Xt ) = f (X0) +
d∑

i=1

∫ t

0

∂

∂xi

f (Xs) ◦ dX(i)
s . (3.61)

Proof According to the multi-dimensional Itô’s formula in Theorem 3.3, we have

f (Xt ) = f (X0) +
d∑

i=1

∫ t

0

∂

∂xi

f (Xs)dXi
s

+ 1

2

d∑

i=1

d∑

j=1

∫ t

0

∂2

∂xi∂xj

f (Xs)d〈Xi,Xj 〉s .

With the relationship between Stratonovich’s integral and Itô’s integral, each terms
in the summation of Eq. (3.61) can be expanded as:

∫ t

0

∂

∂xi

f (Xs) ◦ dX(i)
s =

∫ t

0

∂

∂xi

f (Xs)dX(i)
s + 1

2
〈 ∂

∂xi

f (X), X〉t .

Since f ∈ C3, we can apply Itô’s formula to ∂
∂xi

(Xt ). Combining this with the
properties of stochastic integral in Itô’s sense we derive before, we can obtain

〈
∂

∂xi

f (X), X

〉

t

=
d∑

j=1

∫ t

0

∂2

∂xi∂xj

f (Xs)d〈Xi,Xj 〉s .

Thus, we have finished the proof of the above theorem. ��
At the beginning of this subsection, we mentioned that Itô’s integral roots from the
Riemann-Stieltjes sum with the left point values of integrands at each small interval.
In fact, the Stratonovich’s integral defined here can also by regarded as a limit of
Riemann-Stieltjes sum. The only difference is that we use the middle-point values
of integrands at each interval.

Proposition 3.1 Let X and Y be two continuous semimartingales and � = {t0, t1
and · · · , tn} a partition of [0, t]. Denote |�| = max1≤i≤n(ti − ti−1). Then,

lim|�|→0

n−1∑

i=0

(
1

2
Yti+1 + 1

2
Yti

)

(Xti+1 − Xti ) =
∫ t

0
Ys ◦ dXs,

where the limit is taken in the sense of convergence in probability.
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Proof From the construction of Itô’s integral, we can see that Itô’s integral can be
regarded as the limitation of a kind of Riemann-Stieltjes sum, that is,

lim|�|→0

n−1∑

i=0

Yti (Xti+1 − Xti ) =
∫ t

0
YsdXs.

According to the relationship between Itô’s integral and Stratonovich’s one, we only
need to show that

lim|�|→0

n−1∑

i=0

(
Yti+1 − Yti

)
(Xti+1 − Xti ) = 〈X, Y 〉t , (3.62)

and Eq. (3.62) can be derived directly from the properties of cross variation. ��
At the end of this subsection, we have to remark that although Stratonovich’s
integral seems to be closer to the traditional deterministic calculus, the more popular
stochastic integral is the one by Itô’s. Two of the reasons are that Itô’s integral
can be defined for a broader class of stochastic processes, while Stratonovich’s
integral can only be defined for semimartingales; besides, Stratonovich’s integral
does not provide any new insights in mathematics. The definition of Stratonovich’s
integral is based on Itô’s integral, and the relationship between two integrals can be
summarized by a close formula (3.59).

Up to now, we have reviewed the basic results in stochastic integral theory, and
after all this preparation, we can now give the formulations of stochastic differential
equations.

3.2 Formulations of Stochastic Differential Equations

Brownian motion is one of the most important processes studied in stochastic
calculus fields, and as we mentioned in the previous section, semimartingales can
be converted into a standard Brownian motion by Girsanov’s change-of-measure
method. Therefore, stochastic integrals with respect to Brownian motion are mainly
concerned in the theory of stochastic differential equations. In this section, we will
formulate the stochastic differential equation with respect to Brownian motion as
follows:

{
dXt = b(t, Xt )dt + σ(t,Xt )dWt , t > 0,

X0 = ξ,
(3.63)

where W = {Wt ; 0 ≤ t < ∞} is an r-dimensional standard Brownian motion and
bi(t, x), σij (t, x), 1 ≤ i ≤ d, and 1 ≤ j ≤ r are Borel-measurable functions from
[0,∞) × Rd to R.
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The vector {bi(t, x); 1 ≤ i ≤ d} is called the drift vector; the matrix function
{σij (t, x); 1 ≤ i ≤ d, 1 ≤ j ≤ r} is called the dispersion matrix; and the matrix
a(t, x) = σ(t, x)σ�(t, x), with elements

aij (t, x) =
r∑

k=1

σik(t, x)σjk(t, x), 1 ≤ i, j ≤ d

is called the diffusion matrix.
In comparison to ordinary differential equations in deterministic sense, the

solution of stochastic differential equations can have different meanings because
of the introduction of probability space and lead to different formulations. In this
section, we will introduce two kinds of formulations, the strong solution, where the
probability space and the Brownian motions are fixed ahead of time, and the weak
solution, where the probability space and even the Brownian motions are a part
of the solution. In the formulation of weak solutions, apart from solving the SDE
directly, we can also apply stochastic integral theory and transform the SDE into a
martingale problem, which is more convenient for analyzing the properties of the
solution.

3.2.1 Strong Solutions

In this subsection, we will study the stochastic differential equation (3.63) in its
strong form. After giving the definition of strong solution, we will consider the
existence and uniqueness of solutions under the strong formulation.

Definition 3.6 For a given probability space (�,F, P ), a fixed Brownian motion
W , and initial condition ξ , a strong solution of the stochastic differential equa-
tion (3.63) is a process X = {Xt ; 0 ≤ t < ∞} with continuous sample paths
and with the following properties:

(1) X is adapted to the filtration {Ft };
(2) P [X0 = ξ ] = 1;

(3) P
[∫ t

0 |bi(s,Xs)| + σ 2
ij (s, Xs)ds < ∞

]
= 1, for every 0 ≤ t < ∞, 1 ≤ i ≤ d,

and 1 ≤ j ≤ r ,
(4) Xt = X0 + ∫ t

0 b(s,Xs)ds + ∫ t

0 σ(s,Xs)dWs , 0 ≤ t < ∞, a.s. P.

In the formulation of strong sense, the probability space and the Brownian
motion are both fixed ahead of time. What we need to do is just find a stochastic
process that makes the stochastic integral in the equations sensible and satisfies
the corresponding stochastic differential equations. The next theorem shows that
with relatively strong restrictions on the parameters (global Lipschitz continuous),
stochastic differential equation (3.63) has a strong solution.
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Theorem 3.9 Suppose that coefficients b(t, x) and σ(t, x) satisfy the global Lips-
chitz and linear growth conditions, that is, there exists a positive constant K , such
that for every 0 ≤ t < ∞, x, y ∈ Rd ,

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x − y|, (3.64)

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2). (3.65)

For a fixed probability space (�,F, P ), let ξ be an Rd -valued random vector,
independent of the r-dimensional Brownian motion W = {Wt ; 0 ≤ t < ∞}, and
with finite second moment

E[|ξ |2] < ∞.

Then, there exists a continuous, adapted process X = {Xt, 0 ≤ t < ∞}, which is a
strong solution of Eq. (3.63).

Proof The main idea to prove the existence is similar to the deterministic case,
where we use the method of Peano iteration.

We can first define iteratively a sequence of processes by X
(0)
t ≡ ξ and

X
(k+1)
t = ξ+

∫ t

0
b(s,X(k)

s )ds+
∫ t

0
σ(s,X(k)

s )dWs; 0 ≤ t < ∞, k ≥ 0. (3.66)

Next, we only need to show that this sequence {X(k)}∞k=0 will converge to the
solution of (3.63).

To this end, we first notice that X(k+1)
t − X

(k)
t is also a semimartingale and have

the decomposition:

X
(k+1)
t − X

(k)
t = Bt + Mt,

where

Bt =
∫ t

0
(b(s,X(k+1)

s ) − b(s,X(k)
s ))ds, Mt =

∫ t

0
(σ (s,X(k+1)

s ) − σ(s,X(k)
s ))dWs.

The Burkholder-Davis-Gundy inequality in Theorem 3.7 guarantees the validation
of the following moment estimation:

E

[

max
0≤s≤t

|Ms |2
]

≤ �1E

∫ t

0
|σ(s,X(k+1)

s ) − σ(s,X(k)
s )|2ds

≤ �1K
2E

∫ t

0
|X(k+1)

s − X(k)
s |2ds

for some �1 ≥ 0.



98 3 Stochastic Differential Equations

Besides, according to (3.64), we can also get a moment estimation of Bt :

E|Bt |2 ≤ K2E

∫ t

0
|X(k+1)

s − X(k)
s |2ds.

Thus, there exists an L ≥ 0, such that

E

[

max
0≤s≤t

|X(k+1)
s − X(k)

s |2
]

≤ L

∫ t

0
E[|X(k+1)

s − X(k)
s |2]ds.

Iteratively, we have

E

[

max
0≤s≤t

|X(k+1)
s − X(k)

s |2
]

≤ C × (Lt)k

k! ; 0 ≤ t ≤ T (3.67)

for every T > 0. By Chebyshev’s inequality, we have

P

[

max
0≤s≤t

|X(k+1)
s − X(k)

s |2 ≥ 1

2k+1

]

≤ 4C × (4LT )k

k! (3.68)

and the right-hand side of (3.68) is the general term of a convergence series. By
Borel-Cantelli lemma, we can conclude that t → X

(k)
t , t ∈ [0, T ] is a uniform

Cauchy sequence a.s. and, thus, will converge to a process with continuous path,
which is a strong solution to the stochastic differential equation (3.63). ��
In this strong formulation of SDE, we need to find a solution in a fixed probability
space. This means that strong restrictions are needed to guarantee the existence of a
strong solution. Meanwhile, we do not need so strong restrictions on parameters for
uniqueness. In this formulation, the uniqueness of solution means that two solutions
are indistinguishable with respect to the same initial condition.

Definition 3.7 Consider the stochastic differential equation (3.63). If X and X̃ are
two strong solutions with respect to Brownian motion W and initial condition ξ and
P [Xt = X̃t , 0 ≤ t < ∞] = 1, then we say that strong uniqueness holds for the
given stochastic differential equation.

The next theorem shows that under weaker conditions, we can guarantee the
uniqueness of strong solution to a stochastic differential equation.

Theorem 3.10 Suppose that b(t, x) and σ(t, x) are both locally Lipschitz-
continuous in the space variable, that is, for every n ≥ 1, there exists a positive
number Kn, such that

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ Kn|x − y|

for all t ≥ 0 and x, y ∈ Rd , with |x| ≤ n and |y| ≤ n. Then strong uniqueness
holds for this stochastic differential equation.
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Proof The key point in the proof of uniqueness is also similar to that in the
deterministic case. We will also do moment estimation and apply Gronwall’s
inequality to get the uniqueness result.

Suppose that X and X̃ are two strong solutions to the same probability space,
initial value ξ , and Brownian motion W . According to a standard localization
procedure, we can assume without loss of generality that Xt is bounded. Besides, as
in the deterministic case, we only need to show the uniqueness for every bounded
interval [0, T ], T ≥ 0.

With the properties of stochastic integral and cross variation, we can obtain the
following moment estimation:

E|Xt − X̃t |2 ≤C

{

E

∫ t

0
|σ(s,Xs) − σ(s, X̃s)|2ds

+E

[∫ t

0
|b(s,Xs) − b(s, X̃s)|ds

]2}

≤ C(T + 1)E
∫ t

0

(
|b(s,Xs) − b(s, X̃s)|2

+|σ(s,Xs) − σ(s, X̃s)|2
)

ds

≤ C(T + 1)K2
n

∫ t

0
E|Xs − X̃s |2ds.

Now, we can apply the Gronwall’s inequality to t → E|Xt − X̃t |2 and we can get
the desired result. ��

3.2.2 Weak Solutions

In the formulation of a strong solution, we need a quite strict condition on the
parameters to guarantee the existence of a solution. However, for practical use, many
stochastic equations do not satisfy those conditions. Therefore, we need another
formulation of solution so that it is easier to find a solution. In this subsection, we
will introduce the definition of weak solution, in which probability space and the
Brownian motion are also a part of the solution.

Definition 3.8 A weak solution of Eq. (3.63) is (�,F, {Ft }P,X,W), where

(1) (�,F, P ) is a probability space and {Ft } is a filtration of sub-σ -fields of F
satisfying the usual conditions;

(2) X = {Xt,Ft ; 0 ≤ t < ∞} is a continuous, adapted Rd -valued process and
W = {Wt,Ft ; 0 ≤ t < ∞} is a r-dimensional standard Brownian motion;
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(3) P
[∫ t

0 |bi(s,Xs)| + σ 2
ij (s, Xs)ds < ∞

]
= 1, for every 0 ≤ t < ∞, 1 ≤ i ≤ d,

and 1 ≤ j ≤ r ,
(4) Xt = X0 + ∫ t

0 b(s,Xs)ds + ∫ t

0 σ(s,Xs)dWs , 0 ≤ t < ∞, a.s. P.

In this weak formulation, because the requirement of a solution is weaken, the
uniqueness of a solution is relatively more important compared with the existence.
We would like to leave the discussion of the existence in the next subsection and
focus on the uniqueness of solution here.

In the strong formulation, the concept of uniqueness is quite clear, which means
that the path of two solutions with respect to the same initial value must be
indistinguishable. In the weak formulation, we can give the concept of uniqueness
two different meanings.

Definition 3.9 Suppose that (�,F, {Ft }P,X,W) and (�̃, F̃, {F̃t }P̃ , X̃, W̃ ) are
two arbitrarily chosen, weak solutions of (3.63), with the same initial distribution,
i.e.,

P [X0 ∈ U ] = P̃ [X̃0 ∈ U ], ∀U ∈ B(Rd).

If the process X and X̃ have the same law, we say that the uniqueness in the sense
of probability law holds for the stochastic differential equation.

Definition 3.10 Suppose that (�,F, {Ft }P,X,W) and (�,F, {Ft }P, X̃,W) are
two arbitrarily chosen, weak solutions of (3.63), with common Brownian motion
W on a common probabilistic space (�,F, P ), and common initial value. If two
processes X and X̃ are indistinguishable, i.e., P [Xt = X̃t , 0 ≤ t < ∞] = 1, then
we say that pathwise uniqueness holds for the stochastic equation.

Although we have given two meanings to the uniqueness of weak solutions, these
two meanings are not entirely irrelevant. In fact, the next proposition shows that
pathwise uniqueness is a stronger property for a stochastic differential equation than
the uniqueness in the sense of probability law.

Proposition 3.2 Pathwise uniqueness implies uniqueness in the sense of probability
law.

Proof The proof of this theorem requires some basic knowledge about measure
theory in infinite dimensional space. Therefore, we just summarize the key points
in the proof here, and for a detailed proof, one can refer to the original paper by
Yamada and Watanabe [9].

Suppose that (�j ,Fj , {Fj
t }P j ,Xj ,Wj ) and j = 1, 2 are two weak solutions

to (3.63). Then, we can construct another two weak solutions with the same law of
the above two processes on the canonical probability space for Brownian motion,
that is,

(�,F, {Ft }t≥0) = (C[0,∞)d ,B(C[0,∞)d)).
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On this probability space, under the Wiener measure P , the coordinate process

Wt(ω) = ω(t), 0 ≤ t < ∞, ω ∈ �,

is a standard Brownian motion.
We denote by x1 and x2 two new constructed weak solutions on (�,F, P ). Then,

according to the assumption that the pathwise uniqueness holds for Eq. (3.63), we
have P [x1

t = x2
t , 0 ≤ t < ∞] = 1 and, thus, have the same law. Therefore, the two

processes X1 and X2, though defined on a different probability space, also have the
same probability law. We then proved the uniqueness in the sense of probability law
for Eq. (3.63). ��
Meanwhile, although we have different sets for strong and weak solutions, the
existence of strong and weak solutions are also relevant by the following theorem,
which shows that a weak solution with the property of pathwise uniqueness implies
a strong solution with respect to a certain Brownian motion in a certain probability
space.

Theorem 3.11 Suppose that Eq. (3.63) has a weak solution (�,F, {Ft }, P ,X,

W) with initial distribution μ, and suppose that pathwise uniqueness holds for
Eq. (3.63). Then, given any probability space (�̃, F̃, P̃ ) rich enough to support an
Rd -valued random variable ξ with distributionμ and an independent r-dimensional

Brownian motion W̃ = {W̃t ,FW̃
t ; 0 ≤ t < ∞}, (FW̃

t denotes the σ -field generated
by Brownian motion W̃ ), a strong solution of Eq. 3.63 exists with initial condition ξ .

Remark 3.4 The proof of Theorem 3.11 also involves the application of canonical
probability space and other probability tools such as regular conditional probabili-
ties. Therefore, we would like to skip the proof here and refer interested readers to
monographs with respect to stochastic differential equations [5].

For filtering equations we will focus on later, it is hard for the parameters to meet
the requirement for the existence of strong solutions. Therefore, from now on, we
will pay more attention on the weak formulation of stochastic differential equations.
Without special instructions, the solution of a stochastic differential equation means
a weak solution.

3.2.3 The Martingale Problem of Stroock and Varadhan

In this subsection, we will view the weak formulation of a stochastic differential
equation from a different aspect. The main result in this subsection is that in
some sense, a weak solution to an SDE is equivalent to a probability measure that
guarantees a group of semimartingales the martingale property.
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Suppose that (�,F, {Ft }, P ,X,W) is a weak solution of Eq. (3.63). For every
t ≥ 0, we introduce the second-order differential operator

At f � 1

2

d∑

i,j=1

aij (t, x)
∂2

∂xi∂xj

f +
d∑

i=1

b(t, x)
∂

∂xi

f ; f ∈ C2(Rd). (3.69)

The motivation of the introduction of the martingale problem is that, according
to Itô’s formula, we can construct a group of local martingales from the solution to
a stochastic differential equation.

Theorem 3.12 For every f ∈ C
([0,∞) × Rd

)
, the process Mf = {Mf

t ,Ft ; 0 ≤
t < ∞} given by

M
f
t = f (t,Xt ) − f (0, X0) −

∫ t

0

(
∂f

∂s
+ Asf

)

(s,Xs)ds (3.70)

is a continuous local martingale.

Proof This result is a direct corollary of Itô’s formula. According to Itô’s formula,
we have

f (t,Xt ) = f (0, X0) +
∫ t

0

(
∂f

∂s
+ Asf

)

(s,Xs)ds

+
d∑

i=1

d∑

j=1

∫ t

0

∂f

∂xi

(s,Xs)σij (s,Xs)dW
(j)
s .

Therefore,

M
f
t =

d∑

i=1

d∑

j=1

∫ t

0

∂f

∂xi

(s,Xs)σij (s,Xs)dW
(j)
s .

is a continuous, local martingale. ��
Later on, we will see that heuristically, a process that guarantees the martingale
property of M

f
t is just the solution of the corresponding stochastic differential

equation. Before that, we will first give the definition of a martingale problem.

Definition 3.11 (Stroock and Varadhan [8]) A probability measure P on(
C[0,∞)d ,B(C[0,∞)d)

)
is called a solution to local martingale problem

associated with {At }, if for every f ∈ C
([0,∞) × Rd

)
, under P , the process

M
f
t (ω) = f (t, ω(t)) − f (0, ω(0)) −

∫ t

0

(
∂f

∂s
+ Asf

)

(s, ω(s))ds (3.71)

is a continuous local martingale.
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The next theorem illustrates the equivalence of a solution to the martingale
problem and a weak solution to the corresponding stochastic differential equation.

Theorem 3.13 The existence of a solution P to the local martingale problem
associated with {At } is equivalent to the existence of a weak solution,
(�̃, F̃, {F̃t }, P̃ , X,W), to Eq. (3.63). The two solutions are related by P = P̃X−1.

The uniqueness of the solution P of the local martingale problem with initial
distribution μ:

P [ω ∈ C[0,∞)d ;ω(0) ∈ U ] = μ(U), U ∈ B(Rd)

is equivalent to the uniqueness in the sense of probability law for Eq. (3.63).

Remark 3.5 The proof of Theorem 3.13 also involves a lengthy but fundamental
discussion on measure theory in infinite dimensional spaces. Again, we would like
to omit all these discussions that are not used very often in the development of filter
theory. We only need to remember that the solution of the martingale problem is
relevant to a weak solution of stochastic differential equation by P = P̃X−1.

With the equivalence of the martingale problem and the weak solution, we can
obtain a weaker condition for the existence of weak solutions from the existence
of a solution to the martingale problem. Here, we consider the time-homogeneous
version of the stochastic differential equations.

Theorem 3.14 Consider the time-homogeneous stochastic differential equation

dXt = b(Xt )dt + σ(Xt )dWt , (3.72)

where bi, σij : Rd → R are bounded and continuous functions. Then, there exists a
weak solution to (3.72) with respect to every initial distribution μ on B(Rd) with

∫

Rd

|x|2mμ(dx) < ∞, for some m > 1.

Proof The main idea for the proof of this theorem is quite similar to the case where
we proved the existence of a strong solution. However, instead of the construction
of a Peano-like iteration procedure, we will make an approximation to the solution
by a sequence of processes that are a solution to a simpler stochastic differential
equation.

For each n ∈ N, we define the process {X(n)
t } as follows:

X
(n)
0 = ξ ; X

(n)
t = X

t
(n)
j

+ b(X
t
(n)
j

)(t − t
(n)
j ) + σ(X

t
(n)
j

)(Wt − W
t
(n)
j

) (3.73)

for each t
(n)
j < t ≤ t

(n)
j+1, where t

(n)
j = j/2n are the dyadic rationals.
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If we define the ladder functions ψn(t) = t
(n)
j ; t

(n)
j ≤ t < t

(n)
j+1 and the new

coefficients

b(n)(t, y(t)) = b(y(ψn(t))), σ (n)(t, y(t)) = σ(y(ψn(t))), (3.74)

then X(n) solves the stochastic integral equation

X
(n)
t = ξ +

∫ t

0
b(n)(s,X(n)

s )ds +
∫ t

0
σ (n)(s,X(n)

s )dWs. (3.75)

According to Theorem 3.13, the existence of a solution to (3.75) implies a solution
to the corresponding local martingale problem P (n) = P(X(n))−1.

Since coefficients of each (3.75) are bounded, the series of probability measure
{P (n)}∞n=1 is tight and thus converges weakly to a probability measure P ∗ on the
canonical probability space.

The limitation theory of integrals leads to the result that P ∗ is a solution to the
local martingale problem corresponding to stochastic differential equation (3.72),
which then implies the existence of a solution to that equation. ��

Starting from the martingale problem, we can also give another condition that
guarantees the uniqueness of a weak solution. The next theorem shows that the
uniqueness of a weak solution can be obtained from the existence of a solution to
the Cauchy problem of a parabolic partial differential equation.

Theorem 3.15 Suppose that with coefficients b(x) and σ(x) in (3.72), the Cauchy
problem

⎧
⎪⎨

⎪⎩

∂u

∂t
− A u = 0; in [0,∞) × Rd

u(0, ·) = f ; in Rd

(3.76)

has a solution uf ∈ C
([0,∞) × Rd

) ∩ C1,2
(
(0,∞) × Rd

)
, which is bounded on

each [0, T ]×Rd , for every f ∈ C∞
0 (Rd). Then for every x ∈ Rd , there exists at most

one solution to the time-homogeneous martingale problem with initial distribution

P [ω ∈ C[0,∞)d ;ω(0) = 0] = 1

Proof For every fixed T > 0, we define g(t, x) = uf (T − t, x). Then, g is bounded
and satisfies

∂g

∂t
+ A g = 0, g(T , ·) = f (·).

Assume that X and X̃ are two weak solutions to the stochastic differential
equation (3.72) and P and P̃ are corresponding solutions to the local martingale
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problem; then, under P and P̃ , Zt(ω) = ω(t), ω ∈ C[0,∞)d is a solution to the
same stochastic differential equation.

Thus, according to Itô’s formula, {g(t, Zt ), 0 ≤ t < ∞} is a local martingale
under P and P̃ . However, since g is a bounded function, the local martingale is
actually a martingale, and thus, we have

E[f (ZT )] = E[g(T ,ZT )] = E[g(0, Z0)]
= Ẽ[g(0, Z0)] = Ẽ[g(T ,ZT )] = Ẽ[f (ZT )].

(3.77)

Since Eq. (3.77) holds for every f ∈ C∞
0 , we have P = P̃ , and there exists at most

one solution to Eq. (3.72). ��

3.3 Connections Between Stochastic Differential Equations
and Partial Differential Equations

In the previous section, Theorem 3.15 reveals one of the connections between
stochastic differential equations and partial differential equations. The uniqueness
of solution to an SDE is related to the existence of solution to a corresponding PDE,
in the context of the martingale problem.

In this section, we will review two other links between SDEs and PDEs. The
first one is given by the Feynman-Kac formula, where the solution of a PDE can be
represented by the expectation of the solution to an SDE. The solution of an SDE
can also be represented by its probability law, and its probability density function
satisfies the Kolmogorov’s equation.

3.3.1 Feynman-Kac Representation

In order to illustrate the Feynman-Kac representation formula, we first consider the
following stochastic differential equation:

{
dXs = b(s,Xs)ds + σ(s,Xs)dWs, t ≤ s < ∞,

Xt = x,
(3.78)

where coefficients bi(t, x) and σij (t, x) are continuous and satisfy the linear growth
condition (3.65). Meanwhile, Eq. (3.78) has a weak solution, and the weak solution
is unique in the sense of probability law.

We denote the solution to the above differential equation as X(t,x) = {X(t,x)
s ; 0 ≤

s < ∞}. The equation X(t,x) can also be expressed in the following integration
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form:

X(t,x)
s = x +

∫ s

t

b(θ,X
(t,x)
θ )dθ +

∫ s

t

σ (θ,X
(t,x)
θ )dWθ ; t ≤ s < ∞. (3.79)

Besides, we will consider the Cauchy problem of the following parabolic differential
equation:

⎧
⎪⎨

⎪⎩

−∂v

∂t
+ kv = At v + g; in [0, T ) × Rd,

v(T , x) = f (x); in x ∈ Rd,

(3.80)

where T > 0 is arbitrary but fixed; functions f (x) : Rd → R, g(t, x) : [0, T ] ×
Rd → R, and k(t, x) : [0, T ] × Rd → [0,∞) are continuous and satisfy

(1) |f (x)| ≤ L(1 + |x|2λ) or f (x) ≥ 0; x ∈ Rd ,
(2) |g(t, x)| ≤ L(1 + |x|2λ) or g(t, x) ≥ 0; 0 ≤ t ≤ T , x ∈ Rd ,

with appropriate constants L > 0 and λ ≥ 1.
The following theorem shows that the solution to the Cauchy problem with

polynomial growth condition can be characterized by the process X(t,x).

Theorem 3.16 Suppose that v(t, x) ∈ C
([0, T ] × Rd

) ∩ C1,2
([0, T ) × Rd

)
is a

solution to the Cauchy problem, which satisfies the polynomial growth condition

max
0≤t≤T

|v(t, x)| ≤ M(1 + |x|2μ); x ∈ Rd (3.81)

for some M > 0 and μ ≤ 1. Then v(t, x) admits the stochastic representation

v(t, x) = Et,x

[

f (XT )exp

{

−
∫ T

t

k(θ,Xθ )dθ

}

+
∫ T

t

g(s,Xs)exp

{

−
∫ s

t

k(θ,Xθ )dθ

}

ds

] (3.82)

on [0, T ] × Rd ; in particular, such a solution is unique.

Proof The key point of the proof is to apply Itô’s formula to the process
v(s,Xs)exp{− ∫ s

t
k(θ,Xθ )dθ}, and Eq. (3.82) can then be derived from the

martingale property.
In the process, conditions on coefficients guarantee those local martingales we

get from Itô’s formula are actually martingales and the validation of applying
localization procedure. For simplicity, we skip the proof of this part and admit
that those local martingales mentioned here are martingales, so that the value of
expectations won’t change through time.
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According to Itô’s formula, the process

Ms = v(s,Xs)exp{−
∫ s

t

k(θ,Xθ )dθ} +
∫ s

t

g(u,Xu)exp{−
∫ u

t

k(θ,Xθ )dθ}du

is a martingale. Therefore, EMT = EMt , and the desired result is directly from the
fact that

v(t, Xt ) = v(t, x), v(T ,XT ) = f (XT ).

��

3.3.2 Kolmogorov Equation

Apart from Feynman-Kac formula presented in the previous subsection, the solution
to an SDE and the solution to a PDE can also be connected by the probability density
function. In fact, the probability density function, as a function of time variable t and
space variables x, satisfies a parabolic partial differential equation.

To give the above discussion a rigorous mathematical context, we first define the
concept of “well-pose” for a time-homogeneous stochastic differential equation.

Definition 3.12 The time-homogeneous stochastic differential equation in integral
form

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs (3.83)

is called well-posed, if for every initial condition x ∈ Rd , it admits a weak solution
that is unique in the sense of probability law.

The following theorem shows that the solution to a well-posed time-
homogeneous equation is a strong Markov process and has a strong relationship to
an elliptic differential operator.

Theorem 3.17 Suppose that coefficients b and σ are bounded on compact subsets
of Rd and that the time-homogeneous stochastic integral equation (3.83) is well-
posed. Then, strong Markov property holds for process X.

Besides, if we further assume that b and σ are bounded and continuous, then the
relation

lim
t↓0

1

t

[
Exf (Xt ) − f (x)

] = (A f )(x); ∀x ∈ Rd (3.84)
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holds for every f ∈ C2
(
Rd
)
, where A is the time-homogeneous version of

operator (3.69)

(A f )(x) � 1

2

d∑

i,j=1

aij (x)
∂2f

∂xi∂xj

(x) +
d∑

i=1

bi(x)
∂f

∂xi

(x) (3.85)

and a(x) = σ(x)σ�(x). Moreover, the process X is a diffusion process.

Proof The proof of strong Markov property requires a long journey in the theory of
Markov process, and interested readers may refer to monographs for help. For us,
we would like to admit the strong Markov property and give a proof of Eq. (3.84).

In fact, under the conditions in Theorem 3.17, it is a straight corollary of Itô’s
formula. Since X is a solution to the stochastic integral equation, thus

f (Xt ) = f (x) +
d∑

i=1

∫ t

0

∂f

∂xi

(Xs)b
i(Xs)ds +

d∑

i,j=1

∫ t

0

∂f

∂xi

(Xs)σij (Xs)dW
(j)
s

+ 1

2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj

(Xs)

(
d∑

k=1

σik(Xs)σjk(Xs)

)

ds.

(3.86)
Taking expectations to both sides of Eq. (3.86) and noticing that the stochastic
integral is a martingale, we have

Exf (Xt ) = f (x) +
d∑

i=1

E

∫ t

0

∂f

∂xi

(Xs)b
i(Xs)ds

+ 1

2

d∑

i,j=1

E

∫ t

0

∂2f

∂xi∂xj

(Xs)

(
d∑

k=1

σik(Xs)σjk(Xs)

)

ds.

(3.87)
Calculate lim

t↓0
1
t
[Exf (Xt ) − f (x)] based on (3.87), and note that X0 ≡ x. We have

derived Eq. (3.84). ��
Since X is a diffusion process under the conditions in Theorem 3.17, the probability
law of X is totally determined by initial values and the transition probability
density function, �(t; x, y), which is defined as follows:

P x [Xt ∈ dy] = �(t; x, y)dy; ∀x ∈ Rd, t > 0. (3.88)

The next theorem shows that the transition density function �(t; x, y) satisfies the
following parabolic partial differential equations.
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Theorem 3.18 The transition density �(t; x, y) satisfies the forward Kolmogorov
equation, for every fixed x ∈ Rd :

∂

∂t
�(t; x, y) = A ∗�(t; x, y); (t, x) ∈ (0,∞) × Rd, (3.89)

and the backward Kolmogorov equation, for every fixed y ∈ Rd :

∂

∂t
�(t; x, y) = A �(t; x, y); (t, y) ∈ (0,∞) × Rd, (3.90)

where the operator A ∗ is given by

(A ∗f )(x) � 1

2

d∑

i,j=1

∂2

∂xi∂xj

[aij (x)f (x)] −
d∑

i=1

∂

∂xi

[bi(x)f (x)]. (3.91)

Proof Here, we only give a formal proof of the above theorem. A rigid proof can
be obtained by applying the approximation of smooth functions.

For each (t, y) ∈ (0,∞) × Rd , we first calculate

∂�

∂t
(t, x, y) = lim

�t→0

1

�t
(�(t + �t, x, y) − �(t, x, y)). (3.92)

Meanwhile, according to the strong Markov property of X,

�(t + �t, x, y) =
∫

Rd

�(�t, x, z)�(t, z, y)dz = Ex[�(t,X�t , y)]. (3.93)

Therefore,

lim
�t→0

1

�t
(�(t + �t, x, y) − �(t, x, y))

= lim
�t→0

1

�t
(Ex[�(t,X�t , y)] − �(t, x, y)). (3.94)

According to Theorem 3.17, the right-hand side in (3.94) is equal to A �(t, x, y),
and thus, we have proved Kolmogorov’s backward equation (3.90).

In order to prove Kolmogorov’s forward equation, we only need to show that

∫

[0,∞)×Rd

∂

∂t
�(t; x, y)ϕ(t, y)dtdy =

∫

[0,∞)×Rd

A ∗�(t; x, y)ϕ(t, y)dtdy

(3.95)
holds for every ϕ ∈ C

1,2
0 ([0,∞) × Rd).
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With the method of integration by part, it is equivalent to

∫

[0,∞)×Rd

(
∂ϕ

∂t
+ A ϕ

)

(t, y)�(t, x, y)dtdy = 0 (3.96)

holds for every ϕ ∈ C
1,2
0 ([0,∞) × Rd).

Notice that the left-hand side in (3.96) is equal to

∫ ∞

0
Ex

[
∂ϕ

∂t
(t, Xt ) + A ϕ(t,Xt )

]

dt (3.97)

and Itô’s formula shows that the expectation is equal to 0, for every t > 0.
Thus, Eq. (3.96) holds, and we have proved Kolmogorov’s forward equation

(3.89). ��

3.4 Exercises

In this chapter, some in-line exercises are provided during the main text, which
serves as complements of proofs of theorems and lemmas. Besides, some extra
exercises are also listed below.

1. Let {Wt : t ≥ 0} be a standard one-dimensional Brownian motion. Use Itô’s
formula to prove that

∫ t

0
WsdWs = 1

2

(
W 2

t − t
)

. (3.98)

2. Let {Zt : t ≥ 0} be defined in Sect. 3.1.3

Zt = exp

[
d∑

i=1

∫ t

0
Xi

sdWi
s − 1

2

∫ t

0
|Xs |2ds

]

. (3.99)

Use Itô’s formula to prove that

Zt = 1 +
d∑

i=1

∫ t

0
ZsX

i
sdWi

s . (3.100)

3. Let {Xt : t ≥ 0} and {Yt : t ≥ 0} be two semimartingales. Prove the integration
by parts formula for stochastic integral in Itô’s sense.

∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs − 〈X, Y 〉t . (3.101)
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4. Let {Xt : t ≥ 0} and {Yt : t ≥ 0} be two semimartingales. Prove the integration
by parts formula for stochastic integral in Stratonovich sense.

∫ t

0
Xs ◦ dYs = XtYt − X0Y0 −

∫ t

0
Ys ◦ dXs. (3.102)

Notice that the integration by parts formula for stochastic integral in Stratonovich
sense is identical with the normal integrals in calculus.

5. Let {Wt : t ≥ 0} be a standard one-dimensional Brownian motion. Show that
Xt = eWt is the solution of the stochastic differential equation

dXt = 1

2
Xtdt + XtdWt . (3.103)

6. LetA,B ∈ Rd×d be d×d matrices and {Wt : t ≥ 0} be a standard d-dimensional
Brownian motion. Solve the linear stochastic differential equation

dXt = AXtdt + BdWt (3.104)
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Chapter 4
Optimization

In this chapter, we will start from basic concepts and examples, which contain
some well-known optimization problems used in a wide fields. Then, for general
optimization, we introduce optimal condition satisfied by local or global minimum.
Well-known Karush-Kuhn-Tucker condition is introduced in detail. In the following,
dual optimization is discussed, which includes weak and strong forms. Condition
satisfied by strong duality is formulated through the framework of constraint
qualification. Finally, we stress on the convex optimization and introduce the corre-
sponding version of optimal condition. In terms of numerical algorithm of convex
optimization, we mention active set method to solve quadratic convex problem.
For nonconvex optimization, we include sequential quadratic programming for
quadratic optimization system.

4.1 Background

At the beginning of this chapter, we will briefly describe the reasons for the popu-
larity of optimization and its history and then give some examples of optimization
problems. Optimization is denoted to solve the minimum of a function on a given
set:

min f (x)

s.t. x ∈ F,
(4.1)

where F ⊂ Rn is the feasible region, x ∈ F is a feasible solution, and f is a real
function called objective function.

Optimization has been developing quickly as a field and a hot topic. An important
reason is due to requirement of machine learning. A machine learning problem can
finally be transformed into an optimization problem.
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The development of optimization can be traced back to seventeenth century. At
the beginning, Newton and Rapson transformed the problem of solving nonlinear
equations to a minimization problem as follows:

f (x) = 0 ⇒ min f 2(x). (4.2)

Then we try to find x through optimization methods. Similar methods are also used
by Gauss-Seidel and Jacobi; they are used to solve such a problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = 0

. . .

fn(x) = 0

⇒ min
n∑

i=1

f 2
i (x).

Therefore, an important idea is the root of the solution equation and the minimum
value of the optimization function are often equivalent.

Over time, before and after World War II, there were actually many interesting
developments. For example, in 1940, Bellman developed a dynamic programming
algorithm [2] (Dynamic Programming, DP). The basic idea is to decompose the
problem to be solved into several sub-problems, first solve the sub-problems,
and then obtain the solution of the original problem from the solutions of these
sub-problems. A classic example of dynamic programming is Dijkstra algorithm
of shortest path [5]. Speaking of convex optimization, we generally mention
the simplex method [7]. When it comes to numerical optimization, the interior
point method [6] will be mentioned. The interior point method was proposed by
Karmarkar in 1984. Afterward, many optimization developments focused on many
details of the interior point method.

4.1.1 Basic Concepts

Definition 4.1 (Convex Set) For the set S and any two points x, y in the set, if
there is θx + (1− θ)y ∈ S for any θ ∈ [0, 1], then the set is said to be a convex set.
Definition 4.2 (Convex Hull) The smallest convex set containing set S is defined
as convex hull of S, and we denote conv(S).

Next we introduce some properties about convex set, which can be easily
obtained by properties of set calculation.

Proposition 4.1 If Si is a convex set, then
⋂∞

i=1 Si is also a convex set.

Remark 4.1 The union of convex sets in general will not be convex.

Definition 4.3 (Cone) Set K ⊂ Rn is a cone if λx ∈ K for any x ∈ K and λ ≥ 0.

Definition 4.4 For a set S ⊂ Rn, dual set is defined as
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S∗ = {y ∈ Rn|yT x ≥ 0,∀x ∈ S}. (4.3)

If S = S∗, then it is self-dual.

Definition 4.5 (Convex Function) If the domain of the function f : Rn → R is
a convex set and f satisfies f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) for any
θ ∈ [0, 1], then f is said to be a convex function.

Remark 4.2 We say a function is strictly convex if Definition 4.5 holds with strict
inequality for x �= y and 0 < θ < 1. We say that f is concave if −f is convex, and
f is strictly concave if −f is strictly convex.

Convex functions give rise to a particularly important type of convex set called
an α -sublevel set, which is defined as follows.

Definition 4.6 (α-Sublevel Set) Given a convex function f : Rn → R and a real
number α ∈ R, the α -sublevel set is defined as

{x ∈ D(f ) : f (x) ≤ α},

whereD(f ) is the domain of definition.

Remark 4.3 The α-sublevel set is the set of all points x such that f (x) ≤ α. To see
it is a convex set, we consider any x, y ∈ D(f ) such that f (x) ≤ α and f (y) ≤ α.

Then

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) ≤ θα + (1 − θ)α = α.

Definition 4.7 (Subgradient) For function f (x), subgradient at point x̄ is defined
as vector d ∈ Rn satisfying the following condition:

f (x) ≥ f (x̄) + dT (x − x̄), ∀x ∈ D(f ) (4.4)

and the set of all subgradients at x̄ is denoted as ∂f (x̄).

Definition 4.8 (Conjugate Function) Conjugate function of a function f :
D(f ) → R is defined as h : Y→ R, where

h(y) = sup
x∈D(f )

{yT x − f (x)}, (4.5)

and

Y = {y ∈ Rn|h(y) < ∞}. (4.6)

In the following section, conjugate function will be used to establish conjugate dual
model.
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4.1.2 Examples

Now we will introduce some optimization problems from different fields.

Example 4.1 (Shortest-Path Problem [4]) The shortest path problem is the prob-
lem of finding a path between two vertices (or nodes) in a graph such that the sum of
the weights of its constituent edges is minimized, which is an important application
in graph theory.

Consider the shortest path problem. Given a directed graph (V ,A) with source
node s, target node t , and cost wij for each edge (i, j) in A, consider the program
with variables xij

min
∑

i,j∈A wij xij

s.t. xij ∈ {0, 1},∑j xij − ∑
j xji =

⎧
⎨

⎩

1 i = s,

−1 i = t,

0 else,

where the xij here means whether to choose the path from i to j . So for a path, if
it is the starting point, its out-degree is 1 larger than the in-degree; if it is the end
point, its in-degree must be 1 greater than the out-degree (i.e., the out-degree must
be greater than the in-degree-1). The out-degree and in-degree of the passing point
in the middle are the same.

Remark 4.4 This optimization problem is not a very easy problem. Because its
constraints are discrete points, this constraint condition is not convex. Therefore,
the common technique of convex relaxation will be considered, i.e.,

xij = 0, 1 ⇒ xij ≥ 0.

It is needed to note that the new problem may not be equivalent to original problem
after convex relaxation.

Example 4.2 (LASSO [8]) LASSO is a regression analysis method that performs
both variable selection and regularization in order to enhance the prediction
accuracy and interpretability of the resulting statistical model, which is an important
method in statistics and machine learning.

Consider a m-dimensional Fused LASSO problem, which can be formulated as
the following optimization problem:

min
θ

1

2

n∑

i=1

‖yi − xiθ
‖22 + λ‖θ‖1,

where {(xi, yi)}ni=1 is the observation set with xi ∈ Rm, yi ∈ Rm, and θ ∈ Rm×m

is parameter matrix. If the penalty term λ‖θ‖ is removed, then it is a classic least
squares regression problem.
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Remark 4.5 In view of the penalty term, it is to punish the gap between adjacent
points. So, the large λ will make the fitting result tend to be segmented straight.

Example 4.3 (Principal Components Analysis (PCA) [9]) Principal component
analysis (PCA) is a technique for reducing the dimensionality of large datasets,
increasing interpretability but at the same time minimizing information loss. It is
a type of projection method. Notice the variance of data reflects the contained
information. The aim of PCA is to find a projective subspace that can maximize
variance of projected data. In the following, we can provide the formulation of PCA.

We assume that we have dataset {x(1), x(2), . . . , x(m)} that has been centralized,
i.e.,

∑m
i=1 x(i) = 0. After projection transform, we get new coordinate system

{w1, w2, . . . , wn} with ‖wi‖2 = 1, wT
i wj = 0 for i �= j .

If we want to reduce dimension of dataset from n to n′, that is, discard some
of the coordinates in the new coordinate system, the new coordinate system is
{w1, w2, . . . , wn′ }, and the sample point x(i) in the projection in the dimensional
coordinate system is z(i) = (z

(i)
1 , z

(i)
2 , . . . , z

(i)

n′ )T . Among them, z(i)
j = wT

j x(i) is the

coordinate of the j−th dimension of x(i) in the low-dimensional coordinate system.
If we use z(i) to restore the original data x(i), the obtained restored data x̄(i) =

∑n′
j=1 z

(i)
j wj = Wz(i), whereW is a matrix composed of standard orthogonal bases.

Now we consider the entire dataset. We hope that the distance between all data
and this hyperplane is close enough, that is, minimize the following formula:

m∑

i=1

‖x̄(i) − x(i)‖22

Expanding the norm in the previous summation, we can get:

m∑

i=1

∥
∥
∥x̄(i) − x(i)

∥
∥
∥
2

2
=

m∑

i=1

∥
∥
∥Wz(i) − x(i)

∥
∥
∥
2

2

=
m∑

i=1

(
Wz(i)

)T (
Wz(i)

)
− 2

m∑

i=1

(
Wz(i)

)T

x(i)

+
m∑

i=1

x(i)T x(i)

= − tr
(
WT XXT W

)
+

m∑

i=1

x(i)T x(i).

(4.7)

Notice that
∑m

i=1 x(i)x(i)T is the covariance matrix of the dataset, and each vector
wj of W is an orthonormal basis. And

∑m
i=1 x(i)T x(i) is a constant. Minimizing the

above equation is equivalent to:

minW − tr
(
WT XXT W

)
s.t. WT W = I.



118 4 Optimization

This minimization is not difficult; direct observation can also find that W cor-
responding to the minimum value is composed of eigenvectors corresponding to
the largest n′ eigenvalues of the covariance matrix XXT . Of course, mathematical
derivation is also very easy. Using the Lagrangian function, we can get

J (W) = − tr
(
WT XXT W

)
+ λ(WT W − I ).

The derivative of W has −XXT W + λW = 0, which means that XXT W =
λW . In this way, it can be seen more clearly that W is a matrix composed of
n′ eigenvectors of XXT , and λ is a matrix composed of several eigenvalues of
XXT ; the eigenvalues are on the main diagonal, and the remaining positions are 0.
When we reduce the dataset from n-dimensional to n′-dimensional, we need to find
eigenvectors corresponding to the largest n′ eigenvalues. The matrix W composed
of n′ eigenvectors is the matrix we need. For the original dataset, we only need to
use z(i) = WT x(i) to reduce the dimensionality of the original dataset to the n′-
dimensional dataset with the minimum projection distance. In the general form, we
can conclude PCA as the following optimization problem:

min
R

‖X − R‖2

s.t. r(R) = k

(4.8)

where X ∈ Rn×p.

4.2 Optimal Condition and Duality Theory

In this section, we will introduce some sufficient and necessary conditions for a
feasible solution to be local or global minimum. We will mainly focus on the first-
order optimal condition and simply mention the second-order optimal condition as
a supplement. In the following, we will introduce typical constraint qualification
(CQ) and the relations between each other. Finally, duality theory will be discussed
in detail. Main reference comes from [3].

4.2.1 Optimal Condition

Fundamental optimization problem can be expressed as below.

min f (x)

s.t. x ∈ F = C ∩D,
(4.9)
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where F ⊂ Rn is called a feasible region, C and D are constraint set and domain
of definition, x ∈ F is a feasible solution, and f is a real function and is called
objective function. Without special notations, f is assumed to be smooth.

In typical research studies, the nonlinear programming problem is commonly
formulated as follows:

min f (x)

s.t. g(x) ≤ 0,

x ∈ Rn,

(4.10)

where g(x) = (g1(x), g2(x), · · · , gm(x))T ∈ Rm is a real value vector function.
gi(x) ≤ 0 is called i-th constraint condition. Without special notations, g(x) is
assumed to be smooth.

For optimization problem (4.9), when F = Rn, we call this optimization an
unconstrained problem. When F �= ∅, we call this optimization is a feasible
problem. When there exists a feasible solution x∗ ∈ F such that f (x∗) attains its
minimal value, this problem is called attainable. When an optimization problem is
both feasible and attainable, it is called a solvable problem.

Definition 4.9 (Local Minimizer) A point x is a local minimizer if it is feasible
(i.e., it satisfies the constraints of the optimization problem) and if there exists some
R > 0 such that all feasible points z with ‖x − z‖2 ≤ R, satisfy f (x) ≤ f (z).

Definition 4.10 (GlobalMinimizer) A point x is a global minimizer if it is feasible
and for all feasible points z ∈ F such that f (x) ≤ f (z) holds.

In previous two definitions, if corresponding inequality conditions strictly hold
for any feasible solution x �= x∗, we call x∗ a strictly local minimizer/global
minimizer.

Next we introduce a first-order necessary optimal condition.

Theorem 4.1 If x̄ ∈ F is a local minimizer of optimization problem (4.9), then

∇f (x̄)T d ≥ 0, ∀d ∈ D(x̄), (4.11)

whereD(x) is a set of feasible direction at point x ∈ F.
Proof By Taylor’s expansion, we get

f (x) = f (x̄) + ∇f (x̄)T (x − x̄) + o(‖x − x̄‖). (4.12)

If there exists feasible direction d ∈ D(x̄) such that ∇f (x̄)T d < 0, then by the
previous Taylor’s expansion, we get that there exists x = x̄ + δd ∈ F satisfying
f (x) < f (x̄). This is a contradiction! ��
Remark 4.6 Condition (4.11) is a necessary condition but not a sufficient condi-
tion. A simple counter-example is f (x) = x3 at x̄ = 0.
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Definition 4.11 (Active Constraint Set) An active constraint set at x ∈ F is as
follows:

I := {i|gi(x) = 0}. (4.13)

Definition 4.12 (Set of Locally Constrained Directions) A set of locally con-
strained directions at x ∈ F is as follows:

L(x) := {d ∈ Rn|∇gi(x)T d ≤ 0,∀i ∈ I(x)}. (4.14)

Remark 4.7 Directions in L(x) are not all feasible directions for constraint
conditions. A simple counter-example is g(x) = x2 ≤ 0 at point x = 0.

SetL(x) has been proven to satisfy some important conditions and play a significant
role.

Theorem 4.2 If problem (4.10) is feasible, then for any x ∈ F,L(x) is a non-empty,
closed, convex cone and

D(x) ⊂ L(x). (4.15)

Proof It is direct to verify 0 ∈ L(x) and L(x) is a cone. For a sequence dk → d∗
satisfying ∇gi(x)T dk ≤ 0, i ∈ I(x), by the property of limit, we get ∇gi(x)T d∗ ≤
0, i ∈ I(x). So L(x) is closed. Convex property is easy to verify by definition.

For any d ∈ D(x), there exists δ0 > 0 such that gi(x̂) ≤ 0, x̂ = x + δd for any
0 < δ < δ0 holds. Thus, we get

gi(x̂) =gi(x) + ∇gi(x)T d · δ + o(δ)

=∇gi(x)T d · δ + o(δ)

≤0, ∀i ∈ I(x).

(4.16)

It derives that ∇gi(x)T d ≤ 0,∀i ∈ I(x) holds, i.e., d ∈ L(x). It follows D(x) ⊂
L(x). ��

In the following, we introduce a well-known sufficient condition for local
minimizer.

Theorem 4.3 (Karush-Kuhn-Tucker Condition) Let x̄ ∈ F be a local minimizer
of problem (4.10). If L(x̄) ⊂ cl(conv(D(x̄))) holds, then there exists λ̄ ∈ Rm+ such
that

∇f (x̄) +
m∑

i=1

λ̄i∇gi(x̄) = 0,

λ̄igi(x̄) = 0, i = 1, 2, · · · ,m.

(4.17)
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The detailed proof of KKT theorem can be found in [3]. In Theorem 4.3, pair (x̄, λ̄)

is called KKT pair, and x̄ is called KKT point. λ̄igi(x̄) = 0 is called complementary
slackness condition, which shows that there exists one zero at least between λ̄i and
gi(x̄). λ̄i is called Lagrange multiplier.

KKT condition is a first-order optimal condition that provides searching scope for
local optimal solution. In actual examples, the first problem is to verify whether the
preliminary condition L(x̄) ⊂ cl(conv(D(x̄))) holds. This is not a straightforward
verification. In order to simplify the verification of such preliminary condition, some
important sufficient conditions are proposed called constraint qualifications, which
will be introduced in the next subsection.

Remark 4.8 In the following, we will introduce some geometrical explanation for
KKT condition. We notice ∇gi(x) is a normal vector at x of hyperplane gi(x) = c

in Rn. Along direction ∇gi(x), the value of ∇gi(x) will increase, which will lead
to those constraints not satisfied. We can call direction ∇gi(x) “Tending unfeasible
direction.” From KKT condition, we find

− ∇f (x̄) =
m∑

i=1

λ̄i∇gi(x̄). (4.18)

It shows that possible descent direction −∇f (x̄) is composed by some “Tending
unfeasible direction” ∇gi(x).

If we consider information of twice derivatives furthermore, second-order opti-
mal condition can be proposed.

Theorem 4.4 Let (x̄, λ̄) be a KKT pair, and denote L(x, λ) = f (x) +∑m
i=1 λigi(x). If Hessian matrix of L(x, λ) satisfies

dT ∇2
xL(x̄, λ̄)d > 0, ∀d ∈ L̄(x̄), d �= 0, (4.19)

where

L̄(x̄) := {d ∈ Rn|∇gi(x̄)T d = 0, i ∈ Ī(x̄); ∇gi(x̄)T d ≤ 0, i ∈ I(x̄)\Ī(x̄)},

and

Ī(x̄) := {i|i ∈ I(x̄), λ̄i > 0}.

Then x̄ is a strictly local minimizer of (4.10).

Proof If x̄ is not a strictly local minimizer. Then there exists a sequence {xk} ⊂ F
such that xk → x̄ and f (xk) ≤ f (x̄). We denote dk = xk−x̄

‖xk−x̄‖ , δk = ‖xk − x̄‖.
By Bolzano theorem, there exists a convergent subsequence in a bounded sequence.
Without loss of generality, we assume dk → d. Next by Taylor expansion of gi(x

k)

at point x̄, we can get ∇gi(x̄)T d ≤ 0. Similarly, we get ∇f (x̄)T d ≤ 0.
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In the following, we claim ∇gi(x̄)T d = 0, i ∈ Ī(x̄). Otherwise, there exists
i ∈ Ī(x̄) such that ∇gi(x̄)T d < 0. Then KKT condition follows

∇f (x̄)T d = −
m∑

i=1

λ̄i∇gi(x̄)T d > 0. (4.20)

This is contradictory to ∇f (x̄)T d ≤ 0. Then ∇gi(x̄)T d = 0, i ∈ Ī(x̄) �⇒ d ∈
L̄(x̄).

Next

L(x̄, λ̄) =f (x̄)

≥f (xk)

≥L(xk, λ̄)

=L(x̄, λ̄) + 1

2
δ2k (d

k)T ∇2
xL(x̄, λ̄)dk + o(δ2k )

(4.21)

Letting dk → 0, it follows dT ∇2
xL(x̄, λ̄)d ≤ 0—a contradiction! ��

4.2.2 Constraint Qualification

KKT condition restricts the scope of searching local minimizer and provides a
possible method. In Theorem 4.3, we require to verify the condition

L(x̄) ⊂ cl(conv(D(x̄))) (4.22)

So far, there exist many different types of constraint qualifications, which makes
it difficult for researchers from different fields learn to learn the background and
relations between them. Some direct sufficient conditions are proposed to guarantee
condition (4.22), which is called constraint qualification.

In this subsection, we will summarize some constraint qualifications in known
literatures.

• Linearly independent constraint qualification, LICQ: {∇gi(x), i ∈ I(x)} are
linearly independent.

• Slater’s constraint qualification: {gi(x), i ∈ I(x)} are convex functions, and x0

is strictly interior point, i.e., gi(x
0) < 0, i = 1, 2, · · · ,m.

• Cottle’s constraint qualification: There exists one direction such that
∇gi(x)T d < 0,∀i ∈ I(x).

• Zangwill’s constraint qualification: L(x) ⊂ cl(D(x)).
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4.2.3 Duality Theory

Duality method is an effective method to study optimization problem. For a
constrained optimization problem (4.10), Lagrange function is defined as

L(x, λ) = f (x) +
m∑

i=1

λigi(x), (4.23)

where λi ≥ 0 is a Lagrange multiplier.
Denote feasible set F = {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, · · · ,m}. It is obvious that

max
λ∈Rm+

L(x, λ) =
{

f (x), x ∈ F
+∞, x /∈ F (4.24)

Then we get

vp = min
x∈F

f (x) = min
x∈Rn

max
λ∈Rm+

L(x, λ) (4.25)

A basic idea of establishing Lagrange duality problem is to try to get help from
duality problem when original problem is difficult.

Next we consider to solve the following problem:

vd = max
λ∈Rm+

min
x∈Rn

L(x, λ) = max
λ∈Rm+

v(λ) (4.26)

where

v(λ) = min
x∈Rn

L(x, λ). (4.27)

is an unconstrained optimization and is easy to solve. We denote (4.26) as a
Lagrange dual problem of prime problem (4.10).

Theorem 4.5 (Weak Duality) For optimization problem (4.10), vp ≥ vd .

Proof By definition of Lagrange function, we have

L(x, λ) = f (x) +
m∑

i=1

λigi(x) ≤ f (x),∀x ∈ F, λ ≥ 0 (4.28)

Then v(λ) ≤ f (x),∀x ∈ F, λ ≥ 0 holds. Therefore, vd ≤ vp. ��
Then we can find that Lagrange dual problem always provides a lower bound for
prime problem. This conclusion is called weak duality principle. If vp = vd , strong
duality holds.
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In solving (4.26), we first require to solve subproblem (4.27). If subproblem
satisfies some specific condition, we can directly obtain the optimal solution of
prime problem.

Theorem 4.6 (Strong Duality) For a given λ̄ ≥ 0, let x̄ denote the optimal solution
of subproblem (4.27), and (x̄, λ̄) satisfies complementary condition λ̄igi(x̄) = 0.
When x̄ ∈ F, x̄ is the optimal solution of (4.26).

Proof If x̄ is the optimal solution of subproblem, then

vd ≥ v(λ̄) = L(x̄, λ̄) = f (x̄) +
m∑

i=1

λ̄igi(x̄) = f (x̄) ≥ vp. (4.29)

However, we notice weak duality vd ≤ vp holds naturally. Then above inequalities
become equalities. Then x̄ is the optimal solution of (4.26). ��

4.3 Convex Optimization

In the following, we classify optimization problem to convex problem and non-
convex problem based on convexity of objective function and feasible region.

In this section, we will focus on the convex optimization. The research on it is
very complete mathematically. What follows is largely based on [1], which is the
well-known textbook for convex optimization.

4.3.1 Basic Properties

We introduce the first-order and second-order condition for convexity.

Proposition 4.2 Suppose a function f : Rn → R is differentiable (i.e., the gradient
∇xf (x) exists at all points x in the domain of f ). Then f is convex if and only if
D(f ) is a convex set, and for all x, y ∈ D(f ),

f (y) ≥ f (x) + ∇xf (x)T (y − x). (4.30)

Proof We only consider the case n = 1. Assume that f is convex and x, y ∈ D(f ).
Since D(f ) is convex, we conclude that for all 0 < t ≤ 1, x + t (y − x) ∈ D(f ),
and by convexity of f ,

f (x + t (y − x)) ≤ (1 − t)f (x) + tf (y).

If we divide both sides by t , we obtain
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f (y) ≥ f (x) + f (x + t (y − x)) − f (x)

t
,

Taking the limit as t → 0, we obtain (4.30).
To show sufficiency, assume the function satisfies (4.30) for all x and y inD(f ).

Choose any x �= y, and 0 ≤ θ ≤ 1, and let z = θx + (1 − θ)y. Applying (4.30)
twice yields

f (x) ≥ f (z) + f ′(z)(x − z), f (y) ≥ f (z) + f ′(z)(y − z).

Multiplying the first inequality by θ and the second by 1−θ and adding them yields

θf (x) + (1 − θ)f (y) ≥ f (z),

which proves that f is convex. ��
The function f (x)+∇xf (x)T (y−x) is called the first-order approximation to

the function f at the point x. Intuitively, this can be thought of as approximating f

with its tangent line at the point x. The first-order condition for convexity says that
f is convex if and only if the tangent line is a global underestimator of the function
f. In other words, if we take a function f and draw a tangent line at any point, then
every point on this line will lie below the corresponding point on f .

Remark 4.9 Similarly to the definition of convexity, f will be strictly convex if
this holds with strict inequality, concave if the inequality is reversed, and strictly
concave if the reverse inequality is strict.

Proposition 4.3 Suppose a function f : Rn → R is twice differentiable (i.e., the
Hessian ∇2

xf (x) is defined for all points x in the domain of f ). Then f is convex
if and only if D(f ) is a convex set and its Hessian is positive semidefinite: i.e., for
any x ∈ D(f )

∇2
xf (x) ≥ 0. (4.31)

Proof We still consider the case n = 1. Suppose f : R → R is convex. Let
x, y ∈ D(f ) with y > x. By the first-order condition,

f ′(x)(y − x) ≤ f (y) − f (x) ≤ f ′(y)(y − x).

Subtracting the right-hand side from the left-hand side and dividing by (y − x)2

gives

f ′(y) − f ′(x)

y − x
≥ 0.
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Taking the limit for y → x yields f ′′(x) ≥ 0. Conversely, suppose f ′′(z) ≥ 0 for
all z ∈ D(f ). Consider two arbitrary points x, y ∈D(f ) with x < y. We have

0 ≤
∫ y

x

f ′′(z)(y − z)dz

= (
f ′(z)(y − z)

)∣∣z=y

z=x
+

∫ y

x

f ′(z)dz

= −f ′(x)(y − x) + f (y) − f (x)

,

i.e., f (y) ≥ f (x) + f ′(x)(y − x). This shows that f is convex. ��
Remark 4.10 Again analogous to both the definition and the first-order conditions
for convexity, f is strictly convex if its Hessian is positive definite, concave if the
Hessian is negative semidefinite, and strictly concave if the Hessian is negative
definite. However, we should notice that a property of strictly convex cannot deduce
the Hessian matrix if f is positive definite. For example, f (x) = |x|3.

At last, we will give an important property for convex function. Suppose we start
with the inequality in the basic definition of a convex function:

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) for 0 ≤ θ ≤ 1.

Using induction, this can be fairly easily extended to convex combinations of more
than single variable,

f

(
k∑

i=1

θixi

)

≤
k∑

i=1

θif (xi) for
k∑

i=1

θi = 1, θi ≥ 0 ∀i.

In fact, this can also be extended to infinite sums or integrals. In the latter case, the
inequality can be written as

f

(∫
p(x)xdx

)

≤
∫

p(x)f (x)dx for
∫

p(x)dx = 1, p(x) ≥ 0 ∀x.

Since the integration of p(x) is 1, it is common to consider it as a probability density,
in which case, the previous equation can be written in terms of expectations,

f (E[x]) ≤ E[f (x)], (4.32)

where E[·] refers the expectation with respect to p(x). (4.32) is well-known as
Jensen’s inequality in probability theory.
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4.3.2 Optimal Condition

In this subsection, we first give the formal form of convex optimization problem:

min f (x)

s.t. x ∈ C,
(4.33)

where f is a convex function, C is a convex set, and x is the optimization variable.
More specifically, we can write it as follows:

min f (x)

s.t. hi(x) ≤ 0, i = 1, . . . , m
�j (x) = 0, j = 1, . . . , r,

(4.34)

where f is a convex function, hi are convex functions, �j are affine functions, and
x is the optimization variable.

The optimal value of an optimization problem is denoted as p∗ and is equal to
the minimum possible value of the objective function in the feasible region

p∗ = min
{
f (x) : hi(x) ≤ 0, i = 1, . . . , m, �j (x) = 0, j = 1, . . . , r

}
.

We allow p∗ to take on the values +∞ and −∞ when the problem is either
infeasible (the feasible region is empty) or unbounded below (there exists feasible
points such that f (x) → −∞), respectively. We say that x∗ is an optimal point if
f (x∗) = p∗.

One of the most important reasons for considering convex optimization problem
is the following proposition.

Proposition 4.4 The local optimal solution of the convex optimization problem is
the global optimal solution.

Proof By contradiction, we assume there is a local minimum at the point x and
there is a point z ∈ D such that f (z) < f (x).

Now we assume y = tx+(1−t)z; then, at this time, because hi(x) ≤ 0 still holds
(this is because of the function convexity), lj (y) = 0 still holds (this is because of
linearity), so y is still a feasible solution. But at this time, notice that the objective
function is also convex, so

f (y) ≤ tf (x) + (1 − t)f (z) < f (x).

The key point here is to explain that if the local minimum is not the global
minimum, then we can modify the t so that the y is close to the x, which will
become a competitive “local minimum” with x. Due to

‖y − x‖2 = (1 − t)‖z − x‖2.
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this shows that we can choose the appropriate t so that ‖y − x‖2 can be arbitrarily
small. In other words, even if y is in the neighborhood of x, there is f (y) < f (x),
which violates the definition of local minimum. ��

4.3.3 Examples

• Linear Programming. We say that a convex optimization problem is a linear
program (LP) if both the objective function f and inequality constraints gi are
affine functions. In other words, these problems have the form:

min cT x + d

s.t. Gx ≤ h

Ax = b,

where x ∈ Rn is the optimization variable, c ∈ Rn, d ∈ R,G ∈ Rm×n, h ∈ Rm

A ∈ Rp×n, b ∈ Rp.
• Quadratic Programming. We say that a convex optimization problem is a

quadratic program (QP) if the inequality constraints gi are still all affine, but
if the objective function f is a convex quadratic function. In other words, these
problems have the following form:

min 1
2x

T Px + cT x + d

s.t. Gx ≤ h

Ax = b,

where again x ∈ Rn is the optimization variable and c ∈ Rn, d ∈ R,G ∈
Rm×n, h ∈ Rm A ∈ Rp×n, b ∈ Rp are defined by the problem, and we also have
P ∈ Sn+ as a symmetric positive semidefinite matrix.

• Quadratically Constrained Quadratic Programming(QCQP). We say that a
convex optimization problem is a quadratically constrained quadratic program
if both the objective f and the inequality constraints gi are convex quadratic
functions:

min 1
2x

T Px + cT x + d

s.t. 1
2x

T Qix + rT
i x + si ≤ 0, i = 1, . . . , m

Ax = b,

where, as before, x ∈ Rn is the optimization variable, c ∈ Rn, d ∈ R,A ∈
Rp×n, b ∈ Rp P ∈ Sn+, and we also have Qi ∈ Sn+, ri ∈ Rn, si ∈ R, for
i = 1, . . . , m.
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• Semidefinite Programming. This last example is more complex than the
previous ones, so don’t worry if it doesn’t make much sense at first. However,
semidefinite programming is becoming more prevalent in many areas of machine
learning research, so you might encounter these at some point, and it is good to
have an idea of what they are. We say that a convex optimization problem is a
semidefinite program (SDP) if it is of the form

min tr(CX)

s.t. tr (AiX) = bi, i = 1, . . . , p
X ≥ 0,

where the symmetric matrix X ∈ Sn is the optimization variable, symmetric
matrices C,A1, . . . , Ap ∈ Sn are defined by the problem, and the constraint
X ≥ 0 means that we are constraining X to be positive semidefinite. This looks
a bit different than the problems we have seen previously, since the optimization
variable is now a matrix instead of a vector.

Remark 4.11 It is needed to note that quadratic programs are more general than
linear programs since a linear program is just a special case of a quadratic program
and likewise that quadratically constrained quadratic programs are more general
than quadratic programs. However, what is not obvious is that semidefinite programs
are in fact more general than all the previous types, that is, any quadratically
constrained quadratic program (and hence any quadratic program or linear program)
can be expressed as a semidefinite program.

4.3.4 Quadratic Convex Optimization

Quadratic optimization (QP) plays an important role in many fields such as mathe-
matics, economy, biology, etc. Generally, we can express the quadratic optimization
problem in the following form:

Prime problem :
min F(x) = 1

2
xT Gx + cT x

s.t. aT
i x − bi = 0, i ∈ E = {1, . . . , l}

aT
i x − bi ≥ 0, i ∈ I = {l + 1, . . . , q},

(4.35)

where G ∈ Sn and c ∈ Rn. Feasible region is � = {x ∈ Rn|aT
i x − bi = 0, i ∈

E = {1, . . . , l}, aT
i x − bi ≥ 0, i ∈ I = {l + 1, . . . , q}. If G ∈ Sn+, it shows

that problem (4.35) is a convex optimization. For a convex optimization problem,
because local minimum of convex optimization is global minimum, KKT condition
becomes a necessary and sufficient condition for global minimum.
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An effective method is active-set method for convex quadratic problem. First we
give definition of active set.

Definition 4.13 (Active Set) For a feasible point x ∈ �, active set of x is

I (x) = {i|aT
i x − bi = 0, i ∈ I }. (4.36)

By using active set, we can transform prime problem to problem with only equality
constraints.

Theorem 4.7 Assume x∗ is global minimizer of problem (4.35) and active set of x∗
is denoted by I ∗; then x∗ is global minimizer of the following QP constrained by
equalities.

(II) : min
1

2
xT Gx + cT x

s.t. aT
i x − bi = 0, i ∈ I ∗ ∪ E.

(4.37)

Proof If x∗ is global minimizer of (min QP), then x∗ satisfies KKT equations of
(min QP).

⎧
⎪⎪⎨

⎪⎪⎩

Gx∗ + c − ∑
i∈E λiai − ∑

i∈I λiai = 0

aT
i x − bi = 0, i ∈ E

λi ≥ 0, i ∈ I ∗; λi = 0, i ∈ I\I ∗,
(4.38)

which is equivalent to equation

⎧
⎪⎪⎨

⎪⎪⎩

Gx∗ + c − ∑
i∈E∪I∗ λiai = 0

aT
i x − bi = 0, i ∈ E

λi ≥ 0, i ∈ I ∗,
(4.39)

First two equations show x∗ is a global minimizer of (II). ��
Theorem 2.1 shows that if we know an active set of x∗, we can directly solve

(II) and obtain the global minimizer of prime problem. Next we design an active
set method to approach an accurate active set of x∗. Our consideration is that given
initial point x0, we calculate active set I0, and solve the corresponding subproblem.
By iteration, we change Ik and hope Ik → I ∗.

Algorithm:
Step [1]. Construct subproblem and obtain searching direction.
Assume xk is a feasible point and Ik = I (xk) ∪ E. Subproblem is
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{
min 1

2x
T Gx + cT x

s.t. aT
i x = bi, i ∈ Ik.

(4.40)

Assume x = xk + d and above suboptimization can be transformed in terms of d:

{
min 1

2d
T Gd + gT

k d

s.t. aT
i d = 0, i ∈ Ik,

(4.41)

where gk = ∇f (xk) = Gxk + c. Assume global optimal point is dk . λk is a
corresponding Lagrangian multiplier.

Step [2]. If dk �= 0, we make a line search.
Step [2.1]. If xk + dk is feasible point of (min QP), then we assume xk+1 =

xk + dk . Maximum step of line search is denoted by αk . In Step [2.1], we assume
αk = 1.

Step [2.2]. If xk + dk is not a feasible point of prime problem.
Next we fix dk and assume d = αdk, α ∈ (0, 1). We want to regard α as an

optimization variable. By substituting d = αdk into (4.41), We obtain the following
problem in terms of α.

⎧
⎨

⎩

min F(α) :=
(
1
2d

T
k Gdk

)
α2 + (gT

k dk)α

s.t. 0 < α < 1.
(4.42)

It can be verified that F is a decreasing function.
In order to get a feasible point x, we require to solve the following problem:

ᾱk := argmax α

s.t. xk + αdk ∈ �.
(4.43)

By detailed calculation, we get

ᾱk = min
i /∈Ik

{
bi − aT

i xk

aT
i dk

∣
∣
∣
∣a

T
i dk < 0

}

. (4.44)

Combining Step [2.1] and Step [2.2], we get

αk = min{1, ᾱk}
xk+1 = xk + αkdk.

(4.45)

Step [3]. Update active set Ik .
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For αk < 1, αk = ᾱk = bt−aT
t xk

aT
t dk

(t ∈ (I ∪E)\Ik). Then aT
t (xk +αkdk) = bt . This

is equivalent to increase in active constraint in xk+1, Ik+1 = Ik ∪ t . When αk = 1,
active set is unchanged, Ik+1 = Ik .

Step [4]. Convergence test.
If dk = 0, xk is global minimizer of subproblem.
Furthermore, we focus on Lagrange multipliers of the subproblem. If Lagrange

multipliers corresponding to inequality are non-negative, xk satisfies KKT equations
of the prime problem. It derives that xk is the global optimal solution, and iteration
is stopped.

If there are negative Lagrange multipliers corresponding to inequality, we need
to choose a new feasible decreasing direction for the prime problem. Assume λ

(k)
s <

0, s ∈ Ik\E. Next we solve the following optimization problem:

min
1

2
dT Gd + gT

k d

s.t. aT
j d = 0, j ∈ I ′

k = Ik\{s}
(4.46)

It can be verified that the optimal minimizer d∗ of (4.46) is not equal to 0, and we
continue to proceed Step [2].

End of algorithm.

4.4 Non-convex Optimization

In this section, we consider non-convex optimization problem. We introduce a
type of effective method for a general optimization problem: sequential quadratic
programming (SQP). The general optimization problem is described below.

min f (x)

s.t. hi(x) = 0, i ∈ E = {1, 2, · · · , l},
gi(x) ≥ 0, i ∈ I = {1, 2, · · · ,m},

(4.47)

where f, hi, gj are assumed to be differentiable functions. The basic thought of
SQP is that in each iteration step, we will solve a QP subproblem to determine
a decreasing direction. Followed by reducing cost function, we will determine
step size. Finally, by repeating this process, we will obtain an approximate local
minimizer.
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4.4.1 Newton-Lagrange Method

First we consider a problem constrained only by equalities.

{
min f (x)

s.t. hi(x) = 0, i ∈ E = {1, 2, · · · , l}. (4.48)

We denote h(x) = (h1(x), h2(x), · · · , hl(x))T . Then the Lagrangian function
is L(x,μ) = f (x) − μT h(x), where μ = (μ1, μ2, · · · , μl)

T are Lagrangian
multipliers. KKT conditions (Lagrangian multiplier method) is

∇L(x,μ) =
(∇xL(x, μ)

∇μL(x, μ)

)

=
(∇f (x) − A(x)T μ

−h(x)

)

= 0, (4.49)

where A is a Jacobian matrix of h(x), i.e., A = (∇h1, · · · ,∇hn)
T :� ∇h(x)T .

Next we use the Newton iterative method to solve nonlinear equation (4.49). First
we calculate Jacobian matrix of ∇L(x,μ).

N(x,μ) =
(

W(x,μ) −A(x)T

−A(x) 0,

)

(4.50)

where W(x,μ) = ∇xxL(x, μ) = ∇2f (x) − ∑l
i=1 μi∇2hi(x).

Then Newton iterative format is given below. We denote zk = (xk, μk)
T , zk+1 =

zk + pk , where pk = (dk.vk)
T satisfies N(xk, μk)pk = −∇L(xk, μk), i.e.,

(
W(x,μ) −A(x)T

−A(x) 0

)(
dk

vk

)

=
(−∇f (xk) + A(xk)

T μk

h(xk)

)

. (4.51)

Essentially, in the above method, we use Newton iterative method to solve KKT
conditions. Thus, we call it Newton-Lagrange method. The disadvantage of this
method is numerical instability when solving nonlinear equations.

4.4.2 SQP Constrained by Equalities

In this subsection, we still consider optimization (4.48). In order to improve
numerical stability, we introduce sequential quadratic programming. Basic thought
is to transform (4.49) to a convex quadratic optimization problem.

We assume local minimizer x∗ in (4.48) satisfying second-order optimality
sufficient condition (OSOSC), i.e., ∀0 �= d ∈ Rn satisfying A(x∗)d = 0,
dT W(x∗, μ∗)d > 0 holds. OSOSC can guarantee x∗ is strictly local minimizer.
Next we introduce a lemma.
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Lemma 4.1 Let U ∈ Rn×n, S ∈ Rn×m. Then ∀x �= 0 s.t. ST x = 0, xT Ux >

0 ⇐⇒ there exists a positive constant σ ∗ > 0, ∀σ ≥ σ ∗, U + σSST > 0 holds
on.

Proof Sufficiency: For ST x = 0, we have

xT Ux = xT (U + σ ∗SST )x > 0. (4.52)

Necessaty: If we can find a number σ ∗ > 0 such that xT (U + σ ∗SST )x > 0, then
for any σ ≥ σ ∗, it is easy to get xT (U + σSST )x > 0. Next, we will prove there
exists σ ∗ satisfying the above condition. Otherwise, there exists a sequence {xk}
and ‖xk‖ = 1 such that xT

k (U + kSST )xk ≤ 0. By Bolzano theorem, {xk} has a
convergent subsequence {xki

} → x̄ such that

xT
ki

(U + kiSST )xki
≤ 0. (4.53)

By putting limit ki → ∞, we get

x̄T Ux̄ + lim
ki→∞ kix

T
ki

SST xki
≤ 0 �⇒ ST x = 0 (4.54)

and x̄T Ux̄ ≤ 0—a contradiction! ��
Then by Lemma 4.1, for sufficiently small r > 0, we have

W(x∗, μ∗) + 1

2r
A(x∗)T A(x∗) > 0. (4.55)

Then we can rewrite Eq. (4.51).

[W(xk, μk) + 1

2r
AT (xk)A(xk)]dk − A(xk)

T [μk + vk + 1

2r
A(xk)dk] = −∇f (xk)

A(xk)dk = −h(xk).

(4.56)
If we denote B(xk, μk) :� W(xk, μk) + 1

2r A
T (xk)A(xk) and μ̄k :� μk + vk +

1
2r A(xk)dk , Eq. (4.51) will be equivalent to the below equation:

(
B(xk, μk) −A(xk)

T

A(Xk) 0

) (
dk

μ̄k

)

= −
(∇f (xk)

h(xk)

)

. (4.57)

Since B(x∗, μ∗) > 0, when (xk, μk) → (x∗, μ∗), B(xk, μk) > 0 holds on. We
assume A(xk) is a row nonsingular matrix so that the above equation is solvable.
Furthermore, we can transform Eq. (4.57) to a convex quadratic programming by
the following lemma.
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Lemma 4.2 Let B(xk, μk) > 0 be positive definite. Thus dk satisfies Eq. (4.57) if
and only if dk is a global minimum point of the following strictly convex quadratic
programming:

{
mind qk(d) = 1

2d
T B(xk, μk)d + ∇f (xk)

T d,

s.t. h(xk) + A(xk)d = 0.
(4.58)

Proof We use equivalence form to prove this lemma. Thus,

dk is global minimum

⇐⇒ (dk, λk) satisfies KKT condition, where λk is KKT multiplier.

(Since (4.58) is a convex quadratic optimization)

⇐⇒ ∇L(dk, λk) =
(∇dL(dk, λk)

∇λL(dk, λk)

)

= 0,

where L(d, λ) = qk(d) − λT (h(xk) + A(xk)d).

⇐⇒
{

B(xk, λk)dk + ∇f (xk) − A(xk)
T λk = 0

h(xk) + A(xk)dk = 0

⇐⇒ dk is solution of Eq. (4.57).

(4.59)

��

4.4.2.1 SQP in General Case

In this section, we consider to extend thought to solve the general optimization
problem (4.47). Given point (xk, μk, λk), we make linearization for constrained
functions, calculate Hessian matrix of Lagrangian function, and obtain the following
QP suboptimization problem by analogy of (4.58):

min
d

1

2
dT Bkd + ∇f (xk)

T d

s.t. hi(xk) + ∇hi(xk)
T d = 0, i ∈ E = {1, 2, · · · , l}

gi(xk) + ∇gi(xk)
T d ≥ 0, i ∈ I = {1, 2, · · · ,m},

(4.60)

where Bk is a positive definite approximation of ∇xxL(xk, μk, λk) and
L(xk, μk, λk) = f (x) − ∑

i∈E μihi(x) − ∑
i∈I λigi(x) is Lagrangian function.

Thus, we can define optimal solution d∗ of (4.60) as update direction dk . For
convenience of discussion, we assume that in suboptimization problem (4.60), there
exists a feasible point.
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Table 4.1 General SQP algorithm

Step 0 Give initial point (x0, μ0, λ0) ∈ Rn × Rl × Rm,

symmetric positive definite matrix B0 ∈ Rn×n

Calculate AE
0 = ∇h(x0)

T , AI
0 = ∇g(x0)

T , A0 =
(

AE
0

AI
0

)

.

Select parameter η ∈ (0, 0.5), ρ ∈ (0, 1)

Tolerance error 0 ≤ ε1, ε2 � 1, assume k := 0

Step 1 Solve suboptimization problem
⎧
⎪⎨

⎪⎩

mind
1
2dT Bkd + ∇f (xk)

T d

s.t. h(xk) + AE
k d = 0

g(xk) + AI
kd ≥ 0

and obtain optimal solution dk

Step 2 If ‖dk‖1 � ε1, ‖h(xk)‖1 + ‖g(xk)−‖ � ε2,

we stop algorithm and obtain an approximate

KKT point (xk, μk, λk)

Step 3 For some cost function φ(x, σ ), we select

penalty parameter σk so that dk is a decreasing

direction at xk

Step 4 Armijo searching. Assume mk is minimal nonnegative integer m

satisfying below inequality

φ(xk + ρmdk, σk) ≤ φ(xk, σk) + ηρmφ′(xk, σk; dk)

Assume step size αk := ρmk and

update xk+1 := xk + αkdk

Step 5 Calculate AE
k+1 = ∇h(xk+1)

T , AI
k+1 = ∇g(xk+1)

T

Ak+1 =
(

AE
k+1

AI
k+1

)

. And KKT multiplier
(

μk+1

λk+1

)

= [Ak+1, A
T
k+1]−1Ak+1∇f (xk+1)

Step 6 Update matrix Bk to Bk+1. Assume sk = xk+1 − xk,

yk = ∇xL(xk+1, μk+1, λk+1) − ∇xL(xk, μk+1, λk+1)

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ zkz
T
k

sT
k zk

,

where zk = θkyk + (1 − θk)Bksk and

θk =
⎧
⎨

⎩

1, if sT
k yk ≥ 0.2sT

k Bksk
0.8sT

k Bksk

sT
k Bksk−sT

k yk
, if sT

k yk < 0.2sT
k Bksk

Step 7 Assume k := k + 1 and return to Step 1

In summary, we conclude with the SQP algorithm of a general constrained
optimization in Table 4.1.
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4.5 Exercises

1. Let X ⊂ Rn be a non-empty, closed, and convex set and z ∈ Rn. Prove there
exists a unique point x̄ ∈ X such that

dist(z,X) := min{‖z − x‖|x ∈ X}
= ‖z − x̄‖ (4.61)

and (z − x̄)(x − x̄) ≤ 0,∀x ∈ X.
2. Let X ⊂ Rn be a non-empty and convex set and z /∈ cl(X), where cl(X) denotes

the closure of X. Prove that there exists a hyperplane H := {y ∈ Rn|ay = b}
determined by a, b such that following statement holds:

ax ≥ b > az (4.62)

for arbitrary x ∈ X.
3. Dual set of X ⊂ Rn is defined as X∗ = {y|yx ≥ 0,∀x ∈ X}. Prove that (1)

(Rn+)∗ = Rn+ and (2) (Sn+)∗ = Sn+.
4. Given a linear programming optimization as follows:

min cT x

s.t. Ax ≥ b,

x ∈ Rn+.

(4.63)

Prove that its corresponding Lagrange duality problem is also the following linear
programming:

max bT λ

s.t. AT λ ≤ c,

λ ∈ Rm+ .

(4.64)

5. Given a quadratic programming optimization as follows:

min
1

2
xT Ax

s.t.
1

2
xT Bx ≤ 1,

x ∈ Rn+.

(4.65)
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where A ∈ Sn is symmetric and B ∈ Sn++ is positive definite. Prove that its
Lagrange duality problem is

max − σ

s.t. A + σB ∈ Sn+,

σ ≥ 0.

(4.66)

6. Given function f (x) = −2
√−x,X = {x ∈ Rn|x ≤ 0}, verify its corresponding

conjugate function is h(y) = 1
y
, y > 0.

7. Assume function f defined on X with its conjugate h defined on Y. Prove that

xy ≤ f (x) + h(y),∀x ∈ X and y ∈ Y (4.67)

and xy = f (x) + h(y) is equivalent to y ∈ ∂f (x), where ∂f (x) denotes the
subgradient.

8. Show that for optimization problem, its optimal value might not be attainable.
9. Let A ∈ Sn with its associated eigenvalues λ1, λ2, · · · , λn. Prove that if x �= 0,

then

min
1≤i≤n

{λi} ≤ xAx

xx
≤ max

1≤i≤n
{λi} (4.68)

References

1. S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

2. R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
3. S. Fang and W. Xing. Linear cone optimization North Carolina State University, 2013.
4. G. Gallo and S. Pallottino. Shortest path algorithms. Annals of Operations Research, 13(1):1–

79, 1988.
5. D. B. Johnson. (1973). A note on Dijkstra’s shortest path algorithm. Journal of the ACM,

20(3):385–388, 1973.
6. N. Karmarkar. A new polynomial-time algorithm for linear programming. Proceedings of the

16th Annual ACM Symposium on Theory of Computing, 302–311, 1984.
7. J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7(4):308–313, 1965.
8. R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1):267–288, 1996.
9. S. Wold, K. Esbensen and P. Geladi. Principal component analysis. Chemometrics and

Intelligent Laboratory Systems, 2(1–3):37–52, 1987.



Part II
Filtering Theory



Chapter 5
Filtering Equations

In this chapter, we shall introduce the most important results for continuous filtering
problem. we will introduce stochastic partial differential equations satisfied by the
filtered posterior distribution, which is well-known as the Kushner-Stratonovich
equation. We will use two different methods to derive this equation, namely, the
change-measure method and innovation process method. In the change-measure
method, we will introduce the conditional density formula for the continuous
type, and we will derive an equation satisfied by a unnormalized conditional
density function, which is well-known as Duncan-Mortensen-Zakai equation. In
application, observations are not a sequence of probability distributions but a
specific sampled path. At the end of this chapter, we present the robust DMZ
equation designed for path-observation, which is used as a special change-measure
method.

5.1 Introduction to Filtering Equations

A filtering problem is about to compute the conditional distribution of a state process
Xt , which is somehow not easy to observe directly, given an observation process Yt ,
which provides the information of the state process Xt , and can be observed. In
practice, the state process Xt and the observation process Yt are often modeled by
two diffusion processes on a given probability space.

Let (�,F, P ) be a probability space with a filtration (Ft ) satisfying the usual
conditions. The state process X = (Xi)di=1 is given by the solution of a d-
dimensional stochastic differential equation driven by a p-dimensional Brownian
motion V = (V j )

p

j=1:
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Xi
t = Xi

0 +
∫ t

0
f i(Xs)ds +

p∑

j=1

∫ t

0
σ ij (Xs)dV

j
s , (5.1)

where in order to guarantee the existence of a solution to the stochastic differential
equation (5.1), we assume that f = (f i)di=1 : Rd → Rd and σ = (σ ij )di,j=1 :
Rd → Rd×d are Lipschitz continuous, that is, there exists a positive constant K ∈
R+, such that for all x, y ∈ Rd , we have

‖f (x) − f (y)‖ ≤ K‖x − y‖; ‖σ(x) − σ(y)‖ ≤ K‖x − y‖. (5.2)

Define a matrix-valued function a = (aij )di,j=1 as follows:

aij = 1

2

p∑

k=1

σ ikσ jk,

i.e., a = 1
2σσ�.

Consider the second-order differential operator

A =
d∑

i=1

f i ∂

∂xi

+
d∑

i,j=1

aij ∂2

∂xi∂xj

.

The theory in Sect. 3.2 shows that for any twice differentiable, bounded, continuous
function ϕ ∈ C2

b(Rd), the process Mϕ = {Mϕ
t : t ≥ 0} defined by

M
ϕ
t = ϕ(Xt ) − ϕ(X0) −

∫ t

0
A ϕ(Xs)ds (5.3)

is a martingale.
The observation process is modeled by the following equation:

Yt = Y0 +
∫ t

0
h(Xs)ds + Wt, (5.4)

where h = (hi)
m
i=1 : Rd → Rm is a measurable function such that

P

(∫ t

0
‖h(Xs)‖ds < ∞

)

= 1.

in order to guarantee that the integration in (5.4) makes sense. Wt is another Ft

adapted Brownian motion on (�,F, P ) independent of X. Denote the filtration
generated by the observation process Yt by
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Yt = σ (Ys, 0 ≤ s ≤ t) ,

which represents the information we can obtain through the observations until
time t .

The filtering problem is about to give an estimation to the state process at each
time t based on the observations up to time t . Mathematically, at each time t , we
would like to compute the conditional expectation of Xt given the information Yt

in order to get a minimal mean square error estimate of Xt .
In this chapter, we will derive the evolution equations satisfied by the conditional

distribution πt defined by

πt (ϕ) = E[ϕ(Xt )|Yt ], ∀ϕ ∈ Cb(R
d). (5.5)

In the next two sections, we will deduce the evolution equations through
two different approaches, i.e., the change of probability measure approach and
the innovation process approach. After that, we will consider the existence and
evolution equations satisfied by the density function of the conditional distribution.
At last, we will consider a robust form of the evolution equation of density function,
which is widely used in numerical computations.

5.2 The Change of Probability Measure Method

As the beginning, we shall start with an easy example. If the observation equation is
h(x) = 0, the Yt = Wt holds, and the Yt is independent with Xt , which makes the
E[Xt |Yt ] = E[Xt ].

So for any 0 ≤ t ≤ T , how to transform the general Yt to be independent with Xt

becomes an important starting point to derive the equation satisfied by the posterior
density function. Girsanov’s theorem provides a wonderful solution for our start
point. Basically, we can define a new measure P̃ equivalent to the original measure
P . And the Yt is a standard Brownian motion under P̃ , and it is independent with
Xt .

Next, a powerful tool called Girsanov’s theorem is introduced as follows.

Theorem 5.1 LetMt be a continuous martingale on a Probability space (�,Ft , P )

for t ≥ 0, and let Tt satisfy the following SDE:

dTt = TtdMt with T0 = 1, for t ∈ [0,∞). (5.6)

Or Tt can be the associated exponential martingale,

Tt = exp(Mt − 1

2
〈M〉t ). (5.7)
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If Tt is an uniformly integrable martingale, there is new measure Q equivalent to
P , which is defined by

dQ

dP
:= T∞. (5.8)

Furthermore, if X is a continuous P local martingale, then Xt − 〈X,M〉t is a Q

local martingale.

Proof Because the Tt is a a uniformly integrable martingale, then there is a random
variable T∞ and Tt = E[T∞|Ft ]. Furthermore, the Q is a probability measure that
is equivalent to P .

Now consider Xt , which is a P local martingale. Consider the process Yt defined
via

Yn
t := Xt∧sn − 〈X,M〉t∧sn , (5.9)

where the sn := inf {t ≥ 0 : |Xt | > n or |〈X,M〉| ≥ n}.
By applying Itô’s formula to TtY

n
t ,

d(TtY
n
t ) = TtdY n

t + Yn
t dTt + d〈T , Y n〉t

= Tt (dXt − d〈X,M〉t ) + Yn
t TtdMt + d〈T , Y n〉t

= (Xt − 〈X,M〉t )TtdMt + TtdXt ,

(5.10)

where the result 〈T , Y n〉t = Tt 〈X,M〉t holds due to the Kunita-Watanabe identity
and t ≤ sn. So, TtY

n
t is a P local martingale. Furthermore, Tt is uniformly

integrable, and Yn
t is bounded, which makes the TtY

n
t P martingale.

Next we verify that Yn
t is Q martingale, for any s < t and A ∈ Fs , there is

EQ[(Y n
t −Yn

s )1A] = EP [T∞(Y n
t −Yn

s )1A] = E[(TtY
n
t −TsY

n
s )1A] = 0. (5.11)

Hence, Yn
t is aQ-martingale. Take n → ∞; theX−〈X,M〉t is aQ local martingale.

�
Now we can get back to our filtering problem. It is clear that the observation

process can be decomposed as follows:

Yt = Wt +
∫ t

0
h(Xs)ds for t ≥ 0, (5.12)

where Wt is a P−Brownian motion. Define P̃ = Q as in the Theorem 5.1, and
W̃t = Wt − 〈W,M〉t . Then, since 〈W 〉t = tIm for all t ≥ 0 and 〈W 〉t = 〈W̃ 〉t
where Im is m dimensional identity matrix, it follows from Levy’s characterization
of Brownian motion that W̃t is a Q−Brownian motion.
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If there is a Mt process that makes W̃t = Wt + ∫ t

0 h(Xs)ds hold, then we can
reduce the general filtering problem to the trivial cases we give at the beginning of
this section, which is that Yt is independent with Xt . It is easy to find that

dMt = −
m∑

i=1

h(Xt )dWi
t

satisfies the conditions we need. Now, there are only two assumptions that are
needed in constructing the new measure P̃ by using Theorem 5.1:

• The Tt associated with Mt := −∑m
i=1

∫ t

0 hi(Xs)dWi
s ds in Theorem 5.1 need to

be a uniformly integrable martingale.
• The Tt need to be an Ft -adapted martingale.

Firstly, Let T = {Tt , t > 0} be the process defined by

Tt = exp(−
m∑

i=1

∫ t

0
hi(Xs)dWi

s − 1

2

m∑

i=1

∫ t

0
hi(Xs)

2ds), t ≥ 0. (5.13)

There is the condition to guarantee that Tt is a martingale, which is well-known as
Novikov’s condition as follows:

E

[

exp(
1

2

m∑

i=1

∫ t

0
hi(Xs)

2ds)

]

< ∞ for all t ≥ 0. (5.14)

By using Lemma 3.9 in [1], the condition can be changed into the following:

E

[ m∑

i=1

∫ t

0
hi(Xs)

2ds

]

< ∞ for all t ≥ 0. (5.15)

Similarly, expectations of
∫ t

0 hi(Xs)
2ds should also be finite under the new

measure, which is

E

[ m∑

i=1

∫ t

0
Tsh

i(Xs)
2ds

]

< ∞ for all t ≥ 0. (5.16)

A complete proof of the required properties in 5.2 obtained by condi-
tion (5.15), (5.16) is given by the following Lemma.

Lemma 5.1 Let T = {Tt , t > 0} defined in (5.13) be an RCLL m-dimensional
process such that condtions (5.15), (5.16) hold and then Tt is an integrable
martingale and is an Ft -adapted martingale.



146 5 Filtering Equations

Proof From (5.15), we see that the process

t → −
m∑

i=1

∫ t

0
hi(Xs)dWi

s , (5.17)

is a continuous (square-integrable) martingale with quadratic variation process

m∑

i=1

∫ t

0
(h(Xt )

i)2ds.

By Itô’s formula, the process Tt satisfies the equation

Tt = 1 −
m∑

i=1

∫ t

0
Tsh

i(Xs)dWi
s . (5.18)

So, Tt is a non-negative, continuous, local martingale. It is a continuous super-
martingale by using Fatou’s lemma. In order to prove that Tt is a martingale, it
is enough to show that it has a constant expectation.

Firstly, the following equation is held by the supermartingale property:

E[Tt ] ≤ E[T0] = 1.

And we only need to prove that for any t ≥ 0

E

[∫ t

0

m∑

i=1

T 2
s (hi(Xs))

2

]

< ∞.

If Tt is bounded, the

E

[∫ t

0

m∑

i=1

T 2
s (hi(Xs))

2

]

< ‖Tt‖∞E

[∫ t

0

m∑

i=1

Ts(h
i(Xs))

2

]

< ∞,

by the condition (5.15). So we need to deal with the cases Tt is unbounded. We can
construct the Tt

1+εTt
, for some ε > 0. By Itô’s formula,

Tt

1 + εTt

= 1

1 + ε
+

m∑

i=1

∫ t

0

Tt

(1 + εTt )2
hi(Xs)dWi

s

−
m∑

i=1

∫ t

0

εT 2
t

(1 + εTt )3
hi(Xt )

2ds.

(5.19)
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The second part of (5.19), which is

E

[
m∑

i=1

∫ t

0

T 2
t

(1 + εTt )4
(hi(Xs))

2ds

]

≤ 1

ε2
E

[
m∑

i=1

∫ t

0
hi(Xs)

2ds

]

< ∞,

where the last inequality holds by (5.15).
From the third part in (5.19), it follows that

E

[
m∑

i=1

∫ t

0

T 2
s

(1 + εTs)3
(hi(Xs))

2ds

]

≤ E

[
m∑

i=1

∫ t

0
(

εTs

(1 + εTs)
)Ts(h

i(Xs))
2ds

]

< ∞. (5.20)

By taking the limit which is that ε tends to 0. And the proof is completed. �
The above change of probability measure method (CPMM) can be summarized

as follows:

Measure P The Brownian motion Wt
CPMM−→ Measure P̃t The Brownian motion Yt

(5.21)

where dP̃t

dP
= Tt holds for any t ≥ 0, and it is well defined since Radon-Nikodym

derivative with respect to P to be given by Tt .
There is a clear clue in the following, which is to represent the filtering equations

into the new measure P̃t , which required the reverse Radon-Nikodym derivative
dP

dP̃t
= T −1

t .

For Itô’s formula,

d(T −1
t ) = −(T −1

t )2dTt = T −1
t

(
m∑

i=1

hi(Xt )dWi
t

)

with T −1
0 = 1, (5.22)

where the measure is P .
The measure P for Wt is equal to the measure P̃t for Yt by (5.21). Furthermore,

we donate the T −1
t = T̃t , and (5.22) will become

dT̃t =
m∑

i=1

T̃th
i(Xt )dY i

t with T̃0 = 1. (5.23)

The well-defines for T̃t is similar with Tt .
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5.3 The DMZ Equation

In this section, we will introduce the Kallianpur-Striebel formula, which can be
considered as the continuous version of Baye’s formula.

In the following, we denote that

E[ξ ] =
∫

�

ξdP, Ẽ[ξ ] =
∫

�

ξdP̃t , (5.24)

where ξ is a random variable and P, P̃ are defined in (5.21).

Proposition 5.1 (Kallianpur and Striebel [5]) Let us assume that condi-
tions (5.15) and (5.16) hold. For every ϕ ∈ L∞(Rd, R), which is a bounded
and measurable function, for any fixed t ∈ [0,∞),

πt (ϕ) = Ẽ[T̃tϕ(Xt )|Y]
Ẽ[T̃t |Y] P̃ − a.s. (5.25)

where the T̃t is defined in (5.23).

Proof It is clear from the (5.23) that T̃t ≥ 0, and it is observed that

0 = Ẽ[1{T̃t=0}T̃t ] = E[1{T̃t=0}] = P(T̃t = 0) = 0. (5.26)

So, it follows that T̃t > 0, P − a.s. as a consequence of which Ẽ[T̃t |Y] > 0, P −
a.s..

So we only need to prove the following statements:

πt (ϕ)Ẽ[T̃t |Y] = Ẽ[T̃tϕ(Xt )|Y] P̃ − a.s. (5.27)

As both left- and right-hand sides of this equation areYt -measurable, we can prove
this equation with a standard functional point of view, which is for any test bounded
and Yt -measurable random variable α,

Ẽ[πt (ϕ)Ẽ[T̃t |Y]α] = Ẽ[Ẽ[T̃tϕ(Xt )|Y]α] P̃ − a.s. (5.28)

A consequence of the definition of the process πt is that πt (ϕ) = E[ϕ(Xt )|Yt ]
P̃ − a.s., so from the definition of Kolmogorov conditional expectation

E[πt (ϕ)α] = E[ϕ(Xt )α]. (5.29)

Writing this under the measure P̃t ,

Ẽ[πt (ϕ)αT̃t ] = Ẽ[ϕ(Xt )αT̃t ]. (5.30)
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By the tower property of the conditional expectation, since by assumption the
function α is Yt−measurable. �
Definition 5.1 Define the un-normalized conditional distribution of X to be the
measure-valued process ρ = {ρt , t ≥ 0}, which is determined by the values of ρt (ϕ)

for any ϕ is bound and measure, which are given for t ≥ 0 by

ρt (ϕ) := πt (ϕ)ζt . (5.31)

Lemma 5.2 The process {ρt , t ≥ 0} is a RCLL andYt−adapted. Furthermore, for
any t ≥ 0,

ρt (ϕ) = Ẽ[T̃tϕ(X)t |Yt ] P̃ − a.s.. (5.32)

Proof Both πt (ϕ) and ζt areYt -adapted. By construction, {ζ, t ≥ 0} is also RCLL.
By Sect. 3.2, {πt , t ≥ 0} is RCLL andYt -adapted; therefore, the process {ρt , t ≥ 0}
is also RCLL and Yt -adapted. For the second part, it follows that

πt (ϕ)Ẽ[T̃t |Yt ] = Ẽ[T̃tϕ(Xt )|Yt ] P̃ − a.s. (5.33)

�
Corollary 5.1 Assume that conditions (5.15) and (5.16) hold. For every ϕ ∈
L∞(Rd, R), which is a bounded and measurable function,

πt (ϕ) = ρt (ϕ)

ρ(1)
∀t ∈ [0,∞). (5.34)

Proof The result is a direct consequence of Definition 5.1 . �
In the following, we further assume that for all t ≥ 0,

P̃

[∫ t

0
ρs(‖h‖)2 < ∞

]

= 1. (5.35)

Theorem 5.2 If conditions (5.15) and (5.16) hold and (5.35) are satisfied, then
the process ρt satisfies the following evolution equation, called the DMZ equation
[4, 8, 10]:

ρt (ϕ) = π0(ϕ) +
∫ t

0
ρs(A ϕ)ds +

∫ t

0
ρs(ϕhT )dYs, P̃ − a.s. ∀t ≥ 0, (5.36)

for all ϕ ∈ C2(Rd, R).

Proof The following equation holds by Itô’s formula:

d(T̃tϕ(Xt )) = T̃t (A ϕ(Xt ))dt + T̃t dM
ϕ
t + T̃th

T (Xt )ϕ(Xt )dYt . (5.37)
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If the T̃t is bounded, then the first term in the right-hand side can take the
expectation,

Ẽ
[
T̃t (A ϕ(Xt ))|Yt

]
= ρ(A ϕ). (5.38)

Furthermore, the second term is a well-defined martingale by the boundness of
T̃t :

Ẽ

[∫ t

0
T̃t dMϕ

s |Yt

]

= 0. (5.39)

The third term is well-defined since the quadratic variation of the process is

Ẽ

[∫ t

0
T̃ 2

s ‖h(Xs)‖2ds

]

≤ ‖Ts‖∞Ẽ

[∫ t

0
T̃s‖h(Xs)‖2ds

]

= ‖Ts‖∞E

[∫ t

0
‖h(Xs)‖2ds

]

< ∞,

(5.40)

where the last inequality holds by the condition (5.15).
For general cases, we can use a bounded trick, which is to approximate T̃t with

T̃ ε
t given by

T̃ ε
t = T̃t

1 + εT̃t

.

Using Itô’s rule and integration by parts, we find

d
(
T̃ ε

t ϕ(Xt )
)

=T̃ ε
t A ϕ(Xt )dt + T̃ ε

t dM
ϕ
t

− εϕ(Xt )(1 + εT̃t )
−3T̃ 2

t ‖h(Xt )‖2dt

+ ϕ(Xt )(1 + εT̃t )
−2T̃th

T (Xt )dYt .

Since T̃ ε
t is bounded, the following equation holds:

Ẽ

[∫ t

0
T̃ ε

t dMϕ
s |Y

]

= 0.

And similarly with the above methods, by taking conditional expectation, the
following equation holds:

Ẽ[T̃ ε
t ϕ(Xt )|Y] =π0(ϕ)

1 + ε
+
∫ t

0
Ẽ[T̃ ε

t A ϕ(Xs)|Y]ds
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−
∫ t

0
Ẽ

[

εϕ(Xs)(T̃
ε
t )2

1

(1 + εT̃t )
‖h(Xs)‖2|Y

]

ds

+
∫ t

0
Ẽ

[

T̃ ε
t

1

1 + εT̃t

ϕ(Xs)h
T (Xs)|Y

]

dYs. (5.41)

Furthermore, by using the following equation and Proposition B.41 in [1]:

Ẽ

⎡

⎣
∫ t

0
ϕ(Xs)

2 1

(1 + εT̃s)2

1

ε2

(
εT̃s

1 + εT̃s

)2

‖h(Xs)‖2ds

⎤

⎦

≤ ‖ϕ‖2∞
ε2

Ẽ

[∫ t

0
‖h(Xs)‖2ds

]

= ‖ϕ‖2∞
ε2

E

[∫ t

0
Ts‖h(Xs)‖2ds

]

, (5.42)

that limε→0
∫ t

0 Ẽ
[
T̃ ε

t
1

1+εT̃t
ϕ(Xs)h

T (Xs)|Y
]
dYs = ∫ t

0 Ẽ
[
T̃tϕ(Xs)h

T (Xs)|Y
]
dYs .

Now let ε tend to 0. Writing λ for Lebesgue measure on [0,∞), the following
hold:

lim
ε→0

T̃ ε
t = T̃t

lim
ε→0

Ẽ[T̃ ε
t ϕ(Xt )|Y] = ρt (ϕ) P̃ − a.s.

lim
ε→0

Ẽ[T̃ ε
t A ϕ(Xt )|Y] = ρt (A ϕ) λ ⊗ P̃ − a.s. (5.43)

We further assume boundness of A ϕ the random variable ‖A ϕ‖∞Ẽ[T̃t |Y],
which can be seen in L1([0, t] × �; λ ⊗ P̃ ) since

Ẽ

[∫ t

0
‖A ϕ‖∞Ẽ[T̃s |Y]ds

]

≤ ‖A ϕ‖∞
∫ t

0
Ẽ[Z̃sds] ≤ ‖A ϕ‖∞t < ∞.

Consequently by the conditional form of the dominated convergence theorem as
ε → 0,

Ẽ

[∫ t

0
Ẽ[T̃ ε

s A ϕ(Xs)|Y]ds

]

→ Ẽ

[∫ t

0
ρs(A ϕ)ds

]

, P̃ − a.s.

Using the definition of ρt , we see that by Fubini’s theorem

∫ t

0
Ẽ[T̃ ε

s A ϕ(Xs)|Y]ds →
∫ t

0
ρS(A ϕ)ds, P̃ − a.s.
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Next we have that for almost every t,

lim
ε→0

εϕ(Xs)(T̃
ε
s )2(1 + εT̃s)

−1‖h(XS)‖2 = 0, P̃ − a.s.

and
∣
∣
∣εϕ(Xs)(T̃

ε
s )2(1 + εT̃s)‖h(Xs)‖

∣
∣
∣

=
∣
∣
∣
∣
∣
ϕ(Xs)T̃s‖h(Xs)‖ εT̃s

1 + εT̃s

(1 + εT̃s)
−2

∣
∣
∣
∣
∣

≤ ‖ϕ‖∞T̃s‖h(Xs)‖2. (5.44)

The right-hand side of (5.44) is integrable over [0, t] × � with respect to λ ⊗ P̃

using condition 1:

Ẽ

[∫ t

0
T̃s‖h(Xs)‖2ds

]

= E

[∫ t

0
‖h(Xs)‖2

]

< ∞.

Thus, we can use the conditional form of the dominated convergence theorem to
obtain that

lim
ε→0

∫ t

0
εẼ

[
ϕ(Xs)(T̃

ε
s )2(1 + εT̃s)

−1‖h(Xs)‖2|Y
]
ds = 0.

So the proof is complete. �

5.4 The Innovation Process Method

In this section, we will use another method to derive the evolution equation of
conditional probability, which is based on a relevant process called innovation
process.

Definition 5.2 Assume that Y = {Yt : t ≥ 0} is the observation process of a
filtering problem satisfying the evolution equation:

Yt = Y0 +
∫ t

0
h(Xs)ds + Wt. (5.45)
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πs is the solution to the filtering problem, i.e., πs is the conditional distribution of
the state process Xs given Ys , and then the process I = {It : t ≥ 0} given by

It = Yt −
∫ t

0
πs(h)ds, (5.46)

is called the innovation process.

The innovation process defined above is in fact a Brownian motion.

Proposition 5.2 The innovation process defined by (5.46) is a Yt -adapted Brown-
ian motion.

Proof It is obvious that the innovation process is Yt -adapted. It is a continuous
martingale because

E[It |Ys] − Is = E

[∫ t

s

(h(Xr) − πr(h))dr

∣
∣
∣
∣Ys

]

. (5.47)

Since

E[πr(h)|Ys] = E[E[hr(Xr)|Yr ]|Ys] = E[h(Xr)|Ys], (5.48)

we have

E[It |Ys] = Is . (5.49)

In order to show that the innovation process It is a Brownian motion, it suffices to
calculate its cross variation. For any i, j , we have

〈I i, I j 〉t = 〈Wi,Wj 〉t = tδij , (5.50)

and {It : t ≥ 0} is a Brownian motion by Lemma 3.3. �
In order to introduce the innovation process method, we need the following version
of the well-known martingale representation theorem. The details of the theorem
can be found in monograph on stochastic analysis such as [6].

Proposition 5.3 (Martingale Representation Theorem) Assume that the follow-
ing conditions hold:

E

[∫ t

0
‖h(Xs)‖ds

]

< ∞,

P

(∫ t

0
‖πs(h)‖2ds < ∞

)

= 1.

(5.51)
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Then, every square integrable random variable η, which is Y∞ = σ
(∪t≥0Yt

)
-

measurable, has a representation of the form

η = E[η] +
∫ ∞

0
v�
s dIs, (5.52)

where v = {vt : t ≥ 0} is a progressively measurable Yt -adapted process such that

E

[∫ ∞

0
‖vs‖2ds

]

< ∞. (5.53)

Proof Let us consider the Hilbert subspace of square-integrable random variables
generated by I = {It : t ≥ 0}:

I =
{∫ ∞

0
v�
s dIs : E

[ ∫ ∞

0
‖vs‖2ds

]

< ∞
}

. (5.54)

Also, let us denote by I⊥ the orthogonal complement of I. Then, there is unique
decomposition for every Y∞-measurable square-integrable random variable η,
which is given by

η = Z +
∫ ∞

0
v�
s dIs, (5.55)

and Z ∈ I⊥ is orthogonal to every elements in I. It suffices to show that Z is
constant, and therefore, Z = E[η].

In fact, for every partition of the time interval [0, t], given by 0 = s0 < s1 <

· · · < sn = t , and bounded functions fk : Rd → R, k = 0, · · · , n, we have

E

[

(Z − E[Z])
n∏

k=0

fk(Isk )

]

= 0, (5.56)

according to the orthogonality of Z and I. The desired result holds because of the
Dynkin system theorem, the proof of which is left as the following exercise. �
Exercise 5.1 (Dynkin System Theorem) A collection D of subsets of a set � is
called a Dynkin system:

1. If � ∈ D.
2. If A,B ∈ D and B ⊂ A, then A/B ∈ D.
3. If {An}∞n=1 ⊂ D and A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · , then ∪∞

n=1An ∈ D.
Let C be another collection of subset of �, which is closed under pairwise
intersection. If D is a Dynkin system containing C, prove that D also contains the
σ -field σ(C) generated by C.
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The following result is a direct corollary of the above martingale representation
theorem.

Corollary 5.2 Under the conditions in Proposition 5.3, every continuous square
integrable martingale that is Yt -adapted has a representation

ηt = η0 +
∫ t

0
v�
s dIs, t ≥ 0. (5.57)

Proof For any n ∈ N, by Proposition 5.3, since ηn − η0 is Y∞-measurable, there
exists a progressively measurable Yt -adapted process ν(n), such that

ηn − η0 =
∫ ∞

0
(ν(n)

s )�dIs. (5.58)

Since ηt is a martingale, by conditioning on Yt , t ∈ [0, n], we have

ηt = η0 +
∫ t

0
(ν(n)

s )�dIs. (5.59)

In the meanwhile, processes ν(n) and ν(m) coincide with each other on the interval
[0,min(m, n)]. Therefore, the process ν in Eq. (5.57) can be taken as

νs = ν(n)
s , (5.60)

for some n ∈ N, n > s. �
With Corollary 5.2, we can derive the following Kushner-Stratonovich (K-S)

equation, which is the evolution equation satisfied by the conditional distribution
[7, 9].

Theorem 5.3 If conditions in Proposition 5.3 are satisfied, then the conditional
distribution of the state process Xt , πt (ϕ) � E[ϕ(Xt )|Yt ], satisfies the following
equation, which is also referred to as Kushner-Stratonovich equation:

πt (ϕ) = π0(ϕ) +
∫ t

0
πs(A ϕ)ds +

∫ t

0

(
πs(ϕh�) − πs(h

�)πs(ϕ)
)

× (dYs − πs(h)ds), (5.61)

for all ϕ ∈ C2
0(R

d).

Proof Define Nt = πt (ϕ) − ∫ t

0 πs(A ϕ)ds. It is easy to show that Nt is a square
integrable Yt martingale. In light of Corollary 5.2, there exists a progressively
measurable Yt -adapted process ν, such that

Nt = π0(ϕ) +
∫ t

0
ν�
s dIs, (5.62)
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that is,

πt (ϕ) = π0(ϕ) +
∫ t

0
πs(A ϕ)ds +

∫ t

0
ν�
s dIs . (5.63)

Next, we need to show that the process ν is of the form

νt = πt (ϕhT ) − πt (ϕ)πt (h). (5.64)

In fact, Eq. (5.64) holds if we apply Itô’s formula to both ϕ(Xt ) and h(Xt) and then
take conditional expectation with respect to Yt .

Therefore, the Kushner-Stratonovich equation (5.61) holds. �
Up to now, we have derived the Kushner-Stratonovich (K-S) equation from the
innovation process approach. In the previous section, the K-S equation is deduced
from the Zakai equation satisfied by the unnormalized conditional probability. In
fact, the Zakai equation can also be deduced from this K-S equation. For this
purpose, we need first introduce the following exponential martingale, {Ẑt , t > 0}:

Ẑt = exp

(∫ t

0
πs(h

�)dYs − 1

2

∫ t

0
‖πs(h)‖2ds

)

. (5.65)

Then, by Itô’s formula, we have

d

(
1

Ẑt

)

= − 1

Ẑt

πt (h
�)dIt , (5.66)

and

Ẑt = Ẽ
[
Z̃t |Yt

] = ρt (1). (5.67)

According to Kallianpur-Striebel formula, the unnormalized conditional probability
ρt satisfies the evolution equation

dρt (ϕ) =d
(
Ẑtπt (ϕ)

)

=Ẑt dπt (ϕ) + πt (ϕ)dẐt + d〈Ẑ, π·(ϕ)〉t
=Ẑt dπt (ϕ) + πt (ϕ)πt (h

�)Ẑt dYt

+ πt (h
�)Ẑt (πt (ϕh�) − πt (ϕ)πt (h

�))dt

=Ẑt

(
πt (A ϕ)dt + πt (ϕh�)dYt

)

=ρt (A ϕ)dt + ρt (ϕh�)dYt ,

(5.68)

which is just the Zakai equation.
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5.5 The Density Function of Conditional Distribution

Zakai equations as well as Kushner-Stratonovich equations discussed in the previous
sections are evolution equations for abstract measure-valued stochastic processes, ρt

and πt , and can only be analyzed with the help of test function ϕ. In fact, there exists
a more convenient form of the Zakai equations and K-S equations. We will show
that if the additional regularity of coefficients in the filtering system is satisfied,
then conditional probability measures are absolutely continuous with respect to the
Lebesgue measure, and the evolution equation of the density function can also be
derived, which is more commonly used in practice.

The existence of a density function of the measures ρt and πt is based on the
following Lemma 5.3.

Lemma 5.3 Let {ϕi}∞i=1 be an orthonormal basis of L2(Rd) with the property that
ϕi ∈ Cb(Rd), for each i ∈ N. Let μ ∈M(Rd) be a finite measure. If

∞∑

i=1

μ(ϕi)
2 �

∞∑

i=1

(∫

Rd

ϕidμ

)2

< ∞, (5.69)

then μ is absolutely continuous with respect to Lebesgue measure. Denote fμ :
Rd → R is the density function of μ with respect to Lebesgue measure; then fμ ∈
L2(Rd)

Proof Let fμ : Rd → R be defined as

fμ =
∞∑

i=1

μ(ϕi)ϕi . (5.70)

Because of the condition (5.69), we have ‖fμ‖L2(Rd) < ∞, and thus fμ ∈ L2(Rd).
Consider the measure absolutely continuous with respect to Lebesgue measure

with density fμ. For each ϕi , i ∈ N, we have

∫

Rd

ϕifμdx =
∞∑

j=1

μ(ϕj )

∫

Rd

ϕiϕjdx = μ(ϕi). (5.71)

Since ϕi is a basis of L2(Rd), we have fμ as the density function with respect
to Lebesgue measure, and therefore, μ is absolutely continuous with respect to
Lebesgue measure and the density function fμ ∈ L2(Rd). �
Theorem 5.4 If π0 is absolutely continuous with respect to Lebesgue measure with
a density that is in L2(Rd) and coefficients in the filtering system are uniformly
bounded, then almost surely, ρt has a density with respect to Lebesgue measure,
and this density is square-integrable.
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Proof In light of Lemma 5.3, it suffices to show that the series

∞∑

i=1

ρt (ϕi). (5.72)

has finite expectations under probability measure P̃ , where {ϕi}i≥1 is an orthonor-
mal basis of L2(Rd).

The idea of the proof is to apply regularization method to the conditional
probability measure ρt and estimate the upper bound of the series (5.72) for the
regularized measure.

The regularization procedure can be found in monographs on Sobolev spaces or
functional analysis. Here, we only give a brief introduction to the whole procedure.
Let {ψε}ε>0 be the collection of regularization kernels defined by

ψε(x) = (2πε)−
d
2 exp

(

−‖x‖2
2ε

)

. (5.73)

The regularized measure of ρt , Jερt , is defined to be the measure absolutely
continuous to Lebesgue measure with density

Jερt (y) =
∫

Rd

ψε(x − y)ρt (dx). (5.74)

From now on, without confusion of notations, we do not distinguish the probability
measure, which is absolutely continuous with respect to Lebesgue measure, such as
Jερt , and its density function, and denote both of them by Jερt .

Since ρt satisfies the Zakai equation (5.2), we have

Jερt (ϕi) = Jεπ0(ϕi) +
∫ t

0
ρs(A (Jεϕi))ds +

m∑

j=1

∫ t

0
ρs(h

jJεϕi)dY
j
s , (5.75)

where

Jεϕ(x) =
∫

Rd

ψε(x − y)ϕ(y)dy, (5.76)

for any ϕ ∈ L2(Rd).
According to Itô’s formula,

(Jερt (ϕ))2 =(Jεπ0(ϕ))2 + 2
∫ t

0
Jερs(ϕi)ρs(A (Jε(ϕi)))ds

+ 2
∫ m

j=1

∫ t

0
Jερs(ϕi)ρs(h

jJεϕi)dY
j
s

+
m∑

j=1

∫ t

0
(ρs(h

jJεϕi))
2ds.

(5.77)
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Since {ϕi}i≥1 form an orthonormal basis of L2(Rd) and take summation over i ≥ 1
for (5.77), we have

Ẽ
[
‖Jερt‖2

]
=Ẽ

[ ∞∑

i=1

(Jερt (ϕi))
2

]

≤‖Jεπ0‖2 + 2
d∑

i=1

∫ t

0
Ẽ [〈Jερs,A Jερs〉] ds

+
m∑

j=1

∫ t

0
Ẽ
[
‖hjJερs‖2

]
ds,

(5.78)

where the inequality is because of Fatou’s lemma when we exchange the order
of computing series and expectations and the stochastic differential term in (5.77)
vanishes because of the martingale property.

Since coefficients in the filtering system are uniformly bound,

Ẽ
[
‖Jερt‖2

]
≤ ‖Jεπ0‖2 + c

∫ t

0
Ẽ
[
‖Jερs‖2

]
ds, (5.79)

where 0 < c < ∞ is a constant that may only depend on coefficients of the filtering
system.

Then, according to Gronwall’s inequality, we have

Ẽ
[
‖Jερt‖2

]
≤ ect‖Jεπ0‖2 ≤ ect‖π0‖2, (5.80)

holds for all ε > 0.
Therefore, by Fatou’s lemma again, we have

Ẽ

[ ∞∑

i=1

(ρt (ϕi))
2

]

= Ẽ

[

lim
ε>0

∞∑

i=1

(Jερt (ϕi))
2

]

≤ lim inf
ε>0

Ẽ
[
‖Jερt‖2

]
≤ ect‖π0‖2 < ∞,

(5.81)

which is our desired result. �
If further regularity of the coefficients is also assumed, such that all kinds of

Fubini’s theorem and the integral-by-part formulae hold in our following discussion,
then we can also derive the evolution equation satisfied by the density function of the
unnormalized conditional probability measure, as is stated in the following theorem.

Theorem 5.5 If we further assume that coefficients in the filtering equation are
smooth enough, such that there exists a solution pt to the stochastic partial
differential equation
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pt (x) = p0(x) +
∫ t

0
A ∗ps(x)ds +

∫ t

0
h�(x)ps(x)dYs. (5.82)

Let ρt be the measure that is absolutely continuous with respect to the Lebesgue
measure with density function pt ; then {ρt , t ≥ 0} satisfies the Zakai equation, that
is, for any test function ϕ ∈ C2

0(R
d),

ρt (ϕ) = π0(ϕ) +
∫ t

0
ρs(A ϕ)ds +

∫ t

0
ρs(ϕh�)dYs, (5.83)

where A ∗ is the adjoint operator of A , with

A ϕ =
d∑

i,j=1

aij ∂2

∂xi∂xj

ϕ +
d∑

i=1

f i ∂ϕ

∂xi

, (5.84)

and

A ∗ϕ =
d∑

i,j=1

∂2

∂xi∂xj

(aij ϕ) −
d∑

i=1

∂

∂xi

(f iϕ). (5.85)

Proof Since we have assumed that coefficients in the filtering system are smooth
enough, and the Fubini’s theorem as well as the integral-by-part formula holds, then

ρt (ϕ) =
∫

Rd

ϕ(x)pt (x)dx

=
∫

Rd

ϕ(x)

(

p0(x) +
∫ t

0
A ∗ps(x)ds +

∫ t

0
h�(x)ps(x)dYs

)

dx

=
∫

Rd

ϕ(x)p0(x)dx +
∫ t

0

(∫

Rd

ϕ(x)A ∗ps(x)dx

)

ds

+
∫ t

0

(∫

Rd

ϕ(x)h�(x)ps(x)dx

)

dYs

=π0(ϕ) +
∫ t

0
ρs(A ϕ)ds +

∫ t

0
ρs(ϕh�)dYs,

(5.86)
which is the Zakai equation as desired.

We close this section by the evolution equation satisfied by the density function
of πt , which can also be derived with additional regularity of the system.

πt (x) = π0(x) +
∫ t

0
A ∗πs(x)ds +

∫ t

0
πs(x)(h�(x) − πs(h

�))(dYs − πs(h)ds).

(5.87)
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Since the deduction procedure is quite similar to the case of ρt , we would like to
skip the proof here and reserve it for interested readers. �

5.6 Robust DMZ Equation

In this section, we will focus on a special change in the probability measure method.
In the real application, the observation data is sometimes a path. However, in the
filtering equation, the observation data is in the form of martingale integral, which
is difficult to match with the orbital observation data. So the starting point of the
robust DMZ equation in this chapter starts from rewriting the martingale integral.

Let us first recall the notation of change the probability methods,

T̃t = exp

(∫ t

0
h(Xt )

�dYs − 1

2

∫ t

0
‖h(Xt )‖2dt

)

. (5.88)

For a single path Yt (ω), integral
∫ t

0 h(Xt )
�dYs is ill-defined, so we need to rewrite

it by using the partial integral method of stochastic analysis, which is

�(y·) := exp(hT (Xt )yt −
∫ t

0
y�
s dh(Xs) − 1

2

∫ t

0
‖h(Xs)‖2ds). (5.89)

So, the difficult part in the integral in the new representation (5.92) is

∫ t

0
y�
s dh(Xs). (5.90)

In the following, we will require that s → h(Xs) be a semimartingale that makes
the (5.90) well-defined.

Let

h(Xs) = Mh
s + V h

s , s ≥ 0.

be the Doob-Meyer decomposition of h(Xs) with V h
s = (V

h,i
s )mi=1 the finite

variation part of h(Xs) and Mh
s = (M

h,i
s )mi=1 assumed to be square integrable,

similarly with (5.15) and(5.16).
Now, we can denote Y (·) to be an arbitrary element of the set C([0, t], Rm),

where t ≥ 0 is arbitrary, and we fixed t throughout the section in order to fix the
change measure martingale in (5.88). So in this case, Y·(ω) : [0, t] → Rm is a
continuous function. And Y· is a random variable.

Y·(ω) := � → C([0, t], Rm), Y·(ω) = (Ys(ω), 0 ≤ s ≤ t). (5.91)
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Main Goal
For any test function ϕ, a bounded Borel-measurable function, the posterior
expectation πt (ϕ) can be written as a function of the observation path. That is, there
exists a bounded measurable function Uϕ : C([0, t], Rm) → R, which means the
following equation holds:

πt (ϕ) = Uϕ(Y·) P − a.s. (5.92)

It is easy to find that Uϕ is not unique. Any other function Ūϕ such that

P ◦ Y−1· (Uϕ �= Ūϕ) = 0, (5.93)

where P ◦ Y−1· is the distribution of Y· on the path space can replace Uϕ in (5.92).
In the following, we obtain a robust representation of the conditional expectation
πt (ϕ) (following [1]). That is, we will show that there exists a continuous function
Ûϕ ,

πt (ϕ) = Ûϕ(Y·) P − a.s. (5.94)

And similarly with DMZ equation and Kallianpur-Striebel formula,

Ûϕ(Y·) = Ĝϕ(Y·)
Ĝ1(Y·)

, (5.95)

where Ĝϕ(Y·) = Ẽ[�(Y·)]. So far, well-posedness of (5.89) only depends on (5.90).
The following assumptions are required:

cf v = Ẽ

(
m∑

i=1

∫ t

0
|dV h,i

s |
)

< ∞, (5.96)

cm = Ẽ

(
m∑

i=1

∫ t

0
d〈Mh,i〉s

)

< ∞, (5.97)

where s → Mh
s is the quadratic variation of M

h,i
s , for i = 1, · · · ,m, and

∫ t

0 |dV
h,i
s |

is the total variation of V
h,i
s on [0, t] for i = 1, · · · ,m.

The conciseness of (5.89) are as follows:

• �(Y·) is bounded with any bounded Y·.
• Ĝϕ(Y·) is well-posed.

Lemma 5.4 For any R > 0, there exists a positive constant B�
R such that

sup
‖Y·‖∞≤R

‖�(y·)‖ ≤ BR. (5.98)
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Proof In the following, for any arbitrary Y (·) ∈ C([0, t], Rm),

�(Y·) = exp

(∫ t

0
(R + YT

s )dh(Xs) − 1

2

∫ t

0
‖h(Xs)‖2ds

)

≤ exp

(∫ t

0
(R + Ys)

�dV h
s + max‖r‖∞≤R

∫ t

0
(r + Ys)

�dMh
s

)

, (5.99)

where R is a m dimensional vector for any component is R.
Furthermore, by using(5.96)

Ẽ

[

exp

(∫ t

0
(R + Ys)

�dV h
s

)]

≤ Ẽ

[

exp

(

2R
∫ t

0
|dV sh|

)]

= e2Rcf v

,

and by using the Cauchy-Schwartz inequality

Ẽ

[

exp

(

max‖rs‖∞≤R

∫ t

0
(rs + Ys)

�dMh
s

)]

≤ max‖rs‖∞≤R
Ẽ

[

exp

(∫ t

0
(2rs)

�dMh
s

)]

< ∞. (5.100)

where the last inequality holds by using(5.96).
�

A different proof is given in [1].

Lemma 5.5 For any R > 0, there exists a positive constant BR such that

‖�(Y 1· ) − �(Y 2· )‖
L2(�,P̃t )

≤ BR‖Y 1· − Y 2· ‖, (5.101)

for any two paths Y 1· , Y 2· such that |Y 1· |, |Y 2· | ≤ R. In particular, (5.11) implies that
g1 is locally Lipschitz, more precisely

|G1(Y 1· ) − G2(Y 2· )| ≤ BR‖Y 1· − Y 2· ‖.

for any two paths Y 1· , Y 2· such that |Y 1· |∞, |Y 2· |∞ ≤ R.

Proof For two paths Y 1· and Y 2· , let us denote by their difference by Y 12· = Y 1· −Y 2· .
Then,

|�(Y 1· ) − �(Y 2· )| ≤ (�(Y 1· ) + �(Y 2· ))

∣
∣
∣
∣

∫ t

0
(Y 12

t − Y 12
s )dh(Xs)

∣
∣
∣
∣ (5.102)

According to Lemma 3.4 and Cauchy-Schwartz inequality, we have
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‖�(Y 1· ) − �(Y 2· )‖
L2(�,P̃t )

≤ CR

∥
∥
∥
∥

∫ t

0
(Y 12

t − Y 12
s )dh(Xs)

∥
∥
∥
∥

L2(�,P̃t )

, (5.103)

where CR > 0 is a constant depending on R, and the desired result follows from the
Burkholder-Davis-Gundy inequality. �
Lemma 5.6 The function Gϕ is locally Lipschitz and locally bounded.

Proof For a given R > 0, let Y 1· and Y 2· be two paths such that |Y 1· |, |Y 2· | ≤ R.
According to Cauchy-Schwartz inequality, we have

Ẽ
[
|ϕ(Xt )||�(Y 1· ) − �(Y 2· )|

]
≤ ‖ϕ(Xt )‖L2(�,P̃t )

BR‖Y 1· − Y 2· ‖. (5.104)

Therefore, Gϕ is locally Lipschitz. The local boundedness of Gϕ follows directly
from Lemma 5.4. �

Here we finish the proofs for well-defined robust representation. Now, we can
introduce Clark’s robustness result.

Theorem 5.6 (Clark) The random variable Ûϕ(Y·) is a version of πt (ϕ), that
is, πt (ϕ) = Ûϕ(Y·), P̃−almost surely. Hence, Ûϕ(Y·) is the unique robust
representation of πt (ϕ).

Proof It suffices to prove that P−almost surely (or, equivalently, P̃−almost surely),

ρt (ϕ) = ĝϕ(Y·) and ρt (1) = ĝ1(Y·).

We need only prove the first identified as the second is just a special case obtained
by setting ϕ = 1 in the first. From the definition of abstract conditional expectation,
therefore, it suffices to show

Ẽ[ρt (ϕ)b(Y·)] = Ẽ[ĝϕb(Y·)], (5.105)

where b is an arbitrary continuous bounded function b : C([0, t]×Rm) → R. Since
X and Y are independent under P̃ , it follows that the pair processes (X, Y ) under P̃

and (X̂, Y ) under P̃ have the same distribution. Hence, the left-hand side of (5.105)
has the following representation:

Ẽ[ρt (ϕ)b(Y·)]

=Ẽ

[

ϕ(Xt ) exp(
∫ t

0
h(Xs)

T dYs − 1

2

∫ t

0
‖h(Xs)‖2ds)b(Y·)

]

=Ẽ

[

ϕ(Xt ) exp(
∫ t

0
h(X̂s)

T dYs − 1

2

∫ t

0
‖h(X̂s)‖2ds)b(Y·)

]

=Ẽ

[

ϕ(Xt ) exp(h(Xt )
T Yt −

∫ t

0
YT

s dh(X̂s) − 1

2

∫ t

0
‖h(X̂s)‖2ds)b(Y·)

]

.
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On the other hand, if the transformation (5.89) is well-defined, more details can be
found in [2] and [3]. Hence, by Fubini’s theorem, we can finish the proof. �

5.7 Exercises

1. Deduce the Kushner-Stratonovich equation from the DMZ equation and the
Kallianpur-Striebel formula.

2. Deduce the DMZ equation from the Kushner-Stratonovich equation.
3. Consider the stochastic exponential Y given by

dYt = Yt (μ dt + σ dWt), Y0 = 1,

where μ and σ are constants. The Euler approximation of this SDE is

�Ŷn+1 = Ŷn(μ�t + σ�Ŵn), Ŷ0 = 1,

where �t is the step size, �Ŷn+1 = Ŷn+1 − Ŷn, and �Ŵn = W(n+1)�t − Wn�t .
Show that the local weak error is of second order, i.e.,

lim sup
�t→0

(
E[f (Y�t )] − E[f (Ŷ1)]

�t2

)

< ∞

holds for any bounded smooth function f with bounded derivatives.
4. Let X and Y be real-valued processes solving SDEs:

dXt = (a0 + a1Xt) dt + b dW 1
t ,

dYt = (L0 + L1Xt) dt + B dW 2
t ,

where W 1 and W 2 are independent Wiener processes on R, with normally
distributed initial conditions (X0, Y0). Assume that pt ∼ N(X̂t , �̂t ) for some
X̂t and �̂t , which are the mean and variance of the posterior.

Show that:

dX̂t = (a0 + a1X̂t ) dt + �̂tL1

B2 (dYt − (L0 + L1X̂t ) dt),

d�̂t

dt
= 2a1�̂t + b2 − (�̂tL1)

2

B2
,

with initial conditions:

X̂0 = E[X0 | Y0], �̂0 = Var(X0 | Y0).
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5. Let (Wt )t∈[0,T ] be a standard Brownian motion, X an independent random
variable with finite exponential moments, and Yt = tX + √

sWt , t ∈ [0, T ].
Define an equivalent probability measure P̃ on FT such that Y becomes a
martingale and independent of X. Show that the unnormalized filter is given by

rt (A) =
∫

A

exp

(
s2

2
xYt − 1

2
s2x2t

)

μ(dx).

6. Let (Wt )t∈[0,T ] be a standard Brownian motion, X an independent random vari-
able with finite exponential moments, and Yt = tX +√

sWt , t ∈ [0, T ]. Suppose
in addition that X is normally distributed. Then pt is normally distributed by
part. Calculate the mean X̂t and covariance.

7. Consider the following model for population growth with noisy observations:

dXt = rXt dt, dYt = Xt dt + m dWt,

with X0 ∼ N(b, a2) and Y0 = 0 for some constants r,m, b, a > 0.
Calculate limt→∞ �̂t . How is the asymptotic precision of the filter affected

by the growth rate r?
8. Consider the following model for population growth with noisy observations:

dXt = rXt dt, dYt = Xt dt + m dWt,

with X0 ∼ N(b, a2) and Y0 = 0 for some constants r,m, b, a > 0. Implement
the Kalman-Bucy filter for the model. In order to test your implementation,
approximate a path of (Xt , Yt )t∈[0,1] using the Euler-Maruyama scheme. Use
your implementation of the Kalman-Bucy filter to recover the signal from the
observation. Use the following parameters: r = 0.5,m = 1, b = 1, a = 0.5.
What do you observe?

9. X satisfies

dXt = μt dt + st dWt

for some predictable processes μ, s and Brownian motion W .

(a) Show that the process

Yt = exp

(

Xt − X0 − 1

2
〈X,X〉t

)

is a solution of the SDE

dYt = Yt dXt , Y0 = 1.

(b) Show that Y is a local martingale if μ = 0.
(c) Show that Y is a martingale if μ = 0 and s is bounded.
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Chapter 6
Estimation Algebra

In this chapter, we will introduce the finite-dimensional filter estimation algebra
technique. Since the proposal of the linear Kalman-Bucy filter, addressing nonlinear
filter problems has emerged as a significant and widely discussed area of research.
A key question that arises is how to assess the efficiency of different nonlinear
filter solutions. Estimation algebra, as both a geometric and an algebraic technique,
serves as a powerful tool to address this challenge. By utilizing estimation algebra,
we can develop finite-dimensional nonlinear filters that are governed by a finite
set of statistical quantities, thus enabling systematic control over their behavior.
Importantly, this approach facilitates the classification of various nonlinear systems
based on these statistics, paving the way for practical applications in analyzing
nonlinear control systems such as observability and controllability. This represents
a groundbreaking integration of geometric and algebraic methods into the realm of
nonlinear filter theory.

6.1 Introduction

Ever since the technique of the Kalman-Bucy filter was popularized, there has been
an intense interest in finding new classes of finite-dimensional recursive filters. In
the 1960s and early 1970s, the basic approach to nonlinear filtering theory was
via the “Innovation methods” originally proposed by Kailath and subsequently
rigorously developed by Fujisaki et al. [14] in 1972.

As pointed out by Mitter [18], the difficulty with this approach is that the
Innovation process is not, in general, explicitly computable except in the well-
known Kalman-Bucy filter. In the late 1970s, Brockett and Clark [2], Brockett [3],
and Mitter [18] proposed the idea of using estimation algebras to construct a finite-
dimensional nonlinear filter. The Lie algebra approach has several advantages. First,
it takes into account of geometrical aspects of the situation. Second, it explains
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convincingly why it is easy to find exact recursive filters for linear dynamical
systems, while it is very difficult for some filters like the cubic sensor system
described in the work of Hazewinkel et al. [11]. The third, and perhaps the most
important, as long as the estimation algebra is finite dimensional, not only can the
finite-dimensional recursive filter be constructed explicitly, but also the constructed
filter is universal in the sense of [15]. Moreover, the number of sufficient statistics
in the Lie algebra method, which requires computing the conditional probability
density, is linear in n, where n is the dimension of the state space. However, even
in the case of linear filtering with non-Gaussian initial condition, the number of
sufficient statistics needed in Makowski’s method [16] or Haussman and Pardoux’s
method [12] is a quadratic polynomial.

In his talk at the International Congress of Mathematics in 1983, Brockett
proposed the problem of classifying finite-dimensional estimation algebras (FDEA).
Since then, the concept of estimation algebra has been proven to be an invaluable
tool in the study of nonlinear filtering problems. Nevertheless, the structure and
classification of finite-dimensional estimation algebras were studied in detail only in
the early 1990s by series of works by Yau and his collaborators [4–7, 23, 25, 28, 29].
In [27], the concept of Wong’s �-matrix was introduced and played an important
role in algebraic structure. The program of classifying finite-dimensional estimation
algebras of maximal rank was begun in 1990 by Yau et al. There are four crucial
steps here.

Step 1 In 1990, Yau first observed that Wong’s �-matrix plays an important role.
As the first crucial step, he classifies all finite-dimensional estimation algebras
of maximal rank if Wong’s matrix has entries in constant coefficients. His result
was announced in 1990 [30] and the detail of the proof was published in 1994
[28]. In 1991 paper [31], Chiou and Yau formally introduced the concept of finite-
dimensional estimation algebra of maximal rank and gave classification when the
state space dimension n is at most 2. Their results were published in 1994 [5].

Step 2 The second crucial step was due to Chen and Yau in 1996 [6]. They
developed quadratic structure theory for finite-dimensional estimation algebra.
They laid down all the ingredients that are needed to give classification of finite-
dimensional estimation algebras of maximal rank. In particular, they introduced the
notion of quadratic rank k. In this way, Wong’s �-matrix is divided into three parts:
(1) ωij , 1 ≤ i, j ≤ k; (2) ωij , k + 1 ≤ i, j ≤ n; and (3) ωij , 1 ≤ i ≤ k, k + 1 ≤
j ≤ n, or k + 1 ≤ i ≤ n, 1 ≤ j ≤ k. In [6], Chen and Yau proved that part (1)
ωij , 1 ≤ i, j ≤ k, is a matrix with constant coefficients.

Step 3 In their 1997 published paper [8], Chen, Yau, and Leung proved the weak
Hessian matrix nondecomposition theorem for n ≤ 4. As a result, the part (2)
ωij , k + 1 ≤ i, j ≤ n, is a matrix with constant coefficients. In their 1997 paper
[25], Wu, Yau, and Hu proved the weak Hessian matrix nondecomposition theorem
for general n. Thus, part (2) ωij , k + 1 ≤ i, j ≤ n, is also a matrix with constant
coefficients for arbitrary n.
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Step 4 This final step was also done in 1997. Yau and Hu [29] use full power of the
quadratic structure theory developed by Chen and Yau [6] to prove that the part (3)
ωij , 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, or k + 1 ≤ i ≤ n, 1 ≤ j ≤ k, are matrix with the
constant coefficients.

The above four steps complete the classification issue. Therefore, Yau and
his coworkers have proved the following theorem and completely determine the
structure of estimation algebra.

Theorem 6.1 (Classification Theorem) Suppose that the state space of the filter-
ing system is of dimension n. If E is the finite-dimensional estimation algebra with
maximal rank, then E is a real vector space of dimension 2n + 2 with basis given
by 1, x1, · · · , xn,D1, · · · ,Dn, L0, where Di, i = 1, · · · , n, and L0 will be defined
in the following section.

In fact, Mitter and Levine have conjectured the following.

Mitter Conjecture Let E be a finite-dimensional estimation algebra. If φ is a
function in E, then φ is a polynomial of degree at most 1.

Levine Conjecture Let E be a finite-dimensional estimation algebra. The differ-
ential operators in E have orders at most 2.

Direct corollary of the work of Yau and his coworkers is that they have proved
Mitter conjecture and Levine conjecture in estimation algebra with maximal rank.

The following corollary is a direct immediate consequence of the above classifi-
cation theorem.

Corollary 6.1 (Sufficient Statistics) Suppose that the state space of the filtering
system is of dimension n. If E is the finite-dimensional estimation algebra with
maximal rank, then the number of sufficient statistics in order to compute the
conditional density by Lie algebraic methods is linear in n.

Since the 2000s, Yau and his team have been studying the classification of
nonmaximal rank estimation algebra, which is a quite important and difficult
problem. General classification of nonmaximal rank case is still an open problem.
However, Yau and his coworkers have made profound contributions in this field. In
2006, Wu and Yau [26] have finished the complete classification of FDEA with state
dimension 2 and linear rank 1. In [26], Wu and Yau developed many powerful tools
to solve the structure of Wong’s �-matrix in nonmaximal rank estimation algebra.
In 2017, Shi et al. [20] construct a new class of finite-dimensional filters with state
dimension 3 and linear rank 1, in which Wong’s �-matrix is not necessary to be a
constant matrix. Shi et al. give some sufficient condition that can make estimation
algebra be finite dimensional. In 2018, Shi and Yau [21, 22] study the structure of
finite-dimensional estimation algebra with state dimension 3 and linear rank 2, and
they can prove Wong’s �-matrix has linear structure and Mitter conjecture holds in
this case. In their work, they develop many techniques to construct infinite operator
sequence in the estimation algebra. Recently, Dong et al. [10] construct a new class
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of finite-dimensional filtering systems with state space dimension 4 and linear rank
1, in which entries of Wong’s �-matrix can be polynomials of any degree.

The following is the layout of this chapter: In Sect. 6.2, we introduce some basic
concepts and notations of estimation algebra. In Sect. 6.3, the algebraic classification
of finite-dimensional filter will be given which includes the complete series of
results of maximal rank case. In Sect. 6.4, we introduce the well-known Wei-
Norman approach which is a useful tool to construct recursive finite-dimensional
filters. In Sect. 6.5, we mainly introduce the important structure results of non-
maximal rank case especially under low dimension. In Sect. 6.6, we will introduce
construction of novel class of finite-dimensional filters which include the nonlinear
filter besides Kalman, Benes, and Yau filters.

6.2 Basic Concepts and Preliminaries

The filtering problem considered here is based on the continuous signal observation
model:

{
dx(t) = f (x(t))dt + g(x(t))dv(t), x(0) = x0,

dy(t) = h(x(t))dt + dw(t), y(0) = 0.
(6.1)

Here x, v, y,w are respectively Rn,Rp,Rm,Rm-valued processes, and v and w

have components that are independent, standard Brownian motions. We assume that
n = p and f, h are C∞-function, and g is an orthogonal matrix. We refer to x(t) as
the state of the system at time t and to y(t) as the observation at time t .

Let ρ(t, x) denote the conditional probability density of the state given the
observation {y(s) : 0 ≤ s ≤ t}. It is well-known that ρ(t, x) is given by normalizing
σ(t, x), which satisfies the following Duncan-Mortensen-Zakai (DMZ) equation:

{
dσ(t, x) = L0σ(t, x)dx +∑m

i=1 Liσ(t, x)dyi(t),

σ (0, x) = σ0,
(6.2)

where

L0 = 1

2

n∑

i=1

∂2

∂x2
i

−
n∑

i=1

fi

∂

∂xi

−
n∑

i=1

∂fi

∂xi

− 1

2

m∑

i=1

h2i , (6.3)

and, for i = 1, · · · ,m, Li is the zero degree differential operator of multiplication
by hi . The term σ0 is the initial probability density.

DMZ equation is a stochastic partial differential equation. In real applications,
we are interested in constructing robust state estimators from observed sample paths
with some property of robustness. Davis [9] studies this problem and proposed some



6.2 Basic Concepts and Preliminaries 173

robust algorithms. In our case, his basic idea reduces to defining a new unnormalized
density:

u(t, x) = exp

(

−
m∑

i=1

hi(x)yi(t)

)

σ(t, x). (6.4)

Davis reduced the DMZ equation to the following time-varying partial differential
equation, which is called the robust DMZ equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

(t, x) = L0u(t, x) +∑m
i=1 yi(t)[L0, Li]u(t, x)

+ 1
2

∑m
i,j=1 yi(t)yj (t)[[L0, Li], Lj ]u(t, x),

u(0, x) = σ0.

(6.5)

Let

Di := ∂

∂xi

− fi, 1 ≤ i ≤ n,

η :=
n∑

i=1

∂fi

∂xi

+
n∑

i=1

f 2
i +

m∑

i=1

h2i ,

(6.6)

and then we can obtain a more compact form of L0:

L0 = 1

2

(
n∑

i=1

D2
i − η

)

. (6.7)

This can be verified by direct computation which has been set in the exercise.

Definition 6.1 (Lie Bracket) If X and Y are differential operators, the Lie bracket
of X and Y , [X, Y ], is defined by [X, Y ]φ = X(Yφ) − Y (Xφ) for any C∞
function φ.

Definition 6.2 (Lie Algebra) A vector space g with the Lie bracket operation g ×
g → g denoted by (x, y) �−→ [x, y] is called a Lie algebra if the following axioms
are satisfied:

(1) The Lie bracket operation is bilinear;
(2) [x, x] = 0 for all x ∈ g;
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ g.

Definition 6.3 (Estimation Algebra) The estimation algebra E of a filtering
system (6.1) is defined to be the Lie algebra generated by {L0, L1, · · · , Lm}, i.e.,
E = 〈L0, h1, · · · , hm〉L.A..

Definition 6.4 An estimation algebra E is said to be of maximal rank if, for any
1 ≤ i ≤ n, there exists a constant ci , such that xi + ci ∈ E.
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Definition 6.5 (Wong �-Matrix) Wong’s �-matrix is the matrix � = (ωij ),
where

ωij = ∂fj

∂xi

− ∂fi

∂xj

, ∀1 ≤ i, j ≤ n. (6.8)

Obviously, ωij = −ωji , i.e., � is an antisymmetric matrix. Furthermore, � satisfies
the following cyclic conditions:

∂ωjk

∂xi

+ ∂ωki

∂xj

+ ∂ωij

∂xk

= 0, ∀1 ≤ i, j, k ≤ n. (6.9)

Definition 6.6 Let U be the vector space of differential operators in the following
form:

A =
∑

(i1,i2,··· ,in)∈IA

ai1,i2,··· ,inD
i1
1 D

i2
2 · · ·Din

n , (6.10)

where nonzero functions ai1,i2,··· ,in ∈ C∞(Rn) and IA ⊆ Nn are the finite set of A.
For i = (i1, i2, · · · , in) ∈ Nn, denote |i| := ∑n

k=1 ik . The order of A is defined by
ord(A) := maxi |i|.
Definition 6.7 Let Uk be the subspace of U consisting of the elements with order
less than or equal to k, where k ≥ 0. In particular, U0 := C∞(Rn).

Definition 6.8 (Finite-Dimensional Filter) A filter system is called finite dimen-
sional if its corresponding estimation algebra is finite dimensional.

Remark 6.1 The finite dimensionality of E can be measured in terms of the finite
order of elements in E. If E is finite dimensional, then the orders of its elements
will have an upper bound. In particular, if there exists a sequence of elements Aj ∈
E such that the orders of Aj ’s are strictly increasing, E is not finite dimensional.
This basic idea provides us an efficient way to detect whether a given filter is finite
dimensional. It is also useful for us in studying the structure of FDEA.

Basic Notations Related to Lie Bracket Let A,B ∈ E and V is a subspace of E.
Then we define an equivalence relation A = B, mod V if A − B ∈ V . We define
adjoint map Ad : E × E → E by AdAB = [A,B] and Adk

AB = [A,Adk−1
A B].

Euler operator is ES := ∑
l∈S xl

∂
∂xl

, where S is an index subset of {1, 2, · · · , n}.
Estimation algebra is an operator algebra. The following calculation rule is useful
in exploring the algebraic structure.

Simple Example Operator A = D2
1 + x1D2 + x2

2 can be written as A = D2
1,

mod U1 in short, whereU1 denotes the collection of first-order differential operators
in E.
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Lemma 6.1 Let E be a finite-dimensional estimation algebra and let the Di’s be
defined as (6.6). If l > 0 and

A =
∑

|(i1,i2,··· ,in)|=l+1

ai1,i2,··· ,inD
i1
1 D

i2
2 · · · Din

n , mod Ul, (6.11)

is in E, then ai1,i2,··· ,in ’s are polynomials.

Proof If not all coefficients ai1,i2,··· ,in are polynomials, there exists a variable xk

such that
∂saj1,··· ,jn

xs
k

�= 0, ∀s ≥ 0. Consider the index set (j1, · · · , jn) of all

aj1,··· ,jn and assume aj1,··· ,jn is transcendental in x1 and j1 is the largest among
first indices whose coefficient functions are transcendental in x1. Let

A1 = [L0, A]. (6.12)

The coefficient function of D
j1+1
1 D

j2
2 . . . D

jn
n in A1 is

∂aj1,··· ,jn
∂x1

+ ∂aj1+1,j2−1··· ,jn
∂x2

+
∂aj1+1,j2··· ,jn−1

∂xn
. By the assumption j1 is the largest first index, it can be deduced

that terms
∂aj1+1,j2−1··· ,jn

∂x2
, . . . ,

∂aj1+1,j2··· ,jn−1

∂xn
are all polynomials in x1. So coefficient

function of D
j1+1
1 D

j2
2 . . . D

jn
n is transcendental in x1.

Similarly, let |(i1, . . . , in)| = l+2, i1 ≥ j1+2 and consider coefficient functions
ofDi1

1 . . . D
in
n inA1. By assumption on a’s, these functions are all polynomials in x1.

Thus, fromA toA1, the differential orders increase by 1, while the transcendental
structure on x1 remains unchanged. By keeping this process, Ak+1 = [L0, Ak] has
order of l + k + 2 → ∞. �

In the following, several elementary results are listed.

Lemma 6.2 Let E be an estimation algebra for the filtering problem (6.1).
�= (ωij ) is defined as in Definition 6.5. Assume X, Y,Z ∈ E and g, h ∈ C∞(Rn).
Then:

(1) [XY,Z] = X[Y,Z] + [X,Z]Y ;
(2) [gDi, h] = g ∂h

∂xi
;

(3) [gDi, hDj ] = ghωji + g ∂h
∂xi

Dj − h
∂g
∂xj

Di;

(4) [gD2
i , h] = 2g ∂h

∂xi
Di + g ∂2h

∂x2i
;

(5) [D2
i , hDj ] = 2 ∂h

∂xi
DiDj + 2hωjiDi + ∂2h

∂x2i
Dj + h

∂ωji

∂xi
;

Proof

(1)

φ =XYZφ − ZXYφ

=XYZφ − XZYφ + XZYφ − ZXYφ

=X[Y,Z]φ + [X,Z]Yφ

(6.13)
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(2)

[gDi, h] = [g, h]Di + g[Di, h] = g
∂h

∂xi

(6.14)

(3)

=g[Di, hDj ] + [g, hDj ]Di

= − ghωij + g
∂h

∂xi

Dj − h
∂g

∂xj

Di

(6.15)

(4)

=g[D2
i , h] + [g, h]D2

i

=g
∂2h

∂x2
i

+ 2g
∂h

∂xi

Di

(6.16)

(5)

= − [hDj ,D
2
i ]

=2hωjiDi + h
∂ωji

∂xi

+ (
∂2h

∂x2
i

+ 2
∂h

∂xi

Di)Dj

(6.17)

�
Lemma 6.3

(1) [L0, xj + cj ] = Dj, 1 ≤ j ≤ n;
(2) [Di, xj + cj ] = δij , 1 ≤ i, j ≤ n;
(3) [Di,Dj ] = ωji, 1 ≤ i, j ≤ n;

(4) Yj := [L0,Dj ] =∑n
i=1

(
ωjiDi + 1

2
∂ωji

∂xi

)
+ 1

2
∂η
∂xj

, 1 ≤ j ≤ n;

(5) [Yj , ωkl] =∑n
i=1 ωji

∂ωkl

∂xi
, 1 ≤ j, k, l ≤ n;

(6) [Yj ,Dk] =∑n
i=1

(
ωjiωki − ∂ωji

∂xk
Di

)
− 1

2

∑n
i=1

∂2ωij

∂xk∂xi
− 1

2
∂2η

∂xk∂xj
.

These results can be obtained by applying Lemma 6.2 which has been left to readers
as exercises.

The following theorem is the first result that allows us to understand what kind
of functions can be contained in FDEA.

Theorem 6.2 (Ocone [19]) Let E be finite-dimensional estimation algebra. If a
function ξ is in E, then ξ is a polynomial of degree no more than 2.

Proof Let AdL0(ξ) = [L0, ξ ] and Adk
L0

(ξ) = [L0, Adk−1
L0

(ξ)]. Then it is easy to
see that
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Adk
L0

(ξ) =
n∑

i1,··· ,ik=1

∂kξ

∂xi1 · · · ∂xik

Di1 · · ·Dik , mod Uk−1 ∈ E. (6.18)

Since Adk
L0

(ξ) is in E for all k, the finite dimensionality of E implies that
∂kξ

∂xi1 ···∂xik
= 0 for 1 ≤ xi1 · · · ∂xik ≤ n, if k is large enough. It follows that ξ is

a polynomial.

Observe that ξ ∈ E implies
∑n

i=1

(
∂ξ
∂xi

)2 = [AdL0(ξ), ξ ] ∈ E. The facts that

ξ is a polynomial and E is finite dimensional imply ξ is a polynomial of degree at
most 2. �

Next we shall prove a very useful theorem in terms of PDEs appeared in
estimation algebra.

Theorem 6.3 Let F(x1, · · · , xn) be a C∞ function on Rn. Suppose that there
exists a path c : R → Rn and δ > 0 such that limt→∞ ‖c(t)‖ = ∞ and
limt→∞ supBδ(c(t))

F = −∞, where Bδ(c(t)) = {x ∈ Rn : ‖x − c(t)‖ < δ} and sup
denotes the supremum value. Then there are no C∞ functions f1, f2, · · · , fn on Rn

satisfying the following equation:

n∑

i=1

∂fi

∂xi

+
n∑

i=1

f 2
i = F. (6.19)

Proof Let ψ ∈ C∞
0 be any C∞ function with compact support. Multiplying (6.19)

with ψ2 and integrating the equation over Rn, we get

∫

Rn

(∇ · f )ψ2 +
∫

Rn

ψ2(f · f ) =
∫

Rn

Fψ2, (6.20)

where f = (f1, · · · , fn) and ∇ ·f =∑n
i=1

∂fi

∂xi
. In view of divergence theorem, we

have
∫

Rn

Fψ2 = −
∫

Rn

2ψ∇ψ · f +
∫

Rn

ψ2(f · f ). (6.21)

By Schwartz inequality, we have

∫

Rn

2ψ∇ψ · f =
∫

Rn

2∇ψ · (ψf )

≤2

(∫

Rn

|∇ψ |2
) 1

2
(∫

Rn

ψ2(f · f )

) 1
2

≤
∫

Rn

|∇ψ |2 +
∫

Rn

ψ2(f · f ).

(6.22)
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Then we have
∫

Rn

Fψ2 ≥ −
∫

Rn

|∇ψ |2. (6.23)

Therefore, we get

∫

Rn

Fψ2 +
∫

Rn

|∇ψ |2 ≥ 0, (6.24)

for all ψ ∈ C∞
0 . Take any nonzero C∞ function θ with compact support in the ball

Bδ(0) of radius δ. Define ψ to be θ followed by a translation by c(t). Observe
that

∫
Rn |∇ψ |2 is an integral of fixed function over Rn and independent of the

translation selected.
∫
Rn Fψ2 → −∞ as t → ∞ by our assumption. This leads

to a contradiction to (6.24). �

6.3 Algebraic Classification of Finite-Dimensional Filter

6.3.1 Maximal Rank Classification: Structures of Quadratic
Forms

We shall first recall the theory of quadratic forms in estimation algebras developed
by Chen and Yau [5].

Let Q be the space of quadratic forms in n variables, that is, real vector space
spanned by xixj , 1 ≤ i, j ≤ n. Let Mn(R) be the set of n × n matrices. In the
following, we give the definition of quadratic rank which describes the quadratic
polynomials contained in EA.

Definition 6.9 For any quadratic form p ∈ Q, there exists a symmetric matrix A

such that p(x) = xT Ax, where x = (x1, · · · , xn)
T . The rank of the quadratic form

p is denoted by r(p) and is defined to be the rank of the matrix A.

Definition 6.10 (Quadratic Rank) A fundamental quadratic form of the estima-
tion algebra E is an element p0 ∈ E ∩ Q with the greatest positive rank, that is,
r(p0) ≥ r(p) for any p ∈ E ∩ Q. The maximal rank of quadratic forms in E is
defined to be k = r(p0) and is called the quadratic rank of estimation algebra.

After an orthogonal transformation on variable x, p0 can be written as

p0 = c1x
2
1 + · · · + ckx

2
k , ci �= 0, 0 ≤ k ≤ n. (6.25)

From p0(x), we can construct a sequence of quadratic forms in E ∩ Q as follows:
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{
q0(x) = p0(x)

qj (x) = [[L0, qj−1], q0] =∑k
i=1 4

j c
j+1
i x2

i .
(6.26)

In view of the invertibility of the Vandermonde matrix, we can assume that

p0(x) = x2
1 + x2

2 + · · · + x2
k ∈ E. (6.27)

In the following lemma, we show that any quadratic polynomial in the estimation
algebra only depends on the variables x1, · · · , xk .

Lemma 6.4 If p is a quadratic form in E, then p is independent of xj for j > k,
where k = r(p0). In other words,

∂p

∂xj

= 0

for k + 1 ≤ j ≤ n.

Proof Suppose on the contrary that ∂p
∂xj

�= 0 for some j > k. Let A be a symmetric

matrix such that p = XT AX. A can be written as

A =
(

A1 A2

AT
2 A4

)

, (6.28)

where A1 ∈ Rk×k, A4 ∈ R(n−k)×(n−k) are symmetric. There is a k × k orthogonal
matrix S1 and an (n − k) × (n − k) orthogonal matrix S2 such that ST

1 A1S1 and
ST
2 A4S2 are diagonal matrices. So we can assume that A1 and A4 are diagonal

matrices. By condition, ∂p
∂xj

�= 0 for some j > k implies that A2 �= 0 or A4 �= 0.
Since

r(λp0 + p) = rank

(
λI + A1 A2

AT
2 A4

)

, (6.29)

if we choose λ large enough, it is easy to prove that

r(λp0 + p) > k. (6.30)

This contradicts the greatest positive rank assumption of p0. �
After we found the quadratic polynomial with the greatest quadratic rank, what we
are still interested in is polynomial with least quadratic rank inE. Let p1 ∈ E∩Q be
an element with least positive rank, that is, 0 < r(p1) ≤ r(q) for any nonzero q ∈
E ∩ Q. After an orthogonal transformation that fixes xk+1, · · · , xn variables then
take the Vandermonde matrix procedure repeatedly as Eq. (6.26), we can assume
without loss of generality,
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p1 =
k1∑

i=1

x2
i ∈ E, 1 ≤ k1 ≤ k. (6.31)

Note that the orthogonal transformation on x1, · · · , xn leaves p0 invariant. In
summary, we deduce that p0 = ∑k

i=1 x2
i has the greatest positive rank and p1 =

∑k1
i=1 x2

i has the least positive rank. Define

S1 = {1, 2, · · · , k1} ⊆ S = {1, · · · , k}, (6.32)

and Q1 = real vector space spanned by {xixj : k1 + 1 ≤ i ≤ j ≤ k} ⊆ Q.
If k1 < k, then Q1 ∩ E is a nontrivial space. In a similar procedure as above,

there exists

p2 =
k2∑

i=k1+1

x2
i ∈ E ∩ Q1, (6.33)

with the least positive rank in E ∩ Q1. By induction, we construct a series of tuples
{Si,Qi, pi} shown as below:

Si = {ki−1 + 1, · · · , ki}, k0 = 0, ki ≤ k, (6.34)

and Qi = real vector space spanned by {xlxj : ki + 1 ≤ l ≤ j ≤ k} ⊆ Q:

pi =
ki∑

i=ki−1+1

x2
i =

∑

j∈Si

x2
j ∈ E ∩ Qi−1, i > 0, (6.35)

and pi has the least positive rank in E ∩ Qi−1 for i > 0.
In the following, after we get the series of fundamental quadratic polynomials

{pi}, those can be utilized to describe the structure of any functions in E.
Corresponding results are shown as follows.

Lemma 6.5 If p ∈ E ∩ Q, then

p(0, · · · , 0, xki−1+1, · · · , xki
, 0, · · · , 0) = λpi, for i > 0,where λ is a real constant.

(6.36)

Proof In view of Lemma 6.2 and the fact that [L0, pi] ∈ E, [L0, p0 − pi] ∈ E, we
have

∑

j∈Si

xjDj ∈ E,
∑

j∈S−Si

xjDj ∈ E. (6.37)

Hence,
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⎡

⎣
∑

j∈Si

xjDj , p

⎤

⎦−
⎡

⎣
∑

j∈S−Si

xjDj ,

⎡

⎣
∑

j∈Si

xjDj , p

⎤

⎦

⎤

⎦

=2p(0, · · · , 0, xki−1+1, · · · , xki
, 0, · · · , 0) ∈ E.

(6.38)

Because pi has the least positive rank for quadratic polynomials in xki−1+1, · · · , xki
,

the matrix corresponding to p(0, · · · , 0, xki−1+1, · · · , xki
, 0, · · · , 0) has (ki −ki−1)

same eigenvalues. Then we deduce there is a λ such that

p(0, · · · , 0, xki−1+1, · · · , xki
, 0, · · · , 0) = λpi. (6.39)

That finishes the whole proof. �
Lemma 6.6 If p ∈ E ∩ Q, then

p(x1, · · · , xki−1 , 0, · · · , 0, xki+1, · · · , xk) ∈ E, f or i > 0. (6.40)

Proof

p(x1, · · ·, xki−1 , 0, · · · , 0, xki+1, · · · , xk)

=p −
⎡

⎣
∑

j∈S−Si

xjDj ,

⎡

⎣
∑

j∈Si

xjDj , p

⎤

⎦

⎤

⎦

− p(0, · · · , 0, xki−1+1, · · · , xki
, 0, · · · , 0) ∈ E.

(6.41)

This lemma follows immediately from the above formula. �
The following lemma is a corollary of Lemma 6.5.

Lemma 6.7 Let p = ∑i∈Sl1

∑
j∈Sl2

2aij xixj ∈ E, where aij ∈ R and l1 < l2. Let

Xi = (xki−1+1, · · · , xki
)T be a (ki − ki−1)-vector. Under this notation, p can be

written as

p = (XT
l1
, XT

l2
)

(
0 A

AT 0

)(
Xl1

Xl2

)

. (6.42)

Then |Sl1 | = |Sl2 | and A = bT , where b is a constant and T is an orthogonal
matrix.

Proof Direct calculations imply

[[L0, p], p] = 4
∑

i,m∈Sl1

∑

j∈Sl2

aij amjxixm + 4
∑

i∈Sl1

∑

j,l∈Sl2

aij ailxj xl ∈ E. (6.43)

Lemma 6.5 can be applied here and leads to the following:
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∑

i,m∈Sl1

∑

j∈Sl2

aij amjxixm = λ1pl1

∑

j,l∈Sl2

∑

i∈Sl1

aij ailxj xl = λ2pl2

(6.44)

The above two equations imply that rows of A are orthogonal so are columns. Since
the row rank is the same as the column rank for any matrix, A must be a square
matrix which implies |Sl1 | = |Sl2 |. As the column vectors have the same length, A
is a constant multiple of an orthogonal matrix. �

If E is a finite-dimensional estimation algebra with maximal rank, then by
Ocone’s theorem, ωij ∈ E is a polynomial of degree at most 2 for all 1 ≤ i, j ≤ n.

Let ω(2)
ij , ω

(1)
ij be the homogeneous part of degree 2 and 1 of ωij , respectively. Then

we have the following lemma.

Lemma 6.8 Suppose that E is a finite-dimensional estimation algebra of maximal
rank. Then:

(i) ω
(2)
ij depends only on x1, · · · , xk, for i ≤ k or j ≤ k;

(ii) ω
(2)
ij = 0, for k + 1 ≤ i, j ≤ n;

(iii)
∂ω

(2)
ij

∂xl
+ ∂ω

(2)
j l

∂xi
+ ∂ω

(2)
li

∂xj
= 0, ∀1 ≤ i, j, l ≤ n;

(iv)
∂ω

(1)
ij

∂xl
+ ∂ω

(1)
j l

∂xi
+ ∂ω

(1)
li

∂xj
= 0, ∀1 ≤ i, j, l ≤ n.

Proof Since E is finite dimensional of maximal rank and ωij ∈ E, it follows that

ω
(2)
ij ∈ E. Hence, ω(2)

ij ∈ E depends only on x1, · · · , xk by Lemma 6.4. The cyclic
conditions of part (iii) and part (iv) of this lemma follow from the corresponding
cyclic conditions:

∂ωij

∂xl

+ ∂ωjl

∂xi

+ ∂ωli

∂xj

= 0, ∀1 ≤ i, j, l ≤ n. (6.45)

Let k + 1 ≤ i, j ≤ n, and 1 ≤ l ≤ k. Then (iii) gives
∂ω

(2)
ij

∂xl
= 0. It follows that

ω
(2)
ij = 0 for k + 1 ≤ i, j ≤ n. �
The following three theorems about the Euler operator are due to Yau and

Rasoulian [32].

Theorem 6.4 Let El = ∑l
j=1 xj

∂
∂xj

be an Euler operator in x1, · · · , xl variables.

Suppose that m is an integer and ξ is a C∞ function on Rn such that El(ξ)+mξ is a
polynomial of degree k, k a positive integer, in x1, · · · , xl variables with coefficients
in C∞ function of xl+1, · · · , xn variables.
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(i) If k + m ≥ 0, then ξ is a polynomial of degree k in x1, · · · , xl variables with
coefficients in C∞ functions of xl+1, · · · , xn.

(ii) If k + m < 0, then ξ is a polynomial of degree at most −m in x1, · · · , xl

variables with coefficients in C∞ functions of xl+1, · · · , xn.

Proof First, let k +m ≥ 0. Also let D := ( ∂
∂x1

)α1 · · · ( ∂
∂xl

)αl , α1 + . . . +αl = k + 1
be a differential operator. By assumption that El(ξ) + mξ is a polynomial of degree
k in x1, . . . , xl , then we have D[El(ξ) + mξ ] = 0. It can be directly calculated that

D[El(ξ) + mξ ] = El(Dξ) + (α1 + . . . + αl + m)Dξ. (6.46)

So El(Dξ) + (k + 1 + m)Dξ = 0. Observe

El[xk+1+m
1 Dξ ] = xk+1+m

1 [El(Dξ) + (k + 1 + m)Dξ ] = 0. (6.47)

Denote φ = xk+1+m
1 Dξ . Because k + 1 + m > 0, we have

φ(x1, . . . , xl, . . . , xn) − φ(εx1, . . . , εxl, . . . , xn)

=
∫ 1

ε

1

t
(Elφ)(tx1, . . . , txl, xl+1, . . . , xn)dt

= 0. (6.48)

For ε > 0. Now, let ε → 0 and we get φ = 0 which implies that Dξ = 0. In
other words, ξ is a polynomial of degree at most k in x1, . . . , xl with coefficients in
smooth function xl+1, . . . , xn. Next, we proceed to prove that ξ is a polynomial of
degree at most k. The main idea is to use induction on k and using the same method
as above. �
Theorem 6.5 Let ES := ∑

l∈S xl
∂

∂xl
be an Euler operator, where S is a subset of

index {1, 2, · · · , n}. Pk(x) denotes the set of polynomials of degree no more than
k in variable x1, · · · , xn. Assume ζ ∈ C∞(Rn) and m is a positive constant. If
ES(ζ ) + mζ ∈ Pk(x), then ζ ∈ Pk(x).

Proof For simplicity of expression, we let S = {1, 2, · · · , l} ⊂ {1, 2, · · · , n}. Our
proof includes two parts.

Step 1. ζ is a polynomial in variables x1, · · · , xl of degree k with smooth
coefficients of xl+1, · · · , xn.

Next we define multi-index β = (β1, · · · , βl) with |β| = k + 1 and differential
operator D := ( ∂

∂x1
)β1 · · · ( ∂

∂xl
)βl . The only thing we need to do is to show that

D(ζ) = 0.
It is obvious that D[ES(ζ ) + mζ ] = 0. Next we need to simplify term DES(ζ )

by exchanging order of operators D and ES . First, we have following rules by basic
computation:
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(
∂

∂xj

)p

ES =ES

(
∂

∂xj

)p

+ p

(
∂

∂xj

)p

, for j ∈ S and p ∈ Z+. (6.49)

By using the above relations and from D[ES(ζ ) + mζ ] = 0, we get

0 =D[ES(ζ ) + mζ ]

=
(

∂

∂xs1

)β1

· · ·
(

∂

∂xsl

)βl

ES(ζ ) + mDζ

=ES(Dζ) + (|β| + m)Dζ.

(6.50)

Next, we notice following operator rules:

ES(xj )
p =x

p
j ES + px

p
j , for j ∈ S and p ∈ Z+

=x
p
j (ES + p).

(6.51)

Then by using (6.51), we get

0 = xk+m+1
1 [ES(Dζ) + (k + m + 1)Dζ ] = ES(xk+m+1

1 Dζ). (6.52)

Next, we define φ(x) = xk+m+1
1 Dζ and our goal is to prove φ ≡ 0. It will derive

Dζ = 0 directly. Notice

0 =
∫ 1

ε

1

t
ES(φ(tx1, · · · , txl, xl+1, · · · , xn))dt

=
∫ 1

ε

dφ

dt
(tx1, · · · , txl, xl+1, · · · , xn)dt

=φ(x) − φ(εx1, · · · , εxl, xl+1, · · · , xn),

(6.53)

which yields that φ(x) = φ(0, · · · , 0, xl+1 · · · xn) = 0 by letting ε → 0.
Step 2. ζ is a polynomial of degree at most k. In the following, we shall assume

ζ =
∑

0≤|α|≤k

aα(xl+1, · · · , xn)x
α1
1 · · · xαl

l , aα(xl+1, · · · , xn) ∈ C∞(Rn−l )

(6.54)
and

ES(ζ ) + mζ =
∑

0≤|α|≤k

bα(xl+1, · · · , xn)x
α1
1 · · · xαl

l , (6.55)
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where bα(xl+1, · · · , xn) is a polynomial of degree at most k − |α|. By (6.54)
to (6.55), aα(xl+1, · · · , xn) can be shown as a polynomial with degree at most k−|α|
by comparing coefficients on both sides. �
Theorem 6.6 Let Ek =∑k

j=1 xj
∂

∂xj
be an Euler operator in x1, · · · , xk variables.

Suppose m is a positive integer and ξ is a C∞ function on Rn such that Ek(ξ)+mξ

is a polynomial of degree r in x1, · · · , xn variables. Then ξ is a polynomial of degree
r in x1, · · · , xn variables.

Proof Due to m > 0, then Theorem 6.4 (i) holds. We have

ξ =
∑

0≤|α|≤r

aα(xk+1, · · · , xn)x
α1
1 · · · xαk

k , (6.56)

where α = (α1, · · · , αk) and |α| = α1 + · · · + αk and aα(xk+1, · · · , xn) is C∞.
Next we only need to prove aα(xk+1, · · · , xn)’s are polynomials. We calculate

Ek(ξ) + mξ =
∑

0<|α|≤r

(|α| + m)aα(xk+1, · · · , xn)x
α1
1 · · · xαk

k

+ ma0(xk+1, · · · , xn)

=
∑

0<|α|≤r

pα(xk+1, · · · , xn)x
α1
1 · · · xαk

k ,

(6.57)

where pα(xk+1, · · · , xn)’s are polynomials in xk+1, · · · , xn. Now, looking at both
sides, we conclude that (|α|+m)aα = pα , for all α = (α1, · · · , αk), 0 < |α| ≤ r; in
other words, all aα, 0 < |α| ≤ r are polynomials and also a0 = p0

m
is a polynomial,

and hence ξ is a polynomial. �
Remark 6.2 Theorem 6.6 is false ifm = 0. It is possible thatEk(ξ) is a polynomial
of degree r in x1, · · · , xn variables, but ξ is not a degree r polynomial in x1, · · · , xn.
For example, we can simply take ξ to be any degree r polynomial in x1, · · · , xn plus
a C∞ function in xk+1, · · · , xn.

Theorem 6.7 Let Ek =∑k
j=1 xj

∂
∂xj

be an Euler operator in x1, · · · , xk variables.

Suppose that ξ is a C∞ function on Rn such that Ek(ξ) is a polynomial of degree
r in x1, · · · , xn variables. Then ξ = Pr(x1, · · · , xn) + a(xk+1, · · · , xn) where
Pr(x1, · · · , xn) is a polynomial of degree r and a(xk+1, · · · , xn) is a C∞ function
in xk+1, · · · , xn.

Proof In view of Theorem 6.4,

ξ =
∑

0≤|α|≤r

aα(xk+1, · · · , xn)x
α1
1 · · · xαk

k , (6.58)
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where α = (α1, · · · , αk) and |α| = α1 + · · · + αk and aα(xk+1, · · · , xn) is C∞.
Then Ek(ξ) = ∑0<|α|≤r |α|aα(xk+1, · · · , xn)x

α1
1 · · · xαk

k , which is a polynomial of
degree r in x1, · · · , xn. Therefore, aα(xk+1, · · · , xn) for |α| ≥ 1, are polynomials.
Theorem 6.7 follows immediately. �
Lemma 6.9 Let E be a finite-dimensional estimation algebra of maximal rank. Let
k be the quadratic rank of E. For 1 ≤ i, j ≤ n, ωij , and αi = ∑k

j=1 xjωij ∈
E are polynomials of degree 2 in x1, · · · , xn variables. Furthermore, we have the
following relationships:

(i) Ek(ωij ) + 2ωij = ∂αi

∂xj
− ∂αj

∂xi
,∀1 ≤ i, j ≤ k;

(ii) Ek(ωij ) + ωij = ∂αi

∂xj
− ∂αj

∂xi
,∀1 ≤ i ≤ k, k + 1 ≤ j ≤ n;

(iii) Ek(ωij ) + ωij = ∂αi

∂xj
− ∂αj

∂xi
,∀1 ≤ j ≤ k, k + 1 ≤ i ≤ n;

(iv) Ek(ωij ) = ∂αi

∂xj
− ∂αj

∂xi
,∀k + 1 ≤ i, j ≤ n.

Proof First, we have ωij ∈ E and αi = 1
2 [[L0,Dj ], p0] ∈ E where p0 is

defined by (6.27). By Ocone’s theorem, ωij and αi are polynomials of degree
2 in x1, · · · , xn. Relationships (i)–(iv) follow immediately from the definition of
Ek(ωij ) and αi . For example, we give the proof of (i) here:

∂αi

∂xj

=
k∑

l=1

∂(xlωil)

∂xj

= ωij +
k∑

l=1

xl

∂ωil

∂xj

∂αj

∂xi

=
k∑

l=1

∂(xlωjl)

∂xi

= ωji +
k∑

l=1

xl

∂ωjl

∂xi

∂αj

∂xi

− ∂αi

∂xj

= 2ωji +
k∑

l=1

xl

∂ωji

∂xl

= 2ωji + Ek(ωji).

(6.59)

�
Corollary 6.2 Suppose that E is a finite-dimensional estimation algebra of maxi-
mal rank. Then entries of Wong’s � matrix are polynomials of degree at most one,
i.e.,

ωij = P1(x1, x2, · · · , xn) f or 1 ≤ i, j ≤ n. (6.60)

Proof This follows from Theorems 6.6, 6.7 and Lemmas 6.9, 6.4. �
In the following, the linear structure of � matrix will be derived by applying

results of Lemma 6.4 and cyclic condition. Based on this linear property, we shall
proceed to prove the left top corner in � in fact is a constant matrix. The illustration
includes two steps in which first ωij for i ∈ Sp, j ∈ Sq, p �= q will be proved as
constant and then ωij for i, j ∈ Sl will be shown constant.
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Lemma 6.10 ([33]) Suppose that E is a finite-dimensional estimation algebra of
maximal rank. Then,

� = (ωij ) =
(

P1(x1, x2, · · · , xk) P1(x1, x2, · · · , xk)

P1(x1, x2, · · · , xk) P1(xk+1, · · · , xn)

)

, (6.61)

i.e.,

(i) ωij ’s are polynomials of degree 1 in x1, · · · , xk for 1 ≤ i ≤ k or 1 ≤ j ≤ k.
(ii) ωij ’s are polynomials of degree 1 in xk+1, · · · , xn for k + 1 ≤ i, j ≤ n.

Proof Since αi = ∑k
j=1 xjωij is a quadratic polynomial in E and by Lemma 6.4,

it cannot depend on xk+1, · · · , xn for 1 ≤ i ≤ n. Thus, (i) follows immediately. If
k + 1 ≤ i, j ≤ n, by using the cyclic relationship

∂ωij

∂xl

+ ∂ωjl

∂xi

+ ∂ωli

∂xj

= 0, ∀1 ≤ i, j, l ≤ n. (6.62)

we have
∂ωij

∂xl
= 0 for 1 ≤ l ≤ k. This means that ωij ’s are independent of

x1, · · · , xk for k + 1 ≤ i, j ≤ n. �
Lemma 6.11 ([33]) Suppose that E is a finite-dimensional estimation algebra of
maximal rank. With the same notation in Lemma 6.9, if

∑

i∈Sl

xiαi = 0, (6.63)

where αi’s are homogeneous polynomials of degree 2 in E, then αi = 0 for all
i ∈ Sl .

Proof Let Xi = (xki−1+1, · · · , xki
)T and X = (x1, x2, · · · , xk)

T . Without loss
of generality, we assume that l = 1. Let XT = (XT

1 , X̄T
1 ) where X̄1 is the

complementing variable of X1 in X. Write

αi(X) = αi(X1, 0) + αi(0, X̄1) + [αi − αi(X1, 0) − αi(0, X̄1)]. (6.64)

Hence, (6.63) is still true if we replace αi in (6.63) by one of the three terms on the
right-hand side of (6.64). We can see immediately that

αi(0, X̄1) = 0 ∀i ∈ Si. (6.65)

By Lemma 6.5, we have

αi(X1, 0) = λip1. (6.66)

So the corresponding Eq. (6.63) for αi(X1, 0) gives
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∑

i∈Sl

xiλip1 = 0. (6.67)

It follows that λi = 0, that is,

αi(X1, 0) = 0 ∀i ∈ S1. (6.68)

Therefore, αi − αi(X1, 0) − αi(0, X̄1) = ∑
l≥2 XT

1 BilXl ∈ E, where Bil ∈
R|S1|×|Sl |. By Lemma 6.6, we can deduce XT

1 BilXl ∈ E for l ≥ 2. By Lemma 6.7,
we have |S1| = |Sl |, l ≥ 2 and XT

1 BilXl = 2XT
1 RilXl , where Ril is a constant

multiple of an orthogonal matrix. Therefore, the corresponding equation of (6.63)
for αi − αi(X1, 0) − αi(0, X̄1) gives

∑

l≥2

XT
1

⎛

⎝
∑

i∈S1

2xiRil

⎞

⎠Xl =
∑

i∈S1

xi

∑

l≥2

2XT
1 RilXl = 0. (6.69)

This implies

XT
1

⎛

⎝
∑

i∈S1

2xiRil

⎞

⎠ = 0 ∀l ≥ 2. (6.70)

Fix i0 ∈ S1 and let xi0 = 1 and xi = 0 for i �= i0. Then we obtain

(0, · · · , 0, 1, 0, · · · , 0)Ri0l = 0 l ≥ 2. (6.71)

Since Ri0l is a constant multiple of an orthogonal matrix, we see that Ri0l = 0,∀l ≥
2. This is true for all i0 ∈ S1. Thus,

αi − αi(X1, 0) − αi(0, X̄1) = 0. (6.72)

So we have proved αi = 0. �
Theorem 6.8 ([33]) Suppose that E is a finite-dimensional estimation algebra of
maximal rank. With the same notation in Lemma 6.9, if p �= q and i ∈ Sp, j ∈ Sq ,
then ωij is a constant.

Proof Recall that Lemma 6.5, and we have
∑

i∈Sp
xiDi and

∑
j∈Sq

xjDj in E.
Hence,

∑

i∈Sp

∑

j∈Sq

xixjω
(1)
ij =

∑

i∈Sp

xi

⎛

⎝
∑

j∈Sq

xjω
(1)
ij

⎞

⎠ =
∑

j∈Sq

xj

⎛

⎝
∑

i∈Sp

xiω
(1)
ij

⎞

⎠ = 0.

(6.73)
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Hence, ω(1)
ij depends on xm, where m ∈ Sp ∪ Sq for i ∈ Sp and j ∈ Sq . Since E is

of maximal rank, Dj ∈ E for any j . In particular, we have

−
⎡

⎣
∑

i∈Sp

xiDi,Dj

⎤

⎦ =
∑

i∈Sp

xiωij ∈ E f or j ∈ Sq,

⎡

⎣
∑

j∈Sq

xjDj ,Di

⎤

⎦ =
∑

j∈Sq

xjωij ∈ E f or i ∈ Sp.

(6.74)

Then we have

∑

i∈Sp

xiω
(1)
ij ∈ E f or j ∈ Sq,

∑

j∈Sq

xjω
(1)
ij ∈ E f or i ∈ Sp.

(6.75)

By Lemma 6.11, we obtain

∑

i∈Sp

xiω
(1)
ij = 0 f or j ∈ Sq,

∑

j∈Sq

xjω
(1)
ij = 0 f or i ∈ Sp.

(6.76)

The first equation says that, for i ∈ Sp, j ∈ Sq , ω
(1)
ij does not depend on the variable

xm for m ∈ Sq . The second equation says that, for i ∈ Sp, j ∈ Sq , ω
(1)
ij does not

depend on the variable xm for m ∈ Sp. Hence, ω
(1)
ij = 0. �

Theorem 6.9 ([33]) Suppose that E is a finite-dimensional estimation algebra of
maximal rank. With the same notation in Lemma 6.9, if i, j ∈ Sl , then ωij is a
constant.

Proof Without loss of generality, we shall assume that l = 1. For 1 ≤ i ≤ k1,
αi = 1

2 [[L0,Di], p0] =∑k
j=1 xjωij ∈ E. Since E is of maximal rank, then α

(2)
i =

∑k
j=1 xjω

(1)
ij ∈ E. By Lemma 6.5, we have

α
(2)
i (x1, · · · , xk1 , 0, · · · , 0) =

k1∑

j=1

xjω
(1)
ij (x1, · · · , xk1 , 0, · · · , 0) = λ

k1∑

i=1

x2
i ∈ E.

(6.77)
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Since ωij is a degree 1 polynomial in x1, · · · , xk for 1 ≤ i, j ≤ k, we can write

ω
(1)
ij =

k∑

l=1

Al(i, j)xl. (6.78)

Then we substitute it into the previous equation:

k1∑

j,l=1

Al(i, j)xj xl = λ

k1∑

i=1

x2
i . (6.79)

Next, we discuss the case of 1 ≤ i, j, l ≤ k1. The above equation implies

Al(i, j) = 0 f or 1 ≤ j �= l ≤ k1, 1 ≤ i ≤ k1. (6.80)

For j = l case, if i �= l, by Eq. (6.80), we have

Al(i, l) = −Al(l, i) = 0. (6.81)

For j = l case, if i = l, then Al(l, l) = 0 holds obviously due to antisymmetry of
Wong’s matrix. In the view of Eqs. (6.80) and (6.81), we have

Al(i, j) = 0 f or 1 ≤ i, j, l ≤ k1. (6.82)

Observe that Al(i, j) = ∂ω
(1)
ij

∂xl
. Therefore, (iv) of Lemma 6.8 implies

Al(i, j) + Aj(l, i) + Ai(j, l) = 0 f or 1 ≤ i, j ≤ k1, k1 + 1 ≤ l ≤ k. (6.83)

Since Aj(l, i) = ∂ω
(1)
li

∂xj
= 0 and Ai(j, i) = ∂ω

(1)
j l

∂xi
= 0 by Theorem 6.8, we have

Al(i, j) = 0 f or 1 ≤ i, j ≤ k1, k1 + 1 ≤ l ≤ k. (6.84)

Therefore, we have shown that ω(1)
ij = 0 for 1 ≤ i, j ≤ k1. �

Theorem 6.10 Suppose that E is a finite-dimensional estimation algebra of maxi-
mal rank. Then,

� = (ωij ) =
(

Constants P1(x1, x2, · · · , xk)

P1(x1, x2, · · · , xk) P1(xk+1, · · · , xn)

)

, (6.85)

i.e.,

(i) ωij is a constant for 1 ≤ i, j ≤ k;
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(ii) ωij is a polynomial of degree 1 in x1, · · · , xk for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n or
1 ≤ j ≤ k, k + 1 ≤ i ≤ n;

(iii) ωij is a polynomial of degree 1 in xk+1, · · · , xn for k + 1 ≤ i, j ≤ n.

Proof This is an immediate consequence of Lemma 6.10, Theorems 6.8, and 6.9.
�

6.3.2 Maximal Rank Classification: Hessian Matrix
Nondecomposition Theorem

In this section, we are going to prove that ωij is a constant for k + 1 ≤ i, j ≤ n.
We shall see that this statement follows from the Hessian matrix nondecomposition
theorem which is a general theorem and has nothing to do with estimation algebras.
The Hessian matrix nondecomposition theorem was first proved by Yau et al. [34].

Lemma 6.12 Suppose that E is a finite-dimensional estimation algebra of maximal
rank. Then:

(i)
∑n

l=1 ωjlωil − 1
2

∂2η
∂xj ∂xi

∈ E for any 1 ≤ i, j ≤ n;
(ii) η is a polynomial of degree 4.

Proof (i) follows from (vi) of Lemma 6.3 and Theorem 6.10. From (i) and

Theorem 6.10, ∂2η
∂xi∂xj

is a degree 2 polynomial for all 1 ≤ i, j ≤ n. Therefore,
η is a polynomial of degree 4. �
Lemma 6.13 Suppose that E is a finite-dimensional estimation algebra of maximal
rank. Let k be the quadratic rank. Let η = η4(xk+1, · · · , xn) + polynomial of degree
3 in xk+1, · · · , xn with coefficients degree at most four polynomials in x1, · · · , xk .
Then for any k + 1 ≤ i, j ≤ n,

n∑

l=k+1

ω
(1)
j l ω

(1)
il = 1

2

∂2η4

∂xj ∂xi

, (6.86)

where η4 = η4(xk+1, · · · , xn) is a homogeneous polynomials of degree 4 in
xk+1, · · · , xn.

Proof From Lemma 6.12 and Theorem 6.10, we know that for k + 1 ≤ i, j ≤ n,
∑n

l=k+1 ω
(1)
j l ω

(1)
il − 1

2
∂2η4

∂xj ∂xi
is the homogeneous polynomial of degree 2 part of

∑n
l=1 ωjlωil − 1

2
∂2η

∂xj ∂xi
in xk+1, · · · , xn variables. The result follows immediately

from Lemma 6.4. �
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The following notations and lemma were used and observed by Chen et al. [8].
Define

� :=(ω
(1)
il ), k + 1 ≤ i, l ≤ n

=
n∑

j=k+1

Ajxj ,
(6.87)

where � is an (n − k) × (n − k) antisymmetric matrix and Aj = Aj(p, q), k + 1 ≤
p, q ≤ n, are (n − k) × (n − k) antisymmetric matrices with constant coefficients.
The anti-symmetry of � and Aj follows directly from that of �.

Lemma 6.14 Suppose that E is a finite-dimensional estimation algebra of maximal
rank. With the notations as above, then

(i) ��T = 1
2H(η4), where H(η4) =

(
∂2η4

∂xi∂xj

)
, k + 1 ≤ i, j ≤ n, is the Hessian

matrix of η4 = η4(xk+1, · · · , xn).
(ii) Ai(j, l) + Al(i, j) + Aj(l, i) = 0.

Proof (i) follows from Lemma 6.13, while (ii) is a consequence of Lemma 6.8 (iv).
�

The following Hessian matrix non-decomposition theorem is a general mathe-
matical theorem that has independent interest besides nonlinear filtering theory. For
a (n−k)× (n−k) matrix with n−k less than or equal to 4, the theorem was proved
in Chen et al. [8].

Theorem 6.11 Let � = ∑n
j=k+1 Ajxj be an (n − k) × (n − k) antisymmetric

matrix, where Aj = (Aj (p, q)), k + 1 ≤ p, q ≤ n, is an antisymmetric matrix with
constant coefficients. Suppose

Ai(j, l) + Al(i, j) + Aj(l, i) = 0, ∀k + 1 ≤ i, j, k ≤ n. (6.88)

Let η4 = η4(xk+1, · · · , xn) be a homogeneous polynomial of degree 4 in

xk+1, · · · , xn. Let H(η4) =
(

∂2η4
∂xi∂xj

)
, k + 1 ≤ i, j ≤ n, be the Hessian matrix of

η4. If ��T = 1
2H(η4), then � ≡ 0, i.e., Aj = 0 for all k + 1 ≤ j ≤ n.

Proof Let � = (βij ). Then
∂βij

∂xl
= Al(i, j). Observe that from ��T = 1

2H(η4),
we have
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∂2

∂x2
j

(
∂2η4

∂x2
i

)

= ∂2

∂x2
i

(
∂2η4

∂x2
j

)

= ∂2

∂xi∂xj

(
∂2η4

∂xi∂xj

)

�⇒ ∂2

∂x2
j

[
n∑

l=k+1

β2
il

]

= ∂2

∂x2
i

[
n∑

l=k+1

β2
j l

]

= ∂2

∂xi∂xj

[
n∑

l=k+1

βilβjl

]

�⇒
n∑

l=k+1

[Aj(i, l)]2 =
n∑

l=k+1

[Ai(j, l)]2 = 1

2

n∑

l=k+1

[Ai(i, l)Aj (j, l)

+ Aj(i, l)Ai(j, l)]

(6.89)

∂2

∂xi∂xj

(
∂2η4

∂x2
j

)

= ∂2

∂x2
j

(
∂2η4

∂xi∂xj

)

�⇒ ∂2

∂xi∂xj

[
n∑

l=k+1

β2
j l

]

= ∂2

∂x2
j

[
n∑

l=k+1

βilβjl

] (6.90)

n∑

l=k+1

Aj(j, l)Ai(j, l) =
n∑

l=k+1

Aj(j, l)Aj (i, l)

�⇒
n∑

l=k+1

Aj(j, l)[Ai(j, l) + Aj(l, i)] = 0 (by anti-symmetry of A)

�⇒
n∑

l=k+1

Aj(j, l)Al(j, i) = 0 (by cyclic condition)

(6.91)

∂2

∂xp∂xq

(
∂2η4

∂x2
j

)

= ∂2

∂x2
j

(
∂2η4

∂xp∂xq

)

�⇒ ∂2

∂xp∂xq

[
n∑

l=k+1

(βjl)
2

]

= ∂2

∂x2
j

[
n∑

l=k+1

βplβql

]

�⇒
n∑

l=k+1

Ap(j, l)Aq(j, l) =
n∑

l=k+1

Aj(p, l)Aj (q, l).

(6.92)

Observe that (A2
j )

T = (AjAj )
T = AT

j AT
j = (−Aj)(−Aj) = A2

j . Denote

A2
j (p, q) the (p, q)-entry of A2

j matrix. Then for any k + 1 ≤ j ≤ n,
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n∑

l=k+1

[A2
j (j, l)]2 =

n∑

l=k+1

A2
j (j, l)A

2
j (l, j)

=
n∑

l=k+1

⎡

⎣
n∑

q=k+1

Aj(j, q)Aq(j, l)

⎤

⎦

⎡

⎣
n∑

p=k+1

Aj(j, p)Ap(j, l)

⎤

⎦

=0. by (6.92) (6.93)

In particular, we have A2
j (j, j) = 0 for all k + 1 ≤ j ≤ n:

n∑

l=k+1

[Aj(j, l)]2 = −
n∑

l=k+1

Aj(j, l)Aj (l, j) = −A2
j (j, j) = 0.

�⇒Aj(j, l) = 0 for all k + 1 ≤ j, l ≤ n.

(6.94)

Now (6.89) becomes, for any k + 1 ≤ i, j ≤ n,

n∑

l=k+1

[Aj(i, l)]2 =
n∑

l=k+1

[Ai(j, l)]2 = 1

2

n∑

l=k+1

Aj(i, l)Ai(j, l)

≤1

4

n∑

l=k+1

[Aj(i, l)]2 + 1

4

n∑

l=k+1

[Ai(j, l)]2.
(6.95)

Then we have

3

4

n∑

l=k+1

[Ai(j, l)]2 ≤ 1

4

n∑

l=k+1

[Aj(i, l)]2 = 1

4

n∑

l=k+1

[Ai(j, l)]2

�⇒
n∑

l=k+1

[Ai(j, l)]2 = 0.

�⇒Ai(j, l) = 0 for all k + 1 ≤ i, j, l ≤ n.

�⇒� = 0.

(6.96)

�
Theorem 6.12 Suppose that E is a finite-dimensional estimation algebra of maxi-
mal rank. Then,

� = (ωij ) =
(

Constants P1(x1, x2, · · · , xk)

P1(x1, x2, · · · , xk) Constants

)

, (6.97)

i.e.,
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(i) ωij is a constant for 1 ≤ i, j ≤ k or k + 1 ≤ i, j ≤ n;
(ii) ωij is a polynomial of degree 1 in x1, · · · , xk for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n or

1 ≤ j ≤ k, k + 1 ≤ i ≤ n.

Proof This follows from Theorem 6.10, 6.11 directly. �

6.3.3 Maximal Rank Classification: Complete Classification
Theorem

In this section, the main goal that we shall finish is to prove the remaining part of
the � is still constant, i.e., two non-diagonal parts 1 ≤ i ≤ k, k + 1 ≤ j ≤ n and
k + 1 ≤ i ≤ n, 1 ≤ j ≤ k. Since the similar technique of Lie algebra computations
will be utilized, the details of the proof of the lemmas and propositions below will
be omitted which can be found in Yau et al. [33]. The following propositions and
lemmas will facilitate the proof of our classification theorem.

Theorem 6.13 Let E be an estimation algebra of the filtering system (6.1) whose
�-matrix has constant entries.

(i) If η is a polynomial of degree at most 2 and h1, · · · , hm are affine in x, thenE is
finite dimensional and has a basis consisting of E0 = L0, E1, · · · , Ep,Ep+1,
· · · , Eq, 1 (for some p < p). The differential operators E1, · · · , Ep have the
form

n∑

j=1

αijDj + βj , 1 ≤ i ≤ p, (6.98)

where αij ’s are constants and βi’s are affine in x, and the differential operators
Ep+1, · · · , Eq are affine in x. Moreover, the quadratic part of η −∑m

i=1 h2i is
positive semidefinite.

(ii) Conversely, if E is finite dimensional, then h1, · · · , hm are affine in x,
i.e., the observation matrix H = [∇h1, · · · ,∇hm] is a constant matrix.
Furthermore, if the observation matrix has rank n, then η is a polynomial
of degree at most 2 and E is of dimension 2n + 2 with a basis given by
1, x1, · · · , xn,D1, · · · ,Dn, L0.

Lemma 6.15 Let E be a finite-dimensional estimation algebra with maximal rank.

Let k be the quadratic rank of E. Then, ∂ωil

∂xj
= ∂ωjl

∂xi
for all k + 1 ≤ l ≤ n and

1 ≤ i, j ≤ k.

Proposition 6.1 If x2
kp−1+1 +· · ·+x2

kp
is a basic quadratic form in E and

∂ωjl

∂xi
= 0

for all k + 1 ≤ l ≤ n, kp−1 + 1 ≤ i, j ≤ kp, and i �= j , then ∂ωil

∂xi
= 0 for all

kp−1 + 1 ≤ i ≤ kp.
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Lemma 6.16 Let x2
kr−1+1 + · · · + x2

kr
and x2

ks−1+1 + · · · + x2
ks

be the basic forms

in E, where kr−1 < kr ≤ ks−1 ≤ ks . Let ξij = ∑n
l=k+1

(
∂ωjl

∂xi

)
Dl . Suppose

∑ks

j=ks−1+1 ξpj ξqj = 0 for all kr−1 + 1 ≤ p, q ≤ kr , p �= q. Then
∂ωjl

∂xi
= 0

for all k + 1 ≤ l ≤ n, kr−1 + 1 ≤ i ≤ kr and ks−1 + 1 ≤ j ≤ ks .

Lemma 6.17 Let x2
kr−1+1 + · · · + x2

kr
and x2

ks−1+1 + · · · + x2
ks

be the basic forms

in E, where kr−1 < kr ≤ ks−1 ≤ ks. Let ξij = ∑n
l=k+1

(
∂ωjl

∂xi

)
Dl . Then

∑ks

j=ks−1+1 ξpj ξqj = 0 for all kr−1 + 1 ≤ p, q ≤ kr , p �= q if and only if
∑ks

j=ks−1
a

p
jl1

a
q
jl2

= 0 for all k + 1 ≤ l1, l2 ≤ n, kr−1 + 1 ≤ p, q ≤ kr , p �= q,

where a
p
jl1

= ∂ωjl1
∂xp

.

Lemma 6.18 Let x2
kr−1+1+· · ·+x2

kr
and x2

ks−1+1+· · ·+x2
ks
be the basic forms in E,

where kr−1 < kr ≤ ks−1 ≤ ks . Assume that Ql =∑kr

i=kr−1+1

∑ks

j=ks−1+1 ai
j lxixj ∈

E for all k + 1 ≤ l ≤ n, where ai
j l = ∂ωjl

∂xi
. Then

∑ks

j=ks−1+1 a
p
jl1

a
q
jl2

for all
k + 1 ≤ l1, l2 ≤ n, kr−1 + 1 ≤ p, q ≤ kr .

Proposition 6.2 Let x2
kr−1+1+· · ·+x2

kr
and x2

ks−1+1+· · ·+x2
ks
be the basic forms in

E, where kr−1 < kr ≤ ks−1 ≤ ks . Then
∂ωjl

∂xi
= 0 for all k + 1 ≤ l ≤ n, kr−1 + 1 ≤

i ≤ kr and ks−1 + 1 ≤ j ≤ ks .

Proposition 6.3 Let x2
kr−1+1 + · · ·+ x2

kr
be the basic forms in E. Then

∂ωjl

∂xi
= 0 for

all k + 1 ≤ l ≤ n, kr−1 + 1 ≤ i, j ≤ kr and i �= j .

Theorem 6.14 Suppose that E is a finite-dimensional estimation algebra of maxi-
mal rank. Then � = (ωij ) is a matrix with constant coefficients.

Proof This follows from Propositions 6.1–6.3. �
Theorem 6.15 ∂fj

∂xi
− ∂fi

∂xj
= cij are constants for all i and j if and only if

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · ,

∂ψ

∂xn

)

, (6.99)

where l1, · · · , ln are polynomials of degree 1 and ψ is a C∞ function.

Proof Sufficiency is easy to obtain by applying direct calculus computation. Our
goal aims to solve necessity. Let bij = − 1

2cij . Then we have bji − bij = cij .
Let li (x) = ∑n

j=1 bij xj . In the following, we find that the following two exterior
derivatives of differential forms

∑n
i=1 fidxi and

∑n
i=1 lidxi are the same, i.e.,

d(

n∑

i=1

fidxi) = d(

n∑

i=1

lidxi). (6.100)
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Equivalently,

d(

n∑

i=1

fidxi −
n∑

i=1

lidxi) = 0. (6.101)

By Poincare lemma, every d-closed differential form on Rn are d-exact; there exists
a smooth function ψ such that

n∑

i=1

fidxi −
n∑

i=1

lidxi = dψ =
n∑

i=1

∂ψ

∂xi

dxi . (6.102)

Results follows immediately. �
In the following, after we get the constant structure of � matrix, estimation

algebra of maximal rank can be proved to be a linear vector space with a specific
basis.

Theorem 6.16 (Complete Classification) Let E be the finite-dimensional estima-

tion algebra with maximal rank and ωij = ∂fj

∂xi
− ∂fi

∂xj
= cij . Then E is a real vector

space of dimension 2n + 2 with basis given by 1, x1, · · · , xn,D1, · · · ,Dn, L0 and
η is a quadratic polynomial.

Proof With the condition of maximal rank, without loss of generality, there is xi+ci

in E for i = 1, · · · , n. Then

[L0, xi + ci] = Di ∈ E

[Di, xi + ci] = δij ∈ E

[L0,Di] =
n∑

i=1

cijDj + 1

2

∂η

∂xi

∈ E.

(6.103)

Then ∂η
∂xi

∈ E for all i = 1, · · · , n. If η is a quadratic polynomial, then
we easily see that E is a finite-dimensional real vector space spanned by basis
1, x1, · · · , xn,D1, · · · ,Dn, L0. To finish the whole proof, the only thing that
remains to do is to prove that η is a polynomial of degree at most 2. To this end,
it can be observed that ∂η

∂xi
are polynomials of degree at most 2 because of Ocone’s

lemma. It follows that η is a polynomial of degree at most 3. If homogeneous
degree 3 part of η is nonzero, then clearly there exists a straight line c(t) satisfying
limt→∞ η(c(t)) = −∞. Then

lim
t→∞(η −

m∑

i=1

h2i )(c(t)) = −∞. (6.104)
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Recall that nonexistence property is satisfied by underdetermined PDE and Theo-
rem 6.3. We get a contradiction. �

6.4 Wei-Norman Approach

Constructing a robust finite-dimensional filter for (6.1) is defined to find a smooth
manifold M , complete C∞ vector fields μi on M , C∞ function ν on M × R × Rn,
and ωi’s on Rm such that u(t, x) in robust DMZ equation can be represented in the
following form:

⎧
⎪⎪⎨

⎪⎪⎩

dz

dt
(t) =

k∑

i=1

μi(z(t))ωi(y(t)), z(0) ∈ M,

u(t, x) =ν(z(t), t, x).

(6.105)

Following Chaleyat et al. [15], we say that system (6.1) has a robust universal
finite-dimensional filter if, for each initial probability density σ0, there exists a z0
such that (6.105) holds if z(0) = z0 and μi, ωi are independent of σ0.

The method of Wei and Norman [24] of using Lie algebraic ideas to solve time-
varying linear differential equations is roughly as follows. Consider the following
equation:

d

dt
X(t) = A(t)X(t) =

m∑

i=1

ai(t)AiX(t), X(0) = X0, (6.106)

where X and Ai’s are n × n matrices and ai’s are scalar-valued functions. Let
B1, · · · , Bl be a basis of the Lie algebra generated by A1, · · · , Am. Then the Wei-
Norman theorem states that, locally in t , X(t) has a representation of the following
form:

X(t) = eb1(t)B1 · · · ebl(t)BlX0, (6.107)

where the bi’s satisfy an ordinary differential equation of the following form:

dbi

dt
= ci(b1, · · · , bl), bi(0) = 0, 1 ≤ i ≤ l. (6.108)

The functions ci, 1 ≤ i ≤ l in the above equation are determined by the
structure constraints of the Lie algebra (generated by the Ai’s) relative to the basis
{B1, · · · , Bl}.
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The extension of Wei and Norman’s approach to the nonlinear filtering problem
is much more complicated. Instead of an ordinary differential equation, we have to
solve the robust DMZ equation, which is a time-varying partial differential equation.

Suppose that the Wei-Norman theory is applied to solve partial differential
equations of the following form:

∂u

∂t
= a1A1u + · · · + amAmu, (6.109)

where the Ai, 1 ≤ i ≤ m, are linear partial differential operators in x1, · · · , xn, and
the ai, 1 ≤ i ≤ m, are given functions of time t .

We shall assume that the Lie algebra generated by the operators A1, · · · , Am

in (6.109) is finite dimensional. By setting, if necessary, some of the ai(t) equal to
zero, and by combining other aj (t) in case of linear dependence among the operators
on the r.h.s. of (6.109), without loss of generality, we can assume A1, · · · , Am

consist a basis of Lie algebra and satisfy

[Ai,Aj ] =
m∑

k

γ k
ijAk, 1 ≤ i, j ≤ m, (6.110)

for suitable real constants γ k
ij , 1 ≤ i, j, k ≤ m.

The central idea of Wei-Norman theory is to try for a solution of the following
form:

u(t, x) = eg1(t)A1 · · · egm(t)Amψ, (6.111)

where the gi, 1 ≤ i ≤ m, are undetermined functions of time. The next step is
to insert such representation (6.111) to (6.109) and derive the ordinary differential
equation satisfied by gi, 1 ≤ i ≤ m. We shall give a sketch of the procedure of
obtaining evolution equation of gi, 1 ≤ i ≤ m. First,

∂u

∂t
=ġ1A1e

g1(t)A1 · · · egm(t)Amψ + eg1(t)A1 ġ2A2 · · · egm(t)Amψ + · · ·

+ eg1(t)A1 · · · egm−1(t)Am−1 ġmAmegm(t)Amψ.

(6.112)

Now for i = 2, · · · , n, insert a term

e−gi−1Ai−1 · · · e−g1A1eg1A1 · · · egi−1Ai−1, (6.113)

just behind ġiAi in the i-th term of (6.112). Then use the adjoint representation
formula

eABe−A = B + [A,B] + 1

2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · (6.114)
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and (6.110) repeatedly; the right-hand side of (6.112) can be expanded as linear
combination of {A1u,A2u, · · · , Amu}. The coefficients will involve combinations
of derivatives of gi(t). For example, the second term of RHS of (6.112) shall be

eg1(t)A1 ġ2A2e
−g1(t)A1eg1(t)A1 · · · egm(t)Amψ

=eg1(t)A1 ġ2A2e
−g1(t)A1u

=(ġ2A2 + g1ġ2[A1, A2] + 1

2
g2
1 ġ2[A1, [A1, A2]] + · · · )u.

(6.115)

This summation will be finite because such Lie algebra is assumed to be finite
dimensional.

By matching both sides of (6.109), systems of ODEs for the g1, · · · , gm will
be obtained. These systems of ODEs are always solvable for small time. However,
they may not be solvable for all time, meaning that finite escape time phenomena
may occur. Fortunately, Theorem 6.16 will allow us to prove the following theorem
which shows concretely how to construct robust finite-dimensional filters from
finite-dimensional estimation algebra. Since the estimation algebra is solvable, the
corresponding systems of ODEs are solvable for all t ≥ 0.

Theorem 6.17 Let E be a finite-dimensional estimation algebra in system (6.1)

satisfying
∂fj

∂xi
− ∂fi

∂xj
= cij where cij are constants for all 1 ≤ i, j ≤ n. Suppose E is

finite dimensional, then h1, · · · , hm are affine. Suppose further that m ≥ n and the
observation matrix has full rank, then η = ∑n

i,j=1 aij xixj +∑n
i=1 bixi + d where

aij , bi and d are constants for all 1 ≤ i, j ≤ n and the robust DMZ equation has a
solution for all t ≥ 0 of the following form:

u(t, x) = eT (t)eRn(t)xn · · · er1(t)x1esn(t)Dn · · · es1(t)D1etL0σ0, (6.116)

where T (t), r1(t), · · · , Rn(t), s1(t), · · · , sn(t) satisfy the following ordinary differ-
ential equations:

For 1 ≤ i ≤ n

dsi(t)

dt
= ri(t) +

n∑

j=1

sj (t)cji +
m∑

k=1

hkiyk(t), (6.117)

where hk =∑n
j=1 hkjxj + ek, 1 ≤ k ≤ m; hkj and ek are constants.

For 1 ≤ j ≤ n

drj (t)

dt
= 1

2

n∑

i=1

si(t)(aij + aji), (6.118)

and
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dT (t)

dt
= − 1

2

n∑

i=1

r2i (t) − 1

2

n∑

i=1

s2i (t)

⎛

⎝
n∑

j=1

c2ij − aii

⎞

⎠

+
∑

1≤i<k≤n

si(t)sk(t) ×
⎛

⎝
n∑

j=1

cij cjk + 1

2
(aik + aki)

⎞

⎠

+
n∑

i=1

ri(t) −
n∑

j=2

j∑

i=1

sj (t)cij + 1

2

n∑

i=1

si(t)bi

+ 1

2

m∑

i,j=1

yi(t)yj (t)

(
n∑

k=1

hikhjk

)

−
n∑

i,j=1

si(t)sj (t)cij .

(6.119)

It follows that a universal finite-dimensional filter exists for the system (6.1).

Proof The detail can be found in Yau [28]. The basic idea of proof is to submit
Expression (6.116) to the robust DMZ equation. By comparing the coefficients on
both sides, dynamical evolution of coefficient functions T (t), ri(t), sj (t) will be
proved to satisfy ordinary differential equations. The detail is left as an exercise.

�

6.5 Classification with Nonmaximal Rank

6.5.1 State Dimension 2

The most basic and important situation in nonmaximal rank estimation algebra is
that state dimension equal to 2. In Wu and Yau [26], general considerations and
approaches toward the classification of finite-dimensional estimation algebra are
proposed. Some structural results are obtained. The properties of Euler operators
and the solution to an underdetermined PDE are extended and compared to [28, 32].
These tools and techniques are applied to the study of finite-dimensional estimation
algebras with state dimension 2 to obtain a complete classification result. It is
shown that the dimension of finite-dimensional estimation algebra is no more than
6. Moreover, the Mitter conjecture and the Levine conjecture hold for the case of
state dimension 2.

Unlike estimation algebras of maximal rank, it is not clear whether xi’s are
elements of a general estimation algebra E. To simplify the situation, the concept
of linear rank is introduced and some basic properties of linear rank are proved.
In order to explore the structure of the function elements in E, quadratic rank is
extended. In what follows, for a polynomial φ, φ(k) denotes its homogeneous degree
k part. The following theorem is from [26], which is the basics of linear rank.
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Theorem 6.18 Let E = 〈L0, h1, · · · , hm〉L.A. and Ē = 〈1, L0, h1, · · · , hm〉L.A..
Then E is finite dimensional if and only if Ē is finite dimensional.

Proof Since E ⊂ Ē, it suffices to show dim Ē − dimE ≤ 1 if dimE < ∞. Start
from the generators of Ē to construct increasing subsets Ak ⊂ Ē, as follows:

• A0 = {1, L0, h1, · · · , hm};
• for k ≥ 1, Ak = {a1B1 + a2B2 + a3[B3, B4] : ai ∈ R,Bj ∈ Ak−1, i =

1, 2, 3, j = 1, 2, 3, 4};
Clearly, Ak ↑ Ē as k → ∞. Now, assume that dimE < ∞. Let vector space
E∗ = E + 1 := {aX + b : X ∈ E, a, b ∈ R}. It is easy to show by induction that
Ak ⊂ E∗ for k ≥ 0. Thus,

Ē = ∪k≥0Ak ⊂ E∗, (6.120)

which means

dim Ē ≤ dimE∗ ≤ dimE + 1 < ∞. (6.121)

�
Thus, the estimation algebra E of a filtering problem being finite dimensional is

equivalent to the finite dimensionality of 〈E, 1〉L.A.. In the discussion of the finite
dimensionality of E, 1 can always be assumed an element of E.

Under the assumption that 1 ∈ E, any degree 1 polynomial in E �⇒ its
homogeneous degree 1 part is in E.

Definition 6.11 (Wu and Yau [26]) Let L(E) ⊂ E be the vector space consisting
of all the homogeneous degree 1 polynomials in E. Then the linear rank of
estimation algebra E is defined by r := dimL(E).

Note that an estimation algebra is associated with a filtering system and is
coordinate-dependent. The recognition of the structurally equivalent estimation
algebras is very important in the classification problem. Since an estimation algebra
is essentially a Lie algebra, the definitions of homomorphism and isomorphism of
estimation algebras follow from those of Lie algebras. It is shown in [1, 4], and
[17] that orthogonal variable transformation and affine transformations extend to
estimation algebra isomorphisms.

Let estimation algebra E possess linear rank r . Clearly, r ≤ n and there exist r

independent linear functions (the basis of L(E)) l1(x), · · · , lr (x) such that

(l1(x), · · · , lr (x))T = Ax, (6.122)

where A is an r × n matrix with rank r . From the singular value decomposition
theorem, there exist orthogonal matrices U ∈ Rr×r , V ∈ Rn×n such that



6.5 Classification with Nonmaximal Rank 203

A = U [D 0]V T , (6.123)

where D = diag(d1, · · · , dr ), with d1, · · · , dr �= 0 the singular values of A. Thus,

(l1(x), · · · , lr (x))T = U [D 0]V T x. (6.124)

After an orthogonal variable transformation y = V T x, it is easy to see that for
1 ≤ i ≤ r , yi is a linear combination of lj (x)(1 ≤ j ≤ r). Therefore, yi(1 ≤ i ≤ r)

are independent linear functions in E, i.e., {yi, 1 ≤ i ≤ r} is the basis of L(E).
Hence, by an orthogonal variable transformation, if necessary, a linear function l

is in E if and only if

l(x) ∈ L(E) := span{x1, · · · , xr }. (6.125)

Quadratic rank has been introduced in Definition 6.10. However, in order to deal
with estimation algebra with nonmaximal rank, more properties of quadratic rank
have been explored by Wu and Yau. More detailed results can be found in [26].

Lemma 6.19 Let E be an estimation algebra with linear rank r . Then for any φ ∈
E, the quadratic part of φ is

φ(2) = xT

(
A1 0
0 A2

)

x, (6.126)

where A1, A2 are symmetric matrices with dimensions r × r and (n − r) × (n − r).

Proof φ(2) is a degree 2 homogeneous polynomial. Therefore, it can be written as
φ(2) = xT Ax for a symmetric matrix A = (aij ) of dimension n × n.

Since linear rank of E is r , xi ∈ E if and only if 1 ≤ i ≤ r . For 1 ≤ i ≤ r ,
[L0, xi] = Di ∈ E, and

[Di, φ] = ∂φ

∂xi

= 2
n∑

j=1

aij xj , mod R ∈ E. (6.127)

Then aij = 0 for r + 1 ≤ j ≤ n, 1 ≤ i ≤ r . By the symmetry of A, the lemma
follows. �

Now, consider an estimation algebra E with linear rank r and quadratic rank
k. By the definition of the quadratic rank of E, there exists p0 ∈ E such that the
quadratic rank of p0 = k. By Lemma 6.19,

p
(2)
0 = xT

(
A1 0
0 A2

)

x. (6.128)
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Let k1 = rank(A1), k2 = rank(A2). Then k = k1+k2, 0 ≤ k1 ≤ r, 0 ≤ k2 ≤ n−r .
Since A1 and A2 are real symmetric, there are orthogonal matrices U1 and U2 such
that

A1 = U1

(
D1 0
0 0

)

UT
1 , (6.129)

and

A2 = U2

(
0 0
0 D2

)

UT
2 , (6.130)

where D1,D2 are nonsingular diagonal matrices with dimensions k1 × k1 and

k2 × k2. By taking the orthogonal variable transformation T =
(

U1 0
0 U2

)

, p(2)
0 =

∑k1
i=1 dix

2
i + ∑n

i=n−k2+1 dix
2
i , where di �= 0. Moreover, by an affine variable

transformation, if necessary,

p0 =
k1∑

i=1

dix
2
i +

n∑

i=n−k2+1

dix
2
i +

n−k2∑

i=k1+1

cixi + c0 ∈ E

�⇒[[L0, p0], p0] =
k1∑

i=1

4d2
i x2

i +
n∑

i=n−k2+1

4d2
i x2

i +
n−k2∑

i=k1+1

c2i ∈ E

�⇒q0 :=
k1∑

i=1

d2
i x2

i +
n∑

i=n−k2+1

d2
i x2

i ∈ E

�⇒qj := [[L0, qj−1], qj−1] =
k1∑

i=1

4j d
2j+2
i x2

i +
n∑

i=n−k2+1

4j d
2j+2
i x2

i ∈ E, j ≥ 1.

(6.131)
If no d2

i ’s are equal, then the coefficient matrix of qj for x2
i forms a Vandermonde

matrix. By the invertibility of the Vandermonde matrix, x2
i can be represented as a

linear combination of qj ’s, and therefore x2
i ∈ E. Hence,

k1∑

i=1

x2
i +

n∑

i=n−k2+1

x2
i ∈ E. (6.132)

If some d2
i ’s are equal, for example, d2

i ’s equal for l1 ≤ i ≤ l2 in p0, they can be
grouped to be solved as one variable. Instead of individual x2

i ∈ E for l1 ≤ i ≤ l2,
x2
l1

+ · · · + x2
l2
is obtained as a group under the above Vandermonde argument.
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In any case, (6.132) can always be constructed as long as the quadratic rank of
E is k. An important observation is that both orthogonal variable transformation
so used and affine variable transformation do not change the basis of L(E). In
summary, we have the following theorem, which describes the structure of linear
and quadratic functions in estimation algebra.

Theorem 6.19 Let E be a finite-dimensional estimation algebra with linear rank r

and quadratic rank k.
There exists p0 = ∑k1

i=1 x2
i +∑n

i=n−k2+1 x2
i ∈ E, where k1 + k2 = k, k1 ≤ r

and k2 ≤ n − r .
If φ ∈ E is a degree 1 polynomial, then φ is independent of xr+1, · · · , xn.
If φ ∈ E is a degree 2 polynomial, then φ(2) is independent of xk1+1, · · · , xn−k2 .

The theory of Euler operator is largely extended to more general case by Wu
and Yau. The proof details can be found in [26]. Relative theorems are listed below.
Notations of Euler operator are the same as before.

Theorem 6.20 (Theorem 3.13 [26]) Let m be a constant integer and ξ ∈ C∞(Rn)

such that El(ξ) + mξ is a polynomial of degree k(≥ 0) in x1, · · · , xl variables with
coefficients in C∞-functions of xl+1, · · · , xn variables.

If m + k + 1 > 0, ξ is a polynomial of degree k in x1, · · · , xl variables with
coefficients in C∞-functions of xl+1, · · · , xn variables.

If m + k + 1 ≤ 0, ξ is a polynomial of degree k or degree −m(≥ k + 1 > 0) in
x1, · · · , xl variables with coefficients in C∞-functions of xl+1, · · · , xn variables.

Theorem 6.21 (Theorem 3.15 [26]) Let m be a constant integer and ξ ∈ C∞(Rn)

such thatEl(ξ)+mξ ∈ Pk(x1, · · · , xn), a polynomial of degree k ≥ 0 in x1, · · · , xn

variables.
If m > 0, ξ ∈ Pk(x1, · · · , xn).
If m = 0, ξ ∈ Pk(x1, · · · , xn) + a(xl+1, · · · , xn), where a(xl+1, · · · , xn) is a

C∞-function in xl+1, · · · , xn variables.

The theory of underdetermined partial differential equation is much helpful for
classification problem of estimation algebra. Notice that the filtering system (6.1)
is completely parameterized by the pair, (f, h). It follows by Eq. (6.6) that the
underdetermined partial differential equation

n∑

i=1

∂fi

∂xi

+
n∑

i=1

f 2
i = F (6.133)

provides a complete characterization of the realization set of such systems. There-
fore, it is of primary interest to investigate the solution and solution properties for
this class of equations.

In (6.133), f1, · · · , fn and F are C∞-functions on Rn. F is given and
f1, · · · , fn are treated as unknown. Although there is only one equation with
n unknowns, (6.133) may not have solutions. In the work of Wu and Yau, they
extend the result of Yau in 1994 for underdetermined partial differential equation.
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Following some theorems are developed by Wu and Yau [26] based on the previous
result Theorem 6.3.

Theorem 6.22 (Theorem 3.18 [26]) Let F(x1, · · · , xn) be a degree d ≥ 1
polynomial on Rn. The homogeneous degree d part of F is denoted by Fd =
∑

|i|=d aix
i1
1 · · · xin

n , where i = (i1, · · · , in). If there exist n numbers b1, · · · , bn

such that Fd(b1, · · · , bn) < 0, there are no C∞-functions f1, · · · , fn on Rn

satisfying Eq. (6.133).

Theorem 6.23 (Theorem 3.21 [26]) Let d and r ≤ n be two positive integers and

F(x1, · · · , xn) =
∑

|i|≤d

ai(xr+1, · · · , xn)x
i1
1 · · · xir

r , (6.134)

where i = (i1, · · · , ir ), and where ai’s areC∞-functions in xr+1, · · · , xn variables.
The homogeneous degree d part in x1, · · · , xr variables of F is denoted by Fd =
∑

|i|=d ai(xr+1, · · · , xn)x
i1
1 · · · xir

r . If there exist n numbers b1, · · · , bn such that
Fd(b1, · · · , bn) < 0, there are no C∞-functions f1, · · · , fn on Rn satisfying
Eq. (6.133).

In the following, we will introduce classification result of estimation algebras
with state dimension 2. First, the state dimension is assumed to be n = 2, i.e.,
there are two state variables x1, x2. Some definitions of differential operators and
estimation algebra have been shown in previous sections. Wong’s�-matrix is a 2×2
antisymmetric matrix. Therefore, only ω12 = −ω21 is unknown. In the following,
we prove the linear structure of the �-matrix, i.e., ω12 is a degree 1 polynomial in
variables x1, x2.

Theorem 6.24 Suppose dimE < ∞ and Y = p(x)D2, mod U0 ∈ E. Then p is a
polynomial in x1, x2 of degree at most 1.

Proof By Theorem 6.1, p is a polynomial in x1, x2. Let l = degp and p(l) be the
homogeneous degree l part of p. Then

p(l) =
l∑

i=0

aix
l−i
1 xi

2 =
t∑

i=s

aix
l−i
1 xi

2, (6.135)

where ai’s are constants, 0 ≤ s ≤ t ≤ l, as �= 0, at �= 0, and ai = 0 for i < s or
i > t . Let Yk = Adk

L0
Y for k ≥ 0. By induction,

Yk = Adk
L0

Y =
k∑

j=0

C
j
k

∂kp

∂x
k−j

1 ∂x
j

2

D
k−j

1 D
j+1
2 , mod Uk, (6.136)

where C
j
k ’s are binomial numbers. In particular,
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Yl =
l∑

j=0

C
j
l (l − j)!j !ajD

l−j

1 D
j+1
2 = l!

t∑

j=s

ajD
l−j

1 D
j+1
2 , mod Ul, (6.137)

and

Yl−1 =
l−1∑

j=0

C
j

l−1
∂l−1p

∂x
l−j−1
1 ∂x

j

2

D
l−j−1
1 D

j+1
2

=
l−1∑

j=0

(l − 1)! ((l − j)aj x1 + (j + 1)aj+1x2 + cj

)
D

l−j−1
1 D

j+1
2 , mod Ul−1,

(6.138)
where cj ’s are constants from the (l−1)−th partial derivatives of the homogeneous
degree l − 1 part of p.

Now, depending on whether or not s = 0, and in the case when s = 0 whether
a1, a2 are 0, there are four cases for which similar constructions of sequences
with different calculations will show that l must be less than 2 if E is finite
dimensional.

(i) Case 1. s �= 0.

A0 :=Yl−1 (6.139)

=(d0x2 + (l − 1)!cs−1)D
l−s
1 Ds

2

+ terms with lower order in D1, mod Ul−1,

A1 :=Yl

=d1D
l−s
1 Ds+1

2 + terms with lower order in D1, mod Ul,

A2 :=[A1, A0]
=(s + 1)d1d0D

2(l−s)
1 D2s

2 + terms with lower order in D1, mod U2l−1,

...

Ar+1 :=[Ar,A0]
=dr+1D

(r+1)(l−s)
1 D

(r+1)s−r+1
2

+ terms with lower order in D1, mod U(r+1)l−r ,

where d0 = (l − 1)!sas �= 0, d1 = l!as �= 0, and dr+1 = (rs − r + 2)drd0 �= 0
for r ≥ 1 by induction. The orders of Ar+1’s are (r + 1)l − r + 1 → ∞ unless
l < 2.

(ii) Case 2. s = 0 and a1 �= 0.
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A0 :=Yl−1 (6.140)

=(l!a0x1 + d0x2 + (l − 1)!c0)Dl−1
1 D2 + terms with lower order in D1,

mod Ul−1,

A1 :=Yl

=d1D
l
1D2 + terms with lower order in D1, mod Ul,

A2 :=[A1, A0]
=d1d0D

2l−1
1 D2 + terms with lower order in D1,

mod U2l−1,

...

Ar+1 :=[Ar,A0]
=dr+1D

(r+1)l−r
1 D2 + terms with lower order in D1, mod U(r+1)l−r ,

where d0 = (l − 1)!a1 �= 0, d1 = l!a0 �= 0 and dr+1 = drd0 �= 0 for r ≥ 1.
The orders of Ar+1’s are (r + 1)l − r + 1 → ∞ unless l < 2.

(iii) Case 3. s = 0 and a1 = a2 = 0.

A0 :=Yl−1 = (d0x1 + (l − 1)!c0)Dl−1
1 D2 + (l − 1)!c2Dl−2

1 D2
2 (6.141)

+ degree 1 coeff. terms with lower order in D1, mod Ul−1,

A1 :=Yl = d1D
l
1D2

+ constant coeff. terms with lower order in D1, mod Ul,

A2 :=[A1, A0] = ld1d0D
2l−2
1 D2

2

+ constant coeff. terms with lower order in D1, mod U2l−1,

...

Ar+1 :=[Ar,A0] = dr+1D
(r+1)l−2r
1 Dr+1

2

+ constant coeff. terms with lower order in D1, mod U(r+1)l−r ,

(iv) Case 4. s = 0 and a1 = 0, but a2 �= 0.

Yl = d1D
l
1D2 + d3D

l−2
1 D3

2 + terms with lower order in D1, mod Ul,

(6.142)
where d1 = l!a0 �= 0 and d3 = l!a2 �= 0. If l ≥ 2, consider Z = [Yl, pD2] and
A0 = Adl−2

L0
Z:
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Z =[Yl, pD2]

=d1
∂p

∂x2
Dl

1D2 + ld1
∂p

∂x1
Dl−1

1 D2
2

+ terms with lower order in D1, mod Ul,

A0 =Adl−2
L0

Z

=d1
∂l−1p

∂xl−2
1 ∂x2

D2l−2
1 D2 + terms with lower order in D1, mod U2l−2,

(6.143)

Since p(l) = a0x
l
1 + a2x

l−2
1 x2

2 + terms with lower degree in x1,
∂l−1p

∂xl−2
1 ∂x2

=
2(l − 2)!a2x2 + c2, where c2 is (l − 2)! multiplied by the coefficient of xl−2

1 x2
in p. Hence,

A0 =(e0x2 + d1c2)D
2l−2
1 D2 + terms with lower order in D1, mod U2l−2,

A1 =Yl

=d1D
l
1D2 + d3D

l−2
1 D3

2 + terms with lower order in D1, mod Ul,

A2 =[A1, A0]
=d1e0D

3l−2
1 D2 + terms with lower order in D1, mod U3l−2,

...

Ar+1 =[Ar,A0]
=er+1D

(2r+1)l−2r
1 D2 + terms with lower order in D1, mod U(2r+1)l−2r ,

(6.144)
where e0 = 2(l − 2)!a2d1 �= 0, e1 = d1 �= 0 and er+1 = ere0 �= 0. The orders
of Ar+1’s are (2r + 1)l − 2r + 1 → ∞ unless l < 2.

�
Theorem 6.25 Suppose dimE < ∞. x1 + c ∈ E �⇒ ω12 is a polynomial of
degree at most 1.

Proof Clearly, L0, x1,D1 ∈ E.

H0 := [L0,D1] = ω12D2 + 1

2

∂ω12

∂x2
+ 1

2

∂η

∂x1
∈ E. (6.145)

By Theorem 6.24, ω12 is a polynomial of degree at most 1. �
Remark 6.3 Theorem 6.24 shows that if the linear rank of estimation algebra is
equal to 1, then entry of Wong’s �-matrix is a degree 1 polynomial.

In the following, we prove some powerful tools to try to prove Mitter conjecture.
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Theorem 6.26 Suppose dimE < ∞. x2
1 + c ∈ E �⇒ ω21 is a constant.

Proof

K0 =
[

L0,
1

2
(x2

1 + c)

]

− 1

2
= x1D1 ∈ E,

K1 =[L0,K0] = D2
1 − α2D2 + 1

2
E1(η) − 1

2

∂α2

∂x2
∈ E,

K2 =[K1,K0] = 2D2
1 + E1(α2)D2 + α2

2 − 1

2
E2
1(η) + 1

2
E1

(
∂α2

∂x2

)

∈ E

Z0 =K2 − 2K1 = (E1(α2) + 2α2)D2 + γ (x) ∈ E,

(6.146)
where α2 = x1ω21, E1(·) = x1

∂
∂x1

and γ (x) = α2
2 − E1(η) − 1

2E
2
1(η) + ∂α2

∂x2
+

1
2E1

(
∂α2
∂x2

)
. By Theorem 6.24, E1(α2) + 2α2 is a polynomial of at most 1, and so is

α2 = x1ω21 by Theorem 6.21. Since ω21 ∈ C∞(R2), ω21 must be a constant. �
Lemma 6.20 Suppose K0 = x1D1 + x2D2 ∈ E and Y = ∑k

i=0 bi(x)Dk−i
1 Di

2,

mod Uk−1 ∈ E. Let b(r)
i denote the homogeneous degree r part of bi for 0 ≤ i ≤ k.

Then
∑k

i=0 b
(r)
i Dk−i

1 Di
2, mod Uk−1 ∈ E for r ≥ 0.

Proof Let E(·) =∑2
i=1 xi

∂
∂xi

:

[

K0,

k∑

i=0

bi(x)Dk−i
1 Di

2, mod Uk−1

]

=
k∑

i=0

(E(bi) − kbi)D
k−i
1 Di

2, mod Uk − 1.

(6.147)
Let l = max0≤i≤k deg bi . Use the above equation to construct a sequence of
elements:

Zr =
l−r∑

j=0

crj

k∑

i=0

b
(j)
i Dk−i

1 D
j

2 ∈ E, mod Uk−1, (6.148)

in E as follows:

(1) Z0 = y, i.e., c0j = 1, 1 ≤ j ≤ l;
(2) Zr+1 = (l−r−k)Zr −[K0, Zr ] �⇒ cr+1,j = (l−r−j)crj , 0 ≤ j ≤ l−r−1.

Note that in (6.148), crj �= 0 for r ≤ l. Starting from Zl , one can solve
∑k

i=0 b
(r)
i Dk−1

1 Di
2, mod Uk−1 successively. This will lead to

k∑

i=0

b
(r)
i Dk−1

1 Di
2, mod Uk−1 ∈ E. (6.149)

�
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Lemma 6.21 Suppose dimE < ∞. Let Y =∑ik
i=i0

bi(x)Dk−i
1 Di

2, mod Uk−1 ∈ E

be a differential operator with the highest order k in E (obviously k ≥ 2), where
0 ≤ i0 ≤ ik ≤ k. Then

∂bi0

∂x1
= ∂bik

∂x2
= 0,

∂bi

∂x1
+∂bi−1

∂x2
= 0, for i0 + 1 ≤ i ≤ ik. (6.150)

Proof

[L0, Y ] =
ik∑

i=i0

∂bi

∂x1
Dk+1−i

1 Di
2 +

ik∑

i=i0

∂bi

∂x2
Dk−i

1 Di+1
2

=∂bi0

∂x1
Dk+1

1 +
ik∑

i=i0+1

(
∂bi

∂x1
+ ∂bi−1

∂x2

)

Dk+1−i
1 Di

2 + ∂bik

∂x2
Dk+1

2 , mod Uk.

(6.151)
Since elements inE have the highest differential order k, all the coefficient functions
of the order k + 1 terms in the above equation must be 0. �
Lemma 6.22 Suppose dimE < ∞ and Y = p1D1 + p2D2, mod U0 ∈ E, where
p1 = ∑l

j=1 ajx
l−j

1 x
j

2 and p2 = −∑l
j=1 ajx

l+1−j

1 x
j−1
2 , aj ’s are constants and

aj �= 0 for some j . Further we assume K0 = x1D1 + x2D2 ∈ E. Then l ≤ 2.

Remark 6.4 The proof depends on Lemma 6.20. Detailed proof can be found in
Wu and Yau [26].

Next by applying Lemma 6.22, we will obtain the following important structure
of estimation algebra.

Theorem 6.27 Suppose dimE < ∞. x2
1 + x2

2 + c ∈ E �⇒ ω12 is a polynomial of
degree at most 1.

Proof

K0 =
[

L0,
1

2
(x2

1 + x2
2 + c)

]

− 1 = x1D1 + x2D2 ∈ E (6.152)

K1 = [L0,K0] =
2∑

i=1

D2
i −

2∑

i=1

αiDi + 1

2
E(η) − 1

2

2∑

i=1

∂αi

∂xi

∈ E (6.153)

K2 = 2L0 − K1 =
2∑

i=1

αiDi + 1

2

2∑

i=1

∂αi

∂xi

− η − 1

2
E(η) ∈ E, (6.154)
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where α1 = x2ω12, α2 = x1ω21, E(·) = ∑2
i=1 xi

∂
∂xi

. Due to dimE < ∞
and (6.154), αi is a polynomial. Therefore, ω12 must be a polynomial as well.

Let α(r) be homogeneous degree r part of αi . By Lemma 6.20,

2∑

i=1

α
(r)
i Di, mod U0 ∈ E. (6.155)

On the other hand,

2∑

i=1

xiαi =
2∑

i,j=1

xixjωij = 0 �⇒ x1α
(r)
1 + x2α

(r)
2 = 0. (6.156)

By Lemma 6.22, we obtain r ≤ 2. Therefore, ω12 is a polynomial of degree at most
1. �

Theorems 6.26 and 6.27 are significant for the following two results. First, we can
prove that all observation terms are polynomials at most of degree 1. Furthermore,
we can deduce that Mitter conjecture holds.

Theorem 6.28 Suppose dimE < ∞. hi’s are polynomials at most of degree 1.

Proof Without loss of generality, h1 is assumed to be a polynomial of degree 2. By
orthogonal and affine transformations, h1 is either ax2

1 + cx2 + d or ax2
1 + bx2

2 + d,
where a, b �= 0.

(i) If h1 = ax2
1+cx2+d, then [[L0, h1], h1] = 4a2x2

1+c2 ∈ E. By Theorem 6.26,
ω21 is a constant. Hence, E is not finite dimensional according to Theorem 6.13
(ii).

(ii) If h1 = ax2
1 + bx2

2 + d, then [[L0, h1], h1] = 4a2x2
1 + 4b2x2

2 ∈ E. If a �= b,
by technique of Vandermonde determinant, we can deduce both x2

1 ∈ E and
x2
2 ∈ E hold. From the discussion (i), E is not finite dimensional. Hence, h1 =

ax2
1 + ax2

2 + c. By Theorem 6.27, ω12 is a polynomial of degree at most 1.
Moreover, ω12 must be a nondegenerate degree 1 polynomial by Theorem 6.13,
i.e., ω12 = c1x1 + c2x2 + c0, where c1 �= 0 or c2 �= 0.

From K0,K2 ∈ E in Theorem 6.27, let Z0 = K2 and

Zr+1 = (1 − r)Zr − [K0, Zr ] for r = 0, 1. (6.157)

We have
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Z0 =
2∑

i=1

αiDi + q0 ∈ E,

Z1 =c0x2D1 − c0x1D2 + q0 − E(q0) −
2∑

i=1

α2
i ∈ E,

Z2 = − c0x2α1 + c0x1α2 + E

(
2∑

i=1

α2
i

)

− E(q0 − E(q0)) ∈ E,

(6.158)

where q0 = 1
2

∑2
i=1

∂αi

∂xi
−η− 1

2E(η). Since Z2 must be a polynomial of degree less
than or equal to 2, regardless of whether c0 is 0 or not, then q0 − E(q0) or E(q0 −
E(q0)) is a degree 4 polynomial by Theorem 6.21. So η is a degree 4 polynomial
by applying Theorems 6.20 and 6.21. Moreover, the homogeneous degree 4 part of
η is

η(4) = c

(
2∑

i=1

α2
i

)(4)

= c(x2
1 + x2

2)(c1x1 + c2x2)
2. (6.159)

Hence, homogeneous degree 4 part of η −∑m
i=1 h2i is

c(x2
1 + x2

2)(c1x1 + c2x2)
2 − a2(x2

1 + x2
2)

2 −
m∑

i>1

(
h

(2)
i

)2
. (6.160)

By taking x1 = −c2 and x2 = c1, the above expression results in a negative number.
By Theorem 6.22, there are no smooth solutions in fi . Contradiction!

In summary of case (i) and (ii), hi’s are polynomials at most of degree 1. �
Theorem 6.29 (Mitter Conjecture) Suppose dimE < ∞. If φ ∈ E, φ is a
polynomial of degree at most 1.

Proof

(i) If E has linear rank 2, E is of maximal rank, and therefore no degree 2
polynomials are in E by classification of maximal rank estimation algebra of
Theorem 6.16.

(ii) If E has linear rank 0, then hi’s must be constants. E is finite dimensional and
E ⊂ 〈L0, 1〉L.A.. Any function element in E must be a constant.

(iii) Let E have linear rank 1, i.e., there exists a function dix1 + ei ∈ E �⇒ D1 ∈
E.
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From the proof of Theorem 6.28, by orthogonal and affine transformations, a
degree 2 polynomial φ ∈ E only has the form ax2

1 + ax2
2 + d, where a �= 0. Again

by Theorem 6.28, ω12 = c1x1 + c2x2 + c0, where c1 �= 0 or c2 �= 0 (otherwise ω12
is a constant). Thus,

[L0,D1] =ω12D2 + φ ∈ E

[ω12D2 + φ, ax2
1 + ax2

2 + d] =2ax2ω12 = 2ac1x1x2 + 2ac2x
2
2 + 2ac0x2 ∈ E.

(6.161)
If c1 �= 0, [D1, 2ac1x1x2 + 2ac2x

2
2 + 2ac0x2] = 2ac1x2 is dependent on x2. This

contradicts the linear rank ofE being 1. If c1 = 0 and c2 �= 0, from 2ac2x2+2ac0x2
and ax2

1 + ax2
2 + d, are in E, one has that x2

1 + c4x2 + c5 ∈ E. From the discussion
(i) in the proof of Theorem 6.28, E is not finite dimensional. �

In the next discussion, E is assumed to be finite dimensional and has linear rank
1. As is shown in the previous theorem (Mitter conjecture), the structure of E is very
clear when E’s linear rank is 0 or 2. Therefore, in the following, we mainly focus
on the case that linear rank is 1.

Assume x1 ∈ E. Then if a function p ∈ E, p is a degree 1 polynomial in x1 since
Mitter conjecture holds. By Theorem 6.25, we assume ω12 = c1x1 + c2x2 + c0. It
will be shown that ω12 must be a constant in this section.

By assumptions, L0, x1,D1, 1 ∈ E. Moreover, the following elements are in E:

H0 = [L0,D1] = ω12D2 + 1

2

∂η

∂x1
+ 1

2
c2, (6.162)

H1 = [D1,H0] = c1D2 − ω2
12 + 1

2

∂2η

∂x2
1

, (6.163)

H2 = [D1,H1] = −3c1ω12 + 1

2

∂3η

∂x3
1

, (6.164)

H3 =[H1,H0] − c2H1

=3c2ω
2
12 + 1

2
c1

∂2η

∂x1∂x2
− 1

2
c2

∂2η

∂x2
1

− 1

2
ω12

∂3η

∂x2
1∂x2

,
(6.165)

X0 =[L0,H0]

=c1D1D2 + c2D
2
2 +

(

−ω2
12 + 1

2

∂2η

∂x2
1

)

D1 + 1

2

∂2η

∂x1∂x2
D2

+
(

−1

2
c1ω12 + 1

2
ω12

∂η

∂x2
+ 1

4

∂3η

∂x3
1

+ 1

4

∂3η

∂x1∂x2
2

)

.

(6.166)
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Lemma 6.23 η is a polynomial in x1 of degree at most 4 with coefficients being
functions of x2. Let η =∑4

i=0 aix
i
1, where ai’s are functions of x2. Then:

(i) a4 is a constant;
(ii) a3 = c1c2x2 + constant;
(iii) (c21 − 4a4)c2 = 0;
(iv) 3c32x

2
2 + 6c0c22x2 − c2a2 + 1

2c1a
′
1 − c0a

′
2 − c2a

′
2x2 = constant .

Proof Since H2 is a function in E, H2 is independent of x2 and a degree 1
polynomial in x1. Therefore, η is a polynomial in x1 of degree at most 4 with
coefficient functions in x2. Let η =∑4

i=0 aix
i
1, where ai’s are functions of x2.

H2 ∈ E �⇒ a4 is a constant, and a3 = c1c2x2 + constant .
(iii) and (iv) follow from H3 ∈ E by substituting η =∑4

i=0 aix
i
1 into (6.165). �

Now, from (6.166), X0 ∈ E. Next we calculate

X =[L0, X0]

=
(

−3c1ω12 + 1

2

∂3η

∂x3
1

)

D2
1 +

(

−4c2ω12 + ∂3η

∂x2
1∂x2

)

D1D2

+
(

c1ω12 + 1

2

∂3η

∂x1∂x2
2

)

D2
2

= q0D
2
1 + q1D1D2 + q2D

2
2, mod U1 ∈ E,

(6.167)

where q0 = −3c1ω12 + 1
2

∂3η

∂x31
, q1 = −4c2ω12 + ∂3η

∂x21∂x2
, q2 = c1ω12 + 1

2
∂3η

∂x1∂x22
. By

Lemma 6.23 (i) and (ii),

∂q0

∂x1
=12a4 − 3c21,

∂q0

∂x2
= 0,

∂q1

∂x1
=2c1c2,

∂q1

∂x2
= −4c22 + 2a′′

2 ,

∂q2

∂x1
=c21 + a′′

2 ,
∂q2

∂x2
= c1c2 + 1

2
a′′′
1 + a′′′

2 x1.

(6.168)

Lemma 6.24 a4 = 1
4c

2
1.

Proof If a4 �= 1
4c

2
1, i.e., r := ∂q0

∂x1
= 12a4 − 3c21 �= 0, then from (6.167) and L0, one

can construct a sequence of elements in E whose orders strictly increase as follows:
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Y1 =[L0, X] = rD3
1 +

3∑

i=1

p1iD
3−i
1 Di

2, mod U2,

Y2 =[Y1, X] = [rD3
1 + p11D

2
1D2 + · · · , q0D

2
1 + q1D1D2 + q2D

2
2]

=
(

3r
∂q0

∂x1
+ p11

∂q0

∂x2

)

D4
1 +

4∑

i=1

p2iD
4−i
1 Di

2

=3r2D4
1 +

4∑

i=1

p2iD
4−i
1 Di

2, mod U3,

· · ·

(6.169)

Assume that Yk = rkD
k+2
1 +∑k+2

i=1 pkiD
k+2−i
1 Di

2, mod Uk+1 with rk �= 0:

Yk+1 = rk+1D
k+3
1 +

k+3∑

i=1

p(k+1)iD
k+3−i
1 Di

2, mod Uk+2, (6.170)

where rk+1 = (k + 2)rrk �= 0. �
The following theorem plays a significant role in constant structure of �-matrix.

Theorem 6.30 If c1c2 �= 0, then E is not finite dimensional.

Proof Assume that c1c2 �= 0.

(i) From Lemma 6.24, q0 is a constant.
(ii) Let r1 := ∂q1

∂x1
= 2c1c2, and then we calculate

Z =[L0, X] = [L0, q0D
2
1 + q1D1D2 + q2D

2
2 mod U1]

=r1D
2
1D2 + terms with lower order inD1,mod U2 ∈ E.

(6.171)

Suppose q1 is a polynomial of degree k in x2, i.e.,
∂kq1

∂xk
2
is a nonzero constant.

If k ≥ 1,

A1 =[Z,X]

=r1
∂q1

∂x2
D3

1D2 + terms with lower order inD1,mod U3 ∈ E.
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A2 =[Z,A1]

=r21
∂2q1

∂x2
2

D5
1D2 + terms with lower order inD1,mod U5 ∈ E.

...

Ak =[Z,Ak−1]

=rk
1
∂kq1

∂xk
2

D2k+1
1 D2 + terms with lower order inD1,mod U2k+1 ∈ E.

(6.172)
Now one can repeat the above process by letting Z = Ak to construct a
sequence of elements in E whose orders strictly increase.

Hence, k must be zero, which means ∂q1
∂x2

= 0 �⇒ a′′
2 = 2c22.

(iii) By taking twice the derivative with respect to x2 in Lemma 6.23 (iv) and
substituting a′′

2 = 2c22, one has c1a
′′′
1 = 0 �⇒ a′′′

1 = 0.
Thus, X = q0D

2
1 + q1D1D2 + q2D

2
2, mod U1 ∈ E, with

∂q0

∂x1
= ∂q0

∂x2
= 0,

∂q1

∂x1
= 2c1c2 = r1 �= 0,

∂q1

∂x2
= 0,

∂q2

∂x1
= c21 + 2c22 = r2 > 0,

∂q2

∂x2
= c1c2 = 1

2
r1,

Y0 =[L0, X] = p01D
2
1D2 + p02D1D

2
2 + p03D

3
2, mod U2 ∈ E,

(6.173)

where p01 = r1, p02 = r2, p03 = 1
2 r1. For l ≥ 0, suppose Yl = pl1D

2
1D

l+1
2 +

pl2D1D
l+2
2 + pl3D

l+3
2 ∈ E, mod Ul+2, where pl1, pl2, pl3 are constants:

Yl+1 =[Yl,X]

= l + 5

2
r1pl1D

2
1D

l+2
2 +

(

2r2pl1 + l + 4

2
r1pl2

)

D1D
l+3
2

+
(

r2pl2 + l + 3

2
r1pl3

)

Dl+4
2

= p(l+1)1D
2
1D

l+2
2 + p(l+1)2D1D

l+3
2 + p(l+1)3D

l+4
2 , mod Ul+3 ∈ E.

(6.174)
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By comparing the coefficient, we obtain p(l+1)1 = l+5
2 r1pl1 is a constant.

Since p01 = r1 �= 0, pl1 �= 0 for any l. Thus, Yl is a differential operator of
degree l + 3. Contradiction!

�
Remark 6.5 This theorem shows that if E is a finite-dimensional estimation
algebra, then at least one of c1, c2 is 0. In the following, we just need to discuss
two cases (i) c1 = 0, c2 �= 0 and (ii) c1 �= 0, c2 = 0. If we find contradiction in both
(i) and (ii), then we can deduce if dimE < ∞, then c1 = c2 = 0, i.e., �-matrix has
constant entries.

Lemma 6.25 If c1 = 0, c2 �= 0,we have (i) a4 = 0; (ii) a3 = 0; (iii) a2 = ω2
12 +

constant; and (iv) a′′′
1 = 0.

Proof (i) follows from Lemma 6.24.
By Lemma 6.23 (ii), a3 is a constant. Since a3 is the coefficient of an odd order

term in η with the highest order in x1, a3 = 0 by (6.19).
(iii) follows from (6.163). H1 is a function in E when c1 = 0.
Now, q0, q1 are actually constants, while ∂q2

∂x1
= a′′

2 = 2c22 and ∂q2
∂x2

= 1
2a

′′′
1 . Let

a′′
1 be a degree k polynomial in x2, i.e.,

dk+2a1

dxk+2
2

is a nonzero constant. If k > 1,

Z0 =Adk
L0

X = 1

2

dk+2a1

dxk+2
2

Dk+2
2 , mod Uk+1,

Y0 =[Z0, X] = (k + 2)
1

4

dk+2a1

dxk+2
2

d3a1

dx3
2

Dk+3
2 , mod Uk+2.

(6.175)

By letting Zl = Adk−1
L0

Yl−1 and Yl = [Zl,X] for l ≥ 1, one can construct a
sequence of elements in E with strictly increasing orders.

If k = 1, consider Z0 = [L0, X] = ∂q2
∂x1

D1D
2
2 + ∂q2

∂x2
D3

2, mod U2 and Zl+1 =
[Zl,X] for l ≥ 0. Assume

Zl = pl0D1D
l+2
2 + pl1D

l+3
2 , mod Ul+2, (6.176)

where p00 = ∂q2
∂x1

= 2c22 and p01 = ∂q2
∂x2

= 1
2

d3a1
dx32

. Then

Zl+1 = [Zl,X] = (l + 2)pl0
∂q2

∂x2
D1D

l+3
2

+
(

pl0
∂q2

∂x1
+ (l + 3)pl1

∂q2

∂x2

)

Dl+4
2 , mod Ul+3. (6.177)

Therefore,
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p(l+1)0 = (l + 2)pl0
∂q2

∂x2
�⇒ pl0 = (l + 1)!∂q2

∂x1

(
∂q2

∂x2

)l

�= 0. (6.178)

Zl’s have strictly increasing orders. Contradiction! Hence, k must be zero�⇒ a′′′
1 =

0. �
Theorem 6.31 If c1 = 0, c2 �= 0, E is not finite dimensional.

Proof In the proof of this theorem, r1, r2, · · · are used to denote constants. The
exact values of these ri’s are not important. Some ri’s may be used repeatedly to
denote different constants.

By substituting Lemma 6.25 (i)–(iv) into (6.166), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z0 =X0 − r1D1 − r2x1 − r3

=c2D
2
2 + 1

2

∂2η

∂x1∂x2
D2 + 1

2
ω12

∂η

∂x2
,

Z1 =[L0, Z0] − r5D1

=1

2

∂3η

∂x1∂2x
2
2

D2
2 +

(
3

2
c2

∂η

∂x2
+ 1

2
ω12

∂2η

∂x2
2

)

D2, mod U0

Z2 =[L0, Z1] = a′′
2D1D

2
2 +

(
3

2
c2

∂2η

∂x1∂x2
− 1

2
ω12

∂3η

∂x1∂x2
2

)

D1D2

+
(

2c2
∂2η

∂x2
2

+ 1

2
ω12

∂3η

∂x3
2

)

D2
2, mod U1

Z3 =[L0, Z2] = p1D1D
2
2 + p2D

3
2, mod U2.

(6.179)

where p1 = 3c2
∂3η

∂x1∂x22
= 3c2(a′′

1 + 2a′′
2x1) is degree 1 in x1 and independent of x2

with ∂p1
∂x1

= 6c2a′′
2 = 12c32 �= 0, and p2 = a′′

2ω12 + 5
2c2

∂3η

∂x32
+ 1

2ω12
∂4η

∂x42
is a function

of x2 and independent of x1. Therefore, p2 must be a polynomial in x2; otherwise,
E is not finite dimensional.

Next, we have

Y0 =[Z0, Z3] = 2c2
∂p2

∂x2
D4

2, mod U3 ∈ E,

Y1 =[Z0, Y0] = (2c2)
2 ∂2p2

∂x2
2

D5
2, mod U4 ∈ E,

· · ·
Yl =Adl+1

Z0
Z3 ∈ E.

(6.180)
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If degp2 = k ≥ 1, one can construct an infinite sequence of elements in E whose
orders strictly increase as follows:

W0 =Adk
Z0

Z3 = d0D
e0
2 , mod Ue0−1, d0 = (2c2)

k ∂kp2

∂xk
2

�= 0, e0 = k + 3,

Wl+1 =Adk−1
Z0

[Wl,Z3] = dl+1D
el+1
2 , mod Uel+1−1,

(6.181)

where dl+1 = eldl(2c
k−1
2 )

∂kp2

∂xk
2

�= 0 and el+1 = el + k + 1 > el . Therefore, p2 is a

constant.
Now, p1 is a degree 1 polynomial in x1, and p2 is a constant:

V0 =[L0, Z3] = ∂p1

∂x1
D2

1D
2
2, mod U3,

Vl+1 =[Vl, Z3] = 2l+1
(

∂p1

∂x1

)l+2

D2
1D

2(l+2)
2 , mod U2l+5.

(6.182)

Again, Vl’s have increasing orders. Hence, E is not finite dimensional. �
Lemma 6.26 If c1 �= 0, c2 = 0, we have (i) a4 = 1

4c
2
1; (ii) a3 is a constant; (iii)

a′′
2 = 0; and (iv) a′′

1 = 0.

In a similar way, we can discuss a case that c1 �= 0, c2 = 0. We can explore the
structure of η in detail and then deduce a contradiction.

Lemma 6.27 (Lemma 4.16 [26]) If c1 �= 0, c2 = 0, then η is a degree 4 polynomial
in x1, x2 with its principal part η(4) = 1

4c
2
1x

4
1 .

Theorem 6.32 (Theorem 4.17 [26]) If c1 �= 0, c2 = 0, then E is not finite
dimensional.

Finally, let us show the constant structure of �.

Theorem 6.33 If E has linear rank 1 and is finite dimensional, then the �-matrix
has constant entries.

Proof By Theorems 6.30–6.32, we can obtain that if dimE < ∞, c1 = c2 = 0. It
shows that �-matrix has constant entries. �

Finally, we can finish complete classification of estimation algebra with state
dimension 2. First, assume E has linear rank 1. By Theorem 6.29, hi’s must be
degree at most 1 polynomials in x1. By Theorem 6.33, ω12 is a constant.

(i) If ω12 = 0, [L0,D1] = 1
2

∂η
∂x1

∈ E. Thus, η must be a degree 2 polynomial in
x1 plus a C∞-function in x2. E = {L0, x1,D1, 1}. For example, f1 = x1, f2 =
sin x2, h1 = x1, η = 2x2

1 + 1 + cos x2 + sin2 x2.
(ii) If ω12 �= 0,
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A1 := [L0,D1] = ω12D2 + 1

2

∂η

∂x1
∈ E, (6.183)

A2 := [D1, A1] = −ω2
12 + 1

2

∂2η

∂x2
1

∈ E, (6.184)

A3 :=[L0, A1]

=
(

−ω2
12 + 1

2

∂2η

∂x2
1

)

D1 + 1

2

∂2η

∂x1∂x2
D2

+ 1

2
ω12

∂η

∂x2
+ 1

4

∂3η

∂x3
1

+ 1

4

∂3η

∂x1∂x2
2

∈ E.

(6.185)

By (6.184), η = d0x
3
1 + d1x

2
1 + e2(x2)x1 + e3(x2). By Theorem 6.23, d0 = 0.

By (6.185) and D1 ∈ E,

1

2

∂2η

∂x1∂x2
D2 + 1

2
ω12

∂η

∂x2
+ 1

4

∂3η

∂x1∂x2
2

∈ E. (6.186)

By Theorem 6.24, ∂2η
∂x1∂x2

= e′
2(x2) is a polynomial of degree at most 1. Thus,

e2 is a polynomial of degree at most 2 in x2. By substituting e2 and e3 into η

and removing D1, x1, and 1 from (6.183) and (6.186), one has

Ā1 =ω12D2 + 1

2
e2 ∈ E,

Ā3 =1

2
e′
2D2 + 1

2
ω12(e

′
2x1 + e′

3) ∈ E.

(6.187)

If e2 is a degree 2 polynomial in x2, then [Ā1, Ā3] − 1
2e

′′
2Ā1 = 1

2ω
2
12e

′′
3 −

1
4 (e2e

′′
2 + e′

2e
′
2) + 1

2ω
2
12e

′′
2x1 ∈ E. Since the degree 2 term of e2e

′′
2 + e′

2e
′
2 will

never be zero, e3(x2) must be a degree 4 polynomial. Now, consider

B1 =[L0, Ā3] = 1

2
e′′
2D

2
2 + 1

2
ω12(e

′′
2x1 + e′′

3)D2 + 1

4
e′
2(e

′
2x1 + e′

3)

+ 1

4
ω12e

′′
3 ∈ E,

B2 =[L0, B1] = 1

2
ω12e

′′′
3 D2

2 − 1

2
ω12e

′′
2D2D1, mod U1 ∈ E.

(6.188)
Therefore, e′′′

3 = constant ; otherwise, we can construct an infinite sequence by
using L0 and B2. Contradiction! Hence, e2 must be a degree 1 polynomial.
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Consider ω12Ā3 − 1
2e

′
2Ā1 = 1

2ω
2
12e

′
2x1 + 1

2ω
2
12e

′
3 − 1

4e
′
2e2 ∈ E �⇒ 1

2ω
2
12e

′
3 −

1
4e

′
2e2 is independent of x2 and e3 must be a degree 2 polynomial. Hence, η is

a degree 2 polynomial in x1 and x2. Therefore, E is of dimension 5 and E =
{L0, x1,D1,D2 + cx2, 1}.

For example, f1 = 5x1 − 3x2, f2 = 4x2, h1 = x1. Then ω12 = 3 and η =
26x2

1 − 30x1x2 + 25x2
2 + 9. It is easy to show that E = {L0, x1,D1,D2 − 5x2, 1}.

If E has linear rank 0, hi’s must be constants, and E = {L0} or E = {L0, 1}.
If E has linear rank 2, E is of maximal rank. The �-matrix must have constant

entries and E = {L0, x1, x2,D1,D2, 1} by classification result of maximal rank. In
summary, we have the following.

Theorem 6.34 (Complete Classification Result) Let state dimension n = 2. If E

is finite dimensional, then

(1) if hi’s are constants, E = {L0} or E = {L0, 1}.
(2) otherwise, �-matrix has constant entries. hi’s must be affine in x1 and x2. E

has dimension of either 4, 5, or 6.

Moreover, from the above discussion, it is easy to see that if E is finite
dimensional, it has only elements with order less than or equal to 2. Thus, the Levine
conjecture holds for the finite-dimensional estimation algebras with state dimension
2.

Remark 6.6 Finally, we finish complete classification of estimation algebra with
state dimension 2. The important step is that Wu and Yau [26] can prove that Wong’s
�-matrix has constant entries. Especially, this is difficult for the case of quadratic
rank equal 0. Based on results of constant structure of Wong’s �-matrix, it can be
show η function is a degree 2 polynomial in x1, x2. This will determine the explicit
basis of nonmaximal rank estimation algebra and will finish complete classification.

6.5.2 State Dimension 3

In this section, we study the structure of finite-dimensional estimation algebras with
state dimension 3 and rank 2 arising from a nonlinear filtering system by using the
theories of the Euler operator and underdetermined partial differential equations.

6.5.2.1 Linear Structure of Wong’s �-Matrix

In this subsection, the structure of Wong’s �-matrix is shown to be linear, i.e., the
entries of the �-matrix are polynomials of degree ≤1. The main reference used in
this subsection is the work of Shi and Yau [21]. The fundamental strategy we use
to prove these results is to show that if they were not true, then infinite sequences
could be constructed in the finite-dimensional estimation algebra.
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Assumption: In this section, we consider state dimension n = 3 estimation
algebra E of system (6.1) with linear rank 2, also dim(E) < ∞. Without loss of
generality, we assume there exist constants ci, 1 ≤ i ≤ 2, such that xi + ci ∈
E, 1 ≤ i ≤ 2 and for any constant c, x3 + c /∈ E.

The following notations are used in this section:

Pk(xi1 , . . . , xim) denotes the space consisting of polynomials of degree at most k in
xi1 , . . . , xim , and polk(xi1 , . . . , xim) denotes a polynomial in Pk(xi1 , . . . , xim).

We give the following elementary lemma.

Lemma 6.28

[L0, xi + ci] =Di ∈ E, 1 ≤ i ≤ 2, (6.189)

[D2,D1] =ω12 ∈ E, [D1, x1 + c1] = 1 ∈ E (6.190)

Y1 :=[L0,D1] = ω12D2 + ω13D3 + 1

2

∂ω12

∂x2
+ 1

2

∂ω13

∂x3
+ 1

2

∂η

∂x1
(6.191)

=ω12D2 + ω13D3,mod U0 ∈ E (6.192)

Y2 :=[L0,D2] = ω21D1 + ω23D3 + 1

2

∂ω21

∂x1
+ 1

2

∂ω23

∂x3
+ 1

2

∂η

∂x2
(6.193)

=ω21D1 + ω23D3,mod U0 ∈ E. (6.194)

So P1(x1, x2) ⊂ E.

Lemma 6.29 For any function φ ∈ E, φ does not contain x1x3, x2x3 terms.

Proof By Ocone’s Theorem 6.2, every function in estimation algebra E is a
polynomial of degree at most 2. Since P1(x1, x2) ⊂ E, without loss of generality,
assume φ in E be

φ = ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + f x2x3 + gx3, (6.195)

where a, b, c, d, e, f, g are constants:

[D1, φ] = 2ax1 + dx2 + ex3 ∈ E

[D2, φ] = 2bx2 + dx1 + f x3 ∈ E.
(6.196)

So ex3, f x3 ∈ E. By assumption x3 /∈ E; hence, e = f = 0. �
Theorem 6.35 ω12 is a degree no more than 1 polynomial of x1, x2.

Proof Step [1]: We prove that the degree 2 part of ω12 can only be const ·x2
3 , where

const means a constant.
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From Theorem 6.1 and equations Y1, Y2, ω12, ω13, ω23 are polynomials. From
Lemma 6.29, we may assume any φ ∈ E is of the following form:

φ = ax2
1 + bx2

2 + cx2
3 + dx1x2 + gx3, (6.197)

where a, b, c, d are constants. Consider

Z :=[L0, φ]
=(2ax1 + dx2)D1 + (2bx2 + dx!)D2 + (2cx3 + g)D3 + a + b + c ∈ E

[D1, Z] =2aD1 + dD2 + (2bx2 + dx1)ω21 + (2cx3 + g)ω31 ∈ E

[D2, Z] =dD1 + 2bD2 + (2ax1 + dx2)ω12 + (2cx3 + g)ω32 ∈ E.

(6.198)
Since D1 ∈ E,D2 ∈ E, we have

(2bx2 + dx1)ω21 + (2cx3 + g)ω31 ∈ E (6.199)

(2ax1 + dx2)ω12 + (2cx3 + g)ω32 ∈ E. (6.200)

Case (1): There exists φ ∈ E in which a, b, d are not all 0. Note in Theorem 6.1 and
Lemma 6.29 that any function in E is a degree no more than 2 polynomial and does
not contain x1x3, x2x3 terms.

Case (1.1): If c �= 0, then ω13, ω23 are degree at most 2 polynomials. If a �= 0,
then from Eq. (6.199), the degree 2 part of ω12 cannot contain x2

1 , x1x2, x
2
2 terms;

that is, the degree 2 part of ω12 can only be const · x2
3 . If b �= 0 or d �= 0, we can

easily find the same conclusion holds.
Case (1.2): If c = g = 0, then from Eqs. (6.199) and (6.200), we can easily find

that the degree 2 part of ω12 can only be const · x2
3 .

Case (1.3): If c = 0, g �= 0, then

Z =[L0, φ] = (2ax1 + dx2)D1 + (2bx2 + dx1)D2 + gD3 + a + b ∈ E,

[Z, φ] =(4a2 + d2)x2
1 + (4b2 + d2)x2

2 + 4(a + b)dx1x2 + g2 ∈ E,

�⇒ ψ := âx2
1 + b̂x2

2 + d̂x1x2 ∈ E,

(6.201)
where â = 4a2 + d2, b̂ = 4b2 + d2, d̂ = 4(a + b)d are not all 0. By the above case
(1.2), the degree 2 part of ω12 can only be const · x2

3 , where const means constant
(hereinafter).

Case (2): For any φ ∈ E, a = b = d = 0. In this case, since ω12 ∈ E, the degree
2 part of ω12 can only be const · x2

3 . From case (1) and case (2), we can assume
ω12 = 1

2kx2
3 + gx3 + mx1 + nx2 + l ∈ E.

Step [2]: In this step, we prove that ω12 is a degree at most 1 polynomial in x1, x2.
If k = 0, then g = 0 by assumption, and the conclusion holds. If k �= 0, without
loss of generality, assume k = 1; then
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ω12 ∈ E �⇒ 1

2
x2
3 + gx3 ∈ E (6.202)

[L0, ω12] = mD1 + nD2 + (x3 + g)D3 + 1

2
∈ E �⇒ (x3 + g)D3 ∈ E

(6.203)

[D1, (x3 + g)D3] = (x3 + g)ω31 ∈ E (6.204)

[D2, (x3 + g)D3] = (x3 + g)ω32 ∈ E. (6.205)

Therefore, ω13, ω23 are degree at most 1 polynomials of x3.
(i) If ω13, ω23 are both degree 1, without loss of generality, assume ω13 = x3 +

α,ω32 = x3 + β, where α, β are constants. From (6.204),

(x3+g)(x3+α) = x2
3 + (g+α)x3+gα ∈ E �⇒ x2

3 + (g+α)x3 ∈ E, (6.206)

combining this with (6.202) �⇒ (g − α)x3 ∈ E �⇒ α = g. Similarly, β = g. So
ω31 = ω32 = x3 + g. Recall that

Y1 =ω12D2 + ω13D3,mod U0 = ω12D2 − (x3 + g)D3,mod U0 ∈ E

Y2 =ω21D1 + ω23D3,mod U0 = ω21D1 − (x3 + g)D3,mod U0 ∈ E.
(6.207)

Combining Y1, Y2 with (6.203), we have

ω12D2,mod U0 ∈ E,ω12D1,mod U0 ∈ E. (6.208)

(ii) Only one of ω13, ω23 is degree 1. Without loss of generality, assume ω13 =
x3 + α,ω32 = β. The proof in (i) shows that ω12D2,mod U0 ∈ E. From (6.205),
ω32 = β = 0. From Y2, we have ω12D1,mod U0 ∈ E. Therefore, (6.208) holds.

(iii) If ω13, ω23 are all constants, from the proof of (ii), we can see that (6.208)
also holds. Namely, (6.208) always holds. Consider

N0 =[(x3 + g)D3, ω12D2,mod U0] = (x3 + g)2D2,mod U0 ∈ E

M1 =[L0, N0] = 2(x3 + g)D2D3,mod U1 ∈ E

N1 =[M1, N0] = 22(x3 + g)2D2
2,mod U1 ∈ E

· · ·
Mn =[L0, Nn−1] = 22n−1(x3 + g)Dn

2D3,mod Un ∈ E

Nn =[Mn,N0] = 22n(x3 + g)2Dn+1
2 ,mod U1 ∈ E.

(6.209)

Continuing this procedure, we can gain an infinite sequence in E which contradicts
with the finite dimensionality of E. Hence, ω12 must be a degree 1 polynomial of
x1, x2. �
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The following several lemmas are very important tools to solve the linear
structure of ω13, ω23.

Lemma 6.30 Suppose that

K :=cDn+1
3 + (2ax1 + dx2 + e)D1D

n
3 + (2bx2 + dx1 + f )D2D

n
3

+ · · · ,mod Un ∈ E

A :=(2ax1 + dx2 + e)Dl
3 + · · · ,mod Ul−1 ∈ E

B :=(2bx2 + dx1 + f )Dl
3 + · · · ,mod Ul−1 ∈ E,

(6.210)

where a, b, c, d, e, f are constants, n ≥ 1, l ≥ 1. The (· · · ) part means terms with
the highest order but lower order in D3. Then a = b = d = 0.

Proof If

det

(
2a d

d 2b

)

= 4ab − d2 �= 0, (6.211)

then a, d are not all zero, and from A and B we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C11 := (x1 + c̃1)D
l
3 + · · · ,mod Ul−1 ∈ E

C12 := (x2 + c̃2)D
l
3 + · · · ,mod Ul−1 ∈ E

B21 := [K,C11] = (2ax1 + dx2 + e)Dl+n
3 + · · · ,mod Ul+n−1 ∈ E

B22 := [K,C12] = (dx1 + 2bx2 + f )Dl+n
3 + · · · ,mod Ul+n−1 ∈ E.

(6.212)
For the same reason, we have

{
C21 := (x1 + c̃1)D

l+n
3 + · · · ,mod Ul+n−1 ∈ E

C22 := (x2 + c̃2)D
l+n
3 + · · · ,mod Ul+n−1 ∈ E.

(6.213)

Continuing this procedure, we can gain an infinite sequence in E, a contradiction!
Hence, d2 = 4ab.

Suppose a �= 0, and let d = k1 · 2a, where k1 = d
2a ; then 2b = k1 · d.

If a + b �= 0, then

K =cDn+1
3 + (2ax1 + dx2 + e)D1D

n
3

+ (k1(2ax1 + dx2 + e) + c′)D2D
n
3 + · · · ,mod Un ∈ E,

(6.214)

where c′ = f − k1 · e.
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T1 =[K,A] = (2(a + b)(2ax1 + dx2 + e) + dc′)Dl+n
3 + · · · ,mod Ul+n−1 ∈ E

· · ·
Tn =[K, Tn−1]

=(2(a + b))n−1(2(a + b)(2ax1 + dx2 + e) + dc′)Dl+kn
3 + · · · ,

mod Ul+kn−1 ∈ E.

· · ·
(6.215)

Continuing this procedure, we can gain an infinite sequence Tn inE, a contradiction!
Hence, a + b = 0; thus, a, b have the opposite sign. However, this contradicts with
d2 = 4ab. So a = 0, and therefore d = 0. Similarly, b = 0. �
Lemma 6.31 Since ω13 is a polynomial of x1, x2, x3, we may assume that

ω13 = alx
l
3 + · · · + a1x3 + a0, (6.216)

where ai, 0 ≤ i ≤ l are polynomials of x1, x2, al �= 0. If l ≥ 1, then al ∈ P1(x1, x2).

Proof First, we calculate

AdL0Y1 =∂ω13

∂x3
D2

3 + ∂ω13

∂x1
D1D3 + ∂ω13

∂x2
D2D3 + · · · ,mod U1,

Ad2
L0

Y1 =∂2ω13

∂x2
3

D3
3 + 2

∂2ω13

∂x1∂x3
D1D

2
3 + 2

∂2ω13

∂x2∂x3
D2D

2
3 + · · · ,mod U2,

· · ·

Adl
L0

Y1 =∂lω13

∂xl
3

Dl+1
3 + l

∂lω13

∂x1∂xl−1
3

D1D
l
3 + l

∂lω13

∂x2∂xl−1
3

D2D
l
3 + · · · ,mod Ul,

Adl+1
L0

Y1 =(l + 1)
∂l+1ω13

∂x1∂xl
3

D1D
l+1
3 + (l + 1)

∂l+1ω13

∂x2∂xl
3

D2D
l+1
3 + · · · ,mod Ul+1,

(6.217)
where (. . .) in the above equations means terms with the highest order but lower
order in D3.

Define

M1 = 1

l!Adl
L0

Y1 = alD
l+1
3 + · · · ,mod Ul,

M2 = 1

(l + 1)!Adl+1
L0

Y1 = ∂al

∂x1
D1D

l+1
3 + ∂al

∂x2
D2D

l+1
3 + · · · ,mod Ul+1.

(6.218)
Suppose deg(al) = k ≥ 2, where deg(al) means the degree of the polynomial al .
Assume that the homogeneous degree k part of al is
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a
(k)
l = b0x

k
1 + b1x

k−1
1 x2 + · · · + bkx

k
2 , (6.219)

where b0, b1, . . . , bk are not all zero constants:

A :=Adk−i−2
D1

(Adi
D2

M1)

=(
1

2
i!(k − i)!bix

2
1 + (i + 1)!(k − i − 1)!bi+1x1x2

+ 1

2
(i + 2)!(k − i − 2)!bi+2x

2
2

+ pol1(x1, x2))D
l+1
3 + · · · ,mod Ul

:=p(x1, x2)D
l+1
3 + · · · ,mod Ul,

(6.220)

where

p(x1, x2) =1

2
i!(k − i)!bix

2
1 + (i + 1)!(k − i − 1)!bi+1x1x2

+ 1

2
(i + 2)!(k − i − 2)!bi+2x

2
2 + pol1(x1, x2)

:=ax2
1 + bx2

2 + dx1x2 + pol1(x1, x2),

(6.221)

with a = 1
2 i!(k−i)!bi, b = 1

2 (i+2)!(k−i−2)!bi+2, d = (i+1)!(k−i−1)!bi+1, i =
0, 1, · · · , k − 2. Consider

A2 :=Adk−i−2
D1

(Adi
D2

M2)

=(2ax1 + dx2 + c1)D1D
l+1
3 + (2bx2 + dx1 + c2)D2D

l+1
3 + · · · ,

mod Ul+1 ∈ E,

(6.222)
where c1, c2 are constants. Consider

{
B := [D1, A1] = (2ax1 + dx2 + c1)D

l+1
3 + · · · ,mod Ul ∈ E

C := [D2, A1] = (dx1 + 2bx2 + c2)D
l+1
3 + · · · ,mod Ul ∈ E.

(6.223)

Note A2, B,C ∈ E satisfy the assumption of Lemma 6.30, and we have a = b =
d = 0. That is, bi = bi+1 = bi+1 = 0, 0 ≤ i ≤ k − 2, which contradict with that
bi, i = 0, 1, · · · , k are not all zero. So we have proved that al must be a polynomial
of x1, x2 with degree no more than 1. �
Lemma 6.32 Suppose

ω13 = αkx
k
1 + · · · + α1x1 + α0, k ≥ 1, αk �= 0, (6.224)
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where αi, 0 ≤ i ≤ k are polynomials of x2, x3. Then αk ∈ P1(x2, x3).

Proof First, we have

Adk
D1

Y1 =const · D2 + ∂kω13

∂xk
1

D3,mod U0 ∈ E.

�⇒ ∂kω13

∂xk
1

D3,mod U0 = k!αkD3,mod U0 ∈ E.

M0 :=αkD3,mod U0 ∈ E,

M1 :=[L0,M0] = ∂αk

∂x2
D2D3 + ∂α

∂x3
D2

3,mod U1 ∈ E.

(6.225)

We first prove that when αk is a degree 2 polynomial of x2, x3, there exists a
contradiction in Part (I). When the degree of αk is higher than 2, we will reduce
it to degree 2 case in Part (II). Therefore, αk must be degree less than 2 polynomial
of x2, x3. Detailed proof can be found in [21]. �
Lemma 6.33 Suppose that ω13 = alx

l
3 + · · · + a1x3 + a0, (l ≥ 1), al �= 0, where

ai, 0 ≤ i ≤ l are polynomials of x1, x2. Then l < 2.

Proof Assume that ω13 = αkx
k
1 + · · · + α1x1 + α0, k ≥ 0, αk �= 0. Suppose l ≥ 2.

Part (I): k ≥ 1 case. We claim that l < 2.
By Lemma 6.32, we can assume that αk = ax2+bx3+c, where a, b, c are not all

zero constants. From Lemma 6.31, al is a degree ≤ 1 polynomial of x1, x2; assume
al = c1x1 + c2x2 + c0, where c0, c1, c2 are not all zero. Note that ω12 is a degree
≤ 1 polynomial of x1, x2; we have

1

k!Adk
D1

Y1 = const · D2 + 1

k!
∂kω13

∂xk
1

D3,mod U0 �⇒ Z := αkD3,mod U0 ∈ E

T1 := [L0, Z] = aD2D3 + bD2
3,mod U1 ∈ E

T2 := [T1, Z] = (a2 + 2b2)D2
3 + abD2D3,mod U1 ∈ E

T2 − bT1 = (a2 + b2)D2
3,mod U1 ∈ E.

(6.226)
Step [1]. We claim that when a, b are not all zero, then l < 2 holds.

If a, b are not all zero, then K0 := D2
3,mod U1 ∈ E. Consider

Adl
K0

Y1 = 2l · l!alD
l+1
3 ,mod U1 ∈ E �⇒ alD

l+1
3 ,mod U1 ∈ E. (6.227)

If c �= 0, then [D1, alD
l+1
3 ] = c1D

l+1
3 ,mod Ul ∈ E. If c2 �= 0, then

[D2, alD
l+1
3 ] = c2D

l+1
3 ,mod Ul ∈ E. If c1 = c2 = 0, then c0 �= 0, and we have

c0D
l+1
3 ,mod Ul ∈ E. In both cases, we have K1 := Dl+1

3 ,mod Ul ∈ E. Consider
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Adl
K1

Y1 = (l + 1)l l!alD
l2+1
3 ,mod Ul2 ∈ E ⇐� alD

l2+1
3 ,mod Ul2 ∈ E.

(6.228)
Similarly, we have K2 := Dl2+1

3 ,mod Ul2 ∈ E. Repeat the above procedure, and
we can get an infinite sequence {Kn} ∈ E, a contradiction. Hence, l < 2 holds.

Step [2]. We claim that when a = b = 0, l < 2 holds.
If a = b = 0, then αk = c �= 0. Without loss of generality, we can assume

αk = 1. Then Z = D3,mod U0 ∈ E. Consider

M0 := 1

(l − 1)!Ad
(l−1)
Z Y1 = (lalx3 + al−1)D3,mod U0 ∈ E

N0 := 1

l!Adl
ZY1 = alD3,mod U0 ∈ E

[L0, N0] = c1D1D3 + c2D2D3,mod U1 ∈ E

[[L0, N0], N0] = (c21 + c22)D
2
3,mod U1 ∈ E.

(6.229)

Step [2.a]. If c1, c2 are not all zero, then D2
3,mod U1 ∈ E. Just like the proof in

Step [1], we have l < 2 in this case.
Step [2.b]. If c1 = c2 = 0, without loss of generality, we may assume that

al = 1. Then M0 = (lx3 + al−1)D3,mod U0 ∈ E. Since al−1 is a polynomial of
x1, x2, suppose deg(al−1) = r .

(*). r ≥ 2 case. We may assume that the homogeneous degree r part of al−1 is

a
(r)
l−1 = bsx

r−s
1 xs

2 + · · · + btx
r−t
1 xt

2, (6.230)

where bs, . . . , bt are constants and 0 ≤ s ≤ t ≤ r, bs �= 0, bt �= 0. Consider

R := Adr−s−1
D1

(Ads
D2

M0) = (ex1 + f x2 + const)D3,mod U0 ∈ E,

T := [L0, R] = eD1D3 + f D2D3,mod U1 ∈ E,

[T ,R] = (e2 + f 2)D2
3,mod U1 ∈ E,

(6.231)

where e = s!(r − s)!bs �= 0, f = (s + 1)!(r − s − 1)!bs+1. From the proof in Step
[1], we have l < 2 in this case.

(**). r ≤ 1 cases. Assume al−1 = k1x1+k2x2+k0, where k1, k2, k0 are constants.
Consider

M1 = [L0,M0],M2 = [M1,M0]
M2 − lM1 ∈ E �⇒ D2

3,mod U1 ∈ E.
(6.232)

From the proof in Step [1], we have l < 2 in this case.
By Steps [1] and [2], we have proved that for k ≥ 1 case, l < 2 holds.
Part (II): k = 0 case. In this case, ω13 is a polynomial of x2, x3.
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(1) Suppose the degree of ω13 with respect to x2 is at least 1 since x2 plays the same
role as x1 in ω13; by the argument of Part (I), we have l < 2 also holds.

(2) Suppose ω13 is a polynomial of x3 and is irrelevant with x1, x2 variables. Then
al, · · · , a0 are constants. Without loss of generality, assume al = 1. Consider
A1 = 1

l!Adl−1
L0

Y1, A2 = [L0, A1], An = [An−1, A1], and we obtain an infinite
sequence in E, a contradiction. Hence, l < 2 holds.

From Part (I) and Part (II), we have proved l < 2. �
Lemma 6.34 By Lemma 6.33, ω13 = a1x3 + a0, where a1 ∈ P1(x1, x2). Then
a0 ∈ P2(x1, x2).

Proof Assume a1 = k1x1 + k2x2 + k0, where k0, k1, k2 are constants. Suppose
deg(a0) = k ≥ 2 and homogeneous degree k part of a0 is a

(k)
0 = b0x

k
1 +b1x

k−1
1 x2+

· · · + bkx
k
2 , where b0, . . . , bk are not all zero constants. Consider

AdL0Y1 = a1D
2
3+
(

k1x3 + ∂a0

∂x1

)

D1D3+
(

k2x3 + ∂a0

∂x2

)

D2D3+· · · ,mod U1 ∈ E.

(6.233)
For i = 0, · · · , k − 2, denote

pi(x1, x2) = ∂k−2a0

∂xk−i−2
1 ∂xi

2

= ax2
1 + bx2

2 + dx1x2 + pol1(x1, x2), (6.234)

where a = 1
2 (k− i)!i!bi, b = 1

2 (k− i−2)!(i+2)!bi+2, d = (k− i−1)!(i+1)!bi+1.
Consider

K :=Adi
D2

(Adk−i−2
D1

(AdL0Y1))

= const · D2
3 + (2ax1 + dx2 + e)D1D3 + (2bx2 + dx1 + f )D2D3 + · · · ,

mod U1 ∈ E,

B :=Adk−i−1
D1

Adi
D2

Y1 = (2ax1 + dx2 + e)D3,mod U0 ∈ E,

C :=Adk−i−2
D1

Adi+1
D2

Y1 = (2bx2 + dx1 + f )D3,mod U0 ∈ E,

(6.235)
where e, f are constants and K,B.C satisfy the assumption of Lemma 6.30, so
a = b = d = 0. That is, bi = bi+1 = bi+2 = 0, i = 0, · · · , k − 2, a contradiction.
Therefore, a0 ∈ P2(x1, x2). �
Theorem 6.36 ω13, ω23 are degree at most 1 polynomials of x1, x2, x3.

Proof By (6.34), we may assume that ω13 = a1x3+a0, a1 = c1x1+c2x2+c, a
(2)
0 =

ax2
1 + bx2

2 + dx1x2, where c0, c1, c2, a, b, d are constants. Consider
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[D1, Y1] �⇒ G1 := (c1x3 + 2ax1 + dx2 + e)D3,mod U0 ∈ E,

[D2, Y1] �⇒ G2 := (c2x3 + 2bx2 + dx1 + f )D3,mod U0 ∈ E,
(6.236)

where e, f are constants.
Step [1]. We claim that a1 is a constant, that is, c1 = c2 = 0.
If c1, c2 are not all zero, without loss of generality, we can assume that c1 �= 0.

Then

T := c2

c1
G1 − G2 =

((
2ac2

c1
− d

)

x1 +
(

dc2

c1
− 2b

)

x2 + const

)

D3,mod U0

= (α1x1 + α2x2 + const)D3,mod U0 ∈ E

[L0, T ] = α1D1D3 + α2D2D3,mod U1 ∈ E

[[L0, T ], T ] = (α2
1 + α2

2)D
2
3,mod U1 ∈ E,

(6.237)
where α1 = 2ac2

c1
− d and α2 = dc2

c1
− 2b.

If α1, α2 are not all zero, denote A1 = D2
3,mod U1 ∈ E and calculate

[A1, Y1] �⇒ a1D
2
3,mod U1 ∈ E

[L0, a1D
2
3,mod U1] = c1D1D

2
3 + c2D2D

2
3,mod U2 ∈ E

[[L0, a1D
2
3,mod U1], a1D2

3,mod U1] �⇒ D4
3,mod U3 ∈ E.

(6.238)

Continue this process and we obtain a contradiction. Hence, α1 = α2 = 0, which
lead to 2ac2 = dc1, 2bc1 = dc2. Using 2ac2 = dc1 and recalling c1 �= 0, we have

N0 = c1G1, F = [L0, N0],H = [F,N0]
H − c21F ∈ E �⇒ B1 := D2

3,mod U1 ∈ E.
(6.239)

Replacing A1 with B1 in (6.238) and repeating the procedure, we can get an infinite
sequence {Bn} in E, a contradiction. Hence, a1 is a constant.

Step [2]. We claim that a0 ∈ P1(x1, x2). Now G1,G2 become

G1 =(2ax1 + dx2 + e)D3,mod U0 ∈ E

G2 =(2bx2 + dx1 + f )D3,mod U0 ∈ E.
(6.240)

Consider K := AdL0Y1 and we notice K,G1,G2 ∈ E satisfy the assumption of
Lemma 6.30. hence, a = b = d = 0. That is, a0 is a degree 1 polynomial of x1, x2.

By Steps [1] and [2], we have proved ω13 is a degree 1 polynomial of x1, x2, x3.
We can similarly prove that ω23 is a degree at most 1 polynomial of x1, x2, x3. �
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6.5.2.2 Mitter Conjecture

In this section, we will give some structure results about estimation algebra E, and
finally we prove Mitter conjecture holds for finite-dimensional estimation algebra
with state dimension 3 and linear rank 2. We mainly refer to the results in Shi and
Yau [22] and Yau [28].

By using the same assumption of the previous section, we first do the following
basic calculations:

[L0, x1] =D1 ∈ E, [L0, x2] = D2 ∈ E,

[D2,D1] =ω12, [D1, x1] = 1 ∈ E.
(6.241)

We denote E0 = span{1, x1, x2,D1,D2} ⊆ E. In Sect. 6.5.2.1, Wong’s matrix is
shown to have linear structure, and we assume that

ω12 =k1x1 + k2x2 + k0,

ω13 =α1x1 + α2x2 + α3x3 + α0,

ω23 =β1x1 + β2x2 + β3x3 + β0,

(6.242)

where ki, αi, βi’s are constants. Since ωij is linear, we have

Y1 :=[L0,D1],mod E0 = ω12D2 + ω13D3 + 1

2

∂η

∂x1
∈ E,

Y2 :=[L0,D2],mod E0 = ω21D1 + ω23D3 + 1

2

∂η

∂x2
∈ E.

(6.243)

In the following lemma, we discuss about the type of quadratic polynomials in
estimation algebra E.

Lemma 6.35 If a degree 2 polynomial is in the estimation algebra E of the system
(2), then we only need to consider the following cases:

Case (A): For any function φ ∈ E,ψ(2) = cst · x2
3 .

Case (B):
Case (B.1): There exists φ = x2

1 + x2
2 + x2

3 ∈ E;
Case (B.2): There exists φ = x2

1 + x2
3 ∈ E.

Case (C):
Case (C.1): There exists φ = x2

1 + x2
2 ∈ E.

Case (C.2): For any function φ ∈ E, φ(2) = cst · x2
1 .

where cst represents an arbitrary constant number.
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Proof Since there exists a degree 2 polynomial in estimation algebra, quadratic rank
1 ≤ k ≤ 3. By Theorem 3.7 in Wu and Yau [26], we have the cases stated in the
lemma. �
Lemma 6.36 Suppose there exists φ = ax2

1 + bx2
2 + cx2

3 ∈ E; here a, b, c are
constants. If c �= 0, then ω13 = α3x3 + α0, ω23 = β3x3 + β0.

Proof If c �= 0, then

1

2
[D1, [L0, φ]] =bx2ω21 + cx3ω31 ∈ E,

1

2
[D2, [L0, φ]] =ax1ω12 + cx3ω32 ∈ E,

(6.244)

by Lemma 6.29, ω13, ω23 ∈ P1(x3). �
Lemma 6.37

(1) If x2
1 + x2

2 ∈ E or x1x2 ∈ E, then x2
1 + x2

2 ∈ E, and ω12 is a constant;
(2) If x2

1 ∈ E, then k2 = 0. If x2
2 ∈ E, then k1 = 0.

Proof If φ = x2
1 + x2

2 ∈ E,

A1 :=[D1,
1

2
[L0, φ]],mod E0 = k1x1x2 + k2x

2
2 ∈ E,

A2 :=[D2,
1

2
[L0, φ]],mod E0 = k1x

2
1 + k2x1x2 ∈ E.

(6.245)

If k1 �= 0, then

A3 := A2 − k2

k1
A1 = k1x

2
1 − k22

k1
x2
2 ∈ E,

k1

k21 + k22

(k1φ − A3) = x2
2 ∈ E, φ − x2

2 = x2
1 ∈ E,

1

4
[[L0, x

2
1 ], [L0, x

2
2 ]] = x1x2 · ω21 ∈ E,

(6.246)

and then ω12 is a constant, contradiction. Hence, k1 = 0. Similarly, k2 = 0. Then
ω12 is a constant. If x1x2 ∈ E, [[L0, x1x2], x1x2] = x2

1 + x2
2 , the proof follows as

above.
(2) Consider [D2,

1
2 [L0, x

2
1 ]] = k1x

2
1 + k2x1x2 + k0x1 �⇒ k2x1x2 ∈ E. If

k2 �= 0, then x1x2 ∈ E �⇒ ω12 = const , a contradiction. Hence, k2 = 0. �
In the following three lemmas, we will prove Wong’s matrix is a constant matrix

in all cases in Lemma 6.35.
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Lemma 6.38 For case (A) in Lemma 6.35, Wong’s matrix is a constant matrix;
moreover, ω13 = ω23 = 0.

Proof For case (A) in Lemma 6.35, φ = x2
3 ∈ E. By Lemma 6.36, ω13 = α3x3 +

α0, ω23 = β3x3 + β0. Define Z := 1
2 [L0, φ],mod E0 = x3D3,mod E0 ∈ E:

[D1, Z] = −α3x
2
3 − α0x3 ∈ E �⇒ α0 = 0. (6.247)

Similarly, we get β0 = 0. Now ω13 = α3x3, ω23 = β3x3. If α3 �= 0 or β3 �= 0,
consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AdL0Z = D2
3 − α3x

2
3D1 − β3x

2
3D2,mod U0 ∈ E,

[Z,AdL0Z] = −2D2
3 − 2α3x

2
3D1 − 2β3x

2
3D2,mod U0 ∈ E,

2AdL0Z − [Z,AdL0Z] = 4D2
3,mod U0 ∈ E �⇒ D2

3,mod U0 ∈ E,

T := α3x
2
3D1 + β3x

2
3D2,mod U0 ∈ E,

T0 := 1
4 [K, T ] = α3x3D1D3 + β3x3D2D3,mod U1 ∈ E,

T1 := 1
2 [K, T0] = α3D1D

2
3 + β3D2D

2
3,mod U2 ∈ E,

Tk+1 := 1
2 [Tk, T0] = αk+1

3 Dk+1
1 D2

3 + βk+1
3 Dk+1

2 D2
3 + · · · ,mod Uk ∈ E,

(6.248)
we can see {Tk} is an infinite sequence in E, a contradiction. Hence, α3 = β3 = 0;
then ω13 = ω23 = 0. Define M = L0 − K = 1

2 (D
2
1 + D2

2 − η1) ∈ E; then

[D1, [M,D1]] − k1D2 = 1

2

∂2η1

∂x2
1

− ω2
12 ∈ E,

[D2, [M,D2]] + k2D1 = 1

2

∂2η1

∂x2
2

− ω2
12 ∈ E,

[D2, [M,D2]] − k2D2 = 1

2

∂2η1

∂x1∂x2
∈ E.

(6.249)

From the above equations, we can easily deduce that η1 is a polynomial of degree
at most 4 in x1, x2. Assume that

η1 =a40x
4
1 + a31x

3
1x2 + a22x

2
1x

2
2 + a13x1x

3
2 + a04x

4
2

+ degree 4 polynomial with respect to x1, x2,
(6.250)

where aij ∈ C∞(x3). Hence,
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E �ω2
12 − 1

2

∂2η1

∂x2
1

= (k21 − 6a40)x
2
1 + (2k1k2 − 3a31)x1x2

+ (k22 − a22)x
2
2 + polynomial of degree 1 with respect to x1, x2,

E �ω2
12 − 1

2

∂2η1

∂x2
2

= (k21 − a22)x
2
1 + (2k1k2 − 3a13)x1x2

+ (k22 − 6a04)x
2
2 + polynomial of degree 1 with respect to x1, x2,

E �1

2

∂2η1

∂x1∂x2
= 3a31x

2
1 + 4a22x1x2 + 3a13x

2
2

+ polynomial of degree 1 with respect to x1, x2.

(6.251)

Note for Case (A), the degree 2 part of any function in E is cst · x2
3 . Hence, we have

k1 = k2 = a22 = 0, which means ω12 is constant. �
Lemma 6.39 For Case (B) in Lemma 6.35, we have ω13 = ω23 = 0 and Wong’s
matrix is a constant matrix.

Proof Recall Lemma 6.36, and we have ω13 = α3x3 + α0, ω23 = β3x3 + β0.
Part (I): For Case (B.1), there exists φ := x2

1 + x2
2 + x2

3 ∈ E. Consider

Z :=1

2
[L0, φ],mod E0 = x1D1 + x2D2 + x3D3 ∈ E,

K1 :=[L0, Z] − 2L0 =
3∑

i=1

γiDi,mod U0 ∈ E,

N0 :=[D1, AdL0K1] = α3D
2
3 + · · · ∗,mod U1 ∈ E,

H0 :=[D2, AdL0K1] = β3D
2
3 + · · · ∗,mod U1 ∈ E,

(6.252)

where γi = ∑
j �=i xjωji and · · · ∗ means terms with the highest order but lower

order in D3 and do not contain D1D3, D2D3 terms.
Step [1]. In this step, we will show α3 = β3 = 0, that is, ω13, ω23 are constants.

If α3 �= 0, then

N1 :=
[

AdL0K1,
1

2α3
N0

]

= α3D1D
2
3 + β3D2D

2
3

+ · · · ,mod U2 ∈ E,

M0 := 1

α2
3 + β2

3

[N1,K1] = (x3 + cst)D2
3 + · · · ,mod U2 ∈ E,

M1 :=[L0,M0] = D4
3 + · · · ,mod U3 ∈ E,

Mn+1 := 1

2(n + 1)
[Mn,M0] = D

2(n+2)
3 + · · · ,mod U2n+3 ∈ E,

(6.253)
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we can get an infinite sequence {Mn} in E, contradiction. Hence, α3 = 0. Similarly,
we can prove β3 = 0 starting from H0. Therefore, ω12, ω23 are constants.

Step [2]. In this step, we will prove ω12 is a constant and α0 = β0 = 0. Consider

B1 := [Z,D1] − D1 = k1x1x2 + k2x
2
2 + α0x3 ∈ E,

B2 := [D2, Z] − D2 = k1x
2
1 + k2x1x2 − β0x3 ∈ E.

(6.254)

If k1 �= 0, k2 = 0, then B1 = k1x1x2 + α0x3 ∈ E.

[[L0, B1], B1] − α0 = k21(x
2
1 + x2

2) ∈ E, (6.255)

by Lemma 6.37(3), ω12 is a constant, a contradiction. Similarly, one can show that
the case k2 �= 0, k1 = 0 cannot occur. If k1 · k2 �= 0, now consider

B3 := B2 − k2

k1
B1 + k22

k1
φ = ex2

1 + f x2
3 + gx2

3 ∈ E,

B4 := 1

4
[[L0, B3], B3] − g2

4
= e2x2

1 + f 2x2
3 + fgx3 ∈ E,

(6.256)

where e �= f . Then from B3, B4, we have x2
1 ∈ E. However, by Lemma 6.37(2),

k2 = 0, a contradiction.
Hence, k1 = k2 = 0, that is, ω12 is a constant. From B1, B2 in Step [2], α0 =

β0 = 0, so ω13 = ω23 = 0.
Part (II). For Case (B.2), there exists φ = x2

1 + x2
3 ∈ E. Consider

Z :=1

2
[L0, φ] − 1 = x1D1 + x3D3 ∈ E,

[D1, Z] − D1 = x3 · ω31 ∈ E

[Z, x3ω13] = 2x3ω13 − α0x3 ∈ E �⇒ α3x
2
3 ∈ E

α0x3 ∈ E �⇒ α0.

(6.257)

If α3 �= 0, we have x2
3 ∈ E; then x2

1 = φ − x2
3 ∈ E:

[[L0, x
2
1 ], [L0, x

2
3 ]] = 4x1x3ω31. (6.258)

Then ω31 is a constant, a contradiction. Hence, α3 = 0 and ω13 = 0. Now we have
Y1 = ω12D2,mod U0:

[Y1, [D2, Z]] = k2x1ω12 ∈ E. (6.259)
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If k2 �= 0, then x1ω12 ∈ E:

[Z, x1ω12] �⇒ x1x2 ∈ E (6.260)

By Lemma 6.37(1), ω12 is a constant, a contradiction; then k2 = 0.
Now [D2, Z] = k1x

2
1 − β3x

2
3 + k0x1 − β0x3 ∈ E. Combining with φ, we have

(k1 + β3)x
2
3 + β0x3 ∈ E. [Z, (k1 + β3)x

2
3 + β0x3] ∈ E �⇒ β0 = 0.

If k1β3 �= 0, define

⎧
⎪⎪⎨

⎪⎪⎩

M0 := 1
4Ad2

L0
Z

M1 := [L0,M0]
Mn+1 = 1

2 [Mn,M0] = kn+1
1 D2

1D
n+1
2 − βn+1

3 Dn+1
2 D2

3,mod Un+2 ∈ E;
(6.261)

then we can get an infinite sequence {Mn} in E, a contradiction. Hence, k1 = β3 =
0, that is, ω12 is constant and ω23 = 0. �
Lemma 6.40 For case (C) in Lemma 6.35, Wong’s matrix is a constant matrix.

Proof Part (I). For case (C.2), φ = x2
1 ∈ E. Note Lemma 6.37(2), and we have

ω12 = k1x1 + k0. Consider

Z1 :=1

2
[L0, φ],mod E0 = x1D1 ∈ E

T =AdL0Z1 − [Z1, AdL0Z1] = 3D2
1 − k1x

2
1D2 − α1x

2
1D3,mod U0 ∈ E

K := 1

12
(2T + [T ,Z1]) = D2

1,mod U0 ∈ E

R :=3K − T = k1x
2
1D2 + α1x

2
1D3,mod U0 ∈ E.

(6.262)
Step [1]: In this step, we will show that ω12, ω13 is a constant. Define

N0 := 1

4
[K,R], N1 = 1

2
[K,N0], Nk+1 = 1

2
[Nk,N0]. (6.263)

We can find {Nk} is an infinite sequence in E, a contradiction. Hence, k1 = α1 = 0;
then ω12 is constant. If α3 �= 0, consider

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M0 := 2K + [Z1, AdL0Z1],K1 := [L0, [D1,M0]]
T1 = 1

α2
2+α2

3
([K1, [D1,M0]] − α3K1) = D2

3,mod U1 ∈ E

R1 = 1
2α3

[T1,M0], Rn = [Tn−1,M0], Tn = Ad2
Rn−1

L0 = tnD
2n

3 ,

mod U2n−1 ∈ E, tn �= 0.

(6.264)
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Then {Tn} is an infinite sequence in E, a contradiction. Hence, α3 = 0. If α2 �=
0, define An = c(n)Adn

L0
M0, where c(n) �= 0 is a constant. {An} is an infinite

sequence in E, a contradiction. Hence, α2 = 0 and then ω13 is constant.
Step [2]. In this step, we prove ω23 is constant. Recall Y1, Y2; now we have

G1 :=ω13D3 + 1

2

∂η

∂x1
∈ E

G2 :=ω23D3 + 1

2

∂η

∂x2
∈ E

[D1,G2]−[D2,G1] = β1D3 ∈ E.

(6.265)

If β1 �= 0, then D3 ∈ E, [D3,D2] = ω23 ∈ E �⇒ β3 = 0. From Step [1], ω12, ω13
are constants; then G1 ∈ E �⇒ ∂η

∂x1
∈ E. Then we assume η = a3x

3
1 + a2x

2
1 +

a2x
2
1 + a0, ai ∈ C∞(x2, x3). Now

∂η
∂x1

= 3a3x2
1 + 2a2x1 + a1 ∈ E; we have a3, a2

a constant and a1 ∈ P1(x2).

L1 :=[L0,D3], mod E0 = ω32D2 + 1

2

∂a0

∂x3
∈ E

[G2, L1] − β2G2 = −ω2
23 − β2

2

(
∂a0

∂x2
+ ∂a1

∂x2
x1

)

+ ω23

2

(
∂2a0

∂x2
2

+ ∂2a0

∂x2
3

)

,

(6.266)

which is a degree 3 polynomial in x1, a contradiction. Hence, β1 = 0. Now ω23 =
β2x2 + β3x3 + β0. Define L̃0 = L0 − K = 1

2 (D
2
2 + D2

3 − η̃) ∈ E and consider
the subalgebra Ẽ :=< L̃0,D2, x2, 1 >L.A.. Ẽ can be considered as the estimation
algebra of a filtering system with 2-D state and rank 1, which is exactly the case in
Wu and Yau [26]; thus, β2 = β3 = 0.

Part (II). For case (C.1), there exists φ = x2
1 + x2

2 ∈ E. From Lemma 6.37(1),
ω12 = k0. Consider

Z2 :=1

2
[L0, φ], mod E0 = x1D1 + x2D2, mod E0 ∈ E

L2 :=AdL0Z2 − 2L0, mod E0

ζ :=1

2
E2(η) + η

L3 :=[Z2, L2], mod E0

=p(x1, x2, x3)D3, mod U0 ∈ E,

(6.267)
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where p(x1, x2, x3) = 4α1x
2
1 + 4β2x

2
2 + 4(α2 + β1)x1x2 + 3α3x1x3 + 3β3x2x3 +

3α0x1 + 2β0x2. By Corollary 3.11 in Shi and Yau [21], we have p(x1, x2, x3) that
must be a degree at most 1 polynomial, that is, α1 = α3 = β2 = β3 = (α2+β1) = 0.
Now

L3 = E2
2(ζ ) − E2(ζ ) − 4(α0x1 + β0x2)

2 ∈ E. (6.268)

Then due to the theory of Euler operator, η is a degree at most 2 polynomial with
respect to x1, x2. Suppose η = a2x

2
1 + a1x1x2 + a0x

2
2 + b1x1 + b2x2 + b0, ai, bi ∈

C∞(x3). Consider

[D1, Y1], mod E0 = a2 − α2
2x

2
2 ∈ E

[D2, Y2], mod E0 = a0 − β2
1x

2
2 ∈ E

[Z2, a2 − α2
2x

2
2 ] = −2α2

2x
2
2 ∈ E

[Z2, a0 − β2
1x

2
2 ] = −2β2

1x
2
2 ∈ E.

(6.269)

If α2 �= 0 or β1 �= 0, then x2
1 , x

2
2 ∈ E. By Step [1] of Part (I), we have ω13, ω23

are constants, a contradiction. Hence, α2 = β1 = 0, which means ω13, ω23 are
constants. �
Theorem 6.37 If there exists a degree 2 polynomial in E, then Wong’s matrix must
be a constant matrix and hi, 1 ≤ i ≤ m are affine in x.

Proof If a degree 2 polynomial φ is in E, then by Lemma 6.35, we only need to
consider cases (A), (B), and (C). The conclusion comes from Lemmas 6.38–6.40
and Theorem 3 in Yau [28]. �

The following two lemmas describe the structure of η in the case of Lemma 6.35
and are essential for proving Mitter conjecture. Detailed proof can be found in Shi
and Yau [22].

Lemma 6.41 Under the assumption of Theorem 6.37, if T = cD3 + φ(x3) ∈ E,
where c �= 0 is a constant, φ(x3) ∈ C∞(x3), then φ(x3) ∈ P2(x3).

Lemma 6.42 Under the assumption of Theorem 6.37,

(i) For case (A) and (B): η ∈ P2(x1, x2, x3);
(ii) For case (C): η = P2(x1, x2) + ψ(x3), where ψ(x3) ∈ C∞(x3); moreover, if

ω13 �= 0 or ω23 �= 0, then η ∈ P2(x1, x2, x3).

Up to now, under the assumption of Lemma 6.35, we have proved that Wong’s
matrix has a constant structure. η is a degree 2 polynomial in variables x1, x2 for
all cases of Lemma 6.35. Finally, by using the tool proposed by Yau [28], Mitter
conjecture can be proved below.
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Theorem 6.38 The Mitter conjecture holds for state dimension 3, linear rank 2
case, that is, any function in estimation algebra E is affine in x.

Proof If a degree 2 polynomial is in estimation algebra E, then by Lemma 6.35, we
only need to consider cases (A), (B), and (C).

For cases (A) and (B), from Lemma 6.42, η ∈ P2(x1, x2, x3). However, by
Theorem 5(i) in Yau [28], any function in E is degree at most 1; thus, cases (A)
and (B) are impossible.

For case (C), if ω13 �= 0 or ω23 �= 0, then η ∈ P2(x1, x2, x3); by Theorem 5(i)
in Yau [28], it is impossible. If ω13 = ω23 = 0, note hi’s are degree at most 1
polynomials of x1, x2 and η = P2(x1, x2) + ψ(x3) by Lemma 6.42. Then

E =< L0, h1, · · · , hm >L.A.⊂< L0,D1,D2, x1, x2, 1 >L.A. . (6.270)

It can be easily checked that the latter is finite dimensional and it does not contain
degree 2 polynomials; then E cannot contain degree 2 polynomials, a contradiction.
Therefore, the estimation algebra E only contains linear functions. �

6.6 Novel Finite-Dimensional Filter

In this section, we mainly focus on the construction of finite-dimensional filters
with nonmaximal rank. In the previous section, we introduce finite-dimensional
estimation algebra with maximal rank and proved that Wong’s matrix is a constant
matrix. However, in FDEA with nonmaximal rank, this is not true. We will show
there exist new classes of finite-dimensional filter, in which Wong’s matrix is not
necessary to be a constant matrix.

6.6.1 State Dimension 3

First, we consider the finite-dimensional estimation algebra E corresponding
to (6.1) with state dimension n = 3 and linear rank r = 1. This result can be found
in Shi [20]. Without loss of generality, we may assume that x1 ∈ E, x2, x3 /∈ E.

It is easy to see that

[L0, x1] =D1 ∈ E, [D1, x1] = 1 ∈ E,

[L0,D1] =ω12D2 + ω13D3 + 1

2

∂ω12

∂x2

+ 1

2

∂ω13

∂x3
+ 1

2

∂η

∂x1
∈ E.

(6.271)
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If we impose the following conditions:

(I) ω12 = ω13 = 0,
(II) η = P2(x1) + φ(x2, x3),

where P2(x1) denotes degree at most 2 and φ(x2, x3) is a C∞ function of x2, x3.
Then from (6.271), it is easy to see that the estimation algebraE is finite dimensional
with basis given by {1, x1,D1, L0}.

Next we construct a class of nonlinear filtering systems which satisfy conditions
(I) and (II). By condition (II),

η =
3∑

i=1

(

f 2
i + ∂fi

∂xi

)

+
m∑

i=1

h2i , (6.272)

is a polynomial of degree at most 2 with respect to x1, then we may assume that
fi, 1 ≤ i ≤ 3 are polynomials of degree at most 1 with respect to x1, i.e., we
assume that for 1 ≤ i ≤ 3,

fi = ai(x2, x3)x1 + φi(x2, x3), (6.273)

where ai(x2, x3) and φi(x2, x3) areC∞ function of x2, x3. By condition (I), we have

ω12 = ∂f2

∂x1
− ∂f1

∂x2
= a2 −

(
∂a1

∂x2
x1 + ∂φ1

∂x2

)

= 0,

ω13 = ∂f3

∂x1
− ∂f1

∂x3
= a3 −

(
∂a1

∂x3
x1 + ∂φ1

∂x3

)

= 0.

(6.274)

Hence, we have

{
∂a1
∂x2

= 0, ∂a1
∂x3

= 0
∂φ1
∂x2

= a2,
∂φ1
∂x3

= a3.
(6.275)

From (6.275), a1 must be a constant. Now

η =
3∑

i=1

(

f 2
i + ∂fi

∂xi

)

+
m∑

i=1

h2i

=
(

3∑

i=1

a2i

)

x2
1 +

(

2
3∑

i=1

aiφi + ∂a2

∂x2
+ ∂a3

∂x3

)

x1

+
3∑

i=1

φ2
i + a1 + ∂φ2

∂x2
+ ∂φ3

∂x3
+

m∑

i=1

h2i .

(6.276)
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Since the estimation algebra has linear rank 1, we assume that hi, 1 ≤ i ≤ m are
degree 1 polynomials of x1. Now condition (II) implies

(II.1)
∑3

i=1 a2i (x2, x3) is a constant;

(II.2) 2
∑3

i=1 aiφi + ∂a2
∂x2

+ ∂a3
∂x3

is a constant.

To summarize, in order to satisfy conditions (I) and (II), it suffices to satisfy the
following conditions:

(i) fi = aix1 + φ(x2, x3), 1 ≤ i ≤ 3,
(ii) ∂φ1

∂x2
= a2,

∂φ1
∂x3

= a3,

(iii) a1 is a constant,
∑3

i=1 a2i is a positive constant,

(iv) 2
∑3

i=1 aiφi + ∂a2
∂x2

+ ∂a3
∂x3

is a constant,
(v) hi’s are degree at most 1 polynomials of x1, and then the estimation algebra E

is finite dimensional with basis {L0,D1, x1, 1}.
Example Now we give a nonlinear filtering system example that satisfies condi-
tions (i)–(v). We let all the ai’s be constants, e.g., if we take a1 = 1, a2 = 1, a3 =
−1, then condition (iii) is satisfied and from (ii) we can see that φ1 is degree at most
1 polynomial of x2, x3. Thus, we can take φ1 = x2 − x3. Now condition (iv) that
says

φ1 + φ2 − φ3 = φ2 − φ3 + x2 − x3 (6.277)

is a constant can be easily satisfied. For example, if we take φ2 = x2
2 + x2

3 + x3 −
x2+1, φ3 = x2

2 +x2
3 , then condition (iv) is satisfied. Condition (v) is easily satisfied

by letting the observation term h(x) = x1. Now the �-matrix is given by

⎛

⎝
0 0 0
0 0 2x2 − 2x3 − 1
0 2x3 − 2x2 + 1 0

⎞

⎠ (6.278)

and η = 4x2
1 + 2x1 + γ (x2, x3). Then the estimation algebra corresponding to this

class of nonlinear filtering systems is finite dimensional with basis {L0,D1, x1, 1}.
More importantly, the entries of �-matrix are not necessary to be constant.

Next, we use the structure results to derive finite-dimensional filters for the robust
DMZ equation by the Wei-Norman approach.

In real applications, we are interested in considering robust state estimator from
observed sample paths with some properties of robustness. Davis [9] considered this
problem and proposed some robust algorithms. In our case, his basic idea reduced
to define a new unnormalized density

u(t, x) = exp

(

−
m∑

i=1

hi(x)yi(t)

)

σ(t, x). (6.279)
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Then u(t, x) satisfies the following robust DMZ equations:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

(t, x) = L0u(t, x) +∑m
i=1 yi[L0, Li]u(t, x)

+ 1
2

∑m
i,j=1 yi(t)yj (t)[[L0, Li], Lj ]u(t, x),

u(0, x) = σ0(x).

(6.280)

The objective of constructing a robust finite-dimensional filter to (6.280) is equiva-
lent to finding a smooth manifold M and complete C∞ vector fields μi on M and
C∞ functions ν on M×R×Rn and ωi’s on Rm, such that u(t, x) can be represented
in the following form:

{
dz(t)
dt

= ∑k
i=1 μi(z(t))ωi(y(t)), z(0) ∈ M,

u(t, x) = ν(z(t), t, x).
(6.281)

Following [15], we say that system (6.1) has a robust universal finite-dimensional
filter if for each initial probability density σ0, there exists a z0, such that (6.281)
holds if z(0) = z0, and μi, ωi are independent of σ0.

The following theorem gives the solution of the above robust-DMZ equation by
the basis of the corresponding estimation algebra in terms of ordinary differential
equations. The detailed calculations can be found in Shi [20].

Theorem 6.39 If the nonlinear filtering system (6.1) satisfies conditions (i)–(v),
then we can assume η = a2x

2
1 + a1x1 + a0(x2, x3), hi = ci1x1 + ci0, 1 ≤ i ≤ m,

where ci1, ci0, a2, a1 are constants and a0(x2, x3) is a C∞ function of x2, x3. Then
the robust DMZ equation (6.280) has a solution for all t of the following form:

u(t, x) = er0(t)er1(t)x1er2(t)D1etL0σ0, (6.282)

where ri’s satisfy the following ordinary differential equations for all t ≥ 0:

ṙ1(t) =a2r2(t),

ṙ2(t) =r1(t) +
m∑

i=1

ci1yi(t),

ṙ3(t) = r1(t)
2

2
+ a2

2
r2(t)

2 +
m∑

i=1

ci1yi(t)r1(t)

+ 1

2
a1r2(t) + 1

2

m∑

i,j=1

ci1cj1yi(t)yj (t),

(6.283)

where the initial condition is given r0(0) = r1(0) = r2(0) = 0.
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Proof As described previously, the estimation algebra E satisfies conditions (I) and
(II) with basis of {L0,D1, x1, 1}. By differentiating u(t, x), we have

∂u

∂t
=er0(t)er1(t)x1er2(t)D1L0e

tL0σ0

+ ṙ2(t)e
r0(t)er1(t)x1D1e

r2(t)D1etL0σ0

+ (ṙ0(t) + ṙ1(t)x1)u(t, x)

=A + B + (ṙ0(t) + ṙ1(t)x1)u(t, x),

(6.284)

where we denote

A :=er0(t)er1(t)x1er2(t)D1L0e
tL0σ0

B :=ṙ2(t)e
r0(t)er1(t)x1D1e

r2(t)D1etL0σ0.
(6.285)

Recall the classical Baker-Campbell-Hausdorff-type relation, i.e.,

er(t)Ei Eke
s(t)Ej =

(

Ek + r(t)[Ei,Ek] + r(t)2

2! [Ei, [Ei,Ek]] + · · ·
)

× er(t)Ei es(t)Ej ,

(6.286)

whereEi,Ek,Ej are elements of a Lie algebra. The following calculations basically
come from (6.286); we have

A :=er0(t)er1(t)x1

(

L0 + r2(t)[D1, L0] + r2(t)
2

2
[D1, [D1, L0]] + · · ·

)

er2(t)D1etL0σ0 = er0(t)er1(t)xL0e
r2(t)D1etL0σ0

−
(

r2(t)(a2x1 + 1

2
a1) + r2(t)

2

2
a2

)

u(t, x),

(6.287)
and

er0(t)er1(t)xL0e
r2(t)D1etL0σ0 =

er0(t)

(

L0 − r1(t)D1 + r1(t)
2

2

)

er1(t)xer2(t)D1etL0σ0,
(6.288)

and

er0(t)L0e
r1(t)xer2(t)D1etL0σ0 =L0u(t, x)

er0(t)r1(t)D1e
r1(t)xer2(t)D1etL0σ0 =r1(t)D1u(t, x).

(6.289)
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Putting (6.288) and (6.289) into (6.287), we have

A = L0u(t, x) − r1(t)D1u(t, x)

+
(

r1(t)
2

2
− r2(t)

2

2
a2 − r2(t)(a2x1 + 1

2
a1)

)

u(t, x). (6.290)

Similarly, we have

B = ṙ2(t)D1u(t, x) − ṙ2(t)r1(t)u(t, x). (6.291)

Then put simplified A,B into (6.284); we have

∂u

∂t
=L0u(t, x) + (ṙ2(t) − r1(t))D1u(t, x)

+
(

r21

2
− r2

(

a2x1 + 1

2
a1

)

− r22

2
a2 + ṙ0(t) + ṙ1(t)x1 − ṙ2(t)r1(t)

)

u(t, x).

(6.292)
Note that Li is the zero degree differential operator of multiplication by hi ; then
robust DMZ equation becomes

∂u

∂t
= L0u(t, x) +

(
m∑

i=1

ci1yi(t)

)

D1u(t, x) +
⎛

⎝1

2

m∑

i,j=1

ci1cj1yi(t)yj (t)

⎞

⎠u(t, x).

(6.293)
Comparing (6.292) and (6.293), we have

ṙ2(t) − r1(t) =
m∑

i=1

ci1yi(t) (6.294)

and

r21

2
− r2

(

a2x1 + 1

2
a1

)

− r22

2
a2 + ṙ0(t) + ṙ1(t)x1 − ṙ2(t)r1(t)

= 1

2

m∑

i,j=1

ci1cj1yi(t)yj (t). (6.295)

From (6.294) and (6.295), we have

ṙ1(t) = a2r2(t), (6.296)

ṙ2(t) = r1(t) +
m∑

i=1

ci1yi(t) (6.297)
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ṙ3(t) = r1(t)
2

2
+ a2

2
r2(t)

2 +
m∑

i=1

ci1yi(t)r1(t)

+ 1

2
a1r2(t) + 1

2

m∑

i,j=1

ci1cj1yi(t)yj (t).

(6.298)

Considering u(0, x) = σ0, the initial condition can be given r0(0) = r1(0) =
r2(0) = 0.

Let ri(t), 0 ≤ i ≤ 2 play the role of z(t) in (6.281); then it is easy to check
that (6.282) are of the form (6.281), i.e., a universal finite-dimensional filter exists
for finite-dimensional filter with state dimension 3 and linear rank 1. �

Therefore, for the filters with finite-dimensional estimation algebra with state
dimension 3 and linear rank 1, universal finite-dimensional filter exists.

Later, Dong et al. [10] use similar methods to study construction of finite-
dimensional estimation algebra with state dimension 4 and linear rank 1 and further
obtain a new class of nonlinear finite-dimensional filters. They prove that there is a
class of polynomial finite-dimensional system in state dimension 4 with linear rank
1, but the entries in Wong’s matrix are polynomials of degree 2 or higher.

6.6.2 Arbitrary State Dimension

For the problem to construct FDF on arbitrary dimension n, Jiao and Yau [13] have
made a great progress and successfully gave the procedure of construction of novel
filters. In this chapter, by applying Wong’s theorem [27], we construct a new class
of finite-dimensional filters with arbitrary state space dimension n and linear rank
n − 2. Importantly, we show that in the new class of nonlinear filtering systems,
the entries of Wong’s �-matrix are not necessary to be constants or polynomials
and can be C∞ functions. This result largely extends the types of finite-dimensional
filter which already include Kalman-Bucy filter and Yau filter.

In the following, we sketch the main idea and procedures of construction.
First, we construct state evolutionary stochastic differential equations and calculate
corresponding �-matrix. Inspired by Wong’s theorem, we define corresponding
observation equations. In order to construct filters that satisfy all assumptions of
Wong’s theorem, we make an orthogonal transformation forHi to obtain a new class
of finite-dimensional filters with any state dimension n and linear rank n−2. Matrix
Hi is defined as follows. More significantly, we can prove in such constructed filters,
entries of Wong’s �-matrix are not necessarily to be constants or polynomials and
can be C∞ functions.

We consider the following filtering system:

{
dx(t) = f (x(t))dt + Gdw(t), x(0) ∈ Rn,

dy(t) = Hx(t)dt + dv(t), y(0) ∈ Rm,
(6.299)
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where x,w, y, v are, respectively, Rn,Rn,Rm,Rm-valued processes. x(t) repre-
sents the state of system and y(t) represents observation. w(t), v(t) are independent
standard Brownian motions and independent of the initial conditions x(0), y(0).
We assume that f is a vector-valued C∞ function and G,H are constant matrices.
Besides, G is an orthogonal matrix. Next we denote H = (H1,H2, · · · ,Hm)T ,
where Hi = (Hi1, · · · ,Hin)

T , 1 ≤ i ≤ m.
Next we introduce Wong’s theorem about finite-dimensional estimation algebra.

Theorem 6.40 (Wong [27]) Let U denote the associative algebra of n by n matrix-
valued functions generated by {�C, JηC, I }, where I stands for the identity matrix
and C = GGT . If HT

i C� is a constant vector for any 1 ≤ i ≤ m and any � ∈ U ,
then estimation algebra of system is finite dimensional and dimE ≤ 2n + m + 2.

In order to construct a finite-dimensional filter, our main method is based on
Theorem 6.40 to find proper f,G,H in (6.299).

In the following, we define

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f1 = x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn),

f2 = x1 + x3 + · · · + xn,

f3 = x1 + x2 + x4 + · · · + xn,

· · ·
fn = x1 + x2 + · · · + xn−1,

(6.300)

where γ is a C∞ function with a bounded, nonzero first derivative. Let G be the
identity matrix; then the corresponding state evolutionary equation is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx1 = (x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn))dt + dw1,

dx2 = (x1 + x3 + · · · + xn)dt + dw2,

dx3 = (x1 + x2 + x4 + · · · + xn)dt + dw3,

· · ·
dxn = (x1 + x2 + · · · + xn−1)dt + dwn,

(6.301)

where wi, 1 ≤ i ≤ n are independent standard Brownian motions.
Wong’s �-matrix can be calculated:

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 −1 · · · −1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

· γ ′(x1 + x2 + · · · + xn). (6.302)

Then we can calculate eigenvalues and corresponding eigenvectors of �T :
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λ1 = λ2 = · · · = λn−2 = 0, λn−1 = √
n − 1γ ′i, λn = −√

n − 1γ ′i,

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1

−1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0

−1
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, · · · ,Hn−2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
...

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Hn−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
n − 1i
1
1
1
...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,Hn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−√
n − 1i
1
1
1
...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(6.303)

Considering selection of H is restricted to the real matrix, we only consider real
eigenvectors H1,H2, · · · ,Hn−2, which are n − 2 linearly independent eigenvectors
corresponding to eigenvalue 0.

Define H = (H1,H2, · · · ,Hn−2)
T and we obtain observation equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dy1 = HT
1 xdt + dv1 = (x2 − x3)dt + dv1,

dy2 = HT
2 xdt + dv2 = (x2 − x4)dt + dv2,

dy3 = HT
3 xdt + dv2 = (x2 − x5)dt + dv3,

· · ·
dyn−2 = HT

n−2xdt + dv2 = (x2 − xn)dt + dvn−2,

(6.304)

where vi, 1 ≤ i ≤ n − 2 are independent standard Brownian motions.
By combining state evolutionary equation (6.301) and observation equa-

tion (6.304), we obtain the filtering system (F1):

(F1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1 = (x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn))dt + dw1,

dx2 = (x1 + x3 + · · · + xn)dt + dw2,

· · ·
dxn = (x1 + x2 + · · · + xn−1)dt + dwn,

dy1 = (x2 − x3)dt + dv1,

dy2 = (x2 − x4)dt + dv2,

· · ·
dyn−2 = (x2 − xn)dt + dvn−2.

(6.305)
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In filtering system (F1), Hi, 1 ≤ i ≤ n − 2 is the real eigenvector of �T but not
Jη. In the following calculations, we aim to make an orthogonal transformation for
Hi, 1 ≤ i ≤ n − 2 and obtain a filtering system satisfying assumptions of (6.40).

First, η can be calculated by definition:

η =
n∑

i=1

∂fi

∂xi

+
n∑

i=1

f 2
i +

n−2∑

i=1

h2i

= (1 + γ ′) +
(

n∑

i=1

xi + γ

)2

+
n∑

k=2

(
n∑

i=1

xi − xk

)2

+
n∑

i=3

(x2 − xi)
2.

(6.306)
Gradient of η can be calculated:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηx1 =δ0 + 2

[

(n − 1)x1 + (n − 2)
n∑

i=2

xi

]

,

ηx2 =δ0 + 2

[

(n − 2)x1 + 2(n − 2)x2 + (n − 4)
n∑

i=3

xi

]

,

ηxk
=δ0 + 2

[

(n − 2)x1 + (n − 4)x2 + (n − 3)
n∑

i=3

xi + 2xk

]

, 3 ≤ k ≤ n,

(6.307)
where δ0 = γ ′′ + 2(x1 + x2 + · · · + xn + γ )(1 + γ ′).

Then we can calculate Hessian matrix Jη:

Jη =η0 ×
⎛

⎜
⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞

⎟
⎠

+ 2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n − 1 n − 2 n − 2 · · · n − 2 n − 2
n − 2 2(n − 2) n − 4 · · · n − 4 n − 4
n − 2 n − 4 n − 1 · · · n − 3 n − 3

...
...

...
. . .

...
...

n − 2 n − 4 n − 3 · · · n − 3 n − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(6.308)

where η0 = γ ′′′+2(x1+· · ·+xn+γ )γ ′′+2(1+γ ′)2. Next we calculate JηHi, 1 ≤
i ≤ n − 2:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

JηH1 =(0, 2n,−6,−2, · · · ,−2)T = 6H1 + 2H2 + · · · + 2Hn−2,

JηH2 =(0, 2n,−2,−6, · · · ,−2)T = 2H1 + 6H2 + · · · + 2Hn−2,

· · ·
JηHn−2 =(0, 2n,−2,−2, · · · ,−6)T = 2H1 + 2H2 + · · · + 6Hn−2.

(6.309)
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Equation (6.309) can be expressed as the matrix form:

Jη(H1,H2, · · · ,Hn−2) = (H1,H2, · · · ,Hn−2)A, (6.310)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

6 2 2 · · · 2
2 6 2 · · · 2
2 2 6 · · · 2
...

...
...

. . .
...

2 2 2 · · · 6

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (6.311)

Since A is a real symmetric matrix, it can be orthogonally diagonalized. First, we
calculate eigenvalues and eigenvectors of A. Due to det(A − λI) = (2n − λ)(4 −
λ)n−3, we get eigenvalues of A:

λ1 = λ2 = · · · = λn−3 = 4, λn−2 = 2n. (6.312)

Eigenvectors corresponding to first n − 3 eigenvalues are given:

α1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
−1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, α2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0

−1
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, · · · , αn−3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
...

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (6.313)

By using Schmidt orthogonalization for {α1, α2, · · · , αn−3}, normalized orthogonal
eigenvectors can be obtained:

v1= 1√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
−1
0
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, v2=
√
2

3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2
1
2

−1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, v3=
√
3

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
3
1
3
1
3

−1
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, · · · , vn−3=
√

n − 3

n − 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
n−3
1

n−3
1

n−3
...
1

n−3
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(6.314)
The eigenvector corresponding to λn−2 = 2n is

vn−2 = 1√
n − 2

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

. (6.315)

We define P = (v1, v2, · · · , vn−2) which is an orthogonal matrix; then we get the
diagonal decomposition A = P�P T , where � = diag(4, 4, · · · , 4, 2n). Thus,
Eq. (6.310) becomes
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Jη(H1,H2, · · · ,Hn−2) =(H1,H2, · · · ,Hn−2)P�P T ,

�⇒ Jη(H1,H2, · · · ,Hn−2)P =(H1,H2, · · · ,Hn−2)P�.
(6.316)

Next we define (H̃1, H̃2, · · · , H̃n−2) = (H1,H2, · · · ,Hn−2)P , which is given
by

H̃1 = 1√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

−1
1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H̃2 =
√
2

3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

− 1
2

− 1
2
1
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, · · · , (6.317)

H̃n−3 =
√

n − 3

n − 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

− 1
n−3

− 1
n−3
...

− 1
n−3
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H̃n−2 = 1√
n − 2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
n − 2
−1
...

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Clearly, H̃i, 1 ≤ i ≤ n − 2 is the eigenvector of Jη.
Define H̃ = (H̃1, H̃2, · · · , H̃n−2)

T and keep f,G unchanged; then we consider
the following filtering system (F2):

(F2) :

dx1 =(x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn))dt + dw1,

dx2 =(x1 + x3 + · · · + xn)dt + dw2,

· · ·
dxn =(x1 + x2 + · · · + xn−1)dt + dwn,

dy1 = 1√
2
(−x3 + x4)dt + dv1,

dy2 =
√
2

3

(

−1

2
x3 − 1

2
x4 + x5

)

dt + dv2,

dyn−3 =
√

n − 3

n − 2

(

− 1

n − 3
x3 − 1

n − 3
x4 − · · · − 1

n − 3
xn−1 + xn

)

dt

+dvn−3,

dyn−2 = 1√
n − 2

((n − 2)x2 − x3 − · · · − xn)dt + dvn−2.

(6.318)
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In the filtering system (F2), we denote

f̃i =fi, 1 ≤ i ≤ n,

h̃i =H̃ T
i x, 1 ≤ i ≤ n,

�̃ =(ω̃ij ), ω̃ij = ∂f̃j

∂xi

− ∂f̃i

∂xj

, 1 ≤ i, j ≤ n,

η̃ =
n∑

i=1

∂f̃i

∂xi

+
n∑

i=1

f̃ 2
i +

n−2∑

i=1

h̃2i .

(6.319)

Due to f̃i = fi, 1 ≤ i ≤ n and

n−2∑

i=1

h̃2i =
n−2∑

i=1

h2i , (6.320)

then we have η̃ = η. By Eq. (6.316), we obtain

Jη̃(H̃1, H̃2, · · · , H̃n−2) = (H̃1, H̃2, · · · , H̃n−2)�, (6.321)

which means H̃i is the eigenvector of Jη̃. Due to �T Hi = 0, 1 ≤ i ≤ n−2, �̃ = �

and definition of H̃i , then �̃T H̃i = 0, 1 ≤ i ≤ n − 2, which means that H̃i is
the eigenvector of �̃T . Therefore, H̃i’s are n − 2 linearly independent common real
eigenvectors of �̃T and Jη̃.

Let U be the associative algebra of n by n matrix-valued functions generated
by {�̃, Jη̃, I }, where I stands for the identity matrix. We will obtain the following
result. For simplicity, we omit tilde notation.

Theorem 6.41 Estimation algebra of filtering system (F2) is finite dimensional.

Proof Let A0 be linear space generated by {�, Jη, I }. A1 = {X ∈ U |X = X1 +
X2X3, Xi ∈ A0}. Recursively, we define Ak = {X ∈ U |X = X1 + X2X3, Xi ∈
Ak−1} for k ≥ 1. Notice that

U =
⋃

k∈Z≥0

Ak. (6.322)

In the following, we claim HT
i � = const · HT

i for 1 ≤ i ≤ m and any
� ∈ Ak, k ∈ Z≥0. We use induction to prove this. For k = 0, for any � ∈ A0,
� = a1� + a2Jηa3I, ai ∈ R. We calculate

HT
i � = a2H

T
i Jη + a3H

T
i = (a2λi + a3)H

T
i . (6.323)
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Assume the statement holds for k = p. Then ∀� ∈ Ap+1, � = X1 + X2X3, where
Xi ∈ Ap. By assumption of induction, we calculate

HT
i � = HT

i (X1 + X2X3) = const · HT
i . (6.324)

It follows that HT
i � is a constant vector for ∀1 ≤ i ≤ m and ∀� ∈ U .

By (6.40), it leads to finite dimensionality of estimation algebra. �
In the following theorem, we show the structure of estimation algebra and

Wong’s �-matrix of filtering system (F2).

Theorem 6.42 Nonlinear filtering system is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1 = (x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn))dt + dw1,

dx2 = (x1 + x3 + · · · + xn)dt + dw2,

dx3 = (x1 + x2 + x4 + · · · + xn)dt + dw3,

· · ·
dxn = (x1 + x2 + · · · + xn−1)dt + dwn,

dy1 = 1√
2
(−x3 + x4)dt + dv1,

dy2 =
√

2
3 (− 1

2x3 − 1
2x4 + x5)dt + dv2,

· · ·
dyn−3 =

√
n−3
n−2 (− 1

n−3x3 − 1
n−3x4 − · · · − 1

n−3xn−1 + xn)dt + dvn−3,

dyn−2 = 1√
n−2

((n − 2)x2 − x3 − · · · − xn)dt + dvn−2,

(6.325)
where γ is a C∞ function with a bounded, nonzero first derivative. w, v are
vector-valued independent standard Brownian motions and independent of the
initial conditions. Then in this filtering system, entries of Wong’s �-matrix are
not necessarily to be constants or polynomials. Dimension of estimation algebra
is 2n − 2 and linear rank of estimation algebra is n − 2.

Proof For convenience, we omit tilde in Eq. (6.319) and denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = x1 + x2 + · · · + xn + γ (x1 + x2 + · · · + xn),

fk =
n∑

i=1

xi − xk, 2 ≤ k ≤ n,

hk =
√

k

k + 1

(

−1

k
x3 − 1

k
x4 − · · · − 1

k
xk+2 + xk+3

)

, 1 ≤ k ≤ n − 3,

hn−2 = 1√
n − 2

((n − 2)x2 − x3 − · · · − xn).

(6.326)
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Wong’s �-matrix is given by Eq. (6.302):

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 −1 · · · −1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

· γ ′(x1 + x2 + · · · + xn). (6.327)

Due to arbitrariness of γ , entries of � are not necessarily to be constants or
polynomials. Next we calculate elements in estimation algebraE of filtering system.
By definition, L0, h1, h2, · · · , hn−2 ∈ E.

First, we calculate elements [L0, hi], 1 ≤ i ≤ n − 2:

[L0, h1] =1

2

[
n∑

i=1

D2
i − η,

1√
2
(−x3 + x4)

]

(6.328)

= 1√
2
(−D3 + D4) ∈ E,

[L0, h2] =1

2

[
n∑

i=1

D2
i − η,

√
2

3

(

−1

2
x3 − 1

2
x4 + x5

)]

=
√
2

3

(

−1

2
D3 − 1

2
D4 + D5

)

∈ E,

· · ·

[L0, hk] =1

2

[
n∑

i=1

D2
i − η,

√
k

k + 1

(

−1

k

k+2∑

i=3

xi + xk+3

)]

=
√

k

k + 1

(

−1

k

k+2∑

i=3

Di + Dk+3

)

∈ E, 1 ≤ k ≤ n − 3,

· · ·

[L0, hn−3] =
√

n − 3

n − 2

(

− 1

n − 3

n−1∑

i=3

Di + Dn

)

∈ E,

[L0, hn−2] =1

2

[
n∑

i=1

D2
i − η,

1√
n − 2

(

(n − 2)x2 −
n∑

i=3

xi

)]

= 1√
n − 2

(

(n − 2)D2 −
n∑

i=3

Di

)

∈ E.
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Next we can calculate Lie bracket of L0 and above first-order differential operators
obtained by Eq. (6.328):

[L0,−D3 + D4] = 1

2

(

− ∂η

∂x3
+ ∂η

∂x4

)

∈ E, (6.329)

[

L0,−1

2
D3 − 1

2
D4 + D5

]

= 1

2

(

−1

2

∂η

∂x3
− 1

2

∂η

∂x4
+ ∂η

∂x5

)

∈ E, (6.330)

[

L0,−1

k

k+2∑

i=3

Di + Dk+3

]

= 1

2

⎛

⎝−1

k

k+2∑

j=3

∂η

∂xj

+ ∂η

∂xk+3

⎞

⎠ ∈ E, 1 ≤ k ≤ n − 3,

(6.331)[

L0,− 1

n − 3

n−1∑

i=3

Di + Dn

]

=1

2

(

− 1

n − 3

n−1∑

i=3

∂η

∂xi

+ ∂η

∂xn

)

∈ E,

[

L0, (n − 2)D2 −
n∑

i=3

Di

]

=1

2

(

(n − 2)
∂η

∂x2
−

n∑

i=3

∂η

∂xi

)

∈ E,

where η is given by Eq. (6.306). By using Eq. (6.307) and (6.329) can be simplified
as

[

L0,−1

k

k+2∑

i=3

Di + Dk+3

]

= 2

⎛

⎝−1

k

k+2∑

j=3

xj + xk+3

⎞

⎠ ∈ E, 1 ≤ k ≤ n − 3,

and
[

L0, (n − 2)D2 −
n∑

i=3

Di

]

= n

(

(n − 2)x2 −
n∑

i=3

xi

)

∈ E (6.332)

Due to
[

1√
2
(−D3 + D4),

1√
2
(−x3 + x4)

]

= 1 ∈ E, (6.333)

all constants are in E. Finally, we calculate Lie bracket between first-order
differential operators obtained by Eq. (6.328):

⎡

⎣− 1

k1

k1+2∑

j=3

Dj + Dk1+3,− 1

k2

k2+2∑

j=3

Dj + Dk2+3

⎤

⎦ = 0, 1 ≤ k1, k2 ≤ n − 3,

⎡

⎣−1

k

k+2∑

j=3

Dj + Dk+3, (n − 2)D2 −
n∑

i=3

Di

⎤

⎦ = 0, 1 ≤ k ≤ n − 3.

(6.334)
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Therefore, estimation algebra E of the filtering system (6.325) is a 2n − 2
dimensional Lie algebra with basis given by

{1,−x3 + x4,−1

2
x3 − 1

2
x4 + x5, · · · ,− 1

n − 3
x3 − 1

n − 3
x4 − · · ·

− 1

n − 3
xn−1 + xn,

(n − 2)x2 − x3 − · · · − xn,−D3 + D4,−1

2
D3 − 1

2
D4 + D5, · · · ,

− 1

n − 3
D3 − 1

n − 3
D4 − · · · − 1

n − 3
Dn−1 + Dn,

(n − 2)D2 − D3 − · · · − Dn,L0}.

(6.335)

Clearly, linear rank of estimation algebra E is n − 2. �

6.7 Exercises

1. Prove that L0 has the following compact form:

L0 = 1

2

(
n∑

i=1

D2
i − η

)

. (6.336)

2. Prove the following bracket results:

(1) [L0, xi] = Di ;
(2) [[L0, φ], φ] = |∇φ|2 =∑n

i=1(
∂φ
∂xi

)2;

(3) [L0,Dj ] =∑n
i=1 ωjiDi + 1

2
∂η
∂xj

+ 1
2

∑n
i=1

∂ωji

∂xi
;

(4) [L0, x
2
j ] = 2xjDj + 1.

3. Prove that following bracket results:

(1) [L0, xj + cj ] = Dj, 1 ≤ j ≤ n;
(2) [Di, xj + cj ] = δij , 1 ≤ i, j ≤ n;
(3) [Di,Dj ] = ωji, 1 ≤ i, j ≤ n;

(4) Yj := [L0,Dj ] =∑n
i=1

(
ωjiDi + 1

2
∂ωji

∂xi

)
+ 1

2
∂η
∂xj

, 1 ≤ j ≤ n;

(5) [Yj , ωkl] =∑n
i=1 ωji

∂ωkl

∂xi
, 1 ≤ j, k, l ≤ n;

(6) [Yj ,Dk] =∑n
i=1

(
ωjiωki − ∂ωji

∂xk
Di

)
− 1

2

∑n
i=1

∂2ωij

∂xk∂xi
− 1

2
∂2η

∂xk∂xj
.

4. Let m > 0 be a positive integer and ξ ∈ C∞(Rn). If El(ξ) + mξ = 0, prove that
ξ = 0.
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5. Let ξ ∈ C∞(Rn). If El(ξ) = 0, prove that ξ is a C∞-function in xl+1, · · · , xn

variables.
6. Suppose i = (i1, · · · , in) and |i| =∑n

l=1 il ≥ 2. Prove that

gD
i1
1 · · ·Din

n = gD
ik1
k1

· · · Dikn
kn

,mod U|i|−2, (6.337)

where g is a C∞-function of x1, · · · , xn and k = (k1, · · · , kn) is a permutation
of (1, 2, · · · , n).

7. Suppose E is a nonmaximal rank estimation algebra. Its associated polynomial
with greatest quadratic rank is denoted as p0 = ∑

i∈S x2
i where index set

S := {1, · · · , k1, n − k2 + 1, · · · , n}. If p ∈ E is a quadratic function, prove
that homogeneous quadratic part p(2)(x) is independent of xj for j /∈ S, i.e.,
∂p(2)(x)

∂xj
= 0 for j = k1 + 1, · · · , n − k2.

8. Prove the cyclical identity is satisfied by �, i.e.,

∂ωij

∂xk

+ ∂ωjk

∂xi

+ ∂ωki

∂xj

= 0 (6.338)

9. Prove that
∂fj

∂xi
− ∂fi

∂xj
= cij + DT

ij x, where Dij ∈ Rn, x = (x1, x2, · · · , xn)
T for

all i, j if and only if

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · ,

∂ψ

∂xn

)

, (6.339)

where l1, · · · , ln are degree at most 2 polynomials and ψ is a C∞ function.
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Part III
Numerical Algorithms



Chapter 7
Yau-Yau Algorithm

In this chapter, we will present a numerical algorithm to solve general nonlinear
filtering problems based on the DMZ equations introduced in Chap. 5. This algo-
rithm, which is called the Yau-Yau algorithm, is named after Shing-Tung Yau and
Stephen S.-T. Yau, who proposed this algorithm in the beginning of this century
[4, 5]. Generally speaking, the idea of this algorithm is to separate the task of
solving nonlinear filtering problems into two phases, and the procedure of solving
partial differential equations (PDEs), which is computationally expensive, can be
dealt with off-line. We will start with the formulation of the Yau-Yau algorithm and
present a rigorous convergence analysis. Later on, its applications in time-variant
filtering systems will be discussed and some suitable numerical methods of solving
PDEs will also be summarized.

7.1 Introduction

In this chapter, we will consider the following filtering problem:

{
dXt = f (Xt )dt + dVt ,

dYt = h(Xt)dt + dWt ,
(7.1)

in which X,V, Y,W are, respectively, Rn-, Rn-, Rm-, and Rm-valued processes
and V and W are independent standard Brownian motion with corresponding
dimensions.

We further assume that f and h are C∞ smooth functions and ρ(t, x) denotes
conditional probability density of state xt given the observations {Ys : 0 ≤ s ≤ t}.

We have derived before that ρ(t, x) is given by normalizing a function, σ(t, x),
which satisfies the following DMZ equation:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. S.-T. Yau et al., Principles of Nonlinear Filtering Theory, Algorithms and
Computation in Mathematics 33, https://doi.org/10.1007/978-3-031-77684-7_7
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dσ(t, x) = L0σ(t, x)dt +
n∑

i=1

hi(x)σ (t, x)dY i
t , σ (0, x) = σ0(x), (7.2)

where

L0 = 1

2

n∑

i=1

∂2

∂x2
i

−
n∑

i=1

fi

∂

∂xi

−
n∑

i=1

∂fi

∂xi

− 1

2

m∑

i=1

h2i . (7.3)

As we mentioned before, we can define a new unnormalized density by

u(t, x) = exp

(

−
m∑

i=1

hi(x)Y i
t

)

σ(t, x), (7.4)

and u(t, x) defined above satisfies the following robust DMZ equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =1

2
�u(t, x) + (−f (x) + ∇K(t, x)) · ∇u(t, x)

+
(

−∇ · f (x) − 1

2
|h(x)|2 + 1

2
�K(t, x)

−f (x) · ∇K(t, x) + 1

2
|∇K(t, x)|2

)

u(t, x),

u(0, x) =σ0(x),

(7.5)

whereK(t, x) = ∑m
j=1 Y

j
t hj (x), f = (f1, f2, · · · , fn), and h = (h1, h2, · · · , hm).

Generally speaking, the robust DMZ equation (7.5) does not have a closed-form
solution. The main idea of Yau-Yau’s algorithm is to construct a good approximation
to this solution through a time discretization procedure. In this chapter, we will
first summarize the formulation of this algorithm in Sect. 7.2. Then, we will give a
detailed proof of the convergence results of this algorithm in Sect. 7.3. Finally, the
extension of this algorithm in time-dependence case will be introduced in Sect. 7.5.

7.2 The Formulation of Yau-Yau Algorithm

The motivation of Yau-Yau algorithm is the following observation, which estab-
lishes the connection between the robust DMZ equation in a small interval and a
parabolic equation with coefficients independent of the observations.

Lemma 7.1 ũ(t, x) satisfies the following parabolic equation:
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∂ũ

∂t
(t, x) = 1

2
�ũ(t, x)−

n∑

i=1

fi(x)
∂ũ

∂xi

(t, x)−
(

n∑

i=1

∂fi

∂xi

(x) + 1

2

m∑

i=1

h2i (x)

)

ũ(t, x),

(7.6)
for τl−1 ≤ t ≤ τl if and only if

u(t, x) = exp

(

−
m∑

i=1

Yi(τl−1)hi(x)

)

ũ(t, x)

satisfies the robust DMZ equation with observation being frozen at y(τl):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =1

2
�u(t, x) + (−f (x) + ∇K(τl−1, x)) · ∇u(t, x)

+
(

−∇ · f (x) − 1

2
|h(x)|2 + 1

2
�K(τl−1, x)

−f (x) · ∇K(τl−1, x) + 1

2
|∇K(τl−1, x)|2

)

u(t, x),

(7.7)

where the definition of K(t, x) is the same as Eq. (7.5).

Proof This equivalence follows by direct computation. ��
We will later show that the solution of the robust DMZ equation with frozen
observations (7.7) is a good approximation to the solution of the original robust
DMZ equation in the interval [τl−1, τl], when the length of the interval is sufficiently
small. With the above observation, we can propose the formulation of Yau-Yau
algorithm.

Suppose that {ys : 0 ≤ s ≤ τ } is a realization of the observation process Y =
{Ys : 0 ≤ s ≤ τ }, and u(t, x) is the solution of the robust DMZ equation (7.5) and
we want to compute u(τ, x). Let Pk = {0 = τ0 < τ1 < · · · < τk = τ } be a partition
of [0, τ ]. Let ui(t, x) be a solution of the following partial differential equation for
τi−1 ≤ t ≤ τi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
(t, x) =1

2
�ui(t, x) + (−f (x) + ∇K(τi−1, x)) · ∇ui(t, x)

+
(

−∇ · f (x) − 1

2
|h(x)|2 + 1

2
�K(τi−1, x)

−f (x) · ∇K(τi−1, x) + 1

2
|∇K(τi−1, x)|2

)

ui(t, x),

ui(τi−1, x) =ui−1(τi−1, x).

(7.8)

By Lemma 7.1, each ui(τi, x) can be computed by ũi (τi , x), where for τi−1 ≤ t ≤
τi , ũi (t, x) satisfies the following equation:
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∂ũi

∂t
(t, x) =1

2
�ũi(t, x) −

n∑

i=1

fi(x)
∂ũi

∂xi

(t, x)

−
(

n∑

i=1

∂fi

∂xi

(x) + 1

2

m∑

i=1

h2i (x)

)

ũi (t, x),

(7.9)

with initial value

ũi (τi−1, x) = exp

⎛

⎝
m∑

j=1

(yj
τi−1

− yj
τi−2

hj (x))

⎞

⎠ ũi−1(τi−1, x), i ≥ 2, (7.10)

and

ũ1(0, x) = σ0(x) exp

⎛

⎝
m∑

j=1

yj (τ0)hj (x)

⎞

⎠ . (7.11)

Notice that Eq. (7.9) is a parabolic equation independent of observation y(t). It can
thus be computed off-line. The entire procedure of this algorithm to compute u(τ, x)

can be summarized as follows:

1. Partition the interval [0, τ ] by 0 = τ0 < τ1 < · · · < τk = τ .
2. At each time τi , use the value of ũi−1(τi−1, x) to obtain the initial value (7.10)

and solve the parabolic differential equation (7.9). We then get the value of
ũi (τi , x).

3. At time τ = τk , we get the value of ũk(τk, x), and

uk(τk, x) = exp

⎛

⎝−
m∑

j=1

yj (τk)hj (x)

⎞

⎠ ũk(τk, x)

serves to be an approximation to u(τ, x).

7.3 L1-Convergence

In this section, we will show that under some mild conditions, the solution obtained
from Yau-Yau algorithm introduced in Sect. 7.2 converges to the solution of robust
DMZ equation in theL1 sense. The main convergence result stems from another two
estimation results. (1) The first one is that the solution to a global DMZ equation
can be approximated by a DMZ equation on the ball Br , which we will introduce
later; (2) the second one is that as k → ∞, the algorithm introduced in the previous
section converges to the solution of DMZ equation in every bounded domain.
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We first introduce the following robust DMZ equation on the ball Br :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂t
(t, x) =1

2
�ur(t, x) + (−f (x) + ∇K(t, x)) · ∇ur(t, x)

+
(

−∇ · f (x) − 1

2
|h(x)|2 + 1

2
�K(t, x)

−f (x) · ∇K(t, x) + 1

2
|∇K(t, x)|2

)

ur(t, x),

ur(t, x) =0 (t, x) ∈ [0, T ] × ∂Br,

ur(0, x) =σ0(x).

(7.12)

The next theorem shows that almost all the density can be captured by a ball large
enough, which serves to be a foundation to the proof of the first estimation result.

Hereafter in this chapter, for the simplification of the notations, we would like to
use

∫
U

Fdx or simply
∫
U

F to indicate the integral of function F(x) with respect to
the variable x inside the domain U , if there is no ambiguity in the contexts.

Theorem 7.1 Consider the filtering model (7.1). For any T > 0, let u be a solution
of the robust DMZ equation (7.5) in [0, T ] × Rn. Assume the following condition
holds:

− 1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2 + |f − ∇K| ≤ c1, ∀(t, x) ∈ [0, T ] × Rn,

(7.13)
where c1 is a constant possibly depending on T . Then

sup
0≤t≤T

∫

Rn

e

√
1+|x|2u(t, x)dx ≤ e(c1+ n+1

2 )T

∫

Rn

e

√
1+|x|2u(0, x)dx. (7.14)

In particular,

sup
0≤t≤T

∫

|x|≥r

u(t, x)dx ≤ e−
√

1+r2e(c1+ n+1
2 )T

∫

Rn

e

√
1+|x|2u(0, x)dx. (7.15)

Proof For the proof of Theorem 7.1, we first introduce a group of test function eφ ,
where φ is a C∞ function on Rd . Let ur be the solution of (7.12), the DMZ equation
on Br ; then, according to the equation satisfied by uR and the integration-by-part
formula, we have

d

dt

∫

Br

eφur =1

2

∫

Br

eφ�ur +
∫

Br

eφ(−f + ∇K) · ∇ur
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+
∫

Br

(

−∇ · f − 1

2
|h|2 + 1

2
�K − f · ∇K + 1

2
|∇K|2

)

eφur

=1

2

∫

Br

eφur

(
�φ + |∇φ|2

)
+

∫

Br

eφur∇φ · (f − ∇K)

+
∫

Br

eφur

(

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2

)

− 1

2

∫

∂Br

eφur∇φ · ν + 1

2

∫

∂Br

eφ ∂ur

∂ν

+
∫

∂Br

eφur(−f + ∇K) · ν,

where ν is the unit outward normal vector of Br . Choose φ = √
1 + |x|2; then

∂φ

∂xi

= xi√
1 + |x|2 ,

∂2φ

∂x2
i

= 1
√
1 + |x|2 − x2

i

(1 + |x|2)3/2 .

Since u|∂Br = 0 and ∂ur

∂ν
|∂Br ≤ 0, we have

d

dt

∫

Br

eφur ≤
∫

Br

eφur

[

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2

+1

2
�φ + 1

2
|∇φ|2 + ∇φ · (f − ∇K)

]

=
∫

Br

eφr

[

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2 + n

2
√
1 + |x|2

− |x|2
2
(
1 + |x|2)3/2

+ 1

2

|x|2
1 + |x|2 + x

√
1 + |x|2 (f − ∇K)

]

≤
∫

Br

eφur

[

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2 + n + 1

2
+ |f − ∇K|

]

≤
(

c1 + n + 1

2

)∫

Br

eφur .

By Gronwall’s inequality, we have

∫

Br

eφur(t, x)dx ≤ e(c1+ n+1
2 )t

∫

Br

eφu(0, x)dx t ∈ [0, T ]. (7.16)

Let r go to infinity and because t is arbitrarily chosen from [0, T ], we have proved
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sup
0≤t≤T

∫

Rn

e

√
1+|x|2u(t, x)dx ≤ e(c1+ n+1

2 )T

∫

Rn

e

√
1+|x|2u(0, x)dx.

In particular,

sup
0≤t≤T

∫

|x|≥r

u(t, x)dx ≤ e−
√

1+r2 sup
0≤t≤T

∫

|x|≥r

e

√
1+|x|2u(t, x)dx

≤ e−
√

1+r2 sup
0≤t≤T

∫

Rn

e

√
1+|x|2u(t, x)dx

≤ e−
√

1+r2e(c1+ n+1
2 )T

∫

Rn

e

√
1+|x|2u(0, x)dx.

��
Theorem 7.1 shows that the density outside the ball Br can be arbitrarily small for
r large enough. This gives us the opportunity to only analyze the DMZ equation
on a sufficiently large Br . The next theorem shows that the solution of the original
DMZ equation can be approximated in L1 sense by the solution of the local DMZ
equation on the ball Br .

Theorem 7.2 Consider the filtering model (7.1). For any T > 0, let u be a solution
of the robust DMZ equation (7.5) in [0, T ] × Rn. Assume that

(1) Condition (7.13) is satisfied;
(2) For all (t, x) ∈ [0, T ] × Rn,

− 1

2
|h|2− 1

2
�K −f ·∇K + 1

2
|∇K|2+12+2n+4|f −∇K| ≤ c2, (7.17)

where c2 is a constant possibly depending on T .
(3) For all (t, x) ∈ [0, T ] × Rn,

e−
√

1+|x|2[12 + 2n + 4|f − ∇K|] ≤ c3. (7.18)

Let r ≥ 1 and ur be the solution of the following DMZ equation on the ball Br .
Let v = u − ur . Then v ≥ 0 for all (t, x) ∈ [0, T ] × Br and

∫

B r
2

v(T , x) ≤ 2(ec2T − 1)

c2
c3e

− 9
16 re(c1+ n+1

2 )T

∫

Rn

e

√
1+|x|2u(0, x)dx. (7.19)

Proof Since u is an unnormalized conditional probability density, we have u ≥ 0,
for all (t, x) ∈ [0, T ] × Rn. Thus, v = u − ur ≥ 0, for all (t, x) ∈ [0, T ] × ∂Br . By
the maximum principle of parabolic partial differential equation, we have v ≥ 0 in
[0, T ] × Br .
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For a test function ψ in C∞, we can imitate the calculation in the proof of
Theorem 7.1 and obtain

d

dt

∫

Br

ψv = 1

2

∫

Br

(�ψ)v − 1

2

∫

∂Br

v
∂ψ

∂ν
+ 1

2

∫

∂Br

ψ
∂v

∂ν

−
∫

Br

∇ψ · (−f + ∇K)v −
∫

Br

ψ(−∇ · f + �K)v

+
∫

∂Br

ψv(−f + ∇K) · ν

+
∫

Br

(

−∇ · f − 1

2
|h|2 + 1

2
�K − f · ∇K + 1

2
|∇K|2

)

ψv,

(7.20)
where again, ν is the unit outward normal of ∂Br .

Here, we choose φ to be a radial symmetric function such that φ|∂Br = r ,
∇φ|∂Br = 0, and φ is increasing with |x|. Then, in Eq. (7.20), we take

ψ(x) = e−φ(x) − e−r ,

and ψ |∂Br = 0, ∇ψ |∂Br = 0. Hence,

d

dt

∫

Br

ψv =1

2

∫

Br

(�ψ)v −
∫

Br

∇ψ · (−f + ∇K)v

+
∫

Br

(

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2

)

ψv

≤ sup
Br

[

−1

2
�φ + 1

2
|∇φ|2 − ∇φ · (f − ∇K)

−1

2
|h|2 − 1

2
�K − f · ∇K + 1

2
|∇K|2

]

·
∫

Br

ψv

+e−r sup
Br

{

e−
√

1+|x|2
[
1

2

(
−�φ + |∇φ|2

)
−∇φ · (f −∇K)

]}

×
∫

Br

e

√
1+|x|2v.

Choose

φ(x) = r − r(1 − |x|2
r2

)2,

and use Conditions (2) and (3); we have

d

dt

∫

Br

ψv ≤ c2

∫

Br

ψv + e−rc3

∫

Br

e

√
1+|x|2u. (7.21)
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From Theorem 7.1,

d

dt

∫

Br

ψv ≤ c2

∫

Br

ψv + e−r c3e
(c1+ n+1

2 )T

∫

Rn

e

√
1+|x|2u(0, x). (7.22)

Here again, with Gronwall’s inequality, we have

∫

Br

ψv(T , x) ≤ ec2T − 1

c2
c3e

−re(c1+ n+1
2 )T

∫

Rn

e

√
1+|x|2u(0, x). (7.23)

Substitute ψ(x) = e
|x|4
r3

−2 |x|2
r − e−r in Eq. (7.23); we have

∫

Br

ψv(T , x) ≥
∫

B r
2

[

e
|x|4
r3

−2 |x|2
r − e−r

]

v(T , x)

≥
(
e− 7

16 r − e−r
) ∫

B r
2

v(T , x) ≥ 1

2
e− 7

16 r

∫

B r
2

v(T , x).

Combining this with inequality (7.23), we obtain

∫

B r
2

v(T , x)dx ≤ ec2T − 1

c2
c3e

− 9
16 re(c1+ n+1

2 )T

∫

Rn

e

√
1+|x|2u(0, x). (7.24)

��
Here, we have finished the first estimation leading to the main result of this section.
And now, we can focus on the convergence result of the algorithm on a bounded
domain in Rn.

Theorem 7.3 Let U be a bounded domain in Rn. Let F : [0, T ] × U → Rn be
a family of vector fields C∞ in x and Holder continuous in t with exponent α and
let J : [0, T ] × U → R be a C∞ function in x and Hölder continuous in t with
exponent α such that the following properties are satisfied:

|∇ · F(t, x)| + 2|J (t, x)| + |F(t, x)| ≤ c (7.25)

|F(t, x) − F(t̄, x)| + |∇ · F(t, x) − ∇ · F(t̄, x)|+|J (t, x) − J (t̄, x)| ≤ c1|t − t̄ |α,

(7.26)

for all (t, x), (t̄ , x) ∈ [0, T ] × U .
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Let u(t, x) be the solution on [0, T ] × U of the equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
(t, x) = 1

2
�u(t, x) + F(t, x) · ∇u(t, x) + J (t, x)u(t, x),

u(0, x) = σ0(x),

u(t, x)|∂U = 0.

(7.27)

For any 0 ≤ τ ≤ T , let P = {0 = τ0 < τ1 < · · · < τk = τ } be a partition of [0, τ ],
where τi = iτ

k
. Let ui(t, x) be the solution on [τi−1, τi] × U of the equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ui

∂t
(t, x) = 1

2
�ui(t, x) + F(τi−1, x) · ∇ui(t, x) + J (τi−1, x)ui(t, x),

ui(τi−1, x) = ui−1(τi−1, x),

ui(t, x)|∂U = 0,
(7.28)

where we use the convention that u0(t, x) = σ0(x). Then

u(τ, x) = lim
k→∞ uk(τ, x) (7.29)

in L1 sense on U and
∫

U

|u(τ, x) − uk(τ, x)|dx ≤ C

kα
. (7.30)

Here C is a constant only depending on T ,U, α, σ0, F and J .

Proof Let U+
t = {x ∈ U : u(t, x) − ui(t, x) ≥ 0}, t ∈ [τi−1, τi]; we will first

estimate the integration in (7.30) on U+
t . As we did before, we need to compute the

derivative of this integral, d
dt

∫
U+

t
(u − ui) (t, x)dx. Notice that the integral region

is not independent of t ; therefore, we need to treat the calculation more carefully.

Lemma 7.2 Let U be a bounded domain in Rn and let v : [0, T ] × Ū → R be a
C1 function. Assume that v(t, x) = 0, for (t, x) ∈ [0, T ] × ∂U . Let U+

t = {x ∈ U :
v(t, x) ≥ 0}; then

d

dt

∫

U+
t

v(t, x)dx =
∫

U+
t

dv

dt
(t, x)dx, f or almost all t ∈ [0, T ]. (7.31)

��
Proof of Lemma 7.2: we use the definition of derivatives:
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d

dt

∫

U+
t

v(t, x)dx = lim
�t→0

∫
U+

t+�t
v(t + �t, x)dx − ∫

U+
t

v(t, x)dx

�t

=
∫

U+
t

dv

dt
(t, x)dx + lim

�t→0

v (t, ξ1)Vol
(
U+

t+�t − U+
t

)

�t

− lim
�t→0

v (t, ξ2)Vol
(
U+

t − U+
t+�t

)

�t
,

where ξ1 ∈ U+
t+�t − U+

t and ξ2 ∈ U+
t − U+

t+�t .
Since v(t, x) = 0, for (t, x) ∈ [0, T ] × ∂U , we have lim�t→0 v(t, ξ1) =

lim�t→0 v(ξ2) = 0. We only need to show that

lim
�t→0

Vol
(
U+

t − U+
t+�t

)

�t
and lim

�t→0

Vol
(
U+

t+�t − U+
t

)

�t

are bounded for almost all t ∈ [0, T ]. To this end, we need to apply the famous
coarea formula for Euclidean space, which reads as follows:

Let w : A → R be a Lipschitz function, where A ⊂ Rn is measurable. Then

∫

A

h(x)|∇w(x)|dx =
∫

R

∫

w−1(y)

h(x)Hn−1(x)dy, (7.32)

where Hn−1denotes the Hausdorff measure with respect to the Euclidean distance
and h : A → R is a measurable function.

Let A = U+
t − U+

t+�t = {x ∈ U+
t , v(t + �t, x) ≤ 0}. Let L be the Lipschitz

constant such that

|v(t, x) − v(t + �t, x)| ≤ L�t, ∀ x ∈ Ū .

Since v(t, x) ≥ 0 for x ∈ A, we have

v(t + �t, x) ≥ v(t, x) − L�t ≥ −L�t, f or x ∈ A.

Let h(x) = 1
|∇v(t+�t,x)| and w(x) = v(t + �t, x) in the coarea formula (7.32). We

have

Vol(U+
t − U+

t+�t ) =
∫ 0

−L�t

∫

{x∈A: v(t+�t,x)=y}
1

|∇v(t + �t, x)|H
n−1(x)dy.

(7.33)
Consider the map � : [0, T ] × Ū → [0, T ] × R given by �(t, x) = (t, v(t, x)).
By Sard’s theorem, the set of critical values of � has Lebesgue measure zero.
Therefore, for almost all t,�t and y, ∇v(t + �t, x) = 0 for all x ∈ {x ∈ A :
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v(t + �t, x) = y}. Therefore, lim�t→0
Vol

(
U+

t −U+
t+�t

)

�t
is bounded for almost all t .

Similarly, lim�t→0
Vol

(
U+

t+�t−U+
t

)

�t
is also bounded.

Back to the Proof of Theorem 7.3:With Lemma 7.2, we can calculate the derivative
of

∫
U+

t
(u − ui) (t, x)dx:

d

dt

∫

U+
t

(u − ui) (t, x)dx ≤c

∫

U+
t

(u − ui)dx + c1(t − τi−1)
α

∫

U+
t

udx

+ c1(t − τi−1)
α

∫

U+
t

|∇u|dx.

Next, we will estimate both
∫
U

u and
∫
U

|∇u|. For the first integration, notice that

d

dt

∫

U

u(t, x)dx = 1

2

∫

U

�udx +
∫

U

F(t, x) · ∇u(t, x)dx +
∫

U

J (t, x)u(t, x)dx

= 1

2

∫

∂U

∂u

∂ν
dσ −

∫

U

divF(t, x)u(t, x)dx +
∫

U

J (t, x)u(t, x)dx

≤ c

∫

U

u(t, x)dx.

Therefore, for all 0 ≤ t ≤ T ,

∫

U

u(t, x)dx ≤ ecT

∫

U

u(0, x)dx. (7.34)

For the second integration, we can instead estimate
∫
U

|∇u|2, because U is bounded
and

∫

U

|∇u|dx ≤ √
V ol(U)

[∫

U

|∇u|2dx

] 1
2

.

Notice that

d

dt

∫

U

|∇u|2(t, x) =
∫

U

2∇ ∂u

∂t
(t, x) · ∇u(t, x)

≤ 2c2
∫

U

|∇u(t, x)|2 + 2c2
∫

U

u2(t, x),

and we need then, estimate the L2 norm of u(t, x).

d

dt

∫

U

u2(t, x) =2
∫

U

u(t, x)
∂u

∂t
(t, x) ≤ c

∫

U

u2(t, x).
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Thus,

∫

U

u2(t, x) ≤ ecT

∫

U

u2(0, x).

Back to the estimation of
∫
U

|∇u|2, we have
∫

U

|∇u(t, x)|2 ≤ 2c2T e2c
2T

∫

U

u2(0, x) + e2c
2T

∫

U

|∇u(0, x)|2. (7.35)

Putting (7.34) and (7.35) back to the estimation of
∫
U+

t
(u − ui)(t, x), we have

d

dt

∫

U+
t

(u − ui)(t, x) ≤ c

∫

U+
t

(u − ui)(t, x) + c2(t − τi−1)
α. (7.36)

This implies

∫

U+
t

(u − ui)(t, x) ≤ ec(t−τi−1)

(∫

U+
τi−1

(u − ui−1)(τi−1, x) + c2
(t − τi−1)

α+1

α + 1

)

.

(7.37)
Similarly, we have

∫

U−
t

(u − ui)(t, x) ≤ ec(t−τi−1)

(∫

U−
τi−1

(ui−1 − u)(τi−1, x) + c2
(t − τi−1)

α+1

α + 1

)

.

(7.38)
Consequently, we have

∫

U+
t

|u − ui |(t, x) ≤ ec(t−τi−1)

(∫

U

|u − ui−1|(τi−1, x) + 2c2
(t − τi−1)

α+1

α + 1

)

.

(7.39)
By induction,

∫

U

|u − uk|(τk, x) ≤ ecT

∫

U

|u − u0|(0, x) + 2c2
α + 1

T α+1

kα+1

×
[
ec T

k + ec 2T
k + · · · + ekc T

k

]

≤ 2c2
α + 1

T α+1ecT

kα
.

(7.40)

��
Up to now, we have finished the proof of the main results in this section. The main
L1 convergence result goes as follows. Firstly, the solution to the DMZ equation on
Rn can be approximated by the solution to the DMZ equation on a large enough ball
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Br . Then, on the bounded domain Br , the solution obtained by Yau-Yau algorithm
converges to the solution of DMZ equation in L1 sense.

7.4 Lower Bound Estimation of Density Function

In practical nonlinear filtering computation, it is important to know how much
density remains within a given ball, because the solution to the robust DMZ equation
is an unnormalized probability density and is easily vanishing. In this section, we
shall provide such a lower estimation to the density remaining in a given ball. In
particular, the solution u of the DMZ equation in Rn obtained by taking lim

r→∞ ur ,

where ur is the solution of the DMZ equation in the ball Br , is a nontrivial solution.

Theorem 7.4 Let ur be the solution of the DMZ equation on Br , (7.12). Assume
that

(1) f (x) and h(x) have at most polynomial growth;
(2) For any 0 ≤ t ≤ T , there exist positive integer m and positive constants c′, c′′,

and c1, which are independent of r , such that for all x ∈ Rn,

m2

2
|x|2m−2 − m

2
(m + n − 2)|x|m−2 − m|x|m−2x · (f − ∇K)

−1

2
�K − 1

2
|h|2 − f · ∇K + 1

2
|∇K|2 ≥ −c′,

(7.41)

∣
∣
∣
∣
m2

2
|x|2m−2 − m(m + n − 2)

2
− m|x|m−2(f − ∇K) · x

∣
∣
∣
∣

≤ m(m + 1)

2
|x|2m−2 + c′′,

(7.42)

− 1

2
|h|2 − 1

2
�K −

n∑

j=1

fj

∂K

∂xj

+ 1

2
|∇K|2 ≤ c1. (7.43)

Then, for any r0 ≤ r ,

∫

Br0

(e−|x|m − e−rm
0 )ur(T , x)dx

≥e−c′T
∫

Br0

(e−|x|m − e−rm
0 )σ0(x)

+ e−rm
0

c′

(
m(m + 1)

2
r2m−2
0 + c′′

)

(1 − ec′T )

∫

Br

σ0(x)dx.

(7.44)
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In particular, the solution u of the robust DMZ equation on Rn has the estimate

∫

Rn

e−|x|mu(T , x)dx ≥ e−c′T
∫

Rn

e−|x|mσ0(x)dx. (7.45)

Proof Just as we did in the proof of the previous theorems, the key point of this
proof is also choosing a suitable test function and fulfilling the estimations. Here,
we choose a test function φ(x) = e−ρ(x)−e−ρ(r0), where ρ is an increasing function

of |x|. Therefore, φ ≥ 0, for all x ∈ Br0 , φ|∂Br0
,= 0 and ∂φ

∂ν

∣
∣
∣
∂Br0

≤ 0, where ν is

the unit outward normal vector of ∂Br0 .
Since ur is the solution of the DMZ equation on Br , we have

d

dt

∫

Br0

φur =1

2

∫

Br0

φ�ur +
∫

Br0

φ(−f + ∇K) · ∇ur

+
∫

Br0

(

−∇ · f − 1

2
|h|2 + �K

2
− f · ∇K + 1

2
|∇K|2

)

φur

≥1

2

∫

Br0

ur�φ +
∫

Br0

ur∇φ · (f − ∇K)

+
∫

Br0

(

−�K

2
− 1

2
|h|2 − f · ∇K + 1

2
|∇k|2

)

φur .

Notice that ∇φ = e−ρ(x)∇ρ and �φ = e−ρ(x)(|∇ρ|2 − �ρ). Let r = |x|; we have
∇ρ = ρ′(r)

r
x, and �ρ = ρ′′(r) + ρ′(r) n−1

r
.

Therefore,

d

dt

∫

Br0

φur ≥
∫

Br0

ure
−ρ(x)

[

−�ρ

2
+ |∇ρ|2

2
− ∇ρ · (f − ∇K)

]

+
∫

Br0

(

−�K

2
− 1

2
|h|2 − f · ∇K + 1

2
|∇K|2

)

φur

=e−ρ(r0)

∫

Br0

[
ρ′2

2
− ρ′′

2
− n − 1

2r
ρ′ − ρ′(f − ∇K) · x

r

]

ur

+
∫

Br0

[

−�ρ

2
+ |∇ρ|2

2
− ∇ρ · (f − ∇K)

−�K

2
− 1

2
|h|2 − f · ∇K + 1

2
|∇K|2

]

φur .

(7.46)
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We now take ρ = |x|m; then

�ρ = m(m + n − 2)rm−2 and |∇ρ|2 = m2r2m−2.

Since f and h are of polynomial growth, we can choose a positive integer m large
enough such that

−�ρ

2
+ |∇ρ|2

2
− ∇ρ · (f − ∇K) − �K

2
− 1

2
|h|2 − f · ∇K + 1

2
|∇K|2

= − 1

2
m(m + n − 2)rm−2 + 1

2
m2r2m−2 − ρ′(r)

r
x · (f − ∇K)

− �K

2
− 1

2
|h|2 − f · ∇K + 1

2
|∇K|2 ≥ −c′

(7.47)
holds for every x ∈ Rn, where c′ is a positive constant independent of r and r0.

In the meanwhile, for m large enough,

∣
∣
∣
∣
ρ′2

2
− ρ′′

2
− n − 1

2r
ρ′ − ρ′(f − ∇K) · x

r

∣
∣
∣
∣

=
∣
∣
∣
∣
m2r2m−2

2
− m(m + n − 2)

2
rm−2 − mrm−2(f − ∇K) · x

∣
∣
∣
∣

≤ m(m + 1)

2
r2m−2 + c′′,

where c′′ is independent of r and r0.
Therefore,

e−ρ(r0) |
∫

Br0

[
ρ′2

2
− ρ′′

2
−n − 1

2r
ρ′ − ρ′(f − ∇K) · x

r

]

ur(t, x) |

≤e−rm
0

(
m(m + 1)

2
r2m−2
0 + c′′

)∫

Br0

ur(t, x).

Also,

d

dt

∫

Br

ur(t, x) ≤ c1

∫

Br

ur(t, x).

Hence,

∫

Br

ur(t, x) ≤ ec′t
∫

Br

(0, x), 0 ≤ t ≤ T



7.5 Algorithm in Time-Variant Systems 279

e−ρ(r0)

∣
∣
∣
∣
∣

∫

Br0

[
ρ′2

2
− ρ′′

2
−n − 1

2r
ρ′ − ρ′(f − ∇K) · x

r

]

ur(t, x)

∣
∣
∣
∣

≤ec′T −rm
0

(
m(m + 1)

2
r2m−2
0 + c′′

)∫

Br

ur(0, x).

(7.48)
We denote the right-hand side of (7.48) by ε(r0), which goes to zero as r0 → ∞.

In the view of (7.46), (7.47), we have

d

dt

∫

Br0

φur ≥ −ε(r0) − c′
∫

Br0

φur,

and thus,

∫

Br0

φur(T , x) ≥ e−c′T
∫

Br

φur(0, x) + ε(r0)e
−c′T 1 − ec′T

c′ . (7.49)

Take r0 → ∞, and we have

∫

Rn

e−|x|mu(T , x) ≥ e−c′T
∫

Rn

e−|x|mu(0, x). (7.50)

��

7.5 Algorithm in Time-Variant Systems

In the previous sections of this chapter, we mainly deal with the time-invariant
filtering systems. We introduced Yau-Yau algorithm for these systems and gave
detailed proofs of the convergence results. In the meanwhile, the algorithm intro-
duced in Sect. 7.2 can also be extended to more general time-variant nonlinear
filtering systems.

In this section, we will focus our attention on the nonlinear filtering systems with
explicit time dependence in the drift term, observation term, and the variance of the
noises:

{
dXt = f (Xt , t)dt + G(Xt , t)dVt ,

dYt = h(Xt , t)dt + dWt ,
(7.51)

where the noise terms dvt and dwt satisfy E[dvtdv�
t ] = Q(t)dt , E[dwtdw�

t ] =
S(t)dt and Q(t), S(t) are positive-definite matrices.
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For this more general case, the DMZ equation becomes

dσ(x, t) = Lσ(x, t)dt + σ(x, t)h�(x, t)S−1(x, t)dyt , σ (x, 0) = σ0(x),

(7.52)
where σ0(x) is the probability density of the initial state x0, and

L(·) = 1

2

n∑

i,j=1

∂2

∂xi∂xj

[(GQG�)ij ·] −
n∑

i=1

∂

∂xi

(fi ·).

As in the time-invariant case, for a given trajectory {yt : 0 ≤ t < ∞} of the
observation process Yt , the new unnormalized probability density

u(x, t) = exp[−h�(x, t)S−1(t)yt ]σ(x, t)

satisfies the following robust DMZ equation:

∂

∂t
u(x, t) = 1

2
D2

wu(x, t) + F(x, t) · ∇u(x, t) + J (x, t)u(x, t), (7.53)

with initial value u(x, 0) = σ0(x), where

D2
w =

n∑

i,j=1

(GQG�)ij
∂2

∂xi∂xj

,

F (x, t) =
⎛

⎝
n∑

j=1

∂

∂xj

(GQG�)ij +
n∑

j=1

(GQG�)ij
∂K

∂xj

− fi

⎞

⎠

n

i=1

,

J (x, t) = − ∂

∂t
(h�S−1)�yt + 1

2

n∑

i,j=1

∂2

∂xi∂xj

(GQG�)ij

+
n∑

i,j=1

∂

∂xi

(GQG�)ij
∂K

∂xj

+ 1

2

n∑

i,j=1

(GQG�)ij

[
∂2K

∂xi∂xj

+ ∂K

∂xi

∂K

∂xj

]

−
n∑

i=1

∂fi

∂xi

−
n∑

i=1

∂K

∂xi

fi − 1

2
h�S−1h,

in which

K(x, t) = hT (x, t)S−1(t)y(t).

Similar to the time-invariant case, we first partition the time interval [0, τ ] by Pk =
{0 = τ0 < τ1 < · · · < τk = τ } and approximate the solution of the robust DMZ
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equation on the interval [τi−1, τi] by ui(x, t), which satisfies the DMZ equation
with coefficients frozen at τi−1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
(x, t) + ∂

∂t
(h�S−1)�yτi−1ui(x, t)

= exp(−h�S−1yτi−1)

[

L − 1

2
h�S−1h

]

(exp(h�S−1yτi−1)ui(x, t)),

ui(τi−1, x) = ui−1(x, τi−1, x),

(7.54)
with the convenience that u0(x, 0) = σ0(x).

The problem of solving Eq. (7.54) can also be converted into solving an
observation-independent Kolmogorov forward equation, because of the following
theorem.

Theorem 7.5 For each τi−1 ≤ t < τi , i = 1, 2, · · · , k, ui(x, t) satisfies Eq. (7.54)
if and only if

ũi (x, t) = exp[h�(x, t)S−1(t)yτi−1 ]ui(x, t)

satisfies the following Kolmogorov forward equation:

∂ũi

∂t
(x, t) =

(

L − 1

2
h�S−1h

)

ũi (x, t). (7.55)

Proof The result of Theorem 7.5 is obtained from direct calculations. ��
The algorithm for this time-variant system is the same as that for time-

invariant systems. At interval [τi−1, τi], we first solve the Kolmogorov forward
equation (7.55) with initial value:

ũi (x, τi−1) = exp[h�(x, τi−1)S
−1(τi−1)(yτi−1 − yτi−2)]̃ui−1(x, τi−1).

Then, we can update the initial value of (7.55) with the new observation yτi
at τi

and calculate ũi+1(x, t) recursively.
Similar convergence results also hold for the algorithm in time-variant system.

For the convenience of notations, we also use ur to denote the solution to the robust
DMZ equation restricted on Br with zero Dirichlet boundary conditions. Besides,
we denote

N(x, t) � − ∂

∂t
(h�S−1)yt − 1

2
D2

wK + 1

2
DwK · ∇K − f · ∇K − 1

2
(h�S−1h),

(7.56)
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where

Dw(·) =
⎡

⎣
n∑

j=1

(GQG�)ij (x, t)
∂

∂xj

(·)
⎤

⎦

n

i=1

.

With the above notations, we can state the main theorems in this section. We
would like to skip the proof of those theorems, because the methods used here are
very similar to those in the proof of convergence results for time-invariant case.

Theorem 7.6 For any T > 0, let u(x, t) be a solution of the robust DMZ
equation (7.53) in Rn × [0, T ]. Let r � 1 and ur(x, t) is the solution to the
robust DMZ equation on Br . Assume the following conditions are satisfied, for all
(x, t) ∈ Rn × [0, T ]:

N(x, t) + 3

2
n‖GQG�‖∞ + |f − DwK| ≤ C, (7.57)

e−
√

1+|x|2[14n‖GQG�‖∞ + 4|f − DwK|] ≤ C̃, (7.58)

where C and C̃ are constants possibly depending on T . Let v = u − ur ; then v ≥ 0
for all (x, t) ∈ Br × [0, T ] and

∫

B r
2

v(x, T ) ≤ C̄e− 9
16 r

∫

Rn

e

√
1+|x|2σ0(x), (7.59)

where C̄ is some constant depending on T .

Theorem 7.7 Let U be a bounded domain in Rn. Assume that

|N(x, t)| ≤ C, |N(x, t) − N(x, t; t̄ )| ≤ Ĉ|t − t̄ |α, (7.60)

for all (x, t) ∈ U × [0, T ], t̄ ∈ [0, T ] and for some α ∈ (0, 1), where N(x, t; t̄ )

denotes N(x, t) with the observation yt = yt̄ .
Let uU be the solution of the robust DMZ equation on U × [0, T ] with zero

Dirichlet boundary conditions. For any 0 ≤ τ ≤ T , let Pτ
k = {0 = τ0 < τ1 < · · · <

τk = τ } be a partition of [0, τ ]. Let ui,U (x, t) be the approximate solution obtained
by Yau-Yau algorithm restricted on U × [τi−1, τi]. Then

uU(x, τ ) = lim
k→∞ uk,U (x, τ ), (7.61)

in the L1 sense in U and the following estimate holds:

∫

U

|uU(x, τ ) − uk,U (x, τ )| ≤ C̄
1

kα
, (7.62)

where C̄ is a constant depending on T ,U, σ0.
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7.6 Numerical Methods for Solving Parabolic Differential
Equations

After the discussion of the convergence results of the Yau-Yau algorithm, we
would like to come back to the algorithm itself. In Sect. 7.2, we have proposed the
procedure of this algorithm, that is,

1. Partition the interval [0, τ ] by 0 = τ0 < τ1 < · · · < τk = τ .
2. At each time τi , use the value of ũi−1(τi−1, x) to obtain the initial value (7.10)

and solve the parabolic differential equation (7.9). We then get the value of
ũi (τi , x).

3. At time τ = τk , we get the value of ũk(τk, x), and

uk(τk, x) = exp

⎛

⎝−
m∑

j=1

yj (τk)hj (x)

⎞

⎠ ũk(τk, x),

serves to be an approximation to u(τ, x).

Therefore, for the practical use of this filtering algorithm, it remains to give an effi-
cient numerical method for solving the parabolic partial differential equation (7.9),
which is

∂ũi

∂t
(t, x) =1

2
�ũi(t, x) −

n∑

i=1

fi(x)
∂ũi

∂xi

(t, x)

−
(

n∑

i=1

∂fi

∂xi

(x) + 1

2

m∑

i=1

h2i (x)

)

ũi (t, x).

To this end, in this section, we will introduce the Galerkin spectral method to
solve the parabolic partial differential equation in a suitable functional space and
complete the Yau-Yau algorithm for general nonlinear filtering problems.

For the simplification of notations, we first restrict ourselves to the one-
dimensional case and then give a brief discussion on the generalization of high-
dimensional cases. Here, a general one-dimensional parabolic partial differential
equation is of the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂t
u(x, t) = ∂

∂x

(

p(x, t)
∂

∂x
u(x, t)

)

+ q(x, t)
∂

∂x
u(x, t) + w(x, t)u(x, t),

(x, t) ∈ R × R+
u(x, 0) = u0(x), x ∈ R,

(7.63)
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where p, q,w are functions that satisfy the following conditions:

1. p, q,w, px, pxx, qx are locally Holder continuous in [0, T ] × R, where px, pxx

denotes the first and second partial derivatives of p with respect to x;
2. p(t, x) ≥ λ > 0, ∀(t, x) ∈ [0, T ] × R;
3. w(t, x) ≤ 0, ∀(t, x) ∈ [0, T ] × R;
4. w − qx + pxx ≤ 0, ∀(t, x) ∈ [0, T ] × R.

Generally speaking, the idea of Galerkin spectral method is to get a best
approximation of the solution in a certain sense from a finite-dimensional functional
space. In this section, we first consider the finite-dimensional space spanned by the
generalized Hermite functions.

Definition 7.1 (Luo and Yau [2]) The generalized Hermite functions in one
dimension space are defined as

Hα,β
n (x) = 1√

2nn!Hn(α(x − β))e− 1
2α2(x−β)2 , (7.64)

for n ≥ 0, where α > 0, β ∈ R are some constants, namely, the scaling factor and
the translating factor, respectively, andHn(x) is the Hermite polynomials given by

Hn(x) = (−1)nex2 dn

dxn
e−x2

and satisfies the following recursive formulae:H0(x) ≡ 1, H1(x) = 2x, and

Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 1. (7.65)

From now on, when we fix α > 0 and β ∈ R, and when there is no ambiguity in
notations, we would like to drop the upper index α, β in H

α,β
n and simplify H

α,β
n (x)

by Hn(x).
The theory of functional analysis shows that the generalized Hermite functions

{Hn}∞n=0 form an orthogonal basis in the Hilbert spaceL2(R), with the inner product
〈·, ·〉 defined by

〈f, g〉 =
∫

R

f (x)g(x)dx, f, g ∈ L2(R).

Then, each function u ∈ L2(R) can be written as

u(x) =
∞∑

n=0

ûnH
α,β
n (x),

where the series on the right-hand side converge in the L2 sense. Because of
the orthogonality of {Hn}∞n=0, those ûn, which are called the Fourier-Hermite
coefficients or generalized Fourier coefficients, can be calculated by
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ûn = α√
π

∫

R

u(x)Hα,β
n (x)dx. (7.66)

The generalized Hermite functions have many simple but useful properties. We
would like to demonstrate some of them as follows for later use. Hereafter in this
chapter, we denote λn = 2α2n, for n ∈ N. Most of these properties can be derived
through direct computations.

1. By the convention Hn ≡ 0, for n < 0. For n ∈ Z and n ≥ 0, the three-term
recurrence holds:

2α(x − β)Hn(x) = √
2nHn−1(x) + √

2(n + 1)Hn+1(x) or

2α2(x − β)Hn(x) = √
λnHn−1(x) + √

λn+1Hn+1(x).
(7.67)

2. The derivative of Hn(x) is a linear combination of Hn−1(x) and Hn+1(x):

∂xHn(x) = 1

2

√
λnHn−1(x) − 1

2

√
λn+1Hn+1. (7.68)

3. The “quasi-orthogonality” of {∂xHn(x)}∞n=0

∫

R

∂xHn(x)∂xHm(x)dx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π

4α
(λn + λn+1), m = n

−
√

π

4α

√
λm+1λm+2, n − m = 2

−
√

π

4α

√
λn+1λn+2, m − n = 2

0 otherwise.

. (7.69)

Let us denote the finite-dimensional linear space spanned by the first N + 1
generalized Hermite functions by

RN = span{Hα,β
0 ,H

α,β
1 , · · · ,H

α,β
N }.

For the Galerkin spectral method we consider here, we will use a function in RN

with suitable coefficients α and β to approximate the solution of a parabolic partial
differential equation at each time t ∈ [0, T ].

In order to give this approximation a theoretical background, we need to
introduce a new functional subspace of L2(R), denoted by Wr

α,β(R), or Wr(R)

for short, the members in which can be approximated by the elements in RN for N

large enough.
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Definition 7.2 Fix α > 0 and β ∈ R. For any integer r ≥ 0, we define the function
space Wr(R) by

Wr(R) =
{

u ∈ L2(R) :
∞∑

k=0

λr
k+1û

2
k < ∞

}

,

where λk = 2α2k and ûk is the Hermite-Fourier coefficients defined in (7.66).
The norm on the space Wr(R) is defined by

‖u‖2r,α,β =
∞∑

k=0

λr
k+1û

2
k, u ∈ Wr(R). (7.70)

The following estimation for the derivatives of functions in Wr(R) will be useful in
the development of convergence analysis.

Lemma 7.3 For any function u ∈ Wr1+r2(R), with some integer r1, r2 ≥ 0, we
have

‖xr1∂r2
x u‖2 ≤ Cα−2r1+1 max{(αβ)2r1 , 1}‖u‖2r1+r2

, (7.71)

where the operator ∂r
x � dr

dxr , for any r ∈ N.

Proof For any integers r1, r2 ≥ 0, in the light of (7.67), (7.68), and (7.69), we have

‖xr1∂r2
x ‖2 =

∥
∥
∥
∥
∥

∞∑

n=0

ûnx
r1∂r2

x Hn(x)

∥
∥
∥
∥
∥

2

≤ C

∥
∥
∥
∥
∥
∥
α−2r1

∞∑

n=0

ûn

r1+r2∑

k=−r1−r2

an,kHn+k(x)

∥
∥
∥
∥
∥
∥

2

,

(7.72)

where for each n fixed, an,k is a product of 2(r1 + r2) factors of α2β or
√

λn+j , with
−r2 − r1 ≤ j ≤ r2 + r1.

Let n∗ ≥ 0 be the biggest integer such that
√

λn∗+1 ≤ α2β, then, since
lim

n→∞
λn+j

λn+1
= 1 and Hn+j (x) ≡ 0 for n + j < 0. Hence,

‖xr1∂r2
x u(x)‖2 ≤ C

⎛

⎝α−1β2r1
n∗
∑

n=0

λ
r1+r2
n+1 û2n + α−2r1−1

∞∑

n=n∗+1

λ
r1+r2
n+1 û2n

⎞

⎠

≤ Cα−2r1−1 max{(αβ)2r1 , 1}‖u‖2r1+r2
,

(7.73)
for any integer r1, r2 ≥ 0. ��

For any u ∈ L2(R), we define the orthogonal projection of u on the finite-
dimensional space RN by
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PNu(x) =
N∑

k=0

ûkH
α,β
k (x).

The following theorem shows that any function u ∈ Wr(R) as well as its weak
derivatives can be approximated by an element in the finite-dimensional linear space
RN .

Theorem 7.8 For any u ∈ Wr(R), for N � 1, and for any integer 0 ≤ μ ≤ r , we
have

|u − PNu|μ ≤ Cαμ−r− 1
2 N

μ−r
2 ‖u‖r , (7.74)

where |u|μ = ‖ dμ

dxμ u‖ is the L2-norm of the μ-th weak derivative of u, and C is a
generalized constant that does not depend on N .

Proof The theorem can be proved by induction. We first show that for μ = 0, (7.74)
holds.

For any integer r ≥ 0,

‖u − PNu‖2 =
√

π

α

∞∑

n=N+1

û2n =
√

π

α

∞∑

n=N+1

λ−r
n+1λ

r
n+1û

2
n ≤ Cα−2r−1N−r‖u‖2r .

(7.75)
Suppose that for 1 ≤ μ ≤ r , (7.74) holds for μ − 1. Since

|u − PNu|μ = |ux − (PNu)x |μ−1, (7.76)

where, as before, ux = du
dx

denotes the derivative of u, then

|u − PNu|μ ≤ |ux − PNux |μ−1 + |PNux − (PNu)x |μ−1. (7.77)

By induction assumption, we have

|ux − PNux |μ−1 ≤ Cαμ−r− 1
2 N

μ−r
2 ‖ux‖r−1 ≤ Cαμ−r− 1

2 N
μ−r
2 ‖u‖r . (7.78)

The last inequality holds because

‖ux‖2r−1 =
∞∑

n=0

λr−1
n+1(̂ux)

2
n,

and

(̂ux)n = α√
π

∫

R

uxH
α,β
n (x)dx = − α√

π

∫

R

uH ′
n(x)dx =

√
λn+1

2
ûn+1−

√
λn

2
ûn−1,
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where the last equality follows from the properties of Hermite polynomials.
Next, we need to estimate |PNux − (PNu)x |μ−1. In fact, applying the properties

of Hermite polynomials again, we can obtain

PNux − (PNu)x =PN

∞∑

n=0

ûnH
′
n(x) −

N∑

n=0

ûnH
′
n(x)

=1

2

√
λN+1 [̂uNHN+1(x) + ûN+1HN(x)] .

Therefore,

|PNux − (PNu)x |2μ−1 ≤ CλN+1

(
û2N |HN+1|2μ−1 + û2N+1|HN |2μ−1

)
. (7.79)

In the meanwhile, by the virtue of (7.75) and (7.71), we have

û2N ≤
∞∑

n=N

û2n ≤ α√
π

‖u − PN−1u‖2 ≤ Cα−2rN−r‖u‖2r , (7.80)

|HN |2μ−1 = ‖H(μ−1)
N ‖2 ≤ Cα−1‖HN‖2μ−1 = Cα−1λ

μ−1
N ≤ Cα−1λ

μ−1
N+1.

(7.81)
Substitute (7.80) and (7.81) into (7.79), and we have

|PNux − (PNu)x |2μ−1 ≤ Cα−2r−1N−4λ
μ
N+1‖u‖2r ≤ Cα2μ−2r−1Nμ−r‖u‖2r .

(7.82)
Combining (7.78) and (7.82), we have proven the inequality (7.74) for μ and
therefore, (7.74) holds for all 1 ≤ μ ≤ r . ��

Since all the functions in Wr(R) can be approximated by elements in RN , we
would like to consider the solution of a parabolic partial differential equation in the
space L2(0, T ;Wr(R)), with suitable r ≥ 0.

Definition 7.3 A function u ∈ L∞(0, T ;Wr(R)) ∩ L2(0, T ;Wr(R)) is called a
weak solution of the parabolic partial differential equation (7.63) if ∀ϕ ∈ C∞

0 (R):

〈ut , ϕ〉 = −〈pux, ϕx〉 + 〈qux, ϕ〉 + 〈wu, ϕ〉,
u(x, 0) = u0(x),

(7.83)

where 〈·, ·〉 denotes the inner product on L2(R).

If we restrict ϕ in RN , then we can find a function uN(t, x), with uN(t, ·) ∈ RN for
all t ∈ [0, T ], such that the first equation in (7.83) is satisfied by all ϕ ∈ RN . The
function uN is the Galerkin approximation to the solution of the original Eq. (7.63).
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The next theorem shows that, under mild conditions, as N → ∞, the Galerkin
approximation will tend to the real solution of (7.63).

Theorem 7.9 Assume that u ∈ L∞(0, T ;Wr(R)) ∩ L2(0, T ;Wr(R)) is a weak
solution of (7.63) and uN(x, t) is the Galerkin approximation of u. Then, if we
further assume that the coefficients p, q,w are all bounded, for r large enough, we
have the following estimations:

‖u − uN‖2(t) ≤ C1N
1−r , (7.84)

where C1 is a generalized constant depending on α, β, u, and the time period T .

Proof Let UN = PNu be the truncated Hermitian series of u. Therefore, u−UN ⊥
RN . Since u is a weak solution of Eq. (7.63), according to (7.83), for any ϕ ∈ RN ,

0 = 〈(u − UN)t , ϕ〉 = −〈pux, ϕx〉 + 〈qux, ϕ〉 + 〈wu, ϕ〉 − 〈(UN)t , ϕ〉, (7.85)

i.e.,

〈(UN)t , ϕ〉 = −〈pux, ϕx〉 + 〈qux, ϕ〉 + 〈wu, ϕ〉. (7.86)

Since uN is the Galerkin approximation to u, Eq. (7.83) also holds for uN and ϕ ∈
RN .

Combining (7.86), we have

〈(uN − UN)t , ϕ〉 = −〈p(uN − u)x, ϕx〉 + 〈q(uN − u)x, ϕ〉 + 〈w(uN − u), ϕ〉.
(7.87)

Denote ρN = uN − UN and (7.87) becomes

〈(ρN)t , ϕ〉 = − 〈p(ρN)x, ϕx〉 + 〈q(ρN)x + wρN, ϕ〉 − 〈p(UN − u)x, ϕx〉
+ 〈q(UN − u)x + w(UN − u), ϕ〉,

(7.88)
for all ϕ ∈ RN .

Now, let’s take ϕ = 2ρN in (7.88), and we obtain

d

dt
‖ρN‖2 = − 2〈p(ρN)x, (ρN)x〉 + 2〈q(ρN)x + wρN, ρN 〉

− 2〈p(UN − u)x, (ρN)x〉
+ 2〈q(UN − u)x + w(UN − u), ρN 〉.

(7.89)

Since p(t, x) ≥ λ > 0 for all (t, x) ∈ [0, T ] × R,

−2〈p(ρN)x, (ρN)x〉 ≤ −2λ‖(ρN)x‖2.
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Because p, q,w are bounded, assume that max{p(t, x), q(t, x), w(t, x)} = C,
and then the following estimations are followed directly from Cauchy-Schwartz
inequality and Young’s inequality:

2〈q(ρN)x, ρN 〉 ≤ λ‖(ρN)x‖2 + C2

λ
‖ρN‖2

2〈wρN, ρN 〉 ≤ 2C‖ρN‖2

− 2〈p(UN − u)x, (ρN)x〉 ≤ λ‖(ρN)x‖2 + C2

λ
‖(UN − u)x‖2

2〈q(UN − u)x, ρN 〉 ≤ ‖ρN‖2 + C2‖(UN − u)x‖2

2〈w(UN − u), ρN 〉 ≤ ‖ρN‖2 + C2‖(UN − u)‖2.

Therefore,

d

dt
‖ρN‖2 ≤ C1‖ρN‖2 + C2(‖(UN − u)x‖2 + ‖UN − u‖2). (7.90)

From Lemma 7.3,

‖(UN − u)x‖2 = |UN − u|21 ≤ CN1−r‖u‖2r
‖(UN − u)‖2 ≤ CN−r‖u‖2r .

Therefore,

d

dt
‖ρN‖2 ≤ C1‖ρN‖2 + C2‖u‖2rN1−r . (7.91)

According to Gronwall’s inequality, since ρN(0) ≡ 0, we have

‖ρN‖2 ≤ C2N
1−r

∫ t

0
eC1(t−s)‖u(s)‖2r ds, (7.92)

and then from Lemma 7.3,

‖u − uN‖2 ≤ ‖ρN‖2 + ‖u − UN‖2 ≤ C̃1N
1−r . (7.93)

��
Theorem 7.9 together with Theorem 7.8 guarantees the convergence of the Galerkin
spectral method under mild conditions. Thus, we can feel free to propose this
method to solve the parabolic partial differential equations.

Since for each t ∈ [0, T ], the approximation uN(t, ·) ∈ RN , we can assume that
uN(t, x) is in the following form:
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uN(t, x) =
N∑

k=0

ψk(t)H
α,β
k (x), (7.94)

where {ψk : 0 ≤ k ≤ N} are coefficients to be determined.
Take Eq. (7.94) into (7.83) with ϕ = H

α,β
k , for each 0 ≤ k ≤ N . By the

orthogonality of {Hα,β
k }Nk=0, we can get an ordinary differential system for {ψk :

0 ≤ k ≤ N}:

ψ ′
i (t)〈Hi,Hi〉 =

N∑

k=0

ψk(t)〈pH ′′
k +qH ′

k+wHk,Hi〉, i = 0, 1, · · · , N. (7.95)

The initial values of ψk are just the generalized Fourier coefficients of the function
u0(x). After solving the ordinary differential equation system, we obtain the
Galerkin approximation of the original parabolic partial differential equations.

Remark 7.1 For parabolic partial differential equations with space dimension
higher than 1, we can also apply Galerkin spectral method with respect to an
orthogonal basis of L2(Rd). The orthogonal basis of L2(Rd) can also be chosen
as generalized Hermite functions [3].

In this case, the generalized Hermite functions are defined to be

Hα,β
n (x) =

d∏

j=1

H
αj ,βj
nj

(xj ), x = (x1, · · · , xd) ∈ Rd, (7.96)

where α = (α1, · · · , αd), αj > 0, β = (β1, · · · , βd), n = (n1, · · · , nd), nj ∈ N.

Then, {Hα,β
n : n ∈ N

d} forms an orthogonal basis of L2(Rd), and under mild
conditions, we can also prove that the Galerkin approximation with respect to
this orthogonal system converges to the real solution of the original d-dimensional
parabolic partial differential equation.

Remark 7.2 Apart from Hermite functions, other traditional orthogonal systems
can also be used in Galerkin approximation. For instance, the Legendre functions
defined by

L0(x) ≡ 1; L1(x) = x; Ln+1(x) = 2n + 1

n + 1
xLn(x) − n

n + 1
Ln−1(x), (7.97)

for n = 1, 2, · · · and x ∈ [−1, 1] form an orthogonal system on L2([−1, 1]) and
can be generated to an orthogonal system on the square integrable spaces of every
bounded intervals, L2([−M,M]) through scaling and transforming.

The orthogonal system for bounded domain of dimension higher than 1 can also
be constructed as we did in the case of Hermite functions. In fact,
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Lk(x) =
d∏

j=1

Lkj
(xj ), x = (x1, · · · , xd), (7.98)

for k = (k1, · · · , kd), kj ∈ N form an orthogonal basis on L2([−1, 1]d) and can be
generated to arbitrary bounded rectangles in Rd through scaling and transforming.

As is shown in [1], under certain conditions, the convergence rate of Galerkin
method using Legendre functions is twice faster than the method using Hermite
functions.

Up to now, we have completely proposed the Yau-Yau algorithm for a general
nonlinear filtering problem, and we would like to write down the entire procedure
of this algorithm. Here, we use the same notations as we did in Sect. 7.2.

Algorithm 1 On-line algorithm

1: Initialization: Fix T , �t , y0 = 0 and σ0. Let k = T
�t

and {0 = τ0 < τ1 < · · · < τk = T }. Let
u1(x, 0) be the normalization of σ0, i.e.

u1(x, 0) = σ0(x)
∫
Rd σ0(x)dx

.

2: By the Off-Line Algorithm, obtain u1(x, τ1);
3: At time τ1, the nuw observation yτ1 comes and let

u2(x, τ1) = exp
[
h�(x, τ1)yτ1

]
u1(x, τ1).

4: for i = 2 to k do
5: Obtain ui−1(x, τi−1) from the Off-Line Algorithm.
6: Renew the initial value of the partial differential equation satisfied by ui(x, t),

ui(x, τi−1) = exp
[
h�(x, τi−1)(yτi−1 − yτi−2 )

]
ui−1(x, τi−1).

Algorithm 2 Off-line algorithm
1: Initialization: Given u1(x, τ0) in On-Line Algorithm.
2: for i = 1 to k do
3: Solve the parabolic partial differential equation using Galerkin spectral method and get

ui(x, t).
4: Normalize ui(x, τi ) = ui (x,τi )∫

Rd ui (x,τi )dx
.

5: Obtain the unnormalized conditional probability density

ρ(x, τi ) = exp
[
−h�(x, τi )yτi−1

]
ui(x, τi )

at each τi .
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Finally, this chapter will end up with two explicit one-dimensional nonlinear
filtering example, with the second one as an exercise. Readers are encouraged to
conduct the whole process of Yau-Yau algorithm on this example, so that they will
have a more intuitive understanding on this filtering algorithm for practical use.

7.7 Numerical Results

In this section, we will consider the following one-dimensional time-varying
nonlinear filtering problem:

⎧
⎪⎪⎨

⎪⎪⎩

dXt = 1

2
dVt

dYt = Xt

(

1 + 1

4
sinXt

)

dt + dWt ,

(7.99)

where {Wt : t ≥ 0} and {Vt : t ≥ 0} are mutually independent one-dimensional
standard Brownian motions.

Hereafter, we consider the dynamics (7.99) on the time interval [0, 50], with
initial value X0 = 0 and time discretization step �t = 0.01s. The corresponding
time step K = 50

�t
= 5000. A typical trajectory of the state process Xt is shown in

Fig. 7.1.
In order to conduct the Yau-Yau algorithm on this problem, we would like to use

Hermite spectral method discussed in Sect. 7.6 with the number of basis N = 15.
The performance of Yau-Yau algorithm is evaluated by the expected mean square
error, which is defined by

EMSE = 1

K
E

K∑

k=1

(Xk − x̂k)
2, (7.100)

Fig. 7.1 A typical trajectory
of the state process
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where x̂k is the estimation of the conditional expectation at time k. In practical
implementation, the expected mean square error (7.100) is estimated by the average
of M = 100 repeated experiments, which is defined by

MSE = 1

M

1

K

M∑

i=1

K∑

k=1

(X
(i)
k − x̂

(i)
k )2, (7.101)

where the superscript i in X
(i)
k and x̂

(i)
k denotes the i-th experiment.

Based on the above settings, the estimated mean square error, MSE, of Yau-
Yau algorithm is 1.4007, and a typical estimation result is shown in Fig. 7.2. In the
meanwhile, the total online computation time is around 25 seconds. Because the
total time interval we simulate is 50 seconds, we can use Yau-Yau algorithm to get
real-time solutions of this nonlinear filtering problem in this setting.

Also, for a particular trajectory of the state process, we can calculate the average
mean square error at each time k ∈ {1, · · · ,K}, which is defined by

MSEk = 1

k

k∑

j=1

(Xj − x̂j )
2. (7.102)

The evolution of the mean square error for the above typical trajectory of Yau-Yau
algorithm is shown in Fig. 7.3. After several steps, the mean square error remains

Fig. 7.2 A typical
performance of Yau-Yau
algorithm
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Fig. 7.3 A typical trajectory
of mean square errors
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around 0.3. This shows that Yau-Yau algorithm can help maintain a reliable mean
square error and obtain accurate estimations to the state process.

7.8 Exercises

The exercises in this chapter are based on the following one-dimensional cubic
sensor filtering problem:

{
dXt = dVt ,

dYt = X3
t dt + dWt ,

(7.103)

with {Wt : t ≥ 0} and {Vt : t ≥ 0} mutually independent one-dimensional standard
Brownian motions.

The purpose of the following exercises is to make readers more familiar with
the entire procedure of Yau-Yau algorithm. Readers are also encouraged to simulate
some trajectories of the system (7.103) by computer and test the performance of
Yau-Yau algorithm.

1. Write down explicitly the DMZ equation satisfied by the unnormalized condi-
tional probability density function σ(t, x) of the filtering system (7.103).

2. Derive the robust DMZ equation satisfied by u(t, x) given by

u(t, x) = exp

(

− Ytx
3
t

)

σ(t, x). (7.104)

3. Let 0 = t0 < t1 < · · · < tK = T be a uniform partition of the time interval
[0, T ]. Derive the corresponding auxiliary equations in the Yau-Yau algorithm
satisfied by ui(t, x) and ũi (t, x), as Eqs. (7.7) and (7.8).

4. Use Hermite-Galerkin spectral method to solve the parabolic equation satisfied
by ũi (x, t) in Exercise 3. Let

ũ
(N)
i (t, x) =

N∑

j=1

a
(N)
i,j (t)Hj (x) (7.105)

be the approximated solution to ũi (x, t). Write down explicitly the equations

satisfied by the generalized Fourier coefficients
(
a

(N)
1 , · · · , a

(N)
N

)
.

5. For practical implementations, if we are concerned with tracking the evolution
of the position of the state process Xt , the conditional expectation E[Xt |Yt ] is
a good estimator. Please provide an approximation of E[Xt |Yt ] based on the

generalized Fourier coefficients
(
a

(N)
1 (t), · · · , a

(N)
N (t)

)
. (Hint: The expression

may contain
∫
R

xHj (x)dx, j = 1, · · · , N .)
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6. Show that the properties of one-dimensional generalized Hermite func-
tions (7.67), (7.68), and (7.69) hold. Hence, the integrals

∫
R

xHj (x)dx,
j = 1, · · · , N , can be calculated explicitly.

7. As for the convergence analysis, write down the explicit expression of the
assumptions (7.13), (7.17), and (7.18). Discuss for what kind of observation
trajectories, such assumptions will hold so that the convergence of Yau-Yau
algorithm is guaranteed.
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Chapter 8
Direct Methods

In this chapter, we will focus on the explicit solution of DMZ equation for some
specific nonlinear systems. First, we focus on continuous time-invariant finite-
dimensional filtering systems. It shows that Yau filtering system can be solved
explicitly with an arbitrary initial condition by solving a system of ordinary
differential equations and a Kolmogorov equation. Second, we will extend the direct
method to time-invariant Yau filtering systemwith nonlinear observations. Third, we
mainly consider time-invariant Yau systems with a class of nonlinear observation
and give explicit solution under the Yau-Yau algorithm framework. Finally, we
extend the previous results to time-varying Yau systems.

8.1 Introduction

In this chapter, we consider continuous filtering systems and try to obtain the explicit
solution of conditional density of state evolution p(x|Yt ), where Yt := σ(yτ : 0 ≤
τ ≤ t) is a sigma algebra. First, we recall time-invariant setting:

{
dx(t) = f (x(t))dt + g(x(t))dv(t), x(0) = x0,

dy(t) = h(x(t))dt + dw(t), y(0) = 0,
(8.1)

where x, v, y, and w are, respectively, Rn,Rp,Rm, and Rm-valued processes, and v

and w have components that are independent, standard Brownian motion processes.
We further assume that n = p, f and h are C∞ smooth functions and that g is an
orthogonal matrix.

By introducing a new unnormalized density u(t, x) = exp(−∑m
i=1 hi(x)yi(t))

σ (t, x), DMZ equation will become following the so-called the robust DMZ
equation:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. S.-T. Yau et al., Principles of Nonlinear Filtering Theory, Algorithms and
Computation in Mathematics 33, https://doi.org/10.1007/978-3-031-77684-7_8
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =1

2

n∑

i=1

∂2u

∂x2
i

(t, x) +
n∑

i=1

⎛

⎝−fi(x) +
m∑

j=1

yj (t)
∂hj

∂xi

(x)

⎞

⎠ ∂u

∂xi

−
[

n∑

i=1

∂fi

∂xi

+ 1

2

m∑

i=1

h2i − 1

2

m∑

i=1

yi(t)�hi

+
m∑

i=1

n∑

j=1

yi(t)fj

∂hi

∂xj

− 1

2

m∑

i,j=1

n∑

k=1

yiyj

∂hi

∂xk

∂hj

∂xk

⎤

⎦ u(t, x)

u(0, x) =σ0(x).

(8.2)
We briefly recall the Yau-Yau algorithm [4] that solves the nonlinear filtering

problem with arbitrary initial condition by reducing it to solve the Kolmogorov
equation.

Suppose that u(t, x) is the solution of the robust DMZ equation. First, we make
partition for the time interval. Let Pk = {0 = τ0 < τ1 < · · · < τk = τ } be
a partition of [0, τ ]. Let ui(t, x) be a solution of the following partial differential
equation for τi−1 ≤ t ≤ τi , which satisfies the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
(t, x) = 1

2
�ui(t, x) +

n∑

l=1

⎛

⎝−fl(x) +
m∑

j=1

yj (τi−1)
∂hj

∂xl

(x)

⎞

⎠ ∂ui

∂xl

−
⎡

⎣
n∑

l=1

∂fl

∂xl

+ 1

2

m∑

l=1

h2l − 1

2

m∑

j=1

yj (τi−1)�hj

+
m∑

j=1

n∑

l=1

yj (τi−1)fl

∂hj

∂xl

− 1

2

m∑

j,l=1

n∑

p=1

yj (τi−1)yl(τi−1)
∂hj

∂xp

∂hl

∂xp

⎤

⎦ ui(t, x)

ui(τi−1, x) = ui−1(τi−1, x).

(8.3)
In the work of Yau and Yau [4, 5], it has been proved that in both point-wise sense

and L2-sense, uk(t, x) will converge to the explicit solution u(t, x), i.e., u(τ, x) =
lim|Pk |→0 uk(τ, x).

Therefore, it remains to describe an algorithm to compute uk(τk, x). In the work
of Yau and Yau [4, 5], the novelty is by using an exponential-type transformation,
solving robust DMZ equation can be reduced to solving a Kolmogorov equation at
each time interval [τk, τk+1], and observation term can be shifted to an update at
each initial moment t = τk . The details can be found in the following proposition.

Proposition 8.1 ([6]) For each τk−1 ≤ t ≤ τk, 1 ≤ k ≤ n, ũk(t, x) satisfies the
following parabolic equation:
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∂ũk

∂t
(t, x) =1

2
�ũk(t, x) −

n∑

j=1

fj (x)
∂ũk

∂xj

(t, x)

−
⎛

⎝
n∑

j=1

∂fj

∂xj

(x) + 1

2

m∑

j=1

h2j (x)

⎞

⎠ ũk(t, x),

(8.4)

for τk−1 ≤ t ≤ τk , if and only if

ũk(t, x) = exp

(
m∑

i=1

yi(τk−1)hi(x)

)

uk(t, x) (8.5)

satisfies (8.3).
The initial condition for (8.4) on τk−1 ≤ t ≤ τk

ũk(τk−1, x) =
⎧
⎨

⎩

σ0(x), k = 1,

exp
[∑m

j=1(yj (τk−1) − yj (τk−2))hj (x)
]
ũk−1(τk−1, x), k ≥ 2.

(8.6)

Furthermore, the convergence theorem has also been proved.

Theorem 8.1 ([4]) The unnormalized density σ can be computed via solution ũi of
Kolmogorov equation (8.4). More specifically,

σ(τ, x) = lim|Pk |→0
ũk(τk, x). (8.7)

In this chapter, we will focus on the time-invariant and time-variant Yau filtering
system and propose to obtain the explicit solution by solving the Kolmogorov
equation directly. Hence, this type of method is also called “direct method,” which
means explicit density evolution can be obtained. The arrangement of this chapter is
listed as follows. In Sect. 8.2, for time-invariant finite-dimensional filtering system,
the filtering problem is transformed to solving a Kolmogorov equation and a series
of ODEs. In Sect. 8.3, by the Yau-Yau algorithm framework, we extend the work
of Sect. 8.2 to solve the system with nonlinear observation and propose efficient
so-called Gaussian approximation method. In Sect. 8.4, by the Yau-Yau algorithm
framework and variable transformation, we transform the robust DMZ equation
to a Schrödinger-type equation so-called time-varying Schrödinger equation. Then
we can calculate the analytical fundamental solution that can be utilized to obtain
explicit solution. In Sect. 8.5, the work of Sect. 8.4 will be extended to a special
class of time-varying Yau filtering system, and the concrete procedure is similar.
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8.2 Explicit Solution of DMZ Equation for
Finite-Dimensional Filters

This section will focus on continuous time-invariant finite-dimensional filtering
systems. It shows that the Yau filtering system can be solved explicitly with an
arbitrary initial condition by solving a system of ordinary differential equations and
a Kolmogorov equation. We shall show that there only require n sufficient statistics
for solving the DMZ equation. This section is mainly referred to the work of Yau
and Hu [7].

Definition 8.1 (Yau Filtering System) The filtering system (8.1) is called the Yau
filtering system if the following condition holds:

(C′
1)

∂fj

∂xi

− ∂fi

∂xj

= const, ∀1 ≤ i, j ≤ n. (8.8)

Remark 8.1 Yau’s filtering systems include Kalman-Bucy filtering systems and
Benés filtering systems as two special cases.

The following result describes the equivalent form of Yau filter.

Theorem 8.2 (C′
1) holds if and only if

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂F

∂x1
, · · · ,

∂F

∂xn

)

, (8.9)

where l1, · · · , ln are polynomials of degree 1 and F is a C∞ function.

Proof Sufficiency: If we assume (f1, · · · , fn) = (l1, · · · , ln) +
(

∂F
∂x1

, · · · , ∂F
∂xn

)
,

then

∂fj

∂xi

− ∂fi

∂xj

= ∂lj

∂xi

− ∂li

∂xj

= const, (8.10)

where const denotes a certain constant.
Necessity: Suppose that

∂fj

∂xi
− ∂fi

∂xj
= cij and clearly there has property cij =

−cji . In the following, we assume li = ∑n
j=1 bij xj , where bij = 1

2cji . Next we
consider two exterior derivatives of first-order differential form

∑n
j=1 fjdxj and

∑n
j=1 lj dxj , respectively:

d

⎛

⎝
n∑

j=1

fjdxj

⎞

⎠ =
∑

i<j

(
∂fj

∂xi

− ∂fi

∂xj

)

dxi ∧ dxj

=
∑

i<j

cij dxi ∧ dxj

(8.11)
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and

d

⎛

⎝
n∑

j=1

lj dxj

⎞

⎠ =
∑

i<j

(bji − bij )dxi ∧ dxj

=
∑

i<j

cij dxi ∧ dxj .

(8.12)

So d(
∑n

j=1 lj dxj ) = d(
∑n

j=1 fjdxj ) holds, i.e., d(
∑n

j=1 fjdxj −∑n
j=1 lj dxj ) =

0. By Poincáre lemma, every closed form must be the exact form defined on the
simply connected topological space. Then there exists function ψ such that

n∑

j=1

fjdxj −
n∑

j=1

lj dxj = dψ =
n∑

j=1

∂ψ

∂xj

dxj . (8.13)

It implies the desired result. 	

From Theorem 8.2, we know that (C′

1) is equivalent to the following condition:

(C1) fi(x) = li (x) + ∂F

∂xi

(x), 1 ≤ i ≤ n, (8.14)

where li (x) = ∑n
j=1 dij xj + di for 1 ≤ i ≤ n and F is a C∞ function.

Next we list the following condition by assuming the observation term is a linear
function in a state:

(C2) hi(x) =
n∑

j=1

cij xj + ci, 1 ≤ i ≤ m, (8.15)

where cij , ci are constants.
Moreover, we know that η(x) is a quadratic polynomial in x for most interesting

filtering systems [28, 29, 33]. Hence, we assume the following condition:

(C3) η(x) =
n∑

i,j=1

ηij xixj +
n∑

i=1

ηixi + η0, (8.16)

where ηij , ηi, η0 are constants.
In order to calculate the explicit solution of robust DMZ equation, first we need

to simplify the robust DMZ equation (8.2).

Lemma 8.1 Robust DMZ equation is equivalent to the following equation:
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⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
(t, x) =1

2
�u(t, x) +

n∑

i=1

θi(t, x)
∂u

∂xi

+ θ(t, x)u(t, x)

u(0, x) =σ0(x),

(8.17)

where

θi(t, x) = − fi(x) +
m∑

j=1

yj (t)
∂hj

∂xi

(x),

θ(t, x) =1

2
(

n∑

i=1

θ2i (t, x) +
n∑

i=1

∂θi

∂xi

− η(x)).

(8.18)

Proof We only need to verify the right-hand side of (8.17) equals to the right-hand
side of (8.2). By direct computations,

θ2i (t, x) =
m∑

j,k=1

yjyk

∂hj

∂xi

∂hk

∂xi

− 2fi

m∑

j=1

yj

∂hj

∂xi

+ f 2
i

∂θi

∂xi

=
m∑

j=1

yj

∂2hj

∂x2
i

− ∂fi

∂xi

.

(8.19)

It implies

θ(t, x) =1

2

n∑

i=1

m∑

j,k=1

yjyk

∂hj

∂xi

∂hk

∂xi

−
n∑

i=1

fi

m∑

j=1

yj

∂hj

∂xi

+ 1

2

n∑

i=1

m∑

j=1

yj

∂2hj

∂x2
i

−
n∑

i=1

∂fi

∂xi

− 1

2

m∑

i=1

h2i .

(8.20)

	

In the following result, we will introduce an exponential-type transformation so
that the coefficients of gradient terms and function terms can become independent
of time. Basic calculations of calculus imply the following result. Details can be
found in Theorem 3.1 in [7].

Theorem 8.3 Suppose u(t, x) is a solution of (8.17) and ũ(t, x) = e	(t,x)u(t, x +
b(t)). Then ũ(t, x) is the solution of the following Kolmogorov equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂ũ

∂t
(t, x) =1

2
�ũ(t, x) −

n∑

i=1

Hi(x)
∂ũ

∂xi

− P(x)ũ(t, x),

ũ(0, x) =e	(0,x)u(0, x + b(0)),

(8.21)
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if we can choose Hi(x), P (x) such that 	(t, x) satisfy the following equations:

b′
i (t) − ∂	(t, x)

∂xi

+ Hi(x) + θi(t, x + b(t)) ≡ 0, 1 ≤ i ≤ n,

∂	

∂t
(t, x) − 1

2

n∑

i=1

(b′
i (t))

2 −
n∑

i=1

θi(t, x + b(t))b′
i (t)

− 1

2
η(x + b(t)) + 1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

+ P(x) ≡ 0.

(8.22)

Moreover, if u, ∂u
∂x1

, · · · , ∂u
∂xn

are linearly independent, then conditions (8.22)
become necessary for system (8.21).

Proof Suppose ũ(t, x) = e	(t,x)u(t, x +b(t)) and insert this equation to (8.21), we
get an equation about u:

∂	

∂t
u(t, x + b(t)) + ∂u

∂t
(t, x + b(t)) +

n∑

i=1

b′
i

∂u

∂xi

(t, x + b(t))

− 1

2

n∑

i=1

[∂	

∂xi

]2u(t, x + b(t)) − 1

2

n∑

i=1

∂2	

∂x2
i

u(t, x + b(t))

−
n∑

i=1

∂	

∂xi

∂u

∂xi

(t, x + b(t)) − 1

2
�u(t, x + b(t)) +

n∑

i=1

∂	

∂xi

Hiu(t, x + b(t))

+
n∑

i=1

Hi

∂u

∂xi

(t, x + b(t)) + P(x)u(t, x + b(t)) ≡ 0.

(8.23)
From (8.17), we know that

∂u

∂t
(t, x + b(t)) =1

2
�u(t, x + b(t)) +

n∑

i=1

θi(t, x + b(t))
∂u

∂xi

(t, x + b(t))

+ θ(t, x + b(t))u(t, x + b(t)).

(8.24)
By observing the coefficient ∂u

∂xi
(t, x + b(t)) and u(t, x + b(t)) of (8.23), we have

∂	

∂xi

≡ b′
i (t) + Hi + θi(t, x + b(t)), 1 ≤ i ≤ n (8.25)
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and

∂	

∂t
− 1

2

n∑

i=1

(
∂	

∂xi

)2

− 1

2

n∑

i=1

∂2	

∂x2
i

+
n∑

i=1

∂	

∂xi

Hi

+ 1

2

n∑

i=1

θ2i (t, x + b(t)) + 1

2

n∑

i=1

∂θi

∂xi

(t, x + b(t)) − 1

2
η(x + b(t)) + P(x) ≡ 0.

(8.26)
Equation (8.25) can be used to simplify Eq. (8.26) which together implies (8.22).

	

Now if we assume that condition (C3) holds, then

η(x + b(t)) = η(x) +
n∑

i=1

Bi(t)xi + B(t), (8.27)

where Bi(t) = ∑n
j=1(ηij + ηji)bj (t) and B(t) = ∑n

i,j=1 ηij bi(t)bj (t) +
∑n

i=1 ηibi(t).
In order to verify the type of filtering systems that can be solved by for-

mula (8.21), we prove that under certain mild condition, filters that can be solved
by formula (8.21) must be a Yau type, which is stated in Theorem 3.2 from [7].
Furthermore, we can extend Theorem 3.2 from [7] to a more general result by
dropping out the condition (C2), which is stated in the following theorem:

Theorem 8.4 Assume η(x) = ∑n
i,j=1 ηij xixj + ∑n

i=1 ηixi + η0 is a quadratic
polynomial in x. Suppose that u(t, x) is a solution of (3.1) and ũ(t, x) =
e	(t,x)u(t, x + b(t)), where b′

i (t), 1 ≤ i ≤ n are linearly independent and ũ(t, x) is
the solution of the following Kolmogorov equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂ũ

∂t
(t, x) =1

2
�ũ(t, x) −

n∑

i=1

Hi(x)
∂ũ

∂xi

(t, x) − P(x)ũ(t, x),

ũ(0, x) =e	(0,x)u(0, x + b(0)).

(8.28)

Furthermore, let 	(t, x) = c(t) + G(x) +∑n
j=1 aj (t)xj − F(x + b(t)) and F is a

C∞ function. If we can choose C∞ functions H(x),G(x), P (x) such that

1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

(x) − 1

2
η(x) + P(x) ≡ 0, (8.29)

then the filtering system must be a Yau-type system.
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Proof First, by definition of θi(t, x) and 	(t, x), we calculate

θi(t, x + b(t)) =
m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t)) − fi(x + b(t))

∂	

∂xi

(t, x) =∂G

∂xi

(x) + ai(t) − ∂F

∂xi

(x + b(t)), 1 ≤ i ≤ n

∂	

∂t
(t, x) =c′(t) +

n∑

j=1

a′
j (t)xj −

n∑

j=1

∂F

∂xj

(x + b(t))b′
j (t).

(8.30)

Then we can calculate (3.4) and (3.5) by using the above results:

b′
i (t) − ai(t) +

m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t)) + Hi(x)

− ∂G

∂xi

(x) + ∂F

∂xi

(x + b(t)) − fi(x + b(t)) ≡ 0, 1 ≤ i ≤ n

(8.31)

c′(t) − 1

2

n∑

i=1

(b′
i (t))

2 −
n∑

i=1

m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t))b′
i (t) (8.32)

+
n∑

j=1

a′
j (t)xj +

[
n∑

i=1

fi(x + b(t))b′
i (t) −

n∑

i=1

∂F

∂xi

(x + b(t))b′
i (t)

]

− 1

2
η(x + b(t)) + 1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

(x) + P(x) ≡ 0.

From (8.31), we have

fi(x+b(t))− ∂F

∂xi

(x+b(t)) ≡ Hi(x)−∂G

∂xi

(x)+
m∑

j=1

yj (t)
∂hj

∂xi

(x+b(t))+b′
i (t)−ai(t).

(8.33)
Putting (8.33) into (8.32), we get
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c′(t) − 1

2

n∑

i=1

(b′
i (t))

2 −
n∑

i=1

m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t))b′
i (t)

+
n∑

j=1

a′
j (t)xj +

n∑

i=1

(

Hi(x) − ∂G

∂xi

(x)

+
m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t)) + b′
i (t) − ai(t)

)

b′
i (t)

− 1

2
η(x + b(t)) + 1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

(x) + P(x) ≡ 0.

(8.34)

By simplifying (8.34), we obtain

c′(t) − 1

2

n∑

i=1

(b′
i (t))

2 +
n∑

i=1

(b′
i (t) − ai(t))b

′
i (t) +

n∑

j=1

a′
j (t)xj

+
n∑

i=1

(

Hi(x) − ∂G

∂xi

(x)

)

b′
i (t) − 1

2
η(x + b(t)) + 1

2

n∑

i=1

H 2
i (x)

− 1

2

n∑

i=1

∂Hi

∂xi

(x) + P(x) ≡ 0.

(8.35)

Then by using condition 1
2

∑n
i=1 H 2

i (x)− 1
2

∑n
i=1

∂Hi

∂xi
(x)− 1

2η(x)+P(x) ≡ 0, we
have

n∑

j=1

a′
j (t)xj +

n∑

i=1

(

Hi(x) − ∂G

∂xi

(x)

)

b′
i (t) + 1

2
η(x) − 1

2
η(x + b(t))

≡ −c′(t) + 1

2

n∑

i=1

(b′
i (t))

2 −
n∑

i=1

(b′
i (t) − ai(t))b

′
i (t).

(8.36)

Due to η(x) = ∑n
i,j=1 ηij xixj + ∑n

i=1 ηixi + η0, then

η(x + b(t)) = η(x) +
n∑

i=1

Bi(t)xi + B(t), (8.37)

where Bi(t) = ∑n
j=1(ηij + ηji)bj (t) and B(t) = ∑n

i,j=1 ηij bi(t)bj (t) +
∑n

i=1 ηibi(t). Next we put (8.37) into (8.36) and get
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n∑

j=1

(

a′
j (t) − 1

2
Bj (t)

)

xj +
n∑

i=1

(

Hi(x) − ∂G

∂xi

(x)

)

b′
i (t)

≡ 1

2
B(t) − c′(t) + 1

2

n∑

i=1

(b′
i (t))

2 −
n∑

i=1

(b′
i (t) − ai(t))b

′
i (t).

(8.38)

Then we differentiate both sides by ∂2

∂xk∂xl
, 1 ≤ k, l ≤ n and get

n∑

i=1

∂2

∂xk∂xl

(

Hi(x) − ∂G

∂xi

(x)

)

b′
i (t) ≡ 0, 1 ≤ k, l ≤ n. (8.39)

Since {b′
i (t), 1 ≤ i ≤ n} are linearly independent, we deduce

∂2

∂xk∂xl

(

Hi(x) − ∂G

∂xi

(x)

)

≡ 0, 1 ≤ i, k, l ≤ n. (8.40)

Then Hi(x) − ∂G
∂xi

(x), 1 ≤ i ≤ n are degree 1 polynomials and we can denote

Hi(x) = ∂G

∂xi

(x) + P1(x), 1 ≤ i ≤ n. (8.41)

Putting (8.41) into (8.31), we get

b′
i (t) − ai(t) +

m∑

j=1

yj (t)
∂hj

∂xi

(x + b(t))

+ P1(x) + ∂F

∂xi

(x + b(t)) − fi(x + b(t)) ≡ 0, 1 ≤ i ≤ n.

(8.42)

Then we differentiate both sides by ∂
∂xk

, 1 ≤ k ≤ n and get

m∑

j=1

yj (t)
∂2hj

∂xk∂xi

(x+b(t))+const+ ∂2F

∂xk∂xi

(x+b(t)) ≡ ∂fi(x+b(t))

∂xk

, 1≤ i, k≤n.

(8.43)
Exchange subscripts i and k, and we obtain

m∑

j=1

yj (t)
∂2hj

∂xi∂xk

(x+b(t))+const+ ∂2F

∂xi∂xk

(x+b(t)) ≡ ∂fk(x+b(t))

∂xi

, 1≤ i, k≤n.

(8.44)
Considering hj , F are C∞ function, and letting (8.43) minus (8.44), we get
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∂fi(x + b(t))

∂xk

− ∂fk(x + b(t))

∂xi

≡ const, 1 ≤ i, k ≤ n, (8.45)

i.e.,

ωik(x + b(t)) ≡ const,∀x, t, 1 ≤ i, k ≤ n. (8.46)

Thus, ωik(x) ≡ const, 1 ≤ i, k ≤ n and Wong matrix has a constant structure. By
Yau and Hu [7] Theorem 2.1, we deduce

fi(x) = li (x) + ∂Q

∂xi

(x), 1 ≤ i ≤ n, (8.47)

where li (x) is a degree 1 polynomial and Q is a C∞ function. By definition, the
filtering system is a Yau type. 	


Next we will give a concrete form of	(t, x) and a constraint ofHi(x),G(x), P (x)

so that we can transform solving the original filtering problem to a procedure
combining on-line and off-line steps.

Theorem 8.5 Consider the filtering system (8.1) with condition (C1), (C2), (C3).
Then the solution of robust DMZ equation u(t, x) is reduced to the solution ũ(t, x)

for the following Kolmogorov equation:

{
∂ũ
∂t

(t, x) = 1
2�ũ(t, x) − ∑n

i=1 Hi(x) ∂ũ
∂xi

− P(x)ũ(t, x)

ũ(0, x) = eG(x)−F(x)σ0,
(8.48)

where

ũ(t, x) = exp

[

c(t) + G(x) +
n∑

i=1

ai(t)xi − F(x + b(t))

]

u(t, x + b(t)),

(8.49)
and ai(t), b(t), c(t) satisfy the following system of ODEs:

{
b′
i (t) − ai(t) − ∑n

j=1 dij bj (t) + ∑m
j=1 cjiyj (t) = 0

bi(0) = 0
(8.50)

{
a′
i (t) − 1

2

∑n
j=1(ηij + ηij )bj (t) + ∑n

j=1 djib
′
j (t) = 0

ai(0) = 0
(8.51)

⎧
⎪⎪⎨

⎪⎪⎩

c′(t) − 1
2

∑m
i=1(b

′
i (t))

2 + ∑n
i=1 ai(t)b

′
i (t) − ∑n

i=1 dib
′
i (t)

+ 1
2

∑n
i,j=1 ηij bi(t)bj (t) + 1

2

∑n
i=1 ηibi = 0

c(0) = 0

(8.52)
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if we choose H(x),G(x), P (x) satisfy

1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

− 1

2
η(x) + P(x) ≡ 0, (8.53)

where Hi(x) − ∂G
∂xi

= li (x).

Proof We choose 	(t, x) = c(t) + G(x) +∑n
i=1 ai(t)xi − F(x + b(t)). By using

the condition (C1), (C2), (C3), we rewrite the first equation of (8.22) as

b′
i (t) − ai(t) + li (x) +

m∑

j=1

cjiyj (t) − li (x + b(t)) ≡ 0, 1 ≤ i ≤ n, (8.54)

which is exactly (8.50). By the similar way, we rewrite the second equation of (8.22)
as

c′(t) − 1

2

n∑

i=1

(b′
i )
2 −

n∑

i=1

m∑

j=1

cjiyj b
′
i

− 1

2
B(t) +

n∑

j=1

a′
j xj +

n∑

i=1

fi(x + b(t))

− ∂F

∂xi

(x + b(t))b′
i − 1

2

n∑

i=1

Bixi

+ 1

2

n∑

i=1

H 2
i − 1

2

n∑

i=1

∂Hi

∂xi

− 1

2
η(x) + P(x) ≡ 0.

(8.55)

By inserting condition (8.53) into (8.55), we obtain

c′(t) − −1

2

n∑

i=1

(b′
i )
2 −

n∑

i=1

m∑

j=1

cjiyj b
′
i − 1

2
B(t)

+
n∑

j=1

a′
j xj +

n∑

i=1

⎛

⎝
n∑

j=1

dij (xj + bj ) + di

⎞

⎠ b′
i

− 1

2

n∑

i=1

Bixi ≡ 0.

(8.56)

By combining terms containing xi , we obtain ODEs (8.51) and (8.52), the desired
results. 	
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8.3 Direct Method for Yau Filtering System with Nonlinear
Observations

In the previous section, we explore the direct method for time-invariant finite-
dimensional Yau systems that contain linear observations. In this section, we will
extend the direct method to time-invariant Yau filtering system with nonlinear
observations. This type of method has two advantages: (i) the real-time computation
of the solution of the DMZ equation is reduced to the computation of Kolmogorov
equation. Based on Gaussian approximation of the initial condition, the Kolmogorov
equation can be solved in terms of ordinary differential equations; (ii) for a given
probability density function, we give a new and original approach to implement
Gaussian decomposition technique which is very effective and simple especially in
practice. The content of this section is mainly referred to Shi et al. [3].

We assume the filtering system (8.1) has the following three conditions:

(C1) fi(x) = li (x) + ∂F

∂xi

, 1 ≤ i ≤ n;

(C2)

m∑

i=1

h2i (x) =
n∑

i,j=1

qij xixj +
n∑

i=1

qixi + q0;

(C3) η(x) =
n∑

i,j=1

ηij xixj +
n∑

i=1

ηixi + η0,

(8.57)

where li = ∑n
j=1 dij xj + di and dij , di, qij = qji, qi, q0, ηij , ηi, η0, 1 ≤ i, j ≤ n

are constants. We remark that (C2) means that observation terms are not necessary
to be linear. However, (C2) restricts that observation terms have linear growth.

Instead of starting at robust DMZ equation, we begin with the framework of
Yau-Yau algorithm in which robust DMZ equation is reduced to a piece-wise
Kolmogorov equation at each time interval, i.e., Proposition 8.1. Similarly to
Lemma 8.1 in the previous section, we make some simplifications on notations.

Lemma 8.2 For each k, τk−1 ≤ t < τk , Eq. (8.4) is equivalent to the following
equation:

∂ũk

∂t
(t, x) = 1

2
�ũk(t, x) +

n∑

i=1

θi(x) · ∂ũk

∂xi

+ θ(x)ũk(t, x), (8.58)

where

θi(x) = − fi(x),

θ(x) =1

2

(
n∑

i=1

θ2i (x) +
n∑

i=1

∂θi

∂xi

− η(x)

)

.
(8.59)
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Proof By direct calculations,

θ(x) =1

2
(

n∑

i=1

θ2i (x) +
n∑

i=1

∂θi

∂xi

− η(x))

=
2∑

1

∂θi

∂xi

− 1

2
η +

n∑

i=1

∂θi

∂xi

+ 1

2

∂fi

∂xi

= − (

n∑

i=1

∂fi

∂xi

+ 1

2
h2i ).

(8.60)

It is easy to see that Eq. (8.58) is identical to Eq. (8.4). 	

In order to solve the Kolmogorov equation (8.58) in terms of ordinary differential

equations, we first introduce a new transformation in the following theorem.

Theorem 8.6 For each k, τk−1 ≤ t < τk , suppose ũk satisfies ûk(t, x) =
e	(x)ũk(t, x). Then ûk(t, x) is the solution of the following Kolmogorov equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂ûk

∂t
(t, x) =1

2
�ûk(t, x) −

n∑

i=1

Hi(x)
∂ûk

∂xi

− P(x)û(t, x)k

û(τk−1, x) =e	(x)ũk(τk−1, x),

(8.61)

if we can choose Hi, P (x),	(x) satisfying the following condition:

− ∂	

∂xi

+ Hi(x) + θi(x) ≡ 0, 1 ≤ i ≤ n,

− 1

2
η(x) + 1

2

n∑

i=1

H 2
i − 1

2

n∑

i=1

∂Hi

∂xi

+ P(x) ≡ 0.

(8.62)

Proof Direct computation yields that

∂ûk

∂t
= e	(x) ∂ũk

∂t

∂ûk

∂xi

= e	(x)(
∂	(x)

∂xi

ũk + ∂ũk

∂xi

)

∂2ûk

∂x2
i

= e	(x)(
∂2	(x)

∂x2
i

+ (
∂	(x)

∂xi

)2)ũk + 2
∂	(x)

∂xi

∂ũk

∂xi

+ ∂2ũk

∂x2
i

.

(8.63)

If we substitute the above relations to Eq. (8.61) and compare the coefficients on
both sides of ũk and

∂ũk

∂xi
, it can be obtained the following relation:
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θi(x) = −∂	

∂xi

+ Hi(x)

θ(x) = 1

2
�	(x) + 1

2
|∇	(x)|2 − H(x) · ∇	(x) − P(x).

(8.64)

Combining with the relation θ(x) = 1
2 (θ

2
i (x) + ∑n

i=1
∂θi (x)
∂xi

− η(x)), the desired
results can be obtained. 	

Noting the special structure of the drift term, we can select a special 	 in the
previous theorem, i.e., let 	(x) = G(x) − F(x). Then we obtain the following
results.

Theorem 8.7 For each k, τk−1 ≤ t < τk , suppose ũk satisfies ûk(t, x) =
eG(x)−F(x)ũk(t, x). Then ûk(t, x) is the solution of following Kolmogorov equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂ûk

∂t
(t, x) =1

2
�ûk(t, x) −

n∑

i=1

Hi(x)
∂ûk

∂xi

− P(x)ûk(t, x)

ûk(τk−1, x) =eG(x)−F(x)ũk(τk−1, x),

(8.65)

if we can choose Hi(x), P (x),	(x) satisfying the following condition:

Hi − ∂G

∂xi

= li ,

− 1

2
η(x) + 1

2

n∑

i=1

H 2
i − 1

2

n∑

i=1

∂Hi

∂xi

+ P(x) ≡ 0.

(8.66)

Proof Here we use 	(x) = G(x) − F(x) where F(x) is the term of Theorem 8.2.
Then

∂	

∂xi

(x) = ∂G

∂xi

(x) − ∂F

∂xi

(x). (8.67)

Putting (8.67) into (8.62) and note that θi(x) = −fi(x), we have Hi − ∂G
∂xi

= li . 	

In the following, we choose H(x),G(x), P (x) which satisfy the conditions in

Theorem 8.7 such that the coefficients of ûk(t, x),
∂ûk

∂xi
are degree 1 polynomial and

degree 2 polynomial, respectively. One of the convenient selections is

G(x) ≡0

Hi =li , 1 ≤ i ≤ n

P (x) =1

2
η(x) − 1

2

n∑

i=1

l2i + 1

2

n∑

i=1

∂li

∂xi

(x).

(8.68)
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Observe if initial distribution of partial differential equation (8.65) is Gaussian; by
using the method proposed by Yau and Lai [8], Kolmogorov equation can be solved
by a system of ordinary differential equations.

Theorem 8.8 Consider the following Kolmogorov equation with Gaussian initial
condition:

⎧
⎪⎪⎨

⎪⎪⎩

∂û

∂t
(t, x) =1

2
�û(t, x) −

n∑

i=1

li (x)
∂û

∂xi

+ q(x)û(t, x)

û(t0, x) =exT A(t0)x+BT (t0)x+C(t0),

(8.69)

where li = ∑n
j=1 dij xj + di and q(x) = xT Qx + pT x + r . A(t0) is a symmetric

matrix, BT (t0) = (B1(t0), · · · , Bn(t0)), and C(t0) is a scalar.
Then the solution of Kolmogorov equation is of the following form:

û(t, x) = exT A(t)x+B(t)T x+C(t), (8.70)

where A(t), B(t), C(t) satisfy the following ordinary differential equations:

dA

dt
=2A2 − [AD + DT A] + Q,

dB

dt
=2BT A − BT D − 2dT A + pT ,

dC

dt
=tr(A) + 1

2
BT B − dT B + r,

(8.71)

where D = (dij ) ∈ R
n×n and dT = (d1, · · · , dn) ∈ R

n.

Proof Suppose û(t, x) = exT A(t)x+B(t)T x+C(t) and by basic calculus,

∂û

∂t
=
(

xT dA

dt
x + dBT

dt
x + dC

dt

)

û (8.72)

and

1

2
�û(t, x) −

n∑

i=1

li (x)
∂û

∂xi

+ q(x)û(t, x)

=[xT (
1

2
AT A + 1

2
AAT + A2)x + BT (A + AT )x + tr(A) + 1

2
BT B]û

− [xT (AT + A)Dx + (BT D + dT A + dT AT )x + dT B]û.

+ (xT Qx + pT x + r)û.

(8.73)
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Comparing the above two equations, we obtain a system of ordinary differential
equations satisfied by A,B,C. 	


Next we introduce idea of Gaussian approximation proposed in [3]. Based on
Yau and Lai’s idea in dealing with Kolmogorov equation, the initial state has to
be Gaussian. However, in solving Eq. (8.65), we cannot guarantee the initial state
in each interval [τk−1, τk] is Gaussian. In order to solve this problem, Shi et al.
proposed to approximate initial state û(τk−1, x) in each interval [τk−1, τk] with sum
of Gaussian distribution functions.

In the following algorithm, we introduce the details of Gaussian approximation
method.

Algorithm 3 Gaussian approximation
Step 1. Let f (x) = φ(x) and the threshold E = αmaxφ(x), where α is a given small number.
Step 2. Fitting the peaks of f (x) which are larger than E with Gaussian distributions. Specifically,

for a peak Pi(xi , yi ) of f (x) with yi ≥ E, we use the function gi(x) = yi exp(− (x−xi )
2

2σ 2
i

) to fit

P(x, y) with points in a neighborhood of Pi(xi , yi ) where no other peaks exists, and the best fitting
parameter σi is obtained by fitting. Suppose the sum of Gaussian distributions gi(x) in this step is
g(x).
Step 3. Let f1(x) = f (x) − g(x). If f1(x) has no peaks whose values are larger than E, then go
to step 4. Otherwise, let f (x) = f1(x) and go to step 2.
Step 4. Let f2(x) = −f1(x). If f2(x) has no peaks that are larger than E, then done. Otherwise,
let f (x) = f2(x) and go to step 2.

In [3], some numerical examples are shown and we can find the direct method
performs better than EKF. Therefore, Shi et al. extended the direct method proposed
by Yau and Hu [7] to system with specific nonlinear observation terms successfully.

8.4 Nonlinear Filtering and Time-Varying Schrödinger
Equation I

In this section, we mainly consider time-invariant Yau systems with a class of
nonlinear observation and give explicit solution under the Yau-Yau algorithm
framework. Details can be found in [9]. We consider the filtering system (8.1) with
drift term:

f (x) = Lx + l + ∇φ, (8.74)

where L = (lij ), 1 ≤ i, j ≤ n, lT = (l1, · · · , ln) and φ is a C∞ function on R
n.

Recall that L can be uniquely decomposed as L = L1 + L2, where LT
1 = L1 and

LT
2 = −L2. Observe that L1x = ∇φ1 = ∇( 12x

T L1x). It follows that f (x) =
L2x + l + ∇φ̃, where φ̃ = φ + φ1. Hence, without loss of generality, we assume
that in (8.74) LT = −L. Let
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q(x) := �φ(x) + |∇φ|2 + 2(Lx + l) · ∇φ +
m∑

i=1

h2i (x) + 2trL. (8.75)

In order to solve the filtering problem with nonlinear observation, it suffices to solve
the following Kolmogorov equation in real time, for τi−1 ≤ t ≤ τi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ

∂t
(t, x) =1

2
�ũ(t, x) −

n∑

j=1

fj (x)
∂ũ

∂xj

(t, x)

−
⎛

⎝
n∑

j=1

∂fj

∂xj

(x) + 1

2

m∑

j=1

h2j (x)

⎞

⎠ ũ(t, x)

ũ(τi−1, x) =σi.

(8.76)

In order to simplify the coefficients of ∂ũ
∂xj

(t, x), let ũ(t, x) = eφ(x)ṽ(t, x). Then we
calculate

∂ũ

∂t
=eφ(x) ∂ṽ

∂t

∇ũ =(∇φ)eφ(x)ṽ + eφ(x)∇ṽ

�ũ =(�φ)eφ(x)ṽ + |∇φ|2eφ(x)ṽ

+ 2eφ(x)(∇φ · ∇ṽ) + eφ(x)�ṽ.

(8.77)

Put Eqs. (8.77) to (8.76), and we get the following equation about ṽ, for τi−1 ≤ t ≤
τi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ṽ

∂t
(t, x) = 1

2
�ṽ(t, x) − (Lx + l) · ∇ṽ(t, x)

−
(
1

2
�φ(x) + 1

2
|∇φ|2 + (Lx + l) · ∇φ + 1

2

m∑

i=1

h2i (x) + trL

)

ṽ(t, x)

ṽ(τi−1, x) = σie
−φ(x).

(8.78)
In the following, in order to eliminate the gradient term of ṽ, i.e., ∇ṽ(t, x), we need
to make a translation in terms of variable x:

ṽ(t, x) = v(t, B(t)x + b(t)) = v(t, x̃), (8.79)

where x̃ = B(t)x + b(t) and B(t) = (bij (t)), 1 ≤ i, j ≤ n and bT (t) =
(b1(t), · · · , bn(t)) such that
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dB(t)

dt
= −B(t)L and

db(t)

dt
= −B(t)l. (8.80)

Then

B(t) = e−Lt and b(t) = −
∫ t

o

e−Lslds (8.81)

and B(t) is an orthogonal matrix since BBT = e−Lte−LT t = e−LteLt = I . Then
we calculate

∂ṽ

∂xi

=
n∑

j=1

∂v

∂x̃j

(t, B(t)x + b(t))bji(t)

�xṽ(t, x) =�x̃v(t, B(t)x + b(t))

∂ṽ

∂t
(t, x) =∂v

∂t
(t, B(t)x + b(t))

+
n∑

i,j=1

∂v

∂xi

(t, B(t)x + b(t))
dbij

dt
xj

+
n∑

i=1

∂v

∂xi

(t, B(t)x + b(t))
dbi

dt
.

(8.82)

Putting Eq. (8.82) in (8.78) and using (8.80), we get the following equation about v,
for τi−1 ≤ t ≤ τi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
(t, B(t)x + b(t)) =1

2
�x̃v(t, B(t)x + b(t))

−
(
1

2
�φ(x) + 1

2
|∇φ|2 + (Lx + l) · ∇φ

+1

2

m∑

i=1

h2i (x) + trL

)

v(t, B(t)x + b(t))

v(τi−1, x) =σie
−φ(x).

(8.83)

We summarize the previous results in the following theorem:

Theorem 8.9 In order to solve the nonlinear filtering problem with nonlinear
observations, it suffices to solve the Schrödinger equation (8.83), which is equivalent
to the following equation:
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⎧
⎪⎨

⎪⎩

∂v

∂t
(t, x̃) =1

2
�x̃v(t, x̃) − 1

2
q(B−1(t)x̃ − B−1(t)b(t))v(t, x̃)

v(τi−1, x̃) =σi(x̃)e−φ(x̃).

(8.84)

In the following, we need to calculate the explicit solution of Schrödinger
equation (8.84). First, we assume q(x) in (8.75) is a quadratic polynomial, i.e.,

q(x) = xT Qx + P T x + r, (8.85)

where Q = QT = (qij ), 1 ≤ i, j ≤ n, P T = (p1, · · · , pn) and r is a scalar.
Observe here that hi(x) may not be linear (i.e., degree 1 polynomial). Since q(x) is
quadratic, hi, 1 ≤ i ≤ m are of linear growth.

Next we introduce the fundamental solution of parabolic PDE.

Definition 8.2 K(t, x, y) is said to be the fundamental solution of the parabolic
equation:

{
∂u
∂t

(t, x) = Lxu(t, x), 0 ≤ t < ∞, x ∈ R
n,

u(0, x) = φ(x),
(8.86)

if ∂K
∂t

(t, x, y) = LxK(t, x, y) and limt→0
∫
Rn K(t, x, y)φ(y)dy = φ(x).

In view of the above definition, solution of (8.86) can be written as

u(t, x) =
∫

Rn

K(t, x, y)φ(y)dy. (8.87)

We are now going to solve (8.84). For simplicity, we proceed with (8.84) for
0 ≤ t ≤ τ .

Theorem 8.10 Let K(t, x̃, ỹ) be the fundamental solution of

⎧
⎪⎨

⎪⎩

∂v

∂t
(t, x̃) =1

2
�v(t, x̃) − 1

2
q(B−1(t)x̃ − B−1(t)b(t))v(t, x̃)

v(0, x̃) =σ1(x̃)e−φ(x̃),

(8.88)

where

q(B−1(t)x̃ − B−1(t)b(t)) =x̃T B(t)QB(t)T x̃

− [2b(t)T B(t)T QB(t)T − P T B(t)T ]xx̃

+ b(t)T B(t)QB(t)T b(t) − P T B(t)T b(t) + r.

(8.89)
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Assume that the fundamental solution K(t, x̃, ỹ) is written as

K(t, x̃, ỹ) = (2πt)−n/2 exp

{

x̃T Ã(t)x̃ + x̃T B̃(t)ỹ

+ ỹT C̃(t)ỹ + D̃(t)T x̃ + Ẽ(t)T ỹ + s(t)

}

,

(8.90)
where Ã(t) = ÃT (t) = (ãij (t)), b̃(t) = (b̃ij (t)), C̃(t) = C̃T (t) = (c̃ij (t)), 1 ≤
i, j ≤ n, D̃T (t) = (d1(t), · · · , dn(t)), Ẽ

T (t) = (e1(t), · · · , en(t)).
Then Ã(t), B̃(t), C̃(t), D̃(t), Ẽ(t) should satisfy the following ODEs:

dÃ(t)

dt
= 2Ã(t)2 − 1

2
B(t)QB(t)T (8.91)

dB̃(t)

dt
= 2Ã(t)b̃(t) (8.92)

dC̃(t)

dt
= 1

2
B̃(t)T B̃(t) (8.93)

dD̃(t)

dt
= 2Ã(t)D̃(t) + B̃(t)QB̃(t)T − 1

2
B̃(t)P (8.94)

dẼ(t)

dt
= B̃(t)T D̃(t) (8.95)

ds(t)

dt
=1

2
D̃(t)T D̃(t) + trÃ(t)

− 1

2
[bT (t)B(t)QBT (t)b(t) − P T BT (t)b(t) + r] + n

2t
.

(8.96)

Proof

∂K

∂t
(t, x̃, ỹ) =

[

x̃T dÃ

dt
x̃ + x̃T dB̃

dt
ỹ

+ ỹT dC̃

dt
ỹ + dD̃T

dt
x̃ + dẼT

dt
ỹ − ds

dt
− n

2t

]

K(t, x̃, ỹ)

(8.97)
∇x̃K(t, x̃, ỹ) = [(Ã + ÃT )x̃ + B̃ỹ + D̃]K(t, x̃, ỹ) (8.98)
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1

2
�x̃K(t, x̃, ỹ) =[1

2
x̃T (Ã + ÃT )2x̃ + x̃T (Ã + ÃT )B̃ỹ

+ 1

2
ỹB̃T B̃ỹ + x̃T (Ã + ÃT )D̃ + ỹT R̃T D̃ + 1

2
D̃T D̃

+ tr(Ã)]K(t, x̃, ỹ).

(8.99)

For K(t, x̃, ỹ) to satisfy (8.88), it is easy to see that we need (8.91)–(8.96) by
putting (8.97) and (8.99) in (8.88). 	

Proposition 8.2 Suppose that

Ã(t) =
∞∑

n=−1

Ãnt
n, B̃(t) =

∞∑

n=−1

B̃nt
n, C̃(t) =

∞∑

n=−1

C̃nt
n

D̃(t) =
∞∑

n=−1

D̃nt
n, Ẽ(t) =

∞∑

n=−1

Ẽnt
n, s(t) =

∞∑

n=−1

snt
n

b(t) =
∞∑

n=0

bntn, B(t) =
∞∑

n=0

Bnt
n.

(8.100)

Then the following holds:

(1) Equation (8.91) is equivalent to

−Ã−1 =2Ã2−1

0 =2(Ã−1Ã0 + Ã0Ã−1)

nÃn =2(Ã−1Ãn + Ã0Ãn−1 + · · · + ÃnÃ−1)

− 1

2
(B̃0QB̃T

n−1 + · · · + B̃n−1QBT
0 ).

(8.101)

(2) Equation (8.92) is equivalent to

−B̃−1 =2Ã−1B̃−1

0 =2(Ã−1B̃0 + Ã0B̃−1)

nB̃n =2(Ã−1B̃n + · · · + ÃnB̃−1).

(8.102)
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(3) Equation (8.93) is equivalent to

−C̃−1 =1

2
B̃T−1B̃−1

0 =(
1

2
B̃T−1B̃0 + B̃T

0 B̃−1)

nC̃n =1

2
(B̃T−1B̃n + · · · + B̃T

n B̃−1).

(8.103)

(4) Equation (8.94) is equivalent to

−D̃−1 =2Ã−1D̃−1

0 =2(Ã−1D̃0 + Ã0D̃−1)

nD̃n =2(Ã−1D̃n + · · · + ÃnD̃−1)

+ (B0QBT
n−1 + B1QBT

n−2 + · · · + Bn−1QBT
0 )b0

· · ·
+ B0QBT

0 bn−1

− 1

2
Bn−1P.

(8.104)

(5) Equation (8.95) is equivalent to

−Ẽ−1 =2B̃T−1D̃−1

0 =2(B̃T−1D̃0 + B̃T
0 D̃−1)

nẼn =B̃T−1D̃n + · · · + B̃T
n D̃−1.

(8.105)

(6) Equation (8.96) is equivalent to

s−1 = − 1

2
D̃T−1D̃−1

0 =1

2
(D̃T−1D̃0 + D̃0D̃−1) + trÃ−1 + n

2

s1 =1

2
(D̃T−1D̃1 + D̃T

0 D̃0 + D̃T
1 D̃−1) + trÃ0

− 1

2
(b0

T
B0QB0b

0 − P T BT
0 b0 + r)

· · · .

(8.106)

Proof Direct computation can derive the results and details can be found in [9]. 	
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In the following, we give construction of fundamental solution by power series
method and prove the existence.

Theorem 8.11 The fundamental solution K(t, x̃, ỹ) of

{
∂v
∂t

(t, x̃) = 1
2�v(t, x̃) − 1

2q(B−1(t)x̃ − B−1(t)b(t))v(t, x̃)

v(0, x̃) = σ1(x̃)e−φ(x̃),
(8.107)

where

q(B−1(t)x̃ − B−1(t)b(t)) =x̃T B(t)QB(t)T x̃

− [2b(t)T B(t)T QB(t)T − P T B(t)T ]xx̃

+ b(t)T B(t)QB(t)T b(t) − P T B(t)T b(t) + r

(8.108)
exists and is of the following form:

K(t, x̃, ỹ) =(2πt)−n/2 exp

{

−|x̃ − ỹ|2
2t

+ x̃T Ã(t)x̃ + x̃T B̃(t)ỹ

+ỹT C̃(t)ỹ + D̃(t)T x̃ + Ẽ(t)T ỹ + s(t)
}

,

(8.109)

where Ã(t) = ∑∞
n=1 Ãnt

n, B̃(t) = ∑∞
n=1 B̃nt

n, C̃(t) = ∑∞
n=1 C̃nt

n, D̃(t) =
∑∞

n=1 D̃nt
n, Ẽ(t) = ∑∞

n=1 Ẽnt
n, s(t) = ∑∞

n=1 snt
n, b(t) = ∑∞

n=0 bntn, B(t) =∑∞
n=0 Bnt

n.
Moreover, Ãn, B̃n, C̃n, D̃n, Ẽn and sn can be computed by the following formu-

las:

Ã1 = − 1

6
B0Q

T
0

Ã2 = − 1

8
(B0QBT

1 + B1QBT
0 )

Ãn = 2

n + 2
(Ã1Ãn−2 + · · · + Ãn−2Ã1) − 1

2(n + 2)

× (B0QBT
n−1 + · · · + Bn−1QBT

0 )

(8.110)

B̃1 =Ã1

B̃2 =2

3
Ã2

B̃n = 2

n + 1
(Ã1B̃n−2 + · · · + Ãn−2B̃1 + Ãn)

(8.111)



322 8 Direct Methods

C̃1 =1

2
(B̃1 + B̃T

1 )

C̃2 =1

4
(B̃2 + B̃T

2 )

C̃n = 1

2n
(B̃n + B̃T

1 B̃n−2 + · · · + B̃T
n−2B̃1 + B̃T

n )

(8.112)

D̃1 =1

2
B0QBT

0 b0 − 1

4
B0P

D̃2 =1

3
(B0QBT

1 + B1QBT
0 )b0 + 1

3
B0QBT

0 b1 − 1

6
B1P

D̃n = 2

n + 1
(Ã1D̃n−2 + · · · + Ãn−2D̃1)

+ 1

n + 1
(B0QBT

n−1 + · · · + Bn−1QBT
0 )b0

+ · · ·

+ 1

n + 1
B0QBT

0 bn−1

− 1

2(n + 1)
Bn−1P

(8.113)

Ẽ1 =D̃1

Ẽ2 =1

2
D̃2

Ẽn =1

n
(D̃n + B̃T

1 D̃n−2 + · · · + B̃T
n−2D̃1)

(8.114)

s1 = − 1

2
(b0

T
B0QBT

0 b0 − P T BT
0 b0 + r)

s2 =1

2
trÃ1 − 1

4
[b0T

B0Q(BT
0 b1 + BT

1 b0) + (b0
T
B1 + b1

T
B0)QBT

0 b0]

+ 1

4
P T (BT

0 b1 + BT
1 b0)

sn = 1

2n
(D̃T

1 D̃n−2 + · · · + D̃T
n−2D̃1) + 1

n
trÃn−1

+ · · ·

+ 1

2n
P T (BT

0 bn−2 + BT
1 bn−1 + · · · + BT

n−1b
0).

(8.115)
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Proof Observe that if we let

Ã−1 =C̃−1 = −1

2
I, B̃−1 = I

Ã0 =B̃0 = C̃0 = D̃−1 = D̃0 = Ẽ−1 = Ẽ0 = 0

s0 =s−1 = 0.

(8.116)

and Ãn, B̃n, C̃n, D̃n, Ẽn, sn, n ≥ 1 as in (8.110), then relations in Proposition 8.2
are satisfied. Next we show that K(t, x̃, ỹ) in Eq. (8.109) is a fundamental solution.
We only need to verify

lim
t→0

∫

Rn

K(t, x̃, ỹ)v(0, ỹ)dỹ = v(0, x̃). (8.117)

By replacing ỹ by x̃ − ỹ, we see that

lim
t→0

∫

Rn

K(t, x̃, ỹ)v(0, ỹ)dỹ

= lim
t→0

∫

Rn

K(t, x̃, x̃ − ỹ)v(0, x̃ − ỹ)dỹ

= lim
t→0

∫

Rn

(2πt)−n/2 exp{−|ỹ|2
2t

+ x̃T Ã(t)x̃ + x̃T B̃(t)(x̃ − ỹ)

+ (x̃ − ỹ)T C̃(t)(x̃ − ỹ) + D̃(t)T x̃ + Ẽ(t)T (x̃ − ỹ) + s(t)}v(0, x̃ − ỹ)dỹ.

(8.118)
Let ỹ = √

2tz where z = (z1, · · · , zn). Then

lim
t→0

∫

Rn

K(t, x̃, ỹ)v(0, ỹ)dỹ

= lim
t→0

∫

Rn

(π)−n/2 exp{−|z|2 + x̃T Ã(t)x̃ + x̃T B̃(t)(x̃ − √
2tz)

+ (x̃ − √
2tz)T C̃(t)(x̃ − √

2tz) + D̃(t)T x̃

+ Ẽ(t)T (x̃ − √
2tz) + s(t)}v(0, x̃ − √

2tz)dz̃.

=
∫

Rn

π−n/2e−|z|2v(0, x̃)dz

=v(0, x̃).

(8.119)

	

Finally, by summarizing previous results, we obtain the explicit solution of
Schrödinger equation (8.83).
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Theorem 8.12 The solution of

⎧
⎪⎨

⎪⎩

∂v

∂t
(t, x̃) =1

2
�v(t, x̃) − 1

2
q(B−1(t)x̃ − B−1(t)b(t))v(t, x̃), τi−1 ≤ t ≤ τi,

v(τi−1, x̃) =σi(x̃)e−φ(x̃),

(8.120)
where

q(B−1(t)x̃−B−1(t)b(t)) =x̃T B(t)QB(t)T x̃−[2b(t)T B(t)T QB(t)T −P T B(t)T ]x̃
+ b(t)T B(t)QB(t)T b(t) − P T B(t)T b(t) + r

(8.121)
is given by

v(t, x̃) =
∫

Rn

K(t, x̃, ỹ)v(τi−1, ỹ)dỹ. (8.122)

Here

K(t, x̃, ỹ) =(2π(t − τi−1))
−n/2 exp

{

− |x̃ − ỹ|2
2(t − τi−1)

+ x̃T Ã(t)x̃ + x̃T B̃(t)ỹ

+ỹT C̃(t)ỹ + D̃(t)T x̃ + Ẽ(t)T ỹ + s(t)
}

,

(8.123)
where Ã(t−τi−1) = ∑∞

n=1 Ãn(t−τi−1)
n, B̃(t−τi−1) = ∑∞

n=1 B̃n(t−τi−1)
n, C̃(t−

τi−1) = ∑∞
n=1 C̃n(t − τi−1)

n, D̃(t − τi−1) = ∑∞
n=1 D̃n(t − τi−1)

n, Ẽ(t − τi−1) =
∑∞

n=1 Ẽn(t −τi−1)
n, s(t −τi−1) = ∑∞

n=1 sn(t −τi−1)
n, b(t −τi−1) = ∑∞

n=0 bn(t −
τi−1)

n, B(t − τi−1) = ∑∞
n=0 Bn(t − τi−1)

n can be computed via (8.110).

In brief, we show that in order to solve the nonlinear filtering problem for
the time-invariant Yau filtering system with arbitrary initial condition, it suffices
to solve a time-varying Schrödinger equation with arbitrary initial condition. We
actually solve the time-varying Schrödinger equation with arbitrary initial condition
by constructing the fundamental solution explicitly in case the potential is quadratic
in state variables (which include the case that the observation hi(x), 1 ≤ i ≤ m,
are nonlinear but with linear growth). The fundamental solution is constructed via a
system of nonlinear ODEs. This system of nonlinear ODEs is solved explicitly by
power series method.
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8.5 Nonlinear Filtering and Time-Varying Schrödinger
Equation II

In this section, we extend the result of Sect. 8.4 to time-varying Yau systems.
This section mainly refers to the work of Chen et al. [1]. Similar to the previous
section, robust DMZ equation is changed to a Kolmogorov equation by exponential
transformations in each time interval, and then under some assumptions, the
Kolmogorov can be transformed into time-varying Schrödinger equation which can
be solved explicitly.

The continuous time-varying filtering problem considered in this section can be
stated as follows:

{
dxt = f (xt , t)dt + g(t)dvt , x(0) = x0,

dyt = h(xt , t)dt + dwt , y(0) = 0,
(8.124)

where xt , f ∈ Rn, g ∈ R
n×r , vt ∈ R

r is a Brownian motion process with
E[dvtdvT

t ] = Q̃(t)dt and Q̃(t) > 0, yt , h ∈ R
m and wt ∈ R

m is a Brownian
motion process with E[dvtdvT

t ] = S(t)dt and S(t) > 0. Here we refer xt as the
state of the system at time t , f (xt , t) as the drift term, Q̃(t), S(t) as the variance of
the noises, and yt as the observation at time t .

First, we give some assumptions in terms of system (8.124). We assume that
G(t) := g(t)Q̃(t)g(t)T is C∞ smooth, and f (x, t), h(x, t) are C∞ smooth in both
state and time. For the sake of clarity, we state some notations first: ∗ij denotes the
ij -entry of the matrix ∗, ∗i denotes the i-th element of the vector ∗, and ∗T denotes
the transposition of ∗.

Next we derive the robust DMZ equation for time-varying system, and we recall
the DMZ equation can be written as follows:

{
dσ(t, x) = Lσ(t, x)dt + σ(t, x)hT (x, t)S−1(t)dyt ,

σ (0, x) = σ0(x),
(8.125)

where σ0(x) is the probability density of the initial state x0 and

L(∗) := 1

2

n∑

i,j=1

∂2

∂xi∂xj

[Gij (t)∗] −
n∑

i=1

∂(fi∗)

∂xi

. (8.126)

For each arrived observation, we make an invertible exponential transformation:

u(t, x) = exp[−hT (x, t)S−1yt ]σ(t, x). (8.127)
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Then we transform DMZ equation to robust DMZ equation, which is a deterministic
PDE with stochastic coefficients:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =1

2

n∑

i=1

Gij (t)
∂2u

∂xi∂xj

(t, x)−
n∑

i=1

fi(x)
∂u

∂xi

+ ∂

∂t
(hT S−1)T yt · ∇u(t, x)

+
⎧
⎨

⎩
1

2

n∑

i,j=1

Gij (t)

[
∂2K̃

∂xi∂xj

]

−
n∑

i=1

fi

∂K̃

∂xi

(t, x) −
n∑

i=1

∂fj

∂xi

(t, x)

− 1

2
(hT S−1h)

}

u(t, x)

u(0, x) =σ0(x),

(8.128)
where

K̃(x, t) = hT (x, t)S−1(t)yt . (8.129)

Similarly to the previous section, we can apply Yau-Yau algorithm. We assume the
observations arrive at discrete instants and we denote the observation time sequence
as Pk = {0 = τ0 < τ1 < · · · < τk = τ }, |Pk| := sup1≤i≤k(τi − τi−1). In each time
interval [τi−1, τi], 1 ≤ i ≤ k, we assume observation signal yt is taken yτi−1 and
then solve the robust DMZ equation. Yau-Yau algorithm can guarantee convergence
of the solution in L2 and point-wise sense when |Pk| → 0,

In the second and third authors proposed an on- and off-line algorithm to solve
the NLF problems in real time which has been verified numerically as an effective
tool in very low dimension. The key idea of Luo et al. is that the heavy computation
of solving PDE can be moved to off-line by the following proposition.

Proposition 8.3 For each τk−1 ≤ t ≤ τk, k = 1, 2, · · · , uk(t, x) satisfies (8.128) if
and only if

ũk(t, x) = exp[hT (x, t)S−1(t)yτk−1]uk(t, x), (8.130)

satisfies the Kolmogorov equation:

∂ũk

∂t
(t, x) =

(

L − 1

2
hT S−1h

)

ũk(t, x), (8.131)

i.e.,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũk

∂t
(t, x) =1

2

n∑

i,j=1

Gij (t)
∂2ũk

∂xi∂xj

−
n∑

j=1

fj (x)
∂ũk

∂xj

(t, x)

−
⎛

⎝
n∑

j=1

∂fj

∂xj

(x) + 1

2
hT S−1h

⎞

⎠ ũk(t, x)

ũ1(0, x) =σ0(x),

ũk(τk−1, x) = exp
[
hT (x, τk−1)S

−1(τk−1)(yτk−1 − yτk−2)
]
ũk−1(τk−1, x), k ≥ 2.

(8.132)

In this section, we aim to extend the results to the more general time-varying Yau
systems:

f (x, t) = L(t)x + l(t) + G(t)∇xφ(t, x), (8.133)

where L(t) = (lij (t)), 1 ≤ i, j ≤ n, lT = (l1(t, · · · , ln(t))) and φ(t, x) is a smooth
function on R

n.
In the following proposition, we make an exponential transformation from ũk to

ṽk so that the coefficients of gradient of ṽk become linear.

Proposition 8.4 ([1]) Suppose ũk(t, x) is the solution to (8.132) in the interval
τk−1 ≤ t ≤ τk, k = 1, 2, · · · and f (x, t) is of the form (8.133). Let

ũk(t, x) = eφ(t,x)ṽk(t, x); (8.134)

then we have the following equation for ṽk(t, x):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ṽk

∂t
(t, x) =1

2

n∑

i,j=1

Gij (t)
∂2ṽk

∂xi∂xj

− (Lx + l)T ∇ṽk

− 1

2
q(t, x)ṽk(t, x)

ṽ1(0, x) =σ0(x)e−φ(0,x),

ṽk(τk−1, x) = exp
[
hT (x, τk−1)S

−1(τk−1)(yτk−1 − yτk−2)
]
ṽk−1(τk−1, x), k ≥ 2,

(8.135)
where
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q(t, x) =
n∑

i,j=1

Gij (t)
∂2φ

∂xi∂xj

(t, x) + ∇xφ
T (t, x)G(t)∇xφ(t, x)

+ 2(Lx + l)T ∇xφ(t, x)

+
n∑

p,l=1

S−1
pl (t)hp(x, t)hl(x, t) + 2tr(L) + 2

∂φ

∂t
.

(8.136)

In [9], the third author and his co-worker changed the Kolmogorov forward
equation of ṽk into Schrödinger equation. However, the transformation is much
more difficult here since the coefficients Gij in front of the second derivative are
time-varying rather than the identity matrix I . Some assumptions on the system are
stated below.

Assumption 1 G(t) is a positive definite matrix.

Since G(t) is positive definite, then we can find an invertible matrix F(t) such
that

G(t) = F(t)F (t)T . (8.137)

Assumption 2 L(t) can be expressed as follows:

L(t) = G(t)�(t) + dF(t)

dt
F−1(t), (8.138)

where �(t) ∈ Rn×n is an arbitrary symmetric matrix.

Remark 8.2 If the state of system is scalar or the state is a vector and G(t), L(t)

are diagonal, it is obvious that Assumption 2 is naturally satisfied.

Under Assumption 1 and 2, we introduce a transformation to eliminate the gradient
term ∇ṽk in (8.135), so that the Schrödinger equation can be naturally connected to
the NLF problems later. Details can be found in [1].

Theorem 8.13 Under Assumptions 1 and 2, suppose ṽk(t, x) is a solution
of (8.135) and let

ṽk(t, x) = exT D(t)xvk(t, z), (8.139)

where
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z =B(t)x + b(t)

B(t) =F−1(t)

b(t) =
∫ t

0
B(s)l(s)ds

D(t) =1

2
�(t).

(8.140)

Then vk(t, z) is the solution of the following Schrödinger equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vk

∂t
(t, z) =1

2
�vk(t, z)

− 1

2
q̃(t, F (t)z − F(t)b(t))vk(t, z)

v1(0, z) =σ0(F (0)z) exp[−φ(0, F (0)z) − (F (0)z)T D(0)(F (0)z)],
vk(τk−1, z) = exp[hT (F (τk−1)z − F(τk−1)b(τk−1), τk−1)

S−1(τk−1)(yτk−1 − yτk−2)]vk−1(τk−1, z), k ≥ 2,
(8.141)

where

q̃(t, x) =q(t, x) + 2xT dD(t)

dt
x −

n∑

i,j=1

Gij (t)(Dij + Dji)

− xT (D(t) + DT (t))G(t)(D(t) + DT (t))x

+ 2(L(t)x + l)T (D(t) + DT (t))x.

(8.142)

Proof Direct computation and the details can be found in [1]. 	

Next we discuss to solve the Schrödinger equation (8.141) explicitly. First, we make
an assumption that q̃ is a quadratic polynomial in variable x.

Assumption 3 q̃(t, x) defined in (8.142) is quadratic with respect to x.

Actually, Assumption 3 includes Kalman-Bucy filter and Benes filtering. Notice
that observation term hi(x, t) can be nonlinear which extends the Kalman-Bucy
filtering system. q̃ is quadratic in x under Assumption 3. Thus, we can assume that

q̃(t, x) = xT Q(t)x + pT (t)x + r(t). (8.143)

In the following theorem, in order to solve the Schrödinger equation, we need
to find the fundamental solution of (8.141). Similar to heat kernel, we assume
fundamental solution has the exponential quadratic form and find the relations
between specific coefficients.
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Theorem 8.14 Let K(t, x, y) be the fundamental solution of

∂vk

∂t
(t, x) = 1

2
�vk(t, x) − 1

2
q̃(t, F (t)x − F(t)b(t))vk(t, x), (8.144)

where

q̃(t, F (t)x − F(t)b(t)) =xT FT (t)Q(t)F (t)x

− [2bT (t)F T (t)Q(t)F (t) − pT (t)F (t)]x
+ bT (t)F T (t)Q(t)F (t)b(t) − pT (t)F (t)b(t) + r(t).

(8.145)
Assume the fundamental solution K(t, x, y) can be written as

K(t, x, y)=(2πt)−n/2exp{xT Ã(t)x+xT B̃(t)y+yT C̃(t)y+D̃T(t)x+ẼT (t)y+s(t)},
(8.146)

where Ã(t), C̃(t) are n×n symmetric matrices, B̃(t) is a n×n matrix, and D̃(t) and
Ẽ(t) are column n-vector. Then coefficient Ã(t)–Ẽ(t) satisfy the following ODEs:

dÃ

dt
(t) =2Ã(t)2 − 1

2
FT (t)Q(t)F (t)

dB̃

dt
(t) =2Ã(t)B̃(t)

dC̃

dt
(t) =1

2
B̃T B̃

dẼ

dt
(t) =2ÃD̃ + FT (t)Q(t)F (t)b(t) − 1

2
FT (t)p(t)

dẼ

dt
(t) =B̃T D̃

ds

dt
(t) =1

2
D̃T D̃ + tr(Ã)

− 1

2
[bT (t)F T (t)Q(t)F (t)b(t) − pT (t)F (t)b(t) + r(t)] + n

2t
.

(8.147)

Proof The proof is similar to Theorem 8.10. 	

In the following theorem, we use power series method to solve the ODEs in
Theorem 8.14 and obtain the explicit solution of Schrödinger equation on vk . The
method is similar to Sect. 8.4 and details can be referred to the work of Chen et al.
[1].
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Theorem 8.15 Under Assumptions 1–3, the solution vk(t, z) in τk−1 ≤ t ≤ τk

of (8.141) is given by

vk(t, x) =
∫

Rn

K(t, x, y)vk(τk−1, y)dy, (8.148)

where

K(t, x, y) =(2π(t − τk−1))
−n/2 exp{− |x − y|2

2(t − τk−1)
+ xT Ã(t − τk−1)x

+ xT B̃(t − τk−1)y + yT C̃(t − τk−1)y + D̃T (t − τk−1)x

+ ẼT (t − τk−1)y + s(t − τk−1)},
(8.149)

where Ã(t − τk−1) = ∑∞
n=1 Ãn(t − τk−1)

n, B̃(t − τk−1) = ∑∞
n=1 B̃n(t −

τk−1)
n, C̃(t − τk−1) = ∑∞

n=1 C̃n(t − τk−1)
n, D̃(t − τk−1) = ∑∞

n=1 D̃n(t −
τk−1)

n, Ẽ(t − τk−1) = ∑∞
n=1 Ẽn(t − τk−1)

n, s(t − τk−1) = ∑∞
n=1 sn(t −

τk−1)
n, b(t − τk−1) = ∑∞

n=0 bn(t − τk−1)
n, F (t − τk−1) = ∑∞

n=0 Fn(t −
τk−1)

n,Q(t − τk−1) = ∑∞
n=0 Qn(t − τk−1)

n, p(t − τk−1) = ∑∞
n=0 pn(t −

τk−1)
nr(t − τk−1) = ∑∞

n=0 rn(t − τk−1)
n, where

Ãn+1 = 2

n + 3

n∑

i=0

ÃiÃn−i − 1

2(n + 3)

n∑

j=0

j∑

i=0

FT
i Qj−iFn−j

B̃n+1 = 2

n + 2

n+1∑

i=0

ÃiB̃n−i

C̃n+1 = 1

2(n + 1)

n+1∑

i=−1

B̃T
i

˜Bn−i

D̃n+1 = 2

n + 2

n+1∑

i=0

ÃiD̃n−i

− 1

n + 2

n∑

i=0

FT
i pn−i − 1

2(n + 2)

n∑

j=0

j∑

i=0

i∑

l=0

FT
l Qi−lFj−lbn−j
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Ẽn+1 = 2

n + 1

n+1∑

i=−1

B̃iD̃n−i

sn+1 = 1

2(n + 1)

n+1∑

i=−1

D̃T
i D̃n−i + 1

n + 1
tr(Ãn)

− 1

2(n + 1)

[ n∑

i=0

i∑

j=0

j∑

m=0

m∑

l=0

bT
l F T

m−lQj−mFi−j bn−i

−
n∑

j=0

j∑

i=0

pT
i Fj−ibn−j + rn

]

.

(8.150)

So far, we extend explicit solution of a class of time-varying system under the
Yau-Yau algorithm framework.

8.6 Nonlinear Filtering and Time-Varying Schrödinger
Equation III

In this section, we extend the result of Sect. 8.5 to a broader context. This section
mainly refers to the work of Chen et al. [2].

The filtering problem addressed here is the same as in the previous section. With
the same approach, it simplifies to deal with Eq. (8.128). Unlike the previous section,
Assumption 2 is no longer required.

Theorem 8.16 Under Assumption 1, suppose ṽk(t, x) is a solution of (8.128) and
let

ṽk(t, x) = vk(t, z), (8.151)

where

z = B(t)x

B(t) = F−1(t).
(8.152)

Then vk(t, z) is the solution of the following equation:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vk

∂t
(t, z) =1

2
�vk(t, z) − 1

2
q (t, F (t)z) vk(t, z)

−
[(

dB

dt
B−1 + BLB−1

)

z + Bl

]T

∇vk(t, z)

v1(0, z) =σ0 (F (0)z) exp (−φ (0, F (0)z))

vk (τk−1, z) = exp
[
hT (F (τk−1) z, τk−1) S−1 (τk−1)

· (yτk−1 − yτk−2

)]
vk−1 (τk−1, z)

k = 2, 3, . . . , N.

(8.153)

Proof Direct computation and the details can be found in [2]. 	

Let

q̃(t, z) = q (t, F (t)z) (8.154)

and modify Assumption 3 to the following form:

Assumption 3’ q̃(t, z) defined in (8.154) is quadratic with respect to z.

Similarly, we can assume that

− 1

2
q̃(t, z) = zT Q(t)z + pT z + r(t). (8.155)

Theorem 8.17 Under Assumption 1 and 3’, consider the following KFE with
Gaussian initial distribution:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂vk

∂t
(t, z) =1

2
�vk(t, z) − 1

2
q̃(t, z)vk(t, z)

−
[(

dB

dt
B−1 + BLB−1

)

z + Bl

]T

∇vk(t, z)

vk (τk−1, z) = exp
{
zT A (τk−1) z + bT (τk−1) z + c (τk−1)

}
,

(8.156)

where A (τk−1) is an n × n symmetric matrix, b (τk−1) is an n × 1 vector, xT =
(x1, x2, . . . , xn) is a row vector, and c (τk−1) is a scalar. Then the solution of (8.156)
is of the following form:

vk(t, z) = exp
{
zT A(t)z + bT (t)z + c(t)

}
(8.157)

where A(t) is an n × n symmetric matrix-valued function of t , b(t) is an n × 1
vector-valued function of t , and c(t) is a scalar-valued function of t satisfying the
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following system of nonlinear ODEs:

dA(t)

dt
= 2A2(t) − 2A(t)D(t) + Q(t)

dbT (t)

dt
= 2bT (t)A(t) − bT (t)D(t) − 2dT (t)A(t) + pT (t)

dc(t)

dt
= trA(t) + 1

2
bT b(t) − dT (t)b(t) + r(t),

(8.158)

with

D(t) = dB

dt
B−1 + BLB−1

d(t) = B(t)l(t).

(8.159)

Proof The proof is similar to Theorem 8.8. 	

Then we can give an outline of direct method based on the framework presented

in [2].

Algorithm 4 Direct method
1: for k ∈ {1, . . . , N} do
2: Calculate vk (z, τk−1) by initial condition of (8.153)
3: Using Algorithm 3 to get the Gaussian approximation

vk (z, τk−1) ≈
Nk∑

i

αk,i exp
(
zT Ak,iz + bT

k,iz + ck,i

)
.

4: for i ∈ {1, . . . , Nk} do
5: Solve (8.156) with the initial condition

vk,i (z, τk−1) = exp
(
zT Ak,iz + bT

k,iz + ck,i

)

by Theorem 8.17.
6: Calculate the approximate solution vk to (8.153) by vk ≈ ∑Nk

i αk,ivk,i .
7: Calculate ṽk (x, τk) by (8.151).
8: Calculate ũk (x, τk) by (8.134).
9: Calculate uk (x, τk) by (8.130).
10: Calculate σ (x, τk) by (8.127).
11: Calculate the conditional expectation of the state xτk

.

Here we use two numerical examples to demonstrate the efficiency of this
algorithm. The filtering system here is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dxt = (
c (xt + 1) + φ′ (xt )

)
dt + dvt

dyt =
(

xt sin xt

xt cos xt

)

dt + dwt

σ0(x) = exp
(−x sin x − 0.5x cos x − x2 + 3x + 2

)

∫
R
exp

(−x sin x − 0.5x cos x − x2 + 3x + 2
)
dx

.

(8.160)

Here, t ∈ [0, T ], where T > 0 is a fixed termination, with a sampling interval
�t = 0.01, and vt and wt are independent Brownian motions, with E (vtvt ) = 1

and E
(
wtw

T
t

) =
(

(1 + sin(0.2t))2 0
0 (1 + sin(0.2t))2

)

.

We introduce the mean of the squared estimation error (MSE) to demonstrate
the average performance of direct method. The MSE for m repeated realizations at
instant τk := k�t is defined as follows:

MSE (τk) := 1

mk

m∑

i=1

k∑

j=0

(
xi
τj

− x̂i
τj

)2
, (8.161)

where xi
τj
is the real state at instant τj in the ith realization and x̂i

τj
is the estimation

of xi
τj

via direct method.

Example 8.1 In this example, we set T = 2, c = 0.1, and φ = 0. The average
CPU running time is 3.3273s (Fig. 8.1).

Example 8.2 In this example, we set T = 5, c = 0.3, and

φ(x) =
∫ x

−∞

[
e−(0.3z−0.15)2

∫ z

−∞ e−(0.3y−0.15)2dy
− 0.45

]

dz. (8.162)

The average CPU running time is 5.1736s (Fig. 8.2).

It can be obviously seen that direct method demonstrates notable efficacy
in addressing nonlinear filtering problems. More precisely, its performance is
characterized by a low time consumption and a consistently low MSE, which
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Fig. 8.1 Simulation results of Example 8.1. (a) MSE based on 50 simulations. (b) A typical
simulation of Example 8.1



336 8 Direct Methods

(a)

0 2 3 4 5
time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
S

E
(t

)

direct method

(b)

0 1 2 3 4 5
time

1

2

3

4

5

6

7

es
tim

at
e

real state
direct method

1

Fig. 8.2 Simulation results of Example 8.2. (a) MSE based on 50 simulations. (b) A typical
simulation of Example 8.2

remains relatively stable as time increases. Results of a typical simulation reveal
that the estimate trajectory provided by direct method closely tracks the actual state
trajectory, despite the state trajectory exhibiting considerable oscillations over time.
Therefore, direct method is a good choice in applications.

8.7 Exercises

1. Prove the following vector field identity, where f, g are smoothing functions and
F is a vector field in R

n.

(1) ∇ · (f F ) = ∇f · F + f ∇ · F

(2) ∇ · (∇(fg)) = g∇ · ∇f + 2∇f · ∇g + f ∇ · ∇g

2. Verify the following choice of H(x),G(x), P (x) satisfying the condition of
Theorem 8.5:

⎧
⎪⎪⎨

⎪⎪⎩

G(x) ≡ 0

P(x) = 1
2η(x) − 1

2

∑n
i=1 l2i + 1

2

∑n
i=1

∂li
∂xi

Hi = li , 1 ≤ i ≤ n.

(8.163)

3. Choose a C∞ function G(x) such that ∂G
∂xi

= −li , if dij = dji . Let P(x) = 1
2η

and Hi ≡ 0, 1 ≤ i ≤ n. Verify the choice of H(x),G(x), P (x) satisfying the
condition of Theorem 8.5.

4. Verify the following choice of H(x),G(x), P (x) satisfying the condition of
Theorem 8.5:

⎧
⎪⎪⎨

⎪⎪⎩

G(x) = F(x)

P (x) = 1
2η − 1

2

∑n
i=1 f 2

i + 1
2

∑n
i=1

∂fi

∂xi

Hi = fi.

(8.164)
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5. Prove that � is a constant matrix if and only if

(f1, f2, · · · , fn) = (l1, l2, · · · , ln) +
(

∂F

∂x1
, · · · ,

∂F

∂xn

)

, (8.165)

where li , 1 ≤ i ≤ n are polynomials of degree 1 and F is a smooth function.
6. Achieve a numerical example of decomposing a non-Gaussian distribution to

sum of Gaussian distribution based on Algorithm 3.
7. Construct an example of filtering system that satisfies conditions (C1), (C2), (C3).
8. Consider function q(x) := �φ(x)+|∇φ|2+2(Lx+ l) ·∇φ+∑m

i=1 h2i (x)+2trL
of Eq. (8.75) and time-invariant Yau filtering setting f (x) = Lx + l + ∇φ and
h(x) = Hx. Prove that assumption that q(x) is a quadratic polynomial in x is
equivalent to that η := |f |2 + ∇ · f + |h|2 is quadratic in x.

9. Consider the following Kolmogorov forward equation:

∂u

∂t
(t, x) = 1

2

n∑

i,j=1

Gij

∂2u

∂xi∂xj

− f · ∇u − (∇ · f + 1

2
|h|2)u, (8.166)

with f = L(t)x+l(t)+∇xφ̃(t, x). If we take an invertible transformation u = eφ

v with ∇φ = G−1∇φ̃, prove that the equation satisfied by v becomes as below:

∂v

∂t
= 1

2

n∑

i,j=1

Gij

∂2v

∂xi∂xj

− (Lx + l) · ∇v − 1

2
q(t, x)v, (8.167)

with

q(t, x) = −
n∑

i,j=1

Gij

∂2φ

∂xi∂xj

+ ∇φ�G∇φ + 2(Lx + l) · ∇φ

+ 2�φ̃ + 2
∂φ

∂t
+ |h|2 + 2tr(L).

(8.168)
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Chapter 9
Classical Filtering Methods

In this chapter, we shall introduce several important filtering algorithms. In Sect. 9.2,
we shall introduce the filtering algorithms based on the Bayesian framework, in
which the system equation and observation equation can be consider as discrete
functions. In Sect. 9.3, we shall introduce filtering algorithms based on DMZ
equation, in which the system equation and observation equation can be considered
as continuous functions. In Sect. 9.4, we shall introduce another filtering topic called
robust filtering. In both sections, we shall start with the linear filtering problems and
extend them for general nonlinear system.

9.1 Introduction

In 1960, Rudolf E. Kalman proposed a linear quadratic estimation technique which
is well-known as the Kalman filter (KF) [6]. KF is also one of the very few
algorithms that completely solve the state estimation for a kind of system in an
optimal way.

With the development, the industrial pays great attention to the problems of
state estimation, and many nonlinear filter algorithms motivated by KF have been
designed. However, there is no nonlinear filtering algorithm that can “completely”
(as KF) solve the nonlinear filtering problem.

Even if many central problems of nonlinear filtering are still open, many
important filtering algorithms have played an extremely important role in various
applications. Nonlinear filtering transformed the world of signal processing. By
using filtering, many researchers developed highly sophisticated navigation systems
[18], camera tracking [20], fault diagnosis, chemical processes [22], vision-based
systems, target tracking [15, 21], biomedical systems [23, 24], robotics [25],
predictive economics, and stock forecasting systems [16, 17].
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In nonlinear filtering, there are two major problems of research interest:

• Numerical methods of solving the nonlinear filtering problem.
• Nonlinear filtering in case of uncertainty in model and data association.

With the prosperity and development of the deep learning field, more and more
data estimation methods are proposed, which constantly give birth to more filtering
algorithms based on deep learning. In this chapter, we shall focus on the first
problem which is numerical methods for solving the nonlinear filtering problem.

For different assumptions of the system, we can roughly divide the filtering
problem into two categories: continuous filtering system and discrete filtering
system. For discrete filtering problems, the transfer and update of the probability
density function depend on the Bayesian formula, so we also regard the discrete
filtering system as the Bayesian framework of filtering. Similarly, for a continuous
filtering system, the posterior distributions are determined by the DMZ equation or
Kushner equation.

We shall summarize the nonlinear filtering algorithms of the Bayesian framework
into the following two categories:

1. The structure of system functions is used for extending KF to nonlinear filtering
systems.

2. The structure of posterior distribution is used for extending KF to a nonlinear
filtering system.

As for 1, there is a well-known algorithm called the extended Kalman filter (EKF)
[26]. This filter linearizes a nonlinear system using approximation techniques. After
EKF was proposed, there were many works focused on approximating the system
functions with some kind of functions such as polynomials.

As for 2, there are three ways of using the structure of posterior distribution.

• The first one is to use the statistical characteristics of distribution, and unscented
Kalman filter (UKF) [27] is a standard example of it. Since the nonlinear system
model is approximated using Jacobian matrices in the EKF, the calculation may
be costly, and it may not be easy to obtain accurate results for the highly nonlinear
systems due to linearization. The UKF uses a deterministic sampling approach to
capture the statistical points which makes the UKF to be considered more robust
and more accurate.

• The second one is to project the posterior distribution function into a finite-
dimensional space, which is started from the projection filter (PrF) [31]. Soon,
the idea of PrF was combined with the information geometry which gave birth to
many related filtering algorithms.

• Finally, the third one is to use the sampling particles for the reconstruction of
the posterior distribution instead of solving the equations (ODE, PDE, SDE).
The idea, of sequence Monte Carlo methods, gave the birth of the particle filter
(PF) [29]. PF uses a set of weighted samples (called particles) to approximate the
Bayesian prior and posterior.
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It needs to be pointed out that the classifications mentioned above are not
independent of each other. Many good algorithms are designed by combining
the advantages of many ideas, such as the iteration EKF, mix-Gaussian method,
projection PF, and so on.

Besides the Bayesian framework, there are many interests in extending the
successful filtering algorithms to the DMZ framework. From the perspective of the
algorithm, the Yau-Yau filtering algorithm provides a way to systematically solve
nonlinear filtering problems by using numerical schemes of the parabolic partial
differential equation. At the same time, Yau-Yau algorithms can be combined with
a variety of numerical methods, such as projecting the system to some function
spaces (the idea of EKF) or projecting the density function to some spaces (PrF).

In addition to the Yau-Yau algorithm, traditional PF including other simulation-
based approaches does not have the (innovation error-based) feedback structure used
in the KF. An important breakthrough of PF is the feedback particle filter (FPF)
[11] which uses a feedback structure based on the mean-field game theory. The FPF
equalizes the weights of particles, thus avoiding the disadvantages of traditional
particle methods related to weights.

Besides, another interesting filtering method called robust filtering is considered
here. The motivation is that these filters are derived by MMSE criterion making
them very sensitive to heavy-tailed observation noises, which are frequently encoun-
tered in practical applications. How to improve state estimate robustness against
non-Gaussian heavy-tailed observation noises has been the focus of robust filtering.

The organization of the remainder of this chapter is as follows. Section 9.2.1
presents the mathematical problem of nonlinear filtering considered in the Bayesian
framework and the discrete KF. Section 9.2.2 presents the EKF in the Bayesian
framework which linearizes a nonlinear system using approximation techniques.
Section 9.2.3 presents the UKF as an extension of EKF. Section 9.2.4 presents the
PF and EnKF [28] as sampling-based filtering algorithms. Section 9.3.1 presents the
mathematical problem of nonlinear filtering considered in the DMZ framework. We
introduce the continuous KF which is well-known as Kalman-Bucy filter (KBF) [30]
in this section. Section 9.3.2 presents the EKF in the DMZ framework. Section 9.3.3
presents a control view of the PF framework and the FPF algorithm including several
different simulation methods. Section 9.4 presents the iterative outlier-robust EKF
[36] framework with three robust cost functions.

9.2 Filtering Algorithm Based on Bayesian Framework

At the beginning of this section, we shall introduce the discrete filtering system
which is modeled as the following stochastic differential equation (SDE):

{
Xk+1 = fk(Xk) + �k(Xk)Vk,

Yk = hk(Xk) + Wk,
(9.1)
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where Xk, Vk, Yk,Wk are, respectively, Rn-, Rn-, Rm-, and Rm-valued processes
and Vk and Wk are independent Gaussians with proper dimensions and covariance
matrices In, Sk , respectively. We further assume that fk , �k , and hk are C∞ smooth
functions for any k ≥ 1. And X0 follows some given distributions.

Remark 9.1 In general, the noise in the state equation is correlated with the noise in
the observation equation. And according to the actual applications, there are mainly
two cases:

• E[V �
k Wk] = Ck ,

• E[V �
k Wk+1] = Ck .

But in this paper, we mainly focus on the cases where V and W are independent.
The derivation of the noise-related case is similar to the noise-independent case, but
there are differences in details. We provide two references [12, 13] for readers.

In the rest of this section, we use p(Xk) as the density function of Xk ,
p(Xk|Yk) as the conditional density of Xk given Yk and p(Xk|X1:k−1) :=
p(Xk|X1, · · · , Xk−1). Under this framework, we have the following assumptions
for the system:

• The state process {Xk}∞k=1 is a Markov process, that is

p(Xk|X1:k−1) = p(Xk|Xk−1),

for any k ≥ 1.
• The state Xk is independent of {Y1, · · · , Yk−1} given Xk−1, which means

p(Xk|Xk−1, Y1:k−1) = p(Xk|Xk−1).

At the time step k, the conditional density function of the state Xk given
observations {Yi}ki=1 is p(Xk|Y1:k). The conditional density function at k and k + 1
is connected by the Bayesian formula as follows:

p(Xk+1|Y1:k+1) = p(Yk+1|Xk+1, Y1:k)p(Xk+1|Y1:k)
p(Yk+1|Y1:k) . (9.2)

Next, we shall introduce the general process of the Bayesian filtering framework.

Bayesian filtering framework is given as follows:
• Prediction step is to get p(Xk+1|Y1:k). The prior density function p(Xk+1|Y1:k)

satisfies the following Chapman-Kolmogorov equation:

p(Xk+1|Y1:k) =
∫

p(Xk+1|Xk)p(Xk|Y1:k)dXk. (9.3)

• Update step is to get p(Xk+1|Y1:k) by using p(Yk+1|Y1:k).
By using the Markov property, we can have

p(Yk+1|Xk+1, Y1:k) = p(Yk+1|Xk+1). (9.4)
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Then p(Xk+1|Y1:k+1) can be calculated by using (9.2). In update step, we
still need to normalize p(Yk+1|Xk+1, Y1:k)p(Xk+1|Y1:k) in order to calculate
p(Xk+1|Y1:k+1).

9.2.1 Linear System and KF

As described in Chap. 5, the density evolution of the continuous filtering system is
characterized by a family of SPDE, which is difficult to solve in real applications.
In the continuous nonlinear filtering problem, the change of the system at two
consecutive adjacent times is small.

9.2.2 Discrete KF

A stochastic time-variant linear system is described by the difference equation and
the observation model

{
Xk = Ak−1Xk−1 + Bk−1 + �kWk−1,

Yk = HkXk + Vk,
(9.5)

which can be considered as a special case of (9.1) by assuming fk(x) = Ak · x +Bk

with Ak ∈ Rn×n, Bk ∈ Rn, �k ∈ Rn×n, and hk(x) = Hk · x with Hk ∈ Rm×n for
any k ≥ 1. Furthermore, Vk and Wk are independent Gaussians with corresponding
dimensions and covariance matrices In ∈ Rn×n, Sk ∈ Rm×m, respectively, for any
k ≥ 1. And the initial state X0 ∈ Rn is a Gaussian with known mean μ0 = E[X0]
and covariance P0 = E[(X0 − μ0)(X0 − μ0)

�].
It is well-known that, for system (9.5), the prior and posterior densities of state

are Gaussians, i.e.,

p(Xk−1|Y1:k−1) = N(μk−1|k−1, Pk−1|k−1),

p(Xk|Y1:k−1) = N(μk|k−1, Pk|k−1).
(9.6)

Next, we shall introduce the result first proposed by Kalman.

Theorem 9.1 ([6]) For the discrete filtering system (9.5), if we assume the initial
distribution X0 ∼ N(μ0, P0), then the optimal (minimum variance unbiased)
estimate and its covariance at step k are μk|k and Pk|k , respectively, which satisfy
the following equations:
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Step of prediction:

μk|k−1 = Ak−1μk−1|k−1 + Bk−1,

Pk|k−1 = Ak−1Pk−1|k−1A
�
k−1 + Qk−1,

(9.7)

Step of update:

μk|k = μk|k−1 + Kk(Yk − Hkμk|k−1),

Pk|k = Pk|k−1 − KkHkPk|k−1,
(9.8)

where Kk = Pk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1 is called as Kalman gain.

Proof The optimal estimate is the conditional mean and is computed in two steps:
the forecast step using the model difference equations and the data assimilation step.
Next, we shall prove it by using the Bayesian filtering framework.

Step of prediction

μ0|0 = μ0 = E[X0]
P0|0 = E[(X0 − μ0)(X0 − μ0)

�] (9.9)

Assume now that we have an optimal estimate μk−1|k−1 = E[Xk−1|Y1:k−1] with
Pk−1|k−1covariance at time k − 1. The predictable part of μk|k−1 is given by

μk|k−1 = E[Xk|Y1:k−1]
= E[Ak−1Xk−1 + Bk−1 + Wk−1|Y1:k−1]
= Ak−1μk−1|k−1 + Bk−1. (9.10)

The forecast error is given as follows:

ek|k−1 = Xk − μk|k−1

= Ak−1(Xk−1 − μk−1|k−1) + Wk−1

= Ak−1ek−1|k−1 + Wk−1. (9.11)

The forecast error covariance is given by

Pk|k−1 = E[ek|k−1e
�
k|k−1]

= E[(Ak−1ek−1 + Wk−1)(Ak−1ek−1 + Wk−1)
�]

= Ak−1E[ek−1e
�
k−1]A�

k−1 + Qk−1

= Ak−1Pk−1A
�
k−1 + Qk−1. (9.12)
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Step of update

At the time k we have two pieces of information: the forecast value μk|k−1 with the
covariance Pk|k−1 and the measurement Yk with the covariance Sk . Then, by using
the (9.2), there is

p(Xk|Y1:k) = p(Yk|Xk, Y1:k−1)p(Xk|Y1:k−1)

p(Yk|Y1:k−1)
. (9.13)

On the right-hand side of (9.13), the denominator part is independent with Xk ,
which is only a normalization coefficient. The molecular part is the product of two
Gaussian densities, so the exponential part of the density function is still a quadratic
polynomial, where the variance and expectation are determined by the coefficient of
the quadratic term and the coefficient of the linear term.

Let us focus on the coefficient of quadratic term in the molecular part of (9.13)
and the basic definition of Gaussian densities, which yields

− 1

2
H�

k (Sk)
−1Hk − 1

2
P −1

k|k−1 =: −1

2
P −1

k|k (9.14)

Since

(H�
k S−1

k Hk + P −1
k|k−1) = P −1

k|k−1(In + Pk|k−1H
�
k S−1

k Hk)

= ((In + Pk|k−1H
�
k S−1

k Hk)
−1P)−1,

(9.15)

then we consider the following matrix equation:

(In + Pk|k−1H
�
k S−1

k Hk) · (I − Pk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1Hk)

= In + Pk|k−1H
�
k S−1

k Hk − Pk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1Hk)

− Pk|k−1H
�
k S−1

k HkPk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1Hk

= In,

(9.16)

which means that

Pk|k = ((In + Pk|k−1H
�
k S−1

k Hk)
−1P)−1 = (In − KkH

�
k )Pk|k−1, (9.17)

with Kk = Pk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1.
Then, similarly, consider the linear term which is 2P −1

k|k−1μk|k−1 + 2H�
k S−1

k Yk

and using the (9.17), we can have

μk|k := Pk|k(P −1
k|k−1μk|k−1 + H�

k S−1
k Yk)

= μk|k−1 + Kk(Yk − Hkμk|k−1).
(9.18)
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So, we finish the proof. ��
Next, we will reduce the KF from the perspective of linear control. From the

previous proof, it is not difficult to see that the optimal estimation at time k is
determined by the optimal estimation at the previous time and the observation k.
So we shall consider the linear control system as follows:

X̄k = Ak−1X̄k−1 + Bk−1 + KkYk + Uk(X̄k−1), (9.19)

where Yk is given in (9.5).
We can understand Eq. (9.19) as the original system equation and add the extra

control functions Kk,Uk and which are assumed to be linear functions of Xk−1 and
Yk .

In control theory, we have two important properties, controllability and optimal-
ity.

• Controllability is about whether the desired state can be achieved.
• Optimality is to find the optimal solution to all controllable targets, which is

often in the sense of a loss function such as mean square error.

It is trivial to see that X̄k|k in system (9.19) can become any Gaussians at a
given time k and it cannot become any non-Gaussians at any time k. And for
controllability, we shall further assume

E[X̄k|k|X̄k−1|k−1] = Ak−1X̄k−1|k−1. (9.20)

So, U(·) will be

U(X̄k−1|k−1) = −KkHkAk−1X̄k−1|k−1. (9.21)

Furthermore, by the means of optimality, that is to choose the suitable control
functions Kk for the following equation to minimize the covariance of such
estimator:

min
Kk,1≤k≤n

n∑

k=1

Jk(X̄k),

X̄k = Ak−1X̄k−1|k−1 + Bk−1 + Kk(Yk − HkAk−1X̄k−1|k−1),

(9.22)

The cost functional to be minimized is given by

Jk(X̄k|k) := E[(X̄k|k − E[X̄k|k])�(X̄k|k − E[X̄k|k])] ∈ R. (9.23)

We can denote that P̄k|k as the covariance matrix of X̄k|k . By using the tr(ab) =
tr(ba)∀a, b� ∈ Rn×m, we shall have

Jk = tr(P̄k|k).
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Furthermore, let the X̄k|k−1 = Ak−1X̄k−1|k−1 + Bk−1 and P̄k|k−1 := E[(X̄k|k−1 −
E[X̄k|k−1])(X̄k|k−1−E[X̄k|k−1])�], Eq. (9.22) can be simplified into the following:

min
Kk,1≤k≤n

n∑

k=1

Jk(X̄k),

X̄k = X̄k|k−1 + Kk(Yk − HkX̄k|k−1).

(9.24)

We assume that

Kk = Pk|k−1H
�
k (HkPk|k−1H

�
k + Sk)

−1 + K̂k, (9.25)

and we need to choose a K̂k to minimize Eq. (9.22)

Jk = tr(P̄k|k) = tr(P̄k|k−1 − P̄k|k−1H
�
k (HkP̄k|k−1H

�
k + Sk)

−1HkP̄k|k−1)

+ tr(K̂k(HkP̄k|k−1H
�
k + Sk)K̂

�
k ).

(9.26)
Now, HkP̄k|k−1H

�
k + Sk is positive-defined matrix. So,

tr(K̂k(HkP̄k|k−1H
�
k + Sk)K̂

�
k ) ≥ 0, (9.27)

for all K̂k ∈ Rn×m. Therefore, the minimizing K̂k = 0n×m,
So we can summarize the above analysis into the following theorem.

Theorem 9.2 For the discrete filtering system (9.5), if we assume the initial
distribution X0 ∼ N(μ0, P0). Consider the following control problem:

min
Kk,Uk,1≤k≤n

n∑

k=1

E[(X̄k − Xk)
�(X̄k − Xk)]

Subject to as follows: X̄k=Ak−1X̄k−1 + Bk−1+Kk(Yk − HkAk−1X̄k−1), 1≤k≤n.

(9.28)
And the optimal solution pair Kk of Eq. (9.28) is the Kalman gain.

9.2.3 From KF to EKF

It is almost impossible to encounter completely linear systems in practical problems.
We need a set of algorithms that can be used for nonlinear systems. From the
perspective of analysis, the system function and the observation function can be
approximated as some linear functions. Then, an extended Kalman filter [26]
motivated by the theory of KF is proposed, and such an idea is called local
linearization.
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For a general nonlinear filtering system, (9.1) and any k, the following Taylor-like
expansion is expected:

fk(x) = ∇fk(Xk)(x − Xk) + fk(Xk) + O(‖x − Xk‖22), (9.29)

hk(x) = ∇hk(Xk)(x − Xk) + hk(Xk) + O(‖x − Xk‖22), (9.30)

where the ∇fk(·) and ∇hk(·) are the Jaccobi matrices of f and h, the O(‖ · ‖m
2 )

represent the residual term of at least order m in the Taylor expansion in Taylor
expansion, and ‖ · ‖2 is the 2−norm of vectors in Euclidean space.

Theorem 9.3 For a nonlinear and discrete filtering system (9.1), if we assume
the initial distribution X0 ∼ N(μ0, P0), then there are sequential suboptimal
estimation called extended Kalman filter (EKF). We assume they are μk|k and Pk|k
which satisfy the following equations:

The prediction step

μk|k−1 = f (μk−1|k−1),

Pk|k−1 = ∇fk−1(μk−1|k−1)Pk−1|k−1∇f �
k−1(μk−1|k−1) + Qk−1.

(9.31)

The update step

μk|k = μk|k−1 + Kk(Yk − hk(μk|k−1)),

Pk|k = Pk|k−1 − Kk∇hk(μk|k−1)Pk|k−1,
(9.32)

where Kk = Pk|k−1∇h�
k (μk|k−1)(∇hk(μk|k−1)Pk|k−1

∂h�
k

∂x
(μk|k−1) + Sk)

−1.

Proof It follows from the Theorem 9.1 with the Eqs. (9.29) and (9.30). ��

9.2.4 UKF

Notice that it is easier to approximate a probability distribution than it is to approx-
imate an arbitrary nonlinear transformation. Based on intuition, the unscented
transformation (UT) is proposed, which aims to calculate the statistics of a random
variable that undergoes a nonlinear transformation. It is a deterministic sampling
technique, which uses a minimal set of sample points, called sigma points, which
are chosen such that the weighted sample mean and covariance of the sigma points
are close enough to the real mean and covariance. It has been proven that UT gives
the third-order accuracy for Gaussian inputs and at least the second accuracy for
non-Gaussian inputs. More details about UT can be found in [14].
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Step of prediction

A set of sigma points is derived from the estimated state:

X0
k−1|k−1 =μk−1|k−1,

Xi
k−1|k−1 =μk−1|k−1 +

(√
(n + λ)Pk−1|k−1

)

i
, i = 1 . . . n,

Xi
k−1|k−1 =μk−1|k−1 −

(√
(n + λ)Pk−1|k−1

)

i
, i = n + 1 . . . 2n,

(9.33)

where
(√

(n + λ)Pk−1|k−1
)
i
is the i−th column of the matrix square root of (n +

λ)Pk−1|k−1.
Then the predicted mean and covariance are computed by propagating the sigma

points through the transition function f .

Xi
k|k−1 =f

(
Xi

k−1|k−1

)
, i = 0 . . . 2n,

μk|k−1 =
2n∑

i=0

Wi
mXi

k|k−1,

Pk−1|k−1 =
2n∑

i=0

Wi
c

[
Xi

k|k−1 − μk|k−1

]
×

[
Xi

k|k−1 − μk|k−1

]T + Qk−1,

(9.34)
where the associated weights for the state and covariance estimation are given by

W0
m = λ

(n + λ)
,

W0
c = λ/(n + λ) +

(
1 − α2 + β

)
,

Wi
m = 1

2(n + λ)
, i = 1 . . . 2n,

Wi
c = 1

2(n + λ)
, i = 1 . . . 2n.

(9.35)

Parameter λ is a scaling factor, which is defined as

λ = α2(n + κ) − n, (9.36)

where α and κ control the spread of the sigma points and β is related to the
distribution of xk . If noises are Gaussian, β = 2 is optimal.
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Step of update. Similar to the prediction step, a set of 2n + 1 sigma points are
derived to compute the filtered mean and covariance.

X0
k|k−1 =μk|k−1,

Xi
k|k−1 =μk|k−1 +

(√
(n + λ)Pk|k−1

)

i
, i = 1 . . . n,

Xi
k|k−1 =μk|k−1 −

(√
(n + λ)Pk|k−1

)

i
, i = n + 1 . . . 2n.

(9.37)

After that the sigma points are projected through the observation function h as
follows:

Y i
k = h

(
Xi

k|k−1

)
, i = 0 . . . 2n. (9.38)

Then the weighted sigma points are recombined to produce the predicted measure-
ment mean and covariance as follows:

ŷk =
2n∑

i=0

Wi
mY i

k ,

Pzz =
2n∑

i=0

Wi
c

[
Y i

k − ŷk

] [
Y i

k − ŷk

]T + Rk.

(9.39)

The state-measurement cross-covariance matrix is given as

Pxz =
2n∑

i=0

Wi
c

[
Xi

k|k−1 − μk|k−1

] [
Xi

k|k−1 − μk|k−1

]T

, (9.40)

which is used to compute the UKF gain by

Kk = PxzP
−1
zz . (9.41)

The updated state is the predicted state plus the innovation weighted by the UKF
gain:

μk|k = μk|k−1 + Kk

(
yk − ŷk

)
. (9.42)

Moreover, the updated covariance is the predicted covariance minus the predicted
measurement covariance weighted by the UKF gain:

Pk|k = Pk|k−1 − KkPzzK
T
k . (9.43)
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9.2.5 Discrete Particle Methods for Filtering

Next, in this subsection, we shall introduce the filtering algorithm based on the
simulation approach, which is well-known as particle filter (PF). A discrete PF is
a filtering system based on a Bayesian framework.

For filtering problems, it is often necessary to solve some characteristics of
density functions, i.e.,

E[φ(Xk)|Y1:k] =
∫

φ(Xk)p(Xk|Y1:k)dXk, (9.44)

where the φ(Xk) is a test function.

9.2.5.1 Monte Carlo Method

For the above-expected integral operation, we use the Monte Carlo method to give
a numerical approximation. We use the empirical distribution of Np particles to
approximate the posterior distribution

p(Xk|Y1:k) ≈ p̂(Xk|Y1:k) := 1

Np

Np∑

i=1

∫
δ(Xk − Xi

k), (9.45)

where the particles
{
Xi

k

}Np

i=1 are independently sampling from the p(Xk|Y1:k).
As the Np → ∞, the p̂(Xk|Y1:k) → p(Xk|Y1:k), so that we can get a good

approximation by using the particles
{
Xi

k

}Np

i=1:

E[φ(Xk)|Y1:k] ≈
∫

φ(Xk)p̂(Xk|Y1:k)dXk = 1

Np

Np∑

i=1

φ(Xi
k). (9.46)

9.2.5.2 Sequential Importance Sampling

So now, we need to propose an effective sampling method to sample the p(Xk|Y1:k).
But the posterior distribution pp(Xk|Y1:k) is very complex, and it is hard to sample
from it. Usually, we will consider a simpler function q(Xk|Y1:k), and the density
function is the so-called proposal distribution or the importance distribution.

E[φ(Xk)|Y1:k] =
∫

φ(Xk)
p(Xk|Y1:k)
q(Xk|Y1:k) q(Xk|Y1:k)dXk

=
∫

φ(Xk)
ωk(Xk)

p(Y1:k)
q(Xk|Y1:k)dXk (9.47)
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= 1

p(Y1:k)

∫
φ(Xk)ωk(Xk)q(Xk|Y1:k)dXk,

where

ωk(Xk) = p(Y1:k|Xk)p(Xk)

q(Xk|Y1:k) ∝ p(Xk|Y1:k)
q(Xk|Y1:k) , (9.48)

which is known as the unnormalized importance weight. So we can reform
Eq. (9.47) as follows:

E[φ(Xk)|Y1:k] =
∫

φ(Xk)ωk(Xk)q(Xk|Y1:k)dXk∫
p(Y1:k|Xk)p(Xk)dXk

=
∫

φ(Xk)ωk(Xk)q(Xk|Y1:k)dXk∫
ωk(Xk)q(Xk|Y1:k)dXk

= Eq(Xk |Y1:k)[ωk(Xk)φ(Xk)]
Eq(Xk |Y1:k)[ωk(Xk)] . (9.49)

Equation (9.49) means that we can use the particles which are sampled from
another distribution to approximate the expectation of original distributions. This
approach is well-known as importance sampling.

E[φ(Xk)|Y1:k] ≈
1

Np

∑Np

i=1 ωk(X
i
k)φ(Xi

k)

1
Np

∑Np

i=1 ωk(X
i
k)

=
Np∑

i=1

ω̃k(X
i
k)φ(Xi

k), (9.50)

where ω̃k(X
i
k) = ωk(X

i
k)

∑Np
i=1 ωk(X

i
k)

holds.

So when we use PF, what we need is a stream of evolving particles and

normalized weights for each step
{
Xi

k, ω̃
i
k

}Np

i=1.
Similar to the UKF and EKF, we shall summarize the PF algorithm in the

Bayesian framework as follows. In the following, we can assume sampling from
the proposed distributions q(Xk|Y1:k) instead of p(Xk|Y1:k).
Step of prediction Prediction involves using a system function to push forward the
particles, i.e.,

Xi
k+1 ∼ q̃(Xi

k+1|Xi
k, Y1:k+1) := q(Xi

k+1|Y1:k+1)

q(Xi
k|Y1:k)

, (9.51)

where the weights of particles are unchanged in this step.

Step of update The update step involves the application of Bayes’ formula to
update the weights. Given a new observation, the unnormalized importance weight
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{
ωi

k

}Np

i=1 evolve as

ωi
k+1 = p(Xi

K |Y1:k)p(Xi
k+1|Xi

k)

q(Xi
k|Y1:k)q̃(Xi

k+1|Xi
k, Y1:k+1)

∝ ωi
k

p(Xi
K |Y1:k)p(Xi

k+1|Xi
k)

p(Xi
k|Y1:k)q̃(Xi

k+1|Xi
k, Y1:k+1)

= ωi
k

p(Yk+1|Xi
k)p(Xi

k+1|Xi
k)

p(Xi
k|Y1:k)q̃(Yk+1|Y1:k)

(9.52)

∝ ωi
k

p(Yk+1|Xi
k)p(Xi

k+1|Xi
k)

q̃(Yk+1|Y1:k) .

The algorithm using formula (9.51) and (9.52) to iterate the weighted particles is
sequential importance sampling.

9.2.5.3 Advantage and Disadvantage for PF

As we know, the PF is a design based on the Monte Carlo method which means that
there is a standard method for error analysis, please refer to [1–4].

The particles approximates the true posterior p0 in Rn by the empirical measure
p

(N)
0 defined as

∑N
i=1 δ(x − Xi) where {Xi}Ni=1 are the particles sampling from p0,

for any test function φ : Rn → R, then

Ep0(φ) =
∫

Rn

φ(x)p0(x)dx, E(N)
p0

(φ) = 1

N

N∑

i=1

φ(Xi). (9.53)

The variance of this estimator is defined as V arp0(φ) = (Ep0(φ
2)) − Ep0(φ)2,

furthermore we shall have the following error estimation:

E[(E(N)
p0

(φ) − Ep0(φ))2] ≤ C
V arp0(φ))

N
, (9.54)

where C is some constant.
We summarize the advantages of PF as follows:

• By Eq. (9.54), we can obtain an explicit PF convergence order on N.
• Any improvements in sampling methods can give birth to new PFs.
• The distribution is completely constructed by PF.

However, if we want to extend the result into some global convergence of PF,
we must know the difference between weighted particles and equally weighted
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particles. In the next, we shall introduce the effective number of samples which
is important to understand how to characterize weight degradation.

Definition 9.1 ([3]) An indicator of the degree of depletion is the the effective
number of samples, Neff defined in terms of the coefficient of variation V ar as

Neff = N

1 + V ar(
{
ω̃i

k

}N

i=1)
, (9.55)

where the N is the particle number in the simulation and the
{
ω̃i

k

}N

i=1 are the
weights.

Remark 9.2 A logical computable approximation of Neff is provided by

N̂eff = 1
∑N

i=1(ω
i
k)

2

This approximation shares the property 1 ≤ N̂eff ≤ N with the definition. The
upper bound Neff = N is attained when all particles have the same weight and
the lower bound Neff = 1 when all the probability mass is devoted to a single
particle. The resampling condition in the PF can now be defined as Neff < Nth.
The threshold can for instance be chosen as N̂th = 2N

3 .

It has been shown that the variance of the importance weights can only increase
over time, and thus, it is impossible to avoid the degeneracy phenomenon.

So, it is important to avoid the degeneracy phenomenon, and a common solution
is resampling.

Step of resampling
This step involves sampling Xi

k with replacement from the set of particle positions

according to the probability vector of normalized weights
{
w̃i

k

}Np

i=1. After resam-
pling, the particles are set to be equally weighted for the next iteration.

• The standard version of the PF algorithm is termed sampling importance
resampling (SIR) [5], or bootstrap PF, and is obtained by resampling each time.

• The alternative is to use importance sampling, in which case resampling is
performed only when needed. This is called sampling importance sampling
(SIS). Usually, resampling is done when the effective number of samples, as will
be defined in the next section, becomes too small.

As an alternative, the resampling step can be replaced with a sampling step from a
distribution that is fitted to the particles after both the time and measurement update.
The Gaussian PF (GPF) fits a Gaussian distribution to the particle after which a new
set of particles is generated from this distribution. The Gaussian sum PF (GSPF)
uses a Gaussian sum instead of a distribution.
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However, in the traditional PF framework, the PF suffers from weight degeneracy
and the number of particles increases exponentially as the dimension increases.
The weight degeneracy problem can only be alleviated by resampling steps under
ten dimensions, while rapid increases in computational capacity have provided an
impetus to the development of particle methods.

9.2.5.4 An Ensemble Method for EKF

As a successful algorithm, EKF is widely used in many different applications.
In contrast to the standard EKF, which works with the entire distribution of the
state explicitly, the ensemble Kalman filter (EnKF) stores, propagates, and updates
an ensemble of vectors that approximates the state distribution. The EnKF has
been highly successful in many extremely high-dimensional, nonlinear, and non-
Gaussian data assimilation applications [19], which can be considered a good
extension of EKF.

The basic idea of EnKF is very similar to PF. However, the EnKF uses the particle
to obtain the conditional means instead of constructing the distribution like PF. So
it’s more efficient and requires fewer particles.

We shall use the same linear approximation for the system that appeared in
Theorem 9.3 as the starting point of EnKF.

We assume the particles
{
Xi

k|k
}N

i=1
is the simulation of p(Xk|Y1:k) and P̄k|k is

the conditional variances of system (9.1) and we assume
{
Xi
0|0

}
∼ X0 as the initial

condition,

Step of prediction

Xi
k|k−1 = fk−1(X

i
k−1|k−1) + �k−1W

i
k−1,

P̄k|k−1 = ∇fk−1(μ̄k−1|k−1)P̄k−1|k−1∇f �
k−1(μ̄k−1|k−1) + Qk−1,

(9.56)

where the μ̄k−1|k−1 = 1
N

∑N
i=1 Xi

k−1|k−1.

Step of update

Xi
k|k = Xi

k|k−1 + K̄k(Yk − hk(X
i
k|k−1) + V i

k ),

P̄k|k = P̄k|k−1 − K̄k∇hk(μ̄k|k−1)P̄k|k−1,
(9.57)

where K̄k = P̄k|k−1∇h�
k (μ̄k|k−1)(∇hk(μ̄k|k−1)P̄k|k−1

∂h�
k

∂x
(μ̄k|k−1) + Sk)

−1, the

μ̄k|k−1 = 1
N

∑N
i=1 Xi

k|k−1., the
{
Wi

k

}N

i=1 and
{
V i

k

}N

i=1 are the sampling particle
from Wk , Vk for any k ≥ 1, respectively.

Finally, we use the μ̄k|k = 1
N

∑N
i=1 Xi

k|k as the approximation of conditional
means.
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9.3 Filtering Algorithm of DMZ Framework

9.3.1 DMZ Equation After Applying the Hopf-Cole
Transformation

Let us focus on the following (n + m)-dimensional system of non-linear filtering
system:

{
dXt = f (t,Xt )dt + σV (t, Xt )dVt ,

dYt = h(t,Xt )dt + dWt .
(9.58)

where Xt ∈ Rn is the state at time t , Yt ∈ Rm is the observation vector, and {Wt },
{Vt } are two mutually independent Wiener processes taking values in Rd and Rm.
The mappings f (·) : R+ × Rn → Rn, h(·) : R+ × Rn → Rm and σV (·) : R+ ×
Rn → Rn×n are C2 functions, and σV (·) : Rn → Rn×n. The covariance matrix,
S(t), of the observation noise {Wt } is assumed to be positive definite. The function
f, h are column vectors whose j−th coordinate are denoted as fi, hj , i.e., f =
(f1, f2, · · · , fn)

�, h = (h1, h2, · · · , hm)�. The objective of the filtering problem
is to estimate the posterior distribution of Xt given the history Yt := σ(Ys : 0 ≤
s ≤ t).

The unnormalized conditional density function σ(t, x) of (9.59) on the observa-
tion history Yt satisfies as follows:

{
dσ(t, x) = L0σ(t, x)dt + h�(t, x)S−1(t)σ (t, x) ◦ dYt ,

σ (0, x) = σ0(x),
(9.59)

where

L0(∗) :=1

2

n∑

i,j=1

∂2

∂xi∂xj

(
Qi,j (t, x) · ∗) −

n∑

i=1

∂

∂xi

(fi(t, x) · ∗)

+ 1

2
h(t, x)�S−1h(t, x) · (∗),

(9.60)

and Q(t, x) := σV (t, x)σ�
V (t, x).

The posterior density p(t, x|Yt ) can be easily obtained by

p(t, x|Yt ) := σ(t, x)
∫
Rn σ (t, x)dx

. (9.61)

In the following of this section, we shall denote that πt (·) := ∫
Rn(·)p(t, x)dx, for

any t ≥ 0.
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Now, we need to transform for the density σ(t, x) into the u(t, x) by using the
Hopf-Cole transformation as follows:

u(t, x) := − log σ(t, x), (9.62)

Theorem 9.4 Consider the filtering system of (9.58), and we donate the u(t, x) to
be the solution of DMZ equation after applying the Hopf-Cole transformation.

Then, u(t, x) is the solution of the following SPDE:

du =1

2

n∑

i,j=1

(

Qi,j

∂2u

∂xi∂xj

+ (
∂Qi,j

∂xi

∂u

∂xj

+ ∂Qi,j

∂xj

∂u

∂xi

) − Qi,j

∂u

∂xi

∂u

∂xj

)

dt

−
n∑

i=1

fi(t, x)
∂u

∂xi

dt − 1

2

⎛

⎝
n∑

i,j=1

∂2Qi,j

∂xi∂xj

+ h�S−1h

⎞

⎠ dt

+
n∑

i=1

∂fi

∂xi

dt − h�(t, x)S−1 ◦ dyt ,

u(0,x) = − log σ(0, x).

(9.63)

Proof Submit the σ(t, x) = e−u(t,x) in Eq. (9.59); then the rest of the proof is
trivial. ��

9.3.2 Linear Filtering System and KBF

Similar to the previous section. Let us consider the simplest model of the continuous
filtering system in which the state equation and the observation equation are both
linear.

dXt = AtXtdt + Btdt + σV (t)dVt , (9.64)

dYt = HtXtdt + Dtdt + dWt , (9.65)

where the f (t, x) := Atx + Bt , h(t, x) := Htx + Dt , σV (t, x) := σV (t) holds in
Eq. (9.58). We assume X0 ∼ N(μ0, P0).

Corollary 9.1 Consider the linear filtering system in (9.64), the u(t, x) in Theo-
rem 9.4 can be simplified as follows:
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du =1

2

n∑

i,j=1

Qi,j

(
∂2u

∂xi∂xj

− Qi,j

∂u

∂xi

∂u

∂xj

)

dt

− (Atx + Bt)
�(t)∇udt + tr(A)dt

− 1

2
(Htx + Dt − ĥt )

�S−1(Htx + Dt − ĥt )dt

− x�H�(t)S−1(t) ◦ dYt .

u(0, x) := 1

2
(x − μ0)

��−1
0 ((x − μ0)),

(9.66)

where ĥ = ∫
Rn h(t, x)p(t, x|Yt )dx.

Furthermore, Eq. (9.66) has a closed subspace which is the space of a polynomial
with a degree no more than 2. Since the solution of DMZ equation is sort of un-
normalized density, we shall only consider coefficients of the quadratic term and the
linear term. And from (9.66), it is easy to see that the quadratic term is independent
of the observation process Yt .

Let u(t, x) = 1
2x

�(t)C(t)x + b(t)�x + e(t) hold. Now, we submit this
representation into (9.66), then there are two evolution equations as follows:

dC(t)

dt
= −C(t)Q(t)C(t) − A�(t)C(t) − C(t)At + H�(t)S−1(t)Ht , (9.67)

and

db(t) = −C(t)Q(t)b(t)dt−A�b(t)dt−B�(t)b(t)−H�(t)S−1(t)◦dYt . (9.68)

If we apply that μ(t) = −C(t)b(t), P(t) = C−1(t), and ĥt = Htμt + Dt , then
(9.68) and (9.67) can be transformed into follows:

{
dμ(t) = Atμ(t)dt + Btdt + K(t) ◦ (dYt − Htμt − Dt)
dP (t)

dt
= AtP (t) + P(t)A�

t + Q(t) − H�(t)S−1(t)Ht ,
(9.69)

where K(t) := P(t)H�(t)S−1(t) is the Kalman gain.

9.3.3 From KBF to Continuous EKF

In this subsection, we shall consider the general continuous filtering system (9.58).
Similarly, with the EKF for discrete systems, we shall consider approximating
the system function and observation function with linear functions. Thus, the first
question is how to choose the initial point to do Taylor’s expansion. In the discrete
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EKF algorithm, we consider using Taylor’s expansion at the point of the prediction
means which is governed by the state equation without noise term.

So, we shall consider the solution of the zero-noise limit case as the starting
point:

dx̄t

dt
= f (x̄t ), x̄0 = x0. (9.70)

Intuitively, if we need to approximate some nonlinear systems with the statistics
of linear systems, these nonlinear systems should be close enough to the linear
systems; otherwise, it is difficult to get a good result. Therefore, the following
Taylor-like expansion is expected, and it should be close to the original nonlinear
system:

{
dXt ≈ (f

′
(x̄t )(Xt − x̄t ) + f (x̄t ))dt + σV (x̄t )dVt

dYt ≈ (h
′
(x̄t )(Xt − x̄t ) + h(x̄t ))dt + dWt ,

(9.71)

where the x̄0 = X0. From the above analysis, we can directly notice that if the noise
term in the system equation is relatively large, then the estimation is not accurate.
Furthermore, there is an improved method called bilinear extended Kalman filter
(BEKF) which considers the Taylor expansion to up to the first-order term for the
noise terms, and it is much better than EKF.

Proposition 9.1 Let μt = {μt , t ≥ 0} be the conditional mean of the signal of
(9.71). We denote conditional covariance matrix, Pt , is the n × n-dimensional
process with components whose i, j− entry is defined below:

P
i,j
t = E[Xi

t X
j
t |Yt ] − E[Xi

t |Yt ]E[Xj
t |Yt ] i, j = 1, . . . , d, t ≥ 0. (9.72)

Then μt satisfies the stochastic differential equation

dμt =(f
′
(x̄t )(μt − x̄t ) + f (x̄t ))dt + RtH

�
t (dYt − (Htμt + ht )dt)

+ Rth
′�

(x̄t )[dYt − (h
′
(μt )(μt − x̄t ) + h(x̄t ))dt]. (9.73)

and P satisfies the deterministic matrix Riccati equation

dPt

dt
= f

′
(x̄t )Pt + Ptf

′
(x̄t )

� + σ(x̄t )σ
�(x̄t ) − Pth

′
(x̄t )

�h
′
(x̄t )Rt . (9.74)

with μ0 = x0 and R0 = P0. Hence, we can estimate the position of the signal by
using μt as computed above. We can use the same procedure, but instead of xt , we
can use any Yt -adapted estimator process μt .

Proof It is the direct consequence of KBF. ��
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From the process of deriving the EKF algorithm, it is obvious that the effective-
ness of the EKF algorithm depends on the following factors [8, 12]:

• The f function and h function can be well approximated by linear functions.
• The initial position of the signal is well approximated.
• System noise is small enough.

9.3.4 Control-Oriented Particle Filtering for Multidimensional
System

In this section, we shall introduce a continuous particle filter called feedback particle
filter (FPF) which is motivated by the mean-fields control theory [10]. Firstly,
consider the previous filtering problem (9.58), and we assume that the system
function and observation function are all time-invariant.

Consider the equation of state

dXt = f (Xt )dt + dVt ,X0 is some distribution, (9.75)

where we assume σV (·) := In in (9.58) and all the function are time-invariant. There
is a quite easy way to sample from the Xt at time t which is

dXi
t = f (Xi

t )dt + dV i
t , Xi

0 ∼ X0, 1 ≤ i ≤ N, (9.76)

where
{
Xi

t

}N

i=1 are the particles at time t and
{
V i

t

}N

i=1 are sampling from standard
Brownian motion.

As with traditional PF, we are not sampling from the posterior distribution but
updating the weight of the particles by observations. However, such methods cause
weight and particle degeneracy problems. Inspired by the idea of control, the main
idea of FPF is adding extra feedback control terms for the evolution of the state
equation which makes the posterior distribution at any time t exactly the posterior
distribution of the filtering problem. The dynamics of the i−th particle have the
following gain feedback form:

dXi
t = f (Xi

t )dt + dV i
t + u(t,Xi

t )dt + K(t,Xi
t ) ◦ dYt , (9.77)

where dYt = h(x)dt + dWt and Wt is the standard Brownian motion.
The different control inputs u(t, x) and the K(t, x) will determine the different

process, so there is a natural question that need to be answered:
Is there a control input (u,K) to make the posterior densities such that the

posterior density function of Eq. (9.77) is the solution of the Kushner equation?
To answer the question, there are three steps:
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1. We denote the posterior distribution of (9.77) as p∗(t, x). And we analyze the
evolution equation of posterior p∗(t, x).

2. Compare the evolution equation of posterior p∗(t, x) with the Kushner equation
of filtering. Then, we construct control inputs u(t, x) and the K(t, x) making the
two equations be same.

3. Validate the control inputs u(t, x) and the K(t, x).

First, we shall introduce admissible input as the start.

Definition 9.2 (Admissible Input) The control input u(t, x) and the K(t, x) are
admissible if the random variables u(t,Xt ) and K(t,Xt ) in (9.77) are Yt = σ(Ys :
s ≤ t) measurable for each t. And for each t,

E[|u|] := E[|u(t,Xt )|] < ∞,

and

E[|K|2] := E

⎡

⎣
∑

1≤l≤n,1≤j≤m

|Klj (t, Xt )|2
⎤

⎦ < ∞.

Next, for a control dynamical system, the posterior distributions p∗(t, x) are
given as follows.

Proposition 9.2 Consider the process
{
Xi

t

}N

i=1 that evolves according to the PF
model (9.77). The conditional distribution of Xi

t given the filtration Yt , p∗(t, x),
satisfies the forward equation

dp∗ = Lp∗dt −
m∑

i=1

∇ · (p∗[K]i ) ◦ dY i
t − ∇ · (p∗u)dt. (9.78)

where L(∗) = −∇(f · ∗) + 1
2

∑n
i=1

∂2

∂x2i
(∗) and [K]i is i-the column of K .

We denote as p(x, t) the conditional distribution ofXt givenYt = σ(Ys : s ≤ t).
The evolution of p(x, t) is described by the Kushner equation

dp = L0pdt + p(h − ĥ) ◦ (dYt − ĥt dt), (9.79)

where ĥ = ∫
Rn h(x)p(t, x)dx, and

L0(∗) :=1

2

n∑

i=1

∂2

∂x2
i

(·∗) −
n∑

i=1

∂

∂xi

(fi(x) · ∗)

+ 1

2
(h(x) − ĥt )

�(h(x) − ĥt ) · (∗),

(9.80)
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Next, we need to select the control input so that the two SPDEs (9.79) and (9.78)
are the same.

Theorem 9.5 ([11]) Consider the two evolution equations for p and p∗, defined
according to the solution of the forward equation and the K-S equation, respectively.
We select u,K as follows:

∇ · (p[K]i ) = −p(hi − ĥi ),∀1 ≤ i ≤ m, (9.81)

where [K]i is i-the column of K . And, we get

u = −1

2
K(h − ĥ) + 1

2
(h − ĥ)T (h − ĥ). (9.82)

Then, provided p(·, 0) = p∗(·, 0), we have for all t ≥ 0,

p(t, ·) = p∗(t, ·).

Proof It is only necessary to show that with the choice of {u,K} given by, we have
dp(t, x) = dp∗(x, t).

Using the (9.81) in the forward equation (9.77), then we can have (9.79). ��
However, it is easy to see that there are infinitely many K satisfies the condition

(9.81). So, we need to choose the K minimized some cost function, and it is natural
to consider the cost function as E[|K|2] which is considered as an Euler-Lagrange
boundary value problem (E-L BVP).

The gain function K is obtained as a solution to E-L BVP: For j = 1, 2, · · · ,m,
the function φj is a solution to the second-order differential equation

∇ · (p(t, x)∇φj (x, t)) = −(hj (x) − ĥj )p(t, x),
∫

φj (x, t)p(t, x)dx = 0,
(9.83)

where p denotes the conditional distribution of Xi
t given Yt . The gain function is

given by

[K]i,j = ∂φj

∂xi

. (9.84)

Note that the gain function needs to be obtained for each value of time t . So, we can
summarize the FPF algorithm as follows:

dXi
t = f (Xi

t )dt + dV i
t + K(t,Xi

t ) ◦ dI i
t (9.85)
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Table 9.1 The development
of FPF

Methods for (9.83) Name Reference

Constant approximation constant FPF [11]

Galerkin method Galerkin FPF [9, 11]

Kernel method Diffusion FPF [9]

Gaussian approximation Gaussian FPF [11]

Deep learning method Deep FPF [32]

The innovation process that appears in the nonlinear filter

dI i
t = dYt − 1

2
(h(Xi

t ) + ĥ)dt, (9.86)

with ĥ := E[h(Xi
t )|Ft ]. In a numerical implementation, we approximate ĥ ≈

ĥN := 1
N

∑N
i=1 h(Xi

t ).

Theorem 9.6 (FPF for Linear System) Consider the linear filtering system with
the initial distribution to be Gaussian, which we assume f (x) := Ax, h(x) := Hx

(9.77), then (9.83) has an explicit solution such that K(t, x) = PtH
� where Pt is

the conditional covariance matrix of state and defined in KBF (9.69). So, (9.77) can
be rewritten as follows:

dXi
t = AXi

t dt + dV i
t + PtH

� ◦
(

dYt − HXi
t + Hμt

2

)

, (9.87)

where μt is the conditional mean in KBF and Xi
0 ∼ A Gaussian distribution.

Generally, φ(x) in (9.83) is hard to calculate explicitly for a general nonlinear
filtering system. The different ways to approximate (9.83) represent the different
FPF algorithms. We shall summarize the different FPFs in Table 9.1.

9.4 Robust Filtering

We consider the nonlinear autonomous system with state xk ∈ R
n and observation

yk ∈ R
m. It is given by the following state and observation equations:

xk = f (xk−1) + wk (state equation), (9.88a)

yk = h(xk) + vk (observation equation), (9.88b)

where f : Rn → R
n and h : Rn → R

m are nonlinear functions called state function
and observation function, respectively. State noise wk and observation noise vk

are uncorrelated multivariate Gaussian with zero means and nominal covariance
matrices Qk ∈ R

n×n and Rk ∈ R
m×m, respectively. In what follows, we assume that
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the real distribution of observation noise is unknown to us. And the real distribution
of observation noise is (1 − ε) N(0, Rk) + ε S(0, Sk) rather than N(0, Rk), where
0 < ε � 1 is the unknown probability, and S(0, Sk) is an arbitrary unknown
distribution with large covariance Sk . Here Rk is known to us, so it is called
the nominal covariance matrix. Let y1:k denote the σ -algebra generated by noisy
observations {y1, . . . , yk} induced by unknown large outliers. The outlier-robust
filtering problem refers to solving the following conditional estimation problem:

ϕ̂k = argmin
ϕk

E

[
‖ϕk − ϕ(xk)‖2 | y1:k

]
, (9.89)

where ϕ(x) is a function of estimation interest (e.g., ϕ(x) = x or ϕ(x) = xx�).

9.4.1 Nonlinear Regression Form and Robust Optimization
Framework

To facilitate the subsequent discussion, x̂k|k−1 and x̂k|k will be denoted as desired
estimation means of prediction at time steps k − 1 and k, respectively. Pk|k−1 and
Pk|k will be corresponding prediction covariances, respectively.

9.4.1.1 Nonlinear Regression Form

Here we shall first illustrate how to view the update step of extended Kalman
filtering as a nonlinear regression problem. Assume that we have obtained x̂k|k−1
and observation yk . Then let us first consider the augmented model, which is given
by

[
x̂k|k−1

yk

]

=
[

xk

h(xk)

]

+ vk, (9.90)

where vk is given by

vk =
[−(xk − x̂k|k−1)

Vk

]

. (9.91)

Then it is easy to see that

E

[
VkV

�
k

]
=

[
Pk|k−1 0

0 Rk

]

= BkB
�
k , (9.92)

with
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Bk =
[

B
p

k|k−1 0

0 Br
k

]

, (9.93)

where B
p

k|k−1 and Br
k are Cholesky decompositions of Pk|k−1 and Rk , respectively.

Left multiplying both sides of (9.90) by B−1
k , we obtain

dk = mk(xk) + ek, (9.94)

where dk =
⎡

⎣

(
B

p

k|k−1

)−1
x̂k|k−1

(
Br

k

)−1
yk

⎤

⎦, mk(xk) =
⎡

⎣

(
B

p

k|k−1

)−1
xk

(
Br

k

)−1
h(xk)

⎤

⎦. Note that ek =

B−1
k vk , which implies E

[
eke

�
k

] = In+m. Hence the residual error ek is white noise,
which makes Eq.(9.94) become a nonlinear regression function.

9.4.1.2 Robust Optimization Framework

With the help of regression function (9.94), we can formulate a optimization-based
filtering update step. It is given by

x̂k|k = argmin
xk

L (xk) , (9.95)

where the cost function L(·) is regression-induced in nature. It is given by

L (xk) =
n+m∑

i=1

ρ
(
ek,i

)
, (9.96)

with ek,i is i-th component of the residual vector ek . ρ is a robust cost function that
is used to cut off the outliers. Note that for L (xk), we have

∇xk
L (xk) =

m+n∑

i=1

∂ρ
(
ek,i

)

∂ek,i

∂ek,i

∂xk

. (9.97)

Let us consider the following diagonal matrices:

�x (ek) = diag
[
ψ(ek,1), ψ(ek,2), . . . , ψ(ek,n)

]

�y (ek) = diag
[
ψ(ek,n+1), ψ(ek,2), . . . , ψ(ek,m+n)

]
,

(9.98)

and

� (ek) =
[

�x (ek) 0
0 �y (ek)

]

(9.99)
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with weight function ψ(ek,i) = ∂ρ(ek,i)
∂ek,i

/ek,i . Notice that dk does not depend on xk .
We can denote

m(xk) = ∇xk
ek = ∂ (dk − mk(xk))

∂xk

= −∂mk(xk)

∂xk

∇ek
L (xk) = � (ek) (dk − mk(xk)) .

(9.100)

Then the gradient (9.97) can be rewritten by

∇xk
L (xk) =

(
∂ (dk − mk(xk))

∂xk

)�
� (ek) (dk − mk(xk))

= m(xk)
�∇ek

L (xk) .

(9.101)

The solution of ∇xk
L (xk) = 0 can be derived using iteratively reweighted least

squares (IRLS) [34], which is of the form

x
(j+1)
k = x

(j)
k −

(
m(x

(j)
k )��(e

(j)
k )m(x

(j)
k )

)−1

× m(x
(j)
k )��(e

(j)
k )

(
dk − mk(x

(j)
k )

)
,

(9.102)

where the superscript (j) refers to the iteration index.

Remark 9.3 Eq.(9.102) is similar to the derivation process of standard IEKF in
[33], where the IEKF is equivalent to Gauss-Newton method from an optimization
perspective.

9.4.2 Iterative Outlier-Robust Extended Kalman Filtering

In this section, the novel OR-IEKF framework is presented. Its prediction step is the
same with the common EKF, i.e.,

x̂k|k−1 = f
(
x̂k−1|k−1

)

Pk|k−1 = fkPk−1|k−1f
�
k + Qk,

(9.103)

where fk = ∂f
∂xk

∣
∣
∣
xk=x̂k−1|k−1

. The update step is given in Eq.(9.102). With initial

point x
(0)
k = x̂k|k−1, we can further simplify Eq.(9.102) by using the matrix

inversion lemma [35]. The result is
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x
(j+1)
k = x̂k|k−1 + K

(j)
k

[
yk − h

(
x

(j)
k

)

− h
(
x

(j)
k

) (
x̂k|k−1 − x

(j)
k

) ]
,

(9.104)

where

K
(j)
k = P

(j)

k|k−1h
(
x

(j)
k

)� (
h
(
x

(j)
k

)
P

(j)

k|k−1h
(
x

(j)
k

)� + R
(j)
k

)
, (9.105)

with P
(j)

k|k−1 = B
p

k|k−1

(
�x(e

(j)
k )

)−1
B

p

k|k−1, R
(j)
k = Br

k

(
�y(e

(j)
k )

)−1
Br

k and

h
(
x

(j)
k

)
= ∂h

∂xk

∣
∣
∣
xk=x

(j)
k

. For numerical stability, when k ≥ 1, we introduce the step

parameter 0 < α ≤ 1 for modification. This means that we first use Eq.(9.104) to
compute x

(1)
k without using step parameter α. For k ≥ 1, we shall use step parameter

α with initial guess x
(1)
k , which means that Eq.(9.104) can be rewritten as

x
(j+1)
k = x̂k|k−1 + αP

(j)
k , (9.106)

where the direction P
(j)
k is given by

P
(j)
k = K

(j)
k

[
yk − h

(
x

(j)
k

)
− h

(
x

(j)
k

) (
x̂k|k−1 − x

(j)
k

) ]
. (9.107)

After iterations, we shall obtain converged solutions xk and ek . The recursion of
filtering covariance can be computed by

Pk|k = (In − Kkh (xk)) B
p

k|k−1 (�x(ek))
−1 B

p

k|k−1. (9.108)

Here we summarise the steps of OR-IEKF in Algorithm 5.

Algorithm 5 OR-IEKF
1: Input: f (·), h(·), Qk , Rk , ρ(·), ε, α
2: Output: x̂k|k for k = 1, 2, . . . , N
3: Intitialization. Start with initial filtering mean x̂0|0 and filtering covariance P0|0.
4: for k = 1, 2, . . . , N do
5: Compute prior mean x̂k|k−1 and prior covariance Pk|k−1 via Eq.(9.103).

6: Let x(0)
k = x̂k|k−1 and compute x

(1)
k via Eq.(9.104).

7: while
‖x(j+1)

k −x
(j)
k ‖

‖x(j)
k ‖ > ε do

8: Compute iterative solution x
(j+1)
k via Eq.(9.106) with corresponding update of K

(j+1)
k

in Eq.(9.105).
9: Update filtering covariance matrix Pk|k using Eq.(9.108).
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Table 9.2 Three robust cost function examples

Name ρτ wτ

Huber

{
1
2x2 if |x| < τ,

τ |x| − 1
2 τ 2 if |x| ≥ τ.

{
1 if |x| < τ,

τ × sgn(x)
x

if |x| ≥ τ.

t-likelihood τ 2

2 log(1 + x2

τ 2
) 1

1+( x
τ )

2

Correntropy-induced cost τ 2

2

(
1 − exp

(
− (

x
τ

)2)) exp
(
− (

x
τ

)2)

Remark 9.4 Note that, if �(ek) = In+m, the above iterations reduces to the IEKF
solution. In addition, when the observation is linear, the solution reduces to the
standard linear KF update.

9.4.2.1 Robust Cost Functions

Note that in Eq.(9.99), the item ψ(ek,i) = ∂ρ(ek,i)
∂ek,i

/ek,i plays an important role in
cutting of large outliers. We shall call it the weight function. The scalar function
ρ(x) is called robust cost function. Let us denote ρ,ψ by ρτ ,wτ , where τ ∈ R is a
tuning factor. Here we consider three examples, which are given in Table 9.2. They
correspond to the three new iterative filtering algorithms, namely, Huber-IEKF, t-
likelihood-IEKF, and Correntropy-IEKF.

9.5 Numerical Results

In this section, we will present the numerical results of the KF, EKF, UKF, and PF.
These filters are widely used in state estimation and target tracking applications and
are capable of effectively handling nonlinear systems.

9.5.1 Linear Filtering Problem

Consider a linear system describing the position and velocity of an object in one-
dimensional motion

xk+1 = Fxk + wk

yk = Hxk + vk,
(9.109)
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where xk = [pk, vk]T represents the state vector comprising position pk and
velocity vk at time step k. The system matrices are defined as

F =
[
1, �t

0, 1

]

, H = [
1, 0

]
(9.110)

Here, F is the state transition matrix, and H is the measurement matrix. We set
the time step �t = 0.1 seconds. The process noise wk and measurement noise vk

are assumed to be zero-mean Gaussian white noise processes with covariances Q

and R, respectively:

wk ∼ N(0,Q), vk ∼ N(0, R) (9.111)

To comprehensively analyze the KF’s performance under various conditions, we
consider three scenarios that explore the impact of different noise parameters and
initial state distributions:

• Scenario 1: Varying Process Noise.
In this scenario, we investigate the effect of different levels of process noise

on the filter’s performance. We fix the measurement noise covariance at R = 0.1
and vary the process noise covariance Q as follows:

Q1 =
[
0.01 0
0 0.01

]

, Q2 =
[
0.1 0
0 0.1

]

, Q3 =
[
1 0
0 1

]

(9.112)

• Scenario 2: Varying Measurement Noise
This scenario examines how different levels of measurement noise affect the

filter’s estimation accuracy. We fix the process noise covariance at Q = 0.1I2
and vary the measurement noise covariance R:

R1 = 0.01, R2 = 0.1, R3 = 1 (9.113)

These values correspond to low, medium, and high measurement noise levels,
respectively.

• Scenario 3: Varying Initial State Distribution
In this final scenario, we explore the impact of different initial state uncer-

tainties on the filter’s convergence. We fix the process and measurement noise
covariances at Q = 0.1I2 and R = 0.1, respectively, while varying the initial
state covariance P0:

P
(1)
0 =

[
0.1 0
0 0.1

]

, P
(2)
0 =

[
1 0
0 1

]

, P
(3)
0 =

[
10 0
0 10

]

(9.114)

We conduct M = 100 Monte Carlo simulations for each scenario and evaluate
the performance using two metrics for multidimensional position estimates: the root
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Fig. 9.1 Results for Scenario 1: Varying Process Noise. The plots show the RMSE and MMSE
for different process noise covariance matrices Q1, Q2, and Q3

mean square error (RMSE) and the mean square error (MSE). These metrics are
defined as follows:

RMSE = 1

M

M∑

m=1

√√
√
√ 1

N

N∑

k=1

‖pm
k − p̂m

k ‖2

MSE (for stepk) = 1

M

M∑

m=1

‖pm
k − p̂m

k ‖2,
(9.115)

where pm
k represents the true position vector, p̂m

k is the estimated position vector, M
is the number of Monte Carlo simulations, N is the number of time steps in each
simulation, and ‖ · ‖ denotes the Euclidean norm. And the MMSE denote the mean
of MSE for all steps.

The results of the numerical experiments are presented in the following figures.
Each figure corresponds to one of the scenarios described in the previous section.

Figure 9.1 illustrates the outcomes of Scenario 1, which investigates the effect of
varying the process noise covariance matrix Q. As anticipated, higher process noise
corresponds to increased RMSE and MMSE values, indicating larger estimation
errors. Figures 9.2, 9.3, and 9.4 depict the KF’s performance under different Q

values. While the MSE converges to a stable value over time for each noise level,
increasing Q leads to a more unstable convergence process and a significant rise in
MMSE. These results highlight the KF’s ability to adapt to varying levels of process
uncertainty, albeit with degraded performance as uncertainty increases.

Figure 9.5 presents the results of Scenario 2, which examines the impact of
varying the measurement noise covariance matrix R. The findings reveal that
increased measurement noise leads to higher RMSE and MMSE values, indicating
greater estimation error. As illustrated in Figs. 9.6, 9.7, and 9.8, the MSE converges
to a stable value over time for each noise level. However, higher observation noise
results in significantly increased system MSE and more pronounced fluctuations
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Fig. 9.2 MSE and tracking result with Q1

Fig. 9.3 MSE and tracking result with Q2

Fig. 9.4 MSE and tracking result with Q3

in the KF’s tracking results, demonstrating the filter’s sensitivity to measurement
quality.

Figure 9.9 illustrates the results of Scenario 3, which examines the effect of
varying the initial estimation error covariance matrix P0 on KF performance. The
findings demonstrate that higher P0 values lead to increased initial RMSE and
MMSE, reflecting greater initial uncertainty. However, as evident in Figs. 9.10, 9.11,
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Fig. 9.5 Results for Scenario 2: Varying Measurement Noise. The plots show the RMSE and
MMSE different measurement noise covariance matrices R1, R2, and R3

Fig. 9.6 MSE and tracking result with R1

Fig. 9.7 MSE and tracking result with R2

and 9.12, the KF consistently converges to the true state over time, regardless of
the initial P0. This convergence is reflected in the MSE trajectories, which show
initial disparities that diminish as the estimation process progresses. These results
underscore the KF’s robustness and its ability to overcome poor initial estimates, a
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Fig. 9.8 MSE and tracking result with R3

Fig. 9.9 Results for Scenario 3: Varying Initial Estimation Error Covariance. The plots show the
RMSE and MMSE over time for different initial estimation error covariance matrices P

(1)
0 , P (2)

0 ,

and P
(3)
0

Fig. 9.10 MSE and tracking result with P
(2)
0
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Fig. 9.11 MSE and tracking result with P
(2)
0

Fig. 9.12 MSE and tracking result with P
(3)
0

valuable characteristic in practical applications where precise initialization may be
challenging.

In all scenarios, the KF demonstrated its ability to estimate the true state
accurately, with the estimation error decreasing as more measurements were
incorporated. However, the performance was influenced by the noise levels and the
initial estimation error covariance, as expected from the theoretical analysis.

9.5.2 Nonlinear Filtering Problem

This section presents a detailed numerical experiment designed to evaluate the
performance of various filtering techniques applied to a nonlinear system model
with measurement noise.

⎡

⎢
⎢
⎣

x(k + 1)
vx(k + 1)
y(k + 1)
vy(k + 1)

⎤

⎥
⎥
⎦ = F

⎡

⎢
⎢
⎣

x(k + 1)
vx(k + 1)
y(k + 1)
vy(k + 1)

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

α sin(vx(k))

0
α cos(vy(k))

0

⎤

⎥
⎥
⎦ + wk (9.116)
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where the variables x(k) and y(k) represent spatial coordinates at step k; variables
x(k) and y(k) represent velocity component of x, y at step k, respectively; and the
parameter α scales the nonlinear term and wk ∼ N(0,Q) is the process noise. The
state transition matrix F ∈ R

4×4 is given by

F =

⎡

⎢
⎢
⎣

1 �t 0 0
0 1 0 0
0 0 1 �t

0 0 0 1

⎤

⎥
⎥
⎦ , (9.117)

where �t is the time step. The process noise covariance matrix Q ∈ R4×4 is defined
as Q = 0.02 · I4, where I4 is the 4 × 4 identity matrix. The measurement model is
given by

[
z1(k)

z2(k)

]

=
[√

x(k)2 + y(k)2

arctan
(

y(k)
x(k)

)
]

+ vk (9.118)

where vk ∼ N(0, R) is a two-dimensional Gaussian distribution.
In this experiment, we evaluate the performance of the EKF, UKF, and PF under

various conditions. The parameters of interest are:

• Nonlinearity parameter α: We test different values of α to assess its impact on
filter performance, with α values chosen from the set {0.01, 0.1, 1}. This allows
us to observe how varying levels of nonlinearity affect the accuracy of each filter.

• Number of particles for PF: For the PF, we vary the number of particles to
examine how this impacts the filter’s accuracy, N ∈ {100, 200, 500, 1000}. This
is crucial as the PF’s performance is highly dependent on the number of particles
used in the approximation process.

• Time steps: The simulation is consistently run for 100 time steps across all
scenarios with �t = 0.1, enabling us to observe the behavior of each filter over
a fixed period and how their performance evolves throughout the simulation.

The UKF is configured using its unscented transform parameters, which include
the scaling parameters a = 0.002, β = 2 and κ = 0. These parameters control
the spread of the sigma points around the mean and influence the accuracy of the
filter in capturing nonlinearities. For this experiment, the standard values for these
parameters are used, ensuring a fair comparison across all scenarios.

The simulation is consistently run for 100 time steps across all scenarios,
enabling us to observe the behavior of each filter over a fixed period and how their
performance evolves throughout the simulation. The performance of each filter is
assessed using metrics such as MSE and RMSE defined in (9.115). These metrics
provide a quantitative measure of the filters’ accuracy and their ability to track the
true state over time (Fig. 9.13).

First, we present the two-dimensional tracking plots of the different algorithms
compared to the true trajectory. In our case, the first and third dimensions represent
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Fig. 9.13 Trajectory comparison with nonlinearity paramete α = 0.1

Table 9.3 Execution times for different filters and nonlinearities

Execution time (seconds)

Filter Nonlinearity 0.01 Nonlinearity 0.1 Nonlinearity 1

EKF 0.0077 0.0076 0.0071

UKF 0.0460 0.0434 0.0383

PF (100 particles) 0.0957 0.0879 0.0822

PF (200 particles) 0.1386 0.1552 0.1402

PF (500 particles) 0.2963 0.2830 0.2814

PF (1000 particles) 0.5300 0.5181 0.5259

position variables, while the second and fourth dimensions represent velocity vari-
ables. Therefore, we naturally chose a two-dimensional position plane to visualize
the specific experimental results as shown below: Then, we focused particularly
on the execution time of these filters to evaluate their computational efficiency in
practical applications in Table 9.3.

The results in Table 9.3 show several trends in filtering algorithm performance.
Notably, EKF and UKF execution times decrease slightly with increased system
nonlinearity, likely due to experimental conditions. In contrast, the PF’s execution
time remains stable across nonlinearity levels, indicating robustness to complexity
changes. EKF consistently has the fastest execution times, followed by the UKF,
which is approximately five times slower due to its advanced sampling strategy. As
expected, the PF is the slowest, with execution time increasing as the number of
particles grows.
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Fig. 9.14 MSE comparison for α = 0.01

Fig. 9.15 MSE comparison for α = 0.1

Figures 9.14, 9.15, and 9.16 present the MSE comparison for EKF, UKF,
and PF with different numbers of particles under varying nonlinearity parameters
α ∈ {0.01, 0.1, 1}. These comparisons illustrate how each filter performs as the
level of system nonlinearity and the number of particles (for PF) are varied N ∈
{100, 200, 500, 1000}.

From Figs. 9.14, 9.15, and 9.14, we can observe the following: In scenarios with
low nonlinearity, the performance of the EKF and the UKF is comparable, and both
algorithms perform well. However, as time progresses, there are significant fluctu-
ations in the MSE for both algorithms, indicating an inherent lack of robustness.
Under conditions of moderate to high nonlinearity, the performance of the EKF
deteriorates noticeably. In contrast, the UKF demonstrates superior performance
over the EKF in highly nonlinear situations due to its more effective handling of
nonlinearities via the unscented transform. For the PF, with a lower number of
particles (e.g., 100 or 200 as in this example), the filtering performance is suboptimal
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Fig. 9.16 MSE Comparison for α = 1

Fig. 9.17 RMSE comparison
across nonlinearities

regardless of the level of nonlinearity. However, with an increased number of
particles (e.g., 1000), the PF exhibits robust predictive capabilities across various
nonlinear scenarios, with stable MSE values showing no significant fluctuations.

To better visualize the numerical results of different algorithms under varying
levels of nonlinearity, we present the nonlinearity as the horizontal axis and the
RMSE performance of the algorithms as the vertical axis. Each algorithm was
independently run 100 times, and the average RMSE results are plotted in Fig. 9.17.

Key observations from Fig. 9.17 include the following: as nonlinearity increases,
the performance of all filters generally declines, as evidenced by rising RMSE
values. The EKF experiences the significant performance degradation, underscoring
its limitations in handling highly nonlinear systems. In contrast, the UKF consis-
tently outperforms the EKF in high levels of nonlinearity, demonstrating greater
robustness to nonlinear dynamics. The PF, particularly with a higher number of
particles, exhibits the best performance in highly nonlinear scenarios, although
this comes with increased computational demands. However, with a lower number
of particles (e.g., 100 or 200), the PF’s performance is the worst among all the
algorithms, regardless of the nonlinearity level.
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Fig. 9.18 PF RMSE vs. number of particles for different nonlinearities

Figure 9.18 shows how the RMSE of the PF changes with the number of particles
for different nonlinearity parameters.

From Fig. 9.18, we can conclude that regardless of the level of nonlinearity, the
RMSE of the PF decreases rapidly as the number of particles increases, which
aligns with our expectations of the PF’s convergence behavior. In both low and high
nonlinearity scenarios, the improvement in performance becomes more pronounced
as the number of particles increases, indicating that the filter more accurately
captures the posterior distribution with a larger particle set. This result confirms that,
as expected, increasing the particle count enhances the filter’s ability to approximate
the true state, leading to a faster reduction in RMSE across different levels of system
nonlinearity.

9.6 Exercises

1. Consider matrices where A ∈ Rn×n, C ∈ Rn×n are nonsingular, B ∈ Rn×m,
and D ∈ Rm×n. The following identity holds:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

2. Given an example of a linear filtering system and derive the equations for the
prediction and update steps of the KF.

3. Compute the Kalman Gain for a system with the following parameters:

A =
(
1 1
0 1

)

, H = (
1 0

)
, Q =

(
0.001 0
0 0.001

)

, R = 0.01.
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4. Given a sequence of measurements z = [1.0, 1.3, 1.6, 1.9], apply the KF to
estimate the state of a system described by the above matrices, assuming an

initial state of x0 =
(
0
0

)

and P0 =
(
1 0
0 1

)

.

5. Explain the resampling process in PF and its necessity.
6. For a simple one-dimensional random walk model xt+1 = xt + wt , where

wt ∼ N(0, 1), use a PF to estimate the state given measurements zt = xt + vt

where vt ∼ N(0, 1). Calculate this scenario for five time steps.
7. Consider a simple nonlinear oscillator whose state equation is given by

ẋ =
(

x2

−x1 − 0.1x3
1 + 0.5 cos(1.2t)

)

,

and the measurement is directly the position:

z = x1 + v,

where v is the measurement noise with a normal distribution having zero mean
and variance of 0.12.

a. Derive the discrete-time state equations assuming a sampling time �t = 0.1
seconds.

b. Calculate the Jacobians of the state transition and measurement models
required for EKF.

8. Consider a nonlinear system described by the state equation:

xt+1 = sin(xt ) + 0.1ωt ,

where ωt ∼ N(0, 1) is the process noise. The measurements are given by

zt = x2
t + vt ,

where vt ∼ N(0, 1) is the measurement noise.

a. Set up the UKF for this system. Describe how you would choose the sigma
points.

b. Implement the UKF to estimate xt over 10 time steps given noisy mea-
surements. Assume an initial estimate of x0 = 1 with an initial covariance
P0 = 1.

9. Consider a continuous-time linear Gaussian system modeled by the following
state and measurement differential equations:

dxt = Axt dt + dwt ,

dyt = Hxt dt + dvt ,
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where dwt and dVt are Brownian motions with intensities Q and R, respec-
tively.

a. Discuss how the FPF can be applied to this continuous system. Describe the
form of the feedback control law in this context.

b. Simulate this system over a given period and implement the FPF. Assess its
performance and compare it to a continuous-time Kalman filter.

10. Assume a scenario where two sensors continuously measure the position of
a moving object along a straight line. The state and measurement differential
equations are

dxt = vt dt,

dzt,1 = xt dt + dwt,1,

dzt,2 = xt dt + dwt,2,

where vt is the process noise modeled as Brownian motions with intensity
Q and dwt,1 and dwt,2 are independent Wiener process increments with
intensities R1 and R2.

a. Formulate the FPF for this continuous multisensor setup. Determine the
continuous-time feedback gains for each sensor.

b. Discuss how the feedback gains change with varying noise intensities R1
and R2.

c. Implement the FPF for this scenario and analyze the benefits of using two
sensors on the estimation accuracy compared to a single sensor setup.
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Chapter 10
Estimation Algorithms Based on Deep
Learning

In this chapter, we shall first review the estimation problem [10] from the perspective
of the machine learning [39]. Then we shall revisit the classical neural networks
models including feedforward neural networks (FNNs) [16] and recurrent neural
networks (RNNs) [9] in details. Specifically, we’re going to introduce the specific
mathematical form of their network architecture. Then we shall discuss their approx-
imation ability, the universal approximation theorem, and give an elegant proof. And
we also introduce the mathematics on how to train the neural networks, i.e., the
backpropagation algorithm [32] and currently popular optimization algorithms for
deep learning optimization problems. Finally, we shall introduce how to use deep
learning method to solve state estimation problems, i.e., filtering problems.

10.1 Overview

In the previous chapters, we introduced the nonlinear filtering algorithms and
related theories in detail. With the advent of data-driven approaches, more and
more hybrid approaches are emerging across industries, such as computer vision,
natural language processing, and computational biology. This makes deep learning
and deep neural network models [22] receive widespread attention. Now we turn to
this popular topic, and it can be viewed as the modification of the data assimilation
[21] and the control theory [38] in the era of big data.

10.2 Estimation Problems

In this section, we shall focus on the state-space model (SSM) and introduce the
basic estimation problems for SSM. They are state estimation, parameter estimation,
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and dual estimation. At the same time, we also explain some of their relationships
with machine learning problems. The following introduction to these three issues
refers to [36].

10.2.1 State Estimation

The state estimation is about recovering state signal given noisy observation signal,
which can be formulated as the estimation of the state of a discrete-time nonlinear
dynamic system

Xk+1 = f (Xk, uk) + Wk,

Yk = h (Xk) + Vk,
(10.1)

where Xk represents the state signal of the system which cannot be observed
directly, uk is a known exogenous input signal, and Yk is the noisy measurement
signal. The process noise Wk drives the dynamic system, and the observation noise
is given by Vk . It is necessary to note that the system dynamic model f and h are
assumed known.

10.2.2 Parameter Estimation

Parameter estimation is a fundamental issue in the machine learning, also known as
system identification [25], which involves determining a nonlinear mapping

Yk = G (Xk,w) , (10.2)

where Xk is the input, Yk is the output, and the nonlinear map G(·) is parameterized
by the vector w. The classic one is viewing training neural networks as a parameter
estimation problem, where w represents the weights of the neural networks. There
are some series of works on this topic [13, 24, 34]. Such a methodology has
numerous applications in regression, classification, and dynamic modeling.

Learning corresponds to estimating the parameters w. Typically, a training set is
provided with sample pairs consisting of known input and desired outputs, {Xk, Yk}.
The error is defined as ek = Yk − G (Xk,w) , and the goal of learning involves
solving for the parameters w in order to minimize the expectation of some given
function of the error.

While a number of optimization approaches exist, the EKF may be used to
estimate the parameters by writing a new state-space representation
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wk+1 = wk + rk,

Yk = G (Xk,wk) + ek,
(10.3)

where the parameters wk correspond to a stationary process with identity state
transition matrix, driven by process noise rk . The output Yk corresponds to a
nonlinear observation on Wk . The EKF can then be applied directly as an efficient
“second-order” technique for learning the parameters.

10.2.3 Dual Estimation

A special case of machine learning arises when the input Xk is unobserved and
requires coupling both state estimation and parameter estimation. For these dual
estimation problems, we again consider

Xk+1 = f (Xk, uk,w) + Wk,

Yk = h (Xk,w) + Vk,
(10.4)

where both the system states Xk and the set of model parameters w for the dynamic
system must be simultaneously estimated from only the observed noisy signal Yk .

Example applications include adaptive nonlinear control, noise reduction ( e.g.,
speech or image enhancement ), determining the underlying price of financial time-
series, etc. The classic method is usually to first use the EM algorithm [27] to
identify the system equation and then use the filtering algorithms to estimate the
state of the system. The modern method is using variational learning to learn the
system parameters and the posterior [20] simultaneously.

10.3 Feedforward Neural Networks

In this section, we shall introduce the simplest neural networks. It is known as the
FNNs and also referred to the multilayer perceptrons (MLPs). The mathematical
form of the network architecture will be given first. Then we shall state the universal
approximation theorem for FNNs, which reflects its computing power. The detailed
proof of the related theorems will also be given.

10.3.1 Mathematical Forms for FNNs

The schematic of the FNN is as follows:
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Fig. 10.1 A two-layer FNN
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Usually, this sort of networks are described in terms of layers which are chained
together to create the output function, where a layer is a collection of neurons that
can be thought of as a unit of computation. We denote σ as the sigmoid function
which is defined by

σ(x) = 1

1 + e−x
. (10.5)

In the simplest case, there is a single input layer and a single output layer, just as
presented in Fig 10.1. In this case, j -th neuron in hidden layer is connected to the
input vector x = (x1, . . . , xd) ∈ Rd via a biased weighted sum and an activation
function σj :

h
(1)
j = σj

(

bj +
d∑

i=1

wi,j xi

)

, (10.6)

where wi,j ∈ R and bj ∈ R. The activation function σj is the sigmoid function
defined above.

It is also possible to incorporate additional hidden layers between the input and
output layers. For example, the output of the MLP with one hidden layer will be

yk = σ
(2)
k

⎡

⎣b
(2)
k +

d2∑

j=1

ω
(2)
j,k · σ

(1)
j

(

b
(1)
j +

d1∑

i=1

ω
(1)
i,j xj

)⎤

⎦ , (10.7)

where σ
(2)
k , σ

(1)
j are nonlinear activation functions for each layer and the bracketed

superscripts refer to the corresponding layer. Such a neural network is usually called
a two-layer FNN.

For the convenience of stating our universal approximation theorem, we can
formulate the abovementioned FNN as the several classes of functions below.
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Definition 10.1 For any r ∈ N ≡ {1, 2, . . .},Ar is the set of all affine functions
from Rr to R, that is

Ar :=
{
A(x) = wTx + b : w, x ∈ Rr×1, b ∈ R

}
. (10.8)

In the FNN, x,w, and b represent the input, weight, and bias of the network,
respectively. A(x) is the linear operator in FNNs.

Definition 10.2 A function κ : R → [0, 1] is a squashing function if it is
nondecreasing, limλ→+∞ κ(λ) = 1, and limλ→−∞ κ(λ) = 0.

Here, κ represents a activation function.

Definition 10.3 ([11]) �r(κ) be the class of functions

⎧
⎨

⎩
ζ̄ :Rr →R : ζ̄ (x)=

q∑

j=1

βjκ
(
Aj(x)

)
, x ∈ Rr, βj ∈R,Aj ∈ Ar , q =1, 2, . . .

⎫
⎬

⎭
.

(10.9)

Apparently, ζ̄ represents the standard two-layer FNN with r input neurons, q hidden
neurons, and one output neuron.

10.3.2 Universal Approximation Theorem for FNNs

We begin with some frequently used notations and definitions in sequel. Let In =
[0, 1]n is the n-dimensional unit cube. M(In) be the space of finite, signed regular
Borel measures on In. Let Cr be the set of continuous functions from Rr to R with
the supremum norm ‖ · ‖, and the supremum norm of f : A → B is defined by

‖f ‖ = sup{|f (x)| : x ∈ A}. (10.10)

Definition 10.4 A subset S of a metric space (X, ρ) is ρ-dense in a subset T if for
every ε > 0 and for every t ∈ T , there is an s ∈ S such that ρ(s, t) < ε.

Definition 10.5 A subset S of Cr is said to be uniformly dense on compacta in Cr

if for every compact subset K ⊂ Rr , S is ρ-dense in Cr , where for f, g ∈ Cr and
ρ(f, g) = supx∈K |f (x) − g(x)|.
Definition 10.6 (Discriminatory) We say that a function σ is discriminatory if
given a measure μ ∈ M(In) such that

∫

In

σ
(
w�x + b

)
dμ(x) = 0, ∀w ∈ Rn, b ∈ R, (10.11)

implies that μ = 0.
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Here we give the Kolmogorov-Arnold representation theorem (or superposition
theorem) [19], which states that every multivariate continuous function can be repre-
sented as a superposition of continuous functions of one variable. The Kolmogorov-
Arnold representation theorem is given as follows.

Theorem 10.1 (Kolmogorov-Arnold Representation Theorem) For any integer
n ≥ 2 there are continuous real functions ψp,q(x) on the closed unit interval I1
such that each continuous real function f (x1, . . . , xn) on the n-dimensional unit
cube In can be written as

f (x1, . . . , xn) =
q=2n+1∑

q=1

χq

⎡

⎣
n∑

p=1

ψpq
(
xp

)
⎤

⎦ ,

where χq(y) are continuous real functions.

Remark 10.1 Theorem 10.1 implies, among other things, that if we could chose the
nonlinearity of each unit we can represent any continuous function exactly with a
FNN with 1 hidden layer. Therefore, the following universal approximation theorem
for FNNs we will state can be seen the special case of Theorem 10.1.

Now we shall present some well-known results of FNNs presented in [16].
It is well-known that this class of FNN functions is capable to approximate any
continuous function over a compact set to any desired degree of accuracy. For the
following content about theorem proof, we need readers to be familiar with the basic
content of functional analysis. And details of these concepts and theorems can be
found in [7].

Lemma 10.1 ( [8]) Any bounded, measurable squashing function σ is discrimina-
tory. In particular, any continuous squashing function is discriminatory.

Proof For any x, y, θ, ϕ we have

σλ(x) = σ
(
λ(yT x + θ)

)
+ ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

→ 1, for yT x + θ > 0 as λ → ∞
→ 0, for yT x + θ < 0 as λ → ∞
σ(ϕ), for yT x + θ = 0 for all λ.

(10.12)

This can be seen as applying the properties of the squashing function to its input for
varying values of λ. In other words, as λ → ∞ for yT x + θ > 0, we are in essence
calculating σ(t) for t → ∞. Similarly, as λ → ∞ for yT x + θ < 0 we get σ(t) for
t → −∞. The third case is obvious. Thus the functions parameterized by λ, σλ(x)

converge in the sense of pointwise and is bounded by
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γ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, for yT x + θ > 0

0, for yT x + θ < 0

σ(ϕ), for yT x + θ = 0,

(10.13)

as λ → ∞. This follows directly from the above.
Let �y,θ = {

x | yT x + θ = 0
}

be an affine hyperplane and

Hy,θ =
{
x | yT x + θ > 0

}

be the open half-space defined. Note that |σλ(x)| ≤ max(1, σ (ϕ)) for all x. We shall
first fix y. Then for all ϕ, θ, y, we can apply the dominated convergence theorem to
get

lim
λ→∞

∫

In

σλ(x)dμ(x) =
∫

In

lim
λ→∞ σλ(x)dμ(x)

=
∫

In

γ (x)dμ(x)

= σ(ϕ)μ
(
�y,θ

)+ μ
(
Hy,θ

)
.

(10.14)

For a bounded, measurable function h, define a linear functional F

F(h) =
∫

In

h(yT x)dμ(x). (10.15)

Note that F is a bounded linear functional on L∞(R) since μ is a finite signed
measure. This is because when we integrate with respect to a finite measure, we
can’t get an infinite result. Let h be the indicator function for the interval [θ,∞) so
that

F(h) =
∫

In

h(yT x)dμ(x) = μ
(
�y,−θ

)+ μ
(
Hy,−θ

) = 0. (10.16)

To see why this is true, recall that the indicator function χA : X → {0, 1} for a set
A ⊆ X is defined as follows

χA(x) =
{

1, if x ∈ A

0, otherwise.
(10.17)

Thus, if yT x ∈ [θ,∞), then yT x −θ ≥ 0. For the integral, this decomposes into the
measure of two disjoint sets, the hyperplane �y,−θ = {

x | yT x − θ = 0
}

and the
half-space Hy,−θ = {

x | yT x − θ > 0
}
. Similarly, F(h) = 0 if h is the indicator

function for the open interval (θ,∞). By linearity, F is 0 for the indicator function
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on any interval and hence for any simple function. Simple functions are dense in
L∞(R), so F = 0. �
Theorem 10.2 (Hahn-Banach) Let V be a normed vector space and R ⊂ V a
subspace of V . Let L ∈ R∗. Then there exists L̂ ∈ V ∗ that extends L to V and
satisfies ‖L̂‖V ∗ = ‖L‖R∗ .

Corollary 10.1 Let V be a normed vector space, R ⊂ V a subspace of V . Let
x0 ∈ V such that d(x0, R) = γ > 0. Then there exists L ∈ V ∗ such that

(1) ‖L‖V ∗ = 1 .
(2) L(x0) = γ .
(3) L(R) = 0.

Theorem 10.3 (Riesz Representation Theorem) Let L be a bounded linear
functional on C(In). Then there exists a unique μ ∈ M(In) such that

L(h) =
∫

In

h(x)dμ(x), ∀h ∈ C(In). (10.18)

We now state the universal approximation theorem of FNN and give an elegant
proof. This proof is based on [8].

Theorem 10.4 (Universal Approximation of FNNs [16]) For every squashing
function κ , every r ∈ N, �r(κ) is uniformly dense on compacta in Cr .

Proof For simplicity, we consider Cr = C(Ir ) and κ = σ . However, it is easy to
extend to the general case. Let R be the closure of the �r(κ), our goal is to show
R = C(Ir ).

Note that �r(κ) is a linear subspace of C(Ir ). By contradiction suppose R �

C(Ir ), that is ∃f ∈ C(Ir ) such that d(f,R) > 0. By the Corollary 10.1, ∃ L bounded
linear functional on C(Ir ) such that L �= 0, but L(Ir) = L(R) = 0.

By Theorem 10.3, there exists unique μ ∈ M(Ir) such that

L(h) =
∫

In

h(x)dμ(x), ∀h ∈ C(Ir ). (10.19)

Since L(R) = 0 and κ(w�x + b) ∈ R,∀w, b. Then

0 = L(κ(w�x + b)) =
∫

In

κ(w�x + b)dμ(x) ,∀w, b. (10.20)

Notice that κ is discriminatory; (10.20) implies μ = 0, which in turn implies
L = 0; and this is a contradiction. �

This theorem tells us that standard FNNs with only a single hidden layer can
approximate any continuous function uniformly on any compact set.

Naturally, Theorem 10.4 can be extended to the approximation of vector-valued
functions. Let Cr,N be the set of continuous functions from Rr to RN and �r,N(κ)

be the class of functions
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{
ζ̄ = (

ζ̄1, . . . , ζ̄N

)T : Rr → RN : ζ̄l (x) = ∑q

j=1 βl,j κ
(
Aj(x)

)
,

x ∈ Rr, βl,j ∈ R,Aj ∈ Ar , 1 ≤ l ≤ N, q = 1, 2, . . . .

}

(10.21)

Then we have the following corollary.

Corollary 10.2 Theorem 10.4 holds for the approximation of functions in Cr,N by
the extended function class �r,N(κ). Thereby the metric ρN

S (f, g) is given by

ρN
S (f, g) := sup

x∈S

N∑

l=1

|fl(x) − gl(x)| . (10.22)

10.4 Optimization and Backpropagation

In this section, we shall review the popular optimization methods for training neural
networks and explain backpropagation mechanism based on FNNs.

10.4.1 Optimization Algorithms for Neural Networks

Before proceeding with the backpropagation of FNN, we shall briefly introduce the
optimization algorithms used in deep learning. For more details, we recommend
[2]. The most commonly used approach for estimating the parameters of a neural
network is based on gradient descent (GD) which is a simple methodology for
optimizing a function.

For a given function f : Rd → R, we wish to determine the value of x that
achieves the minimum value of f . GD method begins with an initial value x0 and
computes the gradient of f at this point. Then we iterate xn according to

xn+1 = xn − η∇xf (xn), (10.23)

where η is the step size known as the learning rate. The algorithm converges to a
critical point when the gradient is equal to zero, though it should be noted that this
is not necessarily a global minimum.

In the context of neural networks, we would compute the derivatives of the loss
functional with respect to the parameter set θ and follow the procedure (10.23).

10.4.1.1 Stochastic Gradient Descent (SGD)

The main difficulty with the use of GD to train neural networks is the computational
cost associated with the procedure when training sets are large. Therefore, an
extension of the GD known as stochastic gradient descent (SGD) is proposed. For
the loss function L(θ; x, y), it can be written as



394 10 Estimation Algorithms Based on Deep Learning

∇L(θ; x, y) = 1

m

m∑

i=1

∇θLi(θ; xi, yi), (10.24)

where m is the size of the training set and Li is the loss function for each example.
The approach in SGD is to view the gradient as an expectation and approximate
it with a random subset of the training set called a mini-batch. That is, for a fixed
mini-batch of size m′ << m the gradient is estimated as

∇L(θ; x, y) ≈ 1

m′
m′
∑

i=1

∇θLi(θ; xi, yi). (10.25)

10.4.1.2 Adaptive Moment Estimation (Adam)

SGD is the basic optimizer used in optimizing loss function for deep neural network;
it is too slow for a deep neural network with a large number of data. So the following
optimizer called Adaptive Moment Estimation (Adam) [17] is introduced.

Adam is another method that computes adaptive learning rates for each param-
eter. In addition to storing an exponentially decaying average of past squared
gradients vt , Adam also keeps an exponentially decaying average of past gradients
mt , similar to momentum. Whereas momentum can be seen as a ball running down a
slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima
in the error surface. We compute the decaying averages of past and past squared
gradients mt and vt , respectively, as follows:

mt = β1mt−1 + (1 − β1)gt ,

vt = β2vt−1 + (1 − β2)g
2
t ,

(10.26)

where gt is the gradient at time t and mt and vt are estimates of the first moment
(the mean) and the second moment (the uncentered variance) of the gradients,
respectively, hence the name of the method. As mt and vt are initialized as zeros
vectors, the authors of Adam observe that they are biased toward zero, especially
during the initial time steps, and especially when the decay rates are small (i.e., β1
and β2 are close to 1). They counteract these biases by computing bias-corrected
first and second moment estimates:

m̂t = mt

1 − βt
1
,

v̂t = vt

1 − βt
2
.

(10.27)

They then use these to update the parameters as the following:
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θt+1 = θt − η
√

v̂t + ε
m̂t . (10.28)

The authors propose default values of 0.9 for β1, 0.999 for β2, and 10−8 for ε. They
show empirically that Adam works well in practice and compares favorably to other
adaptive learning-method algorithms.

10.4.2 Backpropagation

The SGD optimization approach and Adam optimization approach described in
the previous section requires repeated computations of the gradients of a highly
nonlinear function, e.g., FNN neural network [11]. Backpropagation [23, 32]
provides a computationally efficient means by which this can be achieved. It is
based on recursively applying the chain rule and on defining computational graphs
to understand which computations can be run in parallel.

Let’s illustrate the computational graphs with a simple example. We consider
x = f (w), y = f (x), z = f (y). Then we could compute ∂z

∂w
as follows:

∂z

∂w
= ∂z

∂y

∂y

∂x

∂x

∂w

= f ′(y)f ′(x)f ′(w)

= f ′(f (f (w)))f ′(f (w))f ′(w).

(10.29)

(10.29) can be formulated in Fig 10.2. It is called the computational graph for z =
f (f (f (w))), which contains the forward pass and backward pass.

Fig. 10.2 Visualization of backpropagation algorithm via computational graphs. The left panel
shows the composition of functions connecting input to output; the right panel shows the use of
the chain rule to compute the derivative
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Figure 10.2 is simple, but it illustrates that the composition of simple functions
like FNN can be viewed as operations between nodes in the graph. And the
derivative of output y with respect to x can be computed analytically by repeating
applications of the chain rule like the right panel in Fig 10.2. Then the backpropaga-
tion algorithm could compute the derivative of the output y with respect to x, which
is represented symbolically along this computation graph (backward). It is very
important in the implementation of the deep learning frameworks with automatic
differentiation, such as Pytorch [29].

After introducing the computational graphs, we shall take a multilayer FNN as an
example to briefly introduce the principle of backpropagation. The multilayer FNN
(ignoring bias b) is defined by

x(1) = σ(W(1)x(0)),

x(2) = σ(W(2)x(1)),

...

x(l) = σ(W(l)x(l−1)).

(10.30)

The output x(l) of the neural network is the prediction made by the neural network.
Here H denotes the loss function defined by

z = H(y, x(l)), (10.31)

where y is the true label. To use GD updating the parameters W(1), . . . ,W(l), we
need to calculate the gradient of the loss z with respect to each variable:

∂z

∂Wl
, . . . ,

∂z

∂W1 . (10.32)

The core of backpropagation is the chain rule of derivation. The chain rule can
be used to do backpropagation to get the gradient of the loss with respect to the
parameters of the neural network. Specifically, compute the gradient ∂z

∂x(l) first. Then
do the loop, starting from i = l, . . . , 1:

(1) Compute the gradient of the loss z with respect to the parameter W(l) that can
be obtained according to the chain rule:

∂z

∂W(i)
= ∂x(i)

∂W(i)

∂z

∂x(i)
. (10.33)

This gradient is used to update the parameter W(i).
(2) Compute the gradient of the loss z with respect to the parameter x(i−1) that can

be obtained according to the chain rule again:
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∂z

∂x(i−1)
= ∂x(i)

∂x(i−1)

∂z

∂x(i)
. (10.34)

This gradient is propagated to the next layer (i.e., layer i − 1), and the loop
continues.

10.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are able to learn features and long-term depen-
dencies from sequential data. Elman [9] popularized simple RNNs (Elman network).
RNNs have various applications in many fields, such as language modeling [28],
speech recognition [12], image processing [3], and machine translation [1]. A
typical RNN architecture has many advantages, such as possibility of processing
input of any length, model size not increasing with size of input, and taking into
account historical information and weights shared across time. However, it has some
drawbacks too, computation being slow, difficulty of accessing information from a
long time ago and not considering any future input for the current state. To solve
these problems, the new extensions of RNN has been proposed, such as LSTM [15]
and GRU [6]. In the following, we only focus on the basic RNNs.

10.5.1 Mathematical Forms for Networks

RNNs are a class of neural networks that allow previous outputs to be used as inputs
while having hidden states. They are typically as follows:

ht = f (Uxt + Wht−1 + b1) ,

yt = g (V ht + b2) ,
(10.35)

where ht ∈ Rh is the hidden variable at step t with input xt ∈ Rd and last hidden
variable ht−1 ∈ Rh and f is typically tanh. yt ∈ Rr is the output at step t with
the readout map g, which is typically identity map. U ∈ Rh×d ,W ∈ Rh×h, V ∈
Rr×h, b1 ∈ Rh, b2 ∈ Rr are parameters to be adjusted. A schematic diagram of the
structure of a simple RNN forward propagation is shown in Fig. 10.3. It takes the
inputs x1, . . . , x6 and outputs y1, . . . , y6 with hidden states h1, . . . , h6.
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Fig. 10.3 A two-layer RNN
example

y1 y2 y3 y4 y5 y6

h1 h2 h3 h4 h5 h6

x1 x2 x3 x4 x5 x6

10.5.2 Universal Approximation Theorem for RNNs

For the convenience of stating our universal approximation theorem for RNNs,
we shall introduce the open dynamical system and formulate the above mentioned
RNNs as the class of functions below.

Definition 10.7 An open dynamical system in discrete time can be represented by
the following equations:

{
sk+1 = η (sk, αk+1) , (state transition )

βk = ξ (sk) , (output equation)
(10.36)

where αk is the stochastic external input, sk is the state, and βk is the observable
output for ∀k ≥ 1.

Definition 10.8 For any Borel-measurable function σ(·) : Rh → Rh and r, d, T ∈
N be RNNr,d (σ ) the class of functions

ht+1 = σ (Uht + Wxt + b) ,

yt = V ht ,
(10.37)

where xt ∈ Rr, ht ∈ Rh, and yt ∈ Rd , with t = 1, . . . , T . And the matrices
U ∈ Rh×h, W ∈ Rh×I , and V ∈ Rd×h and the bias b ∈ Rh.

Here, we give the universal approximation theorem for RNN. The statement
and the proof are based on [33]. This theorem tells us that RNNs in state space
model form (10.37) are universal approximators and able to approximate every open
dynamical system (10.36) with an arbitrary accuracy.

Theorem 10.5 (Universal Approximation Theorem for RNN [33]) Let g(·) :
Rh × Rr → Rh be measurable and h(·) : Rh → Rd be continuous, the external
inputs xt ∈ Rr , the inner states st ∈ Rh, and the outputs yt ∈ Rd(t = 1, . . . , T ).
Then, any open dynamical system of the form
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st = g (st−1, xt ) ,

yt = h (st ) ,
(10.38)

which can be approximated by an element of the function class RNNr,d(σ ) with an
arbitrary accuracy.

Proof The main idea of this proof is that we can use two different FNNs with
single hidden layer to approximate the state equation and output equation of an open
dynamical system with an arbitrary accuracy in terms of Theorem 10.4. Thereby we
can approximate an open dynamical system with an arbitrary accuracy.

First, the state transition function of the nonlinear dynamical system st =
g (st−1, xt ) can be approximated by a two-layer FNN s′

t = Cf (Ast−1 + Bxt + b)

with an arbitrary accuracy, where A,B,C is the weight matrix and b is the bias
vector. This two-layer FNN can be decomposed into

s′
t = σ (Ast−1 + Bxt + b)

= σ
(
ACs′

t−1 + Bxt + b
)
,

st = Cs′
t .

(10.39)

Similarly, the output function of the nonlinear dynamical system yt = h (st ) =
h (g (st−1, xt )) can also be approximated by a two-layer FNN

yt = Dσ
(
A′st−1 + B ′xt + b′)

with an arbitrary accuracy, where A′, B ′andD is the weight matrix, b′ is the bias
vector. The second two-layer FNN is given by

y′
t = σ

(
A′st−1 + B ′xt + b′)

= σ
(
A′Cs′

t−1 + B ′xt + b′) ,

yt = Dy′
t .

(10.40)

Notice that

[
s′
t

y′
t

]

= σ

([
AC 0
A′C 0

][
s′
t−1

y′
t−1

]

+
[

B

B ′
]

xt +
[

b

b′
])

, (10.41)

and

yt = [
0 D

]
[

s′
t

y′
t

]

. (10.42)
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Let ht = [
s′
t , y

′
t

]
. Then the nonlinear dynamical system can be approximated by the

following RNN

ht = σ (Uht−1 + Wxt + b) ,

yt = Vht ,
(10.43)

where U =
[

AC 0
A′C 0

]

,W =
[

B

B ′
]

,b =
[

b

b′
]

,V = [
0 D

]
. �

10.6 The Application of Deep Learning in Nonlinear
Filtering

Finally, as the application of the deep learning, we shall introduce how to use deep
learning techniques mentioned above to solve nonlinear filtering problems. The
filtering algorithm based on neural networks is originated from Lo [26] called neural
filtering, which uses several correlated observations with corresponding states to
train the recurrent MLP to an optimal filter. Recently, nonlinear filtering algorithms
based on recurrent neural network (RNN) have been developed and implemented
in both discrete-time and continuous-time settings, with a more comprehensive
theoretical background.

For discrete-time filtering problems, Chen et al. [4] formulate the finite dimen-
sional filter as the dynamical system with stochastic inputs and show that the open
dynamical systems with stochastic inputs can be approximated by a class of RNNs
in state space model form with an arbitrary accuracy. Moreover, they construct an
RNN-based filter and prove that it can well-approximate finite dimensional filters
which include Kalman filter (KF) and Beneš filter as special cases.

For continuous-time filtering problems, Chen et al. [5] develop a uniform formu-
lation of Yau-Yau algorithm and introduce RNN for implementation. Leveraging the
powerful representation capability of neural network, the proposed RNN Yau-Yau
algorithm outperforms classical methods especially for nonlinear filtering systems
in high-dimensional space. In fact, with a pre-trained RNN, this deep learning-
based filtering algorithm can deal with nonlinear filtering problems with state
space dimension up to 100 in real time. Moreover, it is rigorously proved that the
proposed RNN Yau-Yau algorithm has the capability of overcoming the curse of
dimensionality, in the sense that the magnitude of the neural network employed in
the algorithm only needs to increase polynomially (rather than exponentially) with
respect to the dimension of the system.

There are also other types of deep learning-based filtering algorithms which
have been proposed recently. For example, instead of RNNs, the neural projection
filter proposed by Tao et al. [35] engages neural stochastic differential equations in
the algorithm, and this data-driven method, in comparison with other model-based
methods, is especially useful in application scenarios where an accurate filtering
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model may not exist; the deep filters proposed in [30, 31, 37] train fully connected
neural networks for state estimation.

Nevertheless, we would like to focus on the RNN-based filtering algorithms
here, because they preserve the recursive structure of the filtering problem and are
convenient for practical implementation and theoretical analysis.

Here in this section, we shall introduce the universal approximation theorem
for RNN with stochastic inputs and illustrate the algorithm details of the RNN-
based algorithms for both discrete-time and continuous-time filtering problems.
Convergence analysis of the algorithms will also be presented here, and especially,
we will theoretically interpret why RNN Yau-Yau algorithm can overcome the curse
of dimensionality.

10.6.1 Preliminaries

Before proceeding, we shall introduce the preliminaries about sufficient statistics
and finite dimensional filter (FDF). And we also introduce the uniform integrability
which is the key part in the proofs of the main results.

10.6.1.1 FDF

Recall the nonlinear filtering problem, its purpose is to compute the target posterior
p (Xk | Yk). In addition to probability density functions, there is another concept
in statistics to describe distributions called sufficient statistics. For example, let us
denote Sk|k as the sufficient statistics of p (Xk | Yk). Obviously, p (Xk | Yk) can be
completely determined by Sk|k . The definition of the sufficient statistics is given as
follows.

Definition 10.9 (Sufficient Statistic) If the conditional distribution p (Xk | Yk)

can be completely determined by a vector-valued function Sk|k ∈ Rns of the
observation sequence Yk , where ns ∈ N, then we say Sk|k is a sufficient statistic
for p (Xk | Yk).

Hence, there exists a function γ : Rns → Rn, such that

E [Xk | Yk] = γ
(
Sk|k

)
, (10.44)

since the optimal estimate E [Xk | Yk] is determined by p (Xk | Yk), which is
completely determined by the sufficient statistic Sk|k .

Similarly, we use vector Sk|k to denote the finite dimensional sufficient statistics
of the posterior distribution p (Xk | Yk). The evolution function of the statistics is
denoted as �, and the map from Sk|k to conditional mean E [Xk | Yk] is denoted as
�, that is
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Sk|k = �
(
Sk−1|k−1, Yk

)

E [Xk | Yk] = �
(
Sk|k

)
.

(10.45)

As we know, in most cases, it is not easy to write down the explicit forms of the
map functions � and �. However, by taking advantage of neural networks, we can
approximate these functions just using the input and output data, which motivates
us to use neural networks to solve the FDF problems.

10.6.1.2 Uniform Integrability

Before we start the analysis of RNN, we need to introduce an important concept,
i.e., uniform integrability. Here, we define the truncation operator TK with level
K > 0 as

TK (xi) =
{

xi, if |xi | ≤ K

K · sign (xi) , otherwise
(10.46)

and

TK(x) := (TK (x1) , . . . ,TK (xn))
T (10.47)

for x = (x1, . . . , xn)
T ∈ Rn. It can be easily checked that TKx = x when |x| ≤ K ,

and |TKx| ≤ |x| for all x ∈ Rn. In addition

∥
∥
∥TKX − TKX̃

∥
∥
∥

1
≤ ‖X − X̃‖1 ∀X, X̃ ∈ L1 (�;Rn

)
, (10.48)

Definition 10.10 A collection of random variables {Xi ∈ R, i ∈ I } in L1(�;R) is
said to be uniformly integrable if

lim
M→+∞

(

sup
i∈I

E
[|Xi | I|Xi |>M

]
)

= 0. (10.49)

Similarly, this definition can be extended to random vectors.

Definition 10.11 A collection of random vectors {Xi ∈ Rn , i ∈ I } in L1 (�;Rn)

is said to be uniformly integrable if

lim
M→+∞

(

sup
i∈I

E
[|Xi | I|Xi |>M

]
)

= 0. (10.50)

A common way to check the uniform integrability is listed in the following lemma.

Lemma 10.2 Let {Xi ∈ Rn, i ∈ I } be a collection of random vectors. If
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sup
i∈I

E
[|Xi |p

]
< ∞, for some p > 1, (10.51)

then {Xii ∈ I } is uniformly integrable.
Following Lemma 10.2, we can obtain the following two useful results which will
be used in sequel.

Lemma 10.3 Assume a collection of random vectors {Xi ∈ Rn, i ∈ I } is uniformly
integrable. Then for any ε > 0, there exists a positive K > 0, such that

sup
i∈I

‖Xi − TKXi‖1 < ε, (10.52)

where the truncation operator TK is defined in (2).

Proof Since {Xi : i ∈ I } is uniformly integrable, that is,

lim
M→+∞

(

sup
i∈I

E
[|Xi | I|Xi |>M

]
)

= 0 (10.53)

there exists K > 0, such that

sup
i∈I

E
[|Xi | I|Xi |>K

]
<

ε

2
. (10.54)

Then we have

sup
i∈I

‖Xi − TKXi‖1 ≤ sup
i∈I

E
[|Xi − TKXi | I|Xi |≤K

]+ sup
i∈I

E
[|Xi−TKXi | I|Xi |>K

]

= 0 + sup
i∈I

E
[|Xi − TKXi | I|Xi |>K

]

≤ sup
i∈I

(
E
[|Xi | I|Xi |>K

]+ E
[|TKXi | I|Xi |>K

])

≤ 2E
[|Xi | I|Xi |>K

]

< ε.

(10.55)
�

Remark 10.2 According to Lemma 10.3, it is known that we can find a sufficiently
large cube, such that most of the densities of the uniformly integrable random
vectors fall in this bounded set. In other words, if {Xi ∈ Rn, i ∈ I } is uniformly
integrable, then we can choose a sufficient large K > 0, such that uniformly over
Xi ∈ {Xi ∈ Rn, i ∈ I }, the random vector TKXi is a good approximation of Xi in
terms of the L1-norm. Crucially, every TKXi is a bounded random vector, which is
the desired property allowing us to approximate functions in RNN with infinite time
steps.

Combing Lemmas 10.2 and 10.3, we can easily obtain the following lemma.
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Lemma 10.4 Assume that a collection of random vectors Xi ∈ Rn, i ∈ I , satisfy
supi∈I ‖Xi‖2 < ∞. Then for any ε > 0, there exists a positive K > 0, such that

sup
i∈I

‖Xi − TKXi‖1 < ε, (10.56)

where the truncation operator TK is defined in (10.47).

Proof It is apparent that

sup
i∈I

E

[
|Xi |2

]
< ∞. (10.57)

Then according to Lemma 10.2, we know that {Xi, i ∈ I } uniformly integrable.
Using Lemma 10.3, we obtain the desire result. �

10.6.2 Universal Approximation Theorem for RNN
with Stochastic Inputs

In the previous section, we have seen that while FNNs can be used to approximate
continuous functions in compact set, RNN can be mapped to an open dynamical
system with sequential external inputs.

Now we aim to approximate the open dynamical system (10.36) with stochastic
inputs by a class of RNNs. More explicitly, we investigate RNNr1,r2,r3(κ), which is
defined as follows.

Definition 10.12 For any squashing function κ , and r1, r2, r3 ∈ N, RNNr1,r2,r3(κ)

is a class of functions with the following state space model form:

{
s̃k+1 = η̃ (s̃k, αk+1)

β̃k = ξ̃ (s̃k) ,
(10.58)

where αk ∈ Rr1 is the input, s̃k ∈ Rr2 is the hidden state, β̃k ∈ Rr3 is the output, and

η̃(s̃, α) = η̄ (TKs s̃,TKaα) (10.59)

ξ(s̃) = ξ̃ (TKs s̃) , (10.60)

in which η̄ ∈ �r1+r2,r2(κ), ξ̄ ∈ �r2,r3(κ),Ks and Kα are two positive numbers
which are the parameters of RNN, and T is the truncation operator defined in
(10.47).

Theorem 10.6 (Universal Approximation Theorem for RNN with Stochastic
Inputs) Let η(·) : Rr2 × Rr1 → Rr2 and ξ(·) : Rr2 → Rr3 be continuous,
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the external stochastic inputs αk ∈ Rr1 , the inner state sk ∈ Rr2 , and the output
βk ∈ Rr3 , k = 1, 2, . . . For any open dynamical system of the form

{
sk+1 = η (sk, αk+1)

βk = ξ (sk) ,
(10.61)

if the following conditions hold:

(i) {αk, k ≥ 1} and {sk, k ≥ 1} are uniformly integrable;
(ii) for ∀s, s̄ ∈ L1 (�;Rr2) and ∀α, ᾱ ∈ L1 (�;Rr1), ‖η(s, α) − η(s̄, ᾱ)‖1 ≤

Cη1‖s− s̄‖1+Cη2‖α−ᾱ‖1, and the Lipschitz constant Cη1 satisfies
∣
∣Cη1

∣
∣ < 1;

(iii) for ∀ε > 0, there exists δ > 0, such that for any s, s̄ ∈ L1 (�;Rr2) satisfying
‖s − s̄‖1 < δ, we have ‖ξ(s) − ξ(s̄)‖1 < ε,

then (10.61) can be approximated by the functions in RNNr1,r2,r3(κ) with an
arbitrary accuracy, i.e., for ∀ε > 0, there exist functions η̃ and ξ̃ of forms
(10.59) and (10.60), which determine the RNN system (10.58) with the same input
{αk, k ≥ 1} of (10.61), such that

lim
k→∞ ‖sk − s̃k‖1 < ε,

lim
k→∞

∥
∥
∥βk − β̃k

∥
∥
∥

1
< ε,

(10.62)

where s̃k and β̃k are the state and the output of the RNN system (24), respectively.

Proof The theorem is proven in three steps. We first construct appropriate approx-
imated RNN functions using the universal approximation of FNNs. Then we try to
obtain the iterative inequalities for errors. Finally, we compute the upper bounds of
the accumulated errors.

Step 1: In this step, we will construct functions in RNNr1,r2,r3(κ) to approximate
system (10.61).

Since {αk, k ≥ 1} and {sk, k ≥ 1} are uniformly integrable, for ∀ε1 > 0, we can
find K1 > 0 and K2 > 0, such that

sup
k≥1

∥
∥sk − TK1sk

∥
∥

1 < ε1,

sup
k≥1

∥
∥αk − TK2αk

∥
∥

1 < ε1,
(10.63)

according to Lemma 10.3. Let

B1 :=
{
x = (

x1, . . . , xr2

)T ∈ Rr2 : |xi | ≤ K1, 1 ≤ i ≤ r2

}
,

B2 :=
{
x = (

x1, . . . , xr1

)T ∈ Rr1 : |xi | ≤ K2, 1 ≤ i ≤ r1

}
.

(10.64)
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Observing B1 and B2 are compact sets, and by Corollary 10.2, we know that for
∀ε2 > 0, there exist functions η̄ ∈ �r1+r2,r2 and ξ̄ ∈ �r2,r3 represented by FNNs,
such that

sup
s∈B1

|ξ(s) − ξ̄ (s)| < ε2

sup
s∈B1,α∈B2

|η(s, α) − η̄(s, α)| < ε2.
(10.65)

Set

ξ̃ (s) := ξ̄
(
TK1s

)

η̃(s, α) := η̄
(
TK1s,TK2α

)
.

(10.66)

Step 2: Define ek := ‖sk − s̃k‖1, where s̃k is the state of system (10.58) with η̃ and ξ̃

defined in (10.66). Now we derive the evolution equation of the error ek . Comparing
(10.58) and (10.61), we have

ek+1 = ‖sk+1 − s̃k+1‖1

= ‖η (sk, αk+1) − η̃ (s̃k, αk+1)‖1

= ∥
∥η (sk, αk+1) − η̄

(
TK1 s̃k,TK2αk+1

)∥∥
1

≤ ∥
∥η (sk, αk+1) − η

(
TK1sk,TK2αk+1

)∥∥
1

+ ∥
∥η
(
TK1sk,TK2αk+1

)− η
(
TK1 s̃k,TK2αk+1

)∥
∥

1

+ ∥
∥η
(
TK1 s̃k,TK2αk+1

)− η̄
(
TK1 s̃k,TK2αk+1

)∥∥
1

��1 + �2 + �3.

(10.67)

Now we analyze these three terms separately. As for �1, we have

�1 = ∥
∥η (sk, αk+1) − η

(
TK1sk,TK2αk+1

)∥∥
1

≤ Cη1
∥
∥sk − TK1sk

∥
∥

1 + Cη2
∥
∥αk+1 − TK2αk+1

∥
∥

1

<
(
Cη1 + Cη2

)
ε1,

(10.68)

where the first inequality is due to the second condition and the second inequality
comes from (10.63). In terms of �2, using the Lipschitz property of η and (10.48),
we have

�2 = ∥
∥η
(
TK1sk,TK2αk+1

)− η
(
TK1 s̃k,TK2αk+1

)∥∥
1

≤ Cη1
∥
∥TK1sk − TK1 s̃k

∥
∥

1

≤ Cη1ek.

(10.69)
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As for �3, according to the second inequality in (10.65), we know that

�3 = ∥
∥η
(
TK1 s̃k,TK2αk+1

)− η̄
(
TK1 s̃k,TK2αk+1

)∥∥
1 < ε2, (10.70)

since TK1 s̃k ∈ B1 and TK2αk+1 ∈ B2. Substituting (10.68),(10.69), and (10.70) into
(10.67), we can obtain

ek+1 < Cη1ek + (
Cη1 + Cη2

)
ε1 + ε2. (10.71)

Step 3: Now we analyze the accumulated errors. Using (10.71) repeatedly, it follows
that

ek+1 < Cη1ek + (
Cη1 + Cη2

)
ε1 + ε2

< C2
η1ek−1 + (

Cη1 + 1
) ((

Cη1 + Cη2
)
ε1 + ε2

)

...

< Ck
η1e1 + ((

Cη1 + Cη2
)
ε1 + ε2

) k−1∑

i=0

Ci
η1

= Ck
η1e1 + Ck

η1 − 1

Cη1 − 1

((
Cη1 + Cη2

)
ε1 + ε2

)
.

(10.72)

Thus, we have

lim
k→∞ ek ≤ 1

1 − Cη1

((
Cη1 + Cη2

)
ε1 + ε2

)
, (10.73)

once the condition
∣
∣Cη1

∣
∣ < 1 holds. Based on the third condition, we know that

for ∀ε > 0, there exists δ > 0, such that for any s, s̄ ∈ L2 (�;Rr2) satisfying
‖s − s̄‖1 < δ, we have ‖ξ(s) − ξ(s̄)‖1 < ε/6. Apparently, we can choose small
enough ε1 and ε2, so that

⎧
⎪⎨

⎪⎩

limk→∞ ek ≤ 1
1−Cη1

((
Cη1 + Cη2

)
ε1 + ε2

)
< min

{
ε, δ

2

}

∥
∥sk − TK1sk

∥
∥

1 < ε1 < δ

sups∈B1
|ξ(s) − ξ̄ (s)| < ε2 < ε/6,

(10.74)

based on (10.63) and the first inequality in (10.65). It follows that there exists N0 >

0, such that

ek = ‖sk − s̃k‖1 < δ ∀k ≥ N0. (10.75)

Therefore, for any k ≥ N0, we have
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∥
∥
∥βk − β̃k

∥
∥
∥

1
=
∥
∥
∥ξ (sk) − ξ̃ (s̃k)

∥
∥
∥

1

= ∥
∥ξ (sk) − ξ̄

(
TK1 s̃k

)∥∥
1

≤ ∥
∥ξ (sk) − ξ

(
TK1sk

)∥∥
1 + ∥

∥ξ
(
TK1sk

)− ξ
(
TK1 s̃k

)∥∥
1

+ ∥
∥ξ
(
TK1 s̃k

)− ξ̄
(
TK1 s̃k

)∥∥
1

< ε/6 + ε/6 + ε/6 = ε/2.

(10.76)

Since
∥
∥sk − TK1sk

∥
∥

1 < δ and
∥
∥TK1sk − TK1 s̃k

∥
∥

1 < δ. Then

lim
k→∞

∥
∥
∥βk − β̃k

∥
∥
∥

1
< ε. (10.77)

It is obvious that we obtain the desired results from the first inequality of (10.74)
and (10.77). �

Remark 10.3 As for the three conditions in Theorem 10.6, we have the following
discussions.

(i) In terms of the first condition, if supk≥1 E [|sk|p1 ] < ∞ and supk≥1 E [|ak|p2 ] <

∞ for some p1, p2 > 1. Then by Lemma 10.2, we know that this condition
is satisfied. We put this condition since we need to find a big enough high-
dimensional cube, which can capture most of the densities of all the input and
state random vectors. Then we can approximate the functions on the bounded
domain using the approximation ability of FNNs and neglect the unbounded
parts. This is why we can approximate functions on the whole space.

(ii) The second condition implies that the system (10.61) is stable [14], which
is natural and useful in practice. This condition is used to ensure that the
accumulated error will not blow up.

(iii) The third condition means that ξ is continuous in the given metric space.
So that we can estimate the approximation error of the outputs from the
approximation error of the hidden state.

Now we give an example which satisfies the three conditions in Theorem 10.6.

Example 10.1 Consider the following linear scalar system:

{
sk+1 = c0sk + c1αk+1,

βk = c2sk,
(10.78)

where |c0| < 1, c1 �= 0, and {αk, k ≥ 0} is a white Gaussian random sequence
which is independent of s1. By iterations, we can easily get

sk = ck−1
0 s1 + c1

k−2∑

i=0

ci
0αk−i ∀k ≥ 2, (10.79)
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then we have

E

[
|αk|2

]
= 1

E

[
|sk|2

]
= c

2(k−1)
0 E

[
|s1|2

]
+ c2

1

k−2∑

i=0

c2i
0

= c
2(k−1)
0 E

[
|s1|2

]
+ c2

1
1 − c

2(k−1)
0

1 − c2
0

.

(10.80)

Apparently, supk≥1 E
[|sk|2

]
< ∞ and supk≥1 E

[|αk|2
]

< ∞. It can be easily
checked that the three conditions in Theorem 10.6 are satisfied.

10.6.3 RNN-Based Filtering for Discrete-Time Systems

10.6.3.1 The Main Idea

Observing that, in FDFs, we have the following evolution functions of the sufficient
statistics and the estimation:

{
Sk|k = �

(
Sk−1|k−1, yk

)
,

E [xk | Yk] = �
(
Sk|k

)
.

(10.81)

It is obvious that (10.81) is an open dynamical system with the stochastic inputs
{yk, k ≥ 0} and the stochastic outputs {E [xk | Yk]} which are the desired optimal
estimates of the states.

Naturally, using the universal approximation of RNN with stochastic inputs as
shown in Theorem 10.6, we can approximate the open dynamical system (10.81) by
RNN functions as detailed in last subsection. Following Theorem 10.6, it is known
that we can approximate � and � by functions �̃ and �̃ represented by FNNs,
respectively, that is

�̃(s, y) = �̄
(
TK1s,TK2y

)
,

�̃(s) = �̄
(
TK1s

)
,

(10.82)

where �̄ ∈ �ns+m,ns (κ), �̄ ∈ �ns,n(κ),K1 and K2 are two positive numbers which
are the parameters of RNN, and T is the truncation operator defined in (10.47). Then
we can obtain an RNN system which is as follows:

⎧
⎨

⎩

S̃k|k = �̃
(
S̃k−1|k−1, yk

)
,

x̂k|k = �̃
(
S̃k|k

)
,

(10.83)
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where S̃k|k and x̂k|k are defined as the state and the output of the RNN system
(10.83), respectively. We need to remark here that x̂k|k is a function of Yk .

Using the data {yk,E [xk | Yk]}k≥0, we can train the RNN system (10.83) such
that E [xk | Yk] can be well-approximated by the output x̂k|k , which can be regarded
as the estimate of the state xk based on observation history Yk . We call this filtering
method as RNN-based filter (RNNF).

Theorem 10.7 Consider a discrete filtering system (10.1) with optimal FDF. Let
Sk|k, k ≥ 0 be the theoretical statistics evolving according to (10.81) and S̃k|k, k ≥ 0
be the statistics generated by our RNNF which evolve according to (10.83). We need
the following assumptions:

(i) The sufficient statistics
{
Sk|k

}
k≥0 and the observations {yk}k≥0 are uniformly

integrable.
(ii) Function � is Lipschitz, i.e., for any S, S̄ ∈ RnS and y, ȳ ∈ Rm, such that

‖�(S, y) − �(S̄, ȳ)‖1 ≤ C�1‖S − S̄‖1 + C�2‖y − ȳ‖1, (10.84)

where nS is the dimension of Sk|k, C�1 and C�2 are Lipschitz constants, and
C�1 satisfies |C�1| < 1.

(iii) For ∀ε > 0, there exists δ > 0, such that for any s, s̄ ∈ L1 (�;Rns ) satisfying
‖s − s̄‖1 < δ, we have ‖�(s) − �(s̄)‖1 < ε. then for any ε > 0, there exists
an RNNF (10.83), i.e., there exist �̃ and �̃ of the forms (10.82), respectively,
such that

lim
k→∞

∥
∥
∥Sk|k − S̃k|k

∥
∥
∥

1
< ε, (10.85)

and

lim
k→∞

∥
∥x̂k|k − E [xk | Yk]

∥
∥

1 < ε. (10.86)

Proof The proof is similar to that of Theorem 10.6, we leave it as an exercise for
the readers. �

10.6.3.2 Algorithm Implementation

The RNN-based filter (10.82), which is also denoted as RNNF(y; θ), consists of
two parts

S̃k|k = �̃
(
S̃k−1|k−1, yk; θ1

)
,

x̂k|k = �̃
(
S̃k|k; θ2

)
,

(10.87)



10.6 The Application of Deep Learning in Nonlinear Filtering 411

where θT = [
θT

1 , θT
2

]
is all the trainable parameters in RNNF, �̃ is represented

by a single-layer feedforward network with l neurons, l is a hyperparameter to be
determined, and �̃ is a linear function with input dimension l and output dimension
n equal to the dimension of state xk . Naturally, we aim to minimize

L0(θ) := 1

K1 + 1
E

[
K1∑

k=0

∣
∣x̂k|k − E [xk | Yk]

∣
∣2
]

, (10.88)

where K1 ∈ N is the total time step in training. Observing that

E

[∣
∣xk − x̂k|k

∣
∣2
]

=E

[∣
∣xk − E [xk | Yk] + E [xk | Yk] − x̂k|k

∣
∣2
]

=E

[
|xk − E [xk | Yk]|2

]
+ E

[∣
∣E [xk | Yk] − x̂k|k

∣
∣2
]

+ 2E
[
(xk − E [xk | Yk])T

(
E [xk | Yk] − x̂k|k

)]

=E

[
|xk − E [xk | Yk]|2

]
+ E

[∣
∣E [xk | Yk] − x̂k|k

∣
∣2
]

+ 2E
[
E

(
(xk − E [xk | Yk])T

(
E [xk | Yk] − x̂k|k

) | Yk

)]

=E

[
|xk − E [xk | Yk]|2

]
+ E

[∣
∣E [xk | Yk] − x̂k|k

∣
∣2
]

+ 2E
[
E (xk − E [xk | Yk] | Yk)

T
(
E [xk | Yk] − x̂k|k

)]

=E

[
|xk − E [xk | Yk]|2

]
+ E

[∣
∣E [xk | Yk] − x̂k|k

∣
∣2
]
,

(10.89)
where the third equality comes from the tower property of conditional expectation
and the fourth equality is due to the fact that x̂k|k is σ (Yk)-measurable; it follows
that

arg min
θ

L0(θ) = arg min
θ

L(θ), (10.90)

where

L(θ) := 1

K1 + 1
E

[
K1∑

k=0

∣
∣x̂k|k − xk

∣
∣2
]

. (10.91)

Therefore, instead of data {yk,E [xk | Yk]}k≥0 where E [xk | Yk] cannot be obtained
in most cases, we only need data {yk, xk}k≥0 which can be easily generated from the
system (10.1). We need to remark that this step is crucial since it allows us to get
accessible data.

In real computations, the expectation in L(θ) is approximated by the average of
the results obtained from a large number of trials. Hence, we define the loss function
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as follows:

L(N)(θ) := 1

N

1

K1 + 1

N∑

n=1

(
K1∑

k=0

∣
∣xk (ωn) − x̂k|k (ωn)

∣
∣2
)

, (10.92)

where x̂k|k (ωn) = RNNF (yk (ωn) ; θ) is the output of RNNF with input yk (ωn),
and N and K1 are the numbers of Monte Carlo paths and total time steps in training,
respectively.

The detailed procedures of RNNF are listed as follows:

Algorithm 6 RNNF training algorithm
Require:

1: Train data:
{
{(yk(ωn), xk(ωn))}K1

k=0

}N

n=1
;

2: Batch size: M;
3: Total epochs: I ;
4: Learning rate: λ;
Ensure:

5: RNNF output:
{
{RNNF(yk(ωn)); θ}K1

k=0

}N

n=1
;

6: for i = 1, . . . I do

7: Sample batch
{
{(yk(ωn), xk(ωn))}K1

k=0

}N

n=1
from Train data;

8: Compute loss L(θ) via (10.92);
9: Update θ via θ ←− θ − λ∇θL(θ).

10.6.4 RNN-Based Yau-Yau Algorithm for Continuous-Time
Systems

Now, let us turn to the filtering problems in continuous-time setting. Just as in
Chap. 7, a continuous-time filtering system can be described by the following couple
of stochastic differential equations:

{
dXt = f (Xt )dt + GdVt , X0 ∼ σ0,

dYt = h(Xt )dt + dWt , Y0 = 0,
(10.93)

where X,V, Y,W are Rn-, Rn-, Rm-, Rm-valued stochastic processes, respectively;
V , W are independent standard Brownian motions and are independent with the
initial value X0. Hereafter, we further assume that the coefficients f and h are C2

functions.
Utilizing an orthonormal basis in some Hilbert spaces of functions such as

L2(Rn), we can convert the Yau-Yau algorithm discussed in Chap. 7 into the
propagation and evolution of parameters, and we would like to call it the uniform
framework of Yau-Yau algorithm. In this subsection, we will show that the
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propagation of parameters can be approximated with arbitrary accuracy by a
recurrent neural network (RNN) and provide a practical implementation of Yau-Yau
algorithm for continuous-time systems.

Moreover, we can theoretically prove that the number of the parameters required
in the uniform framework of Yau-Yau algorithm only grow polynomially (rather
than exponentially) with respect to the dimension of the filtering system, which
shows that this framework of Yau-Yau algorithm has the capability of overcoming
the curse of dimensionality.

10.6.4.1 The Uniform Framework of Yau-Yau Algorithm

Just as in Chap. 7, in this uniform framework of Yau-Yau algorithm, we also need
first consider the uniform partition P : 0 = τ0 < τ1 < · · · < τN = T of the time
interval [0, T ], with time-discretization step δ = T

N
.

At each time interval [τi−1, τi], 1 ≤ i ≤ N the Yau-Yau algorithm solves
the observation independent parabolic partial differential equation (7.9) in Chap. 7,
which is

∂ũi

∂t
(t, x) =1

2
�ũi(t, x) −

n∑

i=1

fi(x)
∂ũi

∂xi

(t, x)

−
(

n∑

i=1

∂fi

∂xi

(x) + 1

2

m∑

i=1

h2
i (x)

)

ũi (t, x),

(10.94)

with initial value given by

ũi (τi−1, x) = exp

⎛

⎝
m∑

j=1

(yj
τi−1

− yj
τi−2

)hj (x)

⎞

⎠ ũi−1(τi−1, x), i ≥ 2, (10.95)

and

ũ1(0, x) = σ0(x) exp

⎛

⎝
m∑

j=1

yj (τ0)hj (x)

⎞

⎠ . (10.96)

Here we also use lower-case {yt : 0 ≤ t ≤ T } to represent a particular observation
trajectory.

The main idea of this uniform framework is to convert the evolution of functions
ũi (τi−1, x) for 1 ≤ i ≤ N (which, according to the exponential transformation
processes in Chap. 7, can be used to approximate the unnormalized conditional
probability density function σ(τi−1, x)), to the propagation of finitely many param-
eters which can be computed recursively. Because in general, {̃ui(τi−1, x) : 1 ≤
i ≤ N} evolves in an infinite dimensional functional space which cannot be
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characterized by finitely many parameters, such conversion is not equivalent and
some approximation techniques are required to fulfill this idea.

The approximation techniques we choose here is based on a set of orthonormal
basis functions {φl}∞l=1 of some Hilbert spaces of functions, such as L2(Rn), which
contains every ũi,t (x) � ũi (t, x), 1 ≤ i ≤ N , t ∈ [τi−1, τi]. The functions ũi (t, x)

can thus be written in the form of variable separation given by

ũi (t, x) =
∞∑

l=1

ai,l(t)φl(x), t ∈ [τi−1, τi] (10.97)

If the orthonormal basis functions possess some kind of good properties, we
believe (and rigorously prove later) that it is reasonable to find an element in SM

given by

ũM,i(t, x) =
M∑

l=1

λi,l(t)φl(x), (10.98)

which can approximate ũi (t, x) well. Examples of this kind of orthonormal basis
functions include classical ones such as Hermite functions and Legendre functions
discussed in Chap. 7.

For the convenience of notations, let us denote λi,l = λi,l(τi−1), which is the
value of the parameter at the left endpoint of [τi−1, τi]. In this uniform framework,
we also require that there exists a recursive formula for the M-dimensional
parameter vector λi = [λi,1, · · · , λi,M ]�, with respect to i, i.e., there exists a
continuous function η : RM × Rm → RM , such that

λi+1 = η(λi, yτi
− yτi−1), 0 ≤ i ≤ N − 1. (10.99)

Therefore, we cannot simply take the seemingly straightforward choice of

ũM,i(τi−1, x),

with each

λi,l = ai,l(τi−1), 1 ≤ l ≤ M.

In fact, for general systems, the value of ai,l(t) (1 ≤ l ≤ M) depends on the tail
terms {ai,l(t) : l ≥ M} and there does not exist a recursive formula for the finite
dimensional parameter {(ai,l(τi−1)) : 1 ≤ l ≤ M}.

Nevertheless, with the linearity of (10.94) and the projection of functions on the
finite dimensional space SM , we can find proper parameters satisfying a recursive
formula of the form (10.99), such that ũM,i(τi−1, x) approximates ũi (τi−1, x) well
with sufficiently large M .
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Let us denote the semigroup generated by the parabolic partial differential
equation (10.94) by {Ut : t ≥ 0}, and we can write ũi (τi , x) = Uδũi(τi−1, x).
With the linearity of (10.94), at least formally, we have

ũi (τi , x) = Uδ

∞∑

l=1

ai,l(τi−1)φl(x) =
∞∑

l=1

ai,l(τi−1)Uδφl(x). (10.100)

If (10.100) converges in some sense, we can truncate the right-hand side at the M-th
term and obtain

ũi (τi , x) ≈
M∑

l=1

ai,l(τi−1)Uδφl(x) (10.101)

Projecting each Uδφl onto the finite dimensional subspace SM , we have

Uδφl(x) ≈
M∑

j=1

dl,j φj (x) (10.102)

with

dl,j = 〈Uδφl, φj 〉, 1 ≤ l, j ≤ M. (10.103)

Therefore,

ũi (τi , x) ≈
M∑

l=1

M∑

j=1

ai,l(τi−1)dl,j φj (x). (10.104)

At time t = τi , according to the exponential transform (10.95), after projection
on SM , we have

ũi+1(τi, x) = exp

(
m∑

k=1

(yk
τi−1

− yk
τi−2

)hk(x)

)

ũi (τi , x)

≈
M∑

l=1

M∑

j=1

ai,l(τi−1)dl,j exp

(
m∑

k=1

(yk
τi−1

− yk
τi−2

)hk(x)

)

φj (x)

≈
M∑

l=1

M∑

j=1

M∑

j1=1

ai,l(τi−1)dl,j rj,j1(yτi
− yτi−1)φj1(x),

(10.105)



416 10 Estimation Algorithms Based on Deep Learning

with

rj,j1(yτi
− yτi−1) =

〈

exp

(
m∑

k=1

(yk
τi−1

− yk
τi−2

)hk(x)

)

φj , φj1

〉

, 1 ≤ j, j1 ≤ M.

(10.106)

Combining (10.98) with (10.105), we obtain a candidate parameter λi , which
evolves according to

λi+1,j1 =
M∑

l=1

M∑

j=1

λi,ldl,j rj,j1(yτi
− yτi−1), 0 ≤ i ≤ N − 1, 1 ≤ j1 ≤ M.

(10.107)

Finally, since ũM,i+1(τi, x) = ∑M
l=1 λi+1,lφl(x) is an approximator of

ũi+1(τi, x), it is also an approximator of the unnormalized conditional probability
density function σ(τi, x). In the filtering problem, if we are concerned with the
conditional expectation E[ϕ(Xt )|Yt ], we can compute the normalized integral

E[ϕ(Xt )|Yt ] =
∫

ϕ(x)σ (t, x)dx
∫

σ(t, x)dx
. (10.108)

This normalized integral can also be parametrized in this uniform framework of
Yau-Yau algorithm. In fact, the conditional expectation at each t = τi can be
approximated as follows:

E[ϕ(Xτi
)|Yτi

] ≈
∫

ϕ(x)̃uM,i+1(τi, x)dx
∫

ũM,i+1(τi, x)dx
=
∑M

j=1 βϕ,jλi+1,j
∑M

j=1 β1,j λi+1,j

, (10.109)

with

βϕ,j =
∫

ϕ(x)φj (x)dx, β1,j =
∫

ϕ(x)φj (x)dx, 1 ≤ j ≤ M. (10.110)

We are ready to theoretically prove that ũM,i(τi−1, x) defined in (10.98) with
candidate parameter λi satisfying (10.107) approximate ũi (τi−1, x) well. Before
that, let us summarize this uniform framework of Yau-Yau algorithm.

10.6.4.2 Convergence Analysis and the Capability of Overcoming the
Curse of Dimensionality

For the convergence analysis of this uniform framework of Yau-Yau algorithm, we
can first state that if the orthonormal basis {φl(x)}∞l=1 is chosen to be classical
ones such as Hermite functions or Legendre functions, the convergence results
have already been obtained through the analysis in Chap. 7. However, from the
proofs in Chap. 7, one may notice that in order to obtain a similar estimation error,
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Algorithm 7 The uniform framework of Yau-Yau algorithm
1: Off-line computation
2: Compute the semigroup Uδ on the finite dimensional subspace SM spanned by a given

orthonormal function set {φl(x)}Ml=1, i.e., Compute {dl,j }1≤l,j≤M .
3: Compute βϕ,j and β1,j for 1 ≤ j ≤ M .
4: Initialization
5: Compute λ0 = (

λ0,1, · · · , λ0,M

)T by projecting ũ1(x, τ0) = σ0(x) on SM .
6: On-line computation
7: for i = 1 to N do
8: Updating λi according to

λi+1,j1 =
M∑

l=1

M∑

j=1

λi,ldl,j rj,j1 (yτi
− yτi−1 ), 1 ≤ i ≤ N, 1 ≤ j1 ≤ M.

9: Compute the approximated conditional expectation

∑M
j=1 βϕ,j λi+1,j

∑M
j=1 β1,j λi+1,j

.

theoretically, the number of the basis functions required will increase exponentially
with respect to the dimension of the system. This phenomenon is always referred
to as the curse of dimensionality and will cause inefficiency in high-dimensional
problems.

The phenomenon, curse of dimensionality, occurs because the representation
capability of classical orthonormal bases is not sufficient for efficiently approximat-
ing high-dimensional functions. Therefore, we would like to conduct convergence
analysis here with orthonormal basis which is elaborately chosen and related to the
specific models, so that the representation capability for the conditional probability
density functions is strengthened and we can prove that the Yau-Yau algorithm
under this uniform framework can overcome the curse of dimensionality in the sense
that the number of basis functions we need only increase polynomially (rather than
exponentially) with respect to the system dimension.

The main convergence result of this uniform framework of Yau-Yau algorithm
is stated as follows. Remember that in Chap. 7, we have proved that most of the
densities of the conditional distribution will lie inside a big ball Br = {x ∈ Rn :
|x| ≤ r} with radius r � 1. Therefore, this convergence result will focus on Br ,
rather than the whole space Rn.

Theorem 10.8 Consider the square-integrable, L2(Br)-valued random variables
{̃ui+1(x, τi)}Ni=0 defined by (10.94) and (10.95) in the Yau-Yau algorithm. There
exists a set of M normalized square-integrable functions, {φj }Mj=1 ⊂ L2(Br), which
are orthogonal to each other, such that for each i = 0, · · · , N , we can find a
function ṽi (x) in the M-dimensional vector space SM spanned by {φj }Mj=1, which
satisfies
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Ẽ

∫

Br

|̃vi(x) − ũi+1(τi, x)|dx ≤ CT

√
δ, ∀ i = 0, 1, · · · , N, (10.111)

where CT is a constant which depends on T , R, and the coefficients in the filtering
system, but does not depend directly on the dimension of the filtering system, n, m,
or the time discretization step δ. Here, the notation Ẽ means that the expectation is
taken with respect to the reference probability measure P̃ .

Next, if we represent ṽi by

ṽi (x) =
M∑

j=1

λi+1,j φj (x), (10.112)

then the evolution of λi+1 = (λi+1,1, · · · , λi+1,M)� ∈ R
M satisfies an open

dynamical system

λi+1 = η(λi, yτi
− yτi−1), i = 1, · · · , N, (10.113)

with a given initial value λ1, where η : RM × Rm → RM is a continuous function
with respect to λi ∈ RM and yτi

− yτi−1 ∈ R
m and is time-invariant.

Moreover, the number M of functions in the set {φj }Mj=1 can be chosen to grow
at most polynomially with respect to the dimension m, which shows the capability of
this framework of the Yau-Yau algorithm to overcome the curse of dimensionality.

Here we would like to sketch the main idea in the proof of Theorem 10.8, and
readers can refer to [5] for a detailed proof.

Proof (A Sketch of the Proof of Theorem 10.8) The main idea of the proof consists
of the following two parts.

Firstly, we would like to introduce an auxiliary partial differential equation
with initial conditions slightly different from (10.94) and prove that the difference
between the solution of the original PDE and the auxiliary one is small. The
auxiliary equation is defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂vi

∂t
(t, x) =

(

L− 1

2
h�h

)

vi(t, x), (t, x) ∈ [τi−1, τ ] × Br,

vi(t, x) = 0, (t, x) ∈ [τi−1, τi] × ∂Br,

vi(τi−1, x) = bi−1(x)vi−1(τi−1, x), x ∈ Br.

(10.114)

with bi(x) the truncated Taylor series of exp
(∑m

k=1(y
k
τi

− yk
τi−1

)hk(x)
)

at order

two given by
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bi(x) =1 +
m∑

k=1

hk(x)(yk
τi

− yk
τi−1

)

+ 1

2

m∑

j=1

m∑

k=1

hj (x)hk(x)(yk
τi

− yk
τi−1

)(y
τ

j
i

− yj
τi−1

).

(10.115)

Use the fact that {yt : 0 ≤ t ≤ T } is a standard Brownian motion under the reference
probability P̃ , as well as the property of parabolic partial differential equation; we
can obtain the following recursive estimation of the difference between ũi+1(τi, x)

and vi+1(τi, x):

Ẽ

∫

Br

|̃ui+1(τi, x) − vi+1(τi, x)|dx

≤ M1δ
3
2 + (1 + M2δ)Ẽ

∫

Br

|̃ui(τi−1, x) − vi(τi−1, x)|dx,

(10.116)

for all 1 ≤ i ≤ N , where M1, M2 are constants independent of δ. Hence,

Ẽ

∫

Br

|ũi+1(τi, x) − vi+1(τi, x)|dx

≤ (1 + M2δ)
i

∫

Br

|ũ1(τ0, x) − v1(τ0, x)|dx + M1δ
3
2

i−1∑

j=0

(1 + M2δ)
j

=M1

M2

√
δ
(
(1 + M2δ)

i − 1
)

≤ M1

M2

√
δ
(
eM2T − 1

)
.

(10.117)

Thus, the solution of the auxiliary equation vi+1(x, τi) provides a good estimation
to ũi+1(τi, x), as long as the time discretization step δ is small enough.

Secondly, we would like to show that we can choose a set of orthonormal
functions which represents each vi+1(τi, x), (1 ≤ i ≤ N ) well, and the number
of the orthonormal functions can be bounded by a polynomial of the observation
dimension m.

In fact, the solution to the auxiliary equation (10.114) can be represented by

vi+1(x, τi) =
⎛

⎝
i∏

j=1

(bjUδ)

⎞

⎠ σ0, i = 1, · · · , N. (10.118)

with Uδ the operator in the semigroup generated by (10.94). Therefore, according
to the definition of bi(x), for each i = 1, · · · , N , the function vi+1(x, τi) is a linear
combination of the functions in the set ST given by
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ST =
⎧
⎨

⎩

⎛

⎝
i∏

j=1

(HjUδ)

⎞

⎠ σ0 : Hj =1, hj1, hj1hj2 , 1 ≤ j1, j2 ≤ m, i =1, · · · , N

⎫
⎬

⎭
,

(10.119)

and the coefficients of the linear combinations will be the products of those numbers
y

j
τi

− y
j
τi−1 , 1 ≤ i ≤ N , 1 ≤ j ≤ m, given by the observations.

In the meanwhile, because yt is a standard Brownian motion under the reference
probability P̃ , “high-order” functions in ST , where hj ’s exist at least three times,
contribute little to the linear combinations after taking expectations. In fact, the

coefficients of these terms are of order at least δ
3
2 .

Therefore, the solution of the auxiliary equations can be well represented by
linear combinations of those “low-order” functions in ST , where hj ’s exist at most
two times. The “low-order” functions in ST are summarized in Table 10.1 and the
number of “low-order” functions can be bounded by a quadratic polynomial of the
observation dimension m.

Let us define SM to be the linear space spanned by those “low-order” functions
in ST , and the dimension M of SM can be bounded by a quadratic polynomial of
m. Let us find an orthonormal basis of SM , {φi}Mi=1, which can be done by standard
Gram-Schmidt orthogonalization procedure. Then, all the functions vi(τi−1, x) can
be represented by the form

vi(τi−1, x) =
M∑

j=1

λi,jφj (x), (10.120)

for all i = 1, · · · , N , where we ignore higher order terms with respect to δ.
Furthermore, the evolution of the coefficients λi can be described by the recursive

formula as (10.113). In fact, since

vi+1(τi, x) = bi(x)vi(τi, x) = bi(x)Uδvi(τi−1, x). (10.121)

With the expression (10.120),

Table 10.1 A summary of “low-order” functions in the set |ST |
Time Basis functions

i = 1 σ0

i = 2 Uσ0, hjUσ0, hj hkUσ0

i = 3 U2σ0,UhjUσ0, hjU2σ0, hj hkU2σ0, hjUhkUσ0,UhjhkUσ0

i = 4 U3σ0,U2hjUσ0,UhjU2σ0, hjU3σ0, hj hkU3σ0, · · ·
· · · · · ·
i = NT UNT −1σ0,UNT −2hjUσ0, · · · , hjUNT −1σ0, hj hkUNT −1σ0, · · ·
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M∑

j=1

λi+1,j φj (x) =
M∑

j=1

λi,j bi(x)Uδφj (x)

=
M∑

j=1

λi,jUδφj +
M∑

j=1

m∑

l=1

λi,j (y
l
τi

− yl
τi−1

)hlUδφj

+ 1

2

M∑

j=1

m∑

l=1

m∑

k=1

λi,j (y
l
τi

− yl
τi−1

)(yk
τi

− yk
τi−1

)hlhkUδφj .

(10.122)

Since {φj }Mj=1 is an orthonormal basis of SM , by taking inner products, we have

λi+1,s =
M∑

j=1

λi,j 〈φj , φs〉

=
M∑

j=1

λi,j 〈Uδφj , φs〉 +
M∑

j=1

m∑

l=1

λi,j (y
l
τi

− yl
τi−1

)〈hlUδφj , φs〉

+ 1

2

M∑

j=1

m∑

l=1

m∑

k=1

λi,j (y
l
τi

− yl
τi−1

)(yk
τi

− yk
τi−1

)〈hlhkUδφj , φs〉,
(10.123)

for each 1 ≤ s ≤ M , where 〈·, ·〉 denotes the inner product in the Hilbert space
L2(Br). The right-hand side (10.123) is indeed a continuous function with respect
to λi = (λi,1, · · · , λi,M)� and yτi

− yτi−1 .
In this way, we have found a set of M orthonormal functions, {φj }Mj=1 with M

bounded by a quadratic polynomial of m, and functions

ṽi (x) =
M∑

j=1

λi+1,j φj (x), (10.124)

which provide good estimations to ũi+1(τi, x). Also, the evolution of λi satisfies the
open dynamical system

λi+1 = η(λi, yτi
− yτi−1). (10.125)

In this way, we have obtained the desired result of Theorem 10.8. �
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10.6.4.3 Implementation of the Uniform Framework of Yau-Yau
Algorithm by RNN

Despite the elegant theoretical results, in general, the functions in ST in the proof
of Theorem 10.8 cannot be written down in explicit form, and neither can those
{φj }Mj=1. Fortunately, recurrent neural network has the capability to provide a good
approximation to the open dynamical system (10.113), and according to the uniform
framework of Yau-Yau algorithm summarized in Algorithm 7, it is the coefficients
λi rather than those basis functions that matter in the computation of conditional
expectations of a given test function.

Therefore, we can train and apply an RNN to track the propagation of the
coefficients and fulfill the goal of filtering, which is sequentially computing the
conditional expectations.

The implementation of the uniform framework of Yau-Yau algorithm based
on RNN is similar to the discrete-time case. We can first generate samples by
simulating the filtering system (10.93). For a test function ϕ, we then obtain the
training data

{
(yτi

(ωs), ϕ(xτi
(ωs))) : 1 ≤ s ≤ S, 1 ≤ i ≤ N

}
. The RNN is trained

with these data and we obtain

ϕ̂i = RNN(yτi
− yτi−1 , θ), (10.126)

which can be used as an estimation to the conditional expectation E[ϕ(Xτi
)|Yτi

] at
time τi , for each 1 ≤ i ≤ N .

10.6.5 Numerical Results

In the numerical experiment, we consider the following discrete-time nonlinear
filtering system:

{
xk+1 = (Id + αAd)xk + α cos(xk) + vk,

yk,i = αx3
k,i + wk,i, i = 1, . . . , d,

(10.127)

where xk,i denotes the i-th entry of the vector xk , with k = 1, . . . , K where
K = 200, α = 0.01, and d = 6. The sequences {vk}Kk=1 and {wk}Kk=1 are mutually
independent Gaussian random vectors with zero means and covariance matrices
E
[
vkv

�
k

] = 0.01Id and E
[
wkw

�
k

] = 0.01σ 2Id where σ 2 ∈ {0.01, 0.1, 1}. The
matrix Ad = [aij ] has elements defined as follows:

aij =

⎧
⎪⎪⎨

⎪⎪⎩

0.5, if i + 1 = j,

−1, if i = j,

0, otherwise.
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Here, we would like to use the RNN-based filtering algorithm (RNNF) to solve
this six-dimensional filtering problem, with the performance of extended Kalman
filter (EKF) and particle filter (PF) introduced in Chap. 9 as a comparison.

The initial value of the true state is set to x0 = [1, 1, . . . , 1]�. To investigate the
influence of the initial values of the filtering algorithms on the estimation results,
the initial mean and covariance of the EKF and PF are set to the zero vector and the
identity matrix, respectively. The initial hidden state of the RNNF is also initialized
as the zero vector. Furthermore, to evaluate the performance of the algorithms under
different levels of observation noise, we choose σ 2 ∈ {0.01, 0.1, 1}. As expected,
the accuracy of the state estimation decreases with increasing observation noise,
i.e., with larger σ 2. In the PF, we use 1000 particles, and all parameters used in the
RNNF are listed in Table 10.2.

To evaluate the performance of these methods, we introduce two metrics: the
mean squared error (MSE) and the mean absolute error (MAE), based on 20
realizations. These metrics are defined as follows:

MSE := 1

20

20∑

l=1

1

K + 1

K∑

k=0

∣
∣
∣x(l)

k − x̂
(l)
k

∣
∣
∣
2
,

MAE(k) := 1

20

20∑

l=1

∣
∣
∣x(l)

k − x̂
(l)
k

∣
∣
∣ ,

(10.128)

where x
(l)
k represents the true state at time instant k in the l-th experiment and x̂

(l)
k

is the corresponding estimate, with 0 ≤ k ≤ K , and K ∈ N is the total number of
time steps.

In the subsequent numerical evaluations, all experiments were performed using
NVIDIA RTX2060 GPUs on a computational platform equipped with 16 Intel Core
i7-10700 CPUs running at 2.90 GHz. The RNNF implementation was carried out
using PyTorch, while the EKF and PF implementations utilized NumPy, a Python
library for scientific computing.

The MAE of the three algorithms, based on 20 realizations under different levels
of observation noise, is shown in Fig. 10.4. It can be observed that, in all cases, the
RNNF performs best in terms of MAE and is less sensitive to the initial value. The
MSE and running time of the three methods are summarized in Table 10.3. The
results show that the RNNF achieves the lowest MSE and the shortest running time,
even outperforming the EKF in speed.

10.7 Exercises

1. For a function J that maps a column vector w ∈ R
n to R, the gradient is defined

as
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Table 10.2 Parameters used
in RNNF

Parameter Value

Paths in training set 1500

Paths in test set 20

Activation function ReLU

Optimizer Adam

Total epochs 2000

Batch size 64

Hidden layer neurons 40

Learning rate 0.0004

(a) 2 = 0.01 (b) 2 = 0.1 (c) 2 = 1

Fig. 10.4 Mean absolute error (MAE) of three filtering algorithms based on 20 experiments with
different levels of observation noise. (a) σ 2 = 0.01. (b) σ 2 = 0.1. (c) σ 2 = 1

Table 10.3 Average performance of different methods based on 20 simulations for system
(10.127)

Observation noise σ 2 Algorithm MSE Running time (s)
0.01 RNNF 0.5922 0.0034

EKF 0.7495 0.0260

PF 0.7124 0.5570
0.1 RNNF 0.8810 0.0036

EKF 1.0752 0.0070

PF 0.9924 0.5625
1 RNNF 1.1416 0.0036

EKF 1.4829 0.0047

PF 1.2363 0.5732

∇J (w) =

⎛

⎜
⎜
⎝

∂J (w)
∂w1
...

∂J (w)
∂wn

⎞

⎟
⎟
⎠ , (10.129)

where ∂J (w)/∂wi are the partial derivatives of J (w) with respect to the i-th element
of the vector w = (w1, . . . , wn)

� (in the standard basis). Alternatively, it is defined
to be the column vector ∇J (w) such that

J (w + εh) = J (w) + ε(∇J (w))�h + O
(
ε2
)

(10.130)
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for an arbitrary perturbation εh. This phrases the derivative in terms of a first-order,
or affine, approximation to the perturbed function J (w + εh). The derivative ∇J is
a linear transformation that maps h ∈ R

n to R.
Use either definition to determine ∇J (w) for the following functions where a ∈

R
n,A ∈ R

n×n and f : R → R is a differentiable function.

1. J (w) = a�w.
2. J (w) = w�Aw.
3. J (w) = w�w.
4. J (w) = ‖w‖2.
5. J (w) = f (‖w‖2).
6. J (w) = f

(
w�a

)

2. In this exercise, you are required to implement an RNNF using PyTorch and then
compare its performance with that of the Kalman filter (KF). The system under
consideration is a linear Gaussian system with independent noises, described by the
following equations:

{
xk = (αAn + In) xk−1 + √

αwk−1

yk = αxk + √
αvk

(10.131)

Here, x0 ∼ N(0, In), where In is the identity matrix in R
n, with n = 10. The

parameter α = 0.01, and wk and vk are standard white noises. An = [
aij

]
is a

matrix with elements as follows:

aij =

⎧
⎪⎪⎨

⎪⎪⎩

0.1, if i + 1 = j

−0.4, if i = j

0, otherwise.

(10.132)

You are given the freedom to choose K1 = 1000 and N = 2000 for this
exercise. Your task is to implement the RNNF using PyTorch and then compare
its performance with that of the Kalman filter.
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Chapter 11
Solutions

Problems of Chap. 1

1. σ(I) = {∅, {1, 2, 3, 4}, {1}, {3}, {1, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}}
2. Let �i = {j}ij=1 and denote Ii be the σ algebra consisting of all subset in �i .

Assume that ∪∞
n=1In is also a σ algebra. Notice that {i} ∈ Ii which leads to

result {i} ∈ ∪∞
n=1In. By assumption, we get ∪∞

n=1{i} ∈ ∪∞
n=1In. Hence there

exists certain k such that ∪∞
n=1{i} ∈ Ik . That will imply ∪∞

n=1{i} ∈ �k which
generates a contradiction.

3. Assume that the equation E(f (αX)) = α2E(f (X)) holds for arbitrary X and
α. By applying condition of f , it is equivalent to the following:

(a1α − α2a1)E(X) + (1 − α2)E(a0) = 0

Consider a random variable X with E(X) �= 0. Let α = −1 which will lead
to a1 = 0. Furthermore, put α = 0 we shall obtain a0 = 0. Therefore, we
obtain the equation holds if f (x) = a2x

2. Conversely, it is easy to check if
f (x) = a2x

2 is satisfied, the original equation holds.
4. By applying Cauchy-Schwarz inequality, we get

|Corr(X, Y )| =| Cov(X, Y )√
V ar(X)V ar(Y )

|

=| E((X − μX)(Y − μY ))
√

E((X − μX)2)E((Y − μY )2)
|

≤ E(|(X − μX)(Y − μY )|)
√

E((X − μX)2)E((Y − μY )2)

≤1
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5. Consider following two discrete distribution with discrete probability density:

(p1, p2, p3, p4) = (
8

96
,
54

96
,
12

96
,
22

96
)

and

(p1, p2, p3, p4) = (
24

96
,
6

96
,
60

96
,
6

96
)

It can be directly examine that two distributions have the same expectation
E(X) = E(Y ) = 240

96 and E(X2) = E(Y 2) = 684
96 but different third order

moments E(X3) = 2172
96 �= 2076

96 = E(Y 3).

6. Notice P(X1 = 0, X2 = 0) = 0 which will imply P(X1 = 0, X2 =
1) = p(X1 = 0) − P(X1 = 0, X2 = 0) = 1

2 . Since P(X2 = 1) = 1
2 ,

P(X1 = −1, X2 = 1) = P(X1 = 1, X2 = 1) = 0. Then P(X1 = −1, X2 =
0) = P(X1 = −1) − P(X1 = −1, X2 = 1) = 1

4 and similarly we get
P(X1 = 1, X2 = 0) = 1

4 . Since there exists zeros in jointly distribution
however marginal distributions are nonzero, two random variables are not
independent.

7. Consider for arbitrary m-dimensional real vector t , characteristic function of η

is defined as follows:

fη(i) =EeitT η = EeitT Cξ = Eei(CT t)T ξ

= exp(iμT (CT t) − 1

2
(CT t)T �(CT t))

= exp(i(Cμ)T t − 1

2
tT (C�CT )t)

By definition, η satisfies m-dimensional Gaussian distribution with parameters
N(Cμ,C�CT ).

8. Necessity property holds naturally and easy to present. In the following, we
shall assume each two of random variables ξ1, ξ2, · · · , ξn are irrelevant, i.e.,

ρjk = E[(ξj − Eξj )(ξk − Eξk)]
√

Dξj

√
Dξk

= 0, for j �= k

Hence we deduce that σjk = E[(ξj − Eξj )(ξk − Eξk)] = 0 therefore
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f (t1, · · · , tn) = exp(i
n∑

k=1

μktk − 1

2

n∑

k=1

σkkt
2
k )

=
n∏

k=1

exp(iμktk − 1

2
σkkt

2
k )

=
n∏

k=1

fξk
(tk)

This implies the independence property of random variables.
9. By definition,

f (t) =
∫

eitT xp(x)dx

= 1

(2π)n/2(det�)1/2

∫
eitT x exp(−1

2
(x − μ)T �(x − μ))dx

Taking the linear transformation y = L−1(x − μ), we shall get

itT x = itT μ + i(LT t)T y := itT μ + isT y

Then

itT x − 1

2
(x − μ)T �(x − μ) = iμT t − 1

2
tT �t − 1

2

n∑

k=1

(yk − isk)
2

and

f (t) = eiμT t− 1
2 tT �t

(2π)n/2(det�)1/2

∫
exp(−1

2

n∑

k=1

(yk − isk)
2)(det�)1/2dy1 · · · dyn

=eiμT t− 1
2 tT �t

10.

P(η < a) =P(g(ξ) < a)

=
∫ g−1(a)

−∞
p(x)dx

=
∫ a

−∞
p(g−1(y))|g−1(y)′|dy

which implies η admits density function p(g−1(y))|g−1(y)′|.
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Problems of Chap. 2

1. Let {Mn}n≥0 and {Nn}n≥0 be two martingales with respect to the same filtration
{Fn}n≥0. We need to show that {Mn + Nn}n≥0 is also a martingale with respect
to {Fn}n≥0.
By definition, {Mn}n≥0 and {Nn}n≥0 satisfy

E[Mn+1 | Fn] = Mn and E[Nn+1 | Fn] = Nn for all n ≥ 0.

Consider E[Mn+1 + Nn+1 | Fn]

E[Mn+1 + Nn+1 | Fn] = E[Mn+1 | Fn] + E[Nn+1 | Fn] = Mn + Nn.

Therefore, {Mn + Nn}n≥0 is a martingale.
For the continuous case, let {Mt }t≥0 and {Nt }t≥0 be continuous-time martingales.
By the same argument, we have

E[Mt+s + Nt+s | Ft ] = E[Mt+s | Ft ] + E[Nt+s | Ft ] = Mt + Nt,

which shows that {Mt + Nt }t≥0 is also a martingale.
2. (1) Consider a simple symmetric random walk Xn defined as

Xn+1 =
{

Xn + 2 with probability 1
2 ,

Xn − 1 with probability 1
2 .

Clearly, this is a Markov process because the future state depends only on
the current state and not on the past states. However, this process is not a
martingale because the expected value of the next state is not equal to the
current state:

E[Xn+1|Xn] = Xn + 0.5

(2) Not every martingale is Markovian. Here is a counterexample: Let {Zn} be a
sequence of independent identically distributed random variables with mean
0 and variance 1. Define S0 = 0, Sn = ∑n

i=1 Zi . Let

Xn = Sn − Sn−1

n
, n ≥ 1

It can be verified that {Xn,ℱn} is a martingale, whereℱn = σ(Z1, · · · , Zn).
But {Xn} is not a Markov chain.

3. (1) We need to ensure that

E[S2
n+1 + bn+1Sn+1 + cn+1|Fn] = S2

n + bnSn + cn.
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Expanding the left-hand side

E[S2
n+1 + bn+1Sn+1 + cn+1|Fn]

= E[(Sn + Xn+1)
2 + bn+1(Sn + Xn+1) + cn+1|Fn]

= E[S2
n + 2SnXn+1 + X2

n+1 + bn+1Sn + bn+1Xn+1 + cn+1|Fn]
= S2

n + 2Snmn+1 + σ 2
n+1 + m2

n+1 + bn+1Sn + bn+1mn+1 + cn+1.

Equating coefficients with the right-hand side

bn = bn+1 + 2mn+1,

cn = cn+1 + σ 2
n+1 + m2

n+1 + bn+1mn+1.

The solution is

bn = −2
n∑

i=0

mi,

cn = −
n∑

i=0

(σ 2
i + m2

i ) − 2
n∑

k=0

(
k∑

i=0

mi

)

mk.

(2) For the sequence to be an Fn-martingale, it must satisfy

E[exp(λSn+1 − aλn+1)|Fn] = exp(λSn − aλn)

Using the independence of Xi’s and the properties of conditional expecta-
tion, we have

E[exp(λSn+1 − aλn+1)|Fn] = E[exp(λ(Sn + Xn+1) − aλn+1)|Fn]
= exp(λSn − aλn+1) · E[exp(λXn+1)|Fn]
= exp(λSn − aλn+1) · Gn+1(λ)

For the martingale property to hold, we need

exp(λSn − aλn+1) · Gn+1(λ) = exp(λSn − aλn)

Taking the logarithm on both sides, we get

λSn − aλn+1 + logGn+1(λ) = λSn − aλn

Simplifying, we have
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aλn+1 − aλn = logGn+1(λ)

Therefore, we can choose the sequence (aλn)n≥0 as

aλn =
n∑

i=1

logGi(λ)

With this choice of (aλn)n≥0, the sequence
{
exp(λSn − aλn)

}
n≥0 is an Fn-

martingale.
4. To prove that the process N = {Nt : t ∈ {0, 1, 2, . . . }} is a martingale, we need

to verify the following two conditions:

(a) E[|Nt |] < ∞ for all t ∈ {0, 1, 2, . . . }.
(b) E[Nt |Ft−1] = Nt−1 for all t ∈ {1, 2, . . . }.
Proof of Condition 1:
Using the definition of Nt and the triangle inequality, we have

E[|Nt |] = E

[

|N0 +
t∑

k=1

�k(Mk − Mk−1)|
]

≤ E[|N0|] +
t∑

k=1

E[|�k(Mk − Mk−1)|]

Since N0 is F0-measurable and square-integrable, E[|N0|] < ∞.
For each term in the sum, we apply the Cauchy-Schwarz inequality:

E[|�k(Mk − Mk−1)|] ≤
√

E[|�k|2]
√

E[|Mk − Mk−1|2]
< ∞

The last inequality holds because�k is square-integrable by assumption andM is
a square-integrable martingale. Therefore, E[|Nt |] < ∞ for all t ∈ {0, 1, 2, . . . }.
Proof of Condition 2:
For t ∈ {1, 2, . . . }, we have

E[Nt |Ft−1] = E[N0 +
t∑

k=1

�k(Mk − Mk−1)|Ft−1]

= N0 +
t−1∑

k=1

�k(Mk − Mk−1) + E[�t(Mt − Mt−1)|Ft−1]

= Nt−1 + �tE[Mt − Mt−1|Ft−1]
= Nt−1
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The last equality holds because M is a martingale, so E[Mt − Mt−1|Ft−1] = 0.
Therefore, both conditions are satisfied, and the process N = {Nt : t ∈
{0, 1, 2, . . . }} is a martingale.

5. To prove that the process M = {Mt : t ∈ {0, 1, 2, . . . }} is a martingale, we need
to verify the following two conditions:

(a) E[|Mt |] < ∞ for all t ∈ {0, 1, 2, . . . }.
(b) E[Mt |Fs] = Ms for all s, t ∈ {0, 1, 2, . . . } with s ≤ t .

Proof of Condition 1:
By the definition of conditional expectation and the monotonicity of the expec-
tation operator, we have

E[|Mt |] = E[|EP [X | Ft ]|]
≤ E[EP [|X| | Ft ]]
= E[|X|]
< ∞

The last inequality holds becauseX is square-integrable, which impliesE[|X|] <

∞. Therefore, E[|Mt |] < ∞ for all t ∈ {0, 1, 2, . . . }.
Proof of Condition 2:
For s, t ∈ {0, 1, 2, . . . } with s ≤ t , we have

E[Mt |Fs] = E[EP [X | Ft ]|Fs]
= EP [X | Fs]
= Ms

The second equality holds due to the tower property of conditional expectation,
which states that for any sub-sigma-algebra G ⊆ F, we have E[E[Y | F] | G] =
E[Y | G] for any integrable random variable Y .
Therefore, both conditions are satisfied, and the process M = {Mt : t ∈
{0, 1, 2, . . . }} is a martingale.

6. Let M = {Mt : t ≥ 0} be a {Ft }-martingale and let N = {Nt : t ≥ 0} be a
{Gt }-martingale.
Since Ft ⊆ Gt for all t , we have that for any s ≤ t ,

E[Mt |Gs] = E[E[Mt |Ft ]|Gs]
= E[Mt |Fs]
= Ms

where the second equality holds due to the tower property of conditional
expectation. Therefore, M is also a {Gt }-martingale.
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However, N is not necessarily a {Ft }-martingale. Since Ft ⊆ Gt , the equality
E[Nt |Fs] = Ns may not hold for all s ≤ t .
Let τ be a {Ft }-stopping time and σ be a {Gt }-stopping time.
Since Ft ⊆ Gt for all t , we have that for any t ≥ 0,

{σ ≤ t} = {ω ∈ � : σ(ω) ≤ t} ∈ Gt ⊆ Ft

Therefore, σ is also a {Ft }-stopping time.
However, τ is not necessarily a {Gt }-stopping time. Since Ft ⊆ Gt , the set {τ ≤
t} may not be in Gt for all t ≥ 0.

7. To show that {Mn, n ≥ 0} converges almost surely (a.s.) and in L1 toward a
limiting M∞:
Since {Mn} is a UI martingale, we have:

• E[|Mn|] < ∞ for all n ≥ 0, and
• limn→∞ E[|Mn|1{|Mn|>k}] = 0 for all k > 0.

By the martingale convergence theorem, a UI martingale converges a.s. and in
L1 to a limiting random variable M∞. Therefore, {Mn, n ≥ 0} converges a.s. and
in L1 to M∞.
To show that for any n ∈ N, Mn = E[M∞|Fn]:
Since {Mn} is a martingale with respect to {Fn}, we have

E[Mn+1|Fn] = Mn

Taking the limit as n → ∞ on both sides, and using the dominated convergence
theorem (since {Mn} is UI), we get

lim
n→∞ E[Mn+1|Fn] = lim

n→∞ Mn

E[ lim
n→∞ Mn+1|Fn] = M∞

E[M∞|Fn] = Mn

Therefore, for any n ∈ N, Mn = E[M∞|Fn].
8. To show that {Xn, n ≥ 0} is a martingale, we need to verify that:

• E[|Xn|] < ∞ for all n ≥ 0, and
• E[Xn+1|X0, . . . , Xn] = Xn for all n ≥ 0.

For the first condition, note that |Xn| ≤ n for all n ≥ 0, so E[|Xn|] ≤ n < ∞.
For the second condition, we can show it by induction. For n = 0, E[X1|X0] =
1
2 (1) + 1

2 (−1) = 0 = X0. Assume the condition holds for n = k. For n = k + 1:

E[Xk+2|X0, . . . , Xk+1] = E[Xk+2|Xk+1]
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=
{

1
2k+1 (1) + 1

2k+1 (−1) + (1 − 1
2k+1 )(0) = 0 = Xk+1, if Xk+1 = 0

1
k+1 ((k + 1)Xk+1) + (1 − 1

k+1 )(0) = Xk+1, if Xk+1 �= 0

Therefore, {Xn, n ≥ 0} is a martingale. Xn converges almost surely. Consider
the event A = {Xn = 0 infinitely often}. By the Borel-Cantelli lemma, since∑∞

n=1 P(Xn = 0) ≥ ∑∞
n=1 min(P (Xn = 0 | Xn−1 �= 0), P (Xn = 0 | Xn−1 =

0)) = ∑∞
n=1

(
1 − 1

2n−1

)
= ∞we have P(A) = 1. This implies thatXn converge

almost surely and converge in probability. We can show that E[|Xn|] ≥ 1
2 for all

n ≥ 1, which implies that Xn does not converge in L1.
9. To show that {Xn} is a {Fn}-martingale, we need to verify that:

• Xn is Fn-measurable for all n ≥ 0: This is clear since Xn is a function of
V1, . . . , Vn, which are all Fn-measurable.

• E[|Xn|] < ∞ for all n ≥ 0: Since Vi are nonnegative, |Xn| = Xn =∏n
i=1 Vi . By the assumption that E[Vi] = 1, we have E[|Xn|] = E[Xn] =

E[∏n
i=1 Vi] = ∏n

i=1 E[Vi] = 1 < ∞.
• E[Xn+1|Fn] = Xn for all n ≥ 0:

E[Xn+1|Fn] = E[
n+1∏

i=1

Vi |Fn]

= E[(
n∏

i=1

Vi) · Vn+1|Fn]

= (

n∏

i=1

Vi) · E[Vn+1|Fn]

= (

n∏

i=1

Vi) · E[Vn+1]

= Xn · 1 = Xn.

The third equality follows from the fact that
∏n

i=1 Vi is Fn-measurable and
the fourth equality follows from the independence of Vn+1 and Fn.

Therefore, {Xn} is a {Fn}-martingale.
To determine the convergence of {Xn}, we can apply the martingale convergence
theorem. However, we need to check the conditions first.

• supn E[|Xn|] < ∞: We have shown that E[|Xn|] = 1 for all n, so
supn E[|Xn|] = 1 < ∞.

• Xn → X∞ almost surely for some random variable X∞: Let’s consider the
event A = {ω : Vi(ω) = 1 for infinitely many i}. By the Borel-Cantelli
Lemma, since

∑∞
i=1 P(Vi = 1) = ∞ (as P(Vi = 1) = p > 0 for all i),



438 11 Solutions

we have P(A) = 1. On the event A, Xn(ω) = ∏n
i=1 Vi(ω) = 0 for infinitely

many n, which means Xn does not converge almost surely.

Therefore, {Xn} does not converge almost surely. It also does not converge in L1,
as E[|Xn − Xm|] ≥ |E[Xn] − E[Xm]| = |1 − 1| = 0 does not converge to 0 as
n,m → ∞.

Problems of Chap. 3

1. Let f (x) = 1
2x

2. According to Itô’s formula

f (Wt) = f (W0) +
∫ t

0
f ′(Ws)dWs + 1

2

∫ t

0
f ′′(Ws)ds

=
∫ t

0
WsdWs + 1

2
1ds

=
∫ t

0
WsdWs + 1

2
t.

Hence,

∫ t

0
WsdWs = 1

2

(
W 2

t − t
)

.

2. Let us denote

Ut =
d∑

i=1

∫ t

0
Xi

sdWi
s − 1

2

∫ t

0
‖Xs‖2ds,

then according to Itô’s formula,

Zt = eUt = eU0 +
∫ t

0
eUs dUs + 1

2

∫ t

0
eUs d〈U 〉s .

Since,

dUt =
d∑

i=1

Xi
t dWi

t − 1

2
‖Xs‖2ds,

and

d〈U 〉t = ‖Xt‖2dt,
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we have

Zt = 1 +
∫ t

0
Zs

d∑

i=1

Xi
sdWi

s − 1

2

∫ t

0
Zs‖Xs‖2ds + 1

2

∫ t

0
Zs‖Xs‖2ds

= 1 +
d∑

i=1

∫ t

0
ZsX

i
sdWi

s .

3. Let us define f (x, y) = xy, then, according to the multi-dimensional Itô’s
formula,

XtYt =X0Y0 +
∫ t

0

[
∂f

∂x
dXs + ∂f

∂y
dYs

]

+ 1

2

∫ t

0

[
∂2f

∂x2
d〈X〉s + 2

∂2f

∂x∂y
d〈X, Y 〉s + ∂2f

∂y2
d〈Y 〉s

]

=X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X, Y 〉t .

which is the integration-by-part formula in Itô’s sense:

∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs − 〈X, Y 〉t .

4. According to the relationship between Itô’s integral and Stratonovich integral:

∫ t

0
Ys ◦ dXs =

∫ t

0
YsdXs + 1

2
〈X, Y 〉s ,

we obtain the integration-by-part formula in Stratonovich sense based on that in
Itô’s sense obtained in the previous exercise:

∫ t

0
Xs ◦ dYs = XtYt − X0Y0 −

∫ t

0
Ys ◦ dXs,

which coincides the integration-by-part formula for regular integrations.
5. According to Itô’s lemma,

Xt = eWt = eW0 +
∫ t

0
eWs dWs + 1

2

∫ t

0
eWs ds.

Writing in differential form,

dXt = 1

2
Xtdt + XtdWt (11.1)
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6. Formally, if we write dWt = W ′(t)dt , then the solution of the linear ‘ordinary
differential equation’

dXt

dt
= AXt + BW ′(t)

can be written as

Xt = etA

(

x0 +
∫ t

0
e−sABW ′(s)ds

)

.

Let us verify that

Xt = etA

(

x0 +
∫ t

0
e−sABdWs

)

is a solution to the linear stochastic differential equation.
In fact, applying Itô’s formula to f (x, y) = xy, we have

Xt = x0 +
∫ t

0
esAe−sABdWs + A

∫ t

0
esA

(

x0 +
∫ t

0
e−sABdWs

)

ds

= x0 +
∫ t

0
BdWs +

∫ t

0
AXsds,

which is the stochastic differential equation we would like to solve.

Problems of Chap. 4

1. If z ∈ X, the conclusion holds naturally. Otherwise dist (z,X) ≤ dist (z, x)

holds for any point x ∈ X. Therefore there exists certain point sequence {xk} ⊂
X satisfying xk → x̄ and ‖z − x̄‖ = min{‖z − x‖|x ∈ X}.
For any x ∈ X, let x̂ = αx + (a − α)x̄ and 0 < α ≤ 1. Considering following

‖z − x̄‖2 ≤ ‖z − x̂‖2

which is equivalent to 2(z − x̄)T (x̄ − x) + α‖x̄ − x‖2 ≥ 0. This implies (z −
x̄)T (x−x̄) ≤ 0 since α is arbitrary. Finally we discuss the uniqueness and assume
there exists another x∗ such that ‖z − x∗‖ = min{‖z − x‖|x ∈ X} and x∗ �= x̄.

(x̄ − x∗)T (x̄ − x∗) = (z − x̄)T (x∗ − x̄) + (z − x∗)T (x̄ − x∗) ≤ 0

A contradiction!
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2. Due to the condition z /∈ cl(X), dist (z, cl(X)) > 0. Assume ‖z−x̄‖ = min{‖z−
x‖|x ∈ cl(X)} then (z − x̄)T (z − x̄) > 0. By applying result of problem 1, we
obtain (z − x̄)�(x − x̄) ≤ 0. Integrating two inequality implies that

(x̄ − z)T x ≥ (x̄ − z)T x̄ > (x̄ − z)T z

holds for arbitrary x ∈ X. Finally let a = x̄ − z and b = (x̄ − z)T x̄, the desired
result is obtained.

3. (i) For arbitrary y ∈ (Rn+)∗, we shall take vectors in Rn+ as (1, 0, · · · , 0)T ,
(0, 1, · · · , 0)T ,..., (0, 0, · · · , 1)T . By definition of dual set, we obtain y ≥ 0
which implies (Rn+)∗ ⊂ Rn+ and vice versa by the same technique.

(ii) Given any A ∈ Sn+, it can be decomposed as A = CT C. Similarly, for given
BSn+, we get decomposition B = DT D. Then

B ◦ A = tr(BT A) = tr(DT DCT C) = tr((DCT )T (DCT )) ≥ 0

which implies Sn+ ⊂ (Sn+)∗. On the other hand, given any B ∈ (Sn+)∗ and
any x, we shall take A = xxT ∈ Sn+. Condition A ◦ B = tr(BxxT ) =
xT Bx ≥ 0 holds for any x which implies B is positive semi-definite matrix.
From this inclusion fact, we conclude (Sn+)∗ ⊂ Sn+.

4. Lagrange function of linear programming is given by

L(x, λ) =
{

(c − AT λ)T x + λT b, x ∈ Rn+
+∞, x /∈ Rn+

Then we derive

max
λ∈Rn+

v(λ) = max
λ∈Rn+

min
x∈Rn+

((c − AT λ)T x + λT b) = max
{λ:AT λ≤c}

bT λ

5. Lagrange function can be calculated as follows:

L(x, σ ) = 1

2
xT (A + σB)x − σ

Then Lagrange duality problem can be derived as

max
σ≥0

min
x∈Rn

L(x, σ ) = max
{σ :A+σB∈Sn+}

−σ

6. It is direct to verify that the conjugate function

h(y) = sup
x≤0

{xy + 2
√−x} =

{
1
y
, y ≥ 0

+∞, otherwise
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7. By definition of conjugate function, given arbitrary y ∈ Y, we have h(y) =
yT x − f (x) hold for any x.
If there exists x, y satisfying xT y = f (x)+h(y). It can be derived that for any x̂,

yT x̂ − f (x̂) ≤ h(y) = yT x − f (x)

The equation can be equivalent to transform to

f (x̂) ≥ yT (x̂ − x) + f (x)

which implies that y ∈ ∂f (x). The necessity is also obtained by reversing this
procedure.

8.

min x2
1

s.t.x1x2 = 1, x1, x2 ∈ R

9. Notice that A ∈ Sn is a symmetric matrix which will lead to the orthogonal
decomposition A = Q�QT where � = diag(λ1, λ2, · · · , λn) and Q is an
orthogonal matrix. Then

xT AX

xT x
= (QT x)T �QT x

(Qx)T Qx
≤ max{λi}

By the similar technique, it is derived that xT AX
xT x

≥ min{λi}.

Problems of Chap. 5

1. It can be obtained directly from the contents of this chapter.
2. It can be obtained directly from the contents of this chapter.
3. First, we express the local weak error as

E[f (Y�t )] − E[f (Ŷ1)] = E[f (Y�t ) − f (Ŷ1)].

Using Taylor’s theorem, we can expand f (Y�t ) around Ŷ1 as

f (Y�t ) = f (Ŷ1) + f ′(Ŷ1)(Y�t − Ŷ1) + 1

2
f ′′(Ŷ1)(Y�t − Ŷ1)

2 + R�t

= f (Ŷ1) + f ′(Ŷ1)
(

Y�t − Ŷ1 − 1

2
σ 2Ŷ1�t

)

+ 1

2
f ′′(Ŷ1)

(

Y�t − Ŷ1 − 1

2
σ 2Ŷ1�t

)2

+ R�t ,
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where the remainder term R�t satisfies lim�t→0
R�t

�t2
= 0.

Taking expectations and using the properties of the Euler approximation, we
obtain

E[f (Y�t ) − f (Ŷ1)] = 1

2
σ 2Ŷ1�t E[f ′′(Ŷ1)] + E[R�t ].

Dividing both sides by �t2 and taking the limit superior as �t → 0, we get

lim sup
�t→0

(
E[f (Y�t )] − E[f (Ŷ1)]

�t2

)

= 1

2
σ 2 E[f ′′(1)] < ∞,

since f and its derivatives are bounded. Therefore, the local weak error is indeed
of second order.

4. To derive the equations for X̂t and �̂t , we use the Duncan-Mortensen-Zakai
(DMZ) equation, which describes the evolution of the unnormalized conditional
density p(t, x) given the observations Yt :

dp(t, x) = Ltp(t, x) dt + p(t, x)
L1xt + L0

B2 (dyt − (L1xt + L0) dt)

Here, L is given by

Lt φ(x) = −(a0 + a1x)
∂φ(x)

∂x
+ 1

2
b2

∂2φ(x)

∂x2

We assume that the conditional density p(xt | yt ) is Gaussian. Substituting this
form into the Kushner equation and using the properties of Gaussian densities,
we can derive the equations for X̂t and �̂t .

5. To show that the unnormalized filter is given by

rt (A) =
∫

A

exp

(
s2

2
xYt − 1

2
s2x2t

)

μ(dx),

we can use the Girsanov theorem to define an equivalent probability measure P̃

on FT such that Y becomes a martingale and independent of X.
Let W̃t = Wt − s

2

∫ t

0 X ds be a Brownian motion under P̃ , and define

dP̃

dP
= exp

(

− s2

2
X2T + sXWT

)

.

Then, under P̃ , we have

Yt = tX + √
sW̃t ,
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which is a martingale and independent of X.
The unnormalized filter rt (A) is given by

rt (A) = Ẽ

[

�A(X)
dP

dP̃
| FY

t

]

,

where FY
t is the filtration generated by Y .

Substituting the expression for dP

dP̃
and using properties of the Brownian

motion, we obtain

rt (A) =
∫

A

exp

(
s2

2
xYt − 1

2
s2x2t

)

μ(dx),

as desired.
6.

X̂t = E[X|FY
t ]

= E[X] + Cov(X, Yt )

Var(Yt )
(Yt − E[Yt ])

= E[X] + tVar(X)

t2Var(X) + s
(Yt − tE[X]).

Covariance:

�̂t = Var(X|FY
t ) = Var(X) − (Cov(X, Yt ))

2

Var(Yt )
= Var(X) − t2(Var(X))2

t2Var(X) + s

7. Consider the following model for population growth with noisy observations:

dXt = rXt dt,

dYt = Xt dt + m dWt,

with X0 ∼ N(b, a2) and Y0 = 0 for some constants r,m, b, a > 0.
We can apply the Kalman-Bucy filter to estimate the state Xt given the
observations Yt . The asymptotic covariance matrix �̂t as t → ∞ satisfies the
algebraic Riccati equation:

r�̂t + �̂t r − �̂2
t

m2 + 1 = 0.

Solving this equation, we get
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lim
t→∞ �̂t = m2

2

(

r +
√

r2 + 4

m2

)

.

The asymptotic precision of the filter, which is inversely proportional to �̂t ,
decreases as the growth rate r increases. This means that for rapidly growing
populations, the uncertainty in the state estimate increases.

8. The Python 3 Code is provided as follows:

import numpy as np
import matplotlib.pyplot as plt

# Set parameters
r = 0.5
m = 1
b = 1
a = 0.5
T = 1 # Total time
N = 1000 # Number of time steps
dt = T / N # Time step size

# Initialize
t = np.linspace(0, T, N+1)
X = np.zeros(N+1)
Y = np.zeros(N+1)
X[0] = np.random.normal(b, a)
Y[0] = 0

# Simulate path using Euler-Maruyama scheme
for i in range(N):
dW = np.random.normal(0, np.sqrt(dt))
X[i+1] = X[i] + r * X[i] * dt
Y[i+1] = Y[i] + X[i] * dt + m * dW

# Kalman-Bucy filter
mu = np.zeros(N+1)
P = np.zeros(N+1)
mu[0] = b
P[0] = a**2

for i in range(N):
# Prediction step
mu_pred = mu[i] + r * mu[i] * dt
P_pred = P[i]
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# Update step
K = P_pred
mu[i+1] = mu_pred + K * (Y[i+1] - Y[i] - mu_pred*dt)
P[i+1] = P_pred + (2*r*P[i] -P[i]**2) * dt

# Plot results
plt.figure(figsize=(12, 6))
plt.plot(t, X, label=’True X’)
plt.plot(t, Y, label=’Observed Y’)
plt.plot(t, mu, label=’Estimated X’)
plt.fill_between(t, mu - 1.96*np.sqrt(P),
mu + 1.96*np.sqrt(P), alpha=0.2, label=’95% CI’)
plt.legend()
plt.xlabel(’Time’)
plt.ylabel(’Value’)
plt.title(’Kalman Filter for Population Growth Model’)
plt.show()

When running this code, you will observe:

(a) The true Xt shows an exponential growth trend, which is consistent with the
population growth model.

(b) The observed values Yt fluctuate around the true Xt , demonstrating the effect
of observation noise.

(c) The Xt estimated by the Kalman-Bucy filter tracks the true Xt well, although
there is some lag.

(d) Over time, the estimated uncertainty (represented by the confidence interval)
gradually decreases, indicating that the filter improves its estimation as time
progresses.

9. (a) To show that Yt is a solution to the given SDE, we can use Ito’s formula. Let
f (t, x) = exp(x − X0 − 1

2 〈X,X〉t ). Then

dYt = ∂f

∂x
dXt + ∂f

∂t
dt + 1

2

∂2f

∂x2 d〈X,X〉t

= YtdXt − 1

2
Ytd〈X,X〉t + 1

2
Ytd〈X,X〉t

= YtdXt

Also, at t = 0, Y0 = exp(X0 − X0 − 0) = 1. Thus, Yt satisfies the given
SDE.

(b) If μ = 0, then dXt = stdWt . Substituting this into the SDE for Y

dYt = Yt stdWt
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This is the SDE for a local martingale. Therefore, Y is a local martingale
when μ = 0.

(c) To show that Y is a martingale when μ = 0 and s is bounded, we can use
Novikov’s condition. When μ = 0, we have

Yt = exp

(∫ t

0
sudWu − 1

2

∫ t

0
s2udu

)

If s is bounded, say |st | ≤ K for all t , then

E

[

exp

(
1

2

∫ T

0
s2udu

)]

≤ exp

(
1

2
K2T

)

< ∞

This satisfies Novikov’s condition, which implies that Y is a true martingale,
not just a local martingale.

Problems of Chap. 6

1. For arbitrary test function φ,

1

2

(
n∑

i=1

D2
i − η

)

φ =1

2
[

n∑

i=1

Di(Diφ) − ηφ]

=1

2
[

n∑

i=1

(
∂2φ

∂x2
i

− ∂fi

∂xi

φ − 2fi

∂φ

∂xi

+ f 2
i φ) − ηφ]

=1

2

n∑

i=1

∂2φ

∂x2
i

−
n∑

i=1

∂fi

∂xi

φ −
n∑

i=1

fi

∂φ

∂xi

− 1

2

n∑

i=1

h2i φ

2. (1)

=1

2
[
∑

i

(D2
i − η), xi]

=1

2
[D2

i , xi] = Di

(2)

[[L0, φ], φ] = [[
∑

i

φxi
Di + 1

2
φxixi

, φ] = |∇φ|2
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(3)

=[1
2

(
n∑

i=1

D2
i − η

)

,Dj ]

=
n∑

i=1

ωjiDi + 1

2

∂η

∂xj

+ 1

2

n∑

i=1

∂ωji

∂xi

(4)

[L0, x
2
j ] = 1

2
[
∑

i

D2
i , x

2
j ] = 2xjDj + 1

3. It can be easily calculated by employing rules of Lie bracket.
4. Let φ = xm

1 ζ . Then

El(φ) =
l∑

i=1

xi

∂

∂xi

(xm
1 ζ ) = xm

1 (mζ + El(ζ )) = 0

φ(x1, · · · , xl, · · · , xn) − φ(εx1, · · · , εxl, · · · , xn)

=
∫ 1

ε

dφ

dt
(tx1, · · · , txl, xl+1, · · · , xn)dt

=
∫ 1

ε

1

t
(El(φ))(tx1, · · · , txl, xl+1, · · · , xn)dt = 0

Hence φ(x1, · · · , xl, · · · , xn) = φ(εx1, · · · , εxl, · · · , xn). If we take ε → 0, it
can be obtained that φ = 0 thus ζ = 0.

5. For 1 ≤ j ≤ l,

∂

∂xj

El(ζ ) = ∂ζ

∂xj

+ El(
∂ζ

∂xj

) = 0

By applying the conclusion of problem 4, we derive that ∂ζ
∂xj

= 0.
6. First

DjDi = ∂2

∂xi∂xj

− fj

∂

∂xi

− ∂fi

∂xj

− fi

∂

∂xj

+ fjfi
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Similarly

DiDj = ∂2

∂xi∂xj

− fj

∂

∂xi

− ∂fj

∂xi

− fi

∂

∂xj

+ fjfi

Then DiDj = DjDi + ωji = DjDi, mod U0. Without loss of generality, let
k1 �= 1 and by induction we get

gD
i1
1 · · ·Din

n =gD
i1
1 · · · Dik1−1

k1−1 D
ik1
k1

· · ·Din
n

=gD
i1
1 · · · (Dik1

k1
D

ik1−1
k1−1 , mod Uik1+ik1−1−2) · · · Din

n

= · · ·
=gD

ik1
k1

· · · Dikn
kn

,mod U|i|−2

7. Assume ∂p(2)

∂xj
(x) �= 0 for some k1 + 1 ≤ j ≤ n − k2. Next we can derive a

contradiction.
First maximal rank quadratic polynomial is

p0 = xT

⎛

⎝
Ik1×k1 0 0
0 0 0
0 0 Ik2×k2

⎞

⎠ x,

and homogeneous quadratic part of p ∈ E is

p(2) = xT

⎛

⎝
A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33

⎞

⎠ x,

where x = (x1, x2, · · · , xn)
T , A11 ∈ Rk1×k1 , A22 ∈ R(n−k)×(n−k), A33 ∈ Rk2×k2

are symmetric matrices and A12 ∈ Rk1×(n−k), A13 ∈ Rk1×k2 , A23 ∈ R(n−k)×k2 .
Next we consider quadratic polynomial tp0 + p. We will prove if t is large
enough, rank(tp0 + p) will be larger than p0 that derives a contradiction.
Since p0.p ∈ E, naturally we have tp0 + p ∈ E.

(tp0 + p)(2) =tp0 + p(2)

=xT

⎛

⎝
tI + A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 tI + A33

⎞

⎠ x,

Then we have
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rank(tp0 + p) := rank

⎛

⎝
tI + A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 tI + A33

⎞

⎠

= rank

⎛

⎝
tI + A11 A13 A12

AT
13 tI + A33 AT

23
AT
12 A23 A22

⎞

⎠

= rank

⎛

⎝ tI +
(

A11 A13

AT
13 A33

)
A12

AT
23

AT
12 A23 A22

⎞

⎠

:= rank(A),

where in the second equality we used elementary transformation which do not
change rank of matrix. Here we define

A :=
⎛

⎝ tI +
(

A11 A13

AT
13 A33

)
A12

AT
23

AT
12 A23 A22

⎞

⎠ .

Since ∂p(2)

∂xj
(x) �= 0 for some k1 + 1 ≤ j ≤ n − k2, then A12, A23, A22 are not

all zero. By an elementary matrix transformation, we always can put a nonzero
element in submatrices A12, A23, A22 into position (i, j) of A, where i = k +
1, 1 ≤ j ≤ k + 1 or j = k + 1, 1 ≤ i ≤ k + 1. Then we can derive

rank(A) ≥ rank

⎛

⎝ tI +
(

A11 A13

AT
13 A33

)

c

cT b

⎞

⎠ := rank

(
Ã c

cT b

)

,

where we define

Ã := tI +
(

A11 A13

AT
13 A33

)

,

and c ∈ Rk, b ∈ R and b, c are not both zero. Since

(
A11 A13

AT
13 A33

)

is a real

symmetric matrix, it has orthogonal diagonalized decomposition

(
A11 A13

AT
13 A33

)

= U

⎛

⎜
⎝

λ1 · · · 0
...

. . .
...

0 · · · λk

⎞

⎟
⎠UT := U�UT



11 Solutions 451

where � := diag(λ1, · · · , λk) and U ∈ Rk×k is an orthogonal matrix and
λ1, · · · , λk are eigenvalues. Then we can take orthogonal transformation for

matrix

(
Ã c

cT b

)

and get

(
UT 0
0 1

)(
Ã c

cT b

)(
U 0
0 1

)

=
(

tIk + � UT c

cT U b

)

,

where we denote c̃ = (̃c1, · · · , c̃k)
T := UT c. Since b, c are not all zero, then

b, c̃1, · · · , c̃k are not all zero. When we take t enough large, t + λi > 0 for
1 ≤ i ≤ k and Ã is nonsingular. Then by rank formula of block matrix, we have

rank

(
tI + � c̃

c̃T b

)

= k + rank

(

b −
k∑

i=1

c̃2i

t + λi

)

.

(i) if b = 0, c̃1, · · · , c̃k are not all zero, then

k∑

i=1

c̃2i

t + λi

�= 0.

Then rank

(
tI + � UT c

cT U b

)

= k + 1.

(ii) if b �= 0, when t is enough large

b >

k∑

i=1

c̃2i

t + λi

�⇒ rank

(
tI + � UT c

cT U b

)

= k + 1.

Combining (i) and (ii), for enough large t ,

rank(tp0 + p) ≥rank

(
Ã c

cT b

)

=rank

(
tI + � UT c

cT U b

)

=k + 1.

This is contradictory to that p0 has greatest quadratic rank k in E. Then
∂p(2)

∂xj
= 0 for j = k1 + 1, · · · , n − k2 holds.
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8.

∂ωij

∂xk

+ ∂ωjk

∂xi

+ ∂ωki

∂xj

= ∂

∂xk

(
∂fj

∂xi

− ∂fi

∂xj

) + ∂

∂xi

(
∂fk

∂xj

− ∂fj

∂xk

) + ∂

∂xj

(
∂fi

∂xk

− ∂fk

∂xi

) = 0

9. Sufficiency. First we will prove the sufficiency of statement. Drift function is
assumed to be quadratic polynomials plus a gradient form.

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · ,

∂ψ

∂xn

)

.

Then

∂fj

∂xi

− ∂fi

∂xj

= ∂

∂xi

(

lj + ∂ψ

∂xj

)

− ∂

∂xj

(

li + ∂ψ

∂xi

)

= ∂lj

∂xi

− ∂li

∂xj

= P1(x),

for all 1 ≤ i, j ≤ n.
Necessity. Conversely, we assume

∂fj

∂fi
− ∂fi

∂fj
= cij + DT

ij x are degree at most 1
polynomials for 1 ≤ i, j ≤ n. We observe that cij = −cji ,Dij = −Dji . Let
Bij = − 1

2cij , Aij = − 1
2D

T
ij . Then we have

Bji − Bij = − 1

2
cji −

(

−1

2
cij

)

= cij ,

Aji − Aij = − 1

2
DT

ji −
(

−1

2
DT

ij

)

= DT
ij .

Next we assume li (x) = 1
2x

T Aix + BT
i x + Ci for 1 ≤ i ≤ n, where Ai ∈

R
n×n, Bi ∈ Rn×1, Ci ∈ R. Then we assume Ai and Bi has the block form:

Ai =

⎛

⎜
⎜
⎜
⎝

Ai1

Ai2
...

Ain

⎞

⎟
⎟
⎟
⎠

, Bi =

⎛

⎜
⎜
⎜
⎝

Bi1

Bi2
...

Bin

⎞

⎟
⎟
⎟
⎠

.

Clearly exterior derivative of the differential forms f1dx1 +f2dx2 +· · ·+fndxn

and l1dx1 + l2dx2 + · · · + lndxn are given as follows:
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d

(
n∑

i=1

fidxi

)

=
n∑

i=1

dfidxi

=
n∑

i=1

⎛

⎝
n∑

j=1

∂fi

∂xj

dxj

⎞

⎠ dxi

=
n∑

i,j=1

∂fi

∂xj

dxj ∧ dxi

=
∑

i<j

(
∂fj

∂xi

− ∂fi

∂xj

)

dxi ∧ dxj

=
∑

i<j

(cij + DT
ij x)dxi ∧ dxj ,

and

d

(
n∑

i=1

lidxi

)

=
∑

i<j

(
∂lj

∂xi

− ∂li

∂xj

)

dxi ∧ dxj

=
∑

i<j

[
∂

∂xi

(
1

2
xT Ajx + BT

j x + Cj

)

− ∂

∂xj

(
1

2
xT Aix + BT

i x + Ci

)]

dxi ∧ dxj

=
∑

i<j

(Ajix + Bji − Aijx − Bij )dxi ∧ dxj

=
∑

i<j

[(Aji − Aij )x + (Bji − Bij )]dxi ∧ dxj

=
∑

i<j

(DT
ij x + cij )dxi ∧ dxj .

Then we obtain

d

(
n∑

i=1

fidxi

)

= d

(
n∑

i=1

lidxi

)

,

i.e.,

d

(
n∑

i=1

fidxi −
n∑

i=1

lidxi

)

= 0.



454 11 Solutions

By Poincare lemma, every closed differential form on Rn is exact. Therefore
there exists a smooth function ψ such that

n∑

i=1

fidxi −
n∑

i=1

lidxi =dψ

=
n∑

i=1

∂ψ

∂xi

dxi .

It implies

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · ,

∂ψ

∂xn

)

.

Problems of Chap. 7

1. The DMZ equation satisfied by this one-dimensional system is given by

dσ(t, x) = 1

2

∂2

∂x2
σ(t, x)dt + x3σ(t, x)dyt .

2. The robust DMZ equation satisfied by u(t, x) is given by

∂u

∂t
= 1

2

∂2u

∂x2 + 3ytx
2 ∂u

∂x
+

(
1

2
x6 + 3ytx + 9

2
y2
t x4

)

u(t, x).

3. The equation satisfied by ui(t, x) is

∂ui

∂t
= 1

2

∂2u

∂x2
+ 3yτi−1x

2 ∂u

∂x
+

(
1

2
x6 + 3yτi−1x + 9

2
y2
τi−1

x4
)

u(t, x),

and the equation satisfied by ũi (t, x) is

∂ũ

∂t
= 1

2

∂2ũ

∂x2 − 1

2
x6ũ(t, x), t ∈ [τi−1, τi],

with initial value

ũ(τi−1, x) = exp
(
x3yτi−1

)
u(t, x).
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4. The variational form of the parabolic equation satisfied by ũi (t, x) is given by

∂

∂t
〈̃ui, ϕ〉 = −1

2

〈
∂ũi

∂x
,
∂ϕ

∂x

〉

− 1

2
〈x6ũi , ϕ〉,

for all ϕ ∈ L2(R). Since

ũN
i (t, x) =

N∑

j=1

a
(N)
i,j (t)Hj (x),

and according to the Galerkin approximation, we have

∂

∂t
〈̃uN

i ,Hj 〉 = −1

2

〈
∂ũN

i

∂x
,H ′

j

〉

− 1

2
〈x6ũ, Hj 〉, j = 1, · · · , N.

According to the orthogonality of Hj , we have

d

dt
a

(N)
j (t) = −1

2

N∑

k=1

a
(N)
k (t)〈H ′

k,H
′
j 〉 − 1

2

N∑

k=1

a
(N)
k (t)〈x6Hk,Hj 〉.

for all j = 1, · · · , N .
5. An approximation of E[Xt |Yt ] at time t = τi can be given by

E[Xτi
|Yτi

] ≈
∫

xũ
(N)
i+1(τi, x)dx

∫
ũi+1(τi, x)dx

=
∑N

j=1 aN
i+1,j (τi)

∫
xHj (x)dx

∑N
j=1 a

(N)
i+1,j (τi)

∫
Hj(x)dx

.

6. Since the identity

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

holds for Hermite polynomials, and

Hn(x) = 1√
2nn!Hn(α(x − β))e− 1

2α2(x−β),

we have

Hn+1(α(x − β)) = 2α(x − β)Hn(α(x − β)) − 2nHn−1(α(x − β))

and
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√
2n+1(n + 1)!Hn+1(x) =2α(x − β)

√
2nn!Hn(x)

− 2n
√
2n−1(n − 1)!Hn−1(x)

Therefore,

2α(x − β)Hn(x) = √
2nHn−1(x) + √

2(n + 1)Hn+1(x).

Next, because

Hn(x) = (−1)nex2 dn

dxn
e−x2 ,

for α = 1, β = 0, we have

H 1,0
n (x) = 1√

2nn!Hn(x)e− 1
2 x2 = (−1)n

1√
2nn!e

1
2 x2 dn

dxn
e−x2

Thus,

(
H 1,0

n

)′
(x) = (−1)n

1√
2nn!e

1
2 x2

(
dn+1

dxn+1 e−x2 + x
dn

dxn
e−x2

)

= −√
2(n + 1)H 1,0

n+1(x) + xH 1,0
n (x)

= −√
2(n + 1)Hn+1(x)+1

2

√
2nH

1,0
n−1(x)+1

2

√
2(n + 1)H 1,0

n+1(x).

That is,

(
H 1,0

n

)′
(x) = 1

2

√
2nH

1,0
n−1(x) − 1

2

√
2(n + 1)H 1,0

n+1(x)

For general α > 0, β ∈ R, we have

Hα,β
n (x) = H 1,0

n (α(x − β)).

and

(
Hα,β

n

)′
(x) = α

(
H 1,0

n

)′
(α(x − β)) = 1

2

√
λnH

α,β
n−1(x) − 1

2

√
λn+1H

α,β
n+1(x)

The quasi-orthogonality of {∂xHn(x)}∞n=0 is obtained by the above two formulae
for Hn and H ′

n, as well as the orthogonality of {Hn}∞n=0.
In fact,
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∫
∂xHn(x)∂xHm(x)dx

=
∫ (

1

2

√
λnHn−1 − 1

2

√
λn+1Hn+1

)(
1

2

√
λmHm−1 − 1

2

√
λm+1Hm+1

)

dx

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π

4α
(λn + λn+1), m = n

−
√

π

4α

√
λm+1λm+2, n − m = 2

−
√

π

4α

√
λn+1λn+2, m − n = 2

0 otherwise.

7. The assumptions in the convergence analysis are

− 1

2
x6 − 3ytx + 9

2
y2
t x4 + 3|yt |x2 ≤ c1,

− 1

2
x6 − 3ytx + 9

2
y2
t x4 + 12 + 2n + 12|yt |x2 ≤ c2,

e−
√

1+x2(12 + 2n + 12|yt |x2) ≤ c3.

Generally speaking, a sufficient condition for these assumptions to hold in this
model is that the observations yt are bounded for all t ∈ [0, T ].

Problems of Chap. 8

1. (1)

∇ · (f F ) = ∂

∂xi

(f Fi)

=fxi
Fi + Fi,xi

=∇f · F + f ∇ · F

(2)

∇ · (g∇f + f ∇g) =(∇g · ∇f + g∇ · ∇f ) + (∇f · ∇g + f ∇ · (∇g))

=g∇ · ∇f + 2∇f · ∇g + f ∇ · ∇g
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2.

1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

− 1

2
η(x) + P(x)

= 1

2

n∑

i=1

l2i − 1

2

n∑

i=1

li,xi
− 1

2
η + 1

2
η − 1

2

n∑

i=1

l2i + 1

2

n∑

i=1

li,xi
= 0

3. It can be verified by direct computations.
4.

1

2

n∑

i=1

H 2
i (x) − 1

2

n∑

i=1

∂Hi

∂xi

− 1

2
η(x) + P(x)

= 1

2

n∑

i=1

f 2
i − 1

2

n∑

i=1

fi,xi
− 1

2
η + 1

2
η − 1

2

n∑

i=1

f 2
i + 1

2

n∑

i=1

fi,xi
= 0

5. Sufficiency is easy to obtain by direct computation.
Necessity. Conversely, we assume

∂fj

∂fi
− ∂fi

∂fj
= cij are degree at most 1

polynomials for 1 ≤ i, j ≤ n. We observe that cij = −cji . Let Bij = − 1
2cij .

Then we have

Bji − Bij = − 1

2
cji −

(

−1

2
cij

)

= cij ,

Next we assume li (x) = BT
i x + Ci for 1 ≤ i ≤ n, where Bi ∈ Rn×1, Ci ∈ R.

Then we assume Bi has the block form

Bi =

⎛

⎜
⎜
⎜
⎝

Bi1

Bi2
...

Bin

⎞

⎟
⎟
⎟
⎠

.

Clearly exterior derivative of the differential forms f1dx1 +f2dx2 +· · ·+fndxn

and l1dx1 + l2dx2 + · · · + lndxn are given as follows:
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d

(
n∑

i=1

fidxi

)

=
n∑

i=1

dfidxi

=
n∑

i=1

⎛

⎝
n∑

j=1

∂fi

∂xj

dxj

⎞

⎠ dxi

=
n∑

i,j=1

∂fi

∂xj

dxj ∧ dxi

=
∑

i<j

(
∂fj

∂xi

− ∂fi

∂xj

)

dxi ∧ dxj

=
∑

i<j

cij dxi ∧ dxj ,

and

d

(
n∑

i=1

lidxi

)

=
∑

i<j

(
∂lj

∂xi

− ∂li

∂xj

)

dxi ∧ dxj

=
∑

i<j

cij dxi ∧ dxj .

Then we obtain

d

(
n∑

i=1

fidxi

)

= d

(
n∑

i=1

lidxi

)

,

i.e.,

d

(
n∑

i=1

fidxi −
n∑

i=1

lidxi

)

= 0.

By Poincare lemma, every closed differential form on Rn is exact. Therefore
there exists a smooth function ψ such that

n∑

i=1

fidxi −
n∑

i=1

lidxi =dψ

=
n∑

i=1

∂ψ

∂xi

dxi .
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It implies

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · ,

∂ψ

∂xn

)

.

6. This numerical achievement will be left to reader himself.
7. Let f = tanh x and h1(x) = x sin x, h2(x) = x cos x.
8. Direct computations show that

η =|f |2 + ∇ · f + |h|2

=|Lx + l + ∇φ|2 + ∇ · (Lx + l + ∇φ) + |h|2

=|Lx + l|2 + q(x)

Therefore, it is obvious that η is quadratic polynomial is equivalent to that q(x)

is also quadratic polynomial.
9. First we shall calculate the following derivatives in terms of t, xi :

∂u

∂t
=eφ ∂v

∂t
+ eφ ∂φ

∂t
v

∂u

∂xi

=eφ ∂v

∂xi

+ eφ ∂φ

∂xi

v

∂2u

∂x2
i

=eφ ∂2v

∂x2
i

+ 2eφ ∂φ

∂xi

∂v

∂xi

+ eφ(
∂φ

∂xi

)2v + eφ ∂2φ

∂x2
i

v

Substituting these equations to forward Kolmogorov equation satisfied by u, the
desired result is obtained.

Problems of Chap. 9

1. We need to prove the following equality:

(A + BCD)(A−1 − A−1B(C−1 + DA−1B)−1DA−1) = I

The left-hand side equals:

(A + BCD)(A−1 − A−1B(C−1 + DA−1B)−1DA−1)

= AA−1 − AA−1B(C−1 + DA−1B)−1DA−1

+ BCD(A−1 − A−1B(C−1 + DA−1B)−1DA−1)
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= I − B(C−1 + DA−1B)−1DA−1

+ BCD(A−1 − A−1B(C−1 + DA−1B)−1DA−1)

= I − B(C−1 + DA−1B)−1(DA−1 − CDA−1

+ CDA−1B(C−1 + DA−1B)−1DA−1)

= I − B(C−1 + DA−1B)−1(C−1 + DA−1B − C−1 − DA−1B)

= I

Therefore, the equality holds.
2. You can refer to the exercises in Chaps. 3 and 5.

3. K =
(
0.7824
0.7518

)

.

4. The Python 3 code is given as follows:

import numpy as np

# Define system matrices
A = np.array([[1, 1], [0, 1]])
H = np.array([[1, 0]])
Q = np.array([[0.001, 0], [0, 0.001]])
R = np.array([[0.01]])

# Initial state and covariance
x = np.array([[0], [0]])
P = np.eye(2)

# Measurements
z = np.array([1.0, 1.3, 1.6, 1.9])

# Lists to store results
estimated_states = []
estimated_covariances = []

# Kalman Filter
for measurement in z:
# Predict
x_pred = A @ x
P_pred = A @ P @ A.T + Q

# Update
y = measurement - H @ x_pred
S = H @ P_pred @ H.T + R
K = P_pred @ H.T @ np.linalg.inv(S)
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x = x_pred + K @ y
P = (np.eye(2) - K @ H) @ P_pred

# Store results
estimated_states.append(x)
estimated_covariances.append(P)

# Print results
print("Estimated States:")
for i, state in enumerate(estimated_states):
print(f"Step {i+1}: {state.T[0]}")

print("\nEstimated Covariances:")
for i, cov in enumerate(estimated_covariances):
print(f"Step {i+1}:")
print(cov)

5. Resampling is a critical component of particle filters (PF) that addresses the issue
of particle degeneracy. The process involves selecting and replicating particles
based on their weights, effectively discarding particles with low weights and
multiplying those with high weights. This is typically achieved by computing
normalized weights for all particles, creating a cumulative sum of these weights,
and then using uniform random numbers to select particles for the next iteration.
The necessity of resampling stems from the tendency of particle filters to suffer
from degeneracy, where after several iterations, most particles have negligible
weights and only a few dominate. This phenomenon is quantified by the effective
number of particles, Neff = 1/

∑N
i=1(w

∗
i )

2, which becomes much smaller than
the total number of particles N in degenerate cases. Resampling allows the filter
to concentrate computational effort on the most promising regions of the state
space and maintain a diverse set of particles that better represent the posterior
distribution. However, it’s important to note that resampling introduces a trade-
off between particle degeneracy and sample impoverishment. While addressing
degeneracy, frequent resampling can lead to a loss of diversity in the particle
set. Therefore, finding the right balance, often through adaptive resampling
techniques, is crucial for the effective performance of particle filters in various
applications, such as robot localization, target tracking, and financial modeling.

6. The Python 3 code is given in follows:

import numpy as np
import matplotlib.pyplot as plt

# Set random seed for reproducibility
np.random.seed(42)

# Model parameters
num_particles = 1000
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num_steps = 5

# Initialize particles and weights
particles = np.zeros((num_particles, num_steps))
weights = np.ones(num_particles) / num_particles

# True state and measurements
true_state = np.zeros(num_steps)
measurements = np.zeros(num_steps)

# Generate true state and measurements
for t in range(1, num_steps):
true_state[t]=true_state[t-1]+np.random.normal(0, 1)
measurements[t]=true_state[t]+np.random.normal(0, 1)

# Particle filter
for t in range(1, num_steps):
# Predict
particles[:, t] = particles[:, t-1]

+ np.random.normal(0, 1, num_particles)

# Update weights
weights *= np.exp(-0.5 * (measurements[t]

- particles[:, t])**2)
weights /= np.sum(weights)

# Resample
if 1. / np.sum(weights**2) < num_particles / 2:
indices = np.random.choice(num_particles,

num_particles, p=weights)
particles[:, t] = particles[indices, t]
weights = np.ones(num_particles) / num_particles

# Estimate
estimate = np.sum(particles[:, t] * weights)

print(f"Step {t}:")
print(f" True state: {true_state[t]:.4f}")
print(f" Measurement: {measurements[t]:.4f}")
print(f" Estimate: {estimate:.4f}")
print()

# Plot results
plt.figure(figsize=(10, 6))
plt.plot(range(num_steps), true_state,
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’r-’, label=’True State’)
plt.plot(range(num_steps), measurements,

’g*’, label=’Measurements’)
plt.plot(range(num_steps), np.mean(particles, axis=0),

’b--’, label=’PF Estimate’)
plt.legend()
plt.xlabel(’Time Step’)
plt.ylabel(’State’)
plt.title(’Particle Filter Estimation’)
plt.show()

7. (a) Discrete-time state equations:
Let �t = 0.1 seconds be the sampling time, then the discrete-time state
equations can be written as

⎡

⎣
x1(k + 1)
x2(k + 1)
x3(k + 1)

⎤

⎦ =
⎡

⎣
x1(k)

x2(k)

x3(k)

⎤

⎦

+
⎡

⎣
�t · x2(k)

�t · (x2
2(k) − x1(k) − 0.1x3(k) + 0.5 cos(1.2k�t)

)

0

⎤

⎦

(b) Calculate the Jacobians required for EKF:
Jacobian of the state transition model:

∂f

∂x
=

⎡

⎣
1 �t 0

−�t 1 + 2x2(k)�t −0.1�t

0 0 1

⎤

⎦

where f is the state transition function

Jacobian of the measurement model:

∂h

∂x
= [

1 0 0
]

where h is the measurement function z = x1 + v.
8. The Python 3 code is given as follows:

import numpy as np
from scipy.linalg import cholesky

def state_transition(x):
return np.sin(x)
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def measurement_model(x):
return x**2

def ukf(z, x0, P0, Q, R, n_steps):
n = 1 # state dimension
m = 1 # measurement dimension
alpha = 1e-3
beta = 2
kappa = 0
lambda_ = alpha**2 * (n + kappa) - n

# Weights for mean and covariance
Wm = np.full(2*n+1, 1/(2*(n+lambda_)))
Wm[0] = lambda_ / (n + lambda_)
Wc = Wm.copy()
Wc[0] += (1 - alpha**2 + beta)

x = x0
P = P0

x_history = [x]

for t in range(n_steps):
# Generate sigma points
L = cholesky((n + lambda_) * P)
X = np.zeros((2*n+1, n))
X[0] = x
for i in range(n):
X[i+1] = x + L[i]
X[n+i+1] = x - L[i]

# Prediction step
X_pred = np.array([state_transition(Xi) for Xi in X])
x_pred = np.sum(Wm[:, np.newaxis] * X_pred, axis=0)
P_pred = np.zeros((n, n))
for i in range(2*n+1):
diff = X_pred[i] - x_pred
P_pred += Wc[i] * np.outer(diff, diff)
P_pred += Q

# Update step
Z = np.array([measurement_model(Xi) for Xi in X_pred])
z_pred = np.sum(Wm[:, np.newaxis] * Z, axis=0)
Pzz = np.zeros((m, m))
Pxz = np.zeros((n, m))
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for i in range(2*n+1):
diff_z = Z[i] - z_pred
diff_x = X_pred[i] - x_pred
Pzz += Wc[i] * np.outer(diff_z, diff_z)
Pxz += Wc[i] * np.outer(diff_x, diff_z)
Pzz += R

K = Pxz @ np.linalg.inv(Pzz)
x = x_pred + K @ (z[t] - z_pred)
P = P_pred - K @ Pzz @ K.T

x_history.append(x)

return np.array(x_history)

# Set up the system
np.random.seed(42)
n_steps = 10
true_x = np.zeros(n_steps + 1)
true_x[0] = 1
z = np.zeros(n_steps)

for t in range(n_steps):
true_x[t+1] = np.sin(true_x[t]) + 0.1 * np.random.randn()
z[t] = true_x[t+1]**2 + np.random.randn()

# UKF parameters
x0 = np.array([1.0])
P0 = np.array([[1.0]])
Q = np.array([[0.01]]) # Process noise covariance
R = np.array([[1.0]]) # Measurement noise covariance

# Run UKF
estimated_x = ukf(z, x0, P0, Q, R, n_steps)

# Print results
print("True states:")
print(true_x)
print("\nEstimated states:")
print(estimated_x)

9. The Python 3 code is given as follows:

import numpy as np
import matplotlib.pyplot as plt
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# System parameters
A = np.array([[-0.5, 1], [-1, -0.5]])
H = np.array([[1, 0]])
Q = np.eye(2) * 0.1
R = np.array([[0.1]])

# Simulation parameters
T = 10.0 # Total simulation time
dt = 0.01 # Time step
N = int(T / dt) # Number of time steps
t = np.linspace(0, T, N)

# True system simulation
def true_system(x, dt):
dw = np.sqrt(dt) * np.random.randn(2)
return x + A @ x * dt + dw

x0 = np.array([1.0, 1.0])
x_true = np.zeros((N, 2))
x_true[0] = x0

for i in range(1, N):
x_true[i] = true_system(x_true[i-1], dt)

# Generate measurements
y = np.zeros(N)
for i in range(N):
y[i] = H @ x_true[i]
+ np.sqrt(R[0, 0]) * np.random.randn()

# Feedback Particle Filter
def fpf_update(x, y, K, dt):
dw = np.sqrt(dt) * np.random.randn(2)
dy = y - H @ x
return x + (A @ x + K @ dy) * dt + dw

# Continuous-time Kalman Filter
def kalman_filter_update(x, y, P, dt):
dx = (A @ x + P @ H.T @ np.linalg.inv(R)
@ (y - H @ x)) * dt
return x + dx

def riccati_update(P, dt):
dP = (A @ P + P @ A.T + Q
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- P @ H.T @ np.linalg.inv(R) @ H @ P) * dt
return P + dP

# Initialize filters
M = 1000 # Number of particles for FPF
x_fpf = np.random.randn(M, 2) + x0
x_kf = x0.copy()
P = np.eye(2)

# Simulate filters
x_fpf_mean = np.zeros((N, 2))
x_kf_est = np.zeros((N, 2))

for i in range(N):
# FPF update
K = np.cov(x_fpf.T) @ H.T @ np.linalg.inv(R)
x_fpf = np.array([fpf_update(x, y[i], K, dt)
for x in x_fpf])
x_fpf_mean[i] = np.mean(x_fpf, axis=0)

# Kalman Filter update
P = riccati_update(P, dt)
x_kf = kalman_filter_update(x_kf, y[i], P, dt)
x_kf_est[i] = x_kf

# Calculate MSE
mse_fpf = np.mean((x_fpf_mean - x_true)**2)
mse_kf = np.mean((x_kf_est - x_true)**2)

# Plot results
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(t, x_true[:, 0], ’k-’, label=’True’)
plt.plot(t, x_fpf_mean[:, 0], ’r--’, label=’FPF’)
plt.plot(t, x_kf_est[:, 0], ’b--’, label=’KF’)
plt.ylabel(’State 1’)
plt.legend()
plt.title(’State Estimation Comparison’)

plt.subplot(2, 1, 2)
plt.plot(t, x_true[:, 1], ’k-’, label=’True’)
plt.plot(t, x_fpf_mean[:, 1], ’r--’, label=’FPF’)
plt.plot(t, x_kf_est[:, 1], ’b--’, label=’KF’)
plt.xlabel(’Time’)
plt.ylabel(’State 2’)
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plt.legend()

plt.tight_layout()
plt.show()

print(f"MSE for FPF: {mse_fpf}")
print(f"MSE for KF: {mse_kf}")

# Analyze the performance
fpf_error = np.abs(x_fpf_mean - x_true)
kf_error = np.abs(x_kf_est - x_true)

plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(t, fpf_error[:, 0], ’r-’, label=’FPF’)
plt.plot(t, kf_error[:, 0], ’b-’, label=’KF’)
plt.ylabel(’Absolute Error (State 1)’)
plt.legend()
plt.title(’Absolute Error Comparison’)

plt.subplot(2, 1, 2)
plt.plot(t, fpf_error[:, 1], ’r-’, label=’FPF’)
plt.plot(t, kf_error[:, 1], ’b-’, label=’KF’)
plt.xlabel(’Time’)
plt.ylabel(’Absolute Error (State 2)’)
plt.legend()

plt.tight_layout()
plt.show()

10.(a) The FPF formulation for this continuous multi-sensor setup is dxi
t = vt dt +

Kt,1(dzt,1 − xi
t dt) + Kt,2(dzt,2 − xi

t dt) + √
QdBi

t , where Kt,1 = Pt

R1
and

Kt,2 = Pt

R2
are feedback gains for sensors 1 and 2, and Pt is the particle

distribution variance at time t .
(b) Feedback gains Kt,1 and Kt,2 are inversely proportional to noise intensities

R1 and R2. Higher noise intensity decreases gain, reducing sensor influence
on state estimation. If R1 < R2, then Kt,1 > Kt,2, giving sensor 1 more
influence; if R1 > R2, then Kt,1 < Kt,2, favoring sensor 2; if R1 = R2, then
Kt,1 = Kt,2, indicating equal influence.

(c) To implement and analyze the two-sensor FPF: initialize particles, propagate
them using the process model, update with both sensors’ measurements,
and estimate state as particle distribution mean. Compare with single-sensor
FPF by calculating mean squared error (MSE) and particle distribution
variance. Benefits of two sensors include reduced estimation error, increased
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robustness, faster convergence, and improved handling of nonlinearities
and non-Gaussian noise. Quantify these benefits by comparing MSE, con-
vergence time, and particle distribution characteristics between single and
two-sensor setups in various scenarios.

Problems of Chap. 10

1. The gradients of the functions are listed as follows:

(1) ∇J (w) = a;
(2) ∇J (w) = (A + A�)w;
(3) ∇J (w) = 2w;
(4) ∇J (w) = w

‖w‖2 ;
(5) ∇J (w) = f ′(‖w‖2) w

‖w‖2 ;
(6) ∇J (w) = f ′(w�a)a.

2. The simulation result is omitted here. Readers can refer to [1] in Chap. 10 to find
typical simulation results of this kind of filtering problems and compare their
results with those in the paper.
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