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Abstract— The optimal filtering problem for general nonlin-
ear state-observation systems has garnered significant attention
in control theory. At its core, optimal filtering involves deter-
mining the probability density function of the system state
conditioned on historical observations. The Yau-Yau method
[25], a pioneering framework, offers a viable approach with
comprehensive theoretical guarantees and practical numerical
implementation. Specifically, the Yau-Yau framework comprises
two key components: offline solution of the forward Kolmogorov
equation (FKE) and online data assimilation updates. The
primary challenge lies in efficiently and accurately solving the
FKE, as it directly impacts the real-time filtering process. To
address this fundamental obstacle, we propose a highly efficient
filtering algorithm that combines a FKE solver based on deep
neural networks and a PDF approximator using generalized
Legendre polynomials. By integrating advanced deep learning
techniques with Galerkin approximation, we introduce the
logarithmic transformed deep Galerkin approach (LTDG). The
numerical simulations showcase the effectiveness and accuracy
of our newly proposed algorithm. LTDG demonstrates superior
performance compared to other methods, such as the extended
Kalman filter and particle filter, and it successfully maintains
the high accuracy of the Galerkin spectral method while having
fewer online computational burdens.

I. INTRODUCTION

Nonlinear filtering is a kind of real-time signal denoising
method in numerous practical application fields including
target tracking [17], navigation systems [16], robotics [6],
and advanced control systems [21]. In such scenarios, the
well-established Duncan-Mortensen-Zakai (DMZ) equation
[9], [19], [27] governs the update equation for the unnor-
malized conditional density of the system state. Generally,
the conditional density cannot be described by a finite set of
sufficient statistics, rendering it an element of an infinite-
dimensional space. While explicit solutions to the DMZ
equation exist in special cases such as Kalman filter [14]
and Beneš filter [4], solving it straightforwardly proves
exceedingly challenging for most general systems.

Given the challenge of solving the DMZ equation di-
rectly, researchers seek approximate solutions using various
methodologies. Many filtering algorithms are based on the
Kalman filter and its variants. Notably, the Extended Kalman
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Filter (EKF) [1] linearizes nonlinear terms with respect to the
current mean before applying the Kalman Filter. Conversely,
the Unscented Kalman filter (UKF) [13] utilizes unscented
transformation to propagate the mean and covariance of
the state, approximating the conditional density up to the
second order if Gaussian. In geoscience, weather forecasting
poses a significant challenge, addressed by the Ensemble
Kalman filter (EnKF) [10], which represents the system state
distribution using ensembles and replaces the covariance
matrix with sample covariance. Other Kalman filter-based
filters are also based on the Gaussian approximation, such
as the Cubature Kalman filter (CKF) [2], Invariant Extended
Kalman filter (IEKF) [5], and Central Difference Kalman
filter (CDKF) [12]. The Particle filter (PF) [11] is employed
to handle nonlinear and non-Gaussian systems by utilizing
numerous independent random samples to approximate the
posterior distribution of the state process. However, PF is
hindered by its substantial computational burden and often
faces the issue of particle degeneracy. To address this, the
resampling techniques have been proposed. In [24], the Feed-
back Particle filter (FPF) was introduced from the perspective
of mean-field theory.

At the beginning of the 21st century, Yau et al. proposed
the Yau-Yau filtering algorithm [25], [26], which is an
optimal filter for general nonlinear system estimation and
arbitrary initial distribution. As a real-time, memoryless
algorithm with theoretical guarantee, there have been large
interests and developments in the Yau-Yau algorithm. It
consists of two steps which are offline prediction and online
update. Kolmogorov equation appearing in the Yau-Yau
method plays an essential role in the fast state inference.
The key aspect of the Yau-Yau filtering framework lies in
designing a filter capable of adapting to changing initial
conditions for a forward Kolmogorov equation (FKE). Based
on the fast solution of a Kolmogorov equation, an amount of
PDE-based approaches have been designed [7], [23]. On the
one hand, Gaussian decomposition technique was proposed
in “Direct method” to deal with finite-dimensional filter in
which state estimation can be described by a finite set of
statistics. On the other hand, the Galerkin-spectral method
is introduced to solve a parabolic Kolmogorov equation
which yields the novel Hermite spectral method (HSM) and
Legendre spectral method (LSM) [8], [18]. Galerkin-spectral
filtering algorithms mainly admit an advantage of possess-
ing theoretical convergence rate analysis and outperforming
EKF, PF, etc in low dimensional systems. However, since
the requirement of fast inference in engineering, it is still
a challenging issue how to design a low-compute, rapid



inference algorithm based on the Yau-Yau framework.
In recent years, with the development of deep learning,

a new research area named scientific machine learning has
been created which combines deep learning and traditional
numerical partial differential equations (PDEs), which sheds
light on the optimal filtering problem. However, training
deep neural networks often requires large datasets, which
may not always be available for scientific computing. In
response to this challenge, Karniadakis et al. introduced
the physics-informed neural network (PINN) framework in
[20] for solving various PDE problems. This framework
enforces physics laws as optimization constraints, enabling
an unsupervised training strategy. PINN combines mesh-
free, data-driven, and physics-based constraints, making it
a potentially powerful tool for optimal filtering.

Motivated by the above observations, in this paper, we
propose the logarithmic transformed deep Galerkin approach
(LTDG) under Yau-Yau framework, leveraging a combina-
tion of PINN and Galerkin-spectral approximation based
on generalized Legendre polynomials (GLPs). The proposed
algorithm is straightforward to numerically implement and
efficiently. Additionally, it offers real-time processing and
memoryless operation. Numerical experiments validate the
effectiveness of our method, demonstrating its ability to
successfully track challenging problems such as the notorious
cubic sensor problem, where traditional methods such as
the EKF and PF often fail most time. This implies LTDG
outperforms traditional EKF, PF and LSM in both accuracy
and CPU computational time.

The rest of the paper is structured as follows: Section II
provides a quick overview of the nonlinear optimal filtering
theory and algorithm. Section III provides the derivation of
the deep neural network-based FKE solver and associated
novel filtering algorithm LTDG. Section IV illustrates details
about the numerical implementation of several examples.
Section V will give a conclusion of the evaluation of our
algorithm.

II. BASIC CONCEPTS AND PRELIMINARIES

In this section, we shall introduce the nonlinear filtering
problem and the optimal filtering briefly, and the goal of this
paper. At the beginning, some notations used in the paper
will be presented for the convenience of the readers.

Notations: The set of real numbers is denoted by R.
Rn refers to n dimensional Euclidean space. Let C∞(Ω)
be the set of smooth functions defined on a domain Ω.
L2(Ω) represents collection of all square integrable functions
defined on Ω. ∆(∗) is the Laplacian operator, ∇ · (∗) is
the divergence operator. In scalar case, N (a, b) denotes a
Gaussian distribution with mean a and standard deviation b.
In vector case, N (µ,Σ) denotes a Gaussian distribution with
mean vector µ and covariance matrix Σ. U(Ω) denotes the
uniform distribution at the region Ω.

In this paper, we consider the type of continuous filter-
ing problem described by the following signal-observation

stochastic differential equations (SDE):{
dxt = f(xt)dt+ dwt,
dyt = h(xt)dt+ dvt,

(1)

where xt := x(t) ∈ Rn is the state of the system at time t,
yt := y(t) ∈ Rm is the observation with y0 = 0, f(xt) ∈
Rn, h(xt) ∈ Rm are vector value drift term and observation
term, respectively. wt, vt are independent standard Brownian
motion processes. Both {wt}t≥0, {vt}t≥0 and initial state x0

are mutually independent.
The minimum variance estimate of xt is given by

E[xt|Yt], where Yt := {ys : 0 ≤ s ≤ t} is the observation
history up to time t. Since the conditional probability density
function (PDF) p(x, t) embodies all the statistical inforam-
tion about xt, it is sufficient to obtain the PDF p(x, t). It is
well known that p(x, t) satisfies the Kushner-Stratonovich(K-
S) equation which is a nonlinear stochastic PDE about p(x, t)
and is very difficult to solve. Later on, Duncan, Mortensen,
and Zakai proposed independently an unnormalized version
of the K-S equation, i.e., the DMZ equation{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)h⊤(x)dyt,

σ(x, 0) = σ0(x),
(2)

here,

L(∗) := 1

2
∆(∗)−∇ · (f∗), (3)

σ0(x) is an unnormalized version density function of the
initial state x0.

Note in the DMZ equation, there appears the term dyt.
In real applications, the usually discontinuous trajectories
of discretized observations yt render underlying filtering
algorithms lack robustness. Therefore, people are interested
in considering robust state estimators from observed sample
paths with some properties of robustness. By making the
following gauge transformation:

u(x, t) = exp(−h⊤(x)yt)σ(x, t), (4)

the DMZ equation is transformed into the following deter-
ministic PDE with stochastic coefficients

∂u

∂t
(x, t) = exp(−h⊤yt)

(
L − 1

2
h⊤h

)
· exp(h⊤yt)u(x, t),

u(x, 0) =σ0(x).

(5)

The equation (5) is called the “pathwise-robust” DMZ equa-
tion. Generally speaking, the equation (5) does not have
a closed-form solution. To solve this equation, Yau et al.
developed a theoretical filtering framework and proved the
convergence of the approximate solution in [25],

Let us assume the total filtering time is T . The obser-
vations occur at time sequence PN = {0 = τ0 < τ1 <
· · · < τN = T}. Without loss of generality, we assume
that the observations arrive at an equal time span, i.e.,
∀1 ≤ i ≤ N, τi − τi−1 = ∆τ > 0.



Let ui be the solution of the robust DMZ equation (5)
with observation process fixed on the interval [τi−1, τi) by
yt = yτi−1 , i.e.

∂ui

∂t
(x, t) = exp(−h⊤yτi−1)

(
L − 1

2
h⊤h

)
·
[
exp(h⊤yτi−1

)ui(x, t)
]
,

u1(x, 0) =σ0(x),

ui(x, τi−1) =ui−1(x, τi−1), for i = 2, 3, · · · , N.

(6)

Note the observations yτi are contained in the coefficients
of (6), by the following proposition [25], the equation (6)
can be transformed into a linear, observation-independent
equation.

Proposition 2.1: For each τi−1 ≤ t < τi, i = 1, 2, · · · , N,
ui(x, t) satisfies (6) if and only if

ρi(x, t) = exp
(
h⊤yτi−1

)
ui(x, t), (7)

satisfies the following forward Kolmogorov equation(FKE)

∂ρi
∂t

(x, t) =

(
L − 1

2
h⊤h

)
ρi(x, t), (8)

where L is defined in (3).
This property of observation-independent enables us to

solve the FKE (8) in advance. By solving the equation
(8) with a group of basis functions of L2(Rn) as initial
conditions offline, the online state estimation can be done
via PDF projection in real-time.

III. DEEP NEURAL NETWORK BASED FKE SOLVER AND
FILTERING ALGORITHM

The key part of Yau-Yau filtering framework is how to
solve the FKE efficiently. In this section, we shall develop
a new efficient algorithm to compute the FKE equation (8)
with specific initial conditions by a deep neural network. For
notation convenience, we omit the subscript in (8) as follows:

∂ρ

∂t
(x, t) =

(
L − 1

2
h⊤h

)
ρ(x, t),

ρ(x, 0) = ϕ(x),

(9)

where the initial condition ϕ(x) ∈ C∞(Rn).
In the following, we shall solve the above FKE with GLPs

as initial conditions under the PINN framework, since the
PINN can solve various PDE problems in an unsupervised
learning way. However, it is quite difficult to train the
PINN network, especially when the initial condition becomes
complex. Therefore, we first transform the original FKE with
GLP initial conditions into a new parabolic PDE with simple
initial conditions. Then we solve the log-transformed PDE
via a specially designed PINN method.

A. Log Transformed Galerkin Approach To FKE

We shall numerically solve the above FKE by Galerkin
method, i.e., the solution ρ(x, t) will be approximated
through a group of selected basis functions. In this paper, we
shall use the GLPs {ϕk(x)} as constructed in [22] since the
GLP vanishes to zero at the boundary of [−1, 1]. In practice,

we always do filtering estimation in a finite time T , hence the
states are in a bounded domain Ω = [−a, a]n over the entire
filtering time interval. Therefore, it is reasonable to assume
the state density ρ(x, t) is supported on the considered
bounded domain Ω.

The one dimensional GLP {ϕk(x)} is defined as

ϕk(x) :=
1√

4k + 6
(φk(x)− φk+2(x)) . (10)

where φk(x) is Legendre polynomial of degree k. For high
dimensional case, let us define the tensor product of the one
dimension GLPs:

ϕk(x) := ϕk1(x1) · ϕk2(x2) · · ·ϕkn(xn),

k = (k1, · · · , kn) ∈ Nn. By scaling and translating transfor-
mations, ϕk(x) can be easily generalized to interval [−a, a].

Now, the FKE (9) becomes
∂ρ

∂t
(x, t) =

1

2
∆ρ− f · ∇ρ− (∇ · f +

1

2
h⊤h)ρ(x, t)

ρ(x, 0) =ϕk(x)
(11)

Suppose the solution of equation (11) with initial condition
ϕk(x) is ρ(k)(x, t).

Let z = x
a + c, c > 1, then z ∈ D := [c − 1, c+ 1]n. We

define ρ̃(z, t) := ρ(x, t), then we have
∂ρ̃

∂t
(z, t) =

1

2
a2∆ρ̃− af · ∇ρ̃− (a∇ · f +

1

2
h⊤h)ρ̃(z, t),

ρ̃(z, 0) =ϕk(a(z − c)),
(12)

Note the initial condition ϕk(z) is a multivariate polynomial.
Therefore it is a linear combination of

zα := zα1
1 zα2

2 · · · zαn
n , α = (α1, · · · , αn).

Suppose the 1-d polynomial ϕki
(zi) has the form of

ϕki
(zi) =

ki+2∑
j=0

c
(i)
j zji , (13)

then the coefficient of the term zα is
∏n

i=1 c
(i)
αi . Without loss

of generality, we only need to consider one dimension case
with ϕk(z) = zk, k ∈ N. Suppose the solution of (12) with
initial condition ρ̃(z, 0) = zk is ρ̃(k)(z, t).

Next, we define v(z, t) := ln ρ̃(z, t), then the equation
(12) becomes following log-FKE,

∂v

∂t
(z, t) =Llog[v](z, t), (z, t) ∈ D × [0, T ],

v(z, 0) =φ(z),
(14)

where Llog[v] :=
1
2a

2(∆v + (∇ · v)2) − af · ∇v − (a∇ ·
f + 1

2h
⊤h) and φ(z) := k ln z. Suppose the solution of (14)

with initial condition k ln z is v(k)(z, t). This equation is a
nonlinear PDE with an almost linear initial condition. Hence,
it is much easier for the network to learn the solution.

Finally, the solution to the robust DMZ equation (5) can
be obtained by the following computation flow:

v(k)
exp−−−−−→

transform
ρ̃(k)

linear−−−−−−→
combination

ρ(k)
gauge−−−−−−−→

transform (7)
u(x, t) (15)



B. Deep log-FKE Solver

To begin with the work of Raissi et. al. [20], the Physics-
Informed neural network will be utilized to approximate the
solution of log-FKE (14). The architecture of the neural
network consists of a multilayer perceptron with one head
layer, four hidden layers, and an output layer. The input of
the network is (x, t), i.e. points sampled from the domain
D. The output v(x, t; θ) represents the parametric solution
of the log FKE equation (14). For simplicity, the number
of neurons of each hidden layer is set to be the same. We
choose the tanh function as the activation function for all
hidden layers. Besides, we initialized the weights of each
layer through Xavier uniform initialization, and all biases
are initialized as 0.

A high-quality training dataset is crucial for the successful
training of a deep learning model. We construct the interior
dataset Xr by sampling Nr points on region D × (0, T ] by
the Latin hypercube sampling (LHS) method. On the initial
boundary, i.e. {t = 0} ×D, we sample Nic points by LHS
method to construct dataset Xic. More precisely, we shall
distribute more dense sampling points near the region {t =
0} × ∂Ω because numerical experiments show these areas
are more challenging to train well. We construst dataset Xb

by sampling Nb points on the spatial boundary ∂Ω× [0, T ].

Xtrain = Xr ∪Xb ∪Xic. (16)

The PDE residual is defined on the region D × [0, T ], i.e.

r(t, y; θ) :=
∂v

∂t
(t, y; θ)− Llog[v(t, y; θ)]. (17)

We define the weighted loss function at k−th training epoch

L(θk) =
Nr∑
i=1

ω(i)
r L(i)

r (k)+

Nb∑
i=1

ω
(i)
b L(i)

b (k)+

Nic∑
i=1

ω
(i)
ic L

(i)
ic (k),

(18)
where

L(i)
r (k) = |r(t(i), y(i); θk)|2, (y(i), t(i)) ∈ Xr,

L(i)
ic (k) = |v(y(i), 0; θk)− φ(y(i))|2, (y(i), 0) ∈ Xic,

L(i)
b (k) = |v(y(i), t(i); θk)|2, (y(i), t(i)) ∈ Xb,

(19)

then at next epoch, the weights for datasets Xf , Xb, Xic are
defined respectively by

ω(i)
r (k + 1) = L(i)

r (k)/

Nr∑
i=1

L(i)
r (k),

ω
(i)
b (k + 1) = L(i)

b (k)/

Nb∑
i=1

L(i)
b (k),

ω
(i)
ic (k + 1) = L(i)

ic (k)/

Nic∑
i=1

L(i)
ic (k),

(20)

The weights of different terms are initialized as ω
(i)
r (1) =

1
Nr

, ω
(i)
b (1) = 1

Nb
, ω

(i)
ic (1) =

1
Nic

.
To ensure stable training and improve accuracy, we employ

practical numerical strategies in this study. We utilize the

Adam optimizer [15] for training the neural network, ad-
justing the learning rate dynamically for faster convergence.
The learning rate ηk at each iteration k is determined by
ηk = η0 × γk, where η0 is the initial learning rate, γ is
a regularization factor, and ηk is the learning rate used at
iteration k. Typically, each iteration consists of 50 gradient
descent loops, although the number of iterations can be
adjusted as needed. Additionally, we set a predefined stop
criterion estop for the training loss, once the loss reaches
this threshold, training halts to save time.

C. Filtering Algorithms

We give a detailed description of the developed filtering
method in algorithm 1.

Algorithm 1 LTDG filtering algorithm
1: Initialization: Given GLPs basis {ϕk(x)}Mk=0, observa-

tion gap time T0, the number of the temporal partition N .
Config the neural network, and generate training dataset
Xtrain.

2: for k = 0 : M do
3: Solve the equation (14) with v(z, 0) = k ln z, k =

0, · · · ,M +2 by deep log-FKE solver on the domain
D.

4: Obtain the solution ρ(k)(x, T0) of equation (9) with
GLP initial condition ϕk(x) by exponential transfor-
mation and linear combination and store it up.

5: end for
6: for i = 1, · · · , N do
7: Project ρi(x, τi−1) onto the subspace spanned by

GLPs,

ρi(x, τi−1) ≈
Nglp∑
k=0

ci,kϕk(x), (21)

here, {ci,k}Mk=0 are the coefficients of projection.
8: Calculate terminal FKE solution ρi(x, τi) by

{ci,k}Mk=0 and the stored solutions {ρ(k)(x, T0)}Mk=0,
i.e.,

ρi(x, τi) ≈
M∑
k=0

ci,kρ
(k)(x, T0). (22)

9: Estimate the current state by ui(x, τi), i.e.

x̂(τi) =

∫
x · ui(x, τi)dx∫
ui(x, τi)dx

. (23)

where the solution to robust-DMZ equation (5)
ui(x, τi) is given by ρi(x, τi) and (7), i.e.,

ui(x, τi) = exp(−h⊤yτi−1)ρi(x, τi) (24)

10: Update the initial distribution ρi+1(x, τi) in the next
time interval [τi, τi+1) by

ρi+1(x, τi) = exp(h⊤(yτi − yτi−1)) · ρi(x, τi). (25)

11: end for



IV. NUMERICAL RESULTS

In this section, numerical simulation based on the pro-
posed logarithmic transformed deep Galerkin approach
(LTDG) algorithm will be tested in several typical filtering
systems. LTDG will be compared with the traditional Kalman
filter (KF), Extended Kalman filter (EKF), particle filter
(PF) [3], and Legendre Spectral method (SM) [8]. The first
example is a 1D cubic example with mixed Gaussian initial
distribution. The second example is a 2D nonlinear system
which has been proven strong nonlinearity in estimation
behavior. All simulations are implemented in Tensorflow and
run in laptop with 12th Gen Intel(R) Core(TM) i9-12900H
2.50 GHz.

So as to measure computational load and accuracy, the
following measurement index will be defined which includes
MSE (Mean Square Error), MMSE (Mean MSE), and MT
(Mean Time).

MSEi :=
1

Ntr

Ntr∑
i=1

(X̂i
tk

−Xi
tk
)2

MMSE :=
1

N

N∑
i=1

MSEi,

MT :=
1

Ntr

Ntr∑
i=1

Ti

(26)

where X̂i
t denotes state estimate for a filtering algorithm in

i-th trial at instant t. Xi
t represents real state value in i-th

trial at instant t. Ntrial denotes number of simulation trials
Ti is running time of programming code in i-th trial.

A. 1D Cubic system

{
dXt = dWt, E[(dWt)

2] = dt

dZt = X3
t dt+ dVt, E[(dVt)

2] = Sdt
(27)

where initial distribution is taken mixed Gaussian density.

σ0 ∼ 0.5N (−0.1, 0.2) + 0.5N (−0.1, 0.3)

We take variance S = 0.03. Number of polynomial basis
functions is chosen 7. The number of training epochs is
10000 in a multilayer perceptron (MLP). Initial learning rate
η0 = 0.01. Batch sizes Nr = 1000, Nb = 900, Nic = 800.
The nonlinear activation function is chosen as tanh. Network
architecture is chosen as [2, 100, 100, 100, 1].

From a state tracking perspective, Fig. 1 (left) shows that
LTDG outperforms other algorithms. PF and EKF exhibit
high oscillations, making them inefficient for estimation,
with EKF performing the worst. Based on the Yau-Yau
framework, the Spectral Method (SM) can achieve optimal
estimation with enough basis functions but often incurs large
computational loads due to the need to solve the Yau-
Yau equation at each time step via the Galerkin method.
Despite this, SM remains a real-time algorithm in numerous
examples. LTDG, on the other hand, demonstrates the fastest
CPU processing time, reducing computational time by over
50% compared to SM while maintaining the same accuracy.

Fig. 1. 1D Cubic filter. (Left) State tracking. (Right) Mean square error.

TABLE I
PERFORMANCE OF ALL SIMULATED ALGORITHMS IN 1D CUBIC SYSTEM.

Algorithms LTDG SM EKF PF
MMSE 0.5050 0.5071 0.6188 0.5176

CPU time(s) 0.0668 0.1962 0.0094 0.2837

B. 2D cubic system



dXt =

[
a11 a12

a21 a22

][
X1

X2

]
dt+ dWt,

dZt =

[
X3

1

X3
2

]
dt+ dVt, E[dVtdVt

⊤] = Sdt,

X0 ∼ N ([0.1, 0.1]⊤, 0.05I2)

(28)

where the drift coefficients a11 = 0.2, a12 = 0.3, a21 =
−0.3, a22 = 0.1, Wt is a standard Brownian motion process,
the covariance coefficient matrix is set S = 0.1I for
simplicity. The number of GLPs M = 15. For LTDG, the
architecture of the neural network is [3, 100, 100, 100, 1].
Other parameter setting is the same as in the previous
example.

TABLE II
PERFORMANCE OF ALL SIMULATED ALGORITHMS IN 2D CUBIC SYSTEM.

Algorithms LTDG SM EKF PF
MMSE 0.5650 0.5387 1.0069 0.8662

CPU time(s) 0.3614 0.7408 0.0102 0.8268

Fig. 2 illustrates the performance of various algorithms in
comparison to the actual state. The upper two subfigures in
Fig. 2 depict the accuracy of state tracking, while the lower
two subfigures present the mean squared error (MSE) over
time. It is evident that the EKF fails to accurately track the
state for both variables x1 and x2. Although the PF performs
better than the EKF, it still falls short of achieving effective
state tracking. The SM provides the optimal estimate for this
nonlinear system; however, its computational load is nearly
twice that of our newly proposed method, LTDG.

V. CONCLUSION

In this paper, we propose a novel filtering algorithm
combining deep neural networks, the Galerkin-spectral ap-
proach, and gauge logarithmic transformation. Specifically,



Fig. 2. 2D Cubic filter. State tracking (upper two subfigures) and MSE
(lower two subfigures)in the 2D cubic system.

we efficiently solve the observation-independent Forward
Kolmogorov Equation (FKE) using deep neural networks
within the PINN paradigm. To address fast inference under
various initial conditions, we approximate the unnormalized
density function with GLPs. The method inherits the benefits
of the Yau-Yau filtering algorithm and requires minimal
assumptions on the filtering system, making it widely ap-
plicable. We validate the algorithm’s effectiveness through
numerical experiments, showing improved stability and ac-
curacy compared to traditional methods like EKF, LSM, and
PF. However, the algorithm is limited by the “curse of dimen-
sionality” particularly in higher-dimensional systems. Future
work will focus on designing efficient forward Kolmogorov
equation operator networks to reduce offline training costs.
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