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Abstract Ever since Brockett and Clark (1980), Brockett (1981) and Mitter (1980) introduced the
estimation algebra method, it becomes a powerful tool to classify finite-dimensional filtering systems.
In this paper, the authors investigate estimation algebra on state dimension n and linear rank n — 1,
especially the case of n = 4. Mitter conjecture is always a key question on classification of estimation
algebra. A weak form of Mitter conjecture states that observation functions in finite dimensional filters
are affine functions. In this paper, the authors shall focus on the weak form of Mitter conjecture. In the
first part, it will be shown that partially constant structure of {2 is a sufficient condition for weak form
Mitter conjecture to be true. In the second part, the authors shall prove partially constant structure

of {2 for n = 4 which implies the weak form Mitter conjecture for this case.

Keywords Estimation algebra, finite dimensional filter, Mitter conjecture, state estimation.

1 Introduction

Filtering problem refers to estimating the state of a stochastic dynamical system by using
the information of observation history. An important progress is Kalman-Bucy filter proposed
in the 1960s for linear Gaussian systems with Gaussian initial condition. Linear Kalman filter-
ing motivated a lot of researches in the study of nonlinear filtering. Conditional expectation
E[¢(X:)|Vs] is optimal estimate in the sense of mean square error, where X; denotes the state
of system and )} denotes the history of observations. Obviously, conditional density p(¢,x)

contains full information on nonlinear filtering. In the 1960s, Kushner!) and Stratonovich[?
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2 JIAO XTAOPEI - YAU STEPHEN S. T.

derived the evolution equation of conditional density independently. For the convenience of
solving Kushner equation, Duncan-Mortensen-Zakai (DMZ) equation®® was proposed and
described the evolution of unnormalized conditional density o(t,z) in the late 1960s. DMZ
equation is easier to deal with because it is a linear stochastic partial differential equation.

Currently there are basically four ways of solving nonlinear filtering problems. The first
one is the projection based method, e.g., extended Kalman filter and geometric projection
filter(®l. The second approach is the particle evolution method. In this type of method, different
particles {X;} will be created and evolved according to the controlled stochastic differential
equation. True conditional density will be approximated by empirical distribution of discrete
particles. Typical algorithms include ensemble Kalman filter”) and feedback particle filter!s!.
The third approach is the optimization-based algorithm including optimal control® and optimal
transportation!!?). The fourth aspect is based on the solution of DMZ which will be explained
in detail below.

It is noted that robust DMZ equation is a linear parabolic PDE and Wei-Norman approach
can be applied to solve it in principle. Estimation algebra method proposed by [11-13] originated
from Wei-Norman approach in the 1970s. Once estimation algebra of the system is a finite
dimensional Lie algebra, Wei-Norman approach can represent formal solution of robust DMZ
equation. Estimation algebra method has been developed for more than 40 years and has
the following advantages. First, it takes account of both geometrical and algebraic aspects
of nonlinear filtering. Second, it allows us to determine the forms of finite dimensional filters
including drift and diffusion coefficients. This prior information allows us to find potential finite
dimensional filters. Efficient algorithms can be studied based on the form of finite dimensional
filters. Third, DMZ equation can be solved explicitly and universal recursive filters can be
constructed if estimation algebra is finite dimensional. Fourth, it demonstrates that there
exists an algorithm with polynomial computational complexity for finite dimensional filter.

In the International Congress of Mathematicians of 1983, Brockett!'?! proposed the program
of classifying all finite dimensional estimation algebra. Since the 1990s, through persistent
efforts, Yau and his collaborators finished the complete classification of maximal rank estimation

(14-18] * At the beginning of the 20th century, Yau and his coworkers initiated the study

algebras
of nonmaximal rank finite dimensional estimation algebra. Mitter conjecture states that all
functions contained in finite dimensional estimation algebra are affine. It plays an important
role in the classification of finite dimensional estimation algebra in both maximal rank case
and nonmaximal rank case. In fact, one critical step of maximal rank classification is to prove
the validity of Mitter conjecture. With the Mitter conjecture, differential operators contained
in the estimation algebra will be determined, yielding a more clear structure of the estimation
algebra. As a first step towards Mitter conjecture, we need to prove the weak form of Mitter
conjecture which states that observation functions are all affine functions. Recently, a lot of
attentions have turned to nonmaximal rank estimation algebra with linear rank n — 1 and
state space dimension n. More precisely, Mitter conjecture was proven for state space with

(19, 20] " Recently linear structure of 2 matrix (see Definition 2.10) has been

dimension n < 3
verified for arbitrary state dimension with linear rank n — 1 which is a critical step towards
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WEAK FORM MITTER CONJECTURE 3

Mitter conjecturel?!l.

However, in the high dimensional situation with state dimension larger
than 3, Mitter conjecture is an important unsolved problem in the field. In this paper, we shall
solve weak form of Mitter conjecture for state dimension 4 with rank 3.

First we shall focus on quadratic structure of nonmaximal rank estimation algebra. With
the help of linear and quadratic ranks, we are able to describe any quadratic function ¢ in E.
We successfully extend the quadratic structure theory from maximal rank case to nonmaximal
rank case. In the second part, we demonstrate that the weak form of Mitter conjecture is
implied by partially constant structure of (2. In the final part, partially constant structure of
{2 will be proven and hence weak form of Mitter conjecture holds for n = 4 case.

The paper is organized as follows. In Section 2, we introduce some basic concepts of nonlinear
filtering and preliminary results about the estimation algebras. In Section 3, quadratic structure
of any function in F is studied. In Section 4, the partially constant structure of {2 is shown to
be a sufficient condition of weak form of Mitter conjecture. In Section 5, the partially constant
structure of 2 will be verified for case n = 4. In Section 6, we shall give a summary. Appendix

contains the detailed proofs of related results.

2 Preliminaries
2.1 Basic Notations

The set of real numbers is denoted by R. R” refers to k dimensional Euclidean space. R™*™
denotes the set of matrices with size m x n. A = (a;;) denotes a matrix A with ¢, j-entry a;;;
rank(A) denotes rank of matrix A. I,, denotes identity matrix of size nxn. d;; denotes Kronecker
symbol which means d;; = 1 if ¢ = j; otherwise §;; = 0. A = diag(A1, A2, -+, \,) represents a
diagonal matrix A with diagonal elements A1, Aa, - -+ , A,. Let C°°(U) be set of smooth functions
defined on U, span{vy,---,v;} be the linear space spanned by vectors {vy, v, ,vx}, and
Pi(xy, -+ i, ) be the set of polynomials of degree no more than k in variable x;,,- -, z;,, .
Let polg(zs,, - ,a;, ) be an element in the set Py (xi,,--- 2, ), Pe(xs,, -+, a;,) be the set
of polynomials of degree at most k£ in z;,,---,x;  with smooth coefficient in other variables
{xs,5 ¢ {i1, - ,im}}. For a polynomial ¢, ¢*) denotes the homogeneous degree k part of ¢.
Je = (%{;ﬁ) denotes the Hessian matrix of function £. Finally, an unspecified constant is

denoted by const.

2.2 Basic Concepts

In this paper, we consider the following time-invariant nonlinear filtering system:

dx(t) = f(z(t))dt + g(x(t))dw(t), z(0) = zp € R™, )
dy(t) = h(z(t))dt + dv(t), y(0) € R™,
where z(t) = (x1,--+ ,2n) € R"y(t) = (y1, - ,ym) € R™ represents state and observation

vectors in Euclidean space. f : R" — R™ denotes drift mapping. h : R" — R™ denotes
observation function. g : R™ — R™*? represents diffusion coefficient. f = (f;),h = (h;),g =

(g47) are all assumed to be smooth vector fields. w(t) € RP, v(t) € R™ are mutually independent
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4 JIAO XTAOPEI - YAU STEPHEN S. T.

standard Wiener process, i.e., E[dwdw™] = I,,dt,E[dvdv"] = I,,dt. Define coefficient matrix
C = (CU) = ggT e Rmxm,

For a continuous filtering system, the ultimate goal is to determine the conditional expec-
tation E[p(z;)|F:], where ¢ is a C* function and Yy := o{ys : 0 < s < ¢} is the sigma algebra
generated by observation. It is well known that conditional expectation E[z,|F;] is the optimal
estimate with respect to the least variance criterion. Therefore, conditional density p(t, ) given
the observation history includes complete information of the filtering system.

Mathematically, unnormalized conditional density o (¢, x) is described by the following Duncan-
Mortensen-Zakai (DMZ) equation[® 5!

do(t,x) = Loodt + o(t,z)hf o dy;, (2)
where
1 n n
L = = P hTh(o).
o(0)i=5 >, C Jaxz a% () 3)

i,j=1 i=1

Note that DMZ equation is formulated in the form of Stratonovich stochastic integral.
Degeneracy of the matrix C' = (C;;) will influence the behavior of Lg. In this paper, we assume
that the diffusion coefficient g is an orthogonal matrix which will lead to C' = I,,.

Next we can reformulate forward differential operator Ly as

1 = 9? "0 ofi 1
=33 g L hig 2 f——Zh2 (4)
And we define L; := h;, 1 < i < m as the zero degree differential operator of multiplication
Let . . .
D; = 4 —fi, 1<i<n, 77122%+Zf'2+2h2' (5)
O i=1 O i=1 ' i=1 '

Then we can obtain a more compact form of L,

—%(ZD?—n) ©)

Next we give some basic concepts related to Lie algebra.

Definition 2.1 If X and Y are differential operators, the Lie bracket of X and Y, [X, Y],
is defined by [X,Y]¢ = X (Y¢) — Y(X¢) for any C* function ¢.
Definition 2.2 A vector space F with the Lie bracket operation F x F — F denoted by
(x,y) — [x,y] is called a Lie algebra if the following axioms are satisfied:
1) The Lie bracket operation is bilinear;
2) [z,z] =0 for all x € F;
3) [y, 2l + [y, [z 2] + [z, [2,9]] = 0, w,y,2 € F.
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WEAK FORM MITTER CONJECTURE 5

Definition 2.3 Let g and g be two Lie algebras. An isomorphism f : g — g is a linear
map and satisfies

1) f is a bijection.

2) f is a homomorphism of Lie algebras, i.e., fg1,92] = [f(g1), f(g2)] for any g1, 92 € g.

g is isomorphic to g, i.e., g =g, if there exists an isomorphism between g and g.

Remark 2.4 If two Lie algebras are isomorphic, then they have the same Lie algebra

structure.
Next we introduce the concept of estimation algebra related to filtering system.

Definition 2.5 The estimation algebra E of a filtering system (1) is defined to be the Lie
algebra generated by {Lo, L1, -, Ly}, i.e., E = (Lo, h1, -+ ;hm)p 4

Remark 2.6 In the whole paper, we assume that E is finite dimensional. Brockett!?2
proved that if one performs a smooth non-singular change of variable z = F(x), this mapping
will lead to an isomorphism of estimation algebra. Therefore, for the purpose of classification
of estimation algebras, we can freely use orthogonal transformations and translations.

Definition 2.7 Let L(E) C E be the vector space consisting of all the homogeneous
degree 1 polynomials in E. Then the linear rank of estimation algebra E is defined by r :=
dim L(E). If r = n, we call that F has maximal rank. Otherwise, E has non-maximal rank. In
what follows, we shall use (linear) rank for short.

Remark 2.8 Without loss of generality, we can assume x1,xs2, - ,z, € Fand x,41,---,

xn ¢ E by an orthogonal transformation if necessary. More details can be found in [19].
Next we define quadratic rank in order to describe the structure of quadratic function in F.

Definition 2.9 For a given function h € E, we consider homogeneuous quadratic part
h?) = 2T Az. We define quadratic rank of h as A(h) := rank(A). Then quadratic rank of esti-
mation algebra F is defined as the maximal rank of functions in E, i.e., A(E) := maxpep A(h).
h* ;= argmaxpep A(h) is called maximal rank quadratic polynomial.

We would like to remark that structure of linear rank and quadratic rank play quite impor-

tant roles in classification of estimation algebras.

Definition 2.10 The Wong’s {2-matrix is the matrix £2 = (w;;), where

0f; _ 0fi
6:51- 8:vj’

Obviously, w;; = —wj;, i.e., 2 is an antisymmetric matrix.
It is worth noticing that elements of 2 matrix satisfy the following cyclical condition, which

can be obtained by direct calculations.

ow, ; (%le n 8‘”11‘

vj

=0, forl<i,5,1<n. 8
('“)m +(9xl a$7 ’ or >4,50sN ()

Remark 2.11 The structure of {2 matrix influences the form of drift term f. If £2 =0,
it corresponds to Benes filter, i.e., f = V¢ where ¢ € C°°(R™). In Benes filtering system, drift
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6 JIAO XTAOPEI - YAU STEPHEN S. T.

vector field has a potential which can be think of as electronic field. If {2 is a constant matrix,
then the drift vector field corresponds to f(z) = Lz + V¢, where L € R"*" ¢ € C(R").
This type of filter is called Yau filtering system which contains Kalman-Bucy filter and Benes
filter as special cases. Yau filtering system plays an important role in study of maximal and

non-maximal rank estimation algebra.

Definition 2.12 Let U be the vector space of differential operators in the form

A= Z aihizwwinDilD? D:znv (9)
(il,’iQ,--- ,in)GIA
where nonzero functions a;, 4, ... i, € C>°(R™) and I, C N" is a finite set. Fori = (i1,42, -+ ,in)
€ N, denote |i| :== Y_7'_, ix. The order of A is defined by ord(A) := max; |i|. Let U denote
differential operator in E with order no more than k. Especially, Uy denotes smooth functions
in E.

2.3 Basic Computation Rule

Some basic notations of Lie bracket are also given as below. Let A, B € E and V C E. then
we denote A = B, mod V if and only if A — B € V; We define adjoint map Ad: E X E — FE
by AdsB = [A, B] and Ad%B = [A, Ad’f{lB]; Euler operator Eg := )¢ xla%l, where S is an
index subset of {1,2,---,n}.

Estimation algebra is an operator algebra. The following basic formulas are useful in ex-
ploring the algebraic structure.

Lemma 2.13 (see [17]) Let E be an estimation algebra for the filtering problem (1).
2 = (wij) is defined as in Definition 2.10. Assume X,Y,Z € E and g,h € C*(R"). Then
1) [XY, 2] = X[V, 2] + [X, Z)Y;

2) [9Ds, h] = g 5;

[9Di, hD;) = ghws + g5 Di = hgf; Dis
[9D?, h) = 2992 D; +gax2,
[
[

4
5) [D?,hD;] = 228 D;D; + 2hw;: D; + ﬁDj + hGt
6) [D?, D3] = dw;iD; D; + 2522 D; +23“’le + o 4 2w

7) [D}.hD:D;] = 228 Dy.D; D + 2hwji DiDy, + 2hwieDiD; + SEDiD; + 2h %2 Dy, +
WG Di + W5 Dy o hge

Ox;0xy
a 2
8) [gDiD;, hDy] = g2 D; Dy, +g 4 D; Dy — hig- DiD; + gheiej Dy + ghwii D + g 524 Dy, +
(9(,%]'
gh—axi .

The following technical results are frequently used in our paper.
Lemma 2.14 (see [21]) 1) [Lo, ;] = D;;

2) [[Lo, @), 6] = |[Vo|* = 32i_ (aai)Q;

3) (L0, Dy) = Sl Do+ A2+ AL, 2

4) [Lo,x?] =2z;D; +1;
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WEAK FORM MITTER CONJECTURE 7

Lemma 2.15 (see [21]) Suppose that E is finite dimensional estimation algebra. Let

K := const - Di*? + (B1T + const) Dy DT 4 (BoT + const) Dy D!
+-- 4+ (Bp1T + const)Dn,lDillJrl + terms with lower order in Dy, mod Uj, 41 € E,
7y = (BT + const)Dierl + terms with lower order in Dy, mod U, € F,

Zy = (ByT + const) D12+ + terms with lower order in D,,, mod U, € E,

Zn—1:= (Bh1T + consﬁ)DﬁfJrl + terms with lower order in D,,, mod U, € E,

(10)
where const means constant number, T = (x1,xa,- - ,;vn_l)T e R* 1. 11,1, > 0 are nonnega-
tive integers. B; € R™("=1) qre constant vector for 1 < i <mn — 1. Define matriz B = (Bij) as
below:

By

By
B := ' . (11)
anl
If B is a symmetric matriz, then B must be equal to 0.

Remark 2.16 Notice that Lemma 2.15 holds only under the assumption of finite dimen-
sionality of F without any linear rank condition. It can be applied in any nonmaximal rank

estimation algebra. This lemma is an important tool in studying the structure of estimation
algebra.

Notice that each x; plays the same role in Lemma 2.15. Therefore, we can simply replace

index n by any «, T by (21, ,Za—1,Ta+1, " &n), the same results still holds.

Lemma 2.17 (see [21]) Suppose that E is finite dimensional estimation algebra and 1 <
a<n,

K := const - D42 4 (BT 4 const)D; DI + ... 4+ (B, 1T 4 const)D,_ Dh+H!
+ (Bag1T + const) Doy 1 DY 4 (BT 4 const) D, D11
+ terms with lower order in Dy, mod Uj, 41 € E,

7y = (BT + const) D2 + terms with lower order in Do, mod U, € E,

_ - | | (12)
Za—1 = (Ba-1T + const)D2T" + terms with lower order in Dy, mod U, € E,
Zot1 = (Bat1T + const)ij'H + terms with lower order in Dy, mod U, € E,

Zyn = (BT + const)D(ljJrl + terms with lower order in Dy, mod Uy, € E,
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8 JIAO XTAOPEI - YAU STEPHEN S. T.

where const means constant number, T = (T1, - ,Ta—1,Tat1, " ,Tn)T € R"I. 11,15 >0 are

nonnegative integers. B; € R™ (=1 qre constant row vectors. Define block matriz B as below:

By

If B is a symmetric matriz, then B must be equal to 0.
Theorem 2.18 (see [21]) Suppose that E is a finite dimensional estimation algebra of
state dimension n and linear rank n — 1. If the following differential operator is contained in

estimation algebra,
My = a(x1,29, -+ ,24) Dy, mod Uy € E, (14)

where « is a polynomial of x1,x2,- - ,xy, then « is an affine function.

Theorem 2.19 (Linear structure of 21!) Let E be the finite dimensional estimation
algebra with state dimension n and linear rank n — 1. Then Wong’s 2-matriz has linear
structure; i.e., all the entries in the {2-matriz are degree 1 polynomials. Furthermore, w;; €
Pi(z1,- ,xpn-1) for 1 <i,j <n-—1.

Theorem 2.20 (Oconel?®)  Let E be a finite-dimensional estimation algebra. If a function

¢ is in E, then ¢ is a polynomial of degree at most two.

Detailed proof can be found in Theorem 217,

Actually, Mitter!™] proposed the following conjecture that is stronger than Ocone’s result.

Mitter Conjecture Let E be a finite dimensional estimation algebra. If ¢ is a function
in E, then ¢ is a polynomial of degree at most 1.

Observation functions h;’s play a role as generators in estimation algebra E. Their structures
directly influence the solution of nonlinear filtering system. So, it is important to prove the
weak form of Mitter conjecture which states that all observation functions are affine functions.

Weak form Mitter Conjecture Let E be a finite dimensional estimation algebra. Then

all observations h;’s, are affine functions.

2.4 Underdetermined Partial Differential Equation

Next we summarize the known results related to underdetermined partial differential equa-

tion. Considering the following first order partial differential equation:

8_a:i+zfi2:F' (15)

=1 i=1
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Theorem 2.21 (see [19]) Let d and r < n be two positive integers and

_ E : i ir
F(I)_ ai(IT+17"' axn)xll Ty, (16)
li|<d
where i = (i1, - ,i,) and where a;’s are smooth functions in x,y1,--+ ,x,. The homogeneous

degree d part in x1,--- ,x. of F is denoted by

i in
F;= g i (Trg1y e, Tyt - 2y
li|=d

If there exist n numbers by, - -+ , b, such that Fy(by,--- ,by) < 0, there are no smooth functions
fi,1 <i<n onR"™ satisfying the equation (15).

2.5 Euler Operator

Euler operator technique plays an important role in structure deduction of estimation alge-
bra. This technique is frequently used with underdetermined partial differential equation. The

following partial differential equation plays an important role in our paper:

Es(¢) +m¢ = ~(x), (17)

where Fg := ZleS xlaizl denotes partial Euler operator. We shall write Es = E;, 4,.... 4, if
S ={i1 <ia < - < igr If (i1,d9, - ,ix) = (1,2, - k), we shall write Eg = Ey. If
S ={1,2,--- ,n} is the whole index dataset, Es = E is the usual Euler operator.

The result as below says that the solution ¢ of the equation (17) has polynomial structure
in variables x1,- - -,z if ¥(z) € Py, ... -

Theorem 2.22 (see [19]) Let m be a constant integer and { € C(R"™) such that E1.({)+
m( is a polynomial of degree k in x1,--- ,x; with smooth coefficients of xi41,- -+, Tn.

D Ifm+k+1>0,(€ Pz, ,1);

2)Ifm+k+1<0,C€ ﬁk(x1,~-~ ,x1) or ¢ € ﬁ,m(x1,~-~ ,T1).

It is trivial to directly get the following corollary. The following corollary is helpful for us

to determine the degree of solution function.

Corollary 2.23 Let m be a constant integer and ¢ € C*°(R"™) such that E1.,(¢) + m( is

a polynomial of degree k in x1,--- ,x; with smooth coefficients of xi41,- - ,xn. Then ( must be
a polynomial of variables xy.--- ,x; with smooth coefficient of 41, ,x,. Moreover, degree
of ¢ in xy,--- ,x; is less than or equal to max{k, —m}.

3 Quadratic Structure of Nonmaximal Rank Estimation Algebra

In this section, we focus on the quadratic structure of functions in nonmaximal rank estima-
tion algebra. Our main point is to describe the quadratic part of any function in E by means
of linear rank and quadratic rank. The results of this section are good for general nonmaximal
rank case and will be used for the rest of our paper.

First, we make an assumption of linear rank:
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10 JIAO XTAOPEI - YAU STEPHEN S. T.

Assumption 3.1 Linear rank of F is less than or equal to n — 1, ie., r <n —1.

It can be easily checked that 1 € E since [[Lo,z1],21] = 1 € E. In view of the structure
of linear rank, we shall characterize the homogeneous quadratic part of any function in F.
Detailed proof can be found in the Appendix.

Lemma 3.2 Let ¢(z) € E be a function in E. Then the homogeneous quadratic part of

¢ must be in a block diagonal form, i.e.,

A0
¢ (z) = 2T ! x, (18)
0 A
where Ay and As are symmetric matrices with size rxr and (n—r)x (n—r), x = (z1, 29, -+ ,7,)T.

Lemma 3.2 implies that maximal rank quadratic polynomial ¢ € E defined in Definition 2.9

must be of the following form:

A 0
¢ (z) = 2T ! x, (19)
0 A
and rank(A;) + rank(Az2) = k, where k is quadratic rank defined in Definition 2.9. Under an
appropriate block diagonal orthogonal transformation
U, 0

T= : (20)
0 Us

where Uy € R™" and U, € R(n—7)x(n=7)

In general, any quadratic part (2 can be diagonalized as

D, 0 0
dP=10 0 o], (21)
0 0 D,

where Dy, Dy are diagonal matrices with non-zero diagonal elements. Theorem 3.7 in [19] proved
that there exists a quadratic function py = Zf;l 24+ Y js1%i € E, where ky + ky =
k,k1 < r and ko < m — r, using the technique of translation of variable and Vandermonde
matrix. Notice that pg has maximal quadratic rank k in E, i.e., A(pg) = k. We summarize this

result as the following theorem.

Theorem 3.3 Let E be a finite-dimensional estimation algebra with linear rank r and
quadratic rank k. There exists pg = Zf;l r? + E?:n_kﬁ_l 2? € E, where ky + ko = k,ky <7
and ko < n—r.

Remark 3.4 Notice that such orthogonal transformation (20) and translation of variable
x; — x; + const do not change the basis of L(E). In fact, in view of Lemma 2.14 1), we have

that x; € E <= x; + c € F where c is a constant.
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WEAK FORM MITTER CONJECTURE 11

Let S:={1,--- ,k1,n—ka+1,--- ,n}. We use the following conventions:
\)ifky=0,S={n—ke+1,--- ,n};

(i) if ko =0, S={1,--- k1 };

(i) if by = ko =0, 5 =0.

The following lemma describes the structure of homogeneous degree 2 part of any function

in E. The proof will appear in the Appendix.

Lemma 3.5 Ifp e E is a quadratic function, then homogeneous quadratic part p(2)(x) is

indepedent of x; for j ¢ S, i.e., 850;"“) (x)=0forj=ki+1,--- ,n—ks.

For the sake of exploring more information of quadratic polynomials in FE, we consider

quadratic polynomials with least quadratic rank. Let pg = Zf;l x? + Z?:n#w 11 z? € E have

maximal quadratic rank and p; € F have least quadratic rank. In view of (21), we can write

p1 = Z P1ijTiT; + Z P1ij Ti %5 +p011($) e k. (22)
1<4,5<k1 n—ka+1<i,5<n

By block orthogonal transformation,

Ui 0
T=|" , (23)
0 U,
where
U, 0 Inovpy O
U= , Up= S (24)
0 Irfkl O U2
we obtain
p1 = Z dix? + Z d;x? + poly(x) € E, (25)
1<i<k1 n—ka+1<i<n

where k1 < ky and ky < ks and d; # 0.
Remark 3.6 It is important to notice that this orthogonal transformation (23) keeps

structure of linear rank and maximal rank quadratic polynomial unchange.
Next we can assume
1<i<k1 n—ko+1<i<n r+1<i<n
We get the following Euler operator from maximal rank quadratic polynomial.

n

Z::%([Lo,po]—k):(Z—i- > ):viDieE. (27)

= i=n—ko+1

Since [Z, ¢] = Es(¢) for any smooth function ¢, Z will play the same role as Euler operator
FEg. Next

ES(pl)_pl—(Z—F > >dixf— >  em €k (28)

1<i<ky n—ko+1<i<n r+l1<i<n—ko
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12 JIAO XTAOPEI - YAU STEPHEN S. T.

By the Vandermonde matrix technique, it implies

n=( X+ ¥ )aer (20)
1<i<k; n—ko+1<i<n
where we still use p; to denote the least rank quadratic polynomial.

Next we shall see the impact of minimal rank quadratic polynomial on other quadratic
polynomials in E. Define index set Sq := {1,--- ,ki,n—ko+1,--- ,n} and set Q) := span{z;z; :
1,] € Sl}

Theorem 3.7  Assume that p1 == (32, <<, + 2 _fyr1<i<n)
rank. For any quadratic function p € E, if p?)(z) € Q, then p?(z) = \py for some constant
A

2? € E has minimal quadratic

4 Finite Dimensional Estimation Algebra: Linear Observation
4.1 Basic Techniques

Notice that results in this subsection are independent of rank condition. For fixed index
(i,7), wi; must be a constant number when some specific functions exist in E. The proofs will
appear in the Appendix.

Lemma 4.1 If xf € FE and x? € I where 1 <1 < j <n, then w;; s a constant.

Lemma 4.2 For1 <i < j <mn, assume wj; = ¢;x; +¢;xj+co € Pi(x;, ;) where ¢;, ¢;, ¢o

are constant coefficients. If the following operators are contained in E,
Ny =27 + x? € E, Ni:=czx;+ cj:r? €E, Ny:=cia?+ cijxiz; € B, (30)
then w;; s equal to cp.

4.2 Partially Constant Structure of 2

It has been proven that constant structure of {2 implies Mitter conjecture, in particular the
linear structure of observations, under the maximal rank setting. In this subsection, we consider
finite dimensional estimation algebra on arbitrary state dimension n and linear rank r =n — 1.
In the non-maximal rank case, we shall prove the partial constant structure of 2. This certain
part constant structure of 2 depends on maximal rank quadratic polynomial. Using the partial
constant structure of §2, we shall establish a sufficient condition for observation function {h;(z)}
be affine functions.

It is critical to notice that the structure of 1 will influence structure of {h;(x)} largely.
In the next two lemmas, we shall use tools of underdetermined partial differential equations
to obtain restriction from #n to {h;(x)}. Main technique used in this section is Euler oper-
ator method and underdetermined partial differential equation combined with maximal rank
quadratic polynomial. The proof can be found in the Appendix.

Lemma 4.3 Let Q be a subset of index {1,2,--- ,n} andn € ﬁg(IS, s € Q) be a degree at
most 3 polynomial in variables xg,s € Q with coefficients smooth function in x;,j ¢ Q. Then

{hl(?)} do not contain terms xpxq for Vp,q € Q.
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By combining maximal rank quadratic polynomial and Lemma 4.3, we obtain the following
result. The proof will appear in the Appendix.

Lemma 4.4 Letpo =) g :1012 € E be a degree 2 polynomial that has mazimal quadratic
rank. If n € ﬁ3(:vl,l € S) is a degree at most 3 polynomial in x;,l € S with coefficient smooth

function in xs,s ¢ S, then observations h;’s are affine functions in x.

Finally based on technical Lemmas 4.3 and 4.4, we can demonstrate that given maximal
rank quadratic polynomial, if {2 has corresponding partially constant structure, then {h;(z)}

can be proven affine.

Theorem 4.5 (Partially constant structure of 2)  Let E be a finite dimensional estimation
algebra with dimension n and linear rank r = n — 1. Let po = Y z} € E be a degree 2
polynomial that has mazimal quadratic rank. If w;;’s are constant numbers fori € S or j € S,

then observations h;’s are affine functions in x.

Remark 4.6 Theorem 4.5 is a general result and points out a relaxed sufficient condition
to prove linear structure of observations. This is the new breakthrough of our paper since we

no longer require the whole constant structure of {2 like the proof of maximal rank case.

5 Finite Dimensional Estimation Algebra with State Dimension 4 and
Rank 3

In this section, we shall focus on finite dimensional estimation algebra with state dimension 4
and linear rank 3. We shall establish a sufficient condition of partially constant structure of
{2 for state dimension 4 and rank 3. The main point is to classify estimation algebra by using
quadratic rank. Under different maximal rank quadratic polynomials, we shall demonstrate
that {2 possesses corresponding partially constant structures. Main technique used here is
construction of infinite sequence. Notice that the result of this section is built on our previously
established result of linear structure of 2. The result in this section will provide some insights
for case of higher or arbitrary state dimension.

We first classify maximal rank quadratic polynomials for state dimension 4 and rank 3 by

using quadratic rank. The following classification is obtained by using Theorem 3.3.

Lemma 5.1 Let k be quadratic rank of estimation algebra with state dimension 4 and
rank 3. Maximal rank quadratic polynomials can be classified to following 7 cases:
k=1:
(I) po = =7 € E;
(IT) po = 23 € E.
k=2
1) po = af + 23 € E;
IV)po =22 +23€E.
k=3
V) po = 2% + 23 + 23 € E;
VI) po=ai+a3+ai€E.

—_~

—_~
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k=4

(VII) po = 23 + 23 + 23 + 23 € E.

In the following subsections, we will consider different cases of maximal rank quadratic
polynomials respectively. In view of Theorem 2.19, {2 has linear structure for our case state
dimension 4 and rank 3.

In each case of Lemma 5.1, we shall start with linear representation of entries of 2. By

applying Theorem 2.19 to n = 4 case, we get

w12, w13, w23 € Py (21,22, 13), (31)
Wi14,wW24,wW34 S Pl(Il,I27x3,$4).

Based on the linear structure representation, the corresponding partially constant structure
will be proven. More precisely, we shall use quadratic rank and structure to simplify part of
coefficients of (wij). Next we construct infinite sequence to prove partially constant structure
of {w;;} forie Sorjes.

Finally, we apply Theorem 4.5 in each case to obtain the affine structure of {h;(x)}.

5.1 Case (I): Quadratic Rank k = 1 and py = 27

In this subsection, we discuss first case of Lemma 5.1: Quadratic rank k = 1 and py = 2% €
E. Our goal is to prove that the three entries wis, w13, w14 are constant numbers. With this
statement, Theorem 4.5 will imply that observation terms are affine functions.

Based on affine structure of {2 of n = 4 case (see (31)), we can assume

w1 = a1%1 + G2%2 + a3x3 + do,
w31 = glxl —I—EQZZ?Q +53$3 +50, (32)

w41 = G121 + Ca%2 + €323 + Ca%4 + Co,

where {@;}, {b;},{¢} are constant numbers.

Lemma 5.2 If quadratic rank k = 1 and the corresponding mazimal rank quadratic poly-
nomial is pg = 23 € E, then as = a3 = by = b3 = 0.

Theorem 5.3 If quadratic rank k = 1 and the corresponding maximal rank quadratic
polynomial is py = 3 € E, then {w1;} are constant numbers for 2 < i < 4.
5.2 Case (II): Quadratic Rank k =1 and py =

In this subsection, we need to prove that w14, waq, w34 are constant numbers.

First, we start with affine structure of {2 for n = 4 case.
w14 = a171 + a2%2 + a3x3 + a4T4 + ao,
wag = by + baza + b3z + baxa + by, (33)
w34 = C1T1 + coxo + C3T3 + caxq + Co.

Lemma 5.4 Assume quadratic rank k = 1 and the corresponding mazimal rank quadratic

polynomial py = xi € E. Then wiyg,waq,wsq only depend on variable x4.
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Theorem 5.5 If quadratic rank is one and the corresponding maximal rank quadratic
polynomial is pg = 13 € E, then w;4’s are constant numbers for 1 < i < 3.

5.3 Case (III): Quadratic Rank k =2 and py = 2% + 23

In this subsection, we shall demonstrate that wyo, w13, w14, Wa3, woq are constants.

Lemma 5.6 Assume quadratic rank k = 2 and the corresponding mazimal rank quadratic
polynomial pg € x% + x% € E. Then wis is a constant number and wis,ws3 are degree at most
one polynomial in x1,x2, i.e., wis,wss € Py(x1,z2).

Theorem 5.7 If quadratic rank is one and the corresponding maximal rank quadratic
polynomial is py = x3 + 23 € E, then {wy;} for 2 < i < 4 and {wy;} for 3 < j < 4 are
constants.

5.4 Case (IV): Quadratic Rank k =2 and py = 27 + 27

In this subsection, we shall prove that wis, w13, w14, Waq, w34 are constants.

Lemma 5.8 Assume quadratic rank k = 2 and the corresponding maximal rank quadratic
polynomial py € x5 + x5 € E. Then wy; € Py(x4) for 1 <i <3 and wy; € Pi(x1) for2 < j <3.

Next we can assume that the following affine structure:

w21 = ari + ao,
w31 = bxy + by,
w14 = €4 + Co, (34)

woy = dx4 + do,

w34 = exy4 + €g.

Lemma 5.9 For Case (IV), w14 = 0 is a constant.
Lemma 5.10 For Case (IV), wy; for 2 <i <3 and wjs for 2 < j <3 are constants.
Theorem 5.11 For Case (IV), wy; for 2 <i <4 and wjs for 2 < j <3 are constants.

5.5 Case (V): Quadratic Rank k = 3 and py = 2% + 23 + 23

In this subsection, our aim is to prove that {2 is a constant matrix. In exploring structure
of {w;;} for i,5 € S, we shall utilize tool of least quadratic rank structure which will provide

more informtion of quadratic functions in F.
Lemma 5.12 For Case (V), wa1,ws1,wsa are constant numbers.
Lemma 5.13 For Case (V), wi4,wa24,wss are constant numbers.

Theorem 5.14 For Case (V), £2 is a constant matriz.

5.6 Case (VI): Quadratic Rank k = 3 and py = 27 + 23 + 27
In this subsection, our goal is to prove {2 is a constant matrix.

Lemma 5.15 For Case (VI), wy; € Pi(x4) for 1 <i <3 and way,ws1,wss € Pr(x1,z2).
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Based on the above lemma, we can assume affine expression of {2 as

w21 = a1T1 + a2x2 + ag,

w31 = biz1 + baxa + bo,

w32 = €11 + C2T2 + Co, (35)
w34 = dxy + do,

wq1 = exy4 + €g,

wag = lxg + 1.

Lemma 5.16 For Case (VI), w;;’s are constants for i,j € {1,2,4}. Moreover, wqy =
W42 = 0.

Theorem 5.17 For Case (VI), {2 is a constant matriz. Furthermore, wsy = 0.
5.7 Case (VII): Quadratic Rank k =4 and py = 2% + 23 + 23 + 23

In this subsection, our goal is to prove {2 is a constant matrix. First we do some basic

computations
4
1
Ky := 5[[40,])0] —2= ;IlDZ <) (36)
and
Al Z:[Dl,KQ] — Dl = inwil S E,
i#1
A2 Z:[DQ,KQ] — D2 = Zl‘iwig S E, (37)
i£2
As Z:[Dg,KQ] — D3 = inwi3 € FE.
i£3
By applying Lemma 3.2, we get the following result.
Lemma 5.18 For Case (VII), wy; € Pi(x4) for 1 <i < 3.
In the following, we can assume affine expression of (2,
w21 = @171 + a2 + azxs + ao,
w31 = b1x1 + bax2 + b3x3 + o,
w3z = €171 + C222 + ¢33 + Co, (38)
wyr = Ly + o,
W42 = M1T4 + Mo,
w43 = N1Z4 + Ng.
Then
Ag2) = a1Tx1T2 + CLQI% + b1$1173 —+ ngg + (CL3 —+ bQ).IQIg —+ 11172,
Ag2) = —a12? — asr172 + (1 — a3)r173 + C2T2w3 + 375 + mya], (39)

2
Ag ) = —bll'% — (bg =+ cl)xlxg —byzix3 — Cgl‘% — C3T2x3 + nlxi.
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Next we demonstrate constant structure of 2.

Theorem 5.19 For Case (VII), 2 is a constant matriz. Furthermore, wy; = 0 for 1 <
1< 3.

In summary, we conclude all results obtained from Cases (I) to (VII) in Table 1. In partic-

ular, we have proven that the weak form Mitter conjecture holds for n = 4 case.

Table 1 Summary of partially constant structure of 2. A(E) denotes quadratic rank of E.
ki1, ko are defined in the maximal rank quadratic polynomial in Theorem 3.3. const
denotes a constant number. Other % terms appeared in the table denote the irrelevant

terms with partially constant structure

AE) k1 k2 wa1 ws1 w32 wa1 w42 w43

1 1 0 const const * const * *
0 1 * * * 0 0 0

2 2 0 const const const const const *
1 1 const const * 0 0 0

3 3 0 const const const const const const
2 1 const const const 0 0 0

4 3 1 const const const 0 0 0

Theorem 5.20 Let E be a finite dimensional estimation algebra with state dimension 4
and linear rank 3. Then all observations h;’s are affine functions.
Finally, we provide a concrete example of finite dimensional filter in which weak Mitter

conjecture holds.

z1

dry = (,Tl + ﬁ)dt—i—dwl,
Xz + X

droy = (,Tl + )dt + dwo,

(:vg + — 4)dt+dw3, (40)

et +e”

dry = (,Tg + — 4)dt + duwy,
er” +e”

It is easy to obtain

(41)

(en]
o o o
o O
o = O O

-1

is a constant matrix. Further it can be verified that n = 327 + 23 + 32% + 221 + 223 + 4 is a
quadratic polynomial. By direct computation, estimation algebra associated with such example
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is of dimension 9 and contains the following basis:

E = span{l, z1, 22,23, D1, D2, D3, Dy, Lo}. (42)

6 Conclusion

In this paper, we mainly focus on weak Mitter conjecture for nonmaximal rank estimation
algebra. First we establish the concept of partially constant structure of {2, which lead us to
prove weak Mitter conjecture. Our second main contribution is to verify partially constant
condition for n = 4 case. In the whole proof, we develop a lot of algebraic techniques which
works not only for maximal rank case, but also for nonmaximal rank case. For example, we
extend the Euler operator technique, and quadratic structure theory to nonmaximal rank case.

In our future work, we shall prove the weak Mitter conjecture for higher dimension n.
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A.1 Proof of Lemma 3.2

Due to linear rank property and Ocone’s lemma, we can assume any function ¢ € E has the
form:

p(z) = 2T Az +[0,p" |z € E, (A1)

where A = (4;;) € R™*" is a symmetric matrix, p € R"~" is a vector. Next we consider first
order differential operator [Lg,x;] = D; for 1 < i < r. Then we consider bracket between D;
and ¢:

p(x)
[Di, p(x)] = 0w, ;Aijxj €k (A.2)
Then again by linear rank property, we get A;; =0for 1 <i<r,r+1<j5<n. |
A.2 Proof of Lemma 3.5
Assume 86172) # 0 for some k1 +1 < j <n — ko. We shall derive a contradiction.
First
Iy xk, O 0
po=2z" 0 0 0 |= (A.3)
0 0 Tryxk,
and
Ay A Agg
p(2) — CET A‘"i[‘2 A22 A23 x, (A4)
Aly A3y As
where 2 = (21,22, - ,2,)", A1 € RF¥F1 Ayy € RIV=FIX(n=k)  Aqy € RF2Xk2 are symmetric

matrices and Ao € Rklx(nik),Alg S Rlek2,A23 S R(n=Fk)xkz
Next we consider tpy + p. Since py and p are in E, we have tpg +p € E.

(tpo+p) P =tpo +p@ =2 | AT, Ay Ay | (A.5)
Al A3y tI+ Asg

Then we have

tI + A Ar Ais tI+ An A1s A1z
rank(tpo + p) = rank AT, Aso Ass = rank AT, tI + Ass AL
Aly Az tI+ Ass AT, Ass Az
(A.6)
A Ais Aia
tl +
= rank Aly  Asg Ags
ATy A ‘ Azz
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Since aap_? # 0 for some k1 +1 < j < n — kg, then Ajs, Ao, Az are not all zero. By an

J
elementary matrix transformation, we always can put a nonzero element in Ajo, Aoz, Ags into
position (i,5) of A, where i =k+1,1<j<k+1lorj=k+1,1<i<k+1. Then we can

derive

A Ais
tl + c
rank(tpg + p) > rank AL Ass , (A.7)
ct ‘ b

where ¢ € RF*1 b € R and b, ¢ are not both zero. Next we denote

~ A A
A=t + |70 TR (A.8)
Ay As
Since (ii i;z) is a real symmetric matrix, it has orthogonal diagonalized decomposition
AN - 0
A A
Byl . | UN = uaAUR, (A.9)
Aly  Ass
0 - A
where U € R*** is an orthogonal matrix and Aj,--- , Ay are eigenvalues. Then
Ut o\ (A ¢\ (U 0 tI+A UTe
= . (A.10)
0 1 ct b 0 1 ct'U b
Next we denote UTec = (¢1,---,¢x)T. Since b, ¢ are not both zero, then b, ¢y, -+ , ¢, are not
all zero. It is easy to see that for large enough ¢,
tI+A UTle o2
rank =k + rank b—z % =k+1, (A.11)
CTU b im1 t+ )\1
where the first equation comes from rank formula of block matrix.
Then
A ¢ tI+A U'e
rank(tpg + p) >rank = rank =k+1 (A.12)
ct' b ctU b

This is contradictory to that py has greatest quadratic rank k£ in E. Then aap—g:) = 0 for
j:k1+1,-~-,n—k2holds. I

A.3 Proof of Lemma 4.1

It can be obtained that

1
Z[[LQ, $2], [Lo,l'?]] = TiT;Wj; € E. (Al?))

%

Ocone’s lemma implies wj; is a constant. |
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A.4 Proof of Theorem 3.7

First
pP(2) = Z ApgtpTy = T AT, (A.14)

P,q€S1

where A = (apq) € R(k1+k2)x (ki+k2) jg o symmetric matrix and

T= (1, T, Ty gy )t
If p® #£ Ap; for any A, then
rank(p — Ap1) = rank(4A — A\I) > 0, (A.15)

for any A. If we pick A = A; is an eigenvalue of A, then matrix A — A1 is not of full rank which
leads to rank(A — A1) < El + Eg. It follows that p — A\1p; has a lower positive rank than p;. A
contradiction! |

A.5 Proof of Lemma 4.2

First we calculate

1 1 0
Det [0 ¢ ¢| =c +dc. (A.16)
C; 0 Cj

We claim ¢; = ¢; = 0. Otherwise, previous determinant is nonzero which implies 2? €

E, :vf € F. Lemma 4.1 leads to w;; is a constant, which is a contradiction. |

A.6 Proof of Lemma 4.3

Based on definition of 7, we have

ILEDY o N (A17)

Next we define function F(z) :=n— Y ", h?.
Without loss of generality, we assume @ := {1,2,--- ,k} where k < n, and we can assume
that n has the form

=Y falw)zyt -2k, (A.18)
0<|al<3
where x5 := {Tgy1, -, Tn}
Notice n € Ps(zs,s € Q) and h; € Py(x) which implies F(z) € Py(zs,s € Q). Then it can
be written as
0<|al<4
We denote F; the homogeneous degree 4 part of F' in variable xq, - - , xg.

If there exists h; which contains ceratin terms of x,z, where p,q € Q. Without loss of
generality, we assume that h; has this property and we can expand h; in terms of variables
Zs,5 € Q. h§2) can be assumed as >, ;< i<y, hijTizj £ 0.
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Then

m

Fy=- Z(h?)(‘l) < _(h%)(ﬁl) _ —(h?))? — _< Z hijxixj)Q. (A20)

i=1 1<i<j<k

That means there exists (b1, -+, by,) such that Fy(by,---,b,) < 0. By Theorem 2.21, there
does not exist smooth functions fi,-- -, f,, satisfying the equation (A.17), which yields a con-
tradiction. |

A.7 Proof of Lemma 4.4
By Lemma 4.3, n € Py(z;,1 € S) will yield that {hz(-2)} do not contain terms x,z, for any

p,q €S, ie.,
0°n
t— =0, forV S. A21
rion, 0 forvpac (A.21)
On the other hand, by considering the structure of maximal quadratic rank polynomial py,

(2)

Lemma 3.5 implies that hj (2

only depends on z;,j € S. That means h; ) = 0 and observations

are all affine functions in . |

A.8 Proof of Theorem 4.5

Recall that the index set S := {1,--- ,k1,n — k2 + 1,--- ,n} of maximal rank quadratic
polynomial pg. And |S| =k = k1 + k2. Based on whether set S contains index n, there are two

cases: Case [1]. n € S; Case [2]. n ¢ S. For the simplicity, we denote linear subspace
EO = span{Lo, Dl, e ,anl,xl, ey Tp—1, 1,p0} C E

consisting of some known operators in FE.

Case [1] n€e S.

Case [1.1] k = 1. Corresponding po = 22 € F and by assumption {w;,} are constants for
1<i<n-1.

Next we calculate bracket between Ly and maximal rank quadratic function py.

7y = 5[Lo.po) = 2D € E (A.22)
and by using Lo again, we get
ZLZDnanlaw’”E
n—1
_D2+;xnme + 2E () € E
and -
[Z1,Z5] = — 2D? + Z Tpwni Dy — Zwm + E2 (n)
o (A.24)
=—2D2+ > wuwniD; + 2132( n), mod Ey € E.
i=1
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Next we denote

n—1
1
Z3 = —2D% + Z} TnwniD; + 3 Ep () € E. (A.25)
Basic computations show that
n—1
Zy=2Zy+ Z3=3» wawniDi+p€ E, (A.26)

i=1
where p := $E2(n) 4+ Ep(n). Continue the computation,

n—1

(21, 24) = 3 (wnwniD; — 2}wl;) + En(p) € E. (A.27)
i=1

By adding certain constant multiple of pg to [Z1, Z4], we can define

n—1
Zs =3 Z TnwniD; + E,(p) € E. (A.28)
i=1
Notice that Z4 and Z5 possess the same first order differential operator. Subtracting Z4 and
Z5 will yield the following function contained in F.

Zs — Z4 = En(p) —p € E. (A.29)

Next we will use technique of Euler operators and deduce structure of n step by step. By
Corollary 2.23, we deduce p € P, (zr,) is a polynomial of degree at most 2 in x,, with smooth
coefficient of other variables. Again by using Corollary 2.23, E, () + 2 € Pa(zy). The same
technique is applied and we get n € Py(z,) is a polynomial of degree at most 2 in z, with
smooth coefficient of other variables. By Lemma 4.4, we conclude that the linear structure of
observations {h;}.

Case [1.2] k > 1. Corresponding po = v~ 22 + 22 and by assumption {w;,} are
constants for 1 <¢ <mn —1 and {w;;} are constants for 1 <i<k—1land1<j<n.

Similarly, we calculate

k—1

1
Z1 :§[L0,p0] = 2,@1'1)1' +x,D, € FE (A30)
and
k—1
[D;, Z1] = Z(ij_ji + D; + xpwn; € E=2pwn;, mod Eg € E, for1<i<n-—1. (A.31)
j=1

Since x,, ¢ E by linear rank condition, we obtain w,; = 0 for 1 < i < n — 1. Next we
calculate the first order operators for 1 < j <k —1,

[Lo, D ZwﬂD +—a—x]eE 1<j<k-1 (A.32)
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Notice D; € E for 1 <i<k—1and wy; =0 for 1 <i<n—1. It implies

1 on
Y, = E, for1<j<k-1. A33
J 2 ax] € or >]> ( )
Therefore by the equation (A.33), we can infer 5 € 163(901, -+ ,xk—1) is a polynomial of
degree at most 3 in x1,--- ,xx—1 with coefficients of =y, --- ,x,. Then Lemma 4.3 implies that

{h;} does not contain z,z4,1 < p,q < k — 1. If observation functions {h;} are not all affine,
without loss of generality, we assume deg(h1) = 2. In view of the structure of maximal rank

2)

quadratic polynomial, hg can be written down

h§2) = hpn@l + Pin@12, + - + h(k—1)nTh—12n. (A.34)

By considering the linear rank condition, Lemma 3.2 implies that h§2) cannot contain x;x,
term for 1 < i < n — 1. Namely, h1, = -+ = h(x—1), = 0 then hgz) = hpna? with hp, # 0.
Then we can assume

hy =2 —cx, € E, (A.35)

where c is certain constant. Then by subtracting k1 by pg, it follows that pg —hy; = Z;:ll x? +
cxy, € E. Due to

n ) _h 2 k—1
(Lo, po = ha),po = ] = [V(po — ha)[* =) (%) =Y 4af+*€E,  (A36)

=1 =1

it follows Z 1 r? € E. Subtractmg by po, it implies that 22 € E. Repeat the process of Case

[1.1] and it results in ) € Py(z,). Then by Lemma 4.3, hl(- 3 does not contain zZ, which leads

n?
to a contradition. Then observations are all affine.

Case [2] n ¢ S. Corresponding pg = Ele 72,1 <k <n—1 and by assumption {w;;} are
constant numbers for 1 < j <k and 1 <i < n.

First we calculate the typical first order operator:

n

1 877 1 Owj;
(L D, - J 1< <k. )

=1

Assumption that wj;’s are constant numbers for 1 < j <k, it leads to

1 0n

Y, = wjnDp 500 €E, 1<j<k (A.38)
Next we calculate
7 ;([Lo,po szD €E (A.39)
and
b 1 on 1 on .
(21, Y] Zwmwnm + 2E1k <8$J) = —E (8x]> , mod Fy € E, 1<j<k. (A.40)

i=1
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By Corollary 2.23, we derive that % € ﬁg(azl, -+, xg) is a polynomial of degree at most 2

in x1,--- ,x with smooth coefficients of xx41,--- ,z,. Then n € ]53(171, <+ xk) is a degree at
most 3 polynomial in x1, - - - , x5 with smooth coefficients of xjy1,- - - , 2,,. Therefore, Lemma 4.4

implies that the result of linear observation functions. |
A.9 Proof of Lemma 5.2
First we calculate [Lg, %po] — % =1x1D;1 € E. Then
[Dg, {ElDl] = —51,@% — Zigxlxg — 53$1$3 — Zio:vl cF (A41)

and
[Dg,.IlDl] = —Elx% —52171.%2 —53171.%3 —501171 S (A42)

Lemma 3.5 implies for any function ¢ € E, then ¢(® is independent of xo, z3, 24. It leads

tOE2:a3232233:O. I
A.10 Proof of Theorem 5.3

In the following, we make some basic calculations firstly.

1
Ko = 5([1?07170] —1)=mD; € E, (A.43)
4 4
1 Ja; 1
K, = [Ly, Ko = D? — D; — = '+ ZF E, A4
1 = [Lo, Ko] 1 ;04 2i:23wi+2 1(n) € (A.44)
4
Ky = Ky, Ko = 2D} + > Ei(a;)D; +(z) € E, (A.45)
=2
where «; : = x1w;1 and B = xla%l and
4 4
1 6041' 1 2
v(z) = — ;aixlwli + 3 ;El (8%) — §E1 (n). (A.46)
It will derive that
4
Ky — 2Ky =Y [E1(on) + 204]Di, mod Uy € E. (A.47)
=2

In the following, the basic definition yields
[ 2511}% + Aox122 + a3T123 + Aox1,
[} :gll'% +52$1$2 +53£L'1$3 +go$1, (A48)
(6%} :El$% + 52I1$2 + Egleg + E4I1$4 + 50171.
Then the coefficients of (A.47) can be calculated as following:
Ey (042) + 200 :4511:% + 3asx1xe + 3asxr1x3 + 3agr1,
El (043) + 20[3 :431.%% + 352.%1172 + 333171.%3 + 3?)/0171, (A49)

El (044) + 20[4 :451$§ + 352171172 + 353.%1173 + 3E4$1I4 + 350171.
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Next the equation (A.47) will become

K2 — 2K1 2(451:@% + 3521‘1,@2 + 3531‘1&[:3 + 350,@1)D2
+ (4?)/117% + 332171.%2 + 3?)/3.%1173 + 350$1)D3 (A50)
+ (45117% + 3cax1Te + 353171.%3 + 3car1T4 + 350$1)D4, mod Uy € E.

For variable substitution, we can define

Y1 ::(CLlI% —+ agQx1x9 —+ a3zr1x3 —+ aoxl)DQ
+ (bll'% + box1xo + bzx1T3 + bol‘l)Dg (A51)

+ (clx% + cox1Ta + 32123 + 4124 + coz1)Dy, mod Uy € E,

where a1 = 4dy,as = 3da, a3 = 3a3,a0 = 30, b1 = 4b1,by = 3bo, by = 3bs, by = 3bgy,c1 =
4¢y, co = 3¢a, 3 = 3¢3, ¢4 = 3¢y, Co = 30Cp.

Next we only need to prove a; =0,b; =0,c; =0for 1 <¢<3,1<j <4 and it will lead to
the conclusion. We will prove it by several steps.

Step [1] If there at least one is nonzero in entries ¢1, co, ¢3.

We have the following three cases.

(i) If ¢; # 0, then Ad%lYl = 2a1Dy + 2b1D3 + 2¢1 D4, mod Uy € F = D4, mod Uy € E.

(ll) If ¢ 75 0, then [Dl, [Dg, Yl]] =asDs+byD3+coDy, mod Uy € E = Dy, mod Uy € E.

(lll) If c3 75 0, then [Dl, [D3, Yl]] = a3Ds+4+b3D3+c3Dy4, mod Uy € E = D4, mod Uy € E.

So we always obtain that D4, mod Uy € E for any situations.

Step [1.1] We claim ¢4 = 0.

Otherwise, if ¢4 # 0, we will obtain

[Dy, mod Uy, Y1] = cyx1Dy,mod Up € E =T := x1 D4, mod Uy € E. (A.52)
Next we can construct an infinite sequence by using operator 7" and Ly.

T=x1Dy, modUj€EFE,
[Lo,T] = D1D4, mod U; € E, (A.53)
[[LQ,T],T] = Di, mod U; € £
and
D? mod U,Y1] =2cuz1D?, mod U, € E = z1D?, mod U, € E,
4 4 4
[Lo,xlDi,HlOd Ul] = DlDi, mod Us € E, (A54)
[DlDi,mod Ug,xlDz,mod Ul] = Di, mod Uy € E.

By repeating this process, we have Dik,mod Usk_q € E. A contradiction! Hence, ¢4 = 0.
Step [1.2] We claim ¢; = ¢z = ¢35 = 0.
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We rewrite following two operators:

M, =Y = (Cl,T% + Ccox1x9 + C3x123 + CQ$1)D4
+ terms with lower order in Dy, mod Uy € F,
M2 = [Lo, Yl] = (201171 —+ CaX2 + C3T3 + Co)D1D4 + CQ$1D2D4 + 03I1D3D4

+ terms with lower order in D4, mod U; € F.
Next we calculate

[D1, M1] = (2c121 + coxa + c3x3 + ¢9) Dy

+ terms with lower order in Dy, mod Uy € E,
[Da, Mi] = cox1 Dy + terms with lower order in Dy, mod Uy € E,
[Ds3, M;] = c3x1 D4 + terms with lower order in Dy, mod Uy € E.

(A.55)

(A.56)

By Lemma 2.15 and combining operators Ma, [D1, M1], [D2, M), [Ds, M1], we deduce ¢; =
co = ¢3 = 0. This is a contradiction to assumption of Step [1]. Therefore, we obtain ¢; = ¢o =

C3 = 0.
Step [2] We claim ay = a3 = by = b3 = 0.

This is followed from Lemma 5.2 directly. Finally we only need to prove a; = by = ¢4 = 0.

That will finish the whole proof.
Step [3] We claim a1 =b; = ¢4 = 0.
We rewrite
Ay = [Lo, Yl] = (2&1.%‘1 + ao)Dng + (2b1$1 + bo)Dng + (04.%'4 + Co)D1D4
+ C4£L'1Di, mod Uy € FE,

1
A = §Ad%DY1 =a1D}{Dy+ by DID3 + c4D1 D3, mod U, € E.
Step [3.1] We claim a; = 0.

Al = alD%DQ + terms with lower order in Dy, mod U; € F,
Ap = (2a121 + ag) D1 D2 + terms with lower order in Dy, mod Uy € E,
Ay = [Ay, Ag] = 2242 D3 D3 + terms with lower order in Dy, mod Us € E,

Ay, = 22"k D2DE + terms with lower order in Dy, mod Uyyy € E.

By dim F' < oo, we obtain a; = 0.
Step [3.2] We claim b; = 0.
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Again we rewrite Ao, A; as below:

gl = le%Dg + terms with lower order in D3, mod U; € F,
Ao = (2byx1 + bo) D1 D3 + terms with lower order in D3, mod Uy € E,
Ay = [Ay, Ag] = 2262 D3 D3 + terms with lower order in D3, mod Us € E, (A.59)

A = 22(k_1)b’fD%D§ + terms with lower order in D3, mod Uiy € E.

By dim F < oo, we obtain b; = 0.
Step [3.3] We claim ¢4 = 0.
Otherwise, if ¢4 # 0, we obtain

1 ~
Vi=—A;,=D,D}, modU,€E,
C4

1
VQ = _AQ = :lei + ($4 + C.t.)D1D4
€4 (A.60)
+order 2 terms with constant coefficients € F,

Vi,Vo] = Di +2D%D3, mod Us € E,
([Vi,Vo],Vo] = 8Dy D}, mod U, € E = Vo =D, D}, mod U, € E.

By repeating the same process, we obtain

[Va, Vo] = DS + 4D, D?D%,  mod Us € E,
([Va, Vo], Vo] = 14D, D%, mod Us € E = Vo = D, DS, mod Us € E, o)

Vi = DlDik, mod Uy € E.

A contradiction! So we have ¢4 = 0.

Finally, we prove the original claim. |
A.11 Proof of Lemma 5.4

Firstly, we calculate the first order operator:

1 1
KO = 5[[40,])0] — 5 = $4D4 c F. (A62)

Then we have
[D1, Ko) = — a12124 — A2X2T4 — A3T3T4 — a433421 —apxy € FE,
[Da, Ko] = — b1x124 — bawowy — bzxary — byas — boxy € E, (A.63)
[D3, Ko| = — c12124 — CoaTy — 32324 — Cas — Coxy € E.

Quadratic structure of F (3.5) implies that any function ¢ € E is a quadratic polynomial,

then homogeneous quadratic part ¢(®) is independent of x1, o, z3. It derives that a; = 0,b; =
0,¢; =0 for 1 <i < 3. That means wyy € Py(z4) for 1 <14 < 3. |
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A.12 Proof of Theorem 5.5

Starting with the proof of Lemma 5.4, we obtain

[Dl, Ko] = — a4xi — agr4 € E, [DQ, Ko] = —b4$421 — b0$4 S E, (A 64)
[D3, Ko] = — C4£L'421 —coxrg € E. .

Considering po = 23 € F and linear rank equals 3, we obtain ag = by = ¢y = 0 which means
W14 = G4Tq, Woq = baTy, w34 = C4T4. (A.65)

Next we calculate

3
1 80&1' 1
= + —E4(n
24 dz; | 2 4(n) (A.66)

1=

3
Ky = [Lo, Ko] =Dj — Z%‘Di —
i=1

=D? — ayx3Dy — byziDy — cyxiD3, mod Uy € F

and
3

Ky =K1, Kol =2D? + Y E4(a;)D;, mod Uy
(K1, Ko] =2D7 g (o) A7)

=2D3 4 2a423 D1 + 2by23 Do + 2c423 D3, mod Uy € E.

Linear combination of two operators K; and K, implies

1/1
and /1
Z ::5 <§K2 - Kl) = a422 Dy + byxiDy + cy2iD3, mod Uy € E. (A.69)

Next we can construct an infinite sequence as below:

7 =510, 7]

=a424D1 D4 + bsx4 D2 Dy + cazsD3Dy, mod Uy € E

=a4x4D1 Dy 4 terms with lower order in Dy, mod U; € F,
Zs :%Adioz

=ayD1 D3 + byDyD? + c4D3D3, mod Us € E

:a4D1Di + terms with lower order in Dy, mod Us € F, (A.70)
Zy =[Za, Z1]

=2a2D?D? + terms with lower order in Dy, mod Us € E,

Zy =|Zx-1, Z1]

=2+=25=2D*1 D2 4 terms with lower order in Dy, mod Uy, € E.
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By finite dimensionality of E, we obtain a4 = 0. Then we have

Z1 =bsxy Do Dy + caxsD3Dy, mod Uy € F,

(A.71)
Zy =byDa D3 + c4,D3D3, mod U € E.

In the following, repeating the same process, we can obtain by = ¢4 = 0. It naturally implies

that W14 = Wo4 = W34 — 0. I
A.13 Proof of Lemma 5.6
First we calculate Ko = [Lo, %po] —1=21D1 + 29D5 € E and obtain

Aq Z:[Dl,KQ] = rows91, mod Ey € FE,
A2 ::[D27K0] = r1wi2, mod EO S E, (A72)
As :=[D3, Ko] = m1w13 + Towss € E,

where Ey := span{Lg,x;, D;,1},1 < ¢ < 3 is a linear subspace of E. By assuming wiy =
kix1 + koo + k3xsz + ko, from Ay, As, we can derive

kizixe + kQI% + kg.IgIQ + koIQ S E,

(A.73)
kle + kox1xo + kaxszx1 + kox1 € E.
Structure of maximal rank quadratic polynomial implies k3 = 0. Then we define
gl = kix129 + kg,f% € F, gg = kll'% + kox120 € E. (A74)

Considering po,gl,gg, Theorem 4.2 implies w12 is a constant. Considering structure of

maximal rank quadratic polynomial for function A3 € E implies w13, was € Py(z1, 22).

|
A.14 Proof of Theorem 5.7
In the following, we do more computations of Lie brackets in F.
1
Ky :=[Lo, 51’0] —1=mDy+xDr e F (A.75)
and
Ky = [Lo, Ko] =D3 + D3 — 1 D1 — aaDs — (a3 + B3) D3 — (o + B4) Dy
- = - = —4 4+ —-F E
228:1:1- 2Zaxj +5E20) € E,
i#1 J#2
where a; := z1w;1 and 35 1= zawjo and Eq 5 := xla%l + :vgaixz.
Ky = [K1, Ko] =2D% + 2D3 + (E2(31) — 381) D1 + (E1(a2) — 3a2) D2 (ATT)

+ Ei9(as + (B3)Ds + Ev o(oa + B4)Ds, mod Uy € E.
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Then we calculate

K3 := Ky — 2K =(F2(081) — B1)D1 + (E1(a2) — aa) D2 + [E12(a3 + B3) + 2(az + 83)] D3
+ [Er2(as + Ba) + 2(ca + B4)]Da, mod Uy € E
=[E12(a3 + 03) + 2(a3 + (3)] D3 + [E12(ou + Ba) + 2(as + B4)] Dy,
mod Uy € E, (A.78)

where the third equality used the properties 81 = zow12 € Pi(22) and ag = zqwa1 € Pi(x1).
Next we assume
w31 = G121 + G222 + do,
w3 = 31331 + 32132 + ﬁo, ) ) (A.79)
w41 = €121 + C2X2 + €323 + C4x4 + Co,
Wy = JLTI + 32962 + 673!103 + 34!104 + Jo-

By definition, we can obtain
ELQ(O@ + 63) + 2(043 + 63) = 451{E§ + 4(&2 +51)I1$2 + 452:E§ + 350:1?1 + 330{E2 (ASO)

and

E172(OA4 + 54) + 2(0&4 + 54) :451:E% + 4(52 + gl).IlIQ + 4672.%%
+ 353I1:E3 + 3E4$1I4 + 3(73:E2{E3 + 3674{E2:E4 (A81)
+ 350,@1 + 3J0$2.
By cyclical condition,

Ows1 ~ Owiz  Owas ~ 7
=0 =b A.82
81:2 + 8x3 + 8:1:1 — 02 ! ( )

and
8&)41 8&)12 8W24

8$2 8$4 8$1

Next we will prove that coefficients of operator K3 are all degree at most 1 polynomial. If

—0=Cy=d;. (A.83)

the claim is right, then we obtain a; = O,Ei =0,¢ =0, (Z = 0. It leads to w31, w32, w41, wso are
constants. That will derive the final result.

We rewrite operator

K3 = K2 — 2K1 :(aux% + a12X1T9 —+ a22$§ —I—pOZl({El,.IQ))Dg
—|— (blle —|— b12171$2 —|— b22$§ —|— b13$1173 —|— b14171$4 (A84)
+ 023223 + b2aaxa + poli (21, 22))Ds,  mod Up € E,

where 11 = 44y, a19 = 8d, ags = 4ba, b1y = 4¢1, bya = 82y, bay = 4dy, by = 3¢, brs = 3¢4, bos =
3ds, boy = 3dy.
Step [1] If b1y, bio, bag, b1, bas are not all zero.
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Without loss of generality, we assume b11 # 0. Then we have

Ad%lKg =2a11D3 + 2b11D4, mod Uy € E.

(A.85)

We will obtain Dy, mod Uy € E. For other case, it can be verified that Dy, mod Uy € FE

by using similar method.
Step [1.1] We claim b14 = bag = 0.
Next we calculate
T := [Dy4, mod Uy, K3] = (b1ax1 + bagxe)Dy, mod Uy € E,

[Lo,T] =b14D1Dy 4+ bosD2Dy, mod Uy € E,
[[LO,T],T] = (b%4 + b%@Di, mod Uy € E.

If there exists one nonzero in by4, boy at least, we can obtain Di, mod Uy € E.

T := [Di, mod Ul,Kg] = 2(b14$1 + b24$2)D2, mod U; € FE,
[Lo,Tl] = 2b14D1D2 + 2b24D2Di, mod Us € FE,
[[LQ, Tl],Tl] = 4(5%4 + b%4)Di‘, mod Us € E.

Similarly, we get D}, mod Us € E. Repeat this process, we can obtain
D2 mod Uy, € E, Vk€ Zy.

This is contradictory to finite dimensionality of F.

Step [1.2] We claim b11, b12, bag, b13, bas are all zero.

We rewrite operator Kj:

M = K3 =(b1127 + biaz122 + bao + bizz123 + bazmaxs + poly (21, 22)) Dy
+ terms with lower order in Dy, mod Uy € F
and
My =[Lo, M;]
:(2b11$1 + bioxo + bigxs + CONSt)D1D4
+ (b12$1 + 2b22$2 + b23$3 + COTLSt)D2D4

+ (b13x1 + bazza) D3 Dy + terms with lower order in Dy, mod Uy € E.

Next we calculate
[D1, M1] =(2b1121 + bi22a + bisxs + const) Dy
+ terms with lower order in Dy, mod Uy € E,
[Da, M1] =(b12x1 + 2boaxa + bagxs + const) Dy
+ terms with lower order in D4, mod Uy € E,
[D3, My1] =(b1371 + bazw2) Dy

+ terms with lower order in Dy, mod Uy € F.

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)
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Combining four operators My, [D1, Mi], [D2, M1], [Ds, M1] and using Lemma 2.15 we obtain
bi1 = b1z = bag = b13 = baz = 0.

Step [2] We claim a7 = a12 = asz = 0.

We rewrite K3 as

K3 =(a1127 + a1o2172 + agers + poly(x1,22)) D3

+ (braz124 + boawoxs + poly (x1,22)) Dy, mod Uy € E

) ) (A.92)
=(a1 2] + a122122 + a2x5 + poly (w1, 22)) D3
+ terms with lower order in D3z, mod Uy € F
and
Ao =[Lo, K3]
:(20,11171 “+ a12x2 + const)D1D3 + (CL12{E1 + 2&22$2 + CO?’LSt)DQDg (A93)
+ terms with lower order in D3, mod U; € F.
By using the linear rank condition, we calculate
[Dl, Kg] :(20,11171 + a12x2 + CO?’LSt)Dg
+ terms with lower order in D3, mod Uy € F,
(A.94)

[DQ, Kg] :(a12$1 + 2&22172 + CO?’LSt)Dg

+ terms with lower order in D3, mod Uy € F.

Combining operators Ay, [D1, K3], [D2, K3] and Lemma 2.17 implies a1 = a12 = as2 = 0.
Step [3] We claim b14 = bog = 0.

Again we rewrite operator
K3 = (b14a2124 + boa®awy + poli (x1,22)) Da + poli(z1,22) D3,  mod Uy € E. (A.95)
In the following, we will construct an infinite sequence:

Vo =[Lo, K3]
:(b14$4 + const)D1D4 + (b24174 + const)D2D4 + (b14$1 + b24$2)Di (A96)

+ order 2 terms with constant coefficients, mod U; € F.

If b14, b24 are not all zero, without loss of generality, we assume b4 # 0. Then we have

1
b—[Dl,VO] =Dj, modU, €E, (A.97)
14
o 1 2 _ 2
‘/0 . 2[D4, mod Ul,Kg] = (b14$1 + b24$2)D4, mod U1 S E,
[Lo, Vo] = b14D1D£ + b24D2Di, mod Us € E, (AQS)

(Lo, Vo), Vo] = (b2, +b2,)D%, mod Us € E = D}, mod Us € E
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and

1
Vy o= Z[D;t, mod Us, K3] = (biax1 + bogx2)D, mod Us € E,

[Lo, Vl] = b14D1D3 + b24D2D3, mod Uy € FE, (AQQ)
(Lo, Vi]. Vi] = (82, + b2,)D8, mod Uy € E = D%, mod U; € E.

Repeat the same process, we can obtain Dik, mod Usyk_1 € E,Vk € Z~py. A contradiction!
Hence b4 and boy are both zero. |

A.15 Proof of Lemma 5.8

First we do some basic computations as

1
Ko = g[Lo,po] —l=o1Di+wx4Dsc E (A.100)
and
[Dl, Ko] = T4W41, mod Ey € E, (Al()l)
[D2, Ko] = z1w12 + 24wz € B, (A.102)
[Ds, Ko| = z1w13 + Tawas € E. (A.103)

Equation (A.101) and structure of quadratic rank of F (3.5), we obtain wy; € Pi(1,24).
By linear rank condition, Lemma 3.2 shows for any function ¢ € E, ¢(®) does not contain term
x;x4,1 < i < 3. Hence, we obtain wy; € P;(x4). Similarly, we can obtain wso,wss € Pi(24).

Similarly, we conclude w12, w13 € P (7). |
A.16 Proof of Lemma 5.9

From the equation (A.101), we derive z4wi4 = cx? + cowy € E. Then

[Ko, zaw14] = 2cx5 + coz4 € E. (A.104)

It is direct to obtain cx? € E,cory € E. The latter derives ¢ = 0. If ¢ # 0, then
13 € E = 2? € E. Then Lemma 4.1 implies wy; is a constant, a contradiction! Then ¢ = 0. 1
A.17 Proof of Lemma 5.10

First we can do some basic computations:

Ky = [Lo, Ko =D3? + D} — ayDy — 1 D1 — (az + B2) D2 — (a3 + (3) D3

—52 —§Z—+§E174(77)GE,
i#1 j#4

6:51- al'j

@ Springer



36 JIAO XTAOPEI - YAU STEPHEN S. T.

where «; := z1w;1 and G := zawjs and F4 4(-) is an Euler operator.

Ky = [K1, Ko) =2D3 + 2D} + (E1,4(B1) — 381) D1 + (E1,4(0) — 30u) Dy
+ E14(as + B3)D3 + Ey 4(az + B2)D2, mod Up € E,
K3 = Ky — 2K1 =(E14(61) — B1)D1 + (B a(0s) — aa) Dy
+ [Era(az + B2) + 2(az + 52)] D2
+ [Er4(as + Bs) + 2(as + B3)]D3, mod Up € E (A.107)
=[E14(a2 + B2) 4 2(a2 + (2)| D2
+ [Era(as + B3) + 2(as + (3)] D3, mod Uy € E,

(A.106)

where w14 = 0 is used in the third equality.

K3 =(4ax? + 4dx? + poly (21, x4)) D
3 =(dazy 1+ poli(z1,24)) D2 (A108)
+ (4ba? + dex? + poly (z1,24))D3, mod Uy € E.

In the following, we will prove coeflicients of K3 are all degree at most 1 polynomials which

derives the conclusion of theorem.

[Lo, K5] =(8bx1 + const) Dy D3 + (8exyq + const) D3 Dy

(A.109)
+ (8axy + const)D1 Ds + (8dxy + const)Da Dy, mod U; € E.

Next we rewrite [Lg, K3] in terms of order of Ds.

1
AO ::g[LQ, Kg]
=(bx1 + const) D1 D3 + (exq + const) D3 Dy
+ terms with lower order in D3, mod U; € F,
1
A1 :gAd%OKg

:bD%Dg + eDgDi + terms with lower order in D3, mod Us; € E,
1 (A.110)
A :g[Ala Ao

:bQDng + eQDgDi + terms with lower order in D3, mod Us € F,

1
Ay 25[141@—1,140]

=b"DID% 4 e D5 D2 4 terms with lower order in D3, mod Ugy1 € E.

If one of b, e is not zero, the order A will be k + 2. By finite dimension of E, we derive that
b=e=0.
Then
[Lo, K3] =const - D1 D3 + const - D3Dy4 + (8axy 4 const) D1 Do

(A.111)
+ (8dxy + const)Ds Dy, mod Uy € E
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and
Adj K3 =8aDiDsy +8dD>Dj, mod Us € E. (A.112)
Next we consider the expanding operators [Lo, K3], AdQLO K3 in terms of Dy and we define
1
By ::§[L0, K3] = (ax1 + const)D1 Dy + (dxg + const) Dy Dy

+ terms with lower order in Dy, mod Uy € F,
1
By ::§Adi0K3 =aD3iDy +dDyD3, mod Us € E,

1
By =5[B1, Bo] = a’DiD3 + d*D3Dj + terms with lower order in Dy, mod Us € E,

1
By, ZE[B,H, By| = a*D3D5 + d* D5 D? + terms with lower order in Dy, mod Uy, € E.

By finite dimensionality of F, it can be derived that a = d = 0. |

A.18 Proof of Lemma 5.12

First we assume linear expression of wo1, w31, w32 as below:

w91 = 11 + a2 + as3r3 + aop,
w31 = b1z + baxo 4+ b3xg + by, (All?))

w32 = €11 + Ccox2 + c3x3 + Cp.

In Case (V), there exists pg = 2% + 23 +2% € ENQ with the greastest quadratic rank, where
@ is a vector space consisting of quadratic polynomials in terms of variables z;,1 < i < 4.
Due to Lemma 3.5, for ¥p € F N Q, p® is independent of z4. Therefore, Vp € E N Q,
p® € Qq :=span{w;x; : 1 <i,j <3}

Next we assume that p; € E N Q has least quadratic rank in F. That means 1 < r(p;) <

r(po) = 3. Specifically, we can assume

P11 = Z Ai,jxiw‘j +doxy € F, (A114)
i,j€{1,2,3}
where we used z; € F for 1 < i < 3. By an orthogonal transformation fixing x4, quadratic part
of p; can be diagonalized
k1
P11 = ZdVT? + doxy € F, (A115)
i=1
where 1 < k; < 3 and d; # 0 for 1 <i < k;. By applying technique of Vandermonde matrix,
strating from p; we can deduce Zf;l x? € E. For this reason, with a little abuse of notation,

we can assume that

k1
pr=)Y a;€E. (A.116)
1=1
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It is important to notice this orthogonal transformation keeps structure of linear rank and

maximal rank quadratic polynomial unchange.
In the following, we only require to discuss three cases.
Case [1] Least quadratic rank k; = 1.
By p1 = 2% € E, hence py = pg — p1 = 23 + 23 € E. It follows that

%[mel] - % =x1D1€F
and 1
E[Lovpz] —1=wx3Dy +x3D; € E.
Then

[£1D1, k2 Dy + 23 D3] =z 123w31 + T1T2w21

:blx%xg + (bg + a3)$1$2$3 + b3$1$§

2 2
+ a1xix2 + agx1x5 + boxr1x3 + aprix2 € E.

(A.117)

(A.118)

(A.119)

From [x1 D1, 22D + x3D3], Ocone’s theorem implies by = b3 = a1 = ag = by + a3 = 0. It

shows that w3, € P; (xg),wgl epP (,Tg)
Notice that D; € E,1 <1 < 3. Hence,

[DQ,IlDl] = Twiz = —a3r1x3 — agr1 € K — azxr1x3 € F

and
[Dg,.IlDl] = T1Wwi3 = —box120 — boIl € FE — byxixo € F.

Step [1.1] We claim a3 = by = 0, i.e., wo1,ws; are constants.

We can seperately deal with ag, bs. First we assume a3 # 0. Then z1z3 € E. Then

[[Lo, z123], x123] = xf + arg cE.

(A.120)

(A.121)

(A.122)

Noticing po = 2% + 23 + 23 € E, then 23 € E holds. Lemma 4.1 implies wy is constant, a

contradition! Then a3 = 0. Same statement holds for bs. Then az = by = 0. Then woq,ws3; are

constants.
Step [1.2] w32 is a constant.
By cyclic condition, we get ¢; = 0. Then

Zy = [DQ,CL‘QDQ + .%'3D3] = Dy + x3w30 =Coxox3 + ngg € FE.

Similarly,

ZQ = [Dg,ngQ + $3D3] = D3 + Towaz = CQ$§ + c3x213 € E.

Notice ps = #3 + 23 € E and Lemma 4.2 implies w3y is a constant.
Therefore, in Case [1], wa1,ws1,wss are constants.

Case [2] Least quadratic rank k; = 2.
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In this case, py = 22 + 23 € E = py = pg — p1 = 73 € E. Considering z1, 72,23 play
an equal role in estimation algebra, we can obtain the same result by repeating procedure of
Case [1].

Case [3] Least quadratic rank k; = 3.

We claim that for any p € ENQ, p® = Ap; for some A, where p; = 27 4+ 23 + 23 has
greatest and least qudratic rank. We denote set S = {1,2,3} then p € ENQ can be written as
p? = Zp,qes apgTpTy = T Az, where A is a symmetric matrix. If p® = Ap; for any A, then
r(A — AI) > 0 for any A. If we pick A\ is an eigenvalue of A, then 0 < (A — A\oI) < 3. Then
p — Aopo has a lower positive rank than pg. A contradiction!

In the following, we calculate
Ko [Lo,po = szD €E. (A.125)

By linear rank condition, we use D;,1 < ¢ < 3 to get bracket with K and obtain some

functions in F,

[Dl, KQ] = XTowoy + T3ws31, mod Ey € FE,
[DQ, K()] = T1Wwi2 + T3w32, mod Ey € E, (A126)

Ay
Ao
As

:=[D3, Ko] = x1w13 + xawez, mod Ey € E,
where Ej is a vector space generated by operators Lo, z;, D;,1 (1 < ¢ < 3). By using the
concrete expression form of way, w31, ws2, we can get
A; €E = Ay = [0,ay,bs, a1, a3 + by, by] - Xo3 € E,
Ay €E = Ay = [—a1,0,c3, —as,co,c1 —ag] - Xog € F, (A.127)
A3 €E = A3 = [by, c2,0,by + c1, 3, b3] - Xo3 € E,

where Xo3 = [x%, x%, :E%, T1Xo, ToX3, x1x3]T. Due to the property of least quadratic rank, we get

{a1:a2:b1=b320220320, (A128)

az3+by=c1 —az3=by+c; =0.

It shows that way; € Pi(x3),ws1 € Pi(z2),ws2 € Pi(x1). Considering cyclic condition
satisfied by {2, we get ag — b2 + ¢1 = 0. By solving the linear equations satisfied by coefficients

as, ba, c1, we get az = by = ¢; = 0. It means that wa1,ws1,wss are constants. |

A.19 Proof of Lemma 5.13

Through some basic computations, we get

K, [Lo,po = leD €E (A.129)
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and
(Lo, Kol ZD2 > oiDi=> BiDi =) %D
i#1 1#£2 i#3 (A130)
Oy 0p; 1 8% 1
- — - — - E E
3 2~ o, Bz < O, 123(n) € E,
1#1 2
where a; := Tiw;1, §; = Tow;o and y; 1= T3w;3
Ly := Adp Ko — 2Ly = — D} — (1 + v1)D1 — (a2 +72) D2 (A131)
(043 + ﬁg)Dg — (044 + B4 + 74)D4, mod Uy € F
and
3
Ly :=[Ko, Lo] = |2 wiwis — Bras(as+ Ba+71)| Da, mod Up € E, (A.132)
=1
where we used the result of Lemma 5.12 that wa1,ws1,wss are constants.
In the following, we assume the linear form of w14, waq, w34 concretely,
wig = Zpifﬂi + Do,
i=1
4
woy = Z ¢iTi + po, (A.133)

i=1

4
w3q = Z liz; + po-
i=1
By the linear form of w14, wa4, w34, L3 can be further calculated as below
Ly =

[p12] +4(p2 + q1)r122 + 4(p3 + l1) w123
+ 4goxs + 4(qs + l2)xoxs + 4l§x§ + 3paray

+ 3qur422 + 3laxsxs + poly (x1, 22, 23)] Dy,

(A.134)
mod Uy € F.
Theorem 2.18 shows that coeflicients of Dy in L3 are all degree at most 1 polynomials
Hence

pr=p2t+qa=p3sth=@=@g+lh=l3=p1=q=I04=0

. (A.135)
It only remains to prove ps = q1 = p3s = l1 = g3 = lo = 0. Similarly, by cyclical condition
satisfied by (2,

8(.«)14 8(4)42 8W21 o _
6$2 6,@1 6$4 _O:>p2_q1_0
3&)14 8&)43 &031
= - = A.136
6$3 6,@1 (91:4 0= b3 ! 0 ( )
Owas  Owys n Owsa
8$3 8$2

=0= q3 — 12 = 07
8%4
where we used the result of Lemma 5.12 that wa1,ws1,wss are constants

Combining the equations (A.135) and (A.136), it is directly derived that wi4,waq,wss are
constants.
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A.20 Proof of Lemma 5.15

First we do some basic computations.

1 3
Ky ::i[Lo,po] —3 =x1D1+ 22Dy + 24Dy € E. (A137)

By using D;, 1 <1 < 3 to get bracket with Ky, we obtain

Ay = [D1,Ko| — D1 = 2owo1 + x4wa1 € E, (A.138)
Ay = [D3, Ko| — Dy = x1w12 + T4ws2 € E, (A.139)
Az := [D3, Ko] = r1w13 + Towo3 + Tawy3 € E. (A.140)

By the restriction of maximal rank quadratic polynomial, for any function p € EN @, then
p?) is independent of z3. By using A; € E, it derives wg, € Py (x1,22) and wqy € Py(x1, T2, 24).
Similarly, by using Ay € E, it derives wqo € Pi(z1,22,24). By using A3 € E, we have
w13 € P1($1.$2),WQ3 S P1($1.$2),W43 S P1($1,$2,$4).

Next due to linear rank condition, Lemma 3.2 implies for any function p € ENQ, p® does
not contain term x;x4,1 < i < 3. Then by using 4; € E, we derive wy; € P;(x4). Similarly,
wy2 € Pi(x4) and wys € Py (z4). |

A.21 Proof of Lemma 5.16

In this proof, we still start with the tool of minimal qudratic structure proposed in Section 3.
We assume p; € E has minimal quadratic rank, i.e., 1 < r(p1) < r(pg) = 3. Following the
discussion of Section 3, minimal rank quadratic polynomial can be following two forms:

k1
szgv 1 S kl S 25
E3p = i: (A.141)
fo—i—xi, 0<k <2
i=1

In the following, we discuss three cases and determine more structure of (2.
Case [1] r(p1) = 3.
It means that p1 = 2?2 + 23 + 27 € F has maximal and minimal quadratic rank. Then

Theorem 3.7 implies for any quadratic polynomial p € F, p(2)(x) = Ap; for some A. Recall
Al = 2owo1 + 14wy € F (A.142)

and
Ay = x1w1s + Tawyo € F. (A.143)

It derives that w;;’s are constants for 4, j € {1,2,4}.
Case [2] r(p1) =2.
Case [2.1] py =22 +23 € E.
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Then py := po — p1 = 23 € E. It follows that

1
5[Lo,g;% +2i—1=xDy+ 23D, € E (A.144)
and ) )
5[LO, r3) — 5 = %Di € B, (A.145)
Then

(€1 D1 + 22D2, 24 Dy] =x124w41 + ToTawss € E
(A.146)
zdxlxi + exgxi + pola(z1, z2,24) € E.

Then by Ocone’s lemma, it leads to d = e = 0, i.e., w41, ws2 are constant. Next we calculate
[Dl, r1D1 + IQDQ] =D 4+ zowo1 € FE = a1x122 + CLQ.I% € F, (A147)

[Dg, x1Dy + ZCQDQ] =Dy 4+ 21010 € F = alx% + asx129 € E. (A.148)

Considering p; = 2?2 + 23 € E and Lemma 4.2 implies wo; is a constant.
Case [2.2] p; =27 + 2] € E.
Then py := pp — p1 = z2. Then we calculate

1
5[L07p1] —1=x1D1+xz4Dy € E, (A149)
1 1
§[L0,p2] — 5 =x9Dy € E. (A150)
Then
(2D, 21 D1 + 24 Dy] 256196201122 + £C2£C4w422 2 (A151)
= —a1T1T2 — A2X1X5 + €x2Ty —|—p0[2(:171, xz,x4) S
It follows that a1 = as = ¢ = 0 = w1, wys are constant. Next we calculate
[D1,21D1 + £4Dy4] — Dy = x4wy1 € E = da + doxy € E. (A.152)

Hence d = 0, otherwise it is contradictory to p; that has least quadratic rank. Therefore,
wy1 is constant.

Case [3] r(p1)=1.

Case [3.1] p; =22 € E.

Then py := po — p1 = 23 + 2. Then we calculate

1 1

E[Loapl] —g=unbDi €k, (A.153)
1

5[L07p2] —1=a9Ds+x4Dy4 € E. (A154)

Then

(€1 D1, 22Dy + x4 Dy] =2122w21 + T1T4wa1
: . , (A.155)
=a1x{T2 + asz175 + dx1x] + pola(x1,x2,24) € E.
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It follows that a3 = as = d = 0 = wa1, w4y are constant. Next we calculate
[Da, 29Dy + x4 Dy4] — Dy = 24049 = ex] + ey € E. (A.156)
In the following, by using operator ze Dy + 24Dy € E, it follows
[€2 D2 + x4 Dy, xawss] = Eo 4(xawg) = Zexi +egry € E. (A.157)

Next, we derive ex] € E. If e # 0, then 23 € E = 23 € E. It follows
1
4[[L0, IQ] [L0,$4]] = Xoxywys € B. (A158)
Then wys is a constant, a contradiction! Therefore, we obtain e = 0, i.e., wys is a constant.
Case [3.2] p; =2} € E.
By using the same arguments of Case [2.1], we can prove wa1,wa1, w42 are constants.
Up to now, we proved w;;’s are constants for 7,5 € {1,2,4} for Case (VI). Furthermore, we

recall expression of Ay, Ay € E, it is easily to get ws; = was = 0 due to linear rank condition. I

A.22 Proof of Theorem 5.17

Similarly by some basic computation similarly to previous cases, we get

Kl ::[L()vKO]
Ja; 1
—D2 Zaz [ 8 + El(n)
i#1

08 1

+D§—ZﬁiDi—— + 5 Ea(n)

Py 25 0m 2 (A.159)

8% 1

+Di =Y D z—— 7, -+ 5 Ea(n)

itd
=D} + Dj + Di — (61 + ”Yl)Dl — (a2 +72) D2
— (a3 + B3 +73) D3 — (aa + B4)Ds, mod Uy € E,
where a; := z1w;1, B; = Tow;2 and vy; 1= Tawia.
Ky :=[Ky, Ko
=2D7 4 2D3 + 2D7 + (E124(81 +7) — 3(B1 + 7)) D1
+ (B124(02 +72) = 3(a2 +72)) D2 + (E12,4(0s + B4) — 3(oa + B4))Ds
+ E194(as + B3 +73)D3, mod Uy € E.

(A.160)

Then

K3 := Ky — 2K =(E124(61 +71) — (61 +71)) D1 + (E12,4(2 +72) — (2 +72)) Do
+ (E12,4(0a + B1) — (a4 + 1)) Da + (E12.4(a3 + B3+ 73)
+2(as + B3 +73))D3, mod Uy € E
=(E12,4(as3 + B3 +v3) +2(aws + B3 +73)) D3, mod Uy € E. (A.161)
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By using the following substitution.

B1 = wawiz € Pi(x2), 71 = Tawis =0,
ay = z1wor € Pi(x1), 72 = Tawas =0,
ag = w1wa1 =0, [y = wowse =0,
, (A.162)
a3 = r1w31 = b1y + bax1 w2 + box1,

2
B3 = Towsp = cx1T2 + C2%5 + CoT2,

2
V3 = Tawss = Loy + loxy,

K3 can be simplified as follows:

M1 = K3

1
4
:(ble% + (b2 + Cl).TElIQ =+ ngg + la?i —|—p0l1(171, To, $4))D3, mod Uy € E (A163)
:(ble + 2byx1 9 + czxg + la:i + poly (z1, x2,24))D3, mod Uy € E,

where we use cyclical condition satisfied by 2 and it derives by = ¢1.

In the following, we construct infinite sequence

1
Wl = E[Lo, Ml] = (b1I1 + bQ.IQ + CO?’LSt)Dng + (ngl + Ccoxo + const)Dng
+ (lxg + const)DyDs, mod Uy € E,
1
Wy = 5AdiOM1 = b1 D} D3 + 2bD1 D2 D3 + caD3D3 +1D3iD3, mod Us € E,

Ws = —[Wa, W] = const - D3 D3 + const - Dy Dy D3 + const - D3 D3 (A.164)

1

2
+1°D?D2, mod Uz € E,

1 213 3 213

Wy = E[Wg, Wh) = const - Di D3 + const - D1 Dy D3 + const - D3 Dy
+12D3D3, mod Uy € E,

By repeating such procedure, it can be obtained that

W,, =const - Dng”_l + const - DngDgn_1

L . (A.165)
+ const - D3DY ' +1?DiDy !, mod U, € E.
Due to finite dimensionality of E, we can deduce | = 0. Next we notice that
—A3 = bldﬁ + 2bsx120 + CQ.I% + boxr1 + coxo + lpzy € E (A166)

and
1
5 [[Lo,po], —Ag] = E11274(—A3) = 2(()117% + 2b2$1$2 + CQ.I%) + boIl + CoI2 + lo$4 S (A167)

The above two equations yields that lpxy € E = [y = 0. It means wz4 = 0.
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Then M; can be reduced as follows
My Z:(bl.I% + 2bsx1 o + CQI% +p0[1($1, IQ))Dg, mod Uy € E. (A168)

And we will derive the following operators:

1

Wi =§[L07M1]
=(b1x1 + boxa + const)D1 D3 + (bex1 + cax2 + const)Dy D3, mod U € E,

1 (A.169)
Z ;zi[Dl,Ml] = (byx1 + boxa + const)Ds, mod Uy € E,

1
Zs ::E[DQ,Ml] = (bax1 + coxa + const)D3, mod Uy € E.
Lemma 2.17 implies by = by = co = 0. It means that ws1, w3z are constants. |

A.23 Proof of Lemma 5.18

Notice wi12,wW13, w23 € Pl(xl,xg,xg) and Wy; € P1($1,$2,$3,$4) for 1 S ) S 3. By linear
rank condition, Lemma 3.2 shows that for any function p € E, p does not contain term z;z4,1 <
i < 3. Tt directly implies wy; € Pi(24) from A; € E for 1 <4 < 3. |

A.24 Proof of Theorem 5.19
In this proof, we still start with the tool of minimal qudratic structure proposed in Section 3.

We assume p; € F has minimal quadratic rank, i.e., 1 < r(p;) < r(po) = 4. Following the
discussion of Section 3, minimal rank quadratic polynomial can be following two forms:

k1
ngv 1 S kl S 35
E>p = i:ll (A.170)
Zx?—i—xi, 0<k <3.
i=1

Case [1] 7(p1) =4,ie,p1 =27+ 23+ 23+ 23 € E.

Structure of minimal rank quadratic polynomial shows that (3.7) for any function p € E,
p® = Ap; for some number . Observe A; € E for 1 < i < 3 and it implies AEQ) = 0 for
1<i<3. Thenai =ays=by =bz=az3+by=1l1 =c1—a3=co=c3=m1 =bo+c1 =n1 =0
which implies wo; € Pi(x3),ws1 € P1(22),ws2 € Pi(x1) and wy;’s are constants for 1 < i < 3.
Considering cyclical condition satisfied by 2, it follows

8(4)21 8(.«)13 4 8(4)32
6$3 6$2 6,@1

By considering the equations

:0:>a3—b2+C1:O. (Al?l)

a3 —ba+c1 =0,

o +b2=0, (A.172)
c1—az =0,

by +c¢1 =0,
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it implies a3 = by = ¢1 = 0 = w;;’s are constants for 4, j € {1, 2, 3}.
Case [2.1] r(pi(z)) =3,ie, ;=2 + 23 +25 € ENQ.
It is easy to get ps := pg — p1 = 25 € E. It follows that

1 1

§[L07p2] —g=uDi €k, (A.173)

1 3 o

sLop] =5 =) mDi€E. (A.174)
=1

Then
3 3
l; x; Dy, x4D4‘| = ; TAT;Wa5 (A175)
=lhx123 + myzex? + nix3a? + polay(z) € E.

Ocone’s theorem shows I; = m; = ny = 0, i.e., wy;’s are constants for 1 < ¢ < 3. Then
AZ(-Q) € Py(xq1,x9,23) for 1 < i < 3. Theorem 3.7 implies AZ@) = \;p1 for some \; € R and
1 <4 < 3. It follows that A; = 0. Similarly, by combining cyclical condition satisfied by (2, we
get that w;;’s are constants for 4,j € {1,2,3}.

Case [2.2] r(pi(z)) =3,ie,p1=2?+23+27 € ENQ.

First we observe py := pg — p1 = 235 € E. It follows

1

1
g[Lo,pz] —3= z3D3 € E, (A.176)
1 3
sLop] =5 =) mDi€E. (A.177)
i#3

Then

Z z;Dj, x3D3| = Z w3wwz; =braixs + (by + c1)z1 w223 + byw1 73
i#3 i#3 (A.178)
+ coxaw3 + 3923 — nixiT3 + pola(x) € E.

It leads to by = ba+c¢1 = b3 =Cy=C3 =MN] = O, i.e., w43 is constant and w31 € P (IQ),u}gQ S
Py (z1). Furthermore,
[Dl, {E3D3] — bo$3 = T3W31 — bo$3 = bg$2$3 € FE. (Al?g)

If by # 0, then r([D1,z3D3] — boxsz) = 2 < r(p1) which is a contradiction. Therefore, we get
bo =0= ¢, =0, i.e., w31,wss are constants.
Equation (A.171) implies a3 = 0. Additionally, A;, A3 can be rewritten as
Agz) = a17129 + agxd + L2, (A.180)
Aéz) = —a12% — apx 29 + My T (A.181)
Observe that A§2), A§2) are only dependent on x1, 2, x4. Then A§2) = \;p1 for some \; and
1< <2 Tt implies Ay = Ao =0= a1 = a3 =11 = m1 =0 = wa1,wq1,wq2 are constants.
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Case [3.1] r(pi(z)) =2,ie,p1 =22 +23 € ENQ.
Similarly, we first get po = po — p1 = 23 + 23 € E. It follows that

1
§[L0,p1] —l=x1D1+ 22D € E, (A.182)
1
§[L0,p2] —1=23D3+x4Dy € E. (A183)

Then
[€1 D1 + x2D2, x3D3 + x4 Dy] =21 23w31 + T1T4wa1 + T2T3w32 + TaTawso
=byxiws + b3r123 + ha122 + cordas + c3xoms (A.184)
+ myzex? + (by + c1)x120103 + poly(z) € E.

Therefore, we get by = bg =li=c = Cc3 =My = botcy = 0, i.e., w31 € Pl(.IQ),LUgQ S Pl({El)
and wy1,wys are constants. Observing that Af) = nlxﬁ, it follows n; = 0 since least quadratic
rank is two. It means wy3 is a constant.

Next we calculate
Di,21D1 + x29D35] = E 3 xow91 = a12122 + GQ,T% + azx2x3 + agxa,

Do, x1D1 + x9D2] = E 3 x1w91 = alx% + a2x1T2 + a3x1T3 + aopry,

E>] ]
E> [ 2 ]
E > |Ds,x1D1 + x2D2] = E 3 x1w31 + Towsa,
[ 3 1M1 2 2] 1W31 2W32 (A185)
E> [D1,$3D3 + LL‘4D4] = F 3 x3w31 + Tawy1 = boxoxs + boxs + lpz4,
E > [Do,13D3 + 24Dy = E 3 z3w32 + Tawaz = 12123 + coT3 + Mo,
E> [D3,$3D3 + {E4D4] = F 3 zqwys.
In the following, we claim by = ¢; = 0. Otherwise, if bs # 0,
1 bo lo
5 = —[Dl, r3D3 + I4D4] — —x3 =Tox3+ —x4 € E, (A186)
ba ba ba

which implies

Ad "5~ (26 102—22E Al
[ Lofaﬁ]—<g) _Z<8xi) _<E) =23+123 € E. (A.187)

=1
Then .
5[Lo,xg + 23] —1=ax3Dy+23D3 € E (A.188)
and
[€1D1 + x2D2, x2 Dy + 23 D3] =2122w21 + T123wW31 + TaT3ws2
:alexg + agxlxg + (a3 + by + c1)z1w2w3 + pola(z)  (A.189)
=a 23wy + ar123 + azxiTews + pola(z) € E.
It implies a; = a2 = ag = 0. By cyclical condition of (2, it is direct to get by = c;.
Combining by 4+ ¢; = 0, it is obvious that by = ¢; = 0, contradiction! Hence, by = 0, i.e., w3; is
a constant. It leads to ¢; = 0, i.e., w3y is a constant.
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By the equation (A.171), it implies ag = 0, i.e., wo; € Py (x1,22). Then E > Ay = a1z122 +
asw3 + poli(z). Considering p; = 23 + 23 € E with least quadratic rank in E, A§2) = Ap1 which
implies a1 = a2 = 0, i.e., wo1 is a constant.

Case [3.2] r(pi(z)) =2,ie,p1 =27 +27 € ENQ.

Naturally, we get ps := pp — p1 = 23 + 23 € E. Then it follows

1
5[L07p1] —1=x1D1+xz4D4s € E, (A190)
1
5[L07p2] —1=a9Dy+1x3D3 € E. (Algl)
Then
E 9[$1D1 + 24Dy, xoD5 + $3D3]
= T1X2w21 + T1T3w31 + TaTawaq + T3T4W34 (A.192)
_ 2 2 2 2
= a1x7%2 + a2x125 + biziws + bswixs + (ag + ba)r1waxs
— myxoxs — a3z + poly ().
By Ocone’s theorem, it implies a1 = a2 = by = b3 = az3 + by = m; = n; = 0, ie,

wo1 € Pi(x3),ws1 € Pi(x2) and wya, was are constants. Observe Agz) =ha?=1;=0. Sowy
is a constant.

Next we calculate

Di,x1D1 +x4Dy| = F > x4wq1,

Do, x1D1 + x4Dy| = F 3 x1w12 + T4wyo = —a3T1T3 — GoxT1 + Moy,

2

D3, x1D1 + 74 Dy] = E 3 m1w13 + Tawaz = —bax172 — bow1 + no4, (A.193)
1
2

Do, x9oDs + x3D3]| = E 3 x3w30 = 12123 + Cox2x3 + C3ZC§ + coxs,

E>| ]
E>| ]
E>| ]
E 5 [Dy,x2D2 + x3D3] = E 3 xowa1 + x3ws1 = apxe + boxs,
Es| ]
Es| ]

D3, {EQDQ + $3D3 = FE > ToWsza = C1T1T2 + CQ,T% + c3x3T2 + CoT2.

In the following, we claim az = bo = 0. Otherwise, if a3z # 0,
1
¢ = —[e1D1 + 24Dy, Do) — Dy = w125 — 2ty € E, (A.194)
as as as

which implies

23 ? mo ’ 2 2
o) \ @) Tritase E. (A.195)

as

[AdL&, €] — (%)2 = Z

n
=1

Then .
5[.[/0,1'% + $§] —1= $1D1 + $3D3 eEF (A196)

and
E 9[$1D1 + x3D3,x9D9 + LL’3D3]

= T1T2w21 + T1T3Ws1 + To2X3Wa3 (A197)
. 2 2 l
= —(1T1T2X3 — C2TFT3 — C3T2x5 + pola(T).
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It implies that ¢; = ¢a = ¢35 = 0, i.e., w2 is a constant. Cyclical condition (A.171) shows
asz = by. Considering az + bs = 0, it means az = by = 0, a contradiction. Hence a3z = 0, i.e.,
wa is a constant. It leads to by = 0, i.e., w31 is a constant.

Case [4.1] r(pi(z)) =1,ie,p1 =27 € ENQ.

Similarly, we define p1 := pp — p1 = 2% + 2% + 23 € E. Then it follows that

1 1

sllom] =5 =D € E, (A.198)

1 R

5o Pl =5 =) mDi€E. (A.199)
=2

By bracketing these two operators, we can see that

4
$1D1,Z$iD11

=2

E>

(A.200)
= T122w21 + T1T3w31 + T1T4W41

= alx%:tg + agxlxg + (a3 + ba)x12975 + bl:bfx;; + bglvll'g + llxlxi + pola(x).
Ocone’s theorem implies that a1 = as = ag + by = by = b3 = |3 = 0, i.e., which means

wo1 € Pi(x3),ws1 € Pi(x2),ws; is a constant. Next we use brackets between D;,1 <14 < 3 and

4 . .
x1D1,) ;5 x;D; to get more information.

E> [Dg,l'lDl] = FE 3 r1w91 = a3r1x3 + apq, (A201)
E> [Dg,.IlDl] — F 5 r1w31 = bow129 + boIl, (A202)
4
E> Dl, Z IzDz = Towa] + Tr3wsy + Tawq = anx2 + boxg + l(){E4, (A203)
1=2
_ 4 -
DQ, Z z;D;| € E
=2 i
—F 35 x3w3s + T4wss = C121T3 + Cox2T3 + Cg,Tg + coxs + mlxi + moxy, (A204)
_ 4 -
Dg, Z z;D;| € FE
=2 i
==F 3 2owo3 + Tawsz = —C1X1T2 — 02:133 — C3%273 + nlxi — coT2 + noxy. (A.205)

Next we claim a3 = 0. Otherwise, if a3 # 0, (A.201) implies that 7123 € E = 23 +23% € E.
Combining with p; = 27 € E, it implies 22 € F and 2% € E. Lemma 4.1 shows w3 is a
constant. Then b, = 0 = a3 = 0, a contradiction! Therefore, az = by = 0, i.e., wo1, w3y are
constants. In addition, cyclical condition restricts that ¢; = 0, i.e., wss € Py (2, x3).

It has been left to show that wso, w4, wss are constants. In order to do this, we need to
explore more detailed polynomial structure in F.

Let @1 := span{z;z;,zx,1:2 <1i,5<4,1 <k <4}. ENQ; contains quadratic polynomial
due to p1 = 23 + 23 + 23 € EN Q1. Denote p; € E N Qq with least positive quadratic rank in
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ENQ;:. Then 1 < r(pg) < 3. Without loss of generality, we can assume
p2 = Z Aijxixj + d0$4 e EnN Ql- (A206)
2<4,j<4

By linear rank, p;2) does not contain term z;z4,1 < i < 3. It follows

P2 = Z Aij:vixj + d4$421 4+ dozs € ENQ;. (A207)
2<4,j<3

By an orthogonal transformation fixing x; and x4, we can assume
p2 = dQI% + dgxg + d4$421 + d0I4 e EnN Ql- (A208)

Similarly, by using bracket of 2?22 x;D;, we can seperate homogeneous quadratic part of

P2,
4 4
Py (a) = [Z xiDi,m(x)] ~p2(w) = Baga(pa(w)) = pa(a) = Y _diaf € B (A.209)
i=2 =2
Again we use method of Vandermonde matrix, we have

k1
> a, ifdy=0,2<k <3,
B3 py)(x) = 1:12 (A.210)
> a?4ai,  ifdi#0,1<k <3
=2

Notice previous orthogonal transformation keeps quadratic function pg,p1,p1 and linear
rank structure unchange. This is quite important.

In terms of rank of py, we discuss the following cases.

Case [4.1.1] p; =23 € E.

Then ps := p1 — p2 = 23 + 3. It follows that

1 1
sllo.p2] =5 =a2Da € B (A.211)
and )
5[.[10,]32] —1=a3D3+x4D4 € E. (A212)
Then

FE B[LL'QDQ, x3Ds + LL’4D4]
= ZT2%3w32 + TaTaw42 (A.213)
2 2 2
= CoX5XT3 + C3X2X3 + M1X2Xy + Cox2X3 + MoT2X4.

It follows co = c3 = my = 0, i.e., w32, waa are constants. (A.205) shows that

1.
Ei=mai4+nory € E= ¢ = [§[Lo,pg],§] —t=mazlcE. (A.214)
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If ny # 0, then 27 € E = 23 € E. By Lemma 4.1, we obtain ws3 is a constant, a
contradiction. Therefore, n1 = 0 and wy3 is a constant.

Case [4.1.2] py =23 € E.

Then ps := p1 — p2 = 23 + 3. Tt follows that

1 1
llop2] =5 =waDi € B (A.215)
and )
5[L0752] —1=a9Dy+1x3D3 € E. (A216)
Then
E 3|lz9 Dy + x3D3, x4 D
(2 D2 3D3, 24 Dy] . . (A.217)
= ToT4Wyo + T3T4W43 = M1T2Ty + N1T3TY + MoX2Ty + NoT3T4.
It follows mq1 = ny = 0, i.e., was, w3 are constants.
Notice (A.204) and (A.205) become
My = coxox3 + Cgl’% +mozy € E, (A218)
My = Cng + c3ror3 — Noxy € E, (A.219)
and L
5 |:§AdL0§27 Ml] = CoT2x3 + C3£L‘§ € FE, (A220)
11 ~ 9
5 §AdL0p2, Ms| = Coxy + C3x2x3 € E. (A221)

Combining ps = 73 + 75 € F and Lemma 4.2, we obtain w3 is a constant.

Case [4.1.3] py =23 +23 € E.

Naturally, we have py := Py — p2 = 237 € E. By using same argument as Case [4.1.2], w;;’s
are constants for 7, j € {2,3,4}.

Case [4.1.4] py =23+ 23 € E.

Naturally, we have ps := p1 — pa = 23 € E. It follows that

1

§[L07P2] =x2Ds+ 4Dy € E, (A.222)
1 ~

5[1307]92] =ux3D3 € E, (A.223)

which results in

[x2 Dy + 24Dy, 23 D3] =w223w32 + T3T4wW34
) 9 9 (A.224)
=CoXT5%3 + C3T2X3 — N1TITy + CoTaT3 — NOT3T4 € E.

Then ¢y = c3 = n1; =0, i.e., w3z, w3 are constants.
Notice (A.204) implies mi22 + moxs € EN Q1. Since py has least positive quadratic rank,
m1 = 0 = wyo is a constant.
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Case [4.1.5] py =3 + 23 + 235 € E.
(A.204) and (A.205) imply

2 2 2 2
§1 :=caT2x3 + Cc3x3 + mMaTy + Moy, &2 1= —C2T5 — C3T2T3 + N1TY + NoT4- (A.225)

Notice &1,&5 € EN Q1. Then by least quadratic rank property in £'N @1, we induce 51-(2) =
Aipe for 1 <7 <2 and some \; € R. Thus, weget \f = Ao =0=co=c3=m1 =n; =0=
wi;’s are constants for 4, j € {2,3,4}.

Up to now, we prove that {2 is a constant matrix in Case [4.1].

Case [4.2] r(pi(z)) =1,ie,p1 =23 € ENQ.

Naturally, we obtain p; :=py — p1 = Z?:l 2? € E. Tt follows that

1

5Lo;p] = 24Dy € E, (A.226)

1 3

5lLo. il =) @iD; € B. (A.227)
=1

By bracketing two differential operators, we get

3 3
E i Dj, 24Dy | = E TiT4Wy4;
i=1

=1

E>

(A.228)
= llxlxi + mlxzxi + nlxgxi + lox1T4 + MoxoTy + NoL3T4.

It implies [y = m1 = n1; =0, i.e., wy;’s are constants for 1 <7 < 3.

Let @1 := real vector space spanned by {z;jz;j, zk,1:1 <4,j < 3,1 <k <4}, ENQ
contains quadratic polynomial due to p1 € F N Q1. Denote po € E N (1 with least positive
quadratic rank in £ N Qq. Then 1 < r(p2) < 3. Without loss of generality, we can assume

p2 = Z Aijxixj + d0$4 e EnN Ql- (A229)
1<4,5<3

By an orthogonal transformation fixing x4, we have

k1
P2 = ZdVT? + doxy € F, (A230)
i=1
where 1 < k1 < 3 and d; # 0. By technique of Vandermonde matrix proposed in [19]., we can

assume .
1
p2=Y . (A.231)
=1

Then we only need to discuss three cases.

Case [4.2.1] py =22 € E.

Case [4.2.2] py =22 + 23 € E.

Case [4.2.3] py = 2% + 23+ 2% € E.

By using the same argument of Lemma 5.12 in Case (V), we can prove w;;’s are constants
for 4,7 € {1,2,3}. Then {2 is a constant matrix. |
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A.25 Proof of Theorem 5.20

Theorems 5.3, 5.5, 5.7, 5.11, 5.14, 5.17, 5.7 demonstrate {2 possesses partially constant
structure. By applying Theorem 4.5, h;’s are affine functions. |

@ Springer



