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Abstract

Solving high-dimensional filtering problems with high nonlinearity is essential for controlling complicated systems and for data
assimilation. In this paper, we propose a novel recurrent neural network spectral method (RNNSM) to address this kind of
problems, especially for the systems with additional stability properties. As a combination of modern deep learning strategy
and classical spectral method, the proposed algorithm integrates the advantages of both. On the one hand, by exploiting the
approximation capability of recurrent neural networks, RNNSM can overcome the obstacles that classical spectral methods face
in high-dimensional problems, and obtain a heuristic approach to finding the optimal orthonormal basis in spectral methods;
on the other hand, with the theoretical foundation of spectral methods, RNNSM provides a more reasonable mathematical
interpretation of neural network-based filtering algorithms and bridges the gap between practical performance and theoretical
convergence. Finally, the efficiency of RNNSM is also verified by numerical experiments.
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1 Introduction

Filtering is a subject on estimating the evolving state
process in a partially observed system. With the de-
velopment of science and technology, people encounter
more and more complicated partially observed dynami-
cal systems with high dimension and high nonlinearity.
The development of efficient filtering algorithms for such
systems has become a core issue in the field of control
and signal processing.
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For this kind of filtering systems, classical algorithms
such as particle filter (PF) and Kalman filter based algo-
rithms face significant challenges. As for Kalman filter
based algorithms, the accuracy and convergence of these
algorithms are doubtful for systems with high degree of
nonlinearity [5,34]; as for PFs, one of the main difficulties
is the severe particle degeneracy for high-dimensional
systems [1, 21]. A great many particles are required for
PFs to handle high-dimensional systems, which makes
it hard to obtain an estimation to state processes in real
time.

Nowadays, with the introduction of deep learning to con-
trol community, there have been a large number of neu-
ral network based filtering algorithms proposed in recent
years [18,23], which can outperform classical filtering al-
gorithms in numerical simulations [32]. The connection
between recurrent neural network (RNN) and finite di-
mensional filtering systems including Gaussian systems
was established for the first time in [7] and the estima-
tion error was rigorously analyzed. However, the math-
ematical theory of neural network based filtering algo-
rithms for general nonlinear problems has not yet been
sufficiently developed, in the sense that the performance
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of neural network based algorithms has not been suffi-
ciently interpreted through mathematical theory.

In fact, most of the mathematical theory of these algo-
rithms is based on the universal approximation property
of neural networks [16, 30], in which it is proved that
any continuous function in a compact domain can be ap-
proximated with arbitrary accuracy by a shallow neural
network. Meanwhile, the conditional probability density
functions (pdf, for short), which we are concerned with
in nonlinear filtering problems, are in general located in
an infinite dimensional functional space [14, 26], and an
infinite-width neural network is required to follow the
evolution of the conditional pdfs according to the uni-
versal approximation theory.

For practical implementation of nonlinear filtering algo-
rithms in finite dimensional spaces, and idea is to first
project the conditional pdfs onto a finite dimensional
manifold or subspace and then track the evolution of the
projection of these functions [2, 6]. The choice of finite
dimensional subspaces can be roughly divided into two
categories: (i) manifolds of classical density families such
as Gaussian and exponential distribution families; and
(ii) subspaces spanned by orthonormal basis functions.

The first choice corresponds to filtering algorithms such
as the extended Kalman filter (EKF) [17] and assumed
density filters [19]. For this kind of filtering algorithms,
important statistics of the approximated density func-
tions, such as expectations, covariance matrices, etc., are
easy to calculate, but the distance between the exact
conditional distribution and its projection is difficult to
estimate.

The second choice corresponds to filtering algorithms
based on spectral methods [20,24,31,36]. Using the prop-
erties of orthonormal basis functions, a rigorous conver-
gence analysis of these filtering algorithms can be pro-
vided. For high-dimensional filtering systems, however,
the orthonormal basis in the algorithm is usually not so
efficient, and how to find the optimal orthonormal basis
functions such that the corresponding filtering algorithm
enjoys a high convergence rate is still an open problem.

In this paper, we provide a heuristic approach to finding
the optimal orthonormal basis for a given filtering sys-
tem with additional stability property which is possessed
by many practical filtering systems. Roughly speaking,
the stability property states that the effect of the initial
distribution on the filtering solution decays exponen-
tially as time tends to infinity [3, 4]. Filter stability im-
plies that the conditional probability density as a func-
tion of observations does not contain long-term memory,
i.e., remote observations are quickly ‘forgotten’ in the ex-
pression of conditional probability distribution [27]. As
an important branch of filtering theory, there are many
studies on the stability of filtering systems, and readers
can refer to the monograph [10] for detailed discussions.

For stable filtering systems, we will show that our heuris-
tic approach to finding the optimal orthonormal basis
can be implemented using a recurrent neural network
(RNN). In this way, we propose a new efficient nonlin-
ear filtering algorithm, called Recurrent Neural Network
Spectral Method (RNNSM).

The advantages of our proposed RNNSM over the exist-
ing filtering algorithms lie mainly in the following two
aspects:

(1) With the help of neural network, RNNSM is much
more computationally efficient than the existing fil-
tering algorithms based on spectral methods, in the
sense that the problem of finding an efficient or-
thonormal basis and the heavy computational bur-
den of numerical integrals can be handled off-line
by training the recurrent neural networks.

(2) Using the theory of spectral methods, we can pro-
vide a thorough convergence analysis for RNNSM.
To the best of the authors’ knowledge, this is the
first rigorous convergence analysis of RNN-based
nonlinear filtering algorithms for the most general
stable nonlinear filtering systems (without assum-
ing that the conditional probability distribution
evolves in a finite dimensional subspace or mani-
fold), on the whole timeline (without assuming a
fixed terminal time T <∞).

Moreover, the proposed RNNSM together with its con-
vergence analysis serves as a novel mathematical inter-
pretation of RNN and RNN-based filtering algorithms.
It is validated both theoretically and numerically that
RNNSM can provide a good approximation to the ex-
act solution of these stable filtering systems in the whole
timeline, even if the training data are generated only in
a finite time interval. In this way, this paper also throws
lights on the interpretability of RNN, in terms of its
learning and generalization capability to handle tempo-
ral data.

The organization of this paper is summarized as follows.
In Section 2, we will review some basic notations, con-
cepts and results for nonlinear filtering problems. In Sec-
tion 3, the algorithm, RNNSM, will be proposed to solve
stable filtering systems. In Section 4, convergence results
of RNNSM will be presented, together with the main
ideas of the proofs. The details of the proofs can be found
in Section 6, after the numerical results of RNNSM that
are illustrated in Section 5. Section 7 is a conclusion.

Throughout this paper, some frequently used notations
are summarized in Table 1 for readers’ convenience.
Also, we use the notations L1(Rd), L1

+(Rd), L2(Rd)
and L∞(Rd) to denote the space of integrable, positive
integrable, square-integrable, and essentially bounded
functions in Rd, respectively. The norms on the above
functional spaces Lp(Rd) are denoted by ‖ · ‖p, for
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p = 1, 2,∞, and we use | · | to denote the Euclidean norm
(or modulus) of finite-dimensional vectors as usual.

Table 1
List of Notations

Meaning Notations Equations

State xk (1)

Observation yk (1)

Conditional distribution (or
conditional pdf) of xk given
Yk

πk (2)

Unnormalized conditional pdf uk (5)

Unnormalized conditional pdf
with likelihood approximation

ũk (15)

Finite-dimensional represen-
tation of unnormalized condi-
tional pdf ũk

vk (18)

Finite-dimensional represen-
tation of normalized condi-
tional pdf

ρk (21)

Conditional pdf with different
initial value

π̃k (46)

Propagation operator F1 (4)

Correction operator F2 (4)

Approximated correction op-
erator

F̃2 (13)

Integral operator F3 (10)

Normalization operator N (7)

2 Preliminaries

In this paper, we consider the time-invariant filtering
system in discrete time modeled by the following coupled
stochastic difference equations:{

xk+1 = ϕ(xk) + Γ(xk)vk
yk+1 = h(xk+1) + wk+1

1 ≤ k <∞, (1)

where {xk : 1 ≤ k < ∞} ⊂ Rd is the state process,
with initial value x1 ∼ π1; {yk : 1 ≤ k < ∞} ⊂ Rd1
is the observation process, with initial value y1 ≡ 0;
{wk : 2 ≤ k < ∞} ⊂ Rd1 , {vk : 1 ≤ k < ∞} ⊂ Rd2
are mutually independent Gaussian random variables
with zero mean and covariance matrices R ∈ Rd1×d1 ,
Q ∈ Rd2×d2 , respectively; ϕ : Rd → Rd, h : Rd → Rd1
and Γ : Rd → Rd×d2 are smooth vector- or matrix-
valued functions. The system (1) is called time-invariant,
because the functions ϕ, h,Γ and the matrices Q,R do
not explicitly depend on the time step parameter k.

The main goal of filtering is to recursively calculate the
conditional distribution of state process xk given the
history of noisy observations Yk , σ{yj : 1 ≤ j ≤ k},
which means the σ-algebra generated by the random

variables {yj : 1 ≤ j ≤ k}, for each time step k, and we
denote this conditional distribution by

πk(dx) , P [xk ∈ dx|Yk], 1 ≤ k <∞. (2)

If the conditional distribution πk (1 ≤ k < ∞) is abso-
lutely continuous with respect to the Lebesgue measure
on Rd, i.e., πk(dx) = πk(x)dx, according to the theory of
discrete filters [17], the density function of πk (which is
also denoted by πk when there is no confusion), evolves
with the following two-step formula:

Prediction: πk+1|k(xk+1) =

∫
Rd
πk(xk)p(xk+1|xk)dxk;

Correction: πk+1(xk+1) ∝ πk+1|k(xk+1)q(yk+1|xk+1),
(3)

with p(xk+1|xk) the transition probability density of the
state process in (1) and

q(yk+1|xk+1) = exp

[
−1

2
(yk+1 − h(xk+1))>×

R−1(yk+1 − h(xk+1))

]
,

where πk+1|k are often referred to as the distribution of

xk+1, i.e., πk+1|k(·) , P [xk+1 ∈ ·|Yk]; the symbol ‘∝’
means that the density functions πk+1|k and πk+1 are
proportional to the right-hand expressions, that is, they
are equal except for a normalization constant indepen-
dent of x.

Let us define the functionals F1 : L2(Rd) → L2(Rd),
F2 : L2(Rd)× Rd1 → L2(Rd) with expressions:

F1(u)(x) ,
∫
Rd
p(x|z)u(z)dz; F2(u, y)(x) , q(y|x)u(x),

(4)
for all u ∈ L2(Rd), y ∈ Rd1 , x ∈ Rd. Then, the two-step
formula (3) can be rewritten as follows:

Prediction: πk+1|k = F1(πk);

Correction: πk+1 ∝ F2(πk+1|k, yk+1),
(5)

If we ignore the normalization constant, we can define a
series of unnormalized conditional pdfs, {uk : k ≥ 1}, by

uk+1 = F2(F1(uk), yk+1), k ≥ 1, (6)

with initial value u1 = π1, the initial distribution of state
process. At each time step k, the conditional pdf πk is
then obtained through a normalization procedure:

πk = N (uk) ,
uk∫

Rd ukdx
, k ≥ 1, (7)
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where N : L1
+(Rd) → L1

+(Rd) is defined as the normal-

ization operator, with L1
+(Rd) , {u ∈ L1(Rd) : u ≥

0, a.e.} the set of positive integrable functions on Rd.
The evolution of πk is then given by

πk+1 = N ◦ F2(F1(πk), yk+1), k ≥ 1. (8)

In practice, people are often more concerned with some
specific statistics of the conditional distribution πk, such
as the conditional mean and covariance matrix. In the
meanwhile, the conditional distribution πk can also be
reconstructed or approximated based on its statistics
with statistical methods such as moment matching [28].

With the evolution of πk, these statistics can be calcu-
lated by

f̂k , E[f(xk)|Yk] = Ff3 (πk), 1 ≤ k <∞, (9)

where Ff3 : L2(Rd) ∩ L1
+(Rd)→ Rl is the integral oper-

ator defined as

Ff3 (u) ,
∫
Rd
f(x)u(x)dx, ∀ u ∈ L2(Rd) ∩ L1

+(Rd),

(10)
and f : Rd → Rl corresponds to the conditional statis-
tics. When there is no ambiguity, we would like to omit

the superscript in Ff3 to maintain the simplicity of no-
tations. Without loss of generality, we focus on the real-
valued f with l = 1 in this paper, and the results can be
trivially extended to vector cases.

According to (8) and (9), the whole procedure of cal-
culating the conditional statistics can be illustrated by
Figure 1. As shown in Figure 1, the conditional pdfs πk
evolve according to an open dynamical system defined on
L2(Rd) ∩ L1

+(Rd), which itself has a recursive structure
in the infinite dimensional vector space. For practical
implementation of this procedure, however, we need to
find a finite-dimensional approximation to this infinite-
dimensional open dynamical system. To this end, we pro-
pose the so-called Recurrent Neural Network Spectral
Method (RNNSM) in this paper.

...... πk−1 πk πk+1 ......

f̂k−1 f̂k f̂k+1

yk−1 yk yk+1

F1 F1 F1 F1

F3 F3 F3

N ◦ F2 N ◦ F2 N ◦ F2

Fig. 1. Illustration of the calculation procedure of the con-

ditional statistics f̂k.

3 Recurrent Neural Network Spectral Method

The recurrent neural network spectral method (RNNSM)
proposed in this section gives a finite-dimensional ap-
proximation to the πk shown in Figure 1, so that it can
be performed in practice using a finite-width recurrent
neural network.

This finite-dimensional approximation is done accord-
ing to the following two main steps. First, the ‘likelihood

functions’, exp

[
− 1

2 (y − h(x))>R−1(y − h(x))

]
, in the

operator F2 are approximated by a linear combination
of finitely many functions with respect to x, where the
linear coefficients are functions of y. In this way, the vari-
ables x and y are separated. Next, the conditional pdfs
πk are represented (or approximated) by an element in
a constructed finite-dimensional vector space, which ful-
fills the finite-dimensional approximation of the infinite-
dimensional system shown in Figure 1. These two steps
will be specifically described in the next two subsections,
respectively.

3.1 Approximating the Likelihood Functions

Let us consider the functional F2 in Figure 1, where
the unnormalized density functions are multiplied by a
kind of ‘likelihood functions’, q(yk|x) = exp[− 1

2 (yk −
h(x))>R−1(yk − h(x))]. The first step of our proposed
RNNSM is to project these ‘likelihood function’ onto a
finite-dimensional subspace of L2(Rd).

For a given large real number L > 0, let us denote by
SL = {q(y|x) : y ∈ BL} the set of all ‘likelihood func-
tions’ with regular observations, where BL = {y ∈ Rd1 :
|y| ≤ L} is the ball with radius L. Since BL is a compact
subset of Rd1 , according to the theory of Kolmogorov
n-width [29], for any ε > 0, there exists N ∈ N and an
N -dimensional subspace HN ⊂ L∞(Rd), such that

max
y∈BL

∥∥∥∥q(y|·)− N∑
i=1

αi(y)φi(·)
∥∥∥∥
∞
< ε, (11)

where {φi}Ni=1 is an orthonormal basis of HN and

αi(y) ,
∫
Rd
q(y|x)φi(x)dx, (12)

are the generalized Fourier coefficients, with i =
1, · · · , N . Alternatives of the orthonormal basis {φi}Ni=1
include classical bases, such as Hermite functions [24],
and basis functions derived from polynomial interpola-
tions [25].

With this finite dimensional approximation to the likeli-
hoods, we can define the functional F̃2 : L2(Rd)×Rd1 →
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L2(Rd) by

F̃2(u, y)(x) ,

( N∑
i=1

αi(y)φi(x)

)
u(x), (13)

and we have

‖F2(u, y)− F̃2(u, y)‖2 ≤ ε‖u‖2 (14)

for all u ∈ L2(Rd) and y ∈ BL.

The approximation procedure (11) separates the space
variable x in the likelihood functions from the ob-
servation variable y, which is essential for the finite-
dimensional implementation of the computation graph
shown in Figure 1, and we denote the approximated
unnormalized density function by {ũk : k ≥ 1}, which
propagates according to

ũk+1(x) = F̃2 (F1(ũk), yk+1) (x), 1 ≤ k <∞. (15)

with initial value ũ1(x) = u1(x) ≡ π1(x), ∀ x ∈ Rd.

3.2 Representing the Unnormalized Conditional Prob-
ability Density Functions

Before moving on to the procedure of RNNSM, let us
first introduce the stability assumption of the filtering
system.
Assumption 1. The discrete filtering system (1) is sta-
ble, in the sense that

lim
k→∞

E‖πµk − π
ν
k‖2 = 0, (16)

where πµk and πνk denote the conditional pdf, with initial

distributions µ, ν ∈ L2(Rd) ∩ L1
+(Rd), respectively.

Assumption 1 is a typical result in the studies of filtering
stability such as [3, 35], which indicates that the initial
value of the filtering system is ‘forgotten’ as the time step
k → ∞. This assumption also implies that the condi-
tional distribution will not oscillate much when the time
step k → ∞, and will lie close to the finite-dimensional
vector space spanned by the conditional density func-
tions at the first few time steps. This will be rigorously
proved later in Section 4.

Therefore, the finite-dimensional space on which we
would like to project the conditional pdfs and prac-
tically implement the calculation in Figure 1 can be
constructed with the information of the first few time
steps.

For a given K > 0, because F1 and F̃2(·, y) are linear
functionals in L2(Rd)∩L1

+(Rd), the functions {ũk : 1 ≤

k ≤ K} in fact evolve in a finite-dimensional vector space

spanned by IK,N =
{(∏k−1

j=1 (φijF1)
)
u1 : 1 ≤ k ≤

K, 1 ≤ i1, · · · , ik ≤ N
}

, where the products
∏k−1
j=1 mean

the composition of functionals (with the convenience of
representing identical operator if k = 1) and with a slight
abuse of notations, we use φi to denote the functional of
multiplying φi(x).

For example, according to (13) and (15), in the first
several steps,

ũ1(x) = u1(x), ũ2(x) =

N∑
i=1

αi(y2)(φiF1)u1,

ũ3(x) =

N∑
i,j=1

αi(y3)αj(y2)

[
(φiF1)(φjF1)

]
u1,

ũ4(x) =

N∑
i,j,k=1

αi(y4)αj(y3)αk(y2)

×
[
(φiF1)(φjF1)(φkF1)

]
u1,

which are all elements of the subspace spanned by func-

tions of the form
(∏k−1

j=1 (φijF1)
)
u1, with k = 2, 3, 4.

In this way, all the functions {ũk : 1 ≤ k ≤ K} are
contained in the subspace spanned by IK,N . Hereafter,
we will use VN1 to denote the N1-dimensional vector
space spanned by IK,N , i.e., VN1

= Span{IK,N}, and let

{ψi}N1
i=1 be an orthonormal basis of VN1

.

The main procedure of RNNSM is to find elements in
VN1

, denoted by {vk : k ≥ 1} and {ρk : k ≥ 1}, which
approximate {uk : k ≥ 1} (or {ũk : k ≥ 1}) and {πk :
k ≥ 1} well, respectively, for sufficiently large N1 ∈ N.
Notice that according to the construction of VN1

, it is
only guaranteed that {ũk : 1 ≤ k ≤ K} ⊂ VN1 for a fixed
K. For k ≥ K+1, ũk may not lie in VN1 in general. Only
vk and ρk introduced here and specifically defined later,
are finite-dimensional representations of uk and πk, for
all k ≥ 1. We summarize the relationship between the
above family of functions in Figure 2 for the readers’
convenience.

Unnormalized: uk ũk vk

πkNormalized: ρk

Likelihood

approximation

Finite dimensional

representation

Unnormalizing Normalizing

Approximating

Fig. 2. Summation of the relationship among the families of
functions πk, uk, ũk, vk and ρk, for k ≥ 1.

To find an element in VN1
to approximate the exact solu-

tion of the filtering problem, let {ψi}N1
i=1 be an orthonor-

mal basis of VN1
, then there exist constants {ai(1)}N1

i=1 ⊂
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R such that

π1(x) = u1(x) = v1(x) ,
N1∑
i=1

ai(1)ψi(x). (17)

since u1 is an element in VN1 according to the definition.

Next, if the element vk (k ≥ 1), which we use to approx-
imate uk (or ũk) at time step k, can be expressed as

(ũk(x) ≈) vk(x) ,
N1∑
i=1

ãi(k)ψi(x), (18)

where ã(k) = [ã1(k), · · · , ãN1
(k)]> ∈ RN1 a given

N1-dimensional vector. Then at time step k + 1,
the element vk+1 we use to approximate ũk+1(x) =

F̃2 (F1(ũk), yk+1) (x) is given by

(ũk+1(x) ≈) vk+1(x) ,
N1∑
i=1

ãi(k + 1)ψi(x), (19)

where

ãi(k + 1) = 〈F̃2(F1(vk), yk+1), ψi〉

=

〈 N1∑
l=1

ãl(k)

( N∑
j=1

αj(yk+1)φj

)
F1ψl, ψi

〉
, λi(ã(k), yk+1),

(20)

with λ , [λ1, · · · , λN1 ]> : RN1 × Rd1 → RN1 a contin-
uous function, and 〈·, ·〉 denoting the inner product in
L2(Rd).
Remark 1. Notice that, according to the construction
of IK,N , the approximation signs ‘≈’ in (18) and (19)
are in fact equality for 1 ≤ k ≤ K − 1, because each ũk
(1 ≤ k ≤ K) is itself an element in the finite-dimensional
vector space spanned by IK,N . For k ≥ K + 1, we will
prove rigorously in Section 4 that ũk can also be well
approximated by vk because of the stability assumption.

As a normalized version of vk, the element ρk we use to
approximate πk, at each time step k ≥ 1, is given by

ρk(x) =

N1∑
i=1

ai(k)ψi(x) (21)

with

ai(k + 1) =
ãi(k + 1)∫

Rd vk+1(x)dx

=
λi(ãk, yk+1)∑N1

i=1 λi(ãk, yk+1)
∫
Rd ψi(x)dx

, ηi(ãk, yk+1),
(22)

for each i = 1, · · · , N1.

As a homogeneous function of the first variable, the value
of ηi(ã(k), yk+1) does not change if we make a scaling to
ã(k). Especially, we have

ηi(ã(k), yk+1) = ηi(a(k), yk+1), ∀ 1 ≤ i ≤ N1, k ≥ 1.
(23)

In fact, let us denote

ck =

∫
Rd
vk(x)dx =

N1∑
i=1

ãi(k)

∫
Rd
ψi(x)dx, k ≥ 1, (24)

then

ηi(a(k), yk+1) =
λi(

ã(k)
ck
, yk+1)∑N1

i=1 λi(
ã(k)
ck
, yk+1)

∫
Rd ψi(x)dx

=
1
ck
λi(ã(k), yk+1)

1
ck

∑N1

i=1 λi(ã(k), yk+1)
∫
Rd ψi(x)dx

= ηi(ã(k), yk+1),

where the second equality holds because of the linearity
of λi, with respect to ã(k), according to the definition
(20).

Therefore, the propagation of conditional pdfs is rep-
resented by {ρk : k ≥ 1} with the orthonormal basis

{ψi}N1
i=1 and the parameters a(k) ∈ RN1 (k ≥ 1) evolv-

ing according to the open dynamics

a(k + 1) = η(a(k), yk+1), k ≥ 1. (25)

3.3 Implementation of Recurrent Neural Network Spec-
tral Method

Finally, with the finite-dimensional representation of
conditional pdfs given by the parameters a(k) and the

orthonormal basis {ψi}N1
i=1, the integral operator F3 can

be expressed as

F3(ρk) =

∫
Rd
f(x)ρk(x)dx

=

N1∑
i=1

ai(k)

∫
Rd
f(x)ψi(x)dx , β(a(k))

(26)

which is a linear combination of ai(k) with coefficients
given by

∫
Rd f(x)ψi(x)dx.

Up to now, by (25) and (26), the calculation procedure
illustrated in Figure 1 is conducted (or approximated)
in finite dimensional, with the help of N1-dimensional
vectors a(k) and this finite dimensional dynamics of a(k)
is illustrated by Figure 3.
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...... a(k − 1) a(k) a(k + 1) ......

f̂k−1 f̂k f̂k+1

yk−1 yk yk+1

η η η η
β β β

η η η

Fig. 3. Illustration of the finite-dimensional approximation
to the calculation procedure in Figure 1.

Remark 2. The open dynamical system defined by (25)
and (26), and illustrated by Figure 3, can be expressed by
the following compact form:

a(k + 1) =
Ψ(yk+1)a(k)

H>Ψ(yk+1)a(k)
,

β(a(k + 1)) = F>a(k + 1).

(27)

with F,H ∈ RN1 constant vectors and Ψ(yk+1) ∈
RN1×N1 matrix-valued function of yk+1. This compact
form (27) is also shared with classical spectral method
based nonlinear filtering algorithms such as those pro-
posed in [12, 24].

Although the above finite dimensional realization of the
calculation procedure of Figure 1 depends on the choice
of orthonormal basis {ψi}N1

i=1, the computation in Figure
3 only involves the propagation of the N1-dimensional
parameter a(k), while the basis functions {ψi}N1

i=1 only
affect the specific expression of the functions η and β.
Hence, instead of the closed form of the basis functions
{ψi}N1

i=1, we are more concerned with the number N1,
which corresponds to the computational efficiency of this
algorithm.

Heuristically, in comparison with classical spectral
methods, the orthonormal basis we use in this algorithm
is constructed directly from the unnormalized condi-
tional pdfs, and is supposed to be more efficient since
it exploits the specific structure of the filtering system.
More importantly, although the exact expression of
each ψi may be hard to obtain, the functions η and β
in Figure 3 can be easily learned and approximated by
a recurrent neural network with a simulation dataset in
short time steps 1 ≤ k ≤ K and this is why we refer to
this proposed algorithm as Recurrent Neural Network
Spectral Method (RNNSM).

In fact, because the functions η : RN1 × Rd1 → RN1 ,
β : RN1 → R are both continuous, it is theoretically
proved that the open dynamical system,{

a(k + 1) = η(a(k), yk+1),

f̂k = β(a(k)),
(28)

as shown in Figure 3, can be approximated with ar-
bitrary precision by a recurrent neural network [7, 30].

Thus, the learning and generalization capability of re-
current neural network allows us to focus on the propa-
gation of parameters a(k) and dispense the complexity
of calculating the exact expression of orthonormal basis
functions. The entire framework of RNNSM is summa-
rized in Table 2.

Table 2
Framework of Recurrent Neural Network Spectral Method
(RNNSM)

1. Initialization:

(1) Input the functions ϕ, Γ, h, and the covariance
matrices Q, R in filtering system (1). Input a test
function f .

(2) Fix two positive integers K,N ∈ N.

2. Likelihood approximation:

(1) Find an N -dimensional subspace HN ⊂ L∞(Rd)
and an orthonormal basis {φi}Ni=1 of HN .

(2) Determine an element
∑N
i=1 αi(y)φi to approxi-

mate the likelihood functions.
3. Finite dimensional representation:

(1) Construct a finite dimensional subspace VN1

spanned by IK,N =
{(∏k−1

j=1 (φijF1)
)
u1 : 1 ≤

k ≤ K, 1 ≤ i1, · · · , ik ≤ N
}

, and choose an or-

thonormal basis {ψi}N1
i=1 of VN1 .

(2) Find an element ρk(x) =
∑N1
i=1 ai(k)ψi(x) to ap-

proximate the conditional density function πk,
with a(k) evolves according to (25).

4. Recurrent neural network approximation:

Train a recurrent neural network to approximate

the open dynamical system (28) and output f̂k
for each k ≥ 1 as an estimation of f(xk) at time
step k.

4 Convergence Analysis

In this section, we will present the convergence results of
our proposed RNNSM. A proof of the main steps will be
given here with the most important ideas and insights,
while the details of the proofs can be found in Section 6,
after the numerical results.

For the purpose of a rigorous convergence analysis, in
addition to the stability assumption (Assumption 1), we
also need the following regularity assumptions on the
filtering system (1).
Assumption 2. The functional F1 : L2(Rd) ∩
L1
+(Rd)→ L2(Rd)∩L1

+(Rd) is bounded, i.e., there exists
a constant C > 1 such that

‖F1(u)‖2 ≤ C‖u‖2, ‖F1(u)‖1 ≤ C‖u‖1, (29)

holds for all u ∈ L2(Rd) ∩ L1
+(Rd).
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Assumption 3. For each k ≥ 1, L > 0, and regular
observation trajectories {yk : k ≥ 1} ⊂ BL, the unnor-
malized conditional pdf uk decays faster than |x|−d as
|x| → ∞, i.e., there exist constants δ > 0 and M0 > 0,
such that

uk(x) ≤ C0|x|−(d+δ), ∀ |x| > M0, k ≥ 1. (30)

Assumption 4. For each L > 0, the functional
F2(F1(·), y) : L1(Rd) → L1(Rd) is coercive for all
y ∈ BL, in the sense that there exists a constant
0 < C1 < 1 (which may depend on L) such that

‖F2(F1(u), y)‖1 ≥ C1‖u‖1, (31)

holds for all u ∈ L1
+(Rd), y ∈ BL.

Assumption 3 and 4 are made on specific bounded ob-
servation trajectories. Because the convergence results
in this paper are obtained in the sense of mathematical
expectations, we also need the following assumption on
the entire set of trajectories, which indicates that most
of the observations we can obtain in practice will be reg-
ular.
Assumption 5. The observation process {yk : k ≥ 1}
of the filtering system (1) will remain in a large ball BL

with high probability, that is,

lim
L→∞

P

[
sup
k≥1
|yk| ≥ L

]
= 0. (32)

Also, the conditional pdf πk is uniformly square inte-
grable, in the sense that there exists a constant M1 > 0,
such that

sup
k≥1

E
[
‖πk‖22

]
≤M1 <∞. (33)

Our main theorem in this paper is stated as follows:
Theorem 1. For a given nonlinear filtering system (1)
and a given test function f ∈ L2(Rd), under Assump-
tions 1 to 5, the solution of the filtering system (1) can
be approximated by the proposed RNNSM with arbitrary
accuracy. That is, for any ε > 0, there exists an N1-
dimensional system (28) such that

E |E[f(xk)|Yk]− β(a(k))| < ε, ∀ k ≥ 1. (34)

where a(k) = [a1(k), · · · , aN1(k)]> ∈ RN1 is the N1-
dimensional parameter which propagates according to
(28), and β is the output function illustrated in Figure 3.

The proof of Theorem 1 can be divided into two parts.
First, we use the theory of spectral methods to show
that Theorem 1 holds in a finite time interval 1 ≤ k ≤
K1, with a given K1 ∈ N, and then use the stability
assumption of the filtering system to prove that Theorem
1 holds on the whole timeline. The two parts of the proof
will be demonstrated in the following two subsections,
respectively.

4.1 Convergence analysis in a finite time interval

For a given terminal time K1 ∈ N, let us first deal with
the case on the time interval 1 ≤ k ≤ K1. As in the
approximation procedure shown in Figure 2, we first es-
timate the differences between the unnormalized func-
tions uk, ũk and vk, and then deal with the difference
between the normalized functions πk and ρk.
Theorem 2. Let u = {uk : k ≥ 1} be the unnormalized
conditional pdf evolving according to

uk+1 = F2(F1(uk), yk+1), k ≥ 1; (35)

and let ũ = {ũk : k ≥ 1} be the approximated unnormal-
ized conditional pdf evolving according to (15).

Let VN1
= Span{IK1,N} be the finite-dimensional vector

space in RNNSM, and we need to introduce the following
distance assumption at this stage:
Distance Assumption. Assume that for regular ob-
servation trajectory {yk : 1 ≤ k ≤ K1} ⊂ BL and for
each k, (1 ≤ k ≤ K1), the distance between the normal-
ized functionN (ũk) and the finite dimensional space VN1

is small, i.e., ∀ ε > 0, there exist N ∈ N and a finite-
dimensional space VN1

= Span{IK1,N}, such that,

dist(N (ũk), VN1
) < ε, ∀ 1 ≤ k ≤ K1. (36)

Let {ψi}N1
i=1 be the orthonormal basis of VN1

, and v =
{vk : 1 ≤ k ≤ K1} be the set of functions defined accord-
ing to (18) with parameters ã(k) evolving as (20).

For sufficiently small ε > 0, if we can choose N ∈ N and
the finite-dimensional VN1

= Span{IK1,N} according to
Distance Assumption, such that (36) holds, then,

(i) Under Assumption 2, for each regular observation
trajectory {yk : 1 ≤ k ≤ K1} ⊂ BL, the following
estimation holds:

‖uk − vk‖2 ≤ 4εK1C
K1−1 (‖u1‖2 + ‖u1‖1) ,

(37)
with the constant C defined in (29).

(ii) Let us denote

ε0 , 4εK1C
K1−1 (‖u1‖2 + ‖u1‖1) . (38)

Under Assumptions 2 and 3, for each regular ob-
servation trajectory {yk : 1 ≤ k ≤ K1} ⊂ BL, and

for ε small enough such that M , ε
− 2
d+2δ

0 > M0,
with M0 defined in (30), we have

‖uk − vk1{|x|≤M}‖1 <
(
C(d)

1
2 +

1

δ
C0C(d)

)
ε

2δ
d+2δ

0 ,

(39)
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for all 1 ≤ k ≤ K1, where C(d) > 0 is a constant
that only depends on d and C0 is the constant de-
fined in (30).

The detailed proof of Theorem 2 is presented in Section
6.1. Here, we would like to remark that the distance
assumption (36) in Theorem 2 naturally holds if we only
consider the finite time interval 1 ≤ k ≤ K1 with initial
value ũ1 = u1, because ũk itself is an element in VN1

.
For the case k > K1, however, Distance Assumption
only holds under the stability property of the system,
which is shown later in Lemma 1 in Section 4.2.

With Theorem 2, we can derive the following two corol-
laries, which state the convergence of RNNSM in a fi-
nite time interval both for regular observation trajecto-
ries and in the sense of taking expectations. The proof of
these two corollaries are given in Section 6.2 and Section
6.3, respectively.
Corollary 1. Under Assumptions 2 to 4 and the addi-
tional distance assumption in Theorem 2, for each regu-
lar observation trajectory {yk : 1 ≤ k ≤ K1} ⊂ BL, we
have for 1 ≤ k ≤ K1,

‖πk − ρk1{|x|≤M}‖2 = O

(
ε

2δ
d+2δ

0

)
, (40)

as ε0 → 0, where ε0 is defined in (38).
Remark 3. The truncated functions vk1{|x|≤M} (or
ρk1{|x|≤M}) still lie in an N1-dimensional vector space
which is spanned by {ψi1{|x|≤M} : 1 ≤ i ≤ N1}. For
the rest of our discussion, we will not distinguish vk
(and ρk) with the truncated functions vk1{|x|≤M} (and
ρk1{|x|≤M}), or simply make the assumption that vk
(and ρk) vanish when |x| ≥ M , because in our proposed
RNNSM, it is the coefficients ai(k) that are more impor-
tant, rather than the exact form of the basis functions.
Corollary 2. Under Assumptions 2 to 5, and the ad-
ditional Distance Assumption in Theorem 2, for 1 ≤
k ≤ K1, ρk approximates πk well in the sense that for
each ε > 0, there exists an N1-dimensional vector space
VN1

, such that the density function ρk ∈ VN1
constructed

in RNNSM satisfies

E [‖πk − ρk1Ak‖2] < ε, ∀ 1 ≤ k ≤ K1, (41)

where Ak , {sup1≤j≤k |yj | ≤ L(ε)} is the event contain-
ing observations with regular trajectories up to time step
k, with L(ε) a constant depending on ε.
Remark 4. The meaning of ρk1Ak indicates that our
proposed filtering algorithm will only give responses to
regular trajectories for practical use. In fact, since every
observation sensor has its own bandwidth or threshold, it
is supposed to report error when the bandwidth or thresh-
old is broken through, and therefore, it is reasonable to
consider the performance of filtering algorithms based on
only regular observations. Moreover, just as we did in Re-

mark 3, we will not distinguish ρk and ρk1Ak when there
in no confusion.

4.2 Convergence analysis for the whole timeline

In this subsection, we will prove that Theorem 1 in fact
holds throughout the whole timeline under the stabil-
ity assumption of filtering systems. To this end, we will
first show that under Assumption 1, the Distance As-
sumption in Theorem 2 holds, i.e., for all k ≥ 1, the
normalized function N (ũk) is indeed close to the finite
dimensional space VN1

, when N1 is sufficiently large.
Lemma 1. Under Assumptions 1 - 5, the normalized
function N (ũk) can be approximated well by elements in
VN1

, the finite-dimensional vector space constructed in
RNNSM, for sufficiently large N1, in the sense that for
each ε > 0, there exists K0, N0 ∈ N, such that

E‖N (ũk)− wk‖2 < ε, ∀ k ≥ 1. (42)

where wk is the projection of N (ũk) onto the finite di-
mensional space VN1 = Span{IK0,N0}.

The technical and somewhat tedious proof of Lemma
1will be included in Section 6.4. We are now prepared to
present a comprehensive proof of Theorem 1.

Proof of Theorem 1. For each ε > 0, according to As-
sumption 1, there exists a constant K1 > 0, such that

E‖πµk − π
ν
k‖2 <

ε

2
. (43)

for all k ≥ K1 and initial values µ, ν ∈ L2(Rd).

In the meanwhile, according to Lemma 1 and the theory
of Kolmogorov n-width (11), for arbitrary ε′ > 0, there
exist K0, N ∈ N, such that

(i) There exists an N -dimensional subspace HN ⊂
L2(Rd) such that ‖F2(u, y)− F̃2(u, y)‖22 ≤ ε′‖u‖22,
for all y ∈ BL, u ∈ L2(Rd).

(ii) There exists a finite dimensional space Ṽ given by

Ṽ = Span{IK0,N}, such that E‖N (ũk) − wk‖2 <
ε′, for all k ≥ 1, wherewk is the projection ofN (ũk)

onto Ṽ .

Let us take K = max{K0,K1}, and define VN1 =
Span{IK,N}. Notice that according to the definition of
ũk in (15), the value of ũk only depends on the coeffi-
cient N in IK,N , and is independent of the coefficient

K. Because Ṽ ⊂ VN1
, we have

dist(N (ũk), VN1
) ≤ dist(N (ũk), Ṽ ) < ε′, (44)
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Thus, according to Theorem 2 and Corollary 2, we can
choose sufficiently small ε′ in (44), such that the ap-
proximated conditional pdf ρk ∈ VN1 obtained through
RNNSM (28) satisfies

E [‖πk − ρk‖2] <
ε

2
, ∀ 1 ≤ k ≤ K. (45)

which proves the convergence result for 1 ≤ k ≤ K1,
since K1 ≤ K.

For k ≥ K1 + 1, consider the exact solution to the filter-
ing system, π̃ = {π̃j : k −K1 ≤ j ≤ k}, on the interval
[k − K1, k], with initial value π̃k−K1

= ρk−K1
. On the

one hand, because of the filtering stability, π̃k is close to
πk; on the other hand, because the initial value π̃k−K1

is equal to ρk−K1 , the convergence result in the case of
finite time interval also implies that π̃k is close to ρk. In
fact, combining (43) and (45), we have

E [‖πk − ρk‖2] ≤ E‖ρk − π̃k‖2 + E‖π̃k − πk‖2 < ε.
(46)

At last, for each f ∈ L2(Rd), according to Cauchy-
Schwartz inequality,

E |E[f(xk)|Yk]− β(a(k))| ≤ E‖f‖2‖πk − ρk‖2 < ε‖f‖2.

which is the desired result.

Finally, we would like to give a rough estimation of the
convergence rate of RNNSM. On the one hand, according
to the Kolmogorov n-width theory [29], the convergence
rate in (11) with respect to N is exponential. On the
other hand, according to the filtering stability theory
[3], for a quite general class of stable filtering systems,
the convergence rate in (16) with respect to K is also
exponential. In the meanwhile, even if we do not consider
the potential linear dependence of functions in IK,N , the
dimension N1 of VN1

not bigger than NK , which is the
cardinality of IK,N .

Therefore, in order to obtain an error bound ε > 0, N
andK only need to be of order log

(
1
ε

)
, as ε→ 0, and the

relationship between ε and the number of basis functions
N1

(
≤ NK

)
can be roughly estimated as

ε ≤ N
− C2

logC1+log log( 1
ε )

1 . (47)

for some constants C1, C2 > 0, corresponding to the
smoothness of likelihood functions and the stability of
the filtering system, respectively. Although the denom-
inator in the exponential on the right-hand side of (47)
contains a term log log

(
1
ε

)
, which will tend to infinity as

ε → 0, yet for practice, it is more reasonable to regard
this term as a constant, because log log

(
1
ε

)
< 4, even if

we take ε = 10−16.

Therefore, for filtering systems with high stability,
RNNSM also enjoys a high convergence rate with re-
spect to the number of basis functions N1, which is
often referred to as spectral accuracy [33].

5 Numerical Results

5.1 Neural network architecture

The RNN architecture of RNNSM is as follows [13]:{
ãk+1 = Φ (ãk, yk+1; θ1) ,

f̂(xk) = Γ (ãk; θ2) ,
(48)

where θ = [θ1, θ2] represents all the trainable parame-
ters. As an approximation to the open dynamics (28), Φ
represents three-layered feedforward network with one
input layer, one hidden layer with l neurons and one out-
put layer, Γ is a linear function with input dimension l
and output dimension is equal to the dimension of f(x).
Remark 5. Here in (48), a generic RNN architecture
is presented, and hereafter in this paper, we will apply
this generic RNN to conduct our proposed RNNSM. In
the meanwhile, other RNN architectures, such as long-
short term memory (LSTM) [15] and gated recurrent
unit (GRU) [8], mathematically share the same expres-
sion as (48). Therefore, it is straightforward to replace
the generic architecture by these variants of RNN, and
may result in an improvement in the training speed and
performance. For applications, finding the most suitable
network architecture for our proposed RNNSM is also a
promising direction, and is left for future work.

Since the optimal estimate of the statistics f(xk) (and
the exact solution of filtering problem) is E [f(xk) |Yk ],
we aim to minimize

L0(θ) :=
1

K1 + 1
E

[
K1∑
k=1

∣∣∣f̂(xk)− E [f(xk) |Yk ]
∣∣∣2] ,

(49)
where K1 ∈ N is the total time step in training.
However, we cannot obtain the data of E[f(xk)|Yk]
using filtering system. One key observation is that

E[|f(xk) − f̂(xk)|2] = E[|f(xk) − E[f(xk)|Yk]|2] +

E[|E[f(xk)|Yk] − f̂(xk)|2]. Therefore argminθL0(θ) =
argminθL(θ), where

L(θ) ,
1

K1 + 1
E

[
K1∑
k=1

∣∣∣f̂(xk)− f(xk)
∣∣∣2] . (50)

It means that the training data we used are {yk, f(xk)}K1

k=1
which can be easily generated from the system (1),
rather than using the unavailable E [f(xk) |Yk ]. In real
computations, the expectation in L(θ) is approximated
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by the average of the results of a large number of trials,
and hence the loss function is defined as follows:

L(K2)(θ) ,
1

K2

1

K1 + 1

K2∑
j=1

K1∑
k=1

∣∣∣f̂(xk)(ωj)− f(xk)(ωj)
∣∣∣2 ,

(51)

where f̂(xk)(ωj) is the output of RNNSM with input
yk(ωj), andK1,K2 are the total time steps and the num-
bers of Monte Carlo paths in training, respectively.

Training data is crucial for the RNNSM. If we know the
system dynamics in (1), we can generate synthetic data{
{(yk(ωj), f(xk)(ωj))}K1

k=1

}K2

j=1
by simulating these dy-

namics. Classic filtering algorithms like PF and EKF also
require knowledge of these system dynamics. Without
this knowledge, EKF and PF cannot be applied. When
real-world data is available, we collect observations from
sensors or measurement devices in the system. Some-
times, relevant datasets are available from public repos-
itories or previous studies. For example, in stock price
prediction, historical price data can be used [9].

The detailed steps of the implementation of RNNSM and
the training procedure of the RNN architecture (48) are
listed in Algorithm 1.

Algorithm 1 Implementation of Recurrent Neural Net-
work Spectral Method

Off-line algorithm: Training RNN
(1) Input the parameters including: batch size M ;

total epochs I; hidden layer neurons l; learning
rate λ.

(2) Input synthetic training data or real-world data{
{(yk(ωj), f(xk)(ωj))}K1

k=1

}K2

j=1
.

(3) Train RNN with the following procedure. Record
the trained RNN with parameter θ.
for i = 1, . . . I do

1. Sample batch
{
{(yτi(ωj), f(xk)(ωj))}K1

k=1

}M
j=1

from the training data;
2. Compute loss L(M)(θ) via (51);
3. Update θ via θ ←− θ − λ∇θL(M)(θ).
end for

Online algorithm: Implementation of RNNSM
while time step k ≥ 1 do

(1) Input the observation yk to the trained RNN
with parameter θ.

(2) Record the output f̂k from the RNN as the so-
lution of the filtering problem (i.e. the estima-
tion to f(xk)) at time step k.

(3) Update k ← k + 1.
end while

For selecting the hyperparameters in RNNSM, we ap-
proximate the true loss function using sample paths in

the training set via Monte Carlo methods, choosing over
1500 paths. The batch size, which affects training speed,
ranges from 32 to 512. The number of hidden neurons
l, learning rate, and total epochs significantly influence
the results. The parameter l impacts the model’s ap-
proximation capability: if too small, it fails to capture
filtering information; if too large, it slows convergence.
An appropriate l is proportional to the linear or squared
dimensionality of the state d. A learning rate between
10−5 and 10−3 is suitable, and the total epochs should
range from 1500 to 5000.

In order to compare the performance of different meth-
ods, we introduce the Mean Squared Error (MSE) and
the Mean Error at time k (MEk) based on 100 realiza-
tions, which are defined as follows:

MSE ,
1

100

100∑
l=1

1

K + 1

K∑
k=0

∣∣∣x(l)k − x̂(l)k ∣∣∣2 ,
MEk ,

1

100

100∑
l=1

∣∣∣x(l)k − x̂(l)k ∣∣∣ ,
(52)

where x
(l)
k is the real state at time instant k in the l-

th experiment and x̂
(l)
k is the estimation of x

(l)
k , with

0 ≤ k ≤ K, where K ∈ N is the total time step.

In the following numerical illustrations, we evaluate the
efficacy of RNNSM compared to EKF and PF. All exper-
iments were conducted on NVIDIA RTX2060 GPUs and
a computational platform with 16 Intel Core i7-10700
CPUs at 2.90 GHz. RNNSM is implemented using Py-
Torch, while EKF and PF use NumPy. 3

5.2 Example 1

The numerical example we consider in this paper is the
following discrete filtering system:{

xk+1 = (Id + αAd)xk + α cos(xk) + vk,

yk = h(xk) + wk,
(53)

where h(x) = α[x31, · · · , x3d]>, k = 1, · · · ,K with K =
1000, α = 0.01, the initial state x1 follows N (0, Id) with
identity matrix Id ∈ Rd×d, d = 10, {vk}Kk=1 and {wk}Kk=1
are mutually independent Gaussian random vectors with
zero means and covariance matrices E

[
vkv
>
k

]
= 0.01Id

3 The codes of the following numerical examples are avail-
able on the server at Beijing Institute of Mathematical Sci-
ences and Applications (BIMSA). Readers with interests
in the implementations of RNNSM may contact the corre-
sponding authors to get access to the codes for academical
use.
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and E
[
wkw

>
k

]
= 0.01Id, and Ad = [aij ] is a matrix with

elements as follows: aij =


0.5, if i+ 1 = j,

−1, if i = j,

0, otherwise.

Here, we compare the RNNSM with the classic EKF
and PF. The initial mean and covariance of EKF are 0
and Id, respectively. The parameters used in RNNSM is
listed in TABLE 3.

Table 3
The parameters of RNNSM used in the three numerical ex-
amples.

Parameters Ex. 1 Ex. 2 Ex. 3

paths in training set 1500 1500 1500

paths in test set 100 100 100

activation function ReLU ReLU ReLU

optimizer Adam Adam Adam

total epochs I 2000 2000 2000

batch size M 256 64 64

hidden layer neurons l 70 450 20

learning rate 0.0005 0.0001 0.0005

We first set the training step of RNNSM to K1 = K =
1000 and NPF, the number of particles of PF to the
set {100, 500, 1000, 1500, 2000, 2500, 3000}. The perfor-
mance of the three algorithms based on 100 experiments
is shown in TABLE 4. It can be seen that RNNSM is
the fastest, its running time being only 2.8% of that of
the simple EKF. This is because the training session of
RNNSM is done offline and we only need to run a sim-
ple RNN with l = 70 hidden layer neurons.The MSE of
RNNSM is almost similar to that of PF with 3000 par-
ticles, while the running time of RNNSM is only 2 ‱
of that of PF. Considering the trade-off between MSE
and computational time, RNNSM gives the best result.

Table 4
The average performance of different methods based on 100
simulations for system (53) in example 1.

Method Number of particles MSE Running time (s)

EKF \ 1.5868 0.0423

RNNSM \ 1.5083 0.0012

PF

1000 1.5483 1.9689

2000 1.5185 4.4508

3000 1.5070 6.2048

The MEk of different algorithms are displayed in Fig.
4. As time k goes on, the errors MEk tend to be stable.
RNNSM and PF with 3000 particles have similar per-
formance and outperform the other algorithms. The sta-
bility of MEk partially verifies that the filtering system
(53) possesses the stable property stated in Assumption
1. Because as an empirical realization of statistics, for
large k1, k2 � 1, MEk1 and MEk2 can be regarded as the

mean error at the same time K0, with different initial
distributions πk1−K0 and πk2−K0 . The stability of MEk
thus, to some extent, validate the capability of filtering
system (53) to ‘forget’ initial values.

0 200 400 600 800 1000
Time

1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

M
E_
k

960 980
1.35
1.40
1.45

RNNSM
EKF
PF_1000
PF_2000
PF_3000

Fig. 4. The MEk of RNNSM, EKF and PF. PFN represents
the estimate by PF with N particles.

Next, we train RNNSM with training step K1 ∈
{50, 200, 400, 600, 800, 1000} and test it with K = 1000
steps. The result is shown in Fig. 5. For this filtering
system with stability property, the 1000-time-step MSE
of RNNSM starts to approach the theoretical bound
obtained by particle filters with training data of only
400 time steps. This numerical result verifies that we
can train the RNNSM with temporal data generated
through a short period of time while implementing it
for a much longer period of time, which coincides with
the construction procedure of the finite-dimensional
vector space VN1 in Section 3 and our theoretical result
obtained in Section 4.

5.3 Example 2

We consider system (53) with dimension d = 50. The
other settings are the same as that of (53). The param-
eters used in RNNSM are listed in TABLE 3. Let parti-
cle number NPF ∈ {10000, 50000, 90000}. The detailed
MSE based on 100 experiments can be found in Table
5. It can be found that RNNSM shows apparent advan-
tages over EKF and PF from both accuracy and com-
putational time in this high-dimensional example.

5.4 Example 3

We consider the following discrete system:{
xk+1 = ϕ(xk) + vk
yk+1 = h(xk+1) + wk+1

, (54)

200 400 600 800 1000
Training steps

1.5

1.6

1.7

1.8

1.9

2.0

M
SE

RNNSM
EKF
PF

Fig. 5. The MSE of RNNSM with different training steps.
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Table 5
The average performance of different methods based on 100
simulations for system (53) in example 2.

Method Number of particles MSE Running time (s)

EKF \ 3.7149 0.2795

RNNSM \ 3.3201 0.0009

PF

10000 3.8508 96.6163

50000 3.6870 440.1928

90000 3.6466 1093.7228

where vk ∼ N(0, I2), wk ∼ N(0, 0.01I2),

ϕ(x) =

 −x31
1 + 5x21

− 0.2x2

− x2
4 + x21 + x22

 , h(x) =

[
−x1x2
x32

]
,

the initial state follows N (m1, I2), with m1 = [1, 1]>,
and 1 ≤ k ≤ K = 100. The initial mean and covariance
used in EKF and PF are [0, 0]> and I2, respectively.
The initial hidden state of RNNSM is a zero vector and
parameters used in RNNSM are listed in TABLE 3.

The estimation results of the EKF, PF, and RNNSM are
displayed in Fig. 6a-6b. It is observed that RNNSM can
track the real state well, EKF completely fails and PF
suffers from particle degeneracy and cannot output effi-
cient numerical results in some experiments. For exam-
ple, in Fig. 6b, the estimation of PF disappears around
instant 70 in this experiment. This conclusion is also
supported by Fig. 6c, which presents the MEk based on
100 experiments. Detailed MSE and computation times
can be found in TABLE 6.

Table 6
The average performance of different methods based on 100
simulations for system (54).

Method Number of particles MSE Running time (s)

EKF \ \ 0.0033

RNNSM \ 0.4250 0.000049

PF
500 \ 0.0590

800 \ 0.0720

5.5 Discussion

Theoretically, PF demonstrates a promising characteris-
tic whereby, under certain assumptions, the mean square
error between the optimal estimate of a test function
and its PF estimation converges to zero at a rate of
1/NPF [11]. Consequently, the PF estimation can be con-
sidered approximately optimal when NPF is sufficiently
large.

While both PF and RNNSM can achieve arbitrarily
small estimation errors when functioning optimally,
the distinction lies in their underlying mechanisms. PF
relies on finite stochastic particles to approximate the
posterior density function of the state, whereas RNNSM
employs finite basis functions, akin to the finite neurons

in its hidden state, to perform the same approximation.
Notably, RNNSM leverages supervised learning princi-
ples, optimizing the finite neurons in its hidden state to
refine its estimation.

In practical terms, simulations reveal a substantial time
advantage for RNNSM over PF, particularly when aim-
ing for comparable accuracy. This efficiency stems from
RNNSM’s offline training step, which contrasts with
the real-time nature of PF’s operation. Thus, while
both methods may converge to similarly accurate esti-
mates, RNNSM offers a more computationally efficient
approach, making it a compelling choice in real-world
applications.

6 Detailed Proofs of the Convergence Results

6.1 Proof of Theorem 2

Proof of Theorem 2. (i) For the L2-norm estimation
(37), the difference between uk and vk can be estimated
by ‖uk − vk‖2 ≤ ‖uk − ũk‖2 + ‖ũk − vk‖2.

For 1 ≤ k ≤ K1 − 1, the difference between ũk and uk
satisfies

‖uk+1 − ũk+1‖2
≤‖F2(F1(uk), yk+1)−F2(F1(ũk), yk+1)‖2

+ ‖F2(F1(ũk), yk+1)− F̃2(F1(ũk), yk+1)‖2

Because exp(− 1
2 (y − h(x))>R−1(y − h(x))) ≤ 1,

‖F2(F1(uk), yk+1)−F2(F1(ũk), yk+1)‖2 ≤ C‖uk−ũk‖2,
where the second inequality holds by Assumption 2.

Next, according to (14), for any ε > 0, there exists

N ∈ N, such that the approximation functional F̃2, cor-
responding to N satisfies

‖F2(u, y)− F̃2(u, y)‖2 ≤ ε‖u‖2, (55)

for all y ∈ BL, u ∈ L2(Rd), and thus,

‖F2(F1(ũk), yk+1)− F̃2(F1(ũk), yk+1)‖2 ≤ Cε‖ũk‖2

holds for each regular observation trajectory {yk : 1 ≤
k ≤ K1} ⊂ BL. Hence,

‖uk+1 − ũk+1‖2 ≤ C(‖uk − ũk‖2 + ε‖ũk‖2). (56)

Inductively, we have ‖uk − ũk‖2 ≤ ε
∑k−1
j=1 C

j‖ũk−j‖2.

Finally, let us estimate the L2-norm of the approximated
solution ũk, for 1 ≤ k ≤ K1.
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Fig. 6. Estimation results of the EKF, PF and RNNSM for the example (54).

Note that, ‖ũk+1‖2 = ‖F̃2(F1(ũk), yk+1)‖ ≤ C(1 +
ε)‖ũk‖2, and ‖ũk‖2 ≤ Ck−1(1 + ε)k−1‖u1‖2, 1 ≤ k ≤
K1. For all 1 ≤ k ≤ K1,

‖uk − ũk‖2 ≤ εCK1−1
K1−2∑
j=0

(1 + ε)j‖u1‖2.

Since
∑K1−2
j=0 (1 + ε)j = 1

ε ((1 + ε)K1−1 − 1), and for

sufficiently small ε, for example 0 < ε < 1
K1−1 , we have

(1 + ε)K1−1 ≤ 1 + 3(K1 − 1)ε, and thus,

‖uk − ũk‖2 ≤ 3ε(K1 − 1)CK1−1‖u1‖2, (57)

for all 1 ≤ k ≤ K1.

Next, we need to estimate the norm ‖ũk − vk‖2. Let us
denote by wk the projection of N (ũk) onto the finite
dimensional space VN1 , then for all 1 ≤ k ≤ K1,

‖N (ũk)− wk‖2 = dist(N (ũk), VN1
) < ε. (58)

Since ũk = ‖ũk‖1N (ũk), the function w̃k , ‖ũk‖1wk is
also the projection of ũk onto VN1

. The idea is to track
the evolution of the difference vk − w̃k.

Firstly, since w̃k is the projection of ũk on VN1 , we
have for all 1 ≤ i ≤ N1, 〈w̃k+1, ψi〉 = 〈ũk+1, ψi〉 =

〈F̃2(F1(ũk), yk+1), ψi〉. Because w̃k, vk ∈ VN1 ,

w̃k+1 − vk+1 =

N1∑
i=1

〈F̃2(F1(ũk − w̃k), yk+1), ψi〉ψi

+

N1∑
i=1

〈F̃2(F1(w̃k − vk), yk+1), ψi〉ψi.

According to Bessel’s inequality,

‖w̃k+1 − vk+1‖2 ≤ ‖F̃2(F1(ũk − w̃k), yk+1)‖2
+ ‖F̃2(F1(w̃k − vk), yk+1)‖2.

(59)

With Assumption 2 and the condition (55), ‖w̃k+1 −
vk+1‖2 ≤ C(1 + ε) (‖ũk − w̃k‖2 + ‖w̃k − vk‖2). Induc-

tively, we have ‖w̃k−vk‖2 ≤
∑k−1
j=1 C

k−j(1+ε)k−j‖ũj−
w̃j‖2. Thus, for 1 ≤ k ≤ K1,

‖ũk − vk‖2 ≤
k∑
j=1

Ck−j(1 + ε)k−j‖ũj − w̃j‖2. (60)

According to (58), ‖ũj − w̃j‖2 = ‖ũj‖1‖N (ũj)−wj‖2 <
ε‖ũj‖1, and for all 1 ≤ k ≤ K1,

‖ũk − vk‖2 ≤ εK1C
K1−1(1 + ε)K1−1‖u1‖1

≤ 4εK1C
K1−1‖u1‖1,

(61)

Therefore, ‖uk − vk‖2 ≤ ‖uk − ũk‖2 + ‖ũk − vk‖2 ≤
4εK1C

K1−1 (‖u1‖2 + ‖u1‖1).

(ii) For the L1-norm estimation (39), note that

‖uk−vk1{|x|≤M}‖1

=

∫
|x|≤M

|uk − vk|dx+

∫
|x|≥M

ukdx.
(62)

According to Cauchy-Schwartz inequality and (i),∫
|x|≤M |uk − vk|dx ≤ C(d)

1
2 ε1−

d
d+2δ = C(d)

1
2 ε

2δ
d+2δ

0 .

For the integration outside the ball {x ∈ Rd : |x| ≤M},
according to Assumption 3,∫

|x|≥M
ukdx ≤

∫
|x|≥M

C0

|x|d+δ
dx = C0C(d)

1

δ
ε

2δ
d+2δ

0 .

Thus, we obtain the desired result.

6.2 Proof of Corollary 1

Proof of Corollary 1. Firstly, with Assumption 3,

‖uk − vk1{|x|≤M}‖2

≤
(∫
|x|≤M

|uk − vk|2dx+

∫
|x|≥M

(
C0

|x|d+δ

)2

dx

) 1
2

.
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According to (37), which is the first result of Theorem

2, ‖uk − vk‖2 < ε0, and M = ε
− 2
d+2δ

0 , thus

‖uk − vk1{|x|≤M}‖2 <
(

1 +
C2

0C(d)

d+ 2δ

) 1
2

ε0. (63)

Moreover, since ‖uk‖1 ≥ Ck−11 ‖u1‖1 ≥ CK1−1
1 ‖u1‖1 by

(31), ‖uk‖2 ≤ Ck−1‖u1‖2 ≤ CK1−1‖u1‖2 by (29) and
according to Theorem 2,

‖uk−vk1{|x|≤M}‖1 <
(
C(d)

1
2 +

1

δ
C0C(d)

)
ε

2δ
d+2δ

0 , (64)

for all 1 ≤ k ≤ K1, then for sufficiently small ε0 > 0,
‖vk1{|x|≤M}‖1 ≥ 1

2C
K1−1
1 ‖u1‖1; ‖vk1{|x|≤M}‖2 ≤

2CK1−1‖u1‖2. Hence,

‖πk − ρk1{|x|≤M}‖2

≤
‖vk1{|x|≤M}‖2‖uk − vk1{|x|≤M}‖1

‖vk1{|x|≤M}‖1‖uk‖1

+
‖uk − vk1{|x|≤M}‖2

‖uk‖1

≤4CK1−1‖u1‖2
C2K1−2

1 ‖u1‖21

(
C(d)

1
2 +

1

δ
C0C(d)

)
ε

2δ
d+2δ

0

+
1

CK1−1
1 ‖u1‖1

(
1 +

C2
0C(d)

d+ 2δ

) 1
2

ε0.

which is of order O

(
ε

2δ
d+2δ

0

)
as ε0 → 0.

6.3 Proof of Corollary 2

Proof of Corollary 2. According to Assumption 5,
for each ε > 0, there exists L(ε) > 0 such that

P

[
sup
k≥1
|yk| > L(ε)

]
≤ ε2

4M1
, with M1 defined in (33).

According to Corollary 1, there exists anN1-dimensional
space VN1

and ρk ∈ VN1
obtained by RNNSM, such that

‖π̂k − ρk‖2 < ε
2 , for all 1 ≤ k ≤ K1 and almost surely in

the event Ak. Since E
[
‖πk‖22

]
≤M1, we have

E [‖πk − ρk1Ak‖2] <
ε

2
P (Ak) + E

[
‖πk‖21Ac

k

]
≤ ε

2
+
√
E[‖πk‖22]P (Ack) ≤ ε

2
+

√
M1

ε2

4M1
= ε,

6.4 Proof of Lemma 1

Proof of Lemma 1. The idea of the proof is to find an
element w̄k in VN1

using Assumption 1 for each k ≥ 1,
such that the distance between w̄k and N (ũk) is smaller
than ε, then with the property of the projection, (42)
holds for all k ≥ 1.

Step 1: To this end, we first show that for each ε > 0,
there exists N ∈ N, such that E [‖N (ũk)− πk‖2] < ε

3 ,
∀ k ≥ 1. In fact, for an arbitrarily given ε > 0, under
Assumption 1, there exists a constant K0 > 0, such that
E‖πµk − πνk‖2 < ε

6 , for all initial distributions µ, ν ∈
L2(Rd), and k ≥ K0 + 1.

Notice that the additional Distance Assumption only
make sense when we consider the approximation results
for vk and ρk, which are elements in the finite dimen-
sional space VN1 . Without the Distance Assumption, for
this constant K0 chosen above, we can still derive the
following estimation of the distance between N (ũk) and
πk:

E [‖N (ũk)− πk‖2] <
ε

6
, ∀ 1 ≤ k ≤ K0, (65)

because the estimation (57) in the proof of Theorem 2
is independent of the Distance Assumption.

Now, for each k ≥ K0 + 1, let us consider the exact
solution of the filtering problem, π̃ = {π̃j : k−K0 ≤ j ≤
k}, on [k−K0, k], with initial value π̃k−K0 = N (ũk−K0).
According to the result (65), E [‖N (ũk)− π̃k‖2] < ε

6 .

In the meanwhile, since π̃ evolves according to the exact
solution of the filter system, E‖π̃k−πk‖2 < ε

6 . Thus, for
all k ≥ 1, E‖N (ũk)−πk‖2 ≤ E‖N (ũk)− π̃k‖2 +E‖π̃k−
πk‖2 < ε

3 .

Step 2: Let VN1 = Span{IK0,N} be the finite dimen-
sional space in the RNNSM, and N1 is the dimension
of VN1 . In this step, we would like to find an element
w̄k ∈ VN1

for each k ≥ 1, such that E‖N (ũk)−w̄k‖2 < ε.

For 1 ≤ k ≤ K0, according to our construction of VN1
,

the function ũk is inside the finite dimensional space VN1

and we can take w̄k = N (ũk). For k ≥ K0 + 1, Step
1 shows that E‖N (ũk) − πk‖2 < ε

3 . In the meanwhile,
E‖πk − πK0‖2 < ε

6 , because we can regard πk and πK0

as the exact solution of the filtering problem at time K0,
with initial value πk−K0+1 and π1. Therefore,

E‖N (ũk)−N (ũK0
)‖2 ≤ E‖N (ũk)− πk‖2+

E‖πk − πK0‖2 + E‖πK0 −N (ũK0)‖2 < ε.

Since ũK0 ∈ VN1 and N (ũK0) is only a scaling of ũK0 ,
we may take w̄k = N (ũK0

) and we obtain the desired
result.
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7 Conclusion

In this paper, we propose a novel RNNSM to numeri-
cally solving stable nonlinear filtering problems. Heuris-
tically, the introduction of RNN allows us to construct a
finite-dimensional space which inherits the structure of
specific filtering systems and improve the approximation
efficiency in comparison with classical spectral meth-
ods. The effectiveness of the proposed RNNSM is ver-
ified both theoretically and numerically. The thorough
convergence analysis of RNNSM also serves as a mathe-
matical interpretation of the deep learning procedure of
RNN when dealing with temporal data.

As is shown in the construction of the finite-dimensional
vector space VN1 , the approximation efficiency of
RNNSM depends on the efficiency of using vector space
to approximate likelihood functions and the decay rate
of the dependency of conditional distribution πk on
initial values.

The former one, according to the theory of Kolmogorov
n-width, depends on the observation function h(x). A
possible direction for further studies may be the specific
dependence of the subspace approximation efficiency (or
the convergence rate of (11)) on the type of observation
function h.

The latter one corresponds to the well-known ‘curse of
memory’ when implementing recurrent neural network
in practice [22]. Therefore, RNNSM is proposed only for
filtering systems with additional stability properties or
problems in finite time. In both cases, the target out-
put of the recurrent neural network, i.e., the conditional
expectations of the state process do not preserve long
memory of the observations.
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