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The Stochastic Stability Analysis for Outlier
Robustness of Kalman-type Filtering Framework

Based on Correntropy-Induced Cost
Yangtianze Tao, Jiayi Kang and Stephen Shing-Toung Yau, Life Fellow, IEEE

Abstract—This note introduces the Modified Extended Kalman
Filter (MEKF), reformulating the EKF update step within a non-
linear regression framework. We propose a novel outlier-robust
scheme, MCIC-MEKF, utilizing the minimum correntropy-
induced cost criterion. We provide a theoretical analysis of its out-
lier robustness through stochastic stability, proving exponentially
bounded mean square posterior estimation error under natural
conditions. Additionally, we present a technical approximation
for the adaptive Kalman gain, enhancing efficiency without
compromising performance. Simulation results confirm MCIC-
MEKF’s robustness against various non-Gaussian noises with
large outliers, outperforming several filtering benchmarks.

Index Terms—Stochastic Stability, Maximum Correntropy Cri-
terion, Extended Kalman Filter, Outliers.

I. INTRODUCTION

State estimation in state-space models is crucial for au-
tomatic control and signal processing, utilizing fundamental
filtering techniques applied in numerous engineering appli-
cations [1]. The Kalman Filter (KF) is the optimal solution
for linear systems with Gaussian noises [2], while nonlinear
systems often employ the Extended Kalman Filter (EKF) [3],
the Unscented Kalman Filter (UKF) [4], or the Cubature
Kalman Filter (CKF) [5], all effective under Gaussian noise as-
sumptions. However, non-Gaussian heavy-tailed noises, com-
mon in target tracking, audio communication, and power
systems, necessitate alternatives like the particle filter (PF) [6],
[7], which estimates posterior distributions through sequential
Monte Carlo sampling [8] or control method modifications [9].

Non-Gaussian noise estimation challenges have spurred
research into robust estimators for heavy-tailed noises. Key
approaches include M-estimation-based Huber KF [10], [11],
information theoretic methods [12], [13], and correntropy-
based MCC filters [14]–[16]. While MCC filters show promise
in handling outliers, their theoretical robustness quantification
remains an open research area.
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In filtering problems, robustness is primarily considered in
two contexts: noise uncertainty and model uncertainty. The
former, as highlighted, involves resilience against inaccuracies
in noise characterization, while the latter deals with discrep-
ancies between the actual and assumed models, often termed
as ”model mismatch” [17], [18]. The model mismatch may
result from discretization errors in continuous systems or
an inadequate understanding of the noise processes. Detailed
exploration of model uncertainty is provided in [19] and [20].
However, our discussion will mainly concentrate on addressing
the robustness of noise uncertainty, especially in managing
outliers within the noise.

This note presents a novel Modified EKF (MEKF), refor-
mulating the EKF update step as a nonlinear regression opti-
mization problem. We introduce the MCIC-MEKF, an outlier-
robust scheme utilizing the minimum correntropy-induced cost
(MCIC) [21]. Based on technical error representations [22],
this approach aligns with the maximum correntropy criterion
(MCC) but is framed as a regression cost minimization. The
Kalman-type update features an adaptive Kalman gain com-
puted via adjustable prior and observation noise covariance
matrices. Our work analyzes the robustness of a novel Kalman-
type update, examining its stochastic stability [23]–[25]. We
quantify MCC-based filters’ robustness, establishing condi-
tions for consistent prior error estimation and exponentially
bounded posterior error. Our approach optimizes adaptive
Kalman gain without iterative solutions [15], [26], [27]. Sim-
ulations demonstrate MCIC-MEKF’s robustness under non-
Gaussian noise, contrasting with [19] by using a robust cost
function instead of a probabilistic method.

In this note, vectors are denoted in boldface lowercase, and
matrices in boldface uppercase. Transposition and expectation
are symbolized by {·}⊤ and E[·], respectively. The Gaussian
distribution is represented as N (µ,Σ). The spaces Rn and
Rm×n indicate n-dimensional Euclidean space and the set of
all m × n real matrices. The identity and zero matrices of
dimension n are In and 0n. The 2-norm, spectral norm, and
Frobenius norm of a vector x = (x1, . . . , xn) ∈ Rn and matrix
X = [xij ]n×n ∈ Rn×n are ∥x∥, ∥X∥, and ∥X∥F , respectively.
The weighted l2 norm with respect to matrix A is ∥x∥2A =
x⊤A−1x. diag(x1, . . . , xp) constructs a diagonal matrix, and
Tr(·) is the trace. Matrix inequality A ≥ B (A > B) indicates
A−B is non-negative (positive) definite.
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II. PRELIMINARIES

In this section, we shall first introduce the formulation of
robust filtering problems with outliers and some basic settings.
Then we shall review the concept of the correntropy-induced
cost.

A. Robust Filtering Problems with Outliers

Throughout this note, we consider the nonlinear autonomous
system with state xk ∈ Rn and observation yk ∈ Rm. It is
given by the following state and observation equations:

xk+1 = f(xk) +Wkwk (state equation), (1a)
yk = h(xk) +Vkvk (observation equation), (1b)

where f : Rn → Rn and h : Rn → Rm are nonlinear
functions that are assumed to be second-order continuously
differentiable, called state function and observation function,
respectively. State noise wk and observation noise vk are
uncorrelated multivariate Gaussian with zero means and co-
variance matrices Qk ∈ Rn×n and Rk ∈ Rm×m, respectively.

B. Correntropy-Induced Cost

We now introduce the correntropy-induced cost [21].

Definition II.1 (Correntropy-Induced Cost). The correntropy-
induced cost lσ(x) : R → [0,∞) is defined as lσ(x) =
σ2 (1− Gσ(x)), where Gσ(·) is defined in Eq.(2) with σ > 0
being a scale parameter, where Gσ is the Gaussian Kernel
given by

Gσ(e) = exp

(
− e2

2σ2

)
, (2)

and σ > 0 stands for the kernel bandwidth.

They are denoted by minimum correntropy-induced cost
(MCIC). Suppose our goal is to learn a parameter θ for a
given estimator x(θ), and let y denote the desired output.
Then MCIC-based estimation can be formulated as solving
the following optimzation problems:

θ̂MCIC = argmin
θ∈Ω

E [lσ (∥x(θ)− y∥)] , (3)

III. MODIFIED EXTENDED KALMAN FILTER FRAMEWORK

In this section, we present the MEKF Framework. Let
x̂k|k−1 and x̂k|k denote its estimated prior mean and estimated
posterior mean, respectively. Then its prior estimation error
ẽk|k−1 and posterior estimation error ẽk|k can be written by

ẽk|k−1 = xk − x̂k|k−1, ẽk|k = xk − x̂k|k. (4)

Let

Fk =
∂f

∂xk

∣∣∣∣
xk=x̂k−1|k−1

, Hk =
∂h

∂xk

∣∣∣∣
xk=x̂k|k−1

. (5)

To facilitate the subsequent deduction, it is essential to es-
tablish a representation for the linearization error, akin to the
approach presented in [22]. This approach elucidates that the

discrepancy between the function evaluated at the true state
and its estimate can be expressed as follows:

f(xk)− f(x̂k|k) = Fk+1ẽk|k +Akαkẽk|k

= F̂k+1ẽk|k.
(6)

Similarly there exist a problem-dependent scaling matrix Bk ∈
Rm×n and a unknown time-varying matrix βk ∈ Rm×n with
∥βk∥ ≤ 1 making h can be rewritten by

h(xk)− h(x̂k|k−1) = Hkẽk|k−1 +Bkβkẽk|k−1

= Ĥkẽk|k−1.
(7)

Here F̂k and Ĥk are given by

F̂k = Fk +Ak−1αk−1, Ĥk = Hk +Bkβk. (8)

Remark III.1. We use matrices αk,βk,Ak,Bk to ad-
dress linearization errors, ensuring exact equalities. This ap-
proach, similar to methods in [28]–[30], supports Kalman-
type filter stability. Our stability analysis is independent of
Ak,Bk,αk,βk magnitudes, enabling further theoretical ex-
ploration.

A. Nonlinear Regression Form and Optimization-based Up-
date Step

Here we shall illustrate how to transform the robust filtering
as a nonlinear regression problem. Let Pk|k−1 and Pk|k be
prior covariance and posterior covariance, respectively. Then
we consider the augmented model, which is given by[

x̂k|k−1

yk

]
=

[
xk

h(xk)

]
+ Ṽk, (9)

where Ṽk is given by Ṽk =

[
−ẽk|k−1

Vkvk

]
. Here we consider

Cholesky decompositions of Pk|k−1 and Rk, which are given
by

Pk|k−1 = Bp
k|k−1

(
Bp

k|k−1

)⊤
,Rk = Br

k (B
r
k)

⊤
. (10)

Then it is easy to see that

E
[
ṼkṼ

⊤
k

]
=

[
Pk|k−1 0

0 VkRkV
⊤
k

]
= BkB

⊤
k , (11)

with Bk =

[
Bp

k|k−1 0

0 VkB
r
k

]
. Left multiplication on both

sides of (9) by B−1
k , we obtain

dk = mk(xk) + ek, (12)

where dk =

[ (
Bp

k|k−1

)−1

x̂k|k−1

(VkB
r
k)

−1
yk

]
and mk(xk) =[ (

Bp
k|k−1

)−1

xk

(VkB
r
k)

−1
h(xk)

]
. Here we need to assume that

E
[
ẽk|k−1ẽ

⊤
k−l|k−l−1

]
= 0 for l ̸= 0. Note tha ek = B−1

k Ṽk,
which implies E

[
eke

⊤
k

]
= In+m, hence the residual error

ek is white noise, which makes Eq.(12) become a nonlinear
regression function. With the help of regression function (12),
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we can formulate a optimization-based filtering update step. It
will be given by mean of a cost function J ,

x̂k|k = argmin
xk

J (xk). (13)

Let us denote

exk =
(
Bp

k|k−1

)−1 (
x̂k|k−1 − xk

)
eyk = (VkB

r
k)

−1
(yk − h(xk)) .

(14)

Then J can take the following two forms J1 and J2,

J1(xk) = ρ (∥exk∥)+ρ (∥eyk∥) ,J2(xk) =

n+m∑
i=1

ρ (ek,i) , (15)

where ek,i is the i-th component of the residual vector ek. ρ
is a robust cost function (e.g., correntropy-induce cost) which
is used to cut off the outliers in residual vector ek.

B. Outlier-Robust MEKF Schemes

Based on the optimization framework (13), we derive a
novel outlier-robust EKF scheme using MCIC, termed MCIC-
MEKF with two variants, MCIC-MEKF-1 and MCIC-MEKF-
2, using cost functions J1 and J2 respectively, with ρ(x) =
lσ(x). These variants differ in adaptive adjustment scale but
share the same adjustment method. These two schemes share
the similar prediction step with the common EKF, which is
given by

x̂k|k−1 = f(x̂k|k−1), (16)

and
Pk|k−1 = F̂kPk−1|k−1F̂

⊤
k +WkQkW

⊤
k . (17)

Nextly, we shall deduce their update steps.
1) MCIC-MEKF-1: Let us take ρ(x) = lσ(x) in J1 defined

in Eq.(15) and denote it by L1, which is given by

L1(xk) = lσ

(
∥yk − h(xk)∥VkRkV⊤

k

)
+ lσ

(
∥xk − x̂k|k−1∥Pk|k−1

)
.

(18)

Then based on L1(xk), the update step for MCIC-MEKF-
1 can be obtained by solving the following optimization
problem:

x̂k|k = argmin
xk

L1(xk). (19)

Solving optimzation problem Eq.(19), we can obtain the
following new Kalman-type update step.

xk = x̂k|k−1 +K⋆
k

(
yk − h

(
x̂k|k−1

))
, (20)

and its Kalman gain K⋆
k is given by

K⋆
k = P⋆

k|k−1Ĥ
⊤
k

(
ĤkP

⋆
k|k−1Ĥ

⊤
k +R⋆

k

)−1

, (21)

where P⋆
k|k−1 and R⋆

k are given by

P⋆
k|k−1 =

Pk|k−1

lPk|k−1

, R⋆
k =

VkRkV
⊤
k

lRk

, (22)

with
lRk

= Gσ

(
∥yk − h (xk)∥VkRkV⊤

k

)
lPk|k−1

= Gσ

(
∥xk − x̂k|k−1∥Pk|k−1

)
.

(23)

The corresponding estimation error covariance can be calcu-
lated as

Pk|k =
(
In −K⋆

kĤk

)
Pk|k−1

(
In −K⋆

kĤk

)⊤
+K⋆

kVkRkV
⊤
k (K⋆

k)
⊤
.

(24)
2) MCIC-MEKF-2: Let us still take ρ(x) = lσ(x) in J2

defined in Eq.(15) and denote it by L2, which is given by

L2(xk) =

n∑
i=1

lσ
(
exk,i
)
+

m∑
j=1

lσ

(
eyk,j

)
, (25)

where exk,i and eyk,j are the i-th and the j-th components of
exk and exk , respectively. Then, under cost function L2, the
update step for MCIC-MEKF-2 can be obtained by solving
the following optimization problem:

x̂k|k = argmin
xk

L2(xk). (26)

Solving optimzation problem Eq.(26), we can obtain the
following another new Kalman-type update step.

xk = x̂k|k−1 +K∗
k(yk − h

(
x̂k|k−1

)
), (27)

where the Kalman gain is given by

K∗
k = P∗

k|k−1Ĥ
⊤
k

(
ĤkP

∗
k|k−1Ĥ

⊤
k +R∗

k

)−1

, (28)

with
P∗

k|k−1 = Bp
k|k−1 (C

x
k)

−1
(
Bp

k|k−1

)⊤
R∗

k = VkB
r
k (C

y
k)

−1
(Br

k)
⊤
V⊤

k .
(29)

Here Cx
k and Cy

k are given by

Cx
k = diag(Gσ(e

x
k,1),Gσ(e

x
k,2), . . . ,Gσ(e

x
k,n))

Cy
k = diag(Gσ(e

y
k,1),Gσ(e

y
k,2), . . . ,Gσ(e

y
k,m)).

(30)

The corresponding estimation error covariance can be calcu-
lated as

Pk|k =
(
In −K∗

kĤk

)
Pk|k−1

(
In −K∗

kĤk

)⊤
+K∗

kVkRkV
⊤
k (K∗

k)
⊤
.

(31)

IV. STOCHASTIC STABILITY ANALYSIS AND PRACTICAL
ALGORITHM

In this section, we shall understand the robustness of our
proposed MCIC-MEKF-1 in a quantitative way.

A. Preparations

We shall first deduce the recursion of prior estimation error
ẽk|k−1 and posterior estimation error ẽk|k. In view of Eq.(7)
and Eq.(1b), one can conclude that

ẽk|k =
(
In −K⋆

kĤk

)
ẽk|k−1 −K⋆

kVkvk. (32)

Here we recall the following definition.

Definition IV.1. The stochastic process zk is said to be
exponentially bounded in mean square, if E

[
∥z0∥2

]
< ∞ and

there are real numbers β, v > 0 and 0 < α < 1 such that

E
[
∥zk∥2

]
≤ βE

[
∥z0∥2

]
αk + v
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holds for every integer k ≥ 0.

Nextly, we shall give the following assumptions.

Assumption IV.1. There are positive real numbers
f, f̄ , h, h̄, p, q, q̄, p̄, r, r̄, κw, κv, w̄, v̄ > 0 such that for
above mentioned matrices the following bounds are satisfied
for every integer k ≥ 0:

f ≤ ∥F̂k∥ ≤ f̄ , h ≤ ∥Ĥk∥ ≤ h̄, (33)

pIn ≤ Pk+1|k ≤ p̄In, (34)

qIn ≤ Qk ≤ q̄In, rIm ≤ Rk ≤ r̄Im. (35)

E
[
w⊤

k wk

]
≤ κw,E

[
v⊤
k vk

]
≤ κv. (36)

1 ≤ ∥Wk∥ ≤ w̄, 1 ≤ ∥Vk∥ ≤ v̄. (37)

Assumption IV.2. For every integer k ≥ 0, F̂k is non-
singular.

Remark IV.1. In fact, Eq.(36) can be deduced by Eq.(35),
details can be found in Appendix A-B. We put it in the
Assumption IV.1 for convenience.

Remark IV.2. These boundedness conditions (33), (35) in
Assumption IV.1 are relatively natural for the practical system.
In fact, bounded condition (34) is related to the uniform
detectability [31] for the linear time-varying system. It is very
similar to the uniform observability [32] of linear systems.
The upper bounds in (37) portrays the upper bounds of the
influence of outliers.

B. Main results

Before we proceed, we need some technical lemmas. Our
first lemma regarding the boundedness of stochastic processes
is crucial to our theoretical analysis.

Lemma IV.1. Assume there is a stochastic Lyapunov function
Vk (xk) and real numbers v, v̄ such that for every integer k ≥
0,

v ∥xk∥2 ≤ Vk (xk) ≤ v̄ ∥xk∥2 , (38)

and there are corresponding µk > 0 and 0 < αk < 1 making

E [Vk+1 (xk+1) | xk] ≤ (1− αk)Vk (xk) + µk (39)

Then for every integer k ≥ 0,

E
[
∥xk∥2

]
≤ v̄

v
E
[
∥x0∥2

] k−1∏
i=0

(1− αi) +
1

v

k−1∑
i=0

µi(1− αi)
i.

(40)
Moreover, the stochastic process xk is exponentially bounded
in mean square, i.e.,

E
[
∥xk∥2

]
≤ v̄

v
E
[
∥x0∥2

]
(1− α)k +

µ

vα
, (41)

where α = mini=0,1,...,k−1{αi} and µ =
maxi=0,1,...,k−1{µi}.

Proof. See Appendix IV.1.

Lemma IV.2 (Bound of Kalman Gain). If the assumption IV.1
holds, the lower bound and the uppper bound of Kalman gain
K⋆

k in (21) are given by

ιK⋆
k
≤ ∥K⋆

k∥ ≤ ῑK⋆
k
, (42)

where ιK⋆
k
=

ph

h̄2p̄+λkv̄r̄
, and ῑK⋆

k
= p̄h̄

h2p+λkr
. Here adaptive

weight ratio λk is given λk =
lPk|k−1

lRk
.

Proof. See Appendix A-C.

Lemma IV.3. If the assumption IV.1 and assumption IV.2 hold.
Then for every integer k ≥ 0, there exist a real number 0 <
αk < 1 such that P−1

k+1|k satisfies:(
F̂k+1 − F̂k+1K

⋆
kĤk

)⊤
P−1

k+1|k

(
F̂k+1 − F̂k+1K

⋆
kĤk

)
≤ (1− αk)P

−1
k|k−1,

(43)
where αk =

q

p̄
(
f̄+f̄ ῑK⋆

k
h̄
)2

+q
.

Proof. See Appendix A-D.

Lemma IV.4. If the assumption IV.1 holds. Then for every
integer k ≥ 0,

E
[(

F̂k+1K
⋆
kVkvk

)⊤
P−1

k+1|k

(
F̂k+1K

⋆
kVkvk

)
| ẽk|k−1

]
≤
(
f̄ ῑK⋆

k
∥Vk∥

)2
κv

p
.

(44)

Proof. See Appendix A-E.

Now we are ready to present our main result.

Theorem IV.1. Consider the nonlinear system given by (1)
and the MCIC-MEKF-1 as stated above. If Assumption IV.1
and Assumption IV.2 hold and initial prior estimation error
satisfies E

[∥∥ẽ1|0∥∥2] < ∞, then it holds, 1. The one-step prior
estimation error is given by

E
[∥∥ẽk+1|k

∥∥2] ≤ p̄

p
(1− αk)E

[∥∥ẽk|k−1

∥∥2]+ p̄µk, (45)

where and µk is given by

µk =

(
f̄ ῑK⋆

k
∥Vk∥

)2
κv + κw∥Wk∥2

p
. (46)

2. For every integer k > 0, the posterior estimation error
is given by

E
[
∥ẽk|k∥2

]
≤ 2

(
f
)−2 p̄

p
E
[∥∥ẽ1|0∥∥2] k−1∏

i=0

(1− αi)
i

+ 2
(
f
)−2

(
p̄

k−1∑
i=0

µi (1− αi)
i
+ ∥Wk∥2κw

)
.

(47)
Moreover, if adaptive weight ratio λk is bounded, i.e., 0 < λ ≤
λk ≤ λ̄ for some 0 < λ < λ̄. Then the posterior estimation
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error ẽk|k is exponentially bounded in mean square, i.e., for
every integer k > 0,

E
[∥∥ẽk|k∥∥2] ≤ 2

(
f
)−2 p̄

p
E
[∥∥ẽ1|0∥∥2] (1− α)k

+ 2
(
f
)−2

( p̄µ
α

+ w̄2κw

)
,

(48)

where µ =

(
f̄ p̄h̄v̄

h2p+λr

)2

κv+w̄2κw

p and α =
q

p̄

(
f̄+ f̄ p̄h̄2

h2p+λ̄r

)2

+q

.

Proof. We consider a stochastic Lyapunov function
Vk+1

(
ẽk+1|k

)
, which is given by

Vk+1

(
ẽk+1|k

)
= ẽ⊤k+1|kP

−1
k+1|kẽk+1|k. (49)

It is easy to see that

1

p̄
∥(ẽk+1|k∥2 ≤ Vk+1

(
ẽk+1|k

)
≤ 1

p
∥(ẽk+1|k∥2. (50)

We consider

E
[
Vk+1

(
ẽk+1|k

)
| ẽk|k−1

]
= ẽ⊤k|k−1

(
F̂k+1 − F̂k+1K

⋆
kĤk

)⊤
P−1

k+1|k

×
(
F̂k+1 − F̂k+1K

⋆
kĤk

)
ẽk|k−1

+ E
[(

F̂k+1K
⋆
kVkvk

)⊤
P−1

k+1|k

(
F̂k+1K

⋆
kVkvk

)
| ẽk|k−1

]
+ E

[
w⊤

k W
⊤
k P

−1
k+1|kWkwk | ẽk|k−1

]
.

(51)
Note that in Eq.(51), the cross terms all vanish after taking

the conditional expectation since wk and vk are uncorrelated
noises with zero means. Then in view of lemma IV.3, we have

E
[
Vk+1

(
ẽk+1|k

)
| ẽk|k−1

]
≤ (1− α)Vk

(
ẽk|k−1

)
+ E

[(
F̂k+1K

⋆
kVkvk

)⊤
P−1

k+1|k

(
F̂k+1K

⋆
kVkvk

)
| ẽk|k−1

]
+ E

[
w⊤

k W
⊤
k P

−1
k+1|kWkwk | ẽk|k−1

]
.

(52)
Note that

E
[
w⊤

k W
⊤
k P

−1
k+1|kWkwk | ẽk|k−1

]
≤ κw∥Wk∥2

p
. (53)

Then in view of lemma IV.4 and Eq.(46), we have

E
[
Vk+1

(
ẽk+1|k

)
| ẽk|k−1

]
≤ (1− αk)Vk

(
ẽk|k−1

)
+ µk.

(54)
Here we shall first prove Eq.(45). In view of Eq.(50), we can
deduce that

1

p̄
E
[
∥ẽk+1|k∥2

]
≤ E

[
Vk+1

(
ẽk+1|k

)
| ẽk|k−1

]
(1− αk)Vk

(
ẽk|k−1

)
≤ 1

p
(1− αk) ∥ẽk|k−1∥2.

(55)

Then in view of Eq.(54), we have

1

p̄
E
[
∥ẽk+1|k∥2

]
≤ 1

p
(1− αk)E

[
∥ẽk|k−1∥2

]
+ µk (56)

It follows that Eq.(45) holds. Now we shall prove Eq.(47). Let
v = 1

p̄ and v̄ = 1
p . By Lemma IV.1, we have

E
[
∥ẽk+1|k∥2

]
≤ p̄

p
E
[∥∥ẽ1|0∥∥2] k∏

i=0

(1−αi)
i+p̄

k∑
i=0

µi (1− αi)
i
.

(57)
We can conclude that

∥ẽk+1|k∥ = ∥F̂k+1ẽk|k +Wkwk∥
≥ ∥F̂k+1ẽk|k∥ − ∥Wkwk∥,

(58)

which implies

∥F̂k+1ẽk|k∥2 ≤ 2
(
∥ẽk+1|k∥2 + ∥Wkwk∥2

)
. (59)

It follows that

E
[
∥ẽk|k∥2

]
≤ 2

(
f
)−2 (E [∥ẽk+1|k∥2

]
+ E

[
∥Wkwk∥2

])
≤ 2

(
f
)−2 (E [∥ẽk+1|k∥2

]
+ ∥Wk∥2κw

)
.

(60)
Substituting Eq.(57) into Eq.(60), we can deduce that

E
[
∥ẽk|k∥2

]
≤ 2

(
f
)−2 p̄

p
E
[∥∥ẽ1|0∥∥2] k∏

i=0

(1− αi)
i

+ 2
(
f
)−2

(
p̄

k∑
i=0

µi (1− αi)
i
+ ∥Wk∥2κw

)
,

(61)
which is our desired Eq.(47). At last, we shall derive Eq.(48).
Note that

p̄h̄

h2p+ λ̄r
≤ ῑK⋆

k
≤ p̄h̄

h2p+ λr
. (62)

It follows that αk ≤ α and µk ≤ µ. Then Eq.(48) can be
easily derived following Lemma IV.1.

Parameters αk and µk depend on Ak,Bk,αk,βk magni-
tudes but remain bounded when Qk and Rk are positive defi-
nite. MCIC-MEKF-1’s robustness, with exponentially bounded
posterior error, is ensured by bounded λk. This adaptive weight
ratio influences error variance upper bound via ῑK⋆

k
, enhancing

robustness to observation outliers by adjusting ∥Vk∥ impact,
with indirect effect on state outliers. The essential formula
encapsulating the effect of adaptive weighting, µk, elegantly
decomposes into components reflecting the influence of obser-
vation noise and prior state uncertainty, moderated by λk.

C. Practical Algorithm

At last, we shall consider the practical algorithm forms for
MCIC-MEKF-1 and MCIC-MEKF-2 proposed previously. In
fact, recall lRk

and lĈk
defined in Eq.(23). They all contain

the item xk, hence the optimal solution Eq.(13) is in fact the
zero point of the (20). A typical way of dealing with Eq.(20)
is to view it as a fixed-point equation of xk, whose solution
can be obtained by a fixed-point iterative algorithm. such a
perspective has been investigated in [15].

Notice that in Lemma IV.2 and Theorem IV.1, the effect
of two weights lRk

and lĈk
on the Kalman gain and error

estimate depends on the ratio λk. In addition to this approach,
we propose a alternative approach to avoid the problem of
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solving a fixed point iteration. Recall the definitions of lRk

and lPk|k−1
in (23). Notice that lRk

and lPk|k−1
all con-

tains variable xk. To avoid computing a fixed point solution,
we hope to use approximation for lRk

and lPk|k−1
. More

specifically, we use x̂k|k−1 to approximate xk contained in
Gσ

(
∥xk − x̂k|k−1∥Pk|k−1

)
and Gσ

(
∥yk − h (xk)∥VkRkV⊤

k

)
.

They are listed by

l̂Pk|k−1
= Gσ

(∥∥x̂k|k−1 − x̂k|k−1

∥∥
Pk|k−1

)
= 1 ≈ lPk|k−1

l̂Rk
= Gσ

(∥∥yk − h
(
x̂k|k−1

)∥∥
Rk

)
≈ lRk

.

(63)
Similarly, for MCIC-MEKF-2, we still use x̂k|k−1 to approx-
imate xk contained in Cx

k and Cy
k, i.e,

êxk =
(
Bp

k|k−1

)−1 (
x̂k|k−1 − x̂k|k−1

)
≈ exk

êyk = (Br
k)

−1 (
yk − h(x̂k|k−1)

)
≈ eyk.

(64)

Besides, we choose Akαk = 0n and Bkβk = 0m for
algorithm implementation. We shall study how to estimate
Ak,αk,Bk,βk in an online manner to improve algorithm
performance in future work. Here we summarise the steps of
MCIC-MEKF-1 and MCIC-MEKF-2 in Algorithm 1.

Algorithm 1 MCIC-MEKF
1: Intitialization. Start with initial posterior mean x̂0|0 and

posterior covariance P0|0.
2: for k = 1, 2, . . . , T do
3: Compute prior mean x̂k|k−1 and prior covariance

Pk|k−1 via Eq.(16) and Eq.(17), respectively.
4: The following update steps correspond to MCIC-

MEKF-1 and MCIC-MEKF-2, respectively.
• (MCIC-MEKF-1) Compute posterior mean x̂k|k and

posterior covariance Pk|k via Eq.(20) and Eq.(24),
respectively, where K⋆

k defined in Eq.(21) is com-
puted using approximations (63).

• (MCIC-MEKF-2) Compute posterior mean x̂k|k and
posterior covariance Pk|k via Eq.(27) and Eq.(31),
respectively, where K∗

k defined in Eq.(28) is com-
puted using approximations (64).

5: end for

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Complexity
EKF 8n3 + 10n2m− n2 + 6nm2 − n+O(m3) +O(n2)

MC-EKF SEKF + (2T + 8)n3 + (4T + 6)n2m+ · · ·+ TO(n3) + 2TO(m3)
MCIC-MEKF-1 SEKF + 2(m2 + n2) +m+ n
MCIC-MEKF-2 SEKF + 4n3 +O(n3) +O(m3)

Note: SEKF represents the complexity of the standard EKF algorithm. The notation O(·)
denotes the big-O computational complexity notation.

V. EXPERIMENTS

We verify MCIC-MEKF-1 and MCIC-MEKF-2’s robustness
against EKF, RS-EKF [17], MCC-EKF [26], and robust EKF
(REKF) [18] on a non-linear model with non-Gaussian noises.
The RS-EKF was configured with a risk-sensitive parameter

µ set to 0.1, while the REKF utilized an initial scaling
parameter θ of 0.01. For the REKF, an approximate method
was employed to iteratively solve the γ equation at each step.
Performance is assessed by estimation errors and computation
speeds. We employ the Root Mean Square Error (RMSE) and
its Average (ARMSE) across 100 Monte Carlo simulations to
quantify the accuracy of filters. We consider a 2D constant
acceleration model for tracking a target. The state, denoted
as xk, includes the position and velocity in the x and y
directions (xk = [x, y, vx, vy]). The radar is positioned at
[px, py] = [−100,−100], and the time sampling interval is
T0 = 1.

xk =


1 0 T0 0
0 1 0 T0

0 0 1 0
0 0 0 1

xk−1 +wk

yk =

[ √
(x− px)

2
+ (y − py)

2

arctan
y−py

x−px

]
+ vk,

(65)

where initial state is x0 = [−40, 10, 3, 1] and its covariance is
P0 = diag(4, 4, 0.01, 0.01). The nominal state noise covari-
ance and observation noise are given as follows.

Q = 0.04


T 3
0

3 0
T 2
0

2 0

0
T 3
0

3 0
T 2
0

2
T 2
0

2 0 T0 0

0
T 2
0

2 0 T0

 ,R = diag(0.22, 0.0152)

(66)
We consider the radar with Gaussian mixture observation
noise, which is given by

vk ∼ 0.9N (0, diag(0.22, 0.0152))+0.1N (0, diag(52, 0.752)).
(67)

We analyze 100 time steps using RMSE and ARMSE
metrics: RMSE(pos)k, ARMSE(pos), RMSE(vel)k, and
ARMSE(vel). Results are shown in Figs.1 and Table II. EKF
performs poorly under non-Gaussian noise, while REKF and
SR-EKF show improvement but underperforms compared to
robust filters. MCC-EKF, MCIC-MEKF-1, and MCIC-MEKF-
2 effectively mitigate non-Gaussian noise effects, with MCIC-
MEKF variants achieving the best accuracy. The shaded
regions in Figs.1 indicate that MCIC-MEKF-1 and MCIC-
MEKF-2 have smaller estimation STD, suggesting consistent
estimation.

TABLE II
THE PERFORMANCE COMPARISONS BETWEEN EKF, REKF, SR-EKF,
MCC-EKF, MCIC-MEKF-1 AND MCIC-MEKF-2 WITH σ = 2 ON

TARGET TRACKING EXAMPLE.

Methods ARMSE(pos) ARMSE(vel) Inference time [sec]
EKF 29.0929 5.0089 0.0026

REKF 15.9128 3.8178 0.0273
SR-EKF 7.3046 1.0210 0.0030

MCC-EKF (σ = 2) 4.1012 0.5930 0.0286
MCIC-MEKF-1 (σ = 2) 3.5836 0.5382 0.0057
MCIC-MEKF-2 (σ = 2) 3.4808 0.5562 0.0056

VI. CONCLUSION

This note introduces MCIC-MEKF, a robust modified
Kalman-type filter based on MCIC. We provide theoreti-
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Fig. 1. RMSE comparisons over time steps for a target tracking example (the estimates of position and velocity on the left and right, respectively)

cal analysis of its stochastic stability, proving exponentially
bounded posterior estimation errors under certain conditions.
Our approach includes an efficient approximation for adaptive
Kalman gain. Simulations demonstrate the method’s robust-
ness against non-Gaussian noises with large outliers, outper-
forming various benchmark filters in target tracking state-space
model.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma IV.1

Taking mathematical expectation for both sides of Eq.(39),
we have

E [Vk+1 (xk+1)] ≤ (1− αk)E [Vk (xk)] + µk. (68)

Then iterate the above equation, we have

E [Vk+1 (xk+1)] ≤
k∏

i=0

(1− αi)E [V0 (x0)]+

k∑
i=0

µi (1− αi)
i
.

(69)
Using Eq.(38), one can conclude that

vE
[
∥xk+1∥2

]
≤ E [Vk+1 (xk+1)] , v̄E

[
∥x0∥2

]
≥ E [V0 (x0)]

(70)
It follows that

vE
[
∥xk+1∥2

]
≤

k∏
i=0

(1− αi) v̄E
[
∥x0∥2

]
+

k∑
i=0

µi (1− αi)
i
.

(71)
Hence we can conclude Eq.(40). Note that 1− αi ≤ 1− α, it
follows that

k−1∑
i=0

µi(1− αi)
i ≤ µ

k−1∑
i=0

(1− αi)
i ≤ µ

∞∑
i=0

(1− αi)
i =

µ

α
,

(72)
which implies Eq.(41).

B. Proof of Eq.(36)

Based the property of trace operator and in view of Eq.(35),
we have

E
[
w⊤

k wk

]
= E

[
Tr
(
w⊤

k wk

)]
= Tr

(
E
[
wkw

⊤
k

])
≤ nq̄.

(73)
Let κw = nq̄. Similarly, we can choose κv = mr̄.

C. Proof of Lemma IV.2

In terms of the definition of Kalman gain K⋆
k in (21) and

considering our assumption, we have

∥K⋆
k∥ ≥

plPk|k−1
h

h̄2 p̄
lPk|k−1

+ ∥Vk∥r̄
lRk

=
ph

h̄2p̄+ λk∥Vk∥r̄
. (74)

Similarly, we have

∥K⋆
k∥ ≤

p̄lPk|k−1
h̄

h2 p

lPk|k−1

+ ∥Vk∥r
lRk

=
p̄h̄

h2p+ λk∥Vk∥r
. (75)

D. Proof of Lemma IV.3

Note that

F̂k+1K
⋆
kVkRkV

⊤
k (K⋆

k)
⊤
F̂⊤

k+1 ≥ 0. (76)

Then we have

Pk+1|k ≥
(
F̂k+1 − F̂k+1K

⋆
kĤk

)
Pk|k−1

×
(
F̂k+1 − F̂k+1K

⋆
kĤk

)⊤
+WkQkW

⊤
k .

(77)

In view of assumption IV.2, F̂k+1 is non-singular. Then use
Matrix inversion Lemma and (21), we have(

F̂k+1

)−1 (
F̂k+1 − F̂k+1K

⋆
kĤk

)
Pk|k−1

= In −P⋆
k|k−1Ĥ

⊤
k

(
ĤkP

⋆
k|k−1Ĥ

⊤
k +R⋆

k

)−1

ĤkPk|k−1

=

P−1
k|k−1 + Ĥk

(
R⋆

k|k−1

lPk|k−1

)−1

Ĥ⊤
k

−1

.

(78)

It follows that
(
F̂k+1 − F̂k+1K

⋆
kĤk

)−1

exists. Then we have

Pk+1|k ≥
(
F̂k+1 − F̂k+1K

⋆
kĤk

)(
Pk|k−1

+
(
F̂k+1 − F̂k+1K

⋆
kĤk

)−1

WkQkW
⊤
k

×
(
F̂k+1 − F̂k+1K

⋆
kĤk

)−⊤ )(
F̂k+1 − F̂k+1K

⋆
kĤk

)⊤
.

(79)
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In view of lemma IV.2, we have ∥K⋆
k∥ ≤ ῑK⋆

k
. Then bounds

of F̂k+1, Ĥk, Wk, Qk, Eq.(79) imply that

Pk+1|k ≥
(
F̂k+1 − F̂k+1K

⋆
kĤk

)(
Pk|k−1 +

q(
f̄ + f̄ ῑK⋆

k
h̄
)2 In)

×
(
F̂k+1 − F̂k+1K

⋆
kĤk

)⊤
.

(80)
Note that Pk|k−1 ≥ pIn and

(
F̂k+1 − F̂k+1K

⋆
kHk

)
is

non-singular, we can take the inverse of both sides for

(80). Then by multiplying
(
F̂k+1 − F̂k+1K

⋆
kHk

)⊤
and(

F̂k+1 − F̂k+1K
⋆
kHk

)
from left and right respectively, one

can conclude that(
F̂k+1 − F̂k+1K

⋆
kHk

)⊤
P−1

k+1|k

(
F̂k+1 − F̂k+1K

⋆
kHk

)
≤

(
1 +

q

p̄
(
f̄ + f̄ ῑK⋆

k
h̄
)2
)−1

P−1
k|k−1,

(81)
which is our desired inequality (43) with 1 − αk =

1
1+

q

p̄

(
f̄+f̄ ῑK⋆

k
h̄

)2

.

E. Proof of Lemma IV.4

Note that

E
[(

F̂k+1K
⋆
kVkvk

)⊤
P−1

k+1|k

(
F̂k+1K

⋆
kVkvk

)
| ẽk|k−1

]
= E

[
v⊤
k

(
F̂k+1K

⋆
kVk

)⊤
P−1

k+1|k

(
F̂k+1K

⋆
kVk

)
vk

]
≤
(
f̄ ῑK⋆

k
∥Vk∥

)2
κv

p
.

(82)
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