
DGLG: A Novel Deep Generalized
Legendre-Galerkin Approach To Optimal

Filtering Problem
Ji Shi†, member, IEEE , Xiaopei Jiao†, and Stephen S.-T. Yau*, Fellow, IEEE

Abstract— The optimal filtering problem for general non-
linear and continuous state-observation systems attracts
lots of attention in the control theory. The essence of
optimal filtering requires solving the Duncan-Mortensen-
Zakai (DMZ) equation in a computationally feasible way.
Under the pioneering work of Yau-Yau filtering, the DMZ
equation is reduced to a pathwise computation of a forward
Kolmogorov equation with time-varying initial conditions,
which is very challenging. To overcome the computational
difficulty, in this paper, we proposed a new efficient filtering
algorithm consisting of a forward Kolmogorov equation
solver based on a physics-informed neural network and a
probability density approximator based on generalized Leg-
endre polynomials. By utilizing the advanced deep learning
method and classical Galerkin approximation, our devel-
oped algorithm not only maintains the high accuracy of the
spectral method but also removes massive computational
loads in the offline part. Furthermore, the convergence of
our method is proved. Numerical experiments have been
carried out to verify the feasibility of the new method.
Regarding accuracy and efficacy, the newly proposed deep
generalized Legendre-Galerkin (DGLG) algorithm outper-
forms other popular suboptimal methods including the ex-
tended Kalman filter and particle filter.

Index Terms— Estimation, Filtering, Neural networks,
Nonlinear systems, Generalized Legendre polynomial

I. INTRODUCTION

Nonlinear filtering(NLF) widely arises in many important
practical applications, such as target tracking [8], [24], [40],
navigation systems [15], [23], robotics [5], [29] and advanced
control systems [9], [30], etc. For general nonlinear filtering
problems, the well-known DMZ equation [11], [26], [39]
describes the update equation for the unnormalized conditional
density. In general, the conditional density cannot be charac-
terized by a finite number of sufficient statistics, i.e., it lives

† Equal contribution; * Corresponding author.
This work is supported by National Natural Science Foundation of

China (NSFC) grant (11961141005, 12101426), Tsinghua University
start-up fund, and Tsinghua University Education Foundation fund
(042202008).

Ji Shi is with the Academy for Multidisciplinary Studies, Capital
Normal University, Beijing 100048, China (e-mail: shiji@cnu.edu.cn).

Xiaopei Jiao is with the Department of Mathematical Sciences, Ts-
inghua University and Beijing Institute of Mathematical Sciences and
Application, Beijing 101400, China (e-mail: xiaopeijiao@gmail.com).

Stephen S.-T. Yau is with the Department of Mathematical Sciences,
Tsinghua University, and Beijing Institute of Mathematical Sciences and
Application, Beijing 101400, China (e-mail: yau@uic.edu).

in an infinite-dimensional space. Only in several special cases
such as linear Gaussian filter [18], [19], and Beneš filter [3],
[7], solution of DMZ equation can be solved in an explicit
form. In the majority of general systems, it is very difficult to
solve the DMZ equation straightforwardly.

Due to the difficulty of solving DMZ equation directly,
many researchers devoted to find its approximate solution
by various means. In summary, there are three classes of
filtering algorithms. The first class is Kalman Filter(KF)-based
filtering algorithms, e.g. the well-known extended Kalman
filter(EKF) [1], the Unscented Kalman filter(UKF) [17], En-
semble Kalman filter(EnKF) [13], etc [2], [4], [16]. For
these filters, they all assume that the probability distributions
involved should be Gaussian. When the underlying filtering
system has a strong nonlinearity, the filters can easily diverge.
There have also appeared some new filtering algorithms in
recent years combining traditional KF and its extensions with
deep learning(DL) methods, e.g. [12], [21], [28]. The second
class is particle filter(PF) [14]-based filtering algorithms, in-
cluding various PF variants, feedback particle filter(FPF) [35]
etc. The PF imposes no assumption on the distribution of the
filtering system, which makes it a universal filter. However, the
particles generated by sequential Monte Carlo sampling suffer
from “particle degeneracy”, thereby leading to the failure of
the filter sometimes. The third class aims to solve the DMZ
equation directly. The cost of this class of methods is quite
large yet the optimality of the solution obtained is guaranteed
theoretically.

Starting from the first principles, Yau et al. developed the
Yau-Yau filtering framework in [36], [37] for a general class of
NLF system. This framework has several advantages. First, its
convergence is theoretically guaranteed, under mild conditions.
Second, it is real-time and memoryless. By ”memoryless” we
mean a filtering method that only uses each newly arrived
observation to update the estimation of the system’s states.
Several algorithms have been developed under this framework.
In [10], [25], different spectral methods were applied to the
NLF problem. In [32], an efficient algorithm was developed
from the optimization point of view. The core challenge of
this framework lies in solving a parabolic partial differential
equation(PDE) with time-varying initial conditions efficiently.
Due to the inherent difficulties of this framework, at present,
there is still not much research work in this direction.

In recent years, DL method has emerged as a promising
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alternative to solve PDE numerically. Notably, Karniadakis
et al. proposed the physics-informed neural network(PINN)
method in [27] for solving various PDE problems. Lots of
work has been seen following this new computation paradigm
in the field of numerical computation [20]. By enforcing the
physical laws as optimization constraints, the PINN method
is trained in an unsupervised way. Compared to classical
numerical schemes, this method is very simple, and mesh-
free. Therefore, the PINN method sheds light on overcoming
the difficulty of the Yau-Yau framework.

Motivated by the Legendre-Galerkin method and the so-
phisticated DL method nowadays, we will develop an efficient
filtering algorithm under the Yau-Yau framework in this paper.
The convergence of our method is analyzed in detail as stated
in Theorem 3.1. The proposed algorithm is efficient and
can be implemented in a real-time and memoryless manner.
The numerical experiments verified the effectiveness of the
proposed method.

The rest of the paper is organized as follows: section
II briefly describes the NLF problem we considered and
notations. The deep generalized Legendre-Galerkin algorithm
is derived in section III. In section IV, several numerical exam-
ples were carried out to verify the feasibility and effectiveness
of the method.

II. BASIC CONCEPTS AND PRELIMINARIES

In this paper, we consider the following continuous-type
NLF system: {

dxt = f(xt)dt+ Γwt,
dyt = h(xt)dt+ dvt,

(1)

here xt := x(t) ∈ Rn is the state of the system at time t,
yt := y(t) ∈ Rm is the observation with y0 = 0, f(xt), h(xt)
are C∞(Rn) vector value functions. wt, vt are independent
Brownian motion processes with variance Q and S, respec-
tively. Γ ∈ Rn×p is a constant diffusion coefficient matrix
such that G := ΓQΓ is a positive definite matrix. {wt}t≥0,
{vt}t≥0 and initial state x0 are mutually independent.

Given all observations till instant t, i.e., Yt := {ys : 0 ≤
s ≤ t}, it is well-known that in minimum variance sense, the
conditional probability density function (PDF) p(x, t) of xt

satisfies the Kushner-Stratonovich (K-S) equation [22], [34]
which is computationally intractable. Later on, Duncan et al.
proposed independently the DMZ equation associated with an
un-normalized PDF σ(x, t),{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)h(x)⊤S−1dyt,

σ(x, 0) = σ0(x),
(2)

here, the operator L(∗) is defined as follows:

L(∗) := 1

2

n∑
i,j=1

Gij
∂2(∗)
∂xi∂xj

−
n∑

i=1

∂(fi∗)
∂xi

, (3)

and σ0(x) is an un-normalized version density function of
the initial state x0. Compared to K-S equation, this equation
is easier to handle, since it is a linear stochastic PDE about
σ(x, t). It will be our main concern hereinafter.

Assumptions. We assume that

1. The conditions of Theorem C and (A.2), (A.17), (C.1-C.3)
in [36] hold.

2. The assumptions in Theorem 3.6 of [33] hold.
3. Ω (in Equation (9)) is a bounded domain in Rn with smooth

boundary.
Notations. L2(Ω) and C∞(Ω) denote the set of square

integrable and smooth functions in a domain Ω respectively.
Inner product between two functions f, g is represented by
⟨f, g⟩ :=

∫
Ω
fgdx. ∇ denotes the gradient operator. ∆

denotes the Laplacian operator. N (µ,Σ) denotes a Gaussian
distribution with mean µ and variance Σ.

III. NUMERICAL SOLUTION OF DMZ EQUATION BASED
ON DEEP NEURAL NETWORK

In this section, we will develop a new filtering algorithm
based on a deep forward Kolmogorov equation(FKE) solver
with the generalized Legendre-Galerkin approximation. The
convergence of our method is proved in the end.

A. The reduction of DMZ equation to FKE

Note in the DMZ equation, the observation term dyt will
render underlying filtering algorithms lacking robustness. By
making the following gauge transformation:

u(x, t) = exp(−h(x)⊤(x)S−1yt)σ(x, t), (4)

the DMZ equation is transformed into a deterministic PDE
with stochastic coefficients

∂u

∂t
(x, t) = exp(−h(x)⊤S−1yt)

(
L − 1

2
h(x)⊤S−1h(x)

)
·
[
exp(h(x)⊤S−1yt)u(x, t)

]
u(x, 0) =σ0(x).

(5)
The equation (5) is called the “pathwise-robust” DMZ equa-
tion. Generally speaking, the equation (5) does not have a
closed-form solution, thus usually we seek efficient algorithms
to construct a good approximation solution.

Let us assume the total filtering time is T . The observations
occur at time sequence PN = {0 = τ0 < τ1 < · · · < τN =
T}, ∆τ = τi − τi−1 = T0. Let ui be the solution of the
robust DMZ equation (5) with observation process fixed on
the interval τi−1 ≤ t < τi by yt = yτi−1 , i.e.

∂ui

∂t (x, t) = exp(−h(x)⊤S−1yτi−1
)
(
L − 1

2h
⊤S−1h

)
·
[
exp(h(x)⊤S−1yτi−1

)ui(x, t)
]

u1(x, 0) = σ0(x),
ui(x, τi−1) = ui−1(x, τi−1), for i ≥ 2.

(6)
Note the observations yτi are contained in the coefficients of
(6), which brings a fundamental challenge for real-time com-
putation. By the following proposition in [36], the equation is
transformed into an observation-independent PDE.

Proposition 3.1: For each τi−1 ≤ t < τi, i = 1, 2, · · · , N,
ui(x, t) satisfies (6) if and only if

ρi(x, t) = exp
(
h(x)⊤S−1yτi−1

)
ui(x, t), (7)
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satisfies the following forward Kolmogorov equation

∂ρi
∂t

(x, t) =

(
L − 1

2
h(x)⊤S−1h(x)

)
ρi(x, t), (8)

where L is defined in (3).
The above equation (8) is linear, and it does not depend on

the information of the observations {yτi}Ni=1. This property
enables us to solve the FKE (8) in advance. Of each time
interval [τi−1, τi), the initial distribution varies. By projecting
the initial condition ρ(x, τi−1) onto a finite dimension sub-
space of L2(Rn) once a new observation arrives, the station
estimation can be implemented in real-time.

Remark 3.1: In practice, we always do filtering estimation
in a finite time T , hence the states are in a bounded domain
Ω = [a, b]n over the entire filtering time interval. Therefore, it
is reasonable to assume the state density ρ(x, t) is supported
on a considered bounded domain Ω = [a, b]n. Without loss of
generality, we only consider one dimension case i.e. n = 1 in
the following.

B. Deep FKE solver and filtering algorithm

In this part, we shall develop a new efficient algorithm
to compute the FKE equation (8) with time-varying initial
conditions by a deep neural network. For notation convenience,
we omit the subscript in (8) as follows:

∂ρ

∂t
(x, t) = (L − 1

2
h(x)⊤S−1h(x))ρ(x, t)

ρ(x, 0) = ϕ(x) ∈ C∞(Ω).
(9)

1) PDF approximation based on GLP : We shall decompose
the un-normalized density ρ(x, t) through the generalized
Legendre polynomials(GLP) {ϕk(x)} constructed in [31].
Compared to other basis functions of L2(Rn), the GLPs are
simple, and more importantly, their values will vanish to zero
when the variables approach the boundary of the interval
[−1, 1]n.

For one dimension case, the k-th order generalized Legendre
polynomial {ϕk(x)} is defined as

ϕk(x) := ck (φk(x)− φk+2(x)) , ck =
1√

4k + 6
. (10)

For high dimension case, i.e., n ≥ 2, the k-th order GLP is
defined as the tensor product of one-dimensional GLPs:

ϕk(x) := ϕk1(x1) · ϕk2(x2) · · ·ϕkn(xn),k ∈ Nn.

We define

VM := span {ϕk(x), ∥k∥∞ ≤ M} ,

then, for all ρ(x) ∈ W 1,2
0 (Ω) ⊂ L2(Ω), the projection is given

by
ρ̄ :=

∑
∥k∥∞≤M

wkϕk(x),M ∈ N, (11)

where the coefficients wk is determined by

⟨ρ− ρ̄,ϕ⟩ = 0, ∀ϕ ∈ VM . (12)

Remark 3.2: For our considered domain Ω = [a, b], by the
following transformation

ϕ̃k(x) = ϕk(
2x− (a+ b)

b− a
) (13)

then ϕ̃k(x), k = 0, · · · ,M form a group of basis functions on
Ω. Hence for notation simplicity, we only need to consider the
case Ω = [−1, 1].

2) FKE solver based on deep neural network: Now we
consider the FKE equation (9) with the initial condition ρ(x, 0)
being GLPs ϕl(x), l = 0, ...M − 1 on the closed domain
D = B × Ω = [0, T0] × [−1, 1]. Since we do not have any
prior numerical solutions in advance, we will adopt the PINN
method to solve FKE with ϕl(x).

The designed network architecture of the FKE solver is
shown in figure 1. The network input is (x, t), i.e. points

Fig. 1: The network architechture

sampled from the domain D. The output ρ̂(x, t; θ) represents
the parametric solution of the FKE equation ρ(x, t). We
choose the tanh as the activation function a(x) for all hidden
layers. The weights and bias are initialized through Xavier
uniform initialization. The Adam optimizer is employed with
a dynamically adjusted learning rate ηk = η0 × γk, where η0
is the initial rate and γ is a regulator factor. The early stop
mechanism is employed during training whenever the loss is
lower than threshold estop.

The whole training dataset consists of three datasets, i,e,

Xtrain = Xf ∪Xb ∪Xic. (14)

(a) We create the interior dataset Xf with Nf points sampled
within domain D using Latin hypercube sampling (LHS).
LHS provides better coverage and less redundancy com-
pared to other random sampling methods.

(b) We construct dataset Xb near the spatial boundary ∂Ω, i.e.,
B× ([a, a+ cb]∪ [b− cb, b]), where cb is a small positive
number, by randomly sampling Nb points uniformly. Finer
sampling is expected to improve model accuracy near the
boundary.

(c) On the initial boundary {t = 0} × Ω, we sample Nic

points using LHS to create dataset Xic. We place denser
sampling points near {t = 0} × ∂Ω as these regions are
harder to train.

Besides, we adopt an adaptive residual resampling strategy
to accelerate model convergence. After every fixed epoch nrar,
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we update the dataset Xf by adding resampled points with
larger residual errors.

The loss function consists of three terms. For the k-th
training epoch, we denote the residual of the network as R(k).
Specifically, for collocation points inside the computational
region D, the network output should satisfy the equation
constraint, i.e. for (x(i), t(i)) ∈ Xf ,

R(i)
f (k) := |F(ρ̂(θ(k);x(i), t(i)))|2.

For the near spatial boundary dataset Xb, they also satisfy
the equation constraint as well, so we define the loss for them
as follows, for (x(i), t(i)) ∈ Xb,

R(i)
b (k) := |F(ρ̂(θ(k);x(i), t(i)))|2.

For the initial time boundary, they should be consistent with
the initial condition ρ(x, 0) = ϕl(x), hence for (x(i), t(i)) ∈
Xic,

R(i)
ic (k) := |F(ρ̂(θ(k);x(i), t(i)))− ϕl(x

(i))|2.

Furthermore, to make the network optimization procedure
pay more attention to those points with larger residual errors as
training goes by, we require the training points to be adaptively
weighted. For the (k + 1)-th epoch, the weights for datasets
Xf , Xb, Xic are defined respectively as

ω
(i)
f (k + 1) = R(i)

f (k)/

Nf∑
i=1

R(i)
f (k),

ω
(i)
b (k + 1) = R(i)

b (k)/

Nb∑
i=1

R(i)
b (k),

ω
(i)
ic (k + 1) = R(i)

ic (k)/

Nic∑
i=1

R(i)
ic (k),

(15)

The weights of different terms are initialized as

ω
(i)
f (1) =

1

Nf
, ω

(i)
b (1) =

1

Nb
, ω

(i)
ic (1) =

1

Nic
.

Finally, we have the following weighted loss for (k + 1)-th
epoch:

L(θ)|θ=θ(k+1) = ωf (k)Rf (k + 1) + ωb(k)Rb(k + 1)

+ ωic(k)Ric(k + 1).
(16)

3) Algorithms: The developed filtering method(named as
DGLG) consists of two parts, the Off-Line Deep FKE Solver
is listed in algorithm 1, and the On-Line GLP Estimator is
listed in algorithm 2.

C. Convergence analysis

Before the convergence analysis of our method, let us recall
that the assumption (A.2) in our Assumption 1 essentially says
that the growth of |h| is greater than the growth of |f |. Under
Assumption 1, the existence and uniqueness of a weak solution
for the robust DMZ equation are guaranteed. Combined with
Assumptions 3, the robust DMZ equation admits a smooth
solution. Due to the page limit, we refer the readers to [36],
[38] for detailed discussions.

Algorithm 1 Off-Line Deep FKE Solver

1: Initialization: given the number of GLP basis function
M , the off-line computation time T0.

2: generate the training dataset Xtrain.
3: for l = 0 : M − 1 do
4: train the FKE solver with ρ(x, 0) = ϕl(x).
5: predict on the grid points of the considered domain D,

and store the solution at T0, i.e. Φl(x, T0) up for the
preparation of the on-line computation.

6: end for

Algorithm 2 On-line GLP Estimator

1: Initialization: Given the off-line data {Φl(x, T0)}M−1
l=0 .

2: for i = 1, · · · , N do
3: project ρ̂i(x, τi−1) onto the GLP basis functions,

ρ̂i(x, τi−1) ≈
∑M−1

l=0 ci,lϕl(x).
4: assemble the solution ρ̂i(x, τi) of FKE by ρ̂i(x, τi) ≈∑M−1

l=0 ci,lΦl(x,∆τ).
5: estimate the current state by x̂(τi) =

∫
Rn x ·

ûi(x, τi)dx/
∫
Rn ûi(x, τi)dx, here the solution ûi(x, τi)

of (5) is calculated by (7) and ρ̂i(x, τi).
6: update the initial pdf of the next time interval by

ρ̂i+1(x, τi) = exp(h(x)⊤S−1(yτi − yτi−1
)) · ρ̂i(x, τi).

7: end for

Now, let us define some notations. We define the the FKE
equation associated operator

A : L2(Ω) → L2(Ω)

by φ(x, T0) = Aφ(x, 0), φ(x, 0) ∈ L2(Ω). The operator A
depends on T0 and L, h(x) and S.

Similarly, we define the deep FKE-solver associated opera-
tor

Ann : L2(Ω) → L2(Ω)

by φ(x, T0) = Annφ(x, 0).
Note on the time interval [τi−1, τi), the approximation

solution by our method is

ûi(x, t) = exp
(
−h(x)⊤S−1yτi−1

)
ρ̂i(x, t), (17)

thus our approximation solution is

û(x, t) =

N∑
i=1

ûi(x, t)I[τi−1,τi)(t) (18)

Theorem 3.1: Suppose assumptions (1-3) hold, the approx-
imation solution û(x, t) converges to the true solution u(x, t)
of (5) in L1 sense with probability 1 over independently and
identically samples(w. p. 1 iid), i.e.,

û(x, t)
w.p.1,iid−−−−−→ u(x, t), (19)

in L1(Ω) as N,M, ξ(defined below) goes to +∞.
Proof: For clarity, the proof is divided into three parts.
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a) The convergence of robust-DMZ equation solution: First,
note the pathwise approximate solution of (6) is

ũ(x, t) =

N∑
i=1

ui(x, t)I[τi−1,τi)(t) (20)

Under the assumption 1, it has been proven in [36] that in
L1 sense converges to u(x, t), i.e.,

u(x, t)
L1

= lim
N→∞

ũ(x, t), 0 ≤ t ≤ T. (21)

Since ũ(x, t) and û(x, t) are pathwise functions, and by
Proposition 3.1, there is an one-to-one correspondence be-
tween ρi(x, t) and ui(x, t), we only need to prove ρ̂i(x, t)
converges to ρi(x, t).

b) The convergence of GLP approximation: Second, recall
that on the time interval [τi−1, τi), the initial PDF of (8) is
ρi(x, τi−1), and its GLP projection ρ̄i(x, τi−1). Therefore, we
have

ρi(x, τi) = Aρi(x, τi−1),

ρ̄i(x, τi) = Aρ̄i(x, τi−1),
(22)

It has been proven in [6] that the GLP approximation error
goes to zero as M goes to ∞, i.e.,

lim
M→+∞

ρ̄i(x, τi−1) = ρi(x, τi−1) (23)

Then, under our assumptions, by the classical Galerkin ap-
proximation approach, we have

lim
M→+∞

ρ̄i(x, τi)
L2

= ρi(x, τi). (24)

Since, the domain Ω is bounded, the convergence is also in
L1 sense naturally.

c) The convergence of deep FKE-solver: Third, the solutions
of the deep FKE-solver with initial condition ρ̂i(x, τi−1) is
given by

ρ̂i(x, τi) = Annρ̂i(x, τi−1), (25)

From Proposition 3.1, it is easy to derive that

ρ̄i(x, τi−1) =

{
σ0(x), i = 1,

Zi(x)ρ̄i−1(x, τi−1), i ≥ 2,
(26)

here, Zi(x) := exp{h(x)⊤(y(τi−1) − y(τi−2))}, i ≤ 2. The
same recursion holds for ρ̂i(x, τi−1).

Next, we define the error between ρ̄i(x, t) and ρ̂i(x, t) by

ei(x, t) := ρ̄i(x, t)− ρ̂i(x, t), τi−1 ≤ t < τi. (27)

then, by (25) we have

e1(x, τ1) = Aσ0(x)−Annσ0(x),
ei(x, τi) = Aρ̄i(x, τi−1)−Annρ̂i(x, τi−1)

= Bi,1 +Bi,2, 2 ≤ i ≤ N,
(28)

where, we denote

Bi,1 := Aρ̄i(x, τi−1)−Aρ̂i(x, τi−1),
Bi,2 := Aρ̂i(x, τi−1)−Annρ̂i(x, τi−1).

Under the assumption 2, by the theorem 3.6 in [33] we have

e1(x, τ1)
w. p. 1 iid−−−−−→ 0,

Bi,2
w. p. 1 iid−−−−−→ 0, i ≥ 2,

(29)

in W 1,2
0 (Ω), thus L1(Ω), as ξ → +∞, here in our case, ξ :=

(Nf +Nb, Nic) denotes the numbers of training samples.
Now, for Bi,1 term, using the recursion (26), we have

Bi,1 = A(Zi(x)ei−1(x, τi−1)) (30)

Under our assumption, we know that the operator A and the
function Zi(x) are all bounded on Ω, there exist a constant
Ci > 0, such that for i ≥ 2,

∥Bi,1∥L2(Ω) ≤ Ci ∥ei−1(x, τi−1)∥L2(Ω) . (31)

Since from (29), e1(x, τ1)
w. p. 1 iid−−−−−→ 0, we have

B2,1
w. p. 1 iid−−−−−→ 0,

and then by (29,30), we know

e2(x, τ2)
w. p. 1 iid−−−−−→ 0.

By applying induction to the recursion (28), we have

ei(x, τi)
w. p. 1 iid−−−−−→ 0, 1 ≤ i ≤ N. (32)

In other words, we have

ρ̂i(x, τi)
w. p. 1 iid−−−−−→ ρ̄i(x, τi), 1 ≤ i ≤ N (33)

in L1(Ω) as ξ → +∞.
Finally, the theorem’s conclusion is followed by equation

(21), (24) and (33).

IV. NUMERICAL RESULTS

In this section, three examples are tested to verify the
availability and effectiveness of the newly proposed DGLG
algorithm. In the first example, a one-dimensional highly
nonlinear filter is provided which contains oscillatory drift
term, non-trivial diffusion coefficients, and cubic observation.
The second example is a two-dimensional case with a highly
oscillatory observation term. The third example exhibits a two-
dimensional cubic sensor problem in which the drift term is
an affine function. All three examples above are typical and
challenging to be solved by traditional methods such as EKF,
PF, etc.

The mean square error (MSE) metric is used to measure the
accuracy of filtering algorithms at each instant and the mean
of MSE (MMSE) for the whole time T ,

MSE(tk) := 1
Ntr

∑Ntr

i=1(X̂
i
tk

−Xi
tk
)2,

MMSE := 1
N

∑N
k=1 MSE(tk),

(34)

where X̂i
t denotes state estimate in i-th trial at instant t. Xi

t

represents the real state trajectory. Ntr denotes number of
simulation trials. Mean time (MT) is defined as

MT =
1

Ntr

Ntr∑
i=1

Ti,

where Ti is the computational time for i-th trial. In all three
examples, the number of independent trials Ntr is set to 20.
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Example 4.1 (1d highly nonlinear system):
dXt = a sin(Xt)dt+ σBdWt, E[(dWt)

2] = dt,

dZt = 0.5X3
t dt+ dVt, E[(dVt)

2] = Sdt,

X0 ∼ σ0 := N (µ0 = 0.1, σ0 = 0.05).

(35)

where a = 0.2, diffusion coefficient σB = 1.2, observation
variance S = 0.03. Let the Total simulation time be T = 4
seconds. The time increment of the evolution of the filtering
system is dt = 0.001. The number of GLP basis functions M
is chosen to be 7. Observation time increment ∆t = 0.01. For
the solution of the spectral method(SM), the time increment is
set to 0.001. For the PF algorithm, we choose 20 particles to
evolve. For DGLG, during the training stage, a fully connected
network is chosen with layers [2, 80, 80, 80, 1] in the feasible
region (t, x) ∈ [0, 0.3] × [−1, 1]. The maximal epoch is set
to 10000 with the Adam optimizer. For each of the three
parts in the loss function, i.e., interior, initial, and boundary
parts, we shall sample 1000 collocation points. The results

Algorithms DGLG SM EKF PF
MT 0.1407 0.428 0.004 0.2875

MMSE 0.1823 0.1798 0.3151 0.2762

TABLE I: Performance of all simulated algorithms in Example
4.1.

Fig. 2: State tracking (left) and MSE (right) in Example 4.1.

of state tracking are shown in Table I and Fig. 2. In terms
of MSE, it can be found that DGLG and SM algorithm both
attain the most accurate result which is lower than EKF by
42% and than PF by 34%. According to the MT result, we
shall find that DGLG has the fastest simulation speed in which
computational time is lower than SM by 66% than PF by 51%.
The conditional density evolution is shown in Fig. 3(left). Due
to the nonlinear structure contained in drift and observation, it
is a moderately challenging problem to recover the real state
from the corresponding observation data. The DGLG method
performs best both in computational time and MMSE for such
a problem.

Example 4.2 (2D nonlinear observation system):
dXt = (a1 + a2Xt)dt+ dWt, , E[(dWt)

2] = dt,

dZt =

[
Xt sin(Xt)

Xt cos(Xt)

]
dt+ dVt, E[dVtdV

⊤
t ] = Sdt,

X0 ∼ N (µ0 = 0.1, σ0 = 0.05)
(36)

where covariance matrix is set S = sI for simplicity.

Fig. 3: Conditional density in Example 4.1(left) and Example
4.2(right).

The corresponding FKE equation is

∂ρ(t, x)

∂t
=
1

2

∂2ρ(t, x)

∂x2
− (a1 + a2x)

∂ρ(t, x)

∂x

− (a2 +
1

2
x2s−1)ρ(t, x)

(37)

where drift coefficients a1 = 0.3, a2 = −0.1. Total simulation
time T = 4. Number of GLPs M = 8. The number of particles
for the PF algorithm is Npf = 50. For DGLG, the setting of
hyperparameters is the same as the Example 4.1.

Algorithms DGLG SM EKF PF
MT 0.283 0.492 0.006 1.623

MMSE 0.499 0.506 0.648 0.577

TABLE II: Performance of all simulated algorithms in Exam-
ple 4.2.

(a) (b)

Fig. 4: State tracking (a) and MSE (b) in Example 4.1.

Accordingly, results of state tracking and MSE have been
shown in Table II and Fig. 4. The conditional density evolution
is shown in Fig. 3(right). Nonlinear property in this example
appears in the observation function which exhibits strong
oscillation behavior itself. In terms of MSE, DGLG has the
best performance which is lower than EKF by 23% and PF
13.5%. According to running time, it can be noticed that
DGLG significantly speeds up the SM by 42.4% and PF by
82.5%.
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Example 4.3 (2D cubic system):

dXt =

[
a11 a12

a21 a22

][
X1

X2

]
dt+ dWt, E[dWtdWt

⊤] = Qdt,

dZt =

[
X3

1

X3
2

]
dt+ dVt, E[dVtdVt

⊤] = Sdt,

X0 ∼ N ([0.1, 0.1]⊤, 0.05I2)
(38)

where covariance matrix is set S = sI for simplicity.
The corresponding FKE equation in this case is

∂v

∂t
(t, x1, x2) =

1

2
(vx1x1

+ vx2x2
)− (a11x1 + a12x2)vx1

− (a21x1 + a21x2)vx2

− (a11 + a22)v −
1

2
(x6

1 + x6
2)s

−1v,

(39)
where drift coefficients a11 = −0.4, a12 = 0.1, a21 =
0, a22 = −0.6. Spatial scaling factor C = 1.2. Covariance
coefficient s = 0.1. The number of GLPs M = 15. Particle
number is Npf = 50. For DGLG, the architecture of the
neural network is [3, 100, 100, 100, 1] and we shall uniformly
select collocation points for independent variables (t, x1, x2)
in terms of initial, boundary and residual regions. Training
time interval is chosen as t ∈ [0, 0.4].

Algorithms DGLG SM EKF PF
MT 1.234 2.192 0.019 2.967

MMSE 0.549 0.562 0.993 0.958

TABLE III: Performance of all simulated algorithms in Ex-
ample 4.3.

(a)

(b)

Fig. 5: State tracking (a) and MSE (b) in Example 4.3.

As Fig. 5 shows, for this cubic sensor system, traditional
EKF exhibits an invalid estimation for both states. In terms
of state tracking, PF can only give the rough trend of state

evolution, especially for state x1. In terms of MSE, DGLG
has the best and same performance which is lower than EKF
by 45% and PF 43%. According to running time, as shown in
Table III, DGLG significantly speeds up the SM by 44% and
PF by 58%. DGLG exhibits the best performance for both
state estimations while largely enhancing the computational
efficiency compared with SM.

V. CONCLUDING REMARKS

We propose an efficient filtering algorithm using deep
neural networks and the classical Galerkin approach. The
observation-independent FKE is solved with a deep neural
network under the PINN paradigm, approximating the un-
normalized density function with GLP basis functions to
handle time-varying initial conditions. This method requires
only mild assumptions, supports arbitrary initial distributions,
and converges theoretically to the true DMZ equation solution.
It is implemented in a real-time, memoryless manner, demon-
strating superior efficiency and stability in three numerical
experiments compared to EKF, spectral methods, and PF.

The method is limited by the “curse of dimensionality”,
making it suitable for moderate-high dimension systems. Fu-
ture work will focus on designing an efficient FKE operator
network to reduce offline training costs, inspired by recent
advancements in deep neural network-based operator learning.

REFERENCES

[1] Brian D. O. Anderson and John B. Moore. Optimal filtering. Courier
Corporation, 2012.

[2] Ienkaran Arasaratnam and Simon Haykin. Cubature kalman filters. IEEE
Transactions on automatic control, 54(6):1254–1269, 2009.
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