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DGLG: A Novel Deep Generalized Legendre—Galerkin Approach to
Optimal Filtering Problem
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Abstract—The optimal filtering problem for general nonlinear
and continuous state-observation systems attracts lots of atten-
tion in the control theory. The essence of optimal filtering requires
solving the Duncan-Mortensen-Zakai (DMZ) equation in a compu-
tationally feasible way. Under the pioneering work of Yau-Yau filter-
ing, the DMZ equation is reduced to a pathwise computation of a
forward Kolmogorov equation with time-varying initial conditions,
which is very challenging. To overcome the computational diffi-
culty, in this article, we proposed a new efficient filtering algorithm
consisting of a forward Kolmogorov equation solver based on a
physics-informed neural network and a probability density approxi-
mator based on generalized Legendre polynomials. By utilizing the
advanced deep learning method and classical Galerkin approxima-
tion, our developed algorithm not only maintains the high accuracy
of the spectral method but also removes massive computational
loads in the offline part. Furthermore, the convergence of our
method is proved. Numerical experiments have been carried out
to verify the feasibility of the new method. Regarding accuracy and
efficacy, the newly proposed deep generalized Legendre—Galerkin
algorithm outperforms other popular suboptimal methods includ-
ing the extended Kalman filter and particle filter.

Index Terms—Estimation, filtering, generalized Legendre poly-
nomial (GLP), neural networks, nonlinear systems.

|. INTRODUCTION

Nonlinear filtering (NLF) widely arises in many important practical
applications, such as target tracking [8], [24], [40], navigation sys-
tems [15], [23], robotics [5], [29], and advanced control systems [9],
[30]. For general NLF problems, the well-known Duncan—Mortensen—
Zakai (DMZ) equation [11], [26], [39] describes the update equation for
the unnormalized conditional density. In general, the conditional den-
sity cannot be characterized by a finite number of sufficient statistics,
i.e., it lives in an infinite-dimensional space. Only in several special
cases, such as linear Gaussian filter [18], [19], and Benes filter [3],
[7], solution of DMZ equation can be solved in an explicit form. In
the majority of general systems, it is very difficult to solve the DMZ
equation straightforwardly.
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Due to the difficulty of solving DMZ equation directly, many
researchers are devoted to find its approximate solution by various
means. In summary, there are three classes of filtering algorithms. The
first class is Kalman filter (KF)-based filtering algorithms, e.g., the
well-known extended Kalman filter(EKF) [1], the unscented KF [17],
ensemble KF [13], etc [2], [4], [16]. For these filters, they all assume
that the probability distributions involved should be Gaussian. When
the underlying filtering system has a strong nonlinearity, the filters can
easily diverge. There have also appeared some new filtering algorithms
in recent years combining traditional KF and its extensions with deep
learning (DL) methods, e.g., [12], [21], [28]. The second class is particle
filter(PF) [14]-based filtering algorithms, including various PF variants,
feedback PF [35], etc. The PF imposes no assumption on the distribution
of the filtering system, which makes it a universal filter. However,
the particles generated by sequential Monte Carlo sampling suffer
from “particle degeneracy,” thereby leading to the failure of the filter
sometimes. The third class aims to solve the DMZ equation directly.
The cost of this class of methods is quite large yet the optimality of the
solution obtained is guaranteed theoretically.

Starting from the first principles, the authors in [36] and [37] de-
veloped the Yau—Yau filtering framework for a general class of NLF
system. This framework has several advantages. First, its convergence is
theoretically guaranteed, under mild conditions. Second, it is real-time
and memoryless. By “memoryless” we mean a filtering method that
only uses each newly arrived observation to update the estimation of
the system’s states. Several algorithms have been developed under this
framework. In [10] and [25], different spectral methods (SMs) were
applied to the NLF problem. In [32], an efficient algorithm was devel-
oped from the optimization point of view. The core challenge of this
framework lies in solving a parabolic partial differential equation (PDE)
with time-varying initial conditions efficiently. Due to the inherent
difficulties of this framework, at present, there is still not much research
work in this direction.

Inrecent years, DL method has emerged as a promising alternative to
solve PDE numerically. Notably, Raissi et al. [27] proposed the physics-
informed neural network (PINN) method in for solving various PDE
problems. Lots of work has been seen following this new computation
paradigm in the field of numerical computation [20]. By enforcing the
physical laws as optimization constraints, the PINN method is trained in
an unsupervised way. Compared to classical numerical schemes, this
method is very simple, and mesh-free. Therefore, the PINN method
sheds light on overcoming the difficulty of the Yau—Yau framework.

Motivated by the Legendre—Galerkin method and the sophisticated
DL method nowadays, we will develop an efficient filtering algorithm
under the Yau—Yau framework in this article. The convergence of our
method is analyzed in detail as stated in Theorem 3.1. The proposed
algorithm is efficient and can be implemented in a real-time and mem-
oryless manner. The numerical experiments verified the effectiveness
of the proposed method.

The rest of this article is organized as follows. Section II briefly
describes the NLF problem we considered and notations. The deep
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generalized Legendre—Galerkin algorithm is derived in Section III. In
Section IV, several numerical examples were carried out to verify the
feasibility and effectiveness of the method. Finally, Section V concludes
this article.

Il. BASIC CONCEPTS AND PRELIMINARIES

In this article, we consider the following continuous-type NLF
system:

d.’L’t (1)
dyt = h(l‘t)dt + dvt.

Here, =, := z(t) € R™ is the state of the system at time ¢, y; :=
y(t) € R™ is the observation with yo = 0, f(x;), h(z;) are C*(R"™)
vector value functions. wy, v, are independent Brownian motion pro-
cesses with variance ) and S, respectively. I' € R™*P is a con-
stant diffusion coefficient matrix such that G :=I'QI" is a positive
definite matrix. {w;}4>0, {v¢}¢>0 and initial state xo are mutually
independent.

Given all observations till instant ¢, i.e., V; := {ys : 0 < s < t},itis
well-known that in minimum variance sense, the conditional probability
density function (PDF) p(z, t) of z; satisfies the Kushner-Stratonovich
(K-S) equation [22], [34], which is computationally intractable. Later
on, Duncan et al. [11], [26], [39] proposed independently the DMZ
equation associated with an unnormalized PDF o (z, t)

do(z,t) = Lo(x,t)dt + o(z,t)h(z)T S Ldy, @)
o(z,0) = og(x).
Here, the operator £(x) is defined as follows:
1 n
Lx)=5> G 3)

g 817 8%

wf i=1

and og(z) is an unnormalized version density function of the initial
state xo. Compared to K-S equation, this equation is easier to handle,
since it is a linear stochastic PDE about o (x,t). It will be our main
concern hereinafter.
Assumptions: We assume that the following holds.
1) The conditions of Theorem C and (A.2), (A.17), (C.1)—~(C.3) in
[36] hold.
2) The assumptions of [33, Thm. 3.6] hold.
3) Q[in (9)] is a bounded domain in R™ with smooth boundary.
Notations: L*(Q2) and C*(Q) denote the set of square integrable
and smooth functions in a domain €2, respectively. Inner product
between two functions f, g is represented by (f, g) := [, fgdz. V
denotes the gradient operator. A denotes the Laplacian operator.
N (i, %) denotes a Gaussian distribution with mean p and variance
3.

11l. NUMERICAL SOLUTION OF DMZ EQUATION BASED ON DEEP
NEURAL NETWORK

In this section, we will develop a new filtering algorithm based on a
deep forward Kolmogorov equation (FKE) solver with the generalized
Legendre—Galerkin approximation. The convergence of our method is
proved in the end.

A. Reduction of DMZ Equation to FKE

Note in the DMZ equation, the observation term dy, will render
underlying filtering algorithms lacking robustness. By making the
following gauge transformation:

u(zx,t) = eXp(—h(x)T(r)Sflyt)a(x,t) %)

the DMZ equation is transformed into a deterministic PDE with stochas-
tic coefficients

?;t‘ (z,t) = exp(—h(z) TS 1y;) (E —
-[exp(h(z)" S y )u(w, t
u(z,0) = og(x).

Equation (5) is called the “pathwise-robust” DMZ equation. Generally
speaking, the equation (5) does not have a closed-form solution, thus
usually we seek efficient algorithms to construct a good approximation
solution.

Let us assume the total filtering time is 7". The observations occur
attime sequence Py = {0 =m0 <m < - <7y =T}HLAr =7 —
7;—1 = Tp. Let u; be the solution of the robust DMZ equation (5) with

%h(m)TS’lh(x))
)] o)

observation process fixed on the interval 7;_1; <t < 7; by y; = y-, |,
ie.,
06";' (z,t) = exp(—h(w)jsflynil) ([, — lhTS*h)
’ [exp(h(m) Silyﬂq)ui(m, t)j (6)

up (z,0) = og(x)
’LLZ'(.’L‘,Tifl) = ui,1(1'77'i,1)7 for ¢ Z 2.

Note the observations y,, are contained in the coefficients of (6),
which brings a fundamental challenge for real-time computation. By
the following proposition in [36], the equation is transformed into an
observation-independent PDE.

Proposition 3.1: Foreach 1, | <t <T7;,1=1,2,..., N, u;(z,t)
satisfies (6) if and only if
pi(x,t) = exp (h(m)TSfly.riil) ui(z,t) 7

satisfies the following FKE:

Opi 1 Tao-1
P (01) = (c—§h<x> s h<x>) pi(@, )

where L is defined in (3).

Equation (8) is linear, and it does not depend on the information of
the observations {y., 1V |. This property enables us to solve the FKE
(8) in advance. Of each time interval [7;_1, 7;), the initial distribution
varies. By projecting the initial condition p(z,7;-1) onto a finite
dimension subspace of L?(R™) once a new observation arrives, the
station estimation can be implemented in real-time.

Remark 3.1: In practice, we always do filtering estimation in a finite
time 7', hence the states are in a bounded domain Q = [a, b]™ over
the entire filtering time interval. Therefore, it is reasonable to assume
the state density p(z, t) is supported on a considered bounded domain
Q = [a, b]™. Without loss of generality, we only consider one dimension
case, i.e., n = 1 in the following.

®)

B. Deep FKE Solver and Filtering Algorithm

In this part, we shall develop a new efficient algorithm to compute
the FKE equation (8) with time-varying initial conditions by a deep
neural network. For notation convenience, we omit the subscript in (8)
as follows:

%0 (g — In(z)TS h(z))plx
{ax 1) = (£ = 3h(z)" S h(z))p(z ) .

p(z,0) = ¢(x) € C*(Q).

1) PDF Approximation Based on Generalized Legendre
Polynomials (GLP): We shall decompose the unnormalized density
p(x,t) through the GLP {¢y(z)} constructed in [31]. Compared to
other basis functions of L2?(R"™), the GLPs are simple, and more
importantly, their values will vanish to zero when the variables approach
the boundary of the interval [—1, 1]™.
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Fig. 1. Network architecture.

For one dimension case, the kth order GLP {¢y(x)} is defined as

Sr(x) = ck (pr(2) — pry2(z)) , = (10)

1
Vik+6
For high dimension case, i.e., n > 2, the kth order GLP is defined as
the tensor product of 1-D GLPs

k() = dry (T1) - Pry (T2) -
We define

o, (zn),k € N™.

Vi = span {¢y(2), ||kl

Then, for all p(x) € W,**(Q) C L?(Q), the projection is given by

< M}.

pi= Y wpdn(x),MeN (11)
[[Felloc <M
where the coefficients wy, is determined by
(p—5.6) =0 V€ V. (12)

Remark 3.2: Forour considered domain 2 =
transformation:

[a, b], by the following

w) . (13)

au(o) = o (E5

Then, q;k(x), k=0,...,M form a group of basis functions on §2.
Hence, for notation simplicity, we only need to consider the case
Q=[-1,1].

2) FKE Solver Based on Deep Neural Network: Now we
consider the FKE equation (9) with the initial condition p(x,0) being
GLPs ¢;(x),l =0,...M — 1 on the closed domain D = B x Q =
[0, T,] x [—1,1]. Since we do not have any prior numerical solutions
in advance, we will adopt the PINN method to solve FKE with ¢; ().

The designed network architecture of the FKE solver is shown in Fig.
1. The network input is (z, t), i.e., points sampled from the domain D.
The output p(x,t;0) represents the parametric solution of the FKE
equation p(zx,t). We choose the tanh as the activation function a(z)
for all hidden layers. The weights and bias are initialized through
Xavier uniform initialization. The Adam optimizer is employed with a
dynamically adjusted learning rate n,, = 19 X v*, where 1, is the initial
rate and -y is a regulator factor. The early stop mechanism is employed
during training whenever the loss is lower than threshold ep.

The whole training dataset consists of three datasets, i.e.,

Xtrain - Xf U Xb U Xis- (14)

1) We create the interior dataset X ; with Ny points sampled within
domain D using Latin hypercube sampling (LHS). LHS provides
better coverage and less redundancy compared to other random
sampling methods.

2) We construct dataset X} near the spatial boundary 0f2, i.e., B x
([a,a + cp) U [b — cp, b]), where ¢, is a small positive number,
by randomly sampling N, points uniformly. Finer sampling is
expected to improve model accuracy near the boundary.

3) On the initial boundary {¢t = 0} x Q, we sample N;. points using
LHS to create dataset X;.. We place denser sampling points near
{t = 0} x 0N as these regions are harder to train.

Besides, we adopt an adaptive residual resampling strategy to accel-
erate model convergence. After every fixed epoch n,.,,-, we update the
dataset X ; by adding resampled points with larger residual errors.

The loss function consists of three terms. For the kth training
epoch, we denote the residual of the network as R (k). Specifically,
for collocation points inside the computational region D, the network
output should satisfy the equation constraint, i.e., for (z(9,+()) € X ¥

F(pO™; 2, tD))[2.

For the near spatial boundary dataset X, they also satisfy the
equation constraint as well, so we define the loss for them as follows,
for (2, ) € X,

R (k) =

RY (k) =

F (O™, ()P

For the initial time boundary, they should be consistent with the
initial condition p(z,0) = qbl(;z’), hence for (z(V, () € X,

R (k) = 2 9,10)) = 61 () .

Furthermore, to make the network optimization procedure pay more
attention to those points with larger residual errors as training goes
by, we require the training points to be adaptively weighted. For the
(k + 1)th epoch, the weights for datasets Xy, X, X;. are defined,
respectively, as

\F(po™*

(1) (1) (1)
wi (k+1) = RY Z RY
W (k+1) =RV (k)/ Z R (k (15)
wi (k+1) = RY (k)/ Z R (k
The weights of different terms are initialized as
; 1 ; 1 ; 1
(4) _ (%) _ (%) _
1) = — )= —,w, /(1) = .
wf ( ) Nf’wb ( ) Nb7wzc( ) e
Finally, we have the following weighted loss for (k£ + 1)th epoch:
L(0)|g_gr+1) = ws(B)Ryp(k+1) + wy(k)Ry(k +1) 6

+ wie(B)Rio(k + 1).

3) Algorithms: The developed filtering method (named as
DGLG) consists of two parts, the offline deep FKE solver is listed
in Algorithm 1, and the online GLP estimator is listed in Algorithm 2.

C. Convergence Analysis

Before the convergence analysis of our method, let us recall that
the Assumption (A.2) in our Assumption 1 essentially says that the
growth of |h| is greater than the growth of |f|. Under Assumption 1,
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Algorithm 1: Offline Deep FKE solver.

1: Initialization: given the number of GLP basis function M,
the off-line computation time 7.

2: generate the training dataset Xy, -

3: forl=0: M —1do

4:  train the FKE solver with p(z,0) = ¢,(z).

S: predict on the grid points of the considered domain D, and
store the solution at Ty, i.e. ®;(z,Ty) up for the
preparation of the on-line computation.

6: end for

Algorithm 2: Online GLP Estimator.

1: Initialization: Given the off-line data {®,;(x, Tp)
2: fori=1,...,Ndo
3: project p;(x, ;1) onto the GLP basis functions,
pilw,mi1) ~ 30" ().
4: assemble the solution p;(x, ;) of FKE by
Pi (JL‘, Ti) ~ Zlhial ci,lq)l(”@ AT)'
5: estimate the current state by
(1) = [gn @ - Ui(z, 73)de/ [in @i (z, 7)dw, here the
solution 4;(x, ;) of (5) is calculated by (7) and p; (x, 7).
6: update the initial pdf of the next time interval by

M-1
=0 -

ﬁi+1(xv7_i) = exp(h(m)—rsil(yﬂ - yﬂq)) : ﬁl(m7 Ti)'
7. end for

the existence and uniqueness of a weak solution for the robust DMZ
equation are guaranteed. Combined with Assumptions 3, the robust
DMZ equation admits a smooth solution. Due to the page limit, we
refer the readers to [36] and [38] for detailed discussions.

Now, let us define some notations. We define the the FKE equation
associated operator

A L2(Q) — L2(Q)

by o(z,Ty) = Ap(x,0), o(x,0) € L2(Q). The operator A depends
on Ty and £, h(z) and S.
Similarly, we define the deep FKE-solver associated operator

A" LA(Q) — LA(Q)

by p(z,To) = A" ¢(x,0).
Note on the time interval [r;_1, 7;), the approximation solution by
our method is

U;(z,t) = exp (—h(a:)TSflyTFl) pi(x,t). 17)
Thus, our approximation solution is
N
i, t) =Y (2, )], - (1) (18)
i=1

Theorem 3.1: Suppose Assumptions (1)—(3) hold, the approxima-
tion solution 4 (z, t) converges to the true solution u(x,t) of (5) in L*
sense with probability 1 over independently and identically samples (w.
p. liid.),ie.,

w.p. 1 iid.
o

a(z,t) u(x,t) (19)

in L'(Q2) as N, M, &(defined below) goes to +oo.
Proof: For clarity, the proof is divided into three parts.

a) Convergence of robust-DMZ equation solution: First, note the
pathwise approximate solution of (6) is

N
i, t) =Y wiz, ), (1) (20)
i=1

Under the Assumption 1, it has been proven in [36] that in L! sense

converges to u(z, t), i.e.,
(e, t) £ lim a(z,t), 0<t<T. @1
N—o0

Since u(z,t) and 4(z,t) are pathwise functions, and by Proposi-
tion 3.1, there is an one-to-one correspondence between p;(x,t) and
u;(x,t), we only need to prove p;(xz,t) converges to p;(z,t).

b) Convergence of GLP approximation: Second, recall that on the
time interval [;_1, 7;), the initial PDF of (8) is p; (z, 7;-1), and its GLP
projection p;(x, 7;_1 ). Therefore, we have

pi(x,7:) = Api(z,7i-1)

pi(x, 1) = Api(x,Ti—1). (22)

It has been proven in [6] that the GLP approximation error goes to
zero as M goes to oo, i.e.,

pm pi(x, Ti1) = pi(®, Ti-1)- (23)
Then, under our assumptions, by the classical Galerkin approximation

approach, we have

2

. _ L
Mhﬁrilm pi(w, 1) = pi(z,73).

(24)

Since, the domain (2 is bounded, the convergence is also in L' sense
naturally.

¢) Convergence of deep FKE-solver: Third, the solutions of the deep
FKE-solver with initial condition p;(z, 7;_1) is given by

pi(x, i) = A" pi(x, 7). (25)
From Proposition 3.1, it is easy to derive that
_ y_ Joo(w), i=1
pz(x>7—7,71) - {Zi(m)ﬁi—l(xyrrifl)y i 2 2. (26)

Here, Z;(x) := exp{h(x)" (y(7i_1) — y(7i_2))}, < 2. The same re-
cursion holds for p;(x, 7_1).
Next, we define the error between p; (z, t) and p; (z, t) by

ei(z,t) := pi(x,t) — pi(x,t), T <t <. 27)
Then, by (25) we have
61(1’,7’1) = .AO'Q(CC) — Anno'o(l')
ei(x, ;) = Api(x,7-1) — A" pi(z, Ti1) (28)
=Bi1+ B2 2<i<N
where we denote
B;1 = Api(z,7i-1) — Api(z, Ti1)
Bi o= Api(x,7-1) — A" pi(x, Tim1).
Under the Assumption 2, by [33, Thm. 3.6] we have
61(27, 7_1) w. p. 1iid. 0
By 2R >0 (29)

in Wy (Q), thus L(RQ), as & — 00, here in our case, £ := (N +
Ny, N,.) denotes the numbers of training samples.
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Now, for B; ; term, using the recursion (26), we have

Bz‘,]_ = A(Zi(x)ei,l(x,n,l)). (30)

Under our assumption, we know that the operator .4 and the function
Z;(x) are all bounded on 2, there exist a constant C; > 0, such that
fori > 2

1Biill 20y < Cilleia(z, 7io1)ll 2(q) - (€2))

Since from (29), e (z, 71) wpliid, 0, we have

w. p. 1iid.
—_—

Bg’l 0

and then by (29,30), we know

w. p. 1iid.
E—

62(I77-2) 0.

By applying induction to the recursion (28), we have

w.p. liid.
E—

ei(x,7;) 0,1 <7< N. (32)

In other words, we have

w.p. liid.

pi(@, 7)) ——— pi(x, ), 1 <i <N (33)

in L1(Q) as £ — +oo.
Finally, the theorem’s conclusion is followed by (21),
and (33). H

(24),

IV. NUMERICAL RESULTS

In this section, three examples are tested to verify the availability and
effectiveness of the newly proposed DGLG algorithm. In the first exam-
ple, a 1-D highly nonlinear filter is provided, which contains oscillatory
drift term, nontrivial diffusion coefficients, and cubic observation. The
second example is a 2-D case with a highly oscillatory observation
term. The third example exhibits a 2-D cubic sensor problem in which
the drift term is an affine function. All three examples above are typical
and challenging to be solved by traditional methods, such as EKF and
PF.

The mean-square-error (MSE) metric is used to measure the accuracy
of filtering algorithms at each instant and the mean of MSE (MMSE)
for the whole time 1"

MSE(ty) = - 3207 (X, — XG,)?

34
MMSE := + 3" | MSE(t},) G4

where X; denotes state estimate in ith trial at instant t. X} represents
the real state trajectory. /Ny, denotes number of simulation trials. Mean
time (MT) is defined as

MT =

1
Ntr ZT’L

i=1
where 75 is the computational time for ¢th trial. In all three examples,

the number of independent trials Ny, is set to 20.
Example 4.1 (1-D highly nonlinear system):

dXt = asin(Xt)dt + O'Bth, E[(th)Q} =dt
dZ, = 0.5X3dt + dV,, E[(dV;)?] = Sdt
Xo ~ 00 := N (o = 0.1,00 = 0.05)

(35)

where a = 0.2, diffusion coefficient cg = 1.2, and observation vari-
ance S = 0.03. Let the Total simulation time be 7" = 4 s. The time
increment of the evolution of the filtering system is d¢ = 0.001. The
number of GLP basis functions M is chosen to be 7. Observation
time increment At = 0.01. For the solution of the SM, the time

TABLE |
PERFORMANCE OF ALL SIMULATED ALGORITHMS IN EXAMPLE 4.1.
Algorithms  DGLG SM EKF PF
MT 0.1407 0.428 0.004  0.2875
MMSE 0.1823 0.1798 0.3151 0.2762

State tracking

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
t t

Fig. 2.  State tracking (left) and MSE (right) in Example 4.1.

02

State State

Time Time

Fig. 3. Conditional density in Example 4.1(left) and Example 4.2(right).

increment is set to 0.001. For the PF algorithm, we choose 20 particles
to evolve. For DGLG, during the training stage, a fully connected
network is chosen with layers [2, 80, 80, 80, 1] in the feasible region
(t,z) €10,0.3] x [—1, 1]. The maximal epoch is set to 10 000 with the
Adam optimizer. For each of the three parts in the loss function, i.e.,
interior, initial, and boundary parts, we shall sample 1000 collocation
points. The results of state tracking are shown in Table I and Fig. 2.
In terms of MSE, it can be found that DGLG and SM algorithm both
attain the most accurate result, which is lower than EKF by 42% and
than PF by 34%. According to the MT result, we shall find that DGLG
has the fastest simulation speed in which computational time is lower
than SM by 66% than PF by 51%. The conditional density evolution
is shown in Fig. 3(left). Due to the nonlinear structure contained in
drift and observation, it is a moderately challenging problem to recover
the real state from the corresponding observation data. The DGLG
method performs best both in computational time and MMSE for such
a problem.
Example 4.2 (2-D nonlinear observation system):

dX, = (a1 + as X;)dt + dW,, E[(dW,)?] = dt
X sin(Xy)
X, cos(Xy)
Xo ~ N (o = 0.1, 00 = 0.05)

Az, = dt+dV;, E[dV,dV,']=Sdt  (36)

where covariance matrix is set S = s/ for simplicity.
The corresponding FKE equation is

Ip(t,x) _ 19°p(t,x)

ot 2 9z (a1 + a2)

Ip(t,x)
ox

(37
1 2.1 )
- (a2 + 5% Dplt,)
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TABLE Il
PERFORMANCE OF ALL SIMULATED ALGORITHMS IN EXAMPLE 4.2
Algorithms DGLG  SM EKF PF
MT 0.283 0.492 0.006 1.623
MMSE 0.499 0.506 0.648 0.577

The bold value indicate the smallest MMSE value.

State tracking

00 05 10 15 20 25 3.0 35 4.0 0 1 2 3 4
t

(a) (b)
Fig. 4. State tracking (a) and MSE (b) in Example 4.1.
where drift coefficients a; = 0.3, a; = —0.1. Total simulation time

T = 4. Number of GLPs M = 8. The number of particles for the PF
algorithm is Ny = 50. For DGLG, the setting of hyperparameters is
the same as the Example 4.1.

Accordingly, results of state tracking and MSE have been shown
in Table II and Fig. 4. The conditional density evolution is shown
in Fig. 3(right). Nonlinear property in this example appears in the
observation function, which exhibits strong oscillation behavior itself.
In terms of MSE, DGLG has the best performance, which is lower
than EKF by 23% and PF 13.5%. According to running time, it can be
noticed that DGLG significantly speeds up the SM by 42.4% and PF
by 82.5%.

Example 4.3 (2-D cubic system):

a11 A2 Xi

dXt - :|

a21 A22

dt + dW,, E[dW,dW,"] = Qdt

2

dZt -
2

Xo ~ N ([0.1,0.1]",0.051,)

X3
Xé} dt +dV,, E[dV,dV,T] = Sdt

(38)
where covariance matrix is set S = s/ for simplicity.
The corresponding FKE equation in this case is
v 1
a(tvmhmz) = i(vwlxl F Vpgay) — (a1121 + a1222) Uy,
— (a2121 4 a21%2) Vs,
1 -
— (a11 + az2)v — 5(1;? +z5)s o (39)
where drift coefficients ay; = —0.4,a12 = 0.1, a21 = 0, andass =

—0.6. Spatial scaling factor C' = 1.2. Covariance coefficient s = 0.1.
The number of GLPs M = 15. Particle number is Ny = 50. For
DGLG, the architecture of the neural network is [3, 100, 100, 100, 1]
and we shall uniformly select collocation points for independent vari-
ables (t,x1,x2) in terms of initial, boundary, and residual regions.
Training time interval is chosen as ¢ € [0, 0.4].

As Fig. 5 shows, for this cubic sensor system, traditional EKF
exhibits an invalid estimation for both states. In terms of state tracking,
PF can only give the rough trend of state evolution, especially for
state 1. In terms of MSE, DGLG has the best and same performance,
which is lower than EKF by 45% and PF 43%. According to running

State 1

State 2

00 05 10 15 20 25 3.0 35 40 00 05 10 15 20 25 30 35 40
& t

(a)

State 1 State 2

00 05 10 15 20 25 3.0 35 40
t

00 05 10 15 20 25 30 35 40
t

(b)
Fig. 5. State tracking (a) and MSE (b) in Example 4.3.
TABLE llI
PERFORMANCE OF ALL SIMULATED ALGORITHMS IN EXAMPLE 4.3.
Algorithms DGLG  SM EKF PF
MT 1.234  2.192 0.019 2.967
MMSE 0.549 0.562 0.993 0.958

The bold value indicate the smallest MMSE value.

time, as shown in Table I1I, DGLG significantly speeds up the SM by
44% and PF by 58%. DGLG exhibits the best performance for both
state estimations while largely enhancing the computational efficiency
compared with SM.

V. CONCLUDING REMARKS

We propose an efficient filtering algorithm using deep neural
networks and the classical Galerkin approach. The observation-
independent FKE is solved with a deep neural network under the PINN
paradigm, approximating the unnormalized density function with GLP
basis functions to handle time-varying initial conditions. This method
requires only mild assumptions, supports arbitrary initial distributions,
and converges theoretically to the true DMZ equation solution. It is
implemented in a real-time, memoryless manner, demonstrating supe-
rior efficiency and stability in three numerical experiments compared
to EKF, SM, and PF.

The method is limited by the “curse of dimensionality,” making
it suitable for moderate-high dimension systems. Future work will
focus on designing an efficient FKE operator network to reduce of-
fline training costs, inspired by recent advancements in deep neural
network-based operator learning.
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