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Abstract The McKean-Vlasov filtering problem is a special kind of filtering problem, with the state

and/or observation processes governed by McKean-Vlasov stochastic differential equations, which has

extensive applications in various scenarios. In this paper, we will propose a novel numerical algorithm to

solve the McKean-Vlasov filtering problem based on the Hermite spectral method under the framework

of Yau-Yau algorithm. As the first approach to numerically solving the Duncan-Mortensen-Zakai

equation associated with the McKean-Vlasov filtering problem, our proposed algorithm can provide

accurate estimations of the conditional expectation and conditional probability density of the state

process with a reasonable online computational complexity. The efficiency of our proposed algorithm

is verified both theoretically and numerically in this paper.

Keywords Nonlinear filtering, McKean-Vlasov equation, Duncan-Mortensen-Zakai equation, Yau-

Yau algorithm, Hermite spectral method.

1 Introduction

Filtering is a subject about the sequential estimation of a stochastic process, (referred to

as ‘state process’), with a series of noisy observations. As an important part of modern con-

trol theory, filtering has wide applications in various areas such as aerospace industrial [33],
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autonomous driving [27], weather forecasting [10], game theory [25] and so on. The design of

efficient filtering algorithms stimulates general interests of mathematicians and practitioners.

In many applications, the real-time capability of a filtering algorithm is also in high demand,

that is, it is appealing that an accurate estimation can be obtained through the algorithm, as

soon as each new observation comes [19].

Mathematically, based on historical observations, the best estimate of the state process is

the conditional expectation, in the sense that we can obtain the least expected mean square

error. Therefore, the studies of filtering algorithms are developed based on the computation

and approximation of conditional expectations and conditional distributions [2].

In 1960s, the notable Kalman-Bucy filter was first proposed [16, 17], which described the

exact evolution system of conditional expectations and covariance matrices for linear Gaussian

case. For general nonlinear filtering problems, however, the evolution of conditional expectation

cannot be expressed explicitly by a finite dimensional evolution system, and thus, researchers

and practitioners need to construct nonlinear filtering algorithms with different kinds of sur-

rogate dynamical systems to approximate the evolution of conditional expectation efficiently.

These nonlinear filtering algorithms include (i) nonlinear Kalman filters based on linearization

such as unscented Kalman filter [15] and ensemble Kalman filter [9]; (ii) Monte-Carlo based

algorithms such as resampling particle filter [1] and feedback particle filter [24, 29]; and (iii)

algorithms based on projection and moment matching such as projection filters [7] and density

parametrization filters [28].

In the late 1960s, Duncan [6], Mortensen [23] and Zakai [32] independently derived the evo-

lution equation of the unnormalized conditional probability distribution for general nonlinear

filtering systems, which is now referred to as the DMZ equation. From then on, studies on the

properties and numerical solutions of the DMZ equations, a second-order linear stochastic par-

tial differential equation driven by the observation process, had become an important problem

in the subject of nonlinear filtering [11, 14], because the desired conditional expectation can be

obtained by taking normalized integrals of the solution to the DMZ equation.

In standard filtering systems, the state and observation processes are often modeled by

a couple of stochastic differential equations driven by Brownian motions [2]. Nowadays, as

the application scenarios of state estimation theory become broader, many filtering problems,

which has entered into the horizon of researchers, are not in the standard setting, for example

the filtering systems with jumps [4], inverse filtering problems [18] and so on. In this paper,

we will consider filtering problem with state and observation processes described by a special

kind of stochastic differential equation, the McKean-Vlasov equation. McKean-Vlasov equation

was first proposed to model particle systems under mean-field interactions [12], as well as the

evolution of biological populations [22]. Later on, McKean-Vlasov equations also have wide

applications in mean-field control and mean-field game theories [13]. Recently, the McKean-

Vlasov filtering problem has also find its applications in the setting of mean-field games with

partially observed major player [25].

In comparison with standard stochastic differential equations, the coefficients in McKean-

Vlasov equations not only depend on the stochastic process itself, but also depend on the
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distribution or conditional distribution of the solution. Such dependence makes it harder to

analyze and solve McKean-Vlasov equations. In terms of the state estimation or filtering the-

ory of McKean-Vlasov equation, the corresponding DMZ equation satisfied by the conditional

probability distribution is derived in [26], which is a nonlinear stochastic partial differential

equation. To the best of the authors’ knowledge, there is still a lack of literature which focus

on the properties and solutions of the DMZ equation of McKean-Vlasov filtering problems.

At the beginning of this century, the second author and his collaborators proposed a two-

stage algorithm to solve the DMZ equation and also the standard nonlinear filtering problems

[19, 30, 31]. The proposed algorithm is now referred to as Yau-Yau nonlinear filtering algo-

rithm. With a series of exponential transformations, the original DMZ equation is converted

into a deterministic partial differential equation independent of the observations. Hence, in the

two-stage Yau-Yau algorithm, the heavy computational burden of numerically solving partial

differential equations can be done offline, and the online computation only includes the calcu-

lation of exponential transformations. Such kind of design guarantees that Yau-Yau algorithm

has the potential of solve the general nonlinear filtering problems in a real-time manner. Re-

cent study also shows that with the help of deep learning, Yau-Yau algorithm is very efficient

in solving high-dimensional nonlinear filtering problems, and has the capability of overcoming

the curse of dimensionality [3].

In this paper, we will generalize the idea of Yau-Yau algorithm to McKean-Vlasov filtering

problems, and propose a novel filtering algorithm to solve McKean-Vlasov filtering problems in a

real-time and memoryless manner. This proposed algorithm can be regarded as the first attempt

on the numerical algorithms of McKean-Vlasov filtering problems as well as the corresponding

nonlinear DMZ equations. The major generalization lies in the offline algorithm, where a

nonlinear parabolic partial differential equation is required to solve. We propose a novel two-

step Hermite-Galerkin method [20] to obtain the numerical solution of the equation. The

effectiveness of our proposed algorithm is verified both theoretically and numerically in this

paper.

The organization of this paper is as follows. In Section 2, we will briefly summarize the

setting of McKean-Vlasov filtering problem as well as the derivation of the corresponding DMZ

equation. In Section 3, the Yau-Yau algorithm for McKean-Vlasov filtering problem will be

proposed, and the convergence analysis of our proposed algorithm will be given in Section 4.

Numerical results will be illustrated in Section 5 and Section 6 is a conclusion.

2 Preliminaries

In this paper, we will consider the following McKean-Vlasov filtering system,{
dx(t) = f [t, x(t), µt]dt+ σ[t, x(t), µt]dw(t)

dy(t) = h(t, x(t))dt+ dv(t)
(1)

where the evolution of the state process {x(t) : t ≥ 0} ⊂ Rn is governed by a stochastic

differential equation of McKean-Vlasov type, with the distribution of the initial random variable
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x(0) to be µ0, i.e., x(0) ∼ µ0; µt is the probability distribution of the state process x(t);

{y(t) : t ≥ 0} ⊂ Rm is the observation process with initial value y(0) = 0; {wt : t ≥ 0} ⊂ Rp,
{v(t) : t ≥ 0} ⊂ Rm are mutually independent standard Brownian motions of corresponding

dimensions.

Let us denote by P(Rn) the set of all probability measures on Rn, then the drift term

f : R× Rn × P(Rn) → Rn and the diffusion term σ : R× Rn × P(Rn) → Rn×p are defined as

follows:

f [t, x, µ] =

∫
Rn

f(t, x, z)µ(dz),

σ[t, x, µ] =

∫
Rn
ς(t, x, z)µ(dz),

(2)

with f : R × Rn × Rn → Rn and ς : R × Rn × Rn → Rn×p smooth functions of corresponding

dimensions.

Remark 2.1 For practical implementations, there is an important class of McKean-

Vlasov equations with diffusion term σ ≡ constant and

f(t, x, z) = φ(t, x) + z. (3)

In this case, the drift term of the McKean-Vlasov equation is given by f [t, x(t), µt] = φ(t, x(t))+

Ex(t) and the evolution of x(t) is dependent on its probability distribution µt through the

expectations. This special kind of McKean-Vlasov equation is often used in the model of

particles with mean-field interactions [12] as well as the evolution of feedback particle filter [29].

Given a fixed terminal time T > 0, for each 0 ≤ t ≤ T , let us define by Yt = σ{y(s) : 0 ≤
s ≤ t} the σ-algebra generated by historical observations. The main goal of McKean-Vlasov

filtering problem is to compute the conditional expectations E[ϕ(x(t))|Yt] for a given smooth

test function ϕ : Rn → R at each time 0 ≤ t ≤ T in a real-time and memoryless manner.

Following the idea in [26], we can derive the DMZ equation of McKean-Vlasov filtering

problem, which is satisfied by the unnormalized conditional probability distribution, with the

change-of-measure method. Firstly, let us define the exponential martingale {z(t) : 0 ≤ t ≤ T}
by

z(t) = exp

(∫ t

0

h>(s, x(s))dy(s)− 1

2
|h(s, x(s))|2ds

)
, (4)

then, under the reference probability measure P̃ given by

dP̃

dP

∣∣∣∣ = z(t)−1 = exp

(
−
∫ t

0

h>(s, x(s))dy(s) +
1

2
|h(s, x(s))|2ds

)
. (5)

The observation process {y(t) : 0 ≤ t ≤ T} is a standard Brownian motion, and the unnormal-

ized conditional expectation, which is defined by

ρt(ϕ) := Ẽ[z(t)ϕ(x(t))|Yt],

satisfies the following DMZ equation:

ρt(ϕ) = ρ0(ϕ) +

∫ t

0

ρs(L(s)ϕ)ds+

∫ t

0

ρ(h>ϕ)dy(s), 0 ≤ t ≤ T, (6)
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where

L(t)ϕ =
1

2

n∑
i,j=1

aij(t, x)
∂2ϕ

∂xi∂xj
+

n∑
i=1

fi(t, x)
∂ϕ

∂xi
, (7)

is the second-order elliptic operator with a(t, x) = (aij(t, x))1≤i,j≤n = σ[t, x, µt]σ[t, x, µt]
> and

f(t, x) = f [t, x, µt].

With mild coefficients in the filtering system and regular initial distribution, (which guaran-

tees that equation (8) below possesses a generalized solution in some properly chosen Sobolev-

type space), the unnormalized conditional probability distribution {ρt : 0 ≤ t ≤ T} is absolutely

continuous with respect to the Lebesgue measure, and the density function p(t, x) is almost

surely square-integrable.

With the integration-by-part formula, p(t, x) satisfies the following stochastic partial differ-

ential equation given by

dp(t, x) = L∗(t)p(t, x)dt+ h>(t, x)p(t, x)dy(t), (8)

with

L∗(t)(?) :=
1

2

n∑
i,j=1

∂2

∂xi∂xj
(aij(t, x)?)−

n∑
i=1

∂

∂xi
(fi(t, x)?) (9)

the dual operator of L(t).

The DMZ equation (8) is a stochastic partial differential equation. However, the stochastic

differentiation term in (8) can be eliminated through exponential transformations [5]. Let us

introduce a new function u(t, x) : R× Rn → R defined by

p(t, x) = u(t, x) exp
(
h>(t, x)y(t)

)
, (10)

then, according to Itô’s formula, u(t, x) satisfies the following deterministic partial differential

equation with stochastic coefficients:

∂u

∂t
(t, x) =− ∂h>

∂t
(t, x)y(t)u(t, x)dt− 1

2
|h(t, x)|2u(t, x)dt

+ exp
(
−h>(t, x)y(t)

)
L∗(t)

[
exp

(
h>(t, x)y(t)

)
u(t, x)

]
.

(11)

Since the stochastic differentiation term vanishes in (11), it will show more robust properties

through time-discretization. Therefore, we would like to call (11) the robust DMZ equation

of McKean-Vlasov filtering problem. Because in general, the solution of the DMZ equation

(8), together with the solution of the robust DMZ equation (11), does not possesses a closed

form, we need to propose time-discretization methods to solve these equations numerically.

The generalized Yau-Yau algorithm we would like to propose in the next section will provide

a proper time-discretization scheme for the robust DMZ equation (11), and then, solve the

McKean-Vlasov filtering problem.
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3 Yau-Yau Algorithm for McKean-Vlasov Filtering Problems

3.1 Time-Discretization of the Robust DMZ Equation

The robust DMZ equation for McKean-Vlasov filtering problem is a deterministic partial

differential equation with coefficients dependent on the entire trajectory of observations. In real

applications, the observations {y(t) : 0 ≤ t ≤ T} can only be obtained or sampled discretely in

the time interval [0, T ]. Therefore, we need to introduce a proper time-discretization scheme

and construct an auxiliary equation which is only dependent on the value of the observation

process on some discrete time steps.

Let us define a uniform partition of the time interval 0 = τ0 < τ1 < · · · < τK = T , with the

time discretization step size ∆t = T
K , and τk − τk−1 = ∆t, for all 1 ≤ k ≤ K. Assume that the

practical observations which we can obtain are {y(τk) : 0 ≤ k ≤ K}, then if the observation

terms are frozen in (11) at the left endpoint of each time interval [τk−1, τk], we obtain a set of

functions {uk(t, x) : [τk−1, τk]× Rn → R}0≤k≤K , which satisfies
∂uk
∂t

(t, x) =− ∂h>

∂t
(t, x)y(τk−1)uk(t, x)dt− 1

2
|h(t, x)|2uk(t, x)dt

+ exp
(
−h>(t, x)y(τk−1)

)
L∗(t)

[
exp

(
h>(t, x)y(τk−1)

)
uk(t, x)

]
,

uk(τk−1, x) = uk−1(τk−1, x), 1 ≤ k ≤ K.

(12)

The relationship between the solution of equation (12) and the robust DMZ equation (11)

has been discussed for standard time-varying nonlinear filtering systems in [19], and it has been

proved that for standard time-varying filtering systems, the corresponding solutions uk(t, x) of

(12) will converge to the solution of the robust DMZ equation in L1-sense under mild conditions,

as the time-discretization step size ∆t→ 0.

Here in the McKean-Vlasov case, the discussions in [19] also hold true, because the form

of auxiliary equation (12) is identical to the corresponding equation of standard time-varying

filtering problems, although due to the dependence on µt, the elliptic operator L∗(t) cannot

be written explicitly. Therefore, similar to the standard time-varying cases, it can be proved

that under mild conditions, the solutions {uk(t, x) : 1 ≤ k ≤ K} is a good approximator of

the solution u(t, x) of the robust DMZ equation (11), for sufficiently small ∆t. The remaining

task in solving McKean-Vlasov filtering problem is converted into numerically solving (12) with

relatively less online computation cost.

3.2 Yau-Yau Algorithm Framework for McKean-Vlasov Filtering Problems

The idea of Yau-Yau algorithm for solving McKean-Vlasov filtering problems is to sepa-

rate the observations from the auxiliary equation (12) and obtain a observation-independent

equation which can be solved offline. Notice that for ũk(t, x) defined by another exponential

transformation,

ũk(t, x) = exp
(
h>(t, x)y(τk−1)

)
uk(t, x), t ∈ [τk−1, τk], (13)

we have
∂ũk
∂t

(t, x) =

(
L∗(t)− 1

2
|h(t, x)|2

)
ũk(t, x), t ∈ [τk−1, τk], (14)
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with initial value

ũk(τk−1, x) = exp
(
h>(τk−1, x)y(τk−1)

)
uk(τk−1, x)

= exp
(
h>(τk−1, x)y(τk−1)

)
uk−1(τk−1, x)

= exp
(
h>(τk−1, x)(y(τk−1)− y(τk−2)))

)
ũk−1(τk−1, x),

(15)

for 2 ≤ k ≤ K, and ũ1(0, x) = u1(0, x) = µ0(x), for k = 1.

With this exponential transformation (13), the task of solving the auxiliary equation (12)

can be divided into two steps.

(i) Solve the observation-independent partial differential equation (14) at each time interval

[τk−1, τk], for 1 ≤ k ≤ K.

(ii) Compute the exponential transformation (15) at the beginning of each time interval.

Because (14) is independent of the observation process, with a suitable representation

method for the initial values, we can solve it offline and reduce the online computational burden

into only computing the exponential transformation. This two-stage nonlinear filtering algo-

rithm, after proposed at the beginning of this century by the second author and his collaborator,

is referred to as Yau-Yau algorithm [3].

In comparison with standard time-varying nonlinear filtering problems, the online compu-

tation procedure (ii) remains the same, while the second-order differential operator L∗(t) in

McKean-Vlasov filtering problems is not explicitly expressed, because the coefficients a(t, x)

and f(t, x) are dependent with the probability distribution µt. Fortunately, the measure term

µt is also independent of the observations, and we can compute or approximate µt, as well as

solve the observation-independent partial differential equation (14) offline.

In fact, with sufficient regularity assumptions on the coefficients of the state equation, the

probability distribution µt is absolutely continuous with respect to the Lebesgue measure, and

possesses a density function denoted by ρ(t, x). The probability density function ρ(t, x) satisfies

the following nonlinear Fokker-Planck equation [12]

∂ρ

∂t
=

1

2

n∑
i,j=1

∂2

∂xi∂xj
[aij [t, x, µt]ρ]−

n∑
i=1

∂

∂xi
(fi[t, x, µt]ρ) , (t, x) ∈ [0, T ]× Rn, (16)

with

f [t, x, µt] =

∫
Rn

f(t, x, z)µt(dz) =

∫
Rn

f(t, x, z)ρ(t, z)dz,

σ[t, x, µt] =

∫
Rn
ς(t, x, z)µt(dz) =

∫
Rn
ς(t, x, z)ρ(t, z)dz,

(17)

and a[t, x, µt] = σ[t, x, µt]σ[t, x, µt]
>.

In order to generalize the Yau-Yau algorithm and solve the McKean-Vlasov filtering prob-

lems, we first need to solve the nonlinear Fokker-Planck equation (16), and obtain a good

approximation of the probability distribution µt as well as its density function ρ(t, x). Then,

with the information of µt, we are ready to solve the parabolic partial differential equation (14)

satisfied by ũk and complete the offline procedure of the Yau-Yau algorithm.
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3.3 Hermite Spectral Method and the Practical Implementation of Yau-Yau Al-

gorithm

In the framework of generalized Yau-Yau algorithm for McKean-Vlasov filtering problems,

the solutions of the nonlinear Fokker-Planck equation (14) and the time-varying parabolic

equation (16) cannot by written down explicitly in a closed form, and we need to consider

the numerical solutions. In this paper, we would like to apply Hermite spectral method [20]

to solve (14) and (16) in the offline procedure and conduct Yau-Yau algorithm for practical

implementations.

Let {ψk}∞k=1 ⊂ L2(Rn) be the set of Hermite basis functions in L2(Rn). As is introduced in

[21], the expressions of each ψk are listed as follows.

• For space dimension n = 1, the (k− 1)-th Hermite basis function ψk in L2(Rn) is defined

by

ψ
(1)
k (x) =

(
1

2k−1(k − 1)!
√
π

) 1
2

hk−1(x)e−
1
2x

2

, k ≥ 1, (18)

with hk(x) the k-th Hermite polynomial defined recursively as follows:

h0 ≡ 1, h1(x) = 2x, hk+1(x) = 2xhk(x)− 2khk−1(x). (19)

• For space dimension n ≥ 2, the Hermite basis functions ψ
(n)
k (x) is defined by the tensor

product of one-dimensional Hermite basis functions ψ
(1)
k with

ψ
(n)
k (x) =

n∏
j=1

ψ
(1)
kj

(x), (20)

with k = (k1, · · · , kn) a multi-index.

With the above definition, the functions {ψ(n)
k (x)} form an orthonormal basis in L2(Rn).

In order to keep the simplicity of notations, we omit the superscripts in ψ
(n)
k , renumber the

multi-indexed subscripts, and still denote by {ψk}∞k=1 the Hermite basis functions in L2(Rn).

For a given positive integer N ∈ N, assume that the projection of ρ(t, x) onto the finite

dimensional subspace Span({ψk}Nk=1) is a good approximator to the solution ρ(t, x) of (16),

then according to the spectral method, we can choose an element

ρN (t, x) :=

N∑
k=1

λk(t)ψk(x), (t, x) ∈ [0, T ]× Rn, (21)

in the finite-dimensional subspace spanned by {ψi}Ni=1 as an approximation to ρ(t, x), with the

parameters λ = [λ1, · · · , λN ]> to be determined later.

With the approximated density function ρN (t, x), we can further define

fN (t, x) :=

∫
Rn
f(t, x, z)ρN (t, z)dz =

N∑
k=1

λk(t)

∫
Rn
f(t, x, z)ψk(z)dz =

N∑
k=1

λk(t)F k(t, x),

σN (t, x) :=

∫
Rn
σ(t, x, z)ρN (t, z)dz =

N∑
k=1

λk(t)

∫
Rn
σ(t, x, z)ψk(z)dz =

N∑
k=1

λk(t)Σk(t, x),

(22)
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and aN (t, x) = σN (t, x)σN (t, x)> as the approximated coefficients in equation (16).

The parameters λ in (21) can be determined through the standard Galerkin approach. In

fact, we may assume that ρN (t, x) satisfies the nonlinear Fokker-Planck equation (16) on the

finite-dimensional subspace spanned by {ψi}Ni=1, in the sense that

∂

∂t
〈ρN (t, ·), ψk〉 =

〈
1

2

n∑
i,j=1

∂2

∂xi∂xj

(
aijN (t, ·)ρN (t, ·)

)
, ψk

〉

−

〈
n∑
i=1

∂

∂xi
(f iN (t, ·)ρN (t, ·)), ψk

〉 (23)

for all 1 ≤ k ≤ N , where 〈·, ·〉 denotes the standard inner products in L2(Rn).

According to the integration-by-part formula, we can obtain the evolution equation of the

parameters λ,

d

dt
λk(t) =

N∑
l1,l2,l3=1

λl1(t)λl2(t)λl3(t)

〈 n∑
i,j,s=1

Σl1is(t, ·)Σ
l2
js(t, ·)ψl3 ,

∂2

∂xi∂xj
ψk

〉

−
N∑

l1,l2=1

λl1(t)λl2(t)

〈 n∑
i=1

F l1i (t, ·)ψl2 ,
∂ψk
∂xi

〉
,

(24)

where the vector-value functions F k and matrix-value functions Σk are defined in (22).

With the approximated density function ρN (t, x), we can define the approximated second-

order elliptic operator L∗N (t) by

L∗N (t)(ϕ) =
1

2

n∑
i,j=1

∂2

∂xi∂xj
(aijN (t, x)ϕ) +

n∑
i=1

∂

∂xi
(f iN (t, x)ϕ), (25)

and we would like again use Galerkin method to solve

∂ũNk
∂t

(t, x) =

(
L∗N (t)− 1

2
|h(t, x)|2

)
ũNk (t, x), t ∈ [τk−1, τk]. (26)

Let us define

ũN,N
′

k (t, x) =

N ′∑
i=1

αki (t)ψi(x) (27)

to be the solution of the approximated equation (26) in the finite-dimensional subspace spanned

by {ψi}N
′

i=1, in the sense that,

∂

∂t
〈ũN,N

′

k (t, ·), ψk〉 =

〈(
L∗N (t)− 1

2
|h(t, x)|2

)
ũN,N

′

k (t, ·), ψk
〉
, t ∈ [τk−1, τk], (28)

for all 1 ≤ k ≤ K.

Hence,

d

dt
αkj (t) =

N ′∑
i=1

αki (t)

〈(
L∗N (t)− 1

2
|h(t, ·)|2

)
ψi, ψj

〉
, 1 ≤ j ≤ N ′. (29)
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In the online computation procedure, we also project the results of exponential transformations

onto the finite dimensional subspace Span({ψi}N
′

i=1), and we have

ũN,N
′

k (τk−1, x) =

N ′∑
i=1

αki (τk−1)ψi(x) (30)

with

αki (τk−1) =

N ′∑
j=1

αk−1
j (τk−1)

〈
exp

(
h>(τk−1, ·)(y(τk−1)− y(τk−2))

)
ψj , ψi

〉
. (31)

Recursively, the propagation of the parameters α is given by

d

dt
αki (t) =

N ′∑
j=1

αkj (t)

〈(
L∗N (t)− 1

2
|h(t, ·)|2

)
ψj , ψi

〉
, t ∈ [τk−1, τk]

αki (τk−1) =

N ′∑
j=1

αk−1
j (τk−1)

〈
exp

(
h>(τk−1, ·)(y(τk−1)− y(τk−2))

)
ψj , ψi

〉
.

(32)

for all 1 ≤ i ≤ N ′, 1 ≤ k ≤ K.

Finally, with the two exponential transformations (10) and (13), we can use ũN,N
′

k (τk−1, x)

as an approximator to the unnormalized conditional probability density function p(τk−1, x),

and therefore, for a given test function ϕ, the solution of McKean-Vlasov filtering problem

E[ϕ(x(t))|Yt] can be approximated by

ϕ̂(τk−1) :=

∫
Rn ϕ(x)ũN,N

′

k (τk−1, x)dx∫
Rn ũ

N,N ′

k (τk−1, x)dx
=

∑N ′

j=1 α
k
j (τk−1)

∫
Rn ϕ(x)ψj(x)dx∑N ′

j=1 α
k
j (τk−1)

∫
Rn ψj(x)dx

. (33)

The entire procedure of the generalized Yau-Yau algorithm for McKean-Vlasov filtering problem

is summarized in Algorithm 1.

4 Convergence Analysis

In this section, we will provide some convergence analysis of our proposed Yau-Yau algorithm

for McKean-Vlasov filtering problems. For the simplicity of notations, the convergence analysis

will be given for the case where the state and observation processes are both one-dimensional.

We would like to remark that it is straightforward to generalize the results in this section to

multi-dimensional cases.

Because the convergence results of Hermite spectral method and Yau-Yau algorithm for

standard nonlinear filtering problems methods have already been discussed in details previously

in [20, 21] and [30, 31], respectively, we will only focus on the specialty of McKean-Vlasov

filtering problems in this paper.

Based on Algorithm 1, the major differences between the Yau-Yau algorithm for McKean-

Vlasov filtering problems and standard time-varying ones lie in the offline steps. In Offline Step

1, the nonlinear Fokker-Planck equation (16) of the state process should be numerically solved,
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Algorithm 1 Yau-Yau Algorithm for McKean-Vlasov Filtering Problem

Input: McKean-Vlasov filtering system (1); Terminal time T > 0; Time discretization step

∆t > 0; The number of the time step K = T
∆t ; The number of Hermite basis functions N

and N ′.

Offline Step 1 (completed in the preparation stage of the algorithm):

Utilize Hermite spectral method to solve the nonlinear Fokker-Planck equation (16) of the

McKean-Vlasov stochastic differential equation, and obtain an approximated density function

ρN (t, x).

Offline Step 2 (completed in the preparation stage of the algorithm):

With the approximated elliptic operator L∗N (t), solve the observation-independent parabolic

partial differential equation (26).

Online Step (processing during the application stage of the algorithm):

for k = 1 to K do

1. Compute the exponential transformations (10) and (13) when the new observation is

obtained.

2. Solve the ordinary differential equation (32) and obtain the approximated unnormalized

conditional probability density function ũN,N
′

k (τk−1, x).

3. Compute the approximated conditional expectation ϕ̂(τk−1) according to (33).

end for

and we need to show that utilizing Hermite spectral method, we can approximate the exact

solution, ρ(t, x), well. In Offline Step 2, the observation-independent equation (26) is solved

with the approximated operator L∗N (t), and we need to show that the solution ũNk (t, x) of (26)

can approximate the solution ũk(t, x) of (14) well, as long as L∗N (t) is close to L∗(t).
To address the problem in the convergence analysis of Offline Step 1, we need the following

approximation theory of Hermite functions in [20].

Lemma 4.1 (Theorem 2.1 in [20]) Let u : R → R be a function with sufficient regular-

ity. Assume that u, together with its high-order derivatives, vanishes rapid enough at infinity.

Consider the projection uN of u onto the N -dimensional vector space spanned by the Hermite

functions {ψi}Ni=1. Then, for sufficiently large N , uN and its derivative can approximate u and

its derivative well in the sense that

lim
N→∞

‖u− uN‖2 = 0, lim
N→∞

∥∥∥∥ ddxu− d

dx
uN

∥∥∥∥
2

= 0, (34)

where ‖ · ‖2 denotes the L2-norm.

The proof of Lemma 4.1, as well as the exact convergence rate and the required regularity

conditions for u, can be found in [20] and references therein. Especially, it is common to obtain

super-linear convergence rate for smooth enough functions.

With the above Hermite approximation lemma (Lemma 4.1), we can derive the following

convergence result for the nonlinear Fokker-Planck equation (16).
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Theorem 4.2 For a given terminal time T > 0, assume that the solution ρ(t, x) of the

nonlinear Fokker-Planck equation (16), as well as its high-order derivatives, is square integrable

with respect to x ∈ R, for each t ∈ [0, T ]. Also, assume that for every smooth test function with

compact support ϕ ∈ C∞0 (R),

‖(L∗(t)− L∗N (t))(ϕ)‖2 ≤M(ϕ)‖ρ(t, ·)− ρN (t, ·)‖2, (35)

where L∗(t) and L∗N (t) are the operators defined in (9) and (25); M(ϕ) > 0 is a function of ϕ.

Then, the approximated density function ρN (t, x) can approximate ρ(t, x) well for sufficiently

large N , in the sense that

lim
N→∞

max
t∈[0,T ]

‖ρ(t, ·)− ρN (t, ·)‖2 = 0, (36)

and the convergence rate is the same as that of ∂
∂xρN (t, x) to ∂

∂xρ(t, x) in Lemma 4.1.

Remark 4.3 In [30] and [19], it has been proved that under mild conditions, most of the

densities of ρ(t, x) will be concentrated in a compact domain BR := {x ∈ R : |x| ≤ R}, for

some R� 1, and we can consider the initial-boundary value problem of (16) in BR, instead of

the initial value problem in the whole space. In this case, the assumption (35) in Theorem 4.2

is easy to satisfy given the definition of fN (t, x) and σN (t, x) in (22).

Moreover, according to the expression of L∗(t) and L∗N (t), the function M(ϕ) in (35) can be

chosen as the norm of ϕ in a proper Sobolev space. For a better understanding of readers with

different backgrounds, we would like to avoid the introduction of Sobolev spaces in this paper,

and interesting readers can refer to textbooks such as [8] for more details of Sobolev spaces.

Proof [Proof of Theorem 4.2] Let us denote by ρ̃N (t, x) the projection of ρ(t, x) onto the

space spanned by {ψi}Ni=1, for each t ∈ [0, T ]. According to Lemma 4.1, we have

lim
N→∞

‖ρ(t, ·)− ρ̃N (t, ·)‖2 = 0. (37)

Since

‖ρ(t, ·)− ρN (t, ·)‖2 ≤ ‖ρ(t, ·)− ρ̃N (t, ·)‖2 + ‖ρ̃N (t, ·)− ρN (t, ·)‖2, (38)

the remaining task is to estimate the difference ‖ρ̃N (t, ·)− ρN (t, ·)‖2.

According to the property of projections, we have

〈ρ(t, ·), ψi〉 = 〈ρ̃N (t, ·), ψi〉, ∀ 1 ≤ i ≤ N, (39)

and thus,
d

dt
〈ρ̃N (t, ·), ψi〉 =

d

dt
〈ρ(t, ·), ψi〉 = 〈L∗(t)ρ, ψi〉 (40)

Combining the definition of ρN , we obtain

d

dt
〈ρ̃N (t, ·)− ρN (t, ·), ψi〉 = 〈L∗(t)(ρ− ρN ), ψi〉+ 〈(L∗(t)− L∗N (t))ρN , ψi〉 (41)

for each 1 ≤ i ≤ N .
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Since ρN (t, x) and ρ̃N (t, x) are both elements of the N -dimensional space spanned by

{ψi}Ni=1, we can substitute ψi into ρ̃N − ρN , and obtain

d

dt
‖ρ̃N (t, ·)− ρN (t, ·)‖22 =

d

dt
〈ρ̃N − ρN , ρ̃N − ρN 〉

= 2〈L∗(t)(ρ− ρN ), (ρ̃N − ρN )〉+ 2〈(L∗(t)− L∗N (t))ρN , (ρ̃N − ρN )〉

= 2〈L∗(t)(ρ− ρN ), ρ− ρN 〉+ 2〈L∗(t)(ρ− ρN ), ρ̃N − ρ〉

+ 2〈(L∗(t)− L∗N (t))ρN , (ρ̃N − ρN )〉

(42)

Since L∗(t) is an elliptic operator for all t ∈ [0, T ], there exists a constant λ > 0, such that

〈L∗(t)(ρ− ρN ), ρ− ρN 〉 ≤ −λ
∥∥∥∥ ∂∂xρ− ∂

∂x
ρN

∥∥∥∥2

2

, (43)

and according to Young’s inequality,

〈L∗(t)(ρ− ρN ), ρ̃N − ρ〉 ≤
λ

2

∥∥∥∥ ∂∂xρ− ∂

∂x
ρN

∥∥∥∥2

2

+
C1

λ

∥∥∥∥ ∂∂xρ− ∂

∂x
ρ̃N

∥∥∥∥2

2

(44)

for some constant C1 > 0.

Also, we can derive from the assumption (35) that

|〈(L∗(t)− L∗N (t))ρN , ρ̃N − ρN 〉| ≤ ‖(L∗(t)− L∗N (t))(ρN )‖2‖ρ̃N − ρN‖2
≤M(ρN )‖ρ− ρN‖2‖ρ̃N − ρN‖2
≤ C2(‖ρ̃N − ρN‖22 + ‖ρ− ρ̃N‖22)

(45)

for some constant C2 > 0, where we use that fact that ρN is a combination of Hermite functions,

which are smooth functions with derivatives vanishing rapidly at infinity.

Therefore,

d

dt
‖ρ̃N − ρN‖22 ≤ 2C2‖ρ̃N − ρN‖22 + 2C2‖ρ− ρ̃N‖22 +

2C1

λ

∥∥∥∥ ∂∂xρ− ∂

∂x
ρ̃N

∥∥∥∥2

2

(46)

According to Gronwall’s inequality, we have

max
t∈[0,T ]

‖ρ̃N (t, ·)− ρN (t, ·)‖22 ≤
e2C2T − 1

2C2

(
2C2‖ρ− ρ̃N‖22 +

2C1

λ

∥∥∥∥ ∂∂xρ− ∂

∂x
ρ̃N

∥∥∥∥2

2

)
(47)

and thus

lim
N→∞

max
t∈[0,T ]

‖ρ(t, ·)− ρN (t, ·)‖22 = lim
N→∞

max
t∈[0,T ]

‖ρ̃N (t, ·)− ρN (t, ·)‖22 = 0. (48)

To address the problem in Offline Step 2, we have the following estimation result for general

parabolic partial differential equations with turbulence in coefficients.

Theorem 4.4 Fix a terminal time T > 0. Let u and v be the solution of the following

parabolic partial differential equations in its divergence form:

∂u

∂t
(t, x) =

1

2

∂

∂x

(
A(t, x)

∂

∂x
u(t, x)

)
+

∂

∂x
(B(t, x)u(t, x)) + C(t, x)u(t, x),

∂v

∂t
(t, x) =

1

2

∂

∂x

(
A′(t, x)

∂

∂x
v(t, x)

)
+

∂

∂x
(B′(t, x)v(t, x)) + C ′(t, x)v(t, x),

(49)
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for (t, x) ∈ [0, T ] × R, with initial values u(0, x) and v(0, x), where A(t, x) ≥ λ > 0 with some

constant λ for all (t, x) ∈ [0, T ]× R and C(t, x) ≤ 0.

Assume that the solutions u(t, x) and v(t, x), together with their derivatives, are smooth

enough, and uniformly bounded for all t ∈ [0, T ]. If there exists a constant ε > 0, such that

|A(t, x)−A′(t, x)| < ε, |B(t, x)−B′(t, x)| < ε, |C(t, x)− C ′(t, x)| < ε,∣∣∣∣ ∂∂xA(t, x)− ∂

∂x
A′(t, x)

∣∣∣∣ < ε,

∣∣∣∣ ∂∂xB(t, x)− ∂

∂x
B′(t, x)

∣∣∣∣ < ε,∣∣∣∣ ∂∂xC(t, x)− ∂

∂x
C ′(t, x)

∣∣∣∣ < ε,

(50)

for all (t, x) ∈ [0, T ]× R, then

‖u(t, ·)− v(t, ·)‖2 ≤ C1e
C2t (‖u(0, ·)− v(0, ·)‖2 + ε) . (51)

for some constant C1, C2 > 0 independent of t and ε.

Proof [Proof of Theorem 4.4] According to the parabolic equations (49), the difference

between the solutions u and v satisfies

∂

∂t
(u− v) =

1

2

∂

∂x

(
A
∂

∂x
((u− v))

)
+

∂

∂x
(B(u− v)) + C(u− v)

+
1

2

∂

∂x

(
(A−A′)∂v

∂x

)
+

∂

∂x
((B −B′)v) + (C − C ′)v

(52)

Since v and its derivatives are uniformly bounded, there exists a constant K1 > 0 such that∣∣∣∣12 ∂

∂x

(
(A−A′)∂v

∂x

)
+

∂

∂x
((B −B′)v) + (C − C ′)v

∣∣∣∣ < K1ε, (53)

for all (t, x) ∈ [0, T ]× R.

Therefore,

d

dt
‖u(t, ·)− v(t, ·)‖22

= 2

〈
∂

∂t
(u− v), u− v

〉
≤ −

〈
A
∂(u− v)

∂x
,
∂(u− v)

∂x

〉
−
〈
∂(u− v)

∂x
,B(u− v)

〉
+ 〈C(u− v), u− v〉+ 〈2K1ε, u− v〉

≤ −λ‖∇(u− v)‖22 +
λ

2
‖∇(u− v)‖22 +

K2

2λ
‖u− v‖22 +K3ε

≤ K2

2λ
‖u(t, ·)− v(t, ·)‖22 +K3ε,

(54)

for some constant K2,K3 > 0, where we use the elliptic property of A(t, x) and also the Young’s

inequality.

According to the Gronwall’s inequality, we have

‖u(t, ·)− v(t, ·)‖22 ≤ K3ε
2λ(e

K2
2λ t − 1)

K2
+ e

K2
2λ t‖u(0, ·)− v(0, ·)‖22. (55)
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Up to now, we have addressed all the differences between Yau-Yau algorithm for McKean-

Vlasov filtering problems and standard time-varying filtering problems in the convergence anal-

ysis. Therefore, previous convergence results of Yau-Yau algorithm [30] and Hermite spectral

methods [20, 21] also hold true in this McKean-Vlasov case, which theoretically guarantees the

effectiveness of our proposed algorithm in this paper.

5 Numerical Results

In this section, we will use our proposed generalized Yau-Yau algorithm to solve the following

McKean-Vlasov filtering problem:{
dx(t) = (−0.1x(t) + 0.1Ex(t)) dt+ dw(t)

dy(t) = x(t)(1 + 0.25 sinx(t))dt+ dv(t),
(56)

with initial value x(0) ∼ N (1, 1) a normal random variable and y(0) = 0. The noises {v(t) : t ≥
0} and {w(t) : t ≥ 0} are mutually independent standard one-dimensional Brownian motions.

The state equation in (56) can also be written in the standard form (1), with

f [t, x(t), µt] =

∫
R
f(t, x(t), z)µt(z), (57)

and

f(t, x, z) = −0.1x+ 0.1z, (t, x, z) ∈ R3. (58)

We set the terminal time of this filtering system to be T = 50, and in order to apply Yau-

Yau algorithm, the time-discretization step size is set to be ∆t = 0.01. The total time step is

K = T
∆t = 5000. The number of Hermite basis functions we use in Offline Step 1 and Offline

Step 2 are both N = N ′ = 15.

In order to evaluate the performance of our proposed algorithm, we simulate M = 100

mutually independent trajectories of the filtering system (56). For each trajectory, the state

process x(t) is simulated by 100 samples xi(t), 1 ≤ i ≤ 100, with each sample evolves according

to

dxi(t) = (−0.1xi(t) + 0.1m(t)) dt+ dwi(t), (59)

where m(t) = 1
N1

∑100
i=1 xi(t) is the mean of the 100 samples. The propagation of chaos theory

[12] implies that the evolution equation of each xi(t) will be close to the state equation in (56),

as long as the number of the samples is large enough. In fact, for many application scenarios

such as the models in the study of mean field game theory, this is how McKean-Vlasov equation

is introduced.

We consider the mean square error (MSE) between the state process x(t) and the approxi-

mated x̂(t) with Yau-Yau algorithm, which is defined as

MSE =
1

M

M∑
i=1

1

K + 1

K∑
k=0

|x(i)(τk)− x̂(i)(τk)|2, (60)
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where the superscript in x(i) and x̂(i) represents the i-th trajectory. In our experiment, the

mean square error we obtain is MSE = 1.0389.

In the meanwhile, for a particular trajectory i0, we can define the mean square error of this

trajectory up to time t = τk by

MSE(k) =
1

k + 1

k∑
j=0

|x(i0)(τj)− x̂(i0)(τj)|2, 0 ≤ k ≤ K. (61)

The evolution of MSE(k), 0 ≤ k ≤ K, of a particular trajectory is shown in Figure 1. The

mean square error of our proposed algorithm for this particular trajectory will remain around

0.6, which implies that the estimation error of the algorithm will not accumulate or explode as

time goes by.
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Figure 1: The evolution of the mean square error of a particular trajectory.

The comparison between the real state x(t) and our estimation x̂(t), the approximated

conditional expectation (cept), of this particular trajectory is also illustrated in Figure 2. In

this particular trajectory, the solution of our proposed algorithm can approximate the trend

of the real state well, which shows the capability of Yau-Yau algorithm to effectively capture

the information of the state process from the noisy observations of the McKean-Vlasov filtering

system.
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Figure 2: The performance of Yau-Yau algorithm for a particular trajectory of McKean-Vlasov

filtering problem, with the blue line representing the real state and the orange one representing

the approximated conditional expectation (cept).

In fact, if we compare the evolution of the state process x(t) and the raw observations

{y(τk)−y(τk−1)
∆t : 1 ≤ k ≤ K}, as is shown in Figure 3, the amplitude of the raw observation

is much bigger than that of the real state, which implies that the observations we can obtain

is heavily noised. After the process of our proposed filtering algorithm, the result amplitude

of approximated conditional expectation is comparable with the state process, as is shown in

Figure 2, which means that our filtering algorithm has made a good performance in denoising.
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Figure 3: The evolution of the raw observation and the real state

We would like to remark that this numerical result shows the potentials of Yau-Yau algo-

rithms in addressing McKean-Vlasov equation filtering problems with economics or sociology

backgrounds, in which noise contributes the major part of the data and it is important for al-

gorithms to capture useful information and make accurate prediction on the trend of the state

process.
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Finally, the above numerical experiments are all conducted on a laptop with Intel(R)

Core(TM) i7-9750H CPU @2.60GHz, 6 physical cores, 12 logical processors. The average online

computational time for one trajectory of conditional expectations is around 23 seconds. There-

fore, for a McKean-Vlasov dynamics of T = 50 seconds with time-discretization step ∆t = 0.01

seconds, our proposed algorithm can provide a real-time solution and update the estimation of

the state process as soon as new observations are obtained.

6 Conclusion

In this paper, we propose a novel numerical algorithm to solve McKean-Vlasov filtering

problems, which have wide applications in various areas such as mean-field control and mean-

field game theory. Following the idea of Yau-Yau algorithm framework, the computational

procedure of McKean-Vlasov filtering problems can be divided into three steps, and the com-

putationally complicated steps of solving nonlinear Fokker-Planck equations and time-varying

parabolic partial differential equations can be done offline.

Because the online computation in our proposed algorithm only contains the exponential

transformations and numerical integrations, it can be completed efficiently under a suitable

representation. For problems with low or medium-high dimensions, Hermite spectral method

has been proved to be a good choice to implement Yau-Yau algorithm for standard filtering

problems. In this paper, we also employ Hermite spectral method to solve McKean-Vlasov

filtering problem under Yau-Yau algorithm framework.

Our proposed algorithm serves to be the first attempt on the numerical solutions of McKean-

Vlasov filtering problems. Both theoretical analysis and numerical results show that our pro-

posed algorithm can successfully solve McKean-Vlasov filtering problem in low dimensions with

enough accuracy and reasonable online computational cost.

Some promising future research directions are listed as follows. Firstly, numerical methods

of solving the nonlinear Fokker-Planck equation can be further explored. Especially, algorithms

which preserve the total density of the solution is appealing, because this kind of algorithms can

guarantee that the solution remains to be a probability density through evolution. Secondly, ef-

ficient implementations of Yau-Yau algorithm framework for high-dimensional McKean-Vlasov

filtering problems are also important for practical use. Finally, apart from partial differential

equation based algorithms, Monte-Carlo based algorithms for McKean-Vlasov filtering prob-

lems, such as particle filter, also deserve further analysis and discussion.
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