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CONTINUOUS DISCRETE OPTIMAL TRANSPORTATION
PARTICLE FILTER∗

XIUQIONG CHEN† , JIAYI KANG‡ , AND STEPHEN S.-T. YAU§

Abstract. In this paper, we employ optimal transportation principles to devise an innovative
particle filter designed for linear time-varying systems featuring continuous state dynamics and dis-
crete observations. This novel approach involves the optimal transport of the posterior distribution
of the state from one time instant to its subsequent instant. Moreover, we conduct a thorough anal-
ysis of the estimation errors, examining the discrepancies between the actual conditional mean and
empirical mean, as well as between the actual conditional covariance and empirical covariance. The
efficiency of the proposed algorithm is demonstrated through numerical experiments.
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1. Introduction. We investigate the filtering problems characterized by con-
tinuous state and discrete observation. The challenges within these situations arise
due to the dynamic and continuous nature of the underlying systems, where the state
evolves continuously over time. Simultaneously, discrete observations are acquired,
adding a layer of complexity in reconciling the continuous system evolution with dis-
crete and noisy measurements. To illustrate, in domains like robotics and autonomous
vehicles, continuous state variables, such as position and velocity, undergo continuous
evolution, while discrete sensors like cameras provide intermittent observations. Sim-
ilarly, in aerospace engineering, the continuous trajectory of an aircraft or spacecraft
is tracked using discrete radar or satellite measurements [9]. In financial markets,
the modeling of stock prices as continuous processes involves tracking them through
discrete observations, such as daily closing prices.

The filtering problems with continuous state and discrete observation can be
modeled through the following stochastic differential equation system:

dXt = f(Xt, t)dt+ g(Xt, t)dBt, (1.1)

Yn = h(Xtn , tn) +Wn, (1.2)

Here, Xt ∈ Rd1×1 represents the state at time t, Bt is a d1-dimensional Brownian
motion process with E[dBtdB

⊤
t ] = Qtdt and independent of X0. The distribution of

the initial stateX0 is denoted as π0|0. The observation, denoted as Yn ∈ Rd2×1, arrives
at discrete time instances t = tn = n∆t (∆t > 0), and Wn represents white noise with
E[WnW

⊤
n ] = Rn and independent of Xt. The probability space under consideration

is denoted as (Ω,F ,P), and the σ-algebra Ft ≜ σ(Yn : tn ≤ t) represents the
observation history up to time t.
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The objective of filtering problems is to seek an “optimal” estimate of the current
state Xt given the observation history Ft. It is known that the optimal estimate, in
the minimum mean square error sense, is the conditional expectation E[Xt|Ft] [7].
Moreover, the filtering problem can be fully resolved upon obtaining the posterior
distribution P(Xt|Ft). In the case where the system described by equations (1.1)-
(1.2) is linear and Gaussian, the optimal solution is provided by the Kalman filter
(KF) [8, 7]. However, for general nonlinear systems, obtaining the optimal solution
is often intractable, necessitating the use of approximation techniques. Examples
include the Taylor expansion method employed in the extended Kalman filter [7],
finite dimensional spectral method used in Yau-Yau algorithms [19, 10] and the Monte
Carlo approximation utilized in the particle filter (PF) [6] and ensemble Kalman filter
[5].

In various PFs, the objective is to approximate the posterior distribution
P(Xt|Ft) through an empirical distribution formed by particles, as outlined in [4].
The feedback particle filter (FPF) is a novel Monte Carlo method incorporating a
control law designed to minimize the Kullback-Leibler (K-L) divergence between the
actual distribution and the posterior distribution of particles [18, 17]. Consequently,
the posterior distribution is effectively approximated by the empirical distribution.
The extension of FPF to continuous discrete systems is detailed by Yang et al. in
[16], complemented by an explicit convergence analysis provided by Chen et al. in [2].
It is essential to note, however, that the control law in FPF is non-unique. The optimal
control law can be uniquely determined through the optimal transportation between
the posterior distribution P(Xt|Ft) in the continuous case [14], and the estimation
error was analyzed in [15].

Motivated by the work [14], in this paper, we construct a novel PF for linear
continuous discrete systems using optimal transportation, denoted as the optimal
transportation particle filter (OTPF). Compared with the traditional PF [6] and FPF,
we need less particles to achieve the same accuracy.

The contributions of this work can be summarized as follows.

• In linear case, we propose a novel PF that utilizes optimal transportation
between the actual posteriors in the form of a time-stepping procedure. This
innovative approach is formally presented and proven in Theorem 4.3.

• The explicit estimations of the Lp error between the optimal estimates mt, Pt

and their approximations m
(N)
t , P

(N)
t by OTPF are provided. Additionally,

it is demonstrated that the Lp error of OTPF follows an order of O(1/
√
N)

for any p ≥ 1, where N denotes the number of particles. Notably, this error
decays exponentially fast as time t → ∞. This analytical result is presented
in Theorem 5.4.

This paper is organized as follows. In Section 2, we extend the FPF method to
cover a broader class of time-varying systems. Section 3 is dedicated to the introduc-
tion of FPF for linear Gaussian systems, with particular emphasis on the evolution
during the updating step. The subsequent section, Section 4, introduces the OTPF
for linear Gaussian systems. In Section 5, we undertake a detailed analysis of the
estimation error within the OTPF framework. Moving on to Section 6, we assess
the efficiency of OTPF through the examination of two numerical examples. The
concluding remarks are presented in the final section.

Notations: For two positive numbers a and b, the asymptotic inequality a ≲p,q b
means that a ≤ Cp,qb, where Cp,q is a positive finite constant depending on the
values of p and q. The notation ∥·∥ represents the 2-norms of vectors or matrices.
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Additionally, let λmin(A) and λmax(A) refer to the minimal and maximal eigenvalues
of matrix A, respectively. Define the logarithmic norm µ(A) for a square matrix A of
dimensions n× n as follows:

µ(A) := inf
{
α : ∀x ∈ Rn×1, xTAx ⩽ α ∥x∥2

}
= λmax

((
A+AT

)
/2
)
.

It can be proved that [11]

µ(A) ⩾ ς(A) := max{Re(λ) : λ ∈ Spec(A)}, (1.3)

where Re(λ) denotes the real part of the eigenvalues λ. For all p ≥ 1, the Lp norm,
denoted as ∥◦∥p, is defined for random vectors and matrices as E1/p[∥◦∥p], provided
that E[∥◦∥p] is finite. For two real symmetric matrices A and B with dimensions r×r,
the notation A ≥ B indicates that A − B is positive semidefinite. For any function
f : Rn → R, its gradient ∇f : Rn → Rn is defined at the point x as the column vector

∇f(x) =

[
∂f

∂x1
, · · · , ∂f

∂xn

]⊤
,

if it is differentiable at x. For any function f : Rn → Rn, its divergence is given by

∇ · f = ∂f1
∂x1

+
∂f2
∂x2

+ · · ·+ ∂fn
∂xn

.

For any function F : Rn → Rn×m, its divergence is defined as

∇ · F = [∇ · F1, · · · ,∇ · Fm],

where Fi is the i-th column of F, 1 ≤ i ≤ m.

2. Preliminary. When constructing the OTPF for a continuous-discrete sys-
tem, we aim for the conditional density function to evolve continuously. However,
it evolves discretely during the Bayesian update step. Alternatively, FPF provides
an equivalent continuous evolution equation for the update step. Therefore, we first
introduce the FPF for general nonlinear time-varying systems, which can be straight-
forwardly obtained from [16]. These results will later be used in the construction of
the OTPF.

2.1. Exact Feedback particle filter. Let Xt represent the state of the i.i.d.
particles used in FPF, with initial particles X0 ∼ p(X0), the density of the initial
actual state. The evolution of Xt can be divided into two iterative steps:

1. Prediction: The particles evolve according to (1.1) in the time interval
t ∈ [tn−1, tn):

dXt = f(Xt, t)dt+ g(Xt, t)dBt, (2.1)

with initial value Xtn−1
, and Bt is a independent copy of Bt. We denote the

left limit as:

Xt−n
:= lim

t↗tn
Xt. (2.2)
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2. Updating: let Sn(0) := Xt−n
, Sn(λ) evolves according to the following equa-

tion

dSn

dλ
(λ) = Kn(Sn(λ), λ)Yn + un(Sn(λ), λ)︸ ︷︷ ︸

optimal Un(λ)

, (2.3)

with initial condition Sn(0), and the pseudo-time λ ∈ [0, 1]. The control
input Un(λ) (or {K, u}) is optimal if it is designed such that the
posterior distribution of Sn(1) equals to the actual posterior dis-
tribution, i.e.,

P(Xtn ∈ A|Ftn) = P(Sn(1) ∈ A|Ftn).

The initial condition for the next interval is assigned as Xtn = Sn(1).
More specifically, for any measurable set A ∈ F ,

ˆ
A

p∗(x, t)dx = P(Xt ∈ A|Ft), (2.4)

where p∗(x, 0) is the density function of the initial state X0. For n = 1, 2, · · · ,
ˆ
A

p(x, t)dx = P(Xt ∈ A|Ft). (2.5)

Given the initial density p∗(x, 0) and the increasing filtration Ft, the evolution of
the posterior p∗(x, t) is obtained by two alternative steps: prediction and updating,
which is shown in the following proposition.

Proposition 2.1 (Proposition 4.2.1 in [16]). Consider the filtering problem
(1.1)-(1.2) over time interval [tn−1, tn]. For t ∈ [tn−1, tn), p

∗(x, t) satisfies the follow-
ing Fokker-Planck equation [7]:

∂p∗

∂t
(x, t) = −

d1∑
i=1

∂(p∗fi)

∂xi
+

1

2

d1∑
i,j=1

∂2
[
p∗(gQg⊤)ij

]
∂xi∂xj

. (2.6)

Then we have

p∗(x, t−n ) := lim
t↗tn

p∗(x, t).

Note p∗(x, t−n ) is the apriori distribution of Xtn given Ftn−1 .
At the discrete time instant t = tn when the observation is made, the posterior

density is updated using Bayes’ rule:

p∗(x, tn) =p∗(x, t−n ) · exp
[
−1

2
(Yn − h(x, tn))

⊤R−1
n (Yn − h(x, tn))

]
/Cn, (2.7)

where Cn is the normalization constant.
The two equations (2.6)-(2.7) define the mapping of pX from tn−1 to tn.

Let us take a logarithm of both sides of (2.7):

ln p∗(x, tn) = ln p∗(x, t−n ) + h⊤(x, tn)R
−1
n

(
Yn − 1

2
h(x, tn)

)
− lnC ′

n, (2.8)
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where C ′
n is a constant that does not depend on x, and this constant can be dropped

to obtain the recursion for the unnormalized density q∗(t, x):

ln q∗(x, tn) = ln q∗(x, t−n ) + h⊤(x, tn)R
−1
n

(
Yn − 1

2
h(x, tn)

)
, (2.9)

where

p∗ (x, tn) =
q∗ (x, tn)´

q∗ (x′, tn) dx′ , p∗
(
x, t−n

)
=

q∗ (x, t−n )´
q∗
(
x′, t−n

)
dx′ .

Let us define two homotopy functions ζn(x, λ) and ρ∗n(x, λ) as follows:

ζn(x, λ) := ln q∗
(
x, t−n

)
+ λh⊤(x, tn)R

−1
n

(
Yn − 1

2
h(x, tn)

)
,

ρ∗n(x, λ) :=
exp (ζn(x, λ))´

exp (ζn (x′, λ)) dx′ ,

(2.10)

where λ ∈ [0, 1] is the pseudo-time parameter.
By construction, it can be easily checked that, for λ = 0 and λ = 1:

ζn(x, 0) = ln q∗ (x, t−n ) , ζn(x, 1) = ln q∗ (x, tn)
ρ∗n(x, 0) = p∗ (x, t−n ) , ρ∗n(x, 1) = p∗ (x, tn) .

(2.11)

And the evolution of ρ∗n(x, λ) is described in the following proposition.

Proposition 2.2 (Proposition 2 [16]). Consider the normalized density function
ρ∗n(x, λ) as defined in (2.10) with λ ∈ [0, 1]. Then its evolution is given by the following
partial differential equation: For λ ∈ [0, 1]

∂ρ∗n
∂λ

(x, λ) = ρ∗n(x, λ)

[
(h−ĥ)TR−1

n Yn−
1

2
h⊤R−1

n h+
1

2
̂(

h⊤R−1
n h

)]
, (2.12)

where

ĥ :=

ˆ
ρ∗n(x, λ)h(x, tn)dx,

̂(
h⊤R−1

n h
)
:=

ˆ
ρ∗n(x, λ)h

⊤(x, tn)R
−1
n h(x, tn)dx.

Let us denote ρn(x, λ) the distribution of Si
n(λ) in (2.23). More specifically, we

have

ρn(dx, 0) := P (Si
n(0) ∈ dx|Ftn−1

), (2.13)

ρn(dx, 1) := P (Si
n(1) ∈ dx|Ftn). (2.14)

And the evolution equation for ρn(x, λ) is given by the following Kolmogorov’s forward
equation [7]:

∂ρn
∂λ

(x, λ) = −∇ · (ρnKn)Yn −∇ · (ρnun) . (2.15)

Theorem 2.3. For each fixed λ ∈ [0, 1], let ηj be the solution of:

∇ · (ρn∇ηj) = −(h− ĥ)⊤(R−1
n )jρn,ˆ

Rd1

ηj(x, λ)ρn(x, λ)dx = 0,
(2.16)
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for j = 1, · · · , d2, where (R−1
n )j is the j-th column of matrix R−1

n . Then the optimal

Kn = [∇η1,∇η2, · · · ,∇ηd2
], (2.17)

and the optimal un is obtained as

un(x, λ) = −1

2
Kn(x, λ)(h(x, tn) + ĥ) +

1

2
Ωn(x, λ), (2.18)

where Ω = ∇φ, φ is a scalar function, and it is a solution to

∇ · (ρn∇φ) = (ξ̄ − ξ)ρn,ˆ
Rd1

φ(x, λ)ρn(x, λ)dx = 0,
(2.19)

where ξ :=
∑d2

j=1(∇ηj)
⊤∇hj and ξ̄ := ĥ⊤R−1ĥ− ̂h⊤R−1h.

The proof of Theorem 2.3 can be found in Appendix A.1. The connection between
the actual density function p∗(x, t) of Xt and the posterior density p(x, t) of Xt is
illustrated in Fig. 1. They share the same initial values and evolution equation
during the prediction step. Therefore, we only need to ensure that they follow the
same evolution equation during the updating step. Specifically, (2.12) and (2.15) must
be identical. This is precisely what is demonstrated in Theorem 2.3.

Fig. 1. The connection between p∗(x, t), ρ∗n(x, λ), ρn(x, λ) and p(x, t).

Substituting the optimal {K, u} in (2.17) and (2.18) into (2.3), we have

dSn

dλ
(λ) = K(Sn(λ), λ)

[
Yn−

h(Sn(λ)) + ĥ

2

]
+

1

2
Ω(Sn(λ), λ). (2.20)

We can now conclude that if X0 ∼ p∗(x, 0) and the particles Xt evolve according
to (2.1)-(2.3), with (2.3) having the explicit form (2.20), then p(x, t) = p∗(x, t) for all
t ≥ 0.
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2.2. Practical FPF. In practical scenarios, the exact solutions Kn and un in
(2.3), obtained by solving (2.16) and (2.19), are often unattainable. However, em-

ploying numerical techniques allows us to obtain approximations, denoted as K̃n and
ũn respectively. Consequently, the evolution equations for particles {Xi

t}Ni=1 are given
as follows, with N representing the number of particles.

1. Prediction: Given N particles Xi
tn−1

∈ Rd1 , i = 1, 2, · · · , N (sampled i.i.d.
from pX(x, 0) at time t = 0), these particles evolve according to (1.1) in the
time interval t ∈ [tn−1, tn):

dXi
t = f(Xi

t , t)dt+ g(Xi
t , t)dB

i
t, (2.21)

with an initial value of Xi
tn−1

. Here, Xi
t ∈ Rd1 denotes the state for the i-th

particle at time t, and {Bi
t} are mutually independent copies of Bt. The left

limit is denoted as:

Xi
t−n

:= lim
t↗tn

Xi
t . (2.22)

2. Updating: Define Si
n(0) := Xi

t−n
for i = 1, · · · , N . Each Si

n(λ) evolves accord-

ing to the following equation:

dSi
n

dλ
(λ) = K̃n(S

i
n(λ), λ)Yn + ũn(S

i
n(λ), λ), (2.23)

with an initial condition of Si
n(0) for i = 1, 2, · · · , N , and the pseudo-time

λ ∈ [0, 1]. The initial condition for the next interval is assigned as Xi
tn =

Si
n(1) for i = 1, 2, · · · , N .

3. Feedback particle filter for liner system. In the subsequent sections of
this paper, our focus shifts to the time-varying linear system:

dXt = FtXtdt+GtdBt, (3.1)

Yn = HnXtn +Wn, (3.2)

which is a special case of system (1.1)-(1.2). Additionally, we introduce the assumption
that the initial state X0 follows a normal distribution N(m0, P0) and is independent
of both the state noise {Bt} and the observation noise {Wn}. Define

Sn := H⊤
n R−1

n Hn. (3.3)

We make the assumption that the 2-norms of Sn, Gt, and Qt are uniformly bounded.

3.1. Linear FPF. For the linear system (3.1)-(3.2), we can derive the explicit
form of the optimal control input in the evolution equation (2.3) for the particles of
the FPF during the update step. This is presented in the following proposition:

Proposition 3.1. Consider the d1-dimensional linear system (3.1)-(3.2). Let
us assume that the homotopy density function ρ follows a Gaussian distribution, ex-
pressed as:

ρn(x, λ) =
1

(2π)d1/2 |Σn,λ|
1
2

exp

[
−1

2
(x− υn,λ)

⊤
Σ−1

n,λ(x− υn,λ)

]
, (3.4)
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where υn,λ represents the mean, Σn,λ denotes the covariance matrix, and |Σn,λ| > 0
stands for the determinant. A solution to the boundary value problem defined by
equations (2.17) and (2.19) is given by:

ηj(x, λ) = (x− υn,λ)
⊤
Σn,λH

⊤(R−1
n )j , j = 1, . . . , d2

Ω(x, λ) = (0, . . . , 0),

where (R−1
n )j represents the j-th column of the matrix R−1

n . Using Kn =
[∇η1, . . . ,∇ηd2 ], we obtain that Kn(x, λ) = Σn,λH

⊤R−1
n .

We can directly verify that the solutions in Proposition 3.1 satisfy the equations
(2.16)-(2.19) and the proof is omitted.

In this linear Gaussian model, the gain function results in the formulation of a
closed-form exact feedback particle filter as follows:

t ∈ [tn−1, tn) : dXt = FtXt dt+GtdBt, Sn(0) = Xt−n
,

t = tn :
dSn

dλ
(λ) = Σn,λH

⊤
n R−1

n

[
Yn − 1

2
Hn

(
Sn(λ) + υn,λ

)]
, Xtn = Sn(1).

(3.5)
Define the conditional mean m and covariance matrix P as follows:

mt := E[Xt|Ft], mt−n
:= E[Xtn |Ftn−1 ],

Pt := E
[
(Xt −mt)(Xt −mt)

⊤∣∣Ft

]
,

Pt−n
:= E

[
(Xtn −mt−n

)(Xtn −mt−n
)⊤
∣∣∣Ftn−1

] (3.6)

Theorem 3.2. Consider the linear Gaussian filtering system (3.1)-(3.2) and the
exact FPF (3.5). In this case the posterior distributions of Xt and Xt are same,
which are Gaussian with conditional mean mt and covariance matrix Pt given by the
following equations of evolution. Between observations, these satisfy the differential
equations:

t ∈ [tn−1, tn) :
dmt = Ftmt dt,

dPt

dt
= FtPt + PtF

⊤
t +GtQtG

⊤
t ,

(3.7)

At discrete time instants t = tn, these satisfy the iterative equations:

t = tn :
mtn = mt−n

+Kn

(
Yn −Hnmt−n

)
,

Ptn = Pt−n
−KnHnPt−n

,
(3.8)

where the gain function Kn := Pt−n
H⊤

n

[
HnPt−n

H⊤
n +Rn

]−1

.

Proof. According to (3.1)-(3.2), the posterior distributions of Xt are Gaussian
with first two moments evolving according to (3.7)-(3.8), which is exactly the KF [7].

For exact linear FPF, (3.7) can be obtained from the first equation in (3.5). Now
we only need to consider the updating step (3.8). Equivalently, we only need to prove

mtn = E[Xtn |Ftn ], Ptn = Cov[Xtn |Ftn ], n = 0, 1, 2, · · · . (3.9)
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At the initial instant t0 = 0, (3.9) holds since p(X0) = p(X0).
By Proposition 3.1, it is known that the control input in the evolution equation

(3.5) of Sn is optimal, by Theorem 2.3, i.e.,

P(Xt−n
∈ A|Ftn−1

) = P(Sn(0) ∈ A|Ftn−1
),

P(Xtn ∈ A|Ftn) = P(Sn(1) ∈ A|Ftn),
(3.10)

which means

N(x;mt−n
, Pt−n

) = ρn(x, 0) = P(Xtn ∈ A|Ftn−1
),

N(x;mtn , Ptn) = ρn(x, 1) = P(Xtn ∈ A|Ftn),
(3.11)

i.e.,

mt−n
= υn,0 = E[Xtn |Ftn−1

], Pt−n
= Σn,0 = Cov[Xtn |Ftn−1

],

mtn = υn,1 = E[Xtn |Ftn ], Ptn = Σn,1 = Cov[Xtn |Ftn ].
(3.12)

Since the density ρn(x, λ) is Gaussian, its evolution is equivalent to the evolution
of its first two moments, υn,λ and Σn,λ. This result is provided in Lemma 3.3.

Lemma 3.3. The evolution equations for υn,λ and Σn,λ in (3.4) are given by

∂υn,λ
∂λ

= Σn,λH
⊤
n R−1

n [Yn −Hnυn,λ] ,

∂Σn,λ

∂λ
= −Σn,λH

⊤
n R−1

n HnΣn,λ.

(3.13)

The proof can be found in Appendix A.2.
Combing (3.12) and (3.8), we have the following result.

Corollary 3.4. The solutions of ODEs (3.13) at λ = 1 with initial values
υn,0, Σn,0 are

υn,1 = υn,0 +Kn (Yn −Hnυn,0) ,

Σn,1 = Σn,0 −KnHnΣn,0,
(3.14)

with Kn := Σn,0H
⊤
n

[
HnΣn,0H

⊤
n +Rn

]−1
.

4. Optimal transportation particle filter for linear system. The optimal
control law u,K in FPF (2.3) is not unique, as indicated in [14]. To establish a
unique control law, one approach is to formulate the filtering problem utilizing opti-
mal transportation. This methodology enables the optimal transport of particles orig-
inating from the initial distribution p(X0) to particles corresponding to the posterior
p(Xt|Ft). Subsequently, we will provide a concise overview of optimal transportation.

4.1. Optimal transportation. Consider two probability measures µX and µY

defined on Rn, both possessing finite second moments. The Monge optimal trans-
portation problem with quadratic cost seeks to minimize the expected squared norm
of the displacement vector:

min
T

E
[
∥T(X)−X∥2

]
, (4.1)
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where the minimization is performed over all measurable maps T : Rn → Rn satisfying
the condition X ∼ µX and T(X) ∼ µY . The resulting minimizer T∗ is termed the
optimal transport map between µX and µY , provided it exists.

In most cases, obtaining the explicit form of T is challenging. However, given that
the posterior distributions of the considered filtering system are Gaussian, our atten-
tion can be directed towards the optimal transportation problem between Gaussian
distributions. We denote a Gaussian distribution with mean m and covariance P as
N(m,P ). The solution to the optimal transportation problem between two Gaussian
distributions is outlined in the following Theorem 4.1.

Theorem 4.1 (Remark 2.31 in [12]). If α = N(mα, Pα) and β = N(mβ , Pβ) are
two Gaussians in Rn with Pα, Pβ ≻ 0, then one can show that the following map

T∗ : x → mβ + V (x−mα) (4.2)

is the optimal transportation with cost function

c(α, β) := ∥mα −mβ∥22 + ∥P
1
2
α − P

1
2

β ∥2F , (4.3)

where

V = P
− 1

2
α (P

1
2
α PβP

1
2
α )

1
2P

− 1
2

α . (4.4)

4.2. Exact OTPF. Our objective is to construct a particle process X̃t such
that X̃tn−1 ∼ p∗(x, tn−1) and X̃t−n

∼ p∗(x, t−n ), ∀ n ≥ 1, and establish the optimal
transportation from p∗(x, tn−1) to p∗(x, tn−), and subsequently to p∗(x, tn), denoted
as follows:

X̃tn−1

T∗
tn−1−→ X̃t−n

T∗
t
−
n−→ X̃tn . (4.5)

Now, we need to study the explicit forms of the optimal transport maps T∗
tn−1

from

p∗(x, tn−1) to p∗(x, t−n ) and T∗
t−n

from p∗(x, t−n ) to p∗(x, tn).

Before proceeding, we first need to establish a technical lemma.

Lemma 4.2. Let Pt be the solution of (3.7) with t ∈ [tn−1, tn), then we have the
following relationship:

P
− 1

2
t

(
P

1
2
t Pt+∆tP

1
2
t

) 1
2

P
− 1

2
t = I + Ξt∆t+O(∆t2), (4.6)

where Ξt is the solution to the matrix equation

ΞtPt + PtΞt = FtPt + PtF
⊤
t +GtQtG

⊤
t . (4.7)

Let Σn,λ be the covariance in (3.4) with λ ∈ [0, 1], then we have the following
relationship:

Σ
− 1

2

n,λ

(
Σ

1
2

n,λΣλ+∆λΣ
1
2

n,λ

) 1
2

Σ
− 1

2

n,λ = I + Ξ̃λ∆λ+O(∆λ2), (4.8)

where Ξ̃λ is the solution to the matrix equation

Ξ̃λΣn,λ +Σn,λΞ̃λ = −Σn,λH
⊤
n R−1

n HnΣn,λ. (4.9)
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Proof. The proof of (4.7) is similar to that of Proposition 3 in [14]. (4.9) comes
from the second equation of (3.13) and the proof of (4.7).

We are now prepared to present the optimal transportation between the posterior
density functions p∗(x, t), which form the foundation of the OTPF.

Theorem 4.3. Consider the linear Gaussian problem. Let X̃0 ∼ N(m0, P0). The
optimal transportation on [tn−1, tn] is given by the following two steps:

• for t ∈ [tn−1, tn):

dX̃t = Ftmtdt+ Ξt

(
X̃t −mt

)
dt, (4.10)

where Ξt is the solution to (4.7). The right limit is denoted as

X̃t−n
= lim

t↗tn
X̃t. (4.11)

• for t = tn: Let S̃n(0) = X̃t−n
, then

dS̃n(λ) =Σn,λH
⊤
n R−1

n [Yn −Hnυn,λ] dλ+ Ξ̃λ

(
S̃n(λ)− υn,λ

)
dλ, (4.12)

where Ξ̃ is the solution to (4.9). Then X̃tn = Sn(1).
Then we have

X̃t ∼ N(mt, Pt), X̃t−n
∼ N(mt−n

, Pt−n
), ∀ t ≥ 0, n ≥ 1.

Proof. Step 1: We design an optimal transportation from N(mtn−1
, Ptn−1

) to
N(mt−n

, Pt−n
) .

We divide the time interval [tn−1, tn) into N equal parts, i.e., tn−1 = τ0 < τ1 <

· · · < τN = tn with τk = tn−1 + k∆t, ∆t =
tn − tn−1

N
and 0 ≤ k ≤ N . Now we derive

the optimal transportation Tτk between two Gaussian distributions N(mτk , Pτk) and
N(mτk+1

, Pτk+1
). By Theorem 4.1 and Lemma 4.2, it is known that Tτk is

X̃τk+1
= mτk+1

+
(
X̃τk −mτk

)
+ Ξτk(X̃τk −mτk)∆t+O(∆t2). (4.13)

Let N → ∞, we have

dX̃t = dmt + Ξt

(
X̃t −mt

)
dt, (4.14)

where dmt is given by (3.7).
Step 2: We design an optimal transportation from N(mt−n

, Pt−n
) to N(mtn , Ptn).

By (3.12), we know that

N(mt−n
, Pt−n

) = N(υn,0,Σn,0),N(mt−n
, Ptn) = N(υn,1, Σn,1).

Therefore, we only need to design an optimal transportation from N(υn,0,Σn,0)
to N(υn,1,Σn,1) in order to design an optimal transportation from N(mt−n

, Pt−n
) to

N(mtn , Ptn).
Similar to step 1 and using the first equation of (3.13), we have

dS̃n(λ) =dυn,λ + Ξ̃t

(
S̃n(λ)− υn,λ

)
dλ

=Σn,λH
⊤
n R−1

n [Yn −Hnυn,λ] dλ+ Ξ̃λ

(
S̃n(λ)− υn,λ

)
dλ,

(4.15)

where Ξ̃λ is the solution to (4.9).
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4.3. Practical OTPF. In practical applications, the exact conditional means
and covariances in (4.10) and (4.12) are unattainable, and we resort to approximations
using empirical means and covariances. Thus, we implement the following practical
OTPF, represented by particles denoted as {X̃i

t}Ni=1, where N signifies the number of
particles.

1. Prediction: Given N particles X̃i
tn−1

∈ Rd1 , i = 1, 2, · · · , N (sampled i.i.d.
from pX(x, 0) at time t = 0), the particles evolve during t ∈ [tn−1, tn) accord-
ing to:

dX̃i
t = Ftm

(N)
t dt+ Ξ

(N)
t

(
X̃i

t −m
(N)
t

)
dt, (4.16)

with initial value X̃i
tn−1

, where m
(N)
t denotes the empirical mean calculated

by

m
(N)
t :=

1

N

N∑
i=1

X̃i
t , (4.17)

and Ξ
(N)
t is the solution to

Ξ
(N)
t P

(N)
t + P

(N)
t Ξ

(N)
t = FtP

(N)
t + P

(N)
t F⊤

t +GtQtG
⊤
t , (4.18)

with the empirical covariance given by

P
(N)
t :=

1

N − 1

N∑
i=1

(
X̃i

t −m
(N)
t

)(
X̃i

t −m
(N)
t

)⊤
. (4.19)

The left limit is denoted as:

X̃i
t−n

:= lim
t↗tn

X̃i
t . (4.20)

2. Updating: Let S̃i
n(0) := X̃i

t−n
, i = 1, · · · , N , for λ ∈ [0, 1], Si

n(λ) evolves

according to the following equation

dS̃i
n(λ) =Σ

(N)
n,λH

⊤
n R−1

n

[
Yn −Hnυ

(N)
n,λ

]
dλ+ Ξ̃

(N)
λ

(
S̃i
n(λ)− υ

(N)
n,λ

)
dλ, (4.21)

where υ
(N)
n,λ is the empirical mean computed by

υ
(N)
n,λ :=

1

N

N∑
i=1

Si
n(λ), (4.22)

and Ξ̃
(N)
λ is the solution to

Ξ̃
(N)
λ Σ

(N)
n,λ +Σ

(N)
n,λ Ξ̃

(N)
λ = −Σ

(N)
n,λH

⊤
n R−1

n HnΣ
(N)
n,λ , (4.23)

with the empirical covariance computed by

Σ
(N)
n,λ :=

1

N − 1

N∑
i=1

(
Si
n(λ)− υ

(N)
n,λ

)(
Si
n(λ)− υ

(N)
n,λ

)⊤
. (4.24)

The initial condition for the next interval is assigned as Xi
tn = Si

n(1) for
i = 1, 2, · · · , N .
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5. Error analysis. In this section, we shall undertake an analysis of the dis-
crepancies between the actual conditional mean and covariance mt, Pt and their cor-

responding numerical approximations m
(N)
t , P

(N)
t obtained through the OTPF ap-

proach.
Before conducting the error analysis, we need to make some assumptions about

the system.

Assumption 1. Ft in (3.1) satisfies supt≥0 µ(Ft) < −ϱ, where ϱ is a positive
constant.

Based on this assumption, it is known that Ft is Hurwitz uniformly with respect
to time. Therefore, this assumption ensures that the linear system (3.1) is stable.

Assumption 2. Sn defined in (3.3) is a scalar matrix, i.e.,

Sn = ρ(Sn)I, for some scalar ρ(Sn) ≥ 0, (5.1)

where I is an d1 × d1-dimensional identity matrix.

The state transition matrix associated with a smooth flow of any (r × r)-matrix
U : τ 7→ Uτ is denoted by Es,t(U) such that for any s ≤ t,

∂

∂t
Es,t(U) = UtEs,t(U) and Et,s(U) := Es,t(U)−1,

with Es,s = I, the identity matrix.

Lemma 5.1. Define Φs,t := Es,t(F ), Ψn,s,t := Es,t(−ΣnSn), Ψ
(N)
n,s,t :=

Es,t(−Σ
(N)
n Sn). If Assumption 1 and 2 hold, then

∥Φs,t∥ ≤ e−ϱ(t−s), ∥Ψn,0,1∥ ≤ 1,
∥∥∥Ψ(N)

n,0,1

∥∥∥ ≤ 1. (5.2)

Proof. The first inequality follows from Assumption 1 and Lemma B.1. It can

be easily verified that Σn,λ and Σ
(N)
n,λ are positive semi-definite using (A.11). By

Assumption 2, we have µ(−Σn,λSn) < 0 and µ(−Σ
(N)
n,λSn) < 0. Using Lemma B.1

again, we obtain the second and third inequalities.

Lemma 5.2. For state in (3.1) and conditional moments in (3.4), and for ∀ p ≥ 1,
we have the following results.

• If Assumption 1 holds, then

∥Xt∥p ≤ C, ∀ t ≥ 0, (5.3)

∥Σn,λ∥p ≤ C, ∀ n ≥ 0, λ ∈ [0, 1]. (5.4)

• If Assumption 1 and 2 hold, then

∥υn,λ∥p ≤ C, ∀ n ≥ 0, λ ∈ [0, 1]. (5.5)

Here C is a positive constant depending on p and independent of λ and n.

The proof can be found in Appendix A.3.

Lemma 5.3. The evolution equations of m
(N)
t and P

(N)
t are as follows:
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• for t ∈ [tn−1, tn):

dm
(N)
t = Ftm

(N)
t dt,

dP
(N)
t =

[
FtP

(N)
t + P

(N)
t F⊤

t +GtQtG
⊤
t

]
dt.

(5.6)

The right limit is denoted as

m
(N)

t−n
= lim

t↗tn
m

(N)
t , P

(N)

t−n
= lim

t↗tn
P

(N)
t . (5.7)

• for t = tn: Let υ
(N)
n,0 = m

(N)

t−n
, Σ

(N)
n,0 = P

(N)

t−n
, for λ ∈ [0, 1], then

dυ
(N)
n,λ = Σ

(N)
n,λH

⊤
n R−1

n

[
Yn −Hnυ

(N)
n,λ

]
dλ,

dΣ
(N)
n,λ = −Σ

(N)
n,λH

⊤
n R−1

n HnΣ
(N)
n,λ dλ.

(5.8)

Then m
(N)
tn = υ

(N)
n,1 , P

(N)
tn = Σ

(N)
n,1 . And

t = tn :
m

(N)
tn = m

(N)

t−n
+K(N)

n

(
Yn −Hnm

(N)

t−n

)
,

P
(N)
tn = P

(N)

t−n
−K(N)

n HnP
(N)

t−n
,

(5.9)

where the gain function K
(N)
n := P

(N)

t−n
H⊤

n

[
HnP

(N)

t−n
H⊤

n +Rn

]−1

.

The proof can be found in Appendix A.4.
The connection between the conditional moments (mt, Pt) of the actual state and

their approximations (m
(N)
t , P

(N)
t ) obtained using OTPF is displayed in Fig. 2, which

corresponds to Fig. 1. Instead of evolving discretely in the updating step according
to (3.8) and (5.9), we provide an equivalent continuous approach according to (3.13)
and (5.8). This enables us to construct OTPF.

Theorem 5.4. If Assumption 1 and 2 hold, then for ∀ p ≥ 1, n ≥ 0, we have∥∥∥m(N)
tn −mtn

∥∥∥
p
≲p

1√
N

e−ϱtn , (5.10)∥∥∥P (N)
tn − Ptn

∥∥∥
p
≲p

1√
N

e−2ϱtn . (5.11)

Proof. Step 1: Consider the difference matrix Θt := P
(N)
t −Pt. For t ∈ [tn−1, tn),

using (3.7) and (5.6), we derive the evolution equation:

dΘt/dt = FtΘt +ΘtF
⊤
t , (5.12)

which yields the transition equation:

Θt−n
= Φtn−1,tnΘtn−1Φ

⊤
tn−1,tn . (5.13)

Define Πn,λ := Σ
(N)
n,λ − Σn,λ. Initially, Πn,0 = Θt−n

. With (3.13) and (5.8), we
obtain the differential equation:

dΠn,λ/dλ =Σn,λSnΣn,λ − Σ
(N)
n,λSnΣ

(N)
n,λ

=−Πn,λSnΣn,λ − Σ
(N)
n,λSnΠn,λ,

(5.14)
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Fig. 2. The connection between the conditional moments (mt, Pt) of the actual state and their

approximations (m
(N)
t , P

(N)
t ) obtained using OTPF.

leading to the solution:

Πn,λ = Ψ
(N)
n,0,λΠn,0Ψ

⊤
n,0,λ. (5.15)

Subsequently, we have

Θtn = Πn,1 = Ψ
(N)
n,0,1Φtn−1,tnΘtn−1Φ

⊤
tn−1,tnΨ

⊤
n,0,1. (5.16)

and by utilizing (5.2), we arrive at the bound:∥∥∥Θt−n

∥∥∥
p
≤ e−2ϱtn ∥Θ0∥p , ∥Θtn∥p ≤ e−2ϱtn ∥Θ0∥p , ∥Πn,λ∥p ≤ e−2ϱtn ∥Θ0∥p . (5.17)

According to Theorem B.3, we ascertain that:

∥Θ0∥p ≲p
1√
N

. (5.18)

Consequently, we deduce (5.11).

Step 2: Let et := m
(N)
t −mt. For t ∈ [tn−1, tn), using equations (3.7) and (5.6),

we have

det/dt = Ftet, (5.19)

from which we obtain

et−n = Φtn−1,tnetn−1
. (5.20)
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Introduce θn,λ := υ
(N)
n,λ −υn,λ, with θn,0 = et−n . Utilizing (3.13) and (5.8), we have

dθn,λ/dλ =Σ
(N)
n,λH

⊤
n R−1

n

[
Yn −Hnυ

(N)
n,λ

]
− Σn,λH

⊤
n R−1

n [Yn −Hnυn,λ]

=Σ
(N)
n,λH

⊤
n R−1

n

[
Yn −Hnυ

(N)
n,λ

]
− Σ

(N)
n,λH

⊤
n R−1

n [Yn −Hnυn,λ]

+ Σ
(N)
n,λH

⊤
n R−1

n [Yn −Hnυn,λ]− Σn,λH
⊤
n R−1

n [Yn −Hnυn,λ]

=− Σ
(N)
n,λSnθn,λ +Πn,λH

⊤
n R−1

n [Yn −Hnυn,λ] ,

(5.21)

which leads to the solution:

θn,1 = Ψ
(N)
n,0,1θn,0 +

ˆ 1

0

Ψ
(N)
n,λ,1Πn,λH

⊤
n R−1

n [Yn −Hnυn,λ] dλ. (5.22)

Subsequently, the norm of etn can be bounded as follows:

∥etn∥p = ∥θn,1∥p

≤ ∥θn,0∥p +
ˆ 1

0

∥∥Πn,λH
⊤
n R−1

n [Yn −Hnυn,λ]
∥∥
p
dλ

≤ ∥θn,0∥p + C

ˆ 1

0

∥Πn,λ∥2p ∥Yn −Hnυn,λ∥2p dλ

≤ ∥θn,0∥p +
Cp√
N

e−2ϱtn

(
∥Yn∥2p + ∥Hn∥2p sup

λ∈[0,1]

∥υn,λ∥2p

)

≤ e−ϱ∆t
∥∥etn−1

∥∥
p
+

Cp√
N

e−2ϱtn

(5.23)

utilizing (5.2), Hölder’s inequality, (5.17), (A.9) and (5.5). Here C is a positive con-
stant and Cp is a positive constant depending on p. From (5.23) we have

∥etn∥p ≤ e−ϱ∆t
∥∥etn−1

∥∥
p
+

Cp√
N

e−2ϱtn

≤ e−ϱ∆t

(
e−ϱ∆t

∥∥etn−2

∥∥
p
+

Cp√
N

e−2ϱtn−1

)
+

Cp√
N

e−2ϱtn

= e−ϱ2∆t
∥∥etn−2

∥∥
p
+

Cp√
N

e−2ϱtn
(
1 + eϱ∆t

)
≤ e−ϱ3∆t

∥∥etn−3

∥∥
p
+

Cp√
N

e−2ϱtn
(
1 + eϱ∆t + eϱ2∆t

)
≤ · · ·

≤ e−ϱtn ∥e0∥p +
Cp√
N

e−2ϱtn
(
1 + eϱ∆t + eϱ2∆t + · · ·+ eϱ(n−1)∆t

)
≲p

1√
N

e−ϱtn

(5.24)

using Theorem B.3.

6. Experiments. This section investigates the effectiveness of three distinct
particle techniques: FPF, OTPF, and the standard PF, considering various particle
counts. The KF is employed as the benchmark for optimal performance. The analysis
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encompasses the entire temporal duration from t = 0 to t = 10 seconds, utilizing Eu-
ler’s method for temporal discretization with a consistent step size of ∆t = 0.01s. The
particle number, N , varies within the set {20, 50, 100, 200, 500, 1000}. To effectively
assess and compare the different strategies, we employ the mean squared error (MSE)
metric, calculated over 100 independent trials, defined as follows:

MSE(t) :=
1

100

100∑
i=1

1

Nt + 1

Nt∑
n=0

(
X̄

(i)
t − X̂

(KF,i)
t

)2
, (6.1)

where X̄
(i)
t is the estimate of Xt by particle algorithms, X̂

(KF,i)
t is the estimate of

Xt by the KF in the i-th experiment, and Nt = ⌊t/∆t⌋ and ⌊·⌋ is the floor function.
The Mean of Time (MT) is defined as the average running time over 100 independent
trials.

6.1. Time-invariant case. In the time-invariant case, we consider the contin-
uous filtering system with discrete observation described by the following stochastic
differential equations: {

dXt = AXtdt+ σV dVt,

Yn = Xtn + σWWn,
(6.2)

where A = [aij ]
10
i,j=1 is a 10× 10 matrix with entries defined as follows:

aij =


0.1, if |i− j| = 1,

−0.5, if i = j,

0, otherwise,

σV = 1, σW = 0.5, {Vt} is the standard Brownian motion process, {Wn} is the stan-
dard Gaussian white noise, and {Vt} and {Wn} are mutually independent. Discrete
observations are available at times tn ∈ {0.5, 1, · · · , 10}.

Evidently, the mean squared error (MSE(t)) exhibits dependency on both t and
N . We examine the fluctuations of MSE(t) concerning t and N through the imple-
mentation of three distinct PF algorithms. The outcomes are illustrated in Fig 3 to
4, and the detailed results can be found in Table 1.
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Algorithm N MSE(10) MT
KF 20 - 0.041382
PF 20 0.397661 0.210371
FPF 20 0.125943 0.125573
OTPF 20 0.027279 0.276602
KF 50 - 0.041382
PF 50 0.274631 0.236267
FPF 50 0.064574 0.147266
OTPF 50 0.025905 0.287698
KF 100 - 0.041382
PF 100 0.210356 0.232881
FPF 100 0.048279 0.155715
OTPF 100 0.026051 0.290129
KF 200 - 0.041382
PF 200 0.164222 0.279779
FPF 200 0.041263 0.200644
OTPF 200 0.026036 0.326475
KF 500 - 0.041382
PF 50 0.108608 0.396964
FPF 500 0.035015 0.340288
OTPF 500 0.024993 0.426351
KF 1000 - 0.041382
PF 1000 0.094468 0.598110
FPF 1000 0.035176 0.550917
OTPF 1000 0.025310 0.571500

Table 1
The MSE and MT for time-invariant case

6.2. Time-varying case. In the time-varying case, we consider the following
system: {

dXt = A(t)Xtdt+ σV dVt,

Yn = Xtn + σWWn,
(6.3)

where A(t) = [aij(t)]
10
i,j=1 is a 10× 10 matrix with entries defined as follows:

aij =


0.1 · cos(t), if |i− j| = 1,

−0.2, if i = j,

0, otherwise,

H = 1, σV = 1, σW = 0.5, {Vt} is the standard Brownian motion process, {Wn} is
the standard Gaussian white noise, and {Vt} and {Wn} are mutually independent.
Discrete observations are available at time tn ∈ {0.5, 1, . . . , 10}.The result is displayed
in Fig 5 to 6 and Table 2.

6.3. Numerical conclusion. From the results of two experiments, the following
conclusions can be drawn:



OPTIMAL TRANSPORT PARTICLE FILTER 69

Algorithm N MSE(10) MT
KF 20 - 0.047040
PF 20 0.583433 0.210670
FPF 20 0.110731 0.119701
OTPF 20 0.028567 0.262941
KF 50 - 0.047040
PF 50 0.379496 0.236933
FPF 50 0.046666 0.143890
OTPF 50 0.024123 0.294905
KF 100 - 0.047040
PF 100 0.263231 0.237359
FPF 100 0.029449 0.151382
OTPF 100 0.022787 0.280011
KF 200 - 0.047040
PF 200 0.181108 0.277406
FPF 200 0.021380 0.191556
OTPF 200 0.022440 0.310503
KF 500 - 0.047040
PF 50 0.126109 0.428971
FPF 500 0.017475 0.359097
OTPF 500 0.023934 0.358677
KF 1000 - 0.047040
PF 1000 0.107000 0.614912
FPF 1000 0.016312 0.562995
OTPF 1000 0.022938 0.581559

Table 2
The MSE and MT for time-invariant case
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Fig. 5. MSE(t) with N = 100
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Fig. 6. MSE(10) via different N

1. In terms of temporal stability, the performance ranking is as follows: OTPF
demonstrates the highest stability, followed by FPF, with PF exhibiting the
least stability.

2. Considering the influence of particle number, OTPF displays commendable
performance even with a limited number of particles. In contrast, PF exhibits
substantial improvement with an increasing number of particles but falls short
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of approaching the performance achieved by OTPF. With a rising particle
count, FPF converges towards the performance level exhibited by OTPF.

3. Regarding computational time, OTPF exhibits slightly higher computational
complexity than FPF and PF at lower particle counts. However, as the
particle count increases, the computational complexity of OTPF does not
escalate as rapidly as that of FPF and PF.

7. Conclusion. In this paper, we have constructed an OTPF for linear time-
varying continuous discrete system. Compared with FPF, OTPF has less variance.
Additionally, we have evaluated the Lp-errors, quantifying the disparities between the

actual posterior moments (mt, Pt) and their empirical approximations (m
(N)
t , P

(N)
t )

obtained through OTPF. It is noteworthy that the explicit optimal transportation
between non-Gaussian distributions is often cannot be obtained. The consideration
of extending OTPF to accommodate general nonlinear filtering systems represents an
avenue for future research efforts.

Appendix A. Proofs.

A.1. Proof of Theorem 2.3. We need to prove that p(x, t) = p∗(x, t) for any
t ≥ 0. It can be easily proved that p(x, t) also follows the same evolution equation
(2.6) as p∗(x, t) during [tn−1, tn) in the prediction step. Therefore, we focus on demon-
strating that they share the same evolution equation during the updating step, given
identical initial values at t = 0. Equivalently, we only need to prove that ρn(x, λ) and
ρ∗n(x, λ) have the same evolution equation during λ ∈ [0, 1].

By employing (2.16) and (2.17), we obtain

−∇ · (ρK) = (h− ĥ)⊤R−1ρ, (A.1)

Subsequently, using (2.18) and (2.19), we find:

−∇ · (ρu) =1

2
∇ ·
(
ρK(h+ ĥ)

)
− 1

2
∇ · (ρΩ)

=− 1

2
(h− ĥ)⊤R−1(h+ ĥ)ρ+

1

2

d2∑
j=1

ρ(∇ηj)
⊤∇hj +

1

2
ξρ− 1

2
ξ̄ρ

=− 1

2
h⊤R−1h+

1

2
̂(h⊤R−1h).

(A.2)

Substituting (A.1) and (A.2) into (2.15), we obtain:

∂ρn
∂λ

= ρn

[
(h− ĥ)⊤R−1Yn − 1

2
h⊤R−1h+

1

2
̂(h⊤R−1h)

]
. (A.3)

This equation aligns precisely with the evolution equation (2.12) for ρ∗.

A.2. Proof of Lemma 3.3. On the one hand, by (3.4), we can obtain

∂ρn
∂λ

=− 1

2
ρn Tr

(
Σ−1

n,λ

∂Σn,λ

∂λ

)
+ ρn

{
1

2

(
∂υn,λ

∂λ

)⊤

Σ−1
n,λ (x− υn,λ)

+
1

2
(x− υn,λ)

⊤ Σ−1
n,λ

∂Σn,λ

∂λ
Σ−1

n,λ (x− υn,λ) +
1

2
(x− υn,λ)

⊤ Σ−1
n,λ

(
∂υn,λ

∂λ

)}
.

(A.4)

On the other hand, since ρn = ρ∗n, using (2.12), we have

∂ρn
∂λ

= ρn

[
(x− υn,λ)

⊤
H⊤

n R−1
n Yn − 1

2
x⊤H⊤

n R−1
n Hnx+

1

2
̂(

x⊤H⊤R−1
n Hx

)]
. (A.5)
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Since the right hand sides of (A.4) and (A.5) are equal for ∀ x, by comparing the
coefficients of the first and quadratic terms of x, we can obtain

(
∂υn,λ
∂λ

)⊤

Σ−1
n,λ − υ⊤

n,λΣ
−1
n,λ

∂Σn,λ

∂λ
Σ−1

n,λ = Y ⊤
n R−1

n Hn,

1

2
Σ−1

n,λ

∂Σn,λ

∂λ
Σ−1

n,λ = −1

2
H⊤

n R−1
n Hn,

(A.6)

from which we get (3.13).

A.3. Proof of Lemma 5.2. Step 1: By (3.1), we have

Xt = Φ0,tX0 +

ˆ t

0

Φs,tGsdBs. (A.7)

Then

∥Xt∥p ≤ ∥Φ0,tX0∥p +
∥∥∥∥ˆ t

0

Φs,tGsdBs

∥∥∥∥
p

≲p ∥Φ0,t∥ ∥X0∥p +

∥∥∥∥∥
[ˆ t

0

Tr
(
Φs,tGsQsG

⊤
s Φ

⊤
s,t

)
ds

]1/2∥∥∥∥∥
p

≲p,d1 ∥Φ0,t∥ ∥X0∥p +
[ˆ t

0

(
∥Φs,t∥2 ∥Gs∥2 ∥Qs∥

)
ds

]1/2
≲p,d1 e−ϱt +

[ˆ t

0

(
e−2ϱ(t−s)

)
ds

]1/2
≤ C,

(A.8)

where we use Burkholder–Davis–Gundy inequality [13], (5.2) and the fact that X0 is
Gaussian. Now we obtain (5.3).

It follows that

∥Yn∥p ≤ ∥Hn∥ ∥Xtn∥p + ∥Wn∥p ≤ C, (A.9)

where we use the fact that Wn is Gaussian and C is a positive constant independent
of n.

Step 2: By (3.7) and (3.8), it is known that Pt is deterministic since P0 is
deterministic, it follows that ∥Pt∥p = ∥Pt∥. The updating step of Pt can be rewritten
as

Ptn = [I −KnHn]Pt−n
[I −KnHn]

⊤
+KnRnK

⊤
n , (A.10)

from which and (3.7), it is known that

Ptn ≥ 0, Pt−n+1
≥ 0, ∀ n ≥ 0, (A.11)

since P0 ≥ 0. Now by (3.7) and (3.8), we have

Pt−n
= Φtn−1,tPtn−1

Φ⊤
tn−1,tn +

ˆ tn

tn−1

Φs,tnGsQsG
⊤
s Φ

⊤
s,tnds, Ptn ≤ Pt−n

. (A.12)
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We define a new matrix P̃t with P̃0 = P0 as follows:

dP̃t

dt
= FtP̃t + P̃tF

⊤
t +GtQtG

⊤
t , ∀ t ≥ 0.

Then ∀ n ≥ 1, we have

P̃t−n
= Φtn−1,tP̃tn−1Φ

⊤
tn−1,tn +

ˆ tn

tn−1

Φs,tnGsQsG
⊤
s Φ

⊤
s,tnds, P̃tn = P̃t−n

. (A.13)

It follows that P̃tn is positive semidefinite,

P̃tn ≥ Pt−n
≥ Ptn . (A.14)

and using Assumption 1,∥∥∥P̃tn

∥∥∥ ≤
∥∥Φ0,tnP0Φ

⊤
0,tn

∥∥+ ˆ tn

0

∥∥Φs,tnGsQsG
⊤
s Φ

⊤
s,tn

∥∥ ds
≤ ∥Φ0,tn∥

2 ∥P0∥+
ˆ t

0

∥Φs,tn∥
2 ∥∥GsQsG

⊤
s

∥∥ ds
≲d1

e−2ϱtn +

ˆ tn

0

e−2ϱ(tn−s)ds

≲d1
e−2ϱtn + 1/(2ϱ),

(A.15)

from which and Lemma B.2, we know that

C ≥
∥∥∥P̃tn

∥∥∥ ≥
∥∥∥Pt−n

∥∥∥ ≥ ∥Ptn∥ , (A.16)

where C is a constant independent of n.
By (3.13), it is known

Ptn = Σn,1 ≤ Σn,λ ≤ Σn,0 = Pt−n
, λ ∈ [0, 1]. (A.17)

Therefore Σn,λ is positive semidefinite. Then we obtain (5.4) using (A.16) and Lemma
B.2.

Step 3: Using Jensen’s inequality and (5.3), we have

E
[∥∥∥mt−n

∥∥∥p] = E
[∥∥E[Xtn |Ftn−1 ]

∥∥p] ≤ E
[
E[∥Xtn∥

p |Ftn−1 ]
]
= E[∥Xtn∥

p
] ≤ C.

(A.18)

By (3.13), we have

υn,λ = Ψn,0,λυn,0 +

ˆ λ

0

Ψn,s,λΣn,sH
⊤
n R−1

n Ynds. (A.19)

It follows that

∥υn,λ∥p ≤ ∥Ψn,0,λ∥ ∥υn,0∥p +
ˆ λ

0

∥Ψn,s,λ∥ ∥Σn,s∥
∥∥HnR

−1
n

∥∥ ∥Yn∥p ds

≲
∥∥∥mt−n

∥∥∥
p
+ ∥Yn∥p

ˆ λ

0

∥Σn,s∥ ds

≲ C,

(A.20)

using (5.2), (5.4) and (A.9).
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A.4. Proof of Lemma 5.3. The first equation in (5.6) can be obtained directly
(4.16) and (4.17). As for the second equation, we first define

eit := X̃i
t −m

(N)
t .

Then we have deit = Ξ
(N)
t eitdt by (4.16) and the first equation in (5.6). It follows that

d
[
eit(e

i
t)

⊤] /dt = Ξ
(N)
t eit(e

i
t)

⊤ + eit(e
i
t)

⊤Ξ
(N)
t , (A.21)

from which we have

dP
(N)
t /dt =Ξ

(N)
t P

(N)
t + P

(N)
t Ξ

(N)
t

=F (t)P
(N)
t + P

(N)
t F⊤(t) +G(t)Q(t)G⊤(t),

(A.22)

where the second equality comes from (4.18).

Similarly, we can prove (5.8). And (5.9) comes from (5.8) and Corollary 3.4.

Appendix B. Some known results.

Lemma B.1 ([1]). Let A : u 7→ Au and B : u 7→ Bu be the smooth flows of (r× r)
matrices. For any s ⩽ t we have

∥Es,t(A+B)∥ ⩽ exp

(ˆ t

s

µ (Au) du+

ˆ t

s

∥Bu∥ du
)
.

Lemma B.2. For any two r × r positive semidefinite matrices A,B, if A ≥ B,
then ∥A∥ ≥ ∥B∥.

Proof. The 2-norm of a positive semidefinite matrix A is expressed as:

∥A∥ =
√
λmax (A⊤A) = λmax(A). (B.1)

Hence, our objective is to prove λmax(A) ≥ λmax(B).

To initiate the proof, we establish the equivalence:

λmax(A) = max
∥α∥=1

α⊤Aα, (B.2)

valid for any positive semidefinite matrix A. On one hand, for any vector α ∈ Rr

with ∥α∥ = 1, we have α⊤Aα ≤ λmax(A), a result established in prior literature [20].
On the other hand, there exists an eigenvector β such that Aβ = λmax(A)β, and
consequently, β⊤

0 Aβ0 = λmax(A) holds with β0 = β/ ∥β∥. This leads to the derivation
of (B.2).

For any vector α ∈ Rr with ∥α∥ = 1, we proceed as follows:

α⊤Aα = α⊤(A−B +B)α = α⊤(A−B)α+ α⊤Bα ≥ α⊤Bα,

utilizing the fact that A ≥ B. Consequently, by combining (B.1) and (B.2), the
desired inequality λmax(A) ≥ λmax(B) is established.
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Theorem B.3. Consider n-dimensional random vectors Xi
i.i.d∼ N(m,P ) for

i = 1, 2, . . . , N . Define the sample mean and covariance matrix as follows:

m(N) :=
1

N

N∑
i=1

Xi,

P (N) :=
1

N − 1

N∑
i=1

(
Xi −m(N)

)(
Xi −m(N)

)⊤
.

For any p ≥ 1, the following inequalities hold:

∥m(N) −m∥p ≤ Cn,p
1√
N

. (B.3)

and

∥P (N) − P∥p ≤ C̄n,p
1√
N

, (B.4)

where Cn,p and C̄n,p denote some positive parameters dependent on n and p.

Proof. Let ∥◦∥F represent the Frobenius norm of matrix ◦. Using norm inequality
∥A∥ ≤ ∥A∥F and

E
[
∥m(N) −m∥p

] 1
p ≤ Cn,p

1√
N

E
[
∥P (N) − P∥pF

] 1
p ≤ C̄n,p

1√
N

by Corollary B.5 in [3], we can obtain the desired result.
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