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Abstract—In this paper, an optimal transportation particle
method has been proposed to deal with data fusion smoothing
problem. The proposed method can handle prediction, filtering,
and smoothing problems uniformly more robustly and stably
than traditional algorithms. Our main idea is to approximate
the trajectory in Wasserstein space which is the set of probabil-
ity distributions equipped with the Wasserstein metric. Recent
literature has demonstrated the successful application of optimal
transportation for prediction and filtering problems. In our
paper, we derive an optimal transportation particle for solving
the smoothing problem utilizing Mayne - Fraser’s formula
[1], [2]. Detailed convergence results are presented, and the
proposed algorithms are tested on missing observation processes,
showcasing their ability to solve hybrid data fusion problems.
This work introduces a new approach to particle methods that
expands their possibilities in data fusion applications.

Index Terms—Kalman Filtering, Estimation, Optimal trans-
portation, Stability of linear systems.

I. INTRODUCTION

Data fusion [3] combines information from different sensors
to achieve a more accurate representation of a quantity of
interest. It is widely used in integrated navigation systems
for maneuvering targets, such as airplanes, ships, cars, and
robots. The state estimation problem, which aims to determine
the state of a target under some observations, is central to
data fusion. Such state estimation can be considered as three
different types [4], [5], which are prediction, filtering, and
smoothing.

Kalman proposed the well-known Kalman filter in 1960 [6],
which is an optimal linear estimator for filtering problems.
Soon, Rauch-Tung-Striebel’s (RTS) optimal smoothing algo-
rithm was proposed for smoothing problems [7]. The Mayne-
Fraser two-filter (MFTF) formula is a prominent example in
systems and control, where forward and backward filters are
merged into a single estimate for fixed-interval smoothing
problems [8], [9]. In 1979 [10], the forward-backward duality
of MFTF was proposed. Using this duality, the interpolation
formula in [11] was designed for a single interval of loss for
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observation cases. A recent breakthrough in [12] is that the
forward-backward duality holds for any intermittent observa-
tion structure. This can be achieved by using a cascade of
continuous and discrete-time forward and backward Kalman
filters, which depends on the assumed information pattern.

Since the 1990s, Monte Carlo methods have been applied
to estimation problems, which lead to the development of
particle prediction (sampling), particle filtering (PF), and par-
ticle smoothing (PS) [13], [14]. Compared to the Kalman
filter (KF) and Rauch-Tung-Striebel (RTS), PF and PS are
more flexible in practical applications. However, these particle
methods suffer from issues like particle degeneracy, which
means that only a few particles have large weights, in nu-
merical implementations. Ensemble methods were proposed
to overcome particle degeneracy by setting equally weighted
particles. The feedback particle filter (FPF) [15], [16] is a
type of particle filter that directly samples from posterior dis-
tributions of filtering problems using a controlled interacting
particle system. The ensemble Kalman filter (EnKF) [17], [18],
[19] and ensemble Kalman smoother (EnKS) [20], [21] are
widely used in various applications such as weather prediction,
earth physics, and industry. To elucidate their efficiency, it is
essential to establish a framework for these ensemble algo-
rithms. In the case of linear-Gaussian problems, the mean-field
limit of EnKF and EnKS algorithms have been demonstrated
in [19], [21], [22]. The mean-field limits provide an insight
into the behavior of high-dimensional stochastic models by
approximating the original models with a simpler model that
can capture the main structure of the original high-dimensional
model. Therefore, this paper will focus only on the estimation
problems with linear-Gaussian settings. However, even in these
settings, applying the EnKF and EnKS algorithms to very
high-dimensional problems (such as 107) presents significant
computational challenges.

A unified framework for the sampling process was pro-
posed in [23], which views different sampling processes as
various paths in Wasserstein space (WS). However, Taghvaei
highlighted in [22] that infinitely many flows can correspond
to the same paths in WS, leading to non-uniqueness issues
in filtering cases. Taghvaei and Mehta addressed this for
filtering problems by establishing an optimal transportation
(OT) formulation for EnKF [24] [22]. This method was
recently extended to linear systems with correlated noises in
[25]. This work aims to generalize Taghvaei’s framework to
prediction and smoothing problems. Inspired by the McKean-
Vlasov stochastic differential equation (SDE) which is a type
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of controlled SDE, our work proposes a controlled ODE
called the tangent flow. The tangent flow is closely related
to the gradient flow. The tangent and gradient flow share a
gradient form; however, the gradient flow represents a proba-
bilistic trajectory derived from optimizing a specific energy
functional [26]. In contrast, the tangent flow can be con-
structed for more general partial differential equation (PDE)
and stochastic partial differential equation (SPDE) systems.
Unlike the McKean-Vlasov SDE, the tangent flow system
does not require additional random terms, which can achieve
better numerical accuracy than traditional stochastic methods.
From a mathematical perspective, the filtration of the tangent
flow is identical, meaning our tangent flow does not introduce
additional uncertainty.

We make the following contributions in this paper:
• Based on optimal transportation, novel particle-based

algorithms have been first proposed for linear systems
including prediction, filter, and smoothing problems.

• By applying the MFTF formula, OTPS can be formu-
lated as a bi-directional filter process that can deal with
smoothing problems with missing observation.

• Rigorous convergence analysis of new algorithms has
been proposed well.

Notations: Let ∥ · ∥2 represent the Euclidean norm of the
vectors on Rn, and S+n represent the set of all n × n real
positive-defined symmetric matrices. Tr(A) is the matrix-trace
of A. λmin(A) and λmax(A) are the minimum and maximum
eigenvalues of the matrix A, respectively. For a matrix A ∈ Sn,
∥A∥F := Tr(AA⊤) denotes the Frobenius norm, ∥A∥2 :=√

λmax(AA⊤) is the spectral norm. For any A,B ∈ Sn,
we denote A > B if A − B is positive definite. A Gaussian
probability distribution with mean µ and covariance P will
be denoted as N (µ, P ). We denote ◦ as Stratonovich integral.
We define two new operators, ∇̄(∗) and ∇̄ · (∗) as follows,

∇̄(φ0(t, x)) :=
(
∇φ1

0(t, x), · · · , ∇φm
0 (t, x)

)
,

where φ0(t, x) :=
(
φ1
0(t, x), · · · , φm

0 (t, x)
)

is a m di-
mensional row vector value functions and ∇φi

0(t, x) is the
divergence of the φi

0(t, x) with 1 ≤ i ≤ m;

∇̄ · (K(t, x)) :=
(
∇ · (K1(t, x)), · · · , ∇ · (Km(t, x))

)
,

where K(t, x) := (K1(t, x), · · · ,Km(t, x)) and Ki(t, x) with
1 ≤ i ≤ m are all n dimensional column vector fields.

Combining the two new operators, we can define ∆̄(∗) as

∆̄φ0(t, x) := ∇̄·(∇̄φ0(t, x)) =
(
∆φ1

0(t, x), · · · , ∆φm
0 (t, x)

)
.

II. BACKGROUND AND PRELIMINARY

In this paper, we shall focus on the general linear dynamical
system as follows,

dxt = A(t)xtdt+B(t)dvt,

dyt = H(t)xtdt+D(t)dvt,
(1)

where xt, yt are n dimensional and m dimensional stochastic
processes, respectively, vt is p−dimensional standard Brown-
ian motion and A(t) ∈ Rn×n, B(t) ∈ Rn×p, H(t) ∈ Rm×n,
D(t) ∈ Rm×p are all smooth and matrix-value functions of

time t. And we denote the Yt := σ(ys, 0 ≤ s ≤ t) as the
σ−algebra generated by (ys)0≤s≤t.

Remark 2.1: (1) is with independent noise if BD⊤ = 0.
Otherwise, (1) is with correlated noise.

Next, we shall introduce the DMZ equation, a SPDE, for
(1) in filtering theory.

dσ(t, x) = L0σ(t, x) +H(σ(t, x)) ◦ dyt ∀t ∈ [0, T ], (2)

where

L0(·) :=
1

2

n∑
i,j=1

(
[BB⊤]i,j(t)

) ∂2

∂xi∂xj
(·)− (A(t)x)⊤∇ · (·)

− 1

2
(H(t)x)⊤(DD⊤)−1(t)H(t)x · (·)− Tr(A(t))(·),

and the H(·) := x⊤H⊤(t)× (·)−BD⊤(t) · div(·)⊤.

A. Optimal transportation

Firstly, we introduce the basic concepts of the OT. Let α
and β be two probability measures on measure spaces ΩX and
ΩY , respectively. P(Ω) denotes the set of probability measures
on Ω. Let c : ΩX ×ΩY → R+ be a cost function and c(x, y)
measures the cost of transporting one unit of mass from x ∈
ΩX to y ∈ ΩY . The transport map is defined below.

Definition 2.1: Let α ∈ P (ΩX) and β ∈ P (ΩY ). We say
that T is a transport map from α to β if

β(B) = α
(
T −1(B)

)
for all β-measurable sets B. (3)

Equivalently we write β = T#α.
Monge’s problem is formulated as follows:

Theorem 2.1 (Monge’s optimal transportation problem [27]):
Given α ∈ P(ΩX), β ∈ P(ΩY ), let

I[T ] =

∫
ΩX

c(x, T (x))dα(x), (4)

where T : ΩX → ΩY is a transport map from α to β, i.e.
β = T#α. Then Monge’s optimal transportation problem is to
minimize the above integral among all transport maps from α
to β.

If we further assume that the density functions of α and β
are C2 smooth, the optimal transportation map is the gradient
form of some function Φ, i.e. ∇Φ(x) = T (x). The function
Φ is determined by the following PDE which is the so-called
Monge-Ampère equation [27],

det∇2Φ(x) =
β0(x)

α0(∇Φ(x))
, (5)

where ∇2Φ(x) is the Hessian matrix and α0, β0 are the density
functions of α and β, respectively [28].

Definition 2.2: Let (Rn, d) be a standard Eulidean space
and denote P2(Rn) as the set of all probability measures µ
on Rn satisfying

∫
Rn d2(x, x0)dµ(x) < ∞ for some x0 ∈ R.

The p−Wasserstein distance between two probability measures
µ, ν ∈ P2(Rn) is defined by

W2(µ, ν) =

(
inf

γ∈Γ[µ,ν]

∫
Rn×Rn

d2(x1, x2)dγ(x1, x2)

) 1
2

, (6)

where Γ[µ, ν] is the set of joint measures on Rn × Rn with
marginals µ and ν.
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B. The forward Fokker-Planck equation

Lemma 2.1 (Fokker-Planck equation): A general controll-
ed SDE is formulated as follows

dxt = U(t, xt)dt+K(t, xt) ◦ dIt, (7)

where xt ∈ Rn, It is m−dimensional Brownian motion, the
U(t, x) : R+ × Rn → Rn is a smooth function, K(t, x) :=
(K1(t, x), · · · ,Km(t, x)) and Ki(t, x) with 1 ≤ i ≤ m are all
n dimensional column vector fields.

Then the forward Fokker-Planck density equation of (7) is
determined by the following SPDE,

dp = −∇ · (U(t, xt)p(t, x))dt

− ∇̄ · (K(t, x)p(t, x)) ◦ dIt. (8)

where ∇̄ · (K(t, x)p(t, x)) := (∇ ·
(
K1(t, xt)p(t, x)

)
, · · · ,∇ ·

(Km(t, x)p(t, x))).

III. THE TANGENT FLOW MOTIVATED BY OT

The posterior of a continuous stochastic system,
characterized by PDE or SPDE, traces a trajectory in
WS once initialized [23]. The challenge lies in uniquely
defining a flow via OT corresponding to this trajectory. In this
section, we shall answer this question by proposing a new
concept, which is called tangent flow. The graph of workflow
is given as follows.

Density Equation
SPDE/PDE

OT-Flow
SDE/ODE

Finite N flow
Simulation

Here, the main steps of the proposed framework are as
follows:

1) Determine the SPDE or PDE for the solution of the
problem. For the prediction problem, the posterior dis-
tribution is governed by the Fokker-Planck equation, a
PDE. The filtering problem is governed by the Kushner-
Stratonovich equation, an SPDE. In the smoothing prob-
lem, the estimation can be viewed as a linear combina-
tion of two filters.

2) Construct the corresponding tangent flow for such PDE
or SPDE. The detailed definitions are given in the
following subsections. Theoretically, the tangent flow
will not introduce any error because it admits the same
density evolution dynamics.

3) Use finite particles to simulate the tangent flow we have,
which is given in section IV.

A. Optimal transportation in PDE

In this subsection, we shall first derive the tangent flow for
the PDE (9) based on the Monge-Ampère equation in OT.

∂p

∂t
= D(p), t ∈ [0, S], (9)

where D(·) is some differential operator and p(t, ·) ∈ P2(Rd).
Definition 3.1: The tangent flow of the PDE system (9) is

defined as
dxt = ∇φ1(t, x)dt, (10)

where x0 ∼ p(0, x). And φ1(t, x) is solution of the following
PDE,

−p(t, x)∆φ1(t, x)−∇(p(t, x)) · ∇φ1(t, x) = D(p(t, x)).
(11)

The tangent flow of the PDE system is motivated by many
related works such as gradient flow [29], [30]. Here, we
provide a new way to construct the tangent flow based on
the Monge-Ampère equation and use the PDE expansion
technique.

Remark 3.1: In this remark, we will explain the well-
defined property of the tangent flow of PDE. It is noticed
that the posterior distribution of xt governed by (10) satisfied
the following Fokker-Planck equation,

∂p(t, x)

∂t
= −∇ · (∇φ1(t, x)p(t, x)). (12)

And combining with the (11), we have

∂p(t, x)

∂t
= −∇ · (∇φ1(t, x)p(t, x))

= −∆φ1(t, x)p(t, x)−∇φ1(t, x) · ∇p(t, x)

= D(p(t, x)).

(13)

We have shown that the distribution of dynamical system (10)
satisfies equation (9).

Next, we shall prove that the tangent flow is the unique flow
in the sense of OT.

Theorem 3.1: The tangent flow of the PDE system (9) is
the deterministic and unique flow that corresponds to OT.
The proof is given in the appendix.

B. Optimal transportation in SPDE

In this subsection, we shall extend the tangent flow to the
situation where density evolution satisfies a SPDE,

dp = D(p)dt+H(p) ◦ dIt t ∈ [0, S]. (14)

Here the D(·) and H(·) are some differential operators, and
It is m−dimensional Gaussian process.

Similarly to the case of PDE, the tangent flow of the SPDE
can be defined naturally as below.

Definition 3.2: Let p(t, x) be the solution of (14). Then,
the tangent flow for general SPDE (14) is defined as

dxt = ∇φ1(t, xt)dt+ ∇̄φ0(t, xt) ◦ dIt. (15)

Here φ0 = (φ1
0, · · · , φm

0 ) is the vector value function and
satisfies the following equations,

−p(t, x)∆̄φ0(t, x)−∇(p(t, x)) · ∇̄φ0(t, x) = H(p), (16)

where H is the m dimensional row vector operator. Then, φ1

is the scale function and satisfies the following equation

−p(t, x)∆φ1(t, x)−∇(p(t, x)) · ∇φ1(t, x) = D(p(t, x)).
(17)

Remark 3.2: In this remark, we shall explain the above
property of the tangent flow of SPDE is well-defined. It is
noticed that the posterior distributions of xt in (15) satisfy the
forward Fokker-Planck equation in Lemma 2.1,

dp(t, x) = −∇ · (∇φ1(t, x)p(t, x))dt

− ∇̄ · (∇̄φ0(t, xt)p(t, x)) ◦ dIt.
(18)
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And combining with the (11), we have

dp(t, x) = −∇ · (∇φ1(t, x)p(t, x))dt

− ∇̄ · (∇φ1(t, x)p(t, x)) ◦ dIt
= (−∆φ1(t, x)p(t, x)−∇φ1(t, x) · ∇p(t, x)) dt

+
(
−∆̄φ0(t, x)p(t, x)− ∇̄φ0(t, x) · ∇p(t, x)

)
◦ dIt

= D(p(t, x))dt+H(p(t, x)) ◦ dIt.

So, we show that the distributions of dynamical system (15)
satisfy the (14).

Similarly, we can have the following theorem.
Theorem 3.2: The tangent flow of the SPDE system (14)

is the unique flow corresponding to OT.
The proof is given in the appendix.

Remark 3.3: Here, in Theorem 3.2, we use an important
technique to approximate the SPDE by a sequence of PDE.
Such an idea is motivated by the recent works on solving filter-
ing problems via OT [31]. And the mathematical foundations
of this procedure are given as Wong-Zakai approximation [32],
[33]. And we provide a modern version for the reference of
this topic [34].

C. The geometry understanding of tangent flow

In this section, we aim to provide a geometric under-
standing of the proposed tangent flow. To do so, we first
recall the tangent space of a probability distribution q in
P2(Rn) [23], which can be defined as ([35], Theorem 13.8):
TqP2(Rn) = {∇f |f ∈ C∞(Rn)}

Lq(Rn)
, where Lq(Rn) is an

infinite-dimensional Hilbert space consisting of vector fields
V (x) that satisfy

∫
Rn ∥V (x)∥22dq < ∞, and the overline

indicates the closure of the set [23]. The tangent space
TqP2(Rn) inherits an inner product from Lq(Rn) given by:
⟨V1(x), V2(x)⟩Lq(Rn) :=

∫
Rn V1(x) · V2(x)dq, which defines

the Riemannian structure on P2(Rn).
For any smooth curve (p(t, x))t≥0 on P2(Rn), there exists a

unique, almost everywhere time-dependent vector field v(t, x)
on Rn that satisfies ∂

∂tp(t, x) + ∇ · (v(t, x)p(t, x)) = 0 for
all t ∈ R, along with v(t, ·) ∈ Tp(t,·)P2(Rn) ([26] , Theorem
8.3.1).

Remark 3.4: Assuming that the smooth flow (p(t, x))t≥0 is
the solution of PDE (9), we can derive that the unique time-
dependent vector field v(t, x) satisfies the equation below:

∂p

∂t
+∇ · (v(t, x)p(t, x)) = D(p) +∇ · (v(t, x)p(t, x)) = 0,

(19)
where v(t, x) ∈ Tp(t,x)P2(Rn) and v(t, x) = ∇φ1. We can
rewrite equation (19) as (11), giving us a better understanding
of why we refer to it as the tangent flow. This concept can
also be extended to SPDE cases, as presented in Def. 3.2.

IV. LINEAR ESTIMATION VIA PARTICLE METHODS

In this section, we shall introduce several linear estimation
frameworks via particle methods, which are OTPP, OTPF, and
OTPS.

A. Prediction Via Optimal transportation

The prediction is to estimate the conditional density
p(t, x|Ys), where s < t. The particle method provides a natural
solution which is simply push-forward the density according
to the dynamical system, i.e.,

dxt = A(t)xtdt+B(t)dvt, xs ∼ N (µs, Ps). (20)

As for (20), the means and covariance have explicit solutions
which are as follows.

Lemma 4.1 ([4]): The mean and the covariance of (20) are
determined by following ODEs,

dµ(t)

dt
= A(t)µ(t)

dP (t)

dt
= A(t)P (t) + P (t)A⊤(t) +BB⊤(t).

(21)

Then, the posterior density functions of (20) is given as
p(t, x) = c exp

(
− 1

2 (x− µ(t))⊤P−1(t)(x− µ(t))
)
, where c

is a nomalization factor.
Remark 4.1: There are several research directions related

to the density evolution of single linear SDE (20):
• (Monte Carlo Sampling) The goal of sampling is to

obtain particles from a density function. One important
sampling method in Bayesian inference and a related field
is dynamics-based Markov chain Monte Carlo (MCMC),
which uses dynamics simulation for state transitions in a
Markov chain [36], [37]. Notably, the evolution of (20)
can be seen as a type of MCMC. From the computational
side, stochastic MCMC will take a longer time to get
convergence results [38]. Therefore, an essential question
is to design an equivalent deterministic MCMC with the
same probability density evolution [39], [23].

• (Stochastic Control with Linear Dynamic Priors) Stochas-
tic control refers to determining the optimal control policy
that appeared in the dynamical system to minimize the
objective energy function. A typical example is the linear
stochastic control shown as follows:

dxt = A(prior)(t)xtdt+ u(t)dt+B(t)dvt, (22)

with A(prior)(t) ∈ Rn×n, u(t) ∈ Rn, and B(t) ∈ Rn×p

continuously varying over time t. The optimal control
of such minimum energy E

∫ t

0
∥u(t)∥2dt problem is in a

linear feedback form, i.e. u(t) := A(input)(t)xt[40], [41],
[42].

Next, we shall introduce the tangent flow of (22), which can
be considered as a dynamical flow designed based on OT.

Theorem 4.1: Consider the system (20). We can construct
the associated tangent flow as the follow ODE,

dx
(ot)
t = A(t)x

(ot)
t dt+

1

2
BB⊤(t)P−1(t)(x

(ot)
t − µ(t))dt

+Ω(t)P−1(t)(x
(ot)
t − µ(t))dt (23)

where Ω(t) is uniquely obtained by the following matrix
equation:

Ω(t)P−1(t) + P−1(t)Ω(t) = A(t)−A⊤(t)

+BB⊤(t)P−1(t)− P−1(t)BB⊤(t),
(24)
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and A(t) + 1
2BB⊤(t)P−1(t) + Ω(t)P−1(t) is a symmetric

matrix.
The proof is given in the appendix.
Remark 4.2: In (23), the stochastic term B(t)dvt is re-

placed by the deterministic term 1
2BB⊤(t)P−1(t)(x

(ot)
t −

µ(t))dt. This can be viewed as a deterministic MCMC,
offering a better convergence rate than a stochastic one [36].
The ODE (23) includes an additional term with the skew-
symmetric matrix Ω(t). It is a unique choice defined in (24)
that acts as a correction term, making the dynamics symmetric
and thus optimal in the sense of optimal transportation.

B. Filtering Via Optimal transportation

In this subsection, we shall consider the filtering problem
defined in (1). It is well-known that the optimal estimate of
the state in (1) is given by the Kalman-Bucy filter (KBF).
Let µ−(t) := E[xt|Yt] and P−(t) := E[(xt − µ−(t))(xt −
µ−(t))

⊤|Yt]. Then the evolution equations of the conditional
expectation µ−(t) and the conditional covariance P−(t) are
given in the following lemma.

For simplicity, we define the Riccati operator of filtering (1)
in the following definition.

Definition 4.1: The Riccati operator Ricc(·) of filtering (1)
is defined as

Ricc(P̃ ) := (A(t)− CH(t))P̃

+ P̃ (A(t)− CH(t))⊤ +R(t)− P̃S(t)P̃ ,
(25)

where R(t) := BB⊤(t) − BD⊤(t)(DD⊤(t))−1DB⊤(t),
C(t) := BD(t)⊤(DD⊤(t))−1, and S(t) :=
H⊤(t)(DD⊤(t))−1H(t).

Lemma 4.2: [6] The KBF of system (1) is as follows:

dµ−(t) =A(t)µ−(t)dt

+ (K(t) + C(t))(dyt −H(t)µ−(t)dt), (26)
dP−(t)

dt
=Ricc(P−(t)) (27)

where K(t) := [P−(t)H
⊤(t)](DD⊤(t))−1 is called Kalman

gain, and Ricc(·) is the Riccati operator of filtering (1).
Remark 4.3: In Lemma 4.2, the stochastic integration is

Itô form. However, in this case, the Stratonovich integration
is equivalent to the Itô integration, i.e., (K(t) + C(t))dyt =
(K(t) + C(t)) ◦ dyt

In the following, similar to prediction part, the tangent flow
of KBF can be constructed.

Theorem 4.2: For the system (1), the associated tangent
flow is given as follows,

dx
(ot)
t =A(t)x

(ot)
t dt+ C(t)(dyt −H(t)x

(ot)
t dt)

+
1

2
R(t)P−1

− (t)(x
(ot)
t − µ−(t))dt

+K(t)(dyt −
H(t)x

(ot)
t +H(t)µ−(t)

2
dt)

+ Ω(t)P−1
− (t)(x

(ot)
t − µ−(t)))dt,

(28)

where K(t) = [P−(t)H
⊤(t)](DD⊤(t))−1 is called Kalman

gain, R(t) := BB⊤(t) − BD⊤(t)(DD⊤(t))−1DB⊤(t),

C(t) = BD(t)⊤(DD⊤(t))−1, and Ω(t) is the solution of

Ω(t)P−(t)
−1+P−(t)

−1Ω(t) =

(A(t)− C(t)H(t))⊤ − (A(t)− C(t)H(t))

+
1

2
S(t)P−1

− (t)− 1

2
P−1
− (t)S(t)

+
1

2
(R(t)P−(t)

−1 − P−(t)
−1R(t)).

The proof is given in the appendix.
Remark 4.4: Introduced in [24], the OT-modified linear

FPF addresses the non-uniqueness problem through an error
process and proposes a unique control law via an optimization
time-stepping method. In this paper, the derivation is based
on tangent flow which combines the Monge-Ampère equation
and the PDE expansion technique. The two derivations are ul-
timately equivalent but different in tools. (28) firstly appeared
in [25], where an alternative derivation method is given here.
In the linear-Gaussian case, both EnKF and FPF can overcome
the curse of dimensionality, whereas PF cannot [22]. Similar
to the prediction process, the role of Ω(t) matrix is to keep
symmetric property and optimality.

C. Smoothing Via Optimal transportation

This subsection will focus on the smoothing problem with
(1). The smoothing problem is to estimate the p(t, x|YT ) by
utilizing all observation data. And for linear systems, there
is a MFTF formula [10] designed for smoothing problems,
which means the estimates generated by two different filters
are merged into a combined and more reliable estimate in fixed
time interval, i.e.,

Step 1: Do Filtering p(t, x|Yt) from t = 0 to t = T

Step 2: Reverse Smoothing p(t, x|YT ) from t = T to t = 0

Here, we can see that Step 1 is the Kalman-Bucy filter. Step
2 is the backward Kalman-Bucy filter for system (1) which
is defined in the following Lemma 4.3. Firstly, we recall
observation history is defined as Y[0,t] := σ({ys|0 ≤ s ≤ t})
and Y(t,T ] := σ({ys|t < s ≤ T}).

Assumption 1: The matrices BB⊤(t) and S(t) are in S+n ,
S+m, respectively and uniformly bounded, i.e.,

0 < inf
t≥0

BB⊤(t) ≤ sup
t≥0

BB⊤(t) < ∞

0 < inf
t≥0

S(t) ≤ sup
t≥0

S(t) < ∞

The direct result of Assumption 1 is that P (t) defined in (21)
is positive definite for any t ≥ 0. Then, we shall define the
dual system of (1).

Definition 4.2 (The time-reverse system [10]): If the linear
system xt satisfies the Assumption 1, the dual system of (1)
is defined as

dx̄t = −A⊤(t)x̄tdt+ B̄(t)dv̄t, x̄T = 0

dyt = H̄(t)x̄tdt+D(t)dv̄t
(29)

where B̄(t) := P−1(t)B(t), H̄(t) = H(t)P (t) + D(t)B(t),
dv̄t = dvt − B̄⊤(t)xtdt.

Similarly, with the Definition 4.1, we can define the Riccati
operator for dual system (29).
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Definition 4.3: The Riccati operator Ricc(·) of dual filter-
ing system of (1) (defined in (29)) is defined as

R̃icc(P̃ ) := (−A⊤(t)− C̄H̄(t))P̃

+ P̃ (−A⊤(t)− C̄H̄(t))⊤ + R̄(t)− P̃ S̄(t)P̃ ,
(30)

where R̄(t) := B̄B̄⊤(t) − B̄D⊤(t)(DD⊤(t))−1DB̄⊤(t),
C̄(t) = B̄D(t)⊤(DD⊤(t))−1, and S̄(t) :=
H̄⊤(t)(t)(DD⊤(t))−1H̄(t).

Lemma 4.3: Consider the filtering problem (1), then the
time-reverse continuous system is given in (29). Identically,
a cascade of backward Kalman filters generates a process
µ̄(t) with covariance P̄ (t) based on the backward stochastic
realization (29) and the observation windows [t, T ],

dµ̄+(t) =−A⊤(t)µ̄+(t)dt

+ (K̄(t) + C̄(t))(dyt − H̄(t)µ̄+(t)dt), (31)
dP̄+(t)

dt
=R̃icc(P̄+(t)) (32)

where K̄(t) := [P̄+(t)H̄
⊤(t)](DD⊤(t))−1 is called Kalman

gain, and the terminal condition are µ̄+(T ) = 0 and P̄+(T ) =
P−(T ).

Similar to Theorem 4.2, we can construct a backward
optimal transportation dynamical flow.

Theorem 4.3: For the dual system (29), the associated
tangent flow is given as follows

dx̄
(ot)
t =−A⊤(t)x̄

(ot)
t dt+ C̄(t)(dyt − H̄(t)x̄

(ot)
t dt)

+
1

2
R̄(t)P̄−1(t)(x̄

(ot)
t − µ̄(t))dt

+ K̄(t)(dyt −
H̄(t)x̄

(ot)
t + H̄(t)µ̄(t)

2
dt)

+ Ω̄(t)P̄−1(t)(x̄
(ot)
t − µ̄(t))dt,

(33)

where x̄
(ot)
T = 0 , K̄(t) := [P̄ (t)H̄⊤(t)](DD⊤(t))−1,

R̄(t) := B̄B̄⊤(t) − B̄D⊤(t)(DD⊤(t))−1DB̄⊤(t), C̄(t) =
B̄D(t)⊤(DD⊤(t))−1, and Ω̄(t) is the solution of

Ω̄(t)P (t)−1+P (t)−1Ω̄(t) =

(−A⊤(t)− C̄(t)H̄(t))⊤ − (−A⊤(t)− C̄(t)H̄(t))

+
1

2
S̄(t)P̄−1(t)− 1

2
P̄−1(t)S̄(t)

+
1

2
R̄(t)P̄ (t)−1 − P̄ (t)−1R̄(t)). (34)

Then, let µ̂(t) be the smooth estimation E[xt|YT ] and
P̂ (t) := E[(xt − µ̂(t))(xt − µ̂(t))⊤|YT ] which will be
calculated by the following result.

Theorem 4.4 ([12]): Consider the stochastic system (1)
with observation and its associated dual system (29). Then,
for t ∈ [0, T ], the Mayne-Fraser smoothing formula is given
as

µ̂(t) = P̂ (t)[P̄−1
+ µ̄+(t) + P−1

− (t)µ−(t)] (35)

where P̂ satisfies the following equation

P̂−1(t) =
1

2

(
P̄−1
+ P−1

− (t) + P−1
− P̄−1

+ (t)− P̄−1
+ P−2P−1

− (t)

+ P−1
− P−2P̄−1

+ (t) + (P−1
− + P̄−1

+ )P (t)

+ P (t)(P−1
− + P̄−1

+ )− 2I
)
. (36)

Remark 4.5: Theorem 4.4 holds for any intermittent obser-
vations structure. Once the observations are missed in some
intervals, we can simplily assume the K(t), C(t), K̄(t), and
C̄(t) are all zero in the Theorem 4.2 and 4.3. This fact was
first pointed out by [12].

D. The algorithms and the Finite N formulation
In this subsection, we shall introduce a numerical implemen-

tation. We shall simulate N independent stochastic processes
(particles)

{
x
(ot,i)
t , 1 ≤ i ≤ N

}
according to (23). However,

the µ(t) and P (t) in (23) shall be approximated by the
particles

{
x
(ot,i)
t , 1 ≤ i ≤ N

}
, which satisfy

µ∗(t) ≈ µ(N)(t) =
1

N

N∑
i=1

x
(ot,i)
t ,

P∗(t) ≈ P (N)(t)

=
1

N − 1

N∑
i=1

(x
(ot,i)
t − µ(N)(t))⊤(x

(ot,i)
t − µ(N)(t)),

(37)

1) Finite N formulation for OTPP: As for OTPP, we
combine (37) and (23). Then, we shall have

dx
(ot,i)
t = A(t)x

(ot,i)
t dt

+
1

2
BB⊤(t)(P (N))−1(t)(x

(ot,i)
t − µ(N)(t))dt

+Ω(N)(t)(P (N))−1(t)(x
(ot,i)
t − µ(N)(t))dt,

(38)

where the Ω(N) is the solution of
Ω(N)(t)(P (N))−1(t) + (P (N))−1(t)Ω(N)(t) = A(t)−A⊤(t)

+BB⊤(t)(P (N))−1(t)− (P (N))−1(t)BB⊤(t)

We call (38) as the finite N system for (23). And the OTPP
algorithm is summarised in Alg. 1.

Algorithm 1 Finite N formulation for OTPP
1: Initialization
2: for i := 1 to N do
3: Sample x0

i from p(0, x)
4: end for
5: Assign value t := 0
6: Iteration [from t to t+∆t]
7: Calculate µ(N)(t) and P (N)(t) by using (37).
8: for i := 1 to N do
9: Update x

(ot,i)
t+∆t by using forward Euler scheme of (38).

10: end for
11: Update t := t+∆t.

2) Finite N formulation for OTPF: We combine (37) and
(28), so that we have,

dx
(ot,i)
t =A(t)x

(ot,i)
t dt+ C(t)(dyt −H(t)x

(ot,i)
t dt)

+
1

2
R(t)(P

(N)
− )−1(t)(x

(ot,i)
t − µ

(N)
− (t))dt

+K(N)(t)(dyt −
H(t)x

(ot,i)
t +H(t)µ

(N)
− (t)

2
dt)

+ Ω(N)(t)P−1(t)(x
(ot,i)
t − µ

(N)
− (t))dt, (39)
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where K(N)(t) = [P
(N)
− (t)H⊤(t)](DD⊤(t))−1 (Kalman

Gain), R(t) := BB⊤(t) − BD⊤(t)(DD⊤(t))−1DB⊤(t),
C(t) = BD(t)⊤(DD⊤(t))−1, and Ω(N)(t) is the solution of

Ω(N)(t)P
(N)
− (t)−1 + P

(N)
− (t)−1Ω(N)(t) =

(A(t)− C(t)H(t))⊤ − (A(t)− C(t)H(t))

+
1

2
S(t)(P

(N)
− )−1(t)− 1

2
(P

(N)
− )−1(t)S(t)

+
1

2
R(t)(P

(N)
− )−1(t)− (P

(N)
− )−1(t)R(t)).

We call (39) as the finite N system for (28). And the OTPF
algorithm is summarised in Alg. 2.

Algorithm 2 Finite N formulation for OTPF
1: Initialization
2: for i := 1 to N do
3: Sample xi

0 from p(0, x)
4: end for
5: Assign value t := 0
6: Iteration [from t to t+∆t]
7: Calculate µ(N)(t) and P (N)(t) by using (37).
8: for i := 1 to N do
9: Update x

(ot,i)
t+∆t by using forward Euler scheme of (39).

10: end for
11: Update t := t+∆t.

3) Finite N formulation for OTPS: Similar to the filtering
problem, we combine (37) and (33), so that we have,

dx̄
(ot,i)
t =−A⊤(t)x̄

(ot,i)
t dt

+
1

2
B̄B̄⊤(t)(P̄ (N)(t))−1(t)(x̄

(ot,i)
t − µ̄

(N)
+ (t))dt

+Ω(N)(t)(P̄ (N)(t))−1(t)(x̄
(ot,i)
t − µ̄

(N)
+ (t))dt

+ K̄(N)(t)(dyt −
H(t)x̄

(ot)
t +H(t)µ̄

(N)
+ (t)

2
dt)

+ Ω(N)(t)P−1(t)(x̄t − µ̄
(N)
+ (t)))dt (40)

where K̄(N)(t) := [P̄
(N)
+ (t)H̄⊤(t)](DD⊤(t))−1,

R̄(t) := B̄B̄⊤(t) − B̄D⊤(t)(DD⊤(t))−1DB̄⊤(t),
C̄(t) = B̄D(t)⊤(DD⊤(t))−1, and Ω̄N (t) is the solution of

Ω̄N (t)P (t)−1 + P (t)−1Ω̄N (t) =

(−A⊤(t)− C̄(t)H̄(t))⊤ − (−A⊤(t)− C̄(t)H̄(t))

+
1

2
S̄(t)(P̄N

+ )−1(t)− 1

2
(P̄N

+ )−1(t)S(t)

+
1

2
R̄(t)(P̄N

+ )−1(t)− (P̄N
+ )−1(t)R̄(t)).

And the Algorithm is summarized in Alg. 3.

V. THE CONVERGENCE ANALYSES OF PROPOSED
ALGORITHMS

In this section, we shall provide the convergence analysis
of proposed algorithms, including OTPP, OTPF, and OTPS.

Algorithm 3 Finite N formulation for OTPS
1: Initialization
2: for i := 1 to N do
3: Sample xi

0 from p(0, x), and sample x̄i
0 from p̄(0, x).

4: end for
5: Assign value t := 0
6: Iteration [from t to t+∆t]
7: Calculate µ(N)(t) and P (N)(t) by using (37).
8: for i := 1 to N do
9: Update x

(ot,i)
t+∆t by using forward Euler scheme of (39).

10: Update x̄
(ot,i)
t+∆t by using forward Euler scheme of (40).

11: end for
12: Update µ̂t+∆t by using {x(ot,i)

t+∆t, x̄
(ot,i)
t+∆t|1 ≤ i ≤ N}, and

(35).
13: Update t := t+∆t.

A. Main assumptions and stability for KBF.

In this subsection, we shall introduce the main assumptions
for the filtering problem. By considering the constant matrix
M , we can define the transition matrix as Es,t = eM(t−s), and
for general time-vary flow, we define in the following.

Definition 5.1 ([43]): The transition matrix associated with
a smooth matrix value flow M : u → M(u) ∈ Rn×n with
u ∈ [0,∞) is defined as the solution of the following matrix
value differential equation,

∂

∂t
Es,t(M) = M(t)Es,t(M),

∂

∂s
Es,t(M) = −Es,t(M)M(s),

for any s ≤ t, with Es,s = In, the identity matrix.
Then, we shall introduce the observability Gramian, Os,t,

and controllability Gramian, Cs,t of system (1) which are
defined by

Os,t :=

∫ t

s

Er,t(CH −A)S(t)Er,t(CH −A)⊤dr

where S(t) is defined in Def. 4.1 and

Cs,t :=
∫ t

s

Er,t(A− CH)BB⊤(r)Er,t(A− CH)⊤dr.

In control theory, the system (1) is observable/controllable
if the observability/controllability Gramian is positive-defined.
We recommend readers refer to [43] for details.

Assumption 2: For the observability and controllability
Gramians, there exists parameters v, ωo

± > 0, ωc
± > 0 such

that

ωc
−In ≤ Ct,t+v ≤ ωc

+In

ωo
−In ≤ Ot,t+v ≤ ωo

+In

uniformly for all t ≥ 0. Here, parameter v is called the interval
of observability/controllability.

Assumption 3: The A(t) in system (20) and the A(t) −
CH(t) in (4.2) are uniformly bounded, i.e., for some λ

sup
t≥0

max {|λmax(A(t))|, |λmin(A(t))|} ≤ λ

sup
t≥0

max {|λmax(A(t)− CH(t))|, |λmin(A(t)− CH(t))|} ≤ λ
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The following Lemmas are important in the convergence of
the OTPF and OTPS.

Lemma 5.1: Consider the following Riccati system 4.1

dP̃ (t)

dt
= Ricc(P̃ (t)). (41)

Let Φt(·) be the solution operator of the Riccati system, i.e.
Φt(P̃ (0)) = P̃ (t). For any s ≤ t and Q ∈ S+n , we can define
a smooth flow set u → A(u)−CH(u)−Φu(Q)S(u). By using
the Def.5.1, the transition matrix associated with a smooth flow
A(u)−CH(u)−Φu(Q)S(u) is given as Es,t(A(t)−CH(t)−
Φt(Q)S(t)). For simplicity, we define a new operator Es,t(Q),
i. e.,

Es,t(Q) := Es,t(A(t)− CH(t)− Φt(Q)S(t)).

And the Assumption 2 is satisfied for some v > 0. Then
1) (Theorem 1.1 in [44]) For any t ≥ v and P̃1(0) ∈ S+n ,

there exist two matrices Λmin,Λmax ∈ S+n such that

Λmin ≤ Φt(P̃1(0)) ≤ Λmax. (42)

2) (Theorem 1.2 in [44]) For any P̃1(0), P̃1(0) ∈ S+n and
t ≥ 0, there is

∥Φt(P̃1(0))−Φt(P̃2(0))∥2
≤ α1 exp(−βt)∥P̃1(0)− P̃1(0)∥2,

(43)

where the α1 depends on P̃1(0), P̃1(0) and

β :=
1

2(ω0
+ + 1/ωc

−)

[
inf
t≥0]

λmin(S(t))

+
inft≥0 λmin(BB⊤(t))

(ωc
+ + 1/ωo

−)
2

]
.

3) (Theorem 4.2 in [44]) For any t ≥ s ≥ v and Q ∈ S+n ,
we have

∥Es,t(Q)∥2 ≤ α2 exp(−β(t− s)),

where α2
2 :=

ωo
+(C)+1/ωc

−
ωc

+(C)+1/ωo
−

and β is same as those in 2)
above.

Here, we shall introduce a lemma on the general conver-
gence of Monte-Carlo methods.

Lemma 5.2: [45] Let the n-dimensional random vectors
xi, which are independently sampled from N (µ, P ) with
i = 1, · · · , N . Define

µ(N) :=
1

N

N∑
i=1

xi

P (N) :=
1

N − 1

N∑
i=1

(xi − µ(N))(xi − µ(N))⊤.

(44)

Then, we have

E[∥µ− µ(N)∥2] ≤ c(n)

N
,E[∥P − P (N)∥2] ≤ c(n)

N
, (45)

where cn is some constant depending on n.

B. The main convergence Theorem

In this subsection, the main convergence Theorems are
given.

Theorem 5.1 (Convergence for OTPP): Consider the dy-
namical system (20) with Gaussian initial density. Let
(µ(N)(t), P (N)(t)) be the empirical mean and covariance ob-
tained from the OTPP system (38) while (µ(t), P (t)) is mean
and covariance obtained from (21). Under the Assumptions 1,
2, and 3, then, for any t ≥ 0, there exist constants c1, c2 such
that

∥µ(t)− µ(N)(t)∥22 ≤ c1
N

,

∥P (t)− P (N)(t)∥2F ≤ c2
N

.
(46)

Lemma 5.3 ([25] ): The evolution of empirical mean and
covariance (µ(N), P (N)) satisfy

dµ(N)(t) = A(t)µ(N)(t)dt

+ (K(t) + C(t))(dyt −H(t)µ(N)(t)dt)

dP (N)(t)

dt
= Ricc(P (N)(t)),

(47)

where K(N)(t) := [P (N)(t)H⊤(t)](DD⊤(t))−1 as Kalman
gain, R(t) := BB⊤(t) − BD⊤(t)(DD⊤(t))−1DB⊤(t) and
C(t) = BD(t)⊤(DD⊤(t))−1.

Theorem 5.2 (Convergence for OTPF): Consider the
dynamical system (1) with initial Gaussian. Let
(µ

(N)
− (t), P

(N)
− (t)) be the empirical mean and covariance

obtained from the OTPF system (39) while (µ−(t), P−(t))
is the mean and covariance obtained from KBF. Under the
Assumptions 1, 2, and 3, for any t ≥ 0, there exist constants
c1, c2 such that

∥µ−(t)− µ
(N)
− (t)∥22 ≤ c1(1 +

2n2α2λ

β
)e−2βt 1

N

∥P−(t)− P
(N)
− (t)∥2F ≤ c2(1 +

2n2α2λ

β
)e−2βt 1

N
.

(48)

To analyze the convergence OTPS, we shall combine the
forward and backward filters. Since the constant of conver-
gence analysis depends on the covariance of the system, we
can simply assume that both the state system and dual system
covariances In for any time t. This method is widely used in
previous works, known as the normalized trick.

Theorem 5.3 (Convergence for OTPS): Consider the dyna-
mical system (1) with initial Gaussian. Let (µ(N)

− (t), P
(N)
− (t))

and (µ̄
(N)
+ (t), P̄

(N)
+ (t)) the empirical means and covariances

obtained from the OTPF system (39) and revise OTPF
(40), respectively. Then, the empirical mean and covari-
ance (µ̂(N)(t), P̂ (N)(t)) of the OTPS system for (1) can
be computed using the MFTF formula (35) and (36) while
(µ̂(t), P̂ (t)) is the mean and covariance obtained from RTS
smoother. Under the Assumptions 1, 2, and 3, for any t ≥ 0,
there exist constants c1, c2 such that

∥µ̂(t)− µ̂(N)(t)∥22 ≤ cµ
1

N
,

∥P̂ (t)− P̂ (N)(t)∥2F ≤ cP̂
1

N
, .

(49)

The proof is given in the appendix.
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VI. NUMERICAL SIMULATION

This section will present an extensive numerical study of the
estimation problems via OT and compare the filter results with
some traditional algorithms such as KF, PF, EnKF, RTS, PS,
and EnKS. To compare the performance of different methods,
we introduce the mean squared error (MSE) and the mean of
the mean squared error (MMSE) based on 100 realizations,
which are defined as follows:

MSE(k ·∆t) :=
1

100

100∑
i=1

∥x[i]
k·∆t − x̂

[i]
k·∆t∥2,

MMSE :=
1

100

1

Sp

Sp∑
k=1

100∑
i=1

∥x[i]
k·∆t − x̂

[i]
k·∆t∥2,

where x
[i]
k·∆t is the real state at discrete time instant k · ∆t

in i−th experiment, x̂
[i]
k·∆t is the estimation of x

[i]
k·∆t, and

Sp is the total steps. The mean time (MT) is introduced for
numerical complexity.

A. The prediction problem

In this subsection, we present a high-dimensional sampling
problem. Here, we consider the high dimensional sampling
problem which can be modeled as follows,

dxt = Axtdt+ dvt,

where the xt ∈ R100, vt is 100-dimensional standard Brownian
motion, and A = (Ai,j)

100
i,j=1 are defined as Ai,j = 0.1 if

i− j = 1, Ai,j = −0.5 if i− j = 0. The posterior distribution
at t = 1 is the target distribution.
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Fig. 1. Sampling results. The error of the expectation is shown in (a) and
the error of the covariance is shown in (b). Constant error is a horizontal
reference line.

Based on Fig. 1, it can be found that deterministic sampling
results in smaller errors. From the standpoint of expectation,
the error of deterministic sampling decreases over time, while
the error of random sampling increases. From the perspective
of covariance, the error of deterministic sampling is also
gradually decreasing, while the results of random sampling,
although improving at first, ultimately become worse.

B. The filtering problem with missing observation

In this subsection, we present the following example for
both filtering experiments and compare the proposed algorithm
with EnKF, PF, and KF.

dxt = An(t)xtdt+ (0.4In, 1.6In)dvt,

dyt = Inxtdt+ (0n×n, In)dvt,
(50)

where xt, yt ∈ Rn, vt is the 2n-dimensional standard Brow-
nian motion and the A(t) := (Ai,j(t))

n
i,j=1 is define as

(An(t))i,j = 0.1 cos(t) if i − j = 1, (An(t))i,j = −0.5(1 +
0.1 cos(2t)) if i− j = 0, (An(t))i,j = 0.15 if i− j = −1, and
(An(t))i,j = 0 for otherwise. Numerical simulation over time
interval [0, 30] produces a time-function dyt, which is sampled
with integer multiples of ∆t = 0.01 (units). The interval [0, 30]
is partitioned into 5 pieces, i.e., [0, 30] =

⋃5
i=1[ti, ti+1], where

ti+1 − ti = 2 ∗ i. And when t ∈ [ti, ti+1] with i = 2, 4, the
sensors are blocked, so there is no observation data dyt for
this filter system.

TABLE I
FILTER EXPERIMENT RESULTS IN 10-DIMENSIONAL CASES WITH

DIFFERENT SIMULATED PARTICLE NUMBER N

Method KF(M) PF EnKF OTPF
MMSE 3.3179 15.1744 5.2758 3.6475

MT 0.2932 0.9960 0.5144 0.5911
N − 10 10 10

Method KF(M) PF EnKF OTPF
MMSE 3.3179 13.5943 4.0294 3.32957

MT 0.2932 1.3214 0.93029 1.0886
N − 20 20 20

Method KF(M) PF EnKF OTPF
MMSE 3.3179 10.3675 3.6126 3.3265

MT 0.2932 2.2632 1.9247 2.096501
N − 50 50 50

Method KF(M) PF EnKF OTPF
MMSE 3.3179 8.0009 3.49359 3.3209

MT 0.2932 4.0108 3.7084 3.7475
N − 100 100 100

Method KF(M) PF EnKF OTPF
MMSE 3.3179 4.3683 3.3280 3.3187

MT 0.2932 16.7924 15.02346 16.3594
N − 500 500 500
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(a) 100 Particles MSE of time
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(b) 500 Particles MSE of time

Fig. 2. The MSE of three different filter algorithms are shown. There is no
observation in time periods marked in red. The dimension of the state and
observation is n = m = 10.

The simulation results of filtering problems are discussed
next:

1) MMSE Comparison Between Optimal KF and Par-
ticle Algorithms with Missing Observations The 10-
dimensional numerical results are shown in Figure 2,
with 100 particles in (a) and 500 particles in (b).
OTPF provides a more accurate approximation than
other algorithms, demonstrating the fastest convergence
rate and best convergence order during observation inter-
vals. Even with 100 particles, OTPF is highly efficient,
whereas PF with 100 particles is nearly ineffective, and
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(c) MSE as function of N (t = 15)
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(d) MSE as function of N (t = 30)

Fig. 3. MSE at different times as the function of N . The dimension of the
state and observation is n = m = 10.

EnKF with 500 particles still significantly lags behind
OTPF with 100 particles.

2) MSE vs. Particle numbers. We conduct a simulation
on the 10-dimensional system in (50) with varying
particle numbers N ∈ {10, 20, 50, 100, 500}. We report
the average results of 20 runs in Table I. The KF(M)
is the Kalman filter with missing observations, where
the Kalman gain is set to zero during the missing
observation period. Our OTPF algorithm outperforms PF
with 500 particles and is comparable to EnKF with 500
particles, even with only 20 particles. Additionally, as
the number of particles increases, the computation time
of OTPF slightly increases but remains much lower than
PF while being slightly larger than EnKF.

3) MSE vs. time We conduct a simulation to study the
performance of the EnKF and OTPF algorithms with
different particle numbers N and at different time inter-
vals t. Specifically, we plotted the MMSE as a function
of N at times t ∈ {5, 10, 15, 30}s for a 10-dimensional
system, as shown in Figure 3. In the absence of obser-
vation periods, both EnKF and OTPF perform similarly.
However, during observation periods, OTPF has a faster
convergence speed and achieves better results than those
of EnKF and PF, especially with a small number of
particles.

C. The smoothing problem

In this subsection, we shall consider the following example
for smoothing experiments and compare the proposed algo-
rithm with EnKS, PS, and RTS.{

dxt = Ãn(t)xtdt+ (In, 0n×n)dvt,

dyt = xtdt+ (0n×n, In)dvt,
(51)

where xt, yt ∈ Rn, x0 ∼ N (0, In), vt is the 2n-dimensional
standard Brownian motion, and Ãn(t) := ((An)i,j(t))

n
i,j=1 is

defined as (Ãn(t))i,j = 0.1 cos(t) if i − j = 1, (Ãn(t))i,j =
−0.5 if i = j (Ãn(t))i,j = −0.1 cos(t) if i − j = −1 and
(Ãn(t))i,j for otherwise. Then, the dual system of (51) is as
follows, {

dx̄t = −A⊤
n (t)x̄tdt+

(
In, 0n×n

)
dv̄t,

dȳt = Inx̄tdt+
(
0n×n, In

)
dv̄t.

(52)

where x̄(T ) = 0.

TABLE II
SMOOTHING EXPERIMENT RESULTS IN 10-DIMENSIONAL CASES WITH

DIFFERENT SIMULATED PARTICLE NUMBER N

Method RTS(M) PS EnKS OTPS
MMSE 1.5307 11.60939 8.2758 2.04826

MT 0.4091 4.09136 1.39132 1.92688
N − 10 10 10

Method RTS(M) PS EnKS OTPS
MMSE 1.5307 10.61721 5.28977 1.54802

MT 0.4091 4.9669 1.96412 2.65917
N − 20 20 20

Method RTS(M) PS EnKS OTPS
MMSE 1.5307 7.8642 4.245651 1.53312

MT 0.4091 7.850553 3.58582 4.8880045
N − 50 50 50

Method RTS(M) PS EnKS OTPS
MMSE 1.5307 6.00583 3.78255 1.53228

MT 0.4091 12.7001 6.2978 8.5595
N − 100 100 100

Method RTS(M) PS EnKS OTPS
MMSE 1.5307 3.12928 3.004476 1.53254

MT 0.4091 51.31694 27.7580 38.1201
N − 500 500 500
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100
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(a) 100 Particles MSE
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(b) 500 Particles MSE

Fig. 4. The MSE of three different smoother algorithms are shown. There
is no observation in time periods marked in red. The dimension of the state
and observation is n = m = 10.

The simulation results of smoothing problems are discussed
next:

1) MSE Comparison Between Optimal RTS and Parti-
cle Algorithms with Missing Observations
The 10-dimensional numerical results are shown in
Figure 4, with 100 particles in (a) and 500 particles
in (b). OTPS provides a more accurate approximation
than other algorithms, showing the fastest convergence
rate and best convergence order during observation inter-
vals. Even with 100 particles, OTPS is highly efficient,
whereas PS with 100 particles is nearly ineffective, and
EnKS with 500 particles still significantly lags behind
OTPS with 100 particles. The accuracy of OTPS is
slightly less than OTPS, primarily because OTPS relies
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Fig. 5. MSE at different times as the function of N . The dimension of the
state and observation is n = m = 10.

on solving a covariance matrix equation reconstructed by
particles, and the convergence of the covariance matrix
is weaker than the order of convergence of expectations.

2) MSE vs. Particle Numbers In this simulation, we test
the 10-dimensional case system of (50) with different
particle numbers N ∈ {10, 20, 50, 100, 500}. The aver-
age results of 20 times are shown in Table I. The KS(M)
is the KS with missing observation, where the Kalman
gain is set to zero during the missing observation period.
The OTPS with 20 particles performs better than PS
with 500 particles and it almost performs the same as
EnKS with 500 particles. The computation time of OTPS
growth is much slower than PS and slightly larger than
EnKS when the number of particles increases.

3) MSE vs. time We perform a simulation to compare
the performance of EnKS and OTPS algorithms with
varying particle numbers N and at different time in-
tervals t in a 10-dimensional system. We plotted the
MSE as a function of N at times t ∈ {5, 10, 15, 30}s in
Figure 5. The EnKS had a larger error at low particle
numbers in the absence of observations, while PS with
resampling achieved results close to OTPS as the number
of particles increased. OTPS’s error did not change
much with increasing particle numbers. However, during
observation periods, OTPS had a faster convergence
speed and achieved better results than those of EnKS
and PS, particularly with a small number of particles.

VII. CONCLUSION

In this paper, we extend the OTPF to prediction and smooth-
ing problems inspired by the work of Georgiou and Lindquist.
Numerical experiments for prediction, filtering, and smoothing
problems are conducted to demonstrate the effectiveness of our
proposed approach. The proposed methods offer two advan-
tages. 1) The geometric meaning of OT constructs a unique
transport mapping that minimally alters the particles, resulting
in a more robust and stable algorithm. 2) Additionally, minimal

filtration eliminates the need for additional sampling, which
improves the algorithm’s accuracy and reduces reliance on
extra noise.

APPENDIX
PROOFS IN THE SECTION III.A

Proofs for Theorem 3.1 Considering the optimal transport
problem between two distribution p(t, x) and p(t + ∆t, x),
we will get following Monge-Ampère equation by letting the
f(x) = p(t+∆t, x) and g(x) = p(t, x):

detD2Φt =
p(t+∆t, x)

p(t,∇Φt(x))
. (53)

The Monge-Ampère equation is a nonlinear PDE that is hard
to solve, but luckily the p(t, x) and p(t+∆t, x) are close when
∆t is small. So D2Φt should be close to In, we can expand
both sides of equation (53) in the asymptotic sense of ∆t → 0.
Firstly, we can expand p(t+∆t, x) according (9),

p(t+∆t, x) = p(t, x) +D(p(t, x))∆t+O(∆t2). (54)

Divide p(t, x) for the both sides, which yields,

p(t+∆t, x)

p(t, x)
= 1 +

D(p(t, x))

p(t, x)
∆t+O(∆t2). (55)

And we consider to expand the Φt(x). Since D2Φt should be
close to In, then Φt(x) should be close to |x|2

2 . So, we have

Φt(x) =
|x|2

2
+ φ1(t, x) ·∆t+O(∆t2), (56)

where φ1 is an undetermined function.
So, submit (56) and (55) into the equation (53) and take

∆t → 0, we will get equation satisfied by φ1

∆φ1(t, x) +∇(log p(t, x))∇φ1(t, x) = −D(p(t, x))

p(t, x)
, (57)

and

∇Φt(x) = x+ φ1(t, x)∆t+O(∆t2). (58)

Thus, we get optimal transport ∇Φt(x) in Monge’s optimal
transportation problem in Theorem 2.1. Then we can design
probability flow xt+∆t = ∇Φt(xt) and by using (58) which
leads to

xt+∆t = xt +∇φ1(t, xt)∆t+O(∆t2) (59)

In the asymptotic sense for (59), we get tangent flow:

dxt = ∇φ1(t, x)dt, (60)

where x0 ∼ p(0, x). □
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APPENDIX
PROOFS IN THE SECTION III.B

Proofs for Theorem 3.2 Similarly, we consider a dis-
cretization of (14). Notice that if we want to apply the
Monge-Ampère equation, p(t + ∆t, x) and p(t, x) should be
determined explicitly, which means that the path of dIt is
given in the analysis. In the following, we take the realization
of a stochastic process It = It(ω) by fixing ω. For a time
sequence {0 = t0 ≤ t1 ≤ · · · ≤ t2n = S} with n ∈ Z+ and
ti = iS2−n, we approximate the dIt

dt ≈ İt
(n)

= 2n(Iti+1
−Iti)

for t ∈ [ti, ti+1). So, we have

∂p(n)

∂t
= D(p(n)) +H(p(n)) · İt

(n)
, (61)

where the İt
(n)

= 2n(Iti+1 − Iti) if t ∈ [ti, ti+1). As before
we need to solve equation (53) and assume its solution has
the following form.

Φ̃t(x) =
|x|2

2
+φ1(t, x)·∆t+φ0(t, x)İ

(n)
t ∆t+O(∆t2), (62)

where φ1, φ0 are undetermined function. Similarly with with
(10), after getting solution Φ̃t, by using Theorem 2.1, we can
get tangent flow (61)

dx
(n)
t

dt
= ∇φ1(t, x

(n)
t ) +∇φ0(t, x

(n)
t )İt

(n)
, (63)

where the İt
(n)

= 2n(Iti+1 − Iti) if t ∈ [ti, ti+1). Here,
the ∇φ0(t, x

(n)
t ) is a slightly abuse of symbols. In fact

∇φ0(t, x) =
(
∇φ1

0(t, x), · · · , ∇φm
0 (t, x)

)
. In the follow-

ing, we substitute the specific form of Φ̃t to (53) and expand
the right-hand side of (53) as a series in terms of ∆t.

detD2Φ(n)(t, x
(n)
t ) =1 +∆φ0(t, x

(n)
t ) ·∆It

+∆φ1(t, x
(n)
t ) ·∆t+O(∆t2) (64)

p(n)(t+∆t, x)

p(n)(t, x
(n)
t+∆t)

= (1− 1

p(n)(t, x
(n)
t )

∇p(n)(t, x
(n)
t )

dx
(n)
t

dt
∆t+O(∆t2))

· (1 + 1

p(n)
D(p(n))∆t+

1

p(n)
H(p(n)) · İt

(n)
∆t+O(∆t2))

= 1 +D(p(n))∆t+
1

p(n)
H(p(n)) · İt

(n)
∆t

− 1

p(n)(t, x
(n)
t )

∇p(n)(t, x
(n)
t )

dx
(n)
t

dt
∆t+O(∆t2)) (65)

Then we take the limit n → ∞ which put ∆t → 0, the
ODE (63) will converge to SDE according to Wong-Zakai
approximation [46],

dxt = ∇φ1(t, xt)dt+∇φ0(t, xt) ◦ dIt. (66)

And the left-hand side of (53) will become

detD2Φt(xt) = 1 +∆φ0(t, xt) ◦ dIt +∆φ1(t, xt)dt, (67)

the right-hand side of (53) will become

p(t, x) + dp(t, x)

p(t, x)
= 1 +

1

p(t, xt)
[D(p(t, xt)dt+H(p(t, xt)) ◦ dIt

−∇p(t, xt)(∇φ1(t, xt)dt+∇φ0(t, xt) ◦ dIt)] (68)

Therefore, substituting (67) and (68) to (53), we will get a
constraint equation satisfied by φ1 and φ0.

APPENDIX
PROOFS IN THE SECTION IV

Proofs for Theorem 4.1
At first, we shall submit the posterior density function

p(t, x) = c exp
(
− 1

2 (x− µ(t))⊤P−1(x− µ(t))
)

into the PDE
(11), which yields,

∆φ1(t, x)− (x−µ(t))⊤P−1(t)∇φ1(t, x) = −(
D(p)

p
). (69)

By using ∂p
∂t = D(p), we can transform (69) as

∆φ1(t, x)− (x− µ(t))⊤P−1(t)∇φ1(t, x) = −(
1

p

∂p

∂t
)

=
1

2

d

dt

(
(x− µ(t))⊤P−1(t)(x− µ(t))

) (70)

Next, we shall calculate the right-hand side of (70), which
yields,

1

2

d

dt

(
(x− µ(t))⊤P−1(x− µ(t))

)
=

− 1

2

[
dµ(t)

dt

⊤
P−1(t)(x− µ(t)) + (x− µ(t))⊤P−1(t)

dµ(t)

dt

]

+
1

2
(x− µ(t))⊤

dP−1(t)

dt
(x− µ(t)).

(71)

Then, we can verify that there is a linear function ∇φ1(t, x)
which solves (70). We assume that ∇φ1(t, x) = U(t)x+ l(t),
where U(t) is assumed to be symmetric. Since the right-hand
side of (70) is a quadratic function, we can solve for the PDE
(69) by verifying the coefficients of the quadratic functions on
both sides.

We start with the quadratic coefficients, and we can have,

− 1

2
(U(t)P−1(t) + P−1(t)U(t)) =

1

2

dP−1(t)

dt

=
1

2

(
−P−1(t)A(t)−A⊤(t)P−1(t)− P−1(t)BB⊤P−1(t)

)
(72)

Multiply both sides by 2P (t)(·)P (t), we can get

U(t)P (t) + P (t)U(t) = A(t)P (t) + P (t)A⊤(t) +BB⊤(t).
(73)

Similarly, we can calculate the linear coefficients for both sides
of (69), which yields,

− P−1(t)l(t) + U(t)P−1(t)µ(t) = −P−1(t)
dµ(t)

dt(
P−1(t)A(t) +A⊤(t)P−1(t) + P−1(t)BB⊤P−1(t)

)
.
(74)
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By using (73), we can have U(t)P−1(t)µ(t)−(P−1(t)A(t)+
A⊤(t)P−1(t) + P−1(t)BB⊤P−1(t))µ(t) = P−1U(t)µ(t).
So, (74) can be simplified as

l(t) = −U(t)µ(t) +
dµ(t)

dt
= (A(t)− U(t))µ(t). (75)

Finally, we assume U(t) := A(t) + 1
2BB⊤(t)P−1(t) +

Ω(t)P−1(t), then we submit it into (73), which yields,

Ω(t)P−1(t) + P−1(t)Ω(t) = A(t)−A⊤(t)

+BB⊤(t)P−1(t)− P−1(t)BB⊤(t).
(76)

Here, we finish the proof. □
Proof for Theorem 4.2
The proof of Theorem 4.2 is similar to the proof of Theorem

4.1. At first, we shall differential the posterior density function
p(t, x) = c(t) exp

(
− 1

2 (x− µ(t))⊤P−1(t)(x− µ(t))
)
, where

the µ(t), P (t) is the conditional mean and conditional variance
in KBF, which yields

dp(t, x) =− 1

2
p(t, x)d

(
(x− µ(t))⊤P−1(x− µ(t))

)
+

dc(t)

dt
exp

(
−1

2
(x− µ(t))⊤P−1(t)(x− µ(t))

)
.

(77)

Here, we consider the drift condition of the tangent flow of
(77), and we have

∆φ1(t, x)− (x−µ(t))⊤P−1(t)∇φ1(t, x) = −(
D(p)

p
). (78)

By using (77) and the drift term of dµ(t), we can have

− (
D(p)

p
) =

1

2

(
(−A(t)µ(t) + (K(t) + C(t))H(t)µ(t))⊤P−1(t)(x− µ(t))

)
+

1

2

(
(x− µ(t))⊤P−1(t)(−(A(t)µ(t) +K(t) + C(t)H(t)µ(t)))

)
+

1

2

(
(x− µ(t))⊤

dP−1(t)

dt
(x− µ(t)))

)
− dc(t)

dt

1

c(t)
(79)

Similarly, we can verify that there is a linear function
∇φ1(t, x) which solves (78). We assume that ∇φ1(t, x) =
U(t)x+ l(t). Since the right-hand side of (79) is a quadratic
function, we can solve (78) by verifying the coefficients of the
quadratic functions on both sides. We start with the quadratic
coefficients, which yields,

−1

2
(U(t)P−1(t)+P−1(t)U(t)) =

1

2

dP−1(t)

dt

= −1

2
P−1(t)

dP (t)

dt
P−1(t)

(80)

Multiply both sides by 2P (t)(·)P (t) and combining with KBF,
we can derive equation satisfied by U(t),

U(t)P (t) + P (t)U(t) =(A(t)− CH(t))P (t)

+ P (t)(A(t)− CH(t))⊤ +R(t)

−K(t)(DD⊤(t))K(t)⊤,

where K(t) := [P (t)H⊤(t)](DD⊤(t))−1 (Kalman Gain),
R(t) := BB⊤(t)−BD⊤(t)(DD⊤(t))−1DB⊤(t) and C(t) =
BD(t)⊤(DD⊤(t))−1.

Similarly, we can calculate the linear coefficients for both
sides of (78), which yields equation satisfied by l(t)

− P−1(t)l(t) + U(t)P−1(t)µ(t) =

− P−1(t)(A(t)µ(t)−KH(t)µ(t))

− dP−1(t)

dt
µ(t).

(81)

By using (80), we can have U(t)P−1(t)µ(t)+ dP−1(t)
dt µ(t) =

P−1U(t)µ(t). So, (81) can be simplified as

l(t) = −U(t)µ(t) + (A(t)− CH(t)−KH(t))µ(t). (82)

Finally, shall assume specific solution form as U(t) := A(t)−
CH(t)+ 1

2RP−1(t)− 1
2KH(t)+Ω(t)P−1(t), then we submit

it into (81), which yields,

Ω(t)P (t)−1+P (t)−1Ω(t) =

(A(t)− C(t)H(t))⊤ − (A(t)− C(t)H(t))

+
1

2
K(t)(DD⊤(t))K⊤(t)P−1(t)

− 1

2
P−1(t)K(t)(DD⊤(t))K⊤(t)

+
1

2
R(t)P (t)−1 − P (t)−1R(t)). (83)

We can notice that only dµ(t) contains the stochastic term. So,
by using (77), the stochastic term is (x − µ(t))P−1(K(t) +
C(t)) ◦ dyt. Then, according to −∆̄φ0(t, x) + ∇(p(t, x)) ·
∇̄φ0(t, x) =

H(p)
p ,, we can verify that the ∇ϕ0(x) := K(t)+

C(t). Finally, we finish the proof. □

APPENDIX
PROOFS IN SECTION V

Proofs for Theorem 5.1 Let e(t) = µ(N)(t)−µ(t) and by
using (38), we have

dµ(N)(t) = A(t)µ
(N)
t dt

So, the evolution equation of e(t) satisfies,

de(t) = A(t)e(t)dt

Here, we can have

d∥e(t)∥2 = d⟨e(t), e(t)⟩
= ⟨(A(t) +A⊤(t))e(t), e(t)⟩dt
≤ 2λ∥e(t)∥2dt.

(84)

And by using Gronwall’s inequality, we get,

∥e(t)∥2 ≤ c1e
λt∥e(0)∥2. (85)

Similarly, we can get

dP (N)

dt
= A(t)P (N) + P (N)A⊤(t) +BB⊤. (86)

Let Θ(t) = P (N)(t)− P (t), which yields,

dΘ(t)

dt
= A(t)Θ(t) + Θ(t)A⊤(t). (87)
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We further consider to take differential of ∥Θ(t)∥2F , which
yields,

d∥Θ(t)∥2F
dt

≤2λmax(A(t) +A⊤(t))∥Θ(t)∥2F
≤ 4λ∥Θ(t)∥2F

(88)

And by using Gronwall’s inequality, we get,

∥Θ(t)∥2F ≤ c1e
λt∥Θ(0)∥2. (89)

Proofs for Theorem 5.2
By using the Lemma 5.3 and 4.2, we can get the

d∥P−(t)− P (N)(t)∥2F =

2Tr

{[
(A(t)− C(t)H(t)) + (A(t)− C(t)H(t))⊤

− 1

2
(P−(t) + P (N)(t))S(t)− 1

2
S(t)(P−(t) + P (N)(t))

]

× (P−(t)− P (N)(t))2

}
(90)

Since the P (t), P (N), S(t) are all positive defined matrix and
S(t) is scaler matrix, which yields,

d∥P−(t)− P (N)(t)∥2F ≤

2Tr

{[
(A(t)− C(t)H(t)) + (A(t)− C(t)H(t))⊤

]
× (P−(t)− P (N)(t))2

}
≤ 4λ(Tr(P−(t)− P (N)(t))2 = 4λ∥P−(t)− P (N)(t)∥2F dt.

(91)

Then, according to the second term in Lemma 5.1, the P−(t)−
P (N)(t) can be rewritten as Φt(P−(0))−Φt(P

(N)(0)) and we
get

d∥P−(t)− P (N)(t)∥2F ≤ 4λ∥P−(t)− P (N)(t)∥2F dt
≤4λα2 exp(−2βt)n2∥P−(0)− P (N)(0)∥22dt

(92)

And by using Gronwall’s inequality, we can have

∥P−(t)−P (N)(t)∥2F ≤ (1+
4n2λα

β
)e−2βt∥P−(0)−P (N)(0)∥2F

(93)
Next, we start to estimate the µ−(t) − µ(N)(t). Similarly,

by using the Lemma 5.3 and 4.2, we can have

d(µ−(t)−µ(N)(t)) = (A(t)− C(t)H(t)− P (N)S(t))

· (µ−(t)− µ(N)(t))dt

+ (P (N) − P−(t))H
⊤(t)(DD⊤(t))−1dIt,

(94)

where dIt = dyt−H(t)µ−(t)dt which is called the innovation
process and it is a martingale with quadratic variation d⟨It⟩ :=
DD⊤(t). The solution of (94) is given by

µ−(t)−µ(N)(t) = Et(P
(N)(0))(µ−(0)− µ(N)(0))

+

∫ t

0

Es,t(P (N)(s)− P−(s))H
⊤(s)(DD⊤(s))−1dIs.

The norm of the first term is bounded by:

E[∥Et(P
(N)(0))(µ−(0)− µ(N)(0))∥22]

≤ α2
2e

−2βtE[∥µ−(0)− µ(N)(0)∥22]

≤α2
2e

−2βtTr(P0)

N
.

The norm of the second term is bounded by:

E
[∥∥∥ ∫ t

0

Es,t(P (N)(s)− P−(s))H
⊤(t)(DD⊤(s))−1dIs

∥∥∥2
2

]
=∫ t

0

E
[
Es,t(P (N)(s)− P−(s))S(t)Es,t(P (N)(s)− P−(s))

⊤
]
ds

≤ sup
t≥0

∥S(t)∥2
∫ t

0

α2
2e

−2β(t−s)e−2βs)cE[∥P (N) − P−∥2]

≤ c̃
1

N

Adding the two bounds, the proof is finished. □
Proofs for Theorem 5.3 First, we can approximate the error

for the inverse matrix.

∥P (N)
−

−1
(t)− P−1

− (t)∥F ≤ 1

λmin(P−(t))
∥P−(t)P

(N)
−

−1
(t)− In∥F

≤ 1

λmin(P−(t))
∥(P−(t)− P

(N)
− (t))P

(N)
−

−1
(t)∥F

≤
∥P (N)

−
−1

(t)∥
λmin(P−(t))

∥(P−(t)− P
(N)
− (t))∥F .

(95)

We can conclude that

∥P (N)
−

−1
(t)− P−1

− (t)∥2 ≤ c1(P−(t), P
(N)
− (t))

1

N
. (96)

Similarly, we can get

∥P (N)
+

−1
(t)− P−1

+ (t)∥2 ≤ c2(P+(t), P̄
(N)
+ (t))

1

N
. (97)

Once we assume that the P (t) = In, then the calculation
of the (36) will be simplified as

P̂−1(t) = P−1
− (t) + P̄−1

+ (t)− In. (98)

So, if the P−
−1(t), P̄−1

+ (t) are approximated by the finite-N
formulation, solving (98), the (P̂ (N))

−1
(t) can be obtained.

Now, we shall estimate the (P̂ (N))
−1

(t) − P̂−1(t), which
yields

(P̂ (N))
−1

(t)−P̂−1(t) = (P
(N)
− )

−1
(t)−P−1

− (t)+(P̄
(N)
+ )

−1
(t)−P̄−1

+ (t).
(99)

So, we have

∥(P̂ (N))
−1

(t)− P̂−1(t)∥2F ≤ 2(c1 + c2)
1

N
. (100)

Then, according to the same method (95) at the beginning of
the proof, there is

∥(P̂ (N))(t)− P̂ (t)∥2F ≤ c
1

N
, (101)

where c depends on the P̂ (t), P−(t), P̄+(t), P
(N)
− ,and P̄

(N)
+ .
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Secondly, we shall estimate the µ̂(t) − µ̂(N)(t) and the
µ̂(N)(t) is defined in

µ̂(N)(t) := P̂ (N)(t)[(P̄
(N)
+ )−1µ̄

(N)
+ (t)+(P

(N)
− )−1(t)µ

(N)
− (t)].

Easily, we can divide the P̂ (t)(P̄+)
−1µ̄+(t) −

P̂ (N)(t)(P̄
(N)
+ )−1µ̄

(N)
+ (t) into following three terms

P̂ (t)(P̄+)
−1µ̄+(t)− P̂ (N)(t)(P̄

(N)
+ )−1µ̄

(N)
+ (t)

=P̂ (t)(P̄+)
−1(µ̄+(t)− µ̄

(N)
+ (t))

+ P̂ (t)((P̄+)
−1 − (P̄

(N)
+ )−1)µ̄

(N)
+ (t)

+ (P̂ (t)− P̂ (N)(t))(P̄
(N)
+ )−1µ̄

(N)
+ (t).

Using the convergence results of P̄ (N)
+ , P̂ (N) and µ̄

(N)
+ (t), we

can estimate the following upper bound

∥P̂ (t)(P̄+)
−1(µ̄+(t)− µ̄

(N)
+ (t))∥2

≤ ∥P̂ (t)(P̄+)
−1∥2∥µ̄+(t)− µ̄

(N)
+ (t))∥2

≤ c01
1

N
,

(102)

∥P̂ (t)((P̄+)
−1 − (P̄

(N)
+ )−1)µ̄

(N)
+ (t)∥2

≤ ∥P̂ (t)(P̄+)
−1∥2∥µ̄+(t)− µ̄

(N)
+ (t))∥2

≤ c02
1

N
,

(103)

and

∥(P̂ (t)− P̂ (N)(t))(P̄
(N)
+ )−1µ̄

(N)
+ (t)∥2

≤ ∥(P̂ (t)− P̂ (N)(t))(P̄
(N)
+ )−1∥2∥µ̄+(t)− µ̄

(N)
+ (t))∥2

≤ c03
1

N
,

(104)

By summing up the (102),(103), and (104), we get∥∥∥P̂ (t)(P̄+)
−1µ̄+(t)

− P̂ (N)(t)(P̄
(N)
+ )−1µ̄

(N)
+ (t)

∥∥∥
2
≤ c00

1

N
,

(105)

where c00 := c01 + c02 + c03 depends on
P̄

(N)
+ , P̂ (N) and µ̄

(N)
+ (t). Similarly, P̂ (t)(P−)

−1µ̄+(t) −
P̂ (N)(t)(P

(N)
− )−1µ̄

(N)
− (t) can be bounded in the

same way. Similarly, the convergence analysis of
P̂ (t)(P−1

− (t)µ
(N)
− (t) − P̂ (N)(t)(P

(N)
− )−1(t)µ

(N)
− (t) can be

derivated as well. Finally, the convergence of µ̂(t) − µ̂(N)(t)
can be given. □
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