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Yau-YauAL: A computer tool for solving nonlinear

filtering problems
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The Yau-Yau nonlinear filter has increasingly emerged
as a powerful tool to study stochastic complex systems.
To leverage it to a wider spectrum of application scenar-
ios, we pack the Yau-Yau filtering ALgorithms (YauYauAL)
into a package of computer software. Yau-YauAL was writ-
ten in R, designed to simplify the implementation of the
Yau-Yau filter for solving nonlinear filtering problems. Com-
bining R’s accessibility with C++ (via Recpp) for compu-
tational efficiency, YauYauAL provides an intuitive Shiny-
based interface that enables real-time parameter adjust-
ment and result visualization. At its core, YauYauAL em-
ploys finite difference methods to numerically solve the Kol-
mogorov forward equation, ensuring a stable and accurate
solution even for complex systems. YauYauAL’s modular
design and open-source framework further encourage cus-
tomization and community-driven development. YauYauAL
aims to bridge the gap between theoretical nonlinear filter-
ing methods and practical applications, without requiring
expertise in differential equation solving or programming,
fostering its broader impact on various scientific fields, such
as signal processing, finance, medicine, and biology among
a long list.

KEYWORDS AND PHRASES: Nonlinear filtering, Yau-Yau al-
gorithm, Kolmogorov equations, R package, Shiny.

1. INTRODUCTION

In the domain of modern control theory, filtering is an
essential subject that has permeated numerous fields, such
as signal processing [5, 29], weather prediction [9, 6], and
aerospace engineering [13, 31]. The principal goal of filtering
is to attain the ccurate estimation or forecast of a stochastic
dynamical system’s state, using a set of noisy observations
[16, 1]. For real-world applications, it is crucial that these
estimations or forecasts are computed iteratively and in real-
time.

Nonlinear filtering, in particular, has a broad spectrum of
applications in military, engineering, and commercial indus-
tries [26, 28, 27]. The nonlinear filtering problem considered
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here is to determine estimated states for a given observation
history of the following signal-observation model [1, 16]:

X(O) = X,

dy(t) = h(x(¢t))dt + dw(t) y(0) =0,

(1) {dx(t) = f(x(t))dt + dv(t)

where x(t) = (z1(t),...,zp(t)" € RP and y(t) =
(y1(t),...,ym(t))T € RM are the state and the measure-
ment /observation vectors at time ¢, respectively, f(x) =
(fi(),- -, fp(x)T and h(x) = (hy(x).....ha(x))" are
given vector-valued functions, v.€ R” and w € RM are
mutually independent standard Brownian processes. From
the main results of Yau and Yau [35, 36, 42], the state
vector x(t) can be estimated from the observation vectors
{y(s)|s € [0,t]} by solving the Kolmogorov equations.

Following the introduction of the famous Kalman filter
by Kalman and Bucy in the 1960s [18, 19], which has been
widely applied across various industries, many researchers
have focused on studying nonlinear filtering (NLF) theory
and developing practical NLF algorithms. A key challenge
in NLF is how to find the best estimate of the state from
noisy observations. The optimal estimation of the state can
be expressed as a minimum mean square error estimate,
which is its conditional expectation based on the observation
history [16].

To achieve the best estimate, one method is to directly
approximate the conditional expectation, as seen in the pop-
ular extended Kalman filter (EKF) [16], unscented Kalman
filter (UKF) [17], and ensemble Kalman filter [12]. Both
EKF and UKF assume that the posterior distribution of
the states is essentially Gaussian or nearly Gaussian, which
can limit their use.

Another approach to the NLF problem is to calculate the
conditional density function of the state. For instance, the
particle filter (PF) [10] uses the empirical distribution of par-
ticles to approximate the posterior density. PF is well-known
for its versatility in various NLF problems, although it is not
suitable for real-time implementation in high-dimensional
systems. In the late 1960s, Duncan, Mortensen, and Zakai
independently developed the renowned Duncan-Mortensen-
Zakai (DMZ) equation for nonlinear filtering [8, 22, 43],
which is satisfied by the unnormalized conditional density
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function of the states. The DMZ equation, a stochastic dif-
ferential equation, generally does not have a closed-form so-
lution. For practical use, it is necessary to solve the DMZ
equation in real-time and without extensive memory. For
finite-dimensional filtering systems, solutions to the DMZ
equation can be explicitly built using Lie algebra methods.
However, this is only possible for a few types of systems that
have finite-dimensional filters [2, 40]. Since the DMZ equa-
tion usually lacks a closed-form solution, many mathemati-
cians have sought good approximations. One such method
is the splitting up technique, first described by Bensoussan
et al. [3, 4] and later studied in [11, 25].

In the 1990s, Lototsky, Mikulevicius, and Rozovskii pro-
vided a recursive, time-based Wiener chaos representation
for the optimal nonlinear filter [20]. However, these meth-
ods generally require that the drift and observation terms,
specifically f(z) and h(x) in system (1), are bounded. An-
other method to solve the DMZ equation is the direct
method, which is typically applicable only to Yau filtering
systems where the drift term is a linear function plus a gra-
dient function. This method was introduced in [33, 34] and
later generalized in [37, 7]. In 2008, Yau and Yau devel-
oped the Yau-Yau algorithm, a new method for solving the
"pathwise-robust" DMZ equation in time-invariant systems
[42]. Tt has been theoretically proven that the Yau-Yau al-
gorithm can converge to the true solution, as long as the
growth rate of the observation |h| is greater than that of the
drift |f|. Later, Luo and Yau extended the Yau-Yau algo-
rithm to time-varying cases [21].

For readers interested in the mathematical principles
and computational techniques enabling the software to ad-
dress high-dimensional nonlinear filtering problems, we di-
rect them to the work of Yueh et al. [23, 24]. These publi-
cations provide a detailed analysis of the underlying mech-
anisms that power the software’s functionality.

In this article, leveraging the powerful capabilities of R
and C++, we have crafted an advanced software package.
Rooted in the YauYau algorithm, this tool elegantly ad-
dresses the complexities of nonlinear filtering problems with
remarkable precision and efficiency. This package delivers
sophisticated numerical techniques for filtering, while seam-
lessly integrating an engaging Shiny application designed for
dynamic visualization and in-depth exploration. This soft-
ware package is designed to be concise and user-friendly,
enabling users to quickly get started and operate it with
ease.

2. THE YAUYAUAL PACKAGE

2.1 Dependency

The YauYauAL package (v0.1.0) is built and tested on
R version 4.4.2, which can work properly on a standard
laptop computer with R version 4.4.2 or higher installed.
Also, it is recommended to install RStudio for a better
view and interaction with the objects stored in the R

78 Y. Wang et al.

environment. The following dependencies are required for
data processing: Deriv (v4.1.6), RcppArmadillo (v1.4.2.3-
1), RcppEigen (v0.3.4.0.2), and Matrix (v1.7-1). In ad-
dition, ggplot2 (v3.5.1), reshape2 (v1.4.4), gridExtra
(v2.3), shiny (v1.10.0), and shinythemes (v1.2.0) are re-
quired for visualization.

2.2 Software Installation Guide

Begin by installing the prerequisite R package devtools.
Open your R console and execute the following command:

1 |>install.packages("devtools") I

After successful installation, proceed to install YauYauAL
directly from the BIMSA-Stat GitHub repository using:

1 | >devtools::install_github("BIMSA-Stat/
YauYauAL")

For users preferring manual installation, first download
the YauYauAL_ 0.1.0.tar.gz file from the GitHub repository,
and then utilize R’s built-in package manager to install the
local archive.

Before the YauYauAL can be used in R, it is necessary to
import the package using the following command:

1 |>library(YauYauAL) I

2.3 Demonstration

Users can quickly access the interactive graphical user in-
terface of the YauYauAL computational tool using the fol-
lowing R command.

i [>YauYauAL::run_app () I

3. STEP-BY-STEP METHOD DETAILS

3.1 Initialize Parameters

First, define the dimension of the nonlinear filtering prob-
lem and the drift function f for the state equation, as well
as the observation function h in the observation equation:

>Dim <- 3

>f <- function(x) {return(c(
cos (x[1]1),
cos(x[2]),
cos (x[3]1))

S N

6 [0}

7 | >h <- function(x) {return(c(
8 x[1]°3,

9 x[2]°3,

10 x[3173)

()}




Here, Dim specifies the dimension of the state vector, indi-
cating that the system consists of three state variables. The
drift function f applies the cosine function element-wise to
the state vector x, capturing the nonlinear dynamics of the
system. Meanwhile, the observation function h maps each
state variable to its cubic power, establishing a highly non-
linear relationship between the states and the observations.
This particular configuration is known as the Cubic Sensor
Problem, a canonical example in nonlinear filtering that
highlights the challenges of state estimation when both the
system dynamics and measurement models are nonlinear.
The cubic sensor problem is widely recognized for its abil-
ity to test the robustness and accuracy of nonlinear filtering
algorithms, as traditional linear filtering methods, such as
the Kalman Filter, are inadequate due to their reliance on

linear assumptions.

To set up the parameters for our simulation, we proceed

as follows:

1 |>T <=5

2 | >Dt <- 0.001

3 | >Dtau <- 5 * Dt # 0.005
. | >Nt <- as.integer(Dtau / Dt) # 5

5 | >Ntau <- as.integer (T / Dtau) # 4000
6 | >NtNtau <- as.integer (T / Dt) # 20000

In this setup, the terminal time T is set to 20, which de-
fines the total duration of the simulation. The time step At
is set to 0.005 for generating data of signals and observa-
tions, ensuring that the data is captured at a fine enough
resolution to reflect the system’s dynamics accurately. The
smaller time step At is designated as 0.001 for solving the
Kolmogorov equation, which is crucial for the accuracy of
the state estimation in the nonlinear filtering process. The
number of time steps Ny and N, are calculated based on T,
At, and AT respectively, determining how often the system
state is updated and observations are recorded throughout
the simulation. These parameters are essential for config-
uring the simulation environment in the YauYauAL R pack-
age, allowing us to effectively address the nonlinear filtering

problem. Figure 1 illustrates this process.
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Figure 1. Schematic of Discretized Time Intervals

3.2 State and Observation Generator

The simulation of state and observation sequences is con-
ducted using the following R, script:

1 | >seed_value <- 42

2> | >result <- Simulate_State_0Obser (
3 Dt = 0.001,

\ Ntau = 4000,

5 NtNtau = 20000,

6 f = f,
7 h = h,
8 Dim = R
9 seed = 42)

10 | >x <- result$x
11 | >y <- result$y

In this simulation, a seed value of 42 is set for the random
number generator to ensure the reproducibility of results.
The function Simulate_State_0bser is employed with pa-
rameters At = 0.001, N, = 4000, and N, - N; = 20000 to
define the temporal resolution and duration of the simula-
tion. The nonlinear dynamics are modeled through the drift
function f and the observation function h, with the state
dimension set to 3. The sequences x and y, representing the
state and observations, are extracted from the result object
for subsequent analysis with nonlinear filtering algorithms.

3.3 Discretization

The discretization process involves creating a grid of
points in the state space to facilitate the numerical solution
of the Kolmogorov equation:

>Ds <- 0.5
>s <- seq(min(x), max(x)+Ds, by

>Ns <- length(s)
>s <- ExpandGrid (Dim,s)

In the above code, we first define the grid spacing As.
Then, we generate a sequence of grid points s that spans
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from the minimum value of the state sequence x to slightly
beyond its maximum value, incremented by As. The num-
ber of grid points Ny is determined by the length of this
sequence. Finally, the ExpandGrid function is used to cre-
ate a multi-dimensional grid covering the entire state space
based on the state vector dimension Dim. This grid will serve
as the basis for discretizing the state space in subsequent fil-
tering computations.
Figure 2 illustrates the process of spatial discretization.

As (Ds)

=
—Rt t t t 1 R
KOO Oy
—Rt t t t I R
D (Dim) S§2) 352) sg) 35\271 35\2
—Rt t t t I R
P (D P D D

Figure 2. Schematic Representation of Spatial Discretization
Across Dimensions

Next, we generate the necessary matrices and parameters
for the discretization process:

1 |>D <- generateD(Dim,Ns,Ds)

> | >Lambda <- computeLambda(Dim,Ns,Dt,Ds)
5 | >df <- generate_derivative (f)

+ | >B <- computeB(s,D,Dt,Ds,f,df,h)

In the above code, the function generateD creates the
matrix D which represents the discrete derivative operator
based on the state dimension Dim, the number of grid points
Ny, and the grid spacing As. The function computeLambda
calculates the matrix A using the state dimension Dim, the
number of grid points Ny, the time step At, and the grid
spacing As. The function generate_derivative generates
the derivative function df based on the drift function f.
Finally, the function computeB computes the matrix B using
the grid points s, the matrix D, the time step At, the grid
spacing As, the drift function f, its derivative df, and the
observation function h. These matrices and parameters are
essential for the subsequent steps in the nonlinear filtering
process, particularly for solving the Kolmogorov equation
numerically.

3.4 State Estimation

The state estimation process involves computing the pos-
terior distribution of the state variables given the observa-
tions. This is achieved using the following R script:
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1 |>Iu <- wrap_outiu_function(s, NtNtau,
Ntau, Nt, Dim, y, h, Lambda, B, Ns,
DST _Solver)

NormalizedExp,

The function computes the posterior distribution of the
state variables at each time step using the grid points,
time steps, state dimension, observations, observation func-
tion, noise parameters, grid size, normalization function, and
solver function. The Discrete Sine Transform to efficiently
solve the Kolmogorov equation for accurate state estimation

in nonlinear systems.

3.5 Interactive Implementation of the
Algorithm with Shiny

You can launch the homepage of the interactive software
interface using the following R command:

i | >YauYauAL::run_app () I

Figure 3 shows the interface of our interactive software.

When defining custom filters, the algorithm may encounter
significant delays in execution. In such scenarios, Shiny
might not update the results in real-time. We recommend
that users run the scripts outlined in subsections 3.1-3.4 in-
dependently to obtain the results, followed by visualization
using the plot function.

4. NUMERICAL EXPERIMENTS
4.1 almost linear sensor problem

Example 4.1. The almost linear sensor problem is as
follows:

where z(t), y(t) € R, v(t), w(t) are independent standard
scalar Brownian motion processes. The parameters Dim =

3, T =50, At = 0.0001, AT = 0.0005, As = 0.5.

Figure 4 illustrates the results of the Yau-Yau Filter when
dealing with the almost linear sensor problem.
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Figure 3. The interface of the interactive YauYauAL software based on Shiny.

4.2 cubic sensor problem

5.0
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Dimension 1
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Example 4.2. The cubic sensor problem [41] is as fol-
lows:
3) dz(t) = cos x(t)dt + dv(t)

dy(t) = 23dt + dw(t)

where z(t), y(t) € R, v(t), w(t) are independent standard
scalar Brownian motion processes. The parameters Dim =
3,7 =20, At =0.001, A7 = 0.005, As = 0.5.

Figure 5 presents the outcomes of the Yau-Yau Filter
applied to the 3D cubic sensor problem.

Figure 4. Estimations of the almost linear sensor for the
model Eq.2, and T' = 50, with the time step At = 0.0001.
Blue: real state; Red: Yau-Yau filter.

oo 5. DISCUSS

The development of the Yau-YauAL software package
represents a significant step forward in the practical appli-
cation of the Yau-Yau nonlinear filter. By integrating the
powerful capabilities of R with the computational efficiency
of C++ through Repp, Yau-YauAL effectively addresses the

challenges associated with implementing complex filtering
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with the time step At = 0.001. Blue: real
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algorithms. The use of finite difference methods to solve the
Kolmogorov forward equation ensures that the tool can han-
dle a wide range of complex systems while maintaining sta-
bility and accuracy in its solutions.

The inclusion of an intuitive Shiny-based interface is par-
ticularly noteworthy. This feature democratizes access to
advanced filtering techniques by allowing users to adjust
parameters and visualize results in real-time, without the
need for extensive programming knowledge. This is espe-
cially beneficial for researchers in fields such as finance, sig-
nal processing, and biology, where the application of nonlin-
ear filtering can yield valuable insights but may be hindered
by the complexity of the underlying mathematics.

The modular design and open-source nature of Yau-
YauAL further enhance its utility. By allowing for cus-
tomization and community-driven development, the soft-
ware can be adapted to meet the specific needs of various
users and evolve with advancements in the field. This col-
laborative approach not only fosters innovation but also en-
sures that the tool remains relevant and effective in a rapidly
changing scientific landscape.

However, it is important to acknowledge potential lim-
itations. While Yau-YauAL has been designed to be user-
friendly, the complexity of some nonlinear filtering problems
may still require a certain level of expertise to fully exploit
the tool’s capabilities. Additionally, the performance of the
finite difference methods employed may be influenced by the
specific characteristics of the system being analyzed, and
further research may be needed to optimize these methods
for different applications.

Future work could focus on expanding the range of nu-
merical methods available within Yau-YauAL to provide
users with even more options for solving nonlinear filter-
ing problems. Additionally, incorporating machine learning
techniques could enhance the tool’s ability to handle large
datasets and improve the accuracy of its solutions. Collab-
oration with researchers across disciplines will be crucial
in identifying new applications and refining the software to
meet emerging challenges.
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In conclusion, Yau-YauAL has the potential to signifi-
cantly impact the field of nonlinear filtering by making ad-
vanced techniques more accessible and user-friendly. Its in-
novative design and open-source framework position it as
a valuable resource for both current and future interdisci-
plinary research endeavors.

CODE AND DATA AVAILABILITY

The code and data related to this study are publicly avail-
able on GitHub. The repository can be accessed via the fol-
lowing link: https://github.com/BIMSA-Stat/YauYauAL.
This repository contains the complete implementation of
the YauYauAL software package, including the source code,
documentation, and example datasets used in this research.
Users are encouraged to explore the repository for further
details and to utilize the provided resources for their own
research and development purposes.
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