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Abstract

The goal of nonlinear filtering is to determine the conditional mean of the state given the observation history, and one way is
to solve the Duncan-Mortensen-Zakai equation in real time and in a memoryless manner. One of our approaches is the direct
method which works exceptionally well for time-varying Yau filtering system under the assumption that a certain function p
is quadratic. In this paper, we eliminate this assumption, thereby extending the direct method to generalized time-varying
Yau filtering systems. Furthermore, we provide a theoretical proof that, under very mild conditions, the error of its estimation
result in the original framework is derived from the Gaussian approximation for a non-Gaussian initial distribution, and can
be made arbitrary small if the error between this distribution and its Gaussian approximation is sufficiently small in L1 (BR)
sense for a sufficiently large ball BR, which facilitates numerical computation. Additionally, the extended direct method can
still behave well provided that p can be approximated properly by its Taylor polynomial of degree 2. We also present three
numerical experiments demonstrating the superior efficiency of the extended direct method compared to the extended Kalman
filter and the particle filter.

Key words: Nonlinear filtering; Duncan-Mortensen-Zakai equation; Direct method; Time-varying Yau filtering system;
Convergence analysis.

1 Introduction

Estimating the state of a stochastic dynamical system
from noisy observations is of central importance in engi-
neering. Filtering serves as a powerful tool for estimat-
ing unobservable stochastic processes that occur across
various applied fields. The continuous time-varying fil-

⋆ Corresponding author. Tel: +86-10-62787874.
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(Stephen S.-T. Yau).

tering problem we address can be described as follows:{
dXt = f (Xt, t) dt+ g(t) dVt, X0 = ξ,

dYt = h (Xt, t) dt+ dWt, Y0 = 0,
t ∈ [0, T ],

(1)
where:

• T > 0 is a fixed termination;
• X := {Xt : 0 ≤ t ≤ T} is the Rn-valued state process
we would like to track;

• Y := {Yt : 0 ≤ t ≤ T} is the Rm-valued noisy obser-
vation to the state process X;

• V := {Vt : 0 ≤ t ≤ T} and W := {Wt : 0 ≤ t ≤ T}
aremutually independent Brownianmotion processes,
with E

[
dVt dV

T
t

]
= Q(t) dt and E

[
dWt dW

T
t

]
=

S(t) dt, respectively, where Q and S are C∞ positive-
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definite-matrix-valued functions;
• ξ is a random variable with probability density func-
tion σ0, which is independent of V and W ;

• f and h are C∞ functions, possibly nonlinear, and g
is a C∞ matrix-valued function.

Interest in filtering problem can be dated back almost
two centuries to the work of Gauss and later, the names
of Wiener and Kalman are associated with advances in
filtering theory. The most influential work in filtering
theory are the classical Kalman filter (KF) [16], which
was published in 1960, and its continuous counterpart
Kalman–Bucy filter [17]. Since most systems considered
in real applications are nonlinear, there have been a lot
of work which extend the filtering results to the nonlin-
ear filtering (NLF) problems, such as the extended KF
(EKF) [13], and particle filter (PF) [10] [14]. In fact,
EKF performs poorly when the dynamic system is sig-
nificantly nonlinear and is very sensitive to initial value
due to its reliance on linear approximation.

Since our focus is on the conditional mean, which is the
minimum variance estimate, an alternative approach
to NLF problem is to derive the conditional proba-
bility of the state Xt given the observation history
Yt := σ ({Ys : 0 ≤ s ≤ t}). It is known that the un-
normalized conditioned probability density function of
the state satisfies the Duncan–Mortensen–Zakai (DMZ)
equation [11] [22] [40]. However, we usually cannot get
the explicit solution of the DMZ equation in most sit-
uations, and listed below are some methods to solve it
numerically.

The first is the estimation algebra method proposed by
Brockett, Clark and Mitter in the 1970s [2] [3] [21]. Once
estimation algebra of system is a finite-dimensional Lie
algebra, Wei-Norman approach will reduce the solution
of DMZ equation to a Kolmogorov equation, a system of
ordinary differential equations (ODEs) and several first-
order linear partial differential equations (PDEs), and
thus DMZ equation can be solved completely. Through
persistent efforts, Yau and his collaborators have com-
pletely classified all finite dimensional estimation alge-
bras of maximal rank [4] [7] [36] [37] [38], and have been
devoted to the study of non-maximal rank case [29] [27]
[25] [15] [39].

The second is Yau-Yau algorithm proposed by Yau and
Yau [32] [35]. It separates the filtering process to on-line
and off-line parts, and thus we can compute the solution
to the DMZ equation numerically in a memoryless and
real-time manner: it uses each new observation to up-
date a distribution without referring back to any earlier
observations, and it makes the decisions of the state on
the spot while the observation data keep coming in. The
off-line procedure is numerically solving a Kolmogorov-
type PDE, and various kinds of methods have been pro-
posed, such as spectral methods [20] [9], proper orthog-
onal decomposition [28], tensor training [18], etc.

The third is the direct method proposed by Yau and
Yau [30] [31]. In [33], they proceed and restrict the sys-
tem to finite-dimensional case, named Yau filtering sys-
tem, with arbitrary initial condition, and obtain the fun-
damental solution of Schrödinger equation by solving
ODEs. This technique is extended to time-varying cases
in [5] [26] [6]. In [6], there are essentially only two as-
sumptions: f in (1) is of the form (5), and p in (8) is
quadratic. Under these assumptions, the error of its es-
timation result is totally derived from the Guassian ap-
proximation proposed in [26], where we approximate the
non-Gaussian initial distribution by the sum of several
Gaussian distributions.

The purpose of this paper is to extend the direct method
by eliminating the assumption that p is a quadratic
polynomial, thus generalizing the method to a broader
class of time-varying Yau filtering systems. Unlike pre-
vious work, we provide a rigorous convergence analysis
for both the original and the extended direct method,
showing that under very mild conditions, the estima-
tion error of the original method can be made arbitrar-
ily small when the error between the true distribution
and its Gaussian approximation is sufficiently small in
the L1 (BR) sense for a sufficiently large ball BR. Ad-
ditionally, the extended direct method can still behave
well provided that p can be approximated properly by
its Taylor polynomial of degree 2.

As stated in the Introduction of [26], “the direct method
is much stable and has theoretic convergence proof.” The
convergence of those using linear approximation is based
on strict assumptions [23], and Example 3 in Section
4 demonstrates situations where EKF fails due to high
nonlinearity. In contrast, the proposed method, like the
original direct method, shows superior performance both
theoretically and numerically.

The key contribution of this paper is to transform the
error analysis problem of the direct method into a well-
poseness problem in the context of parameter perturba-
tions in a class of PDEs. This allows us to apply classical
tools from PDE theory to solve the problem more ef-
fectively. Our extension goes beyond simply replacing p
with a Taylor expansion; it focuses on how perturbations
in the solution to a second-order parabolic PDE can be
controlled by perturbations in the coefficients. This ad-
vancement makes the method applicable to a broader
range of time-varying Yau filtering systems. Moreover,
it ensures the robustness of the method in practical nu-
merical applications, even when the approximations are
not perfect.

Furthermore, We provide three numerical experiments
that demonstrate the superior efficiency of the extended
direct method compared to existing methods such as the
EKF and PF. These experiments further highlight the
practical advantages of the proposed method in terms
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of computational efficiency and accuracy in nonlinear
filtering tasks.

This paper is organized as follows. Section 2 provides the
preliminaries and summarizes the main procedure of the
direct method. Our main results are stated in 3, while
detailed proofs of convergence analysis are postponed to
Appendix B. We will demonstrate numerical simulation
results in Section 4 and draw our conclusion in Section
5. Notations used throughout this paper are listed in
Appendix A.

2 Preliminaries

In this section, we elaborate on the development of the
direct method: starting from the DMZ equation, through
several transformations, we convert the solution to the
DMZ equation into that to a second-order parabolic
PDE, and point out that when the coefficients of the
equation satisfy certain conditions, its solution under
Gaussian initial value will also always take the form of
a Gaussian distribution. At this point, the problem is
reduced to solving a system of ODEs. The propositions
involved have been rigorously derived in their respective
original literature, and thus will not be repeated here.

In [11], we know that the unnormalized density function
σ(x, t) of Xt conditioned on the observation history Yt

satisfied the DMZ equation in U := Rn × [0, T ]:


dσ =

(
1

2
∇TG∇− fT∇− div f

)
σ dt

+ hTS−1σ dYt in U,

σ(x, 0) =σ0(x) in Rn,

where G(t) := g(t)Q(t)g(t)T. For each arrived observa-
tion, making an invertible exponential transformation
[24]

u(x, t) = e−h(x,t)TS(t)−1Ytσ(x, t),

the DMZ equation is transformed into a deterministic
PDE with stochastic coefficients:

∂u

∂t
= Lu in U,

u(x, 0) = σ0(x) in Rn,
(2)

where

L :=
1

2
∇TG∇− (G∇K − f)T∇+

(
− ∂

∂t

(
hTS−1

)T
Yt

+
1

2
∇TG∇K +

1

2
(∇K)TG∇K − fT∇K − div f

−1

2
hTS−1h

)
,

and
K(x, t) := h(x, t)TS(t)−1Yt.

However, the exact solution to (2), generally speaking,
does not have a closed form.

Let us denote the observation time sequence as

P := {0 = τ0 < τ1 < . . . < τN = T} .

Let uk be a solution to (2) in U (k) := Rn×[τk−1, τk] with
Yt = Yτk−1

on the time interval [τk−1, τk] , k = 1, . . . , N :
∂uk
∂t

= Lkuk in U (k),

u1(x, 0) = σ0(x) in Rn,

uk (x, τk−1) = uk−1 (x, τk−1) for k ≥ 2 in Rn,
(3)

where

Lk :=
1

2
∇TG∇− (G∇Kk − f)T∇

+

(
− ∂

∂t

(
hTS−1

)T
Yτk−1

+
1

2
∇TG∇Kk

+
1

2
(∇Kk)

T
G∇Kk − fT∇Kk − div f − 1

2
hTS−1h

)
,

and
Kk(x, t) := h(x, t)TS(t)−1Yτk−1

.

By [34], we know that in both pointwise sense and L2

sense,

u(x, τ) = lim
sup1≤k≤N (τk−τk−1)→0

uk(x, τ),∀τ ∈ [τk−1, τk] .

Therefore, uk is a good approximation of u in the inter-
val [τk−1, τk]. We only need to seek a solution to DMZ
equation (3).

In [19], an on- and off-line algorithm is proposed. The
key observation is that the heavy computation of solving
PDE can be moved to off-line by the following proposi-
tion.

Proposition 1 [19, Proposition 2.1] For each t ∈
[τk−1, τk] , k = 1, . . . , N , uk(x, t) satisfies (3) if and only
if

ũk(x, t) = eh(x,t)
TS(t)−1Yτk−1uk(x, t)

satisfied the Kolmogorov forward equation (KFE)

∂ũk
∂t

=

(
1

2
∇TG∇− fT∇

−
(
div f +

1

2
hTS−1h

))
ũk in U (k),

ũ1(x, 0) =σ0(x) in Rn,

ũk (x, τk−1) =ũk−1 (x, τk−1) for k ≥ 2 in Rn,
(4)
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In [5] and [6], the results for time-invariant Yau filtering
systems are extended to the more general time-varying
Yau filtering systems:

f(x, t) = L1(t)x+ L0(t) +∇ϕ̃(x, t), (5)

where L1 : [0, T ] → Mn×n(R), L0 : [0, T ] → Rn and

ϕ̃ : Rn × [0, T ] → Rn are C∞ functions. When n = 1,
this assumption is trivial, since any continuous function
from R to R has a primitive function. As for the general
case n ≥ 2, it is a generalization of the linear case, so the
direct method can behave better than those using linear
approximation.

Proposition 2 [5, Proposition 2] Assume that G is a
positive-definite-matrix-valued function. Suppose ũk is a
solution to (4), and f is of the form (5). Let

ũk(x, t) = eϕ(x,t)ṽk(x, t),

where ϕ satisfies ∇ϕ(x, t) = G−1(t)∇xϕ̃(x, t), then we
have the following equation for ṽk:



∂ṽk
∂t

=

(
1

2
∇TG∇− (L1x+ L0)

T ∇

+p̃) ṽk in U (k),

ṽ1(x, 0) =e−ϕ(x,0)σ0(x) in Rn,

ṽk (x, τk−1) = exp
(
h (x, τk−1)

T
S (τk−1)

−1(
Yτk−1

− Yτk−2

))
ṽk−1 (x, τk−1)

for k ≥ 2 in Rn,
(6)

where

p̃ :=
1

2
∇TG∇ϕ− 1

2
∇ϕTG∇ϕ− (L1x+ L0)

T ∇ϕ

−∆ϕ̃− ∂ϕ

∂t
− 1

2
hTS−1h− trL1.

Proposition 3 [6, Theorem 1] Assume that G is a
positive-definite-matrix-valued function. Suppose ṽk is a
solution to (6), and let

ṽk(x, t) = vk(z, t),

where z = B(t)−1x, and B is a positive-definite-matrix-
valued function such that G(t) = B(t)B(t)T. Then vk is

a solution to the following equation:

∂vk
∂t

=

(
1

2
∆− (F1x+ F0)

T ∇+ p

)
vk in U (k),

v1(z, 0) =e−ϕ(B(0)z,0)σ0 (B(0)z) in Rn,

vk (z, τk−1) = exp
(
h (B (τk−1) z, τk−1)

T

S (τk−1)
−1 (

Yτk−1
− Yτk−2

))
vk−1 (z, τk−1) for k ≥ 2 in Rn,

(7)
where

F1(t) :=
(
B(t)−1

)′
B(t) +B(t)−1L1(t)B(t),

F0(t) := B(t)−1L0(t),

and p(z, t) := p̃ (B(t)z, t) .

Therefore, what we shall pay much attention to is the
following second-order parabolic equation

∂vk
∂t

(z, t) =
1

2
∆vk(z, t)− (F1(t)z + F0(t))

T ∇vk(z, t)

+ p(z, t)vk(z, t) in U (k).
(8)

In the original direct method, we need to assume that
p in (8) is quadratic with respect to (w.r.t.) z. Though
the assumption about p seems restrictive, it includes
Kalman-Bucy and Beněs [1] filtering systems as its spe-
cial cases.

Proposition 4 [6, Theorem 2] Assume that p in (8) is
of the form:

p(z, t) = zTP2(t)z + P1(t)z + p0(t),

where P2 : [τk−1, τk] → Mn×n(R), P1 : [τk−1, τk] → Rn

and p0 : [τk−1, τk] → R are C∞ functions, and P2 is a
symmetric-matrix-valued function. Then with Gaussian
initial condition

vk (z, τk−1) = exp
(
zTA2,τk−1

z +AT
1,τk−1

z + a0,τk−1

)
,

where A2,τk−1
∈ Mn×n(R) is a symmetric matrix,

A1,τk−1
∈ Rn, and a0,τk−1

∈ R, a solution to (8) is of the
following form

vk(z, t) = exp
(
zTA2(t)z +A1(t)

Tz + a0(t)
)
,

where A2 : [τk−1, τk] → Mn×n(R), A1 : [τk−1, τk] →
Rn and a0 : [τk−1, τk] → R are C∞ functions
with A2 (τk−1) = A2,τk−1

, A1 (τk−1) = A1,τk−1
and

a0 (τk−1) = a0,τk−1
, which satisfy the following system of
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nonlinear ODEs, and A2 is a symmetric-matrix-valued
function:

A′
2 = 2A2

2 − 2A2F1 + P2,(
AT

1

)′
= 2AT

1A2 −AT
1 F1 − 2FT

0 A+ PT
1 ,

a′0 = trA2 +
1

2
AT

1A1 − FT
0 A1 + P0,

in [τk−1, τk] .

However, the initial value vk (x, τk−1) in (7) in every step
usually cannot be Gaussian. Therefore we need to de-
rive its Gaussian approximation. It is well known that
any non-Gaussian density function can be well approxi-
mated by finite linear combination of Gaussian distribu-
tions and the most widely used technique is expectation-
maximization algorithm. However, in [26], a new and
original way to do Gaussian approximation is proposed,
which is very effective as verified by the numerical ex-
periments.

3 Main Results

3.1 Algorithm

In the previous section, we have covered all the prelimi-
naries of the original direct method for time-varying Yau
filtering systems with arbitrary initial distributions. For
generalized time-varying Yau filtering systems, i.e. p in
(8) is not required to be quadratic, a natural idea is to
approximate p by its Taylor polynomial of degree 2.

An outline of extended direct method is given in Algo-
rithm 1. Clearly, the error of the output∫

Rn

xwk(x)vk

(
B (τk)

−1
x, τk

)
dx∫

Rn

wk(x)vk

(
B (τk)

−1
x, τk

)
dx

is entirely due to the Gaussian approximation of
vk (z, τk−1) and the polynomial approximation of p,
where

wk(x) := eϕ(x,τk)+h(x,τk)
TS(τk)

−1(Yτk
−Yτk−1). (9)

More precisely, assume vk and v̂k are solutions to (8) with
the initial conditions vk (·, τk−1) = φ and v̂k (·, τk−1) =
φ̂, and coefficients p and p̂, respectively. We expect that∣∣∣∣∣∣∣∣
∫
Rn

xwk(x)vk (z, τk) dx∫
Rn

wk(x)vk (z, τk) dx

−

∫
Rn

xwk(x)v̂k (z, τk) dx∫
Rn

wk(x)v̂k (z, τk) dx

∣∣∣∣∣∣∣∣
can be made arbitrary small if the error between φ and
φ̂ is sufficiently small in some sense, and so is the error

Fig. 1. Proof strategy diagram

between p and p̂, where wk is independent of the initial
value and the coefficient, and z := B (τk)

−1
x. Without

loss of generality, we may assume B (τk) is an identity
matrix in the discussion that follows.

3.2 Convergence analysis

The proofs of all results in this section can be found in
Appendix B.

Consider the following second-order parabolic equation

∂u

∂t
(x, t) =

1

2
∆u(x, t)− F (x, t)T∇u(x, t)

+ p(x, t)u(x, t) in U
(10)

with the initial condition u(·, 0) = φ, where F and p
are sufficiently smooth functions, and φ ∈ H1

0 (Rn). We
relate it to the following initial boundary value problem
in UR := BR × [0, T ]

∂uR
∂t

=
1

2
∆uR − FT∇uR + puR in UR,

uR(x, 0) = φ(x) in BR,

uR(x, t) = 0 on ΓR,

(11)

where R > 0. Note that φ may does not belong to
H1

0 (BR), but we may as well assume it holds by the use
of mollification.

In numerical computations, we inevitably need to re-
strict the domain from the entire space to a bounded
domain BR. To this end, following the idea proposed
in [35], we want the solution uR to (11), which is de-
fined on BR, to approximate the solution u to (10) with
the initial condition u(·, 0) = φ, which is defined on the
entire space, provided R is sufficiently large. To be con-
crete, we hope that uR contributes negligibly outsideBR

and that it closely matches u inside BR.

The above strategy can be illustrated in Figure 1. The-
orems 5 and 6 will prove that the areas of the green and
pink shadows can be arbitrarily small, respectively.

At first, we show that the contribution of u outside BR

becomes negligible as R increases.
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Algorithm 1 Extended Direct method

1: for k ∈ {1, . . . , N} do
2: if k = 1 then
3: Calculate v1(z, 0) = e−ϕ(B(0)z,0)σ0 (B(0)z).
4: else
5: Calculate

vk (z, τk−1) = exp
(
h (B (τk−1) z, τk−1)

T

S (τk−1)
−1 (

Yτk−1
− Yτk−2

))
vk−1 (z, τk−1) .

6: end if
7: Get the Gaussian approximation of vk (z, τk−1)

via method proposed in [26]

vk (z, τk−1) ≈
Nk∑
i

αk,ie
zTA2,k,iz+AT

1,k,iz+a0,k,i .

8: for i ∈ {1, . . . , Nk} do
9: Get the polynomial approximation of p in (8)

p(z, t) ≈ 1

2
zT
(
∇2p(0, t)

)
z+(∇p(0, t))T z+p(0, t).

10: Solve (8) with the initial condition

vk,i (z, τk−1) = ez
TA2,k,iz+AT

1,k,iz+a0,k,i

by Proposition 4.
11: end for
12: Calculate the approximate solution vk to (7) vk ≈∑Nk

i αk,ivk,i.

13: Calculate ṽk (x, τk) = vk

(
B (τk)

−1
x, τk

)
.

14: Calculate ũk (x, τk) = eϕ(x,τk)ṽk (x, τk).
15: Calculate

uk (x, τk) = e−h(x,τk)
TS(τk)

−1Yτk−1 ũk (x, τk) .

16: Calculate

σ (x, τk) = eh(x,τk)
TS(τk)

−1Yτkuk (x, τk) .

17: Calculate the conditional expectation of the state
Xτk

E [Xτk | Yτk ] ≈

∫
Rn

xσ (x, τk) dx∫
Rn

σ (x, τk) dx

.

18: end for

Theorem 5 Let u be a non-negative solution to (10)
with the initial condition u(·, 0) = φ. Under the assump-
tions of Corollary 16 (see Appendix A), as well as

n+ 1

2
+ |F (x, t)|+divF (x, t)+p(x, t) ≤ C1,∀(x, t) ∈ U,

where C1 ≥ 0 is a constant, we have∫
Rn

e
√

1+|x|2u(x, T ) dx ≤ eC1T

∫
Rn

e
√

1+|x|2φ(x) dx.

In particular, we have∫
Rn\BR

u(x, T ) dx ≤ e−
√
1+R2

eC1T

∫
Rn

e
√

1+|x|2φ(x) dx.

Next, we show u and uR differ by a small amount in the
sense of integral over a sufficiently large closed ball.

Theorem 6 Let u and uR be non-negative solutions to
(10) with the initial condition u(·, 0) = φ and (11), re-
spectively. Under the assumptions and notations of The-
orem 5, as well as:

(1) p(x, t) ≤ 0,∀(x, t) ∈ U ;
(2) 12 + 2n + 4|x| |F (x, t)| + divF (x, t) + p(x, t) ≤

C2,∀(x, t) ∈ U ;

(3) e−
√

1−|x|2 (12 + 2n+ 4|x| |F (x, t)|+ divF (x, t)) ≤
C3,∀(x, t) ∈ U ,

where C2 and C3 are non-negative constants. Then v :=
u− uR is non-negative, and we have∫

BR

(
e|x|

4/R3−2|x|2/R − e−R
)
v(T ) dx

≤eC2T − 1

C2
C3e

−ReC1T

∫
Rn

e
√

1+|x|2φ(x) dx.

In particular, we have∫
BR/2

v(T ) dx

≤
2
(
eC2T − 1

)
C2

C3e
−9R/16eC1T

∫
Rn

e
√

1+|x|2φ(x) dx.

Then we show that the solution to (11) can be linearly
controlled by its initial value in L1 (BR) sense.

Theorem 7 Assume that

divF (x, t) + p(x, t) ≤ C,∀(x, t) ∈ UR,
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where C ≥ 0 is a constant. Let uR be a solution to (11).
Then we have∫

BR

|uR(x, T )| dx ≤ eCT

∫
BR

|φ(x)| dx.

To ensure that the right-hand side of the inequalities in
the above theorems is finite, we restrict the initial value
function to the following subset:

Ic :=
{
φ ∈ H1

0 (Rn) ∩ C2 (Rn) :

∫
Rn

ec|x|φ(x)2 dx < +∞,∫
Rn

e
√

1+|x|2φ(x) dx < +∞, φ ≥ 0

}
,

where c ≥ 0 is a constant. This restriction essentially
requires that the initial value function decays at a certain
rate as it moves away from the origin. Most functions in
practical applications, such as the Gaussian probability
density function, satisfy this requirement, so it will not
offset the generalization of the proposed method.

The next theorem is the central result about the original
direct method, essentially aligning with our expectations
from the previous subsection.

Theorem 8 Let u and û be non-negative solutions to
(10) with initial conditions u(·, 0) = φ and û(·, 0) = φ̂,
respectively, with φ, φ̂ ∈ I4c. Assume that:

(1) divF (x, t) + 2p(x, t) is upper bounded in U ;

(2) |F (x, t)|2 + 2p(x, t) is upper bounded in U ;
(3) ∆p(x, t) is upper bounded in U ;

(4) |F (x, t) + cx/|x||2 + 2p(x, t) has a upper bound in
U less than 1/T ;

(5) |F (x, t)| + divF (x, t) + p(x, t) is upper bounded in
U ;

(6) p(x, t) ≤ 0,∀(x, t) ∈ U ;
(7) 4|x| |F (x, t)|+divF (x, t)+p(x, t) is upper bounded

in U ;

(8) e−
√

1+|x|2 (12 + 2n+ 4|x| |F (x, t)|+ divF (x, t)) is
upper bounded in U .

Then for any ε > 0, there exist positive numbers R and
δ, such that ∥u(·, T )− û(·, T )∥L1(Rn) < ε provided ∥φ−
φ̂∥L1(BR) < δ.

Note that F is linear and p is quadratic within the frame-
work of the direct method, so the seemingly lengthy as-
sumptions, which are just a compilation of assumptions
from all the preceding theorems, essentially only requires
that the leading coefficient of p is sufficiently small. For
simplicity, we rewrite the previous theorem in the fol-
lowing form.

Theorem 9 Let u and û be non-negative classical so-
lutions to (10) with initial conditions u(·, 0) = φ and
û(·, 0) = φ̂, respectively. Assume that:

(1) F is a C1,0 function of the form F (x, t) = F0(t) +
F1(t)x;

(2) p is a C2,0 function of the form p(x, t) = p0(t) +
p1(t)

Tx+ xTp2(t)x;
(3) D is a C1 function with |D(x)| ≤ d0 + d1|x|, and

|divD(x)| ≤ e0 + e1|x|+ e2|x|2;
(4) w is a positive C2 function with ∇w(x) =

w(x)D(x), and wφ,wφ̂, xiwφ, xiwφ̂ ∈ I0, where xi
is the i-th component of x.

Further assume that:

(5) |F1(t)|2 + 2p2(t) + 2d21 + e2 ≤ 0,∀t ∈ [0, T ];
(6) ∆

(
|D|2 − divD − 2FTD

)
is upper bounded in U ;

(7) 2p(x, t) + |D(x)|2 − divD(x) − F (x, t)TD(x) ≤
0,∀(x, t) ∈ U ;

(8) (2d1 + 8) |F1(t)|+ 2p2(t) + d21 + 8d1 + e2 ≤ 0,∀t ∈
[0, T ].

Write

xest :=

∫
Rn

xw(x)u(x, T ) dx∫
Rn

w(x)u(x, T ) dx

, x̂est :=

∫
Rn

xw(x)û(x, T ) dx∫
Rn

w(x)û(x, T ) dx

.

Then for a given φ and any ε > 0, there exist posi-
tive numbers R and δ, such that for any φ̂, we have
|xest − x̂est| < ε provided ∥φ− φ̂∥L1(BR) < δ.

Remark 10 Assumptions 1) and 2) are requirements of
the direct method. Assumptions 3), 4), and 6) are also
natural, since they just require that each wk in (9) does
not vary too drastically, and each initial valued in (8) to
be similar to rapidly decreasing function. Although As-
sumptions 5), 7), and 8) may appear technical, in essence
they only require p2(t) to be small enough, which is typ-
ically achievable in practice. Therefore, we think these
assumptions are very mild.

Now we consider the extended case. Using the same idea,
we just need to pay attention to the perturbation of so-
lution to equation of the form (10) when its coefficients
vary. It is obvious that such variation can introduce er-
rors into the solution, but we will show that this error
are typically small if the perturbations themselves are
small. As shown in Theorem 8, the perturbation of the
solution can be controlled as long as the perturbation
in the initial value is sufficiently small. As a corollary of
Theorem 8, Theorem 9 demonstrates that the error of
the estimates given by the direct method remains small,
provided that the Gaussian approximation is sufficiently
accurate. Parallelly, the following theorem will deal with
the perturbation of p.
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We might as well proceed by proving a more general
result. The key point is to estimate the L1 (BR) norm
of the difference between (11) and the following initial
boundary value problem:

∂ûR
∂t

=
1

2
∆ûR − F̂T∇ûR + p̂ûR in UR,

ûR(x, 0) = φ(x) in BR,

ûR(x, t) = 0 on ΓR.

(12)

Theorem 11 Assume that:

(1) divF (x, t) + p(x, t) ≤ C,∀(x, t) ∈ UR;

(2) ∥F (·, t)− F̂ (·, t)∥L2(BR) ≤ λ1,∀t ∈ [0, T ];
(3) |p(x, t)− p̂(x, t)| ≤ λ2,∀(x, t) ∈ UR,

where C, λ1, and λ2 are non-negative constants. Let uR
and ûR be non-negative solutions to (11) and (12), re-
spectively. Then we have∫

BR

|uR(x, T )− ûR(x, T )| dx ≤ K (λ1, λ2) ,

whereK : R+×R+ → R+ is an increasing function with
K (λ1, λ2) → 0 as either λ1 → 0 or λ2 → 0.

In particular, the extended direct method can behave
well if λ1 = 0 and λ2 are small enough when R is as large
as we need, or equivalently, the Taylor polynomial of
degree 2 of p in (8) is a sufficiently good approximation
to itself.

Remark 12 Furthermore, we have proved that the as-
sumption that f in (1) is of the form (5) can be relaxed
provided that f is close enough to the gradient of some
function. In fact, through a variable substitution, we can
show that the equation for ũk in (4) can be transformed
into the form of (10), and the perturbation of F and p
in (10) is minimal when f in (4) undergoes only slight
variations. By use of the conclusion above, the extended
direct method remains effective in this case.

4 Simulation

Now we use three numerical examples to verify the ef-
ficiency of Algorithm 1, and the filtering system here is
as follows:

dxt =

(
cxt + 1 +

∂ϕ̃

∂x
(xt, t)

)
dt+ dvt, x0 = ξ,

dy1t = xt sinxt dt+ dw1
t , y10 = 0,

dy2t = xt cosxt dt+ dw2
t , y20 = 0,

t ∈ [0, T ],
(13)

where:

• c is a constant;
• T > 0 is a fixed termination, with the sampling in-

terval ∆t for observations and its corresponding time
sequence τk := k∆t, k = 0, 1, . . . , N ;

• xt, y
1
t , and y

2
t are scalar stochastic process;

• vt, w
1
t , and w2

t are scalar independent Brownian

motions, with variances 1, (1 + sin(0.2t))
2
, and

(1 + sin(0.2t))
2
, respectively;

• ξ is a scalar random variable with unnormalized prob-
ability density function

σ̃0(x) := exp
(
−x sinx− 0.5x cosx− x2 + 3x+ 2

)
,

i.e., its probability density function is σ0 :=
σ̃0∫

R
σ̃0(x) dx

;

• ϕ̃ : R× [0, T ] → R is a C∞ function.

To compare the average performance of different meth-
ods, we introduce the MSE. The MSE for m repeated
realizations at instant τk is defined as follows:

MSE (τk) :=
1

mk

m∑
i=1

k∑
j=0

(
xiτj − x̂iτj

)2
,

where xiτj is the real state at instant τj in the ith realiza-

tion and x̂iτj is the estimation of xiτj by different filtering
methods.

Recall that we shall approximate p in (8) by its Taylor
polynomial of degree 2:

p̂(z, t) :=
1

2
zT
(
∇2p(0, t)

)
z + (∇p(0, t))T z + p(0, t).

Though in theory it may cause a fairly significant error
when the difference between p and p̂ is too large, the di-
rect method still behaves well compared to other widely
used methods in real applications considering the trade-
off between the MSE and running time.

In the following three examples, the real dynamic system
(13) is approximated by Euler’s method with time step.
The EKF was numerically implemented by the Euler’s
method. Besides, we approximate the dynamic system
(13) by the Euler’s method for the PF with different
particles.
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Fig. 2. MSE(t) based on 50 simulations of Example 1

0 0.5 1 1.5

time

2

4

6

8

10

12

14

16

e
s
ti
m

a
te

real state

direct method

EKF

PF

Fig. 3. A typical simulation of Example 1

Method Time/s MSE(T )

direct method 0.2229 1.2453

EKF 0.0002 2.6713

PF with 4600 particles 0.2210 7.8799

Table 1
Average time cost and MSE(T ) of Example 1

Example 1 : We set c = 1, T = 1.5, ∆t = 0.1 and
ϕ̃(x, t) := 10−3x3t. It can be computed that

p(z, t) =−
(
4.5× 10−6t2

)
z4

−
(
3× 10−3t+ 10−3

)
z3

−

(
3× 10−3t+

1

2 (1 + sin(0.2t))
2

)
z2

−
(
3× 10−3t

)
z − 1,

which is approximated by

p̂(z, t) =−

(
3× 10−3t+

1

2 (1 + sin(0.2t))
2

)
z2

−
(
3× 10−3t

)
z − 1
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Fig. 4. MSE(t) based on 50 simulations of Example 2
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Fig. 5. A typical simulation of Example 2

Method Time/s MSE(T )

direct method 2.5498 0.5353

EKF 0.0015 1.7357

PF with 3800 particles 2.5401 3.7427

Table 2
Average time cost and MSE(T ) of Example 2

when we apply Algorithm 1. Here, p is a polynomial of
degree 4 with relatively small coefficients of high-order
term, which causes p̂ to be a good approximation to p.

The result is demonstrated in Figure 2, Figure 3 and
Table 1. It can be seen that the direct method demon-
strates a lower MSE(T ) in comparison to the EKF, de-
spite requiring a longer running time. When compared
with the PF with 4600 particles, the direct method has a
similar time consumption while exhibiting superior per-
formance, which can be clearly seen in both MSE and
trajectory in a typical simulation.

Example 2 : We set c = 1, T = 1.5, ∆t = 0.01 and
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ϕ̃(x, t) := e0.1x. It can be computed that

p(z, t) =− 0.005e0.2z − (0.1z + 0.105)e0.1z

− 1

2 (1 + sin(0.2t))
2 z

2 − 1,

which is approximated by

p̂(z, t) =−

(
0.010625 +

1

2 (1 + sin(0.2t))
2

)
z2

− 0.1115z − 1.11

when we apply Algorithm 1. Here, p no longer has a
polynomial structure, but is again approximated well by
p̂.

The result is demonstrated in Figure 4, Figure 5 and
Table 2. Similarly to the previous example, the direct
method still performs best among these three methods in
the example, where the trajectory of real state oscillates
and is well tracked by the trajectory of estimation by
the direct method.

Example 3 : We set c = −1, T = 15, ∆t = 0.01 and
ϕ̃(x, t) := 0.01 sin

(
x4t
)
. It can be computed that

p(z, t) =0.08z6t2 sin
(
z4t
)
− 0.0008z6t2 cos2

(
z3t
)

+ 0.04z4t cos
(
z4t
)
− 0.01z4 cos

(
z4t
)

− 0.04z3t cos
(
z4t
)
− 0.06z2t cos

(
z4t
)

− 1

2 (1 + sin(0.2t))
2 z

2 + 1,

which is approximated by

p̂(z, t) = −

(
0.06t+

1

2 (1 + sin(0.2t))
2

)
z2 + 1

when we apply Algorithm 1. This time, the approxima-
tion for p results in fairly large deviation, on account of
high nonlinearity of the system.

The result is demonstrated in Figure 6, Figure 7 and
Table 3. In this example, result of the EKF does not
shown due to its instability, which causes its trajectory
to exceed the vertical axis scale and makes the rest of
these figures difficult to read. Despite this, the direct
method performs better than the PF in the long run.
More specifically, the direct method has an average time
cost near to that of the PF with 3200 particles, but it
achieves the lowest MSE(t) when t > 8.

5 Conclusion

In this paper, we extend the direct method for time-
varying Yau filtering systems by removing the assump-
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Fig. 6. MSE(t) based on 50 simulations of Example 3
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Fig. 7. A typical simulation of Example 3

Method Time/s MSE(T )

direct method 16.9354 0.5150

PF with 3200 particles 17.1910 0.5433

Table 3
Average time cost and MSE(T ) of Example 3

tion that p in (8) is quadratic, and provide a convergence
analysis to show that under very mild assumptions, Al-
gorithm 1 can give accurate estimates with arbitrary
precision for the conditional mean of state process given
the observations, provided the Gaussian approximation
and the polynomial approximation are accurate enough.
Specifically, we demonstrate that the key to the exten-
sion is not just the approximation of p but rather the
ability to control perturbations in the solution through
perturbations in p. This extension allows us to generalize
the direct method to a much broader class of systems,
significantly improving its applicability.

Furthermore, we present three numerical experiments
demonstrating its efficiency compared to the EKF and
PF. EKF has the advantage of low computational over-
head and performs well in almost linear cases, but it
becomes unstable in cases of high nonlinearity. PF can
handle nonlinear situations, but under real-time require-
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ments, its accuracy is not as high as that of the pro-
posed method. Therefore, the capability of the extended
direct method to solve very general nonlinear filtering
problems is theoretically and numerically verified.

Although the proposed method demonstrates superior-
ity in the one-dimensional case, its performance in high-
dimensional scenarios is limited by the time complexity
associated with Gaussian approximations. To enhance
the efficiency and scalability of our method in high-
dimensional settings, one promising direction for future
research is the development of more efficient Gaussian
approximation techniques.

A Notations

• Operators:
∗T: transposition of a matrix;

∇x :=

(
∂

∂x1
, . . . ,

∂

∂xn

)T

: gradient of a multivari-

ate scalar function w.r.t. x, where the subscript is usu-
ally omitted if it causes no ambiguity (the same be-
low);

divx := ∇T
x : divergence of a vector field w.r.t. x;

∆x := divx ◦∇x: Laplace operator w.r.t. x;

∇2
x :=

(
∂2

∂xi∂xj

)
i,j

: Hessian matrix w.r.t. x;

tr: trace of a square matrix;
| · |: Euclidean norm of a vector;
∥·∥: norm of a function, depending on its subscript.

• Relations:
⇀: the left side converges to the right side in weak

topology;
≲: the left side is no more than the right side times

a universal constant.
• Subsets of Euclidean space:

Mn×n(R): spaces of all square matrices of order n
with real entries;
U := Rn × [0, T ];
U (k) := Rn × [τk−1, τk];
BR := {x ∈ Rn : |x| < R};
ΓR := ∂BR × [0, T ].

• Function Spaces:
Cp(Ω): space of all scalar functions on Ω whose

derivatives of order no more than p all exist and are
continuous, where Ω is an open connected subset of
an Euclidean space (the same below);
C∞(Ω): space of all scalar functions on Ω whose

derivatives of arbitrary order all exist and are contin-
uous;
C∞

c (Ω): space of allC∞ scalar functions on Ω whose
support is compact in Ω;
Lp(Ω): space of all scalar functions on Ω whose p-th

power is absolutely integrable;
H1(Ω): space of all square-integrable scalar func-

tions on Ω whose weak derivatives of order 1 are all
square-integrable;

H1
0 (Ω): completion of C∞

c (Ω) as a subspace of
H1(Ω);
L2
(
0, T ;H1

0 (Rn)
)
: space of all functionals from

[0, T ] to H1
0 (Rn) whose norm belongs to Lp ((0, T ))

as a scalar function on (0, T ), where we use bold and
light letters to represent its element and correspond-
ing function from [0, T ]× Rn to R, respectively;

Sc :=
{
u ∈ L2

(
0, T ;H1

0 (Rn)
)
:

sup
0≤t≤T

∫
Rn

ec|x|u(x, t)2 dx < +∞
}
;

Ic :=
{
φ ∈ H1

0 (Rn) ∩ C2 (Rn) : φ ≥ 0,∫
Rn

ec|x|φ(x)2 dx < +∞,∫
Rn

e
√

1+|x|2φ(x) dx < +∞
}
.

• Notations about probability theory:
Yt := σ {Ys : 0 ≤ s ≤ t}: sigma algebra generated

by a family of random variables {Ys : 0 ≤ s ≤ t};
E [Xt | Yt]: conditional expectation of a random

variable Xt given a sigma algebra Yt.

B Detailed Proofs of Theorems in Section 3

B.1 Weak convergence

In the first place, we present some foundational concepts
and facts that will be necessary for the understanding of
subsequent results and proofs.

For p ≥ 1 and a Banach space (X, ∥·∥X), write

Lp(0, T ;X) :=
{
u : [0, T ] → X : ∥u∥Lp(0,T ;X)

:= ∥∥u(·)∥X∥Lp((0,T )) < +∞
}
,

which naturally becomes a normed vector space. For u ∈
L1(0, T ;X), say v ∈ L1(0, T ;X) is the weak derivative
of u, written u′ = v, if∫ T

0

u(t)ψ′(t) dt = −
∫ T

0

v(t)ψ(t) dt,∀ψ ∈ C∞
c ([0, T ]) .

Say uR ∈ L2
(
0, T ;H1

0 (BR)
)
, or its corresponding func-

tion uR(x, t) := (uR(t)) (x), is a weak solution of (11),
if uR(0) = φ, and u′

R ∈ L2
(
0, T ;H1

0 (BR)
)
satisfies∫

BR

u′
Rψ dx =

∫
BR

(
−1

2
(∇uR)

T ∇ψ +
(
−FT∇uR

+puR)ψ) dx, a.e. t ∈ [0, T ],∀ψ ∈ H1
0 (BR) .
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A weak solution to (10) (with a certain initial condition)
can be defined similarly. Clearly, a classical solution is a
weak solution.

Let uR ∈ L2
(
0, T ;H1

0 (BR)
)
. Then its extension by zero

(ũR(t)) (x) :=

{
(uR(t)) (x), in BR,

0, in Rn\BR

belongs to L2
(
0, T ;H1 (Rn)

)
= L2

(
0, T ;H1

0 (Rn)
)
. In

this sense, the weak solutions to (10) and (11) lie in the
same space L2

(
0, T ;H1

0 (Rn)
)
, which should cause no

confusion.

Lemma 13 Assume that:

(1) divF (x, t) + 2p(x, t) ≤ C1,∀(x, t) ∈ U ;

(2) |F (x, t)|2 + 2p(x, t) ≤ C2,∀(x, t) ∈ U ;
(3) ∆p(x, t) ≤ C3,∀(x, t) ∈ U ,

where C1, C2 and C3 are non-negative constants. Let
uR be a weak solution to (11). Then {uR : R > 0} is a
bounded subset of L2

(
0, T ;H1

0 (Rn)
)
.

PROOF. Fix R > 0. Write

E0(t) =

∫
BR

uR(x, t)
2 dx,E1(t) =

∫
BR

|∇uR(x, t)|2 dx.

Taking the derivative of E0, we have

E′
0(t) =

∫
BR

2uR
∂uR
∂t

dx

=

∫
BR

uR∆uR dx−
∫
BR

2uRF
T∇uR dx

+

∫
BR

2pu2R dx

=−
∫
BR

|∇uR|2 dx+

∫
BR

(divF + 2p)u2R dx

≤C1E0(t),

which implies

E0(t) ≤ eC1tE0(0) ≤ eC1TE0(0). (B.1)

Taking the derivative of E1, we have

E′
1(t) =

∫
BR

2 (∇uR)T ∇
(
∂uR
∂t

)
dx

=−
∫
BR

2 (∆uR)
∂uR
∂t

dx

=−
∫
BR

(∆uR)
2
dx+

∫
BR

2∆uRF
T∇uR dx

−
∫
BR

2puR∆uR dx

≤
∫
BR

∣∣FT∇uR
∣∣2 dx−

∫
BR

2uR(∇p)T∇uR dx

+

∫
BR

2p |∇uR|2 dx

≤
∫
BR

(
|F |2 + 2p

)
|∇uR|2 dx+

∫
BR

(∆p)u2R dx

≤C2E1(t) + C3E0(t)

≤C2E1(t) + C3e
C1TE0(0),

which implies

E1(t) ≤ eC2tE1(0) +
eC2t − 1

C2
C3e

C1TE0(0)

≤ eC2TE1(0) +
eC2T − 1

C2
C3e

C1TE0(0).

(B.2)

By (B.1) and (B.2), we have

∥uR∥2L2(0,T ;H1
0 (Rn))

=

∫ T

0

(E0(t) + E1(t)) dt

≤T
(
eC1TE0(0) + eC2TE1(0) +

eC2T − 1

C2
C3e

C1TE0(0)

)
<+∞.

Lemma 14 Under the assumptions and notations of
Lemma 13, there exists an increasing sequence of positive
numbers, written {Rk}, such that lim

k→+∞
Rk = +∞, and

{uRk
} weakly converges in L2

(
0, T ;H1

0 (Rn)
)
to a weak

solution u of (10) with the initial condition u(0) = φ.

PROOF. Thanks to [8, Chapter VII, Section 6],
L2
(
0, T ;H1

0 (Rn)
)
is a reflexive space, sinceH1

0 (Rn) has
the Radon-Nikodym property. So any bounded subset
of L2

(
0, T ;H1

0 (Rn)
)
has a weakly convergent sequence.

In particular, by Lemma 13, {uR} has a weakly conver-
gent sequence, written uRk

⇀ u in L2
(
0, T ;H1

0 (Rn)
)
.

Let us verify that u is indeed a weak solution to (13)
with the initial condition u(0) = φ: Clearly, uRk

⇀ u
in L2

(
0, T ;H1

0 (Rn)
)
implies that for any t ∈ [0, T ],
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uRk
(t) ⇀ u(t), ∇uRk

(t) ⇀ ∇u(t) and u′
Rk

(t) ⇀ u′(t)

in H1
0 (Rn), so we have

∫
Rn

(
−1

2
(∇u)T∇ψ +

(
−FT∇u+ pu

)
ψ

)
dx

= lim
k→+∞

∫
Rn

(
−1

2
(∇uRk

)
T ∇ψ

+
(
−FT∇uRk

+ puRk

)
ψ
)
dx

= lim
k→+∞

∫
Rn

u′
Rk
ψ dx

=

∫
Rn

u′ψ dx, a.e. t ∈ [0, T ],∀ψ ∈ H1
0 (Rn) ,

and u(0) = lim
k→+∞

uRk
(0) = φ, since weak convergence

implies pointwise convergence.

For technical reasons, we restrict the weak solution to
Sc defined in Appendix A, where c ≥ 0 is a constant.

Lemma 15 Let c ≥ 0 be a constant. Assume that

∣∣∣∣F (x, t) + c
x

|x|

∣∣∣∣2 + 2p(x, t) ≤ C <
1

T
,∀(x, t) ∈ U,

where C ≥ 0 is a constant. Then there is a unique weak
solution to (10) in S4c.

PROOF. It is sufficient to show u = 0 if φ = 0. Let
T0 ∈ (0, T ] be arbitrary, and denote Ũ := Rn × [0, T0].
The definition of a weak solution implies that for any
ψ ∈ L2 (0, T0;C

∞
c (Rn)),∫

Ũ

u′ψ dxdt =− 1

2

∫
Ũ

(∇u)T ∇ψ dxdt

−
∫
Ũ

(
FT∇u

)
ψ dxdt+

∫
Ũ

puψ dxdt.

Replacing ψ by e4c|x|ψ, we have∫
Rn

e4c|x|u (T0)ψ (T0) dx

=− 1

2

∫
Ũ

e4c|x|(∇u)T∇ψ dxdt− 2c

∫
Ũ

e4c|x|ψ
xT

|x|
∇u dx dt

−
∫
Ũ

e4c|x|
(
FT∇u

)
ψ dxdt+

∫
Ũ

e4c|x|puψ dx dt

+

∫
Ũ

e4c|x|uψ′ dxdt.

Approximating u by ψ, we have

∫
Rn

e4c|x|u (T0)
2
dx

=

∫
Ũ

e4c|x|

(
−|∇u|2 − 2u

(
F + c

x

|x|

)T

∇u

+2pu2
)
dxdt

≤
∫
Ũ

e4c|x|

(∣∣∣∣F + c
x

|x|

∣∣∣∣2 + 2p

)
u2 dx dt,

≤C
∫
Ũ

e4c|x|u2 dxdt.

By the mean value theorem, there exists T1 ∈ (0, T0)
such that

∫
Ũ

e4c|x|u2 dx dt = T0

∫
Rn

e4c|x|u (T1)
2
dx.

So

∫
Rn

e4c|x|u (T0)
2
dx ≤ CT0

∫
Rn

e4c|x|u (T1)
2
dx.

Repeating the above process, for any positive integer k,
there exists Tk ∈ (0, T0) such that

∫
Rn

e4c|x|u (T0)
2
dx ≤ (CT0)

k
∫
Rn

e4c|x|u (Tk)
2
dx,

where CT0 < CT < 1. Let k → +∞, and we obtain
u (T0) = 0 since u ∈ S4c. Thus u = 0 since T0 is arbi-
trary.

The following result is an immediate consequence of the
three lemma above.

Corollary 16 Let u and uR be classical solutions to (10)
with the initial condition u(·, 0) = φ and (11), respec-
tively. Assume that u ∈ S4c, where c ≥ 0 is a con-
stant. Then under the assumptions of Lemma 13 and
Lemma 15, there exists an increasing sequence of posi-
tive numbers, written {Rk}, such that lim

k→+∞
Rk = +∞,

and uRk
⇀ u in L2

(
0, T ;H1

0 (Rn)
)
.

13



B.2 Approximation inside and outside a disc

PROOF. [of Theorem 5] Let uR be a weak solution to

(11). Writing γ(x) :=
√

1 + |x|2, we have

d

dt

∫
BR

eγuR dx

=

∫
BR

eγ
(
1

2
∆uR − FT∇uR + puR

)
dx

=− 1

2

∫
BR

eγ(∇γ)T∇uR dx+
1

2

∫
∂BR

eγ
∂uR

∂ν
dS

+

∫
BR

div (eγF )uR dx+

∫
BR

eγpuR dx

=
1

2

∫
BR

div (eγ∇γ)uR dx+
1

2

∫
∂BR

eγ
∂uR
∂ν

dS

+

∫
BR

eγuR(∇γ)TF dx+

∫
BR

eγ(divF )uR dx

+

∫
BR

eγpuR dx

≤
∫
BR

eγuR

(
1

2
∆γ +

1

2
|∇γ|2 − (∇γ)TF + divF + p

)
dx

≤
∫
BR

eγuR

(
n+ 1

2
+ |F |+ divF + p

)
dx

≤C1

∫
BR

eγuR dx,

which implies∫
BR

eγuR dx ≤ eC1t

∫
BR

eγφdx. (B.3)

Fix r > 0. Consider the truncated function ηr := eγ1Br ,
and suppose ηr ∈ H1

0 (Rn) by improving its regularity
via a convolution with a mollifier. Then we have∫
Rn

ηrudx = lim
k→+∞

∫
Rn

ηruRk
dx ≤ lim

k→+∞

∫
Rn

eγuRk
dx

= lim
k→+∞

∫
BRk

eγuRk
dx

≤ lim
k→+∞

eC1t

∫
BRk

eγφdx

= eC1t

∫
Rn

eγφdx.

By monotone convergence theorem, we obtain∫
Rn

eγudx = lim
r→+∞

∫
Rn

ηrudx ≤ eC1t

∫
Rn

eγφdx,

which was to be shown.

PROOF. [of Theorem 6] Thanks to the maximum prin-
ciple of solutions to second-order parabolic equations
[12, Chapter 7.1, Theorem 12], v is non-negative in U
by Assumption 1), since v = u is non-negative in U\UR,
which in particular holds on ΓR, and v(·, 0) = 0. Writing
γ(x) := |x|4/R3 − 2|x|2/R, η := eγ − eR, we have

d

dt

∫
BR

ηv dx

=

∫
BR

η

(
1

2
∆v − FT∇v + pv

)
dx

=
1

2

∫
BR

v∆η dx− 1

2

∫
∂BR

v
∂η

∂ν
dS +

1

2

∫
∂BR

η
∂v

∂ν
dS

+

∫
BR

div (ηF ) v dx−
∫
∂BR

ηvFTν dS(x) +

∫
BR

ηpv dx

=
1

2

∫
BR

eγv
(
∆γ + |∇γ|2

)
dx

+

∫
BR

eγv
(
(∇γ)TF + divF

)
dx

+

∫
BR

ηpv dx

=

∫
BR

ηv

(
1

2
∆γ +

1

2
|∇γ|2 + (∇γ)TF + divF + p

)
dx

+ e−R

∫
BR

v

(
1

2
∆γ +

1

2
|∇γ|2 + (∇γ)TF + divF

)
dx

≤C2

∫
BR

ηv dx+ C3e
−R

∫
BR

e
√

1+|x|2v dx

≤C2

∫
BR

ηv dx+ C3e
−R

∫
Rn

e
√

1+|x|2udx

≤C2

∫
BR

ηv dx+ C3e
−ReC1T

∫
Rn

e
√

1+|x|2φdx,

which implies∫
BR

ηv(x, T ) dx ≤ eC2T

∫
BR

ηv(x, 0) dx

+
eC2T − 1

C2
C3e

−ReC1T

∫
Rn

e
√

1+|x|2φdx

=
eC2T − 1

C2
C3e

−ReC1T

∫
Rn

e
√

1+|x|2φdx.

B.3 Estimation by the initial value

To show Theorem 7, we first introduce a technical lemma
without proof.

Lemma 17 [35, Lemma 4.1] LetΩ be a bounded domain
in Rn and let v : Ω × [0, T ] → R be a C1 function.
Assume that v(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ]. Let

14



Ω+
t := {x ∈ Ω : v(x, t) ≥ 0}. Then

d

dt

∫
Ω+

t

v(x, t) dx =

∫
Ω+

t

∂v

∂t
(x, t) dx, a.e. t ∈ [0, T ].

PROOF. [of Theorem 7] Write

Ω±
t := {x ∈ BR : ±uR(x, t) ≥ 0} .

Using Lemma 17, we have

d

dt

∫
Ω+

t

uR dx =

∫
Ω+

t

duR
dt

dx

=

∫
Ω+

t

(
1

2
∆uR − FT∇uR + puR

)
dx

=
1

2

∫
∂Ω+

t

∂uR
∂ν

dx+

∫
Ω+

t

(divF + p)uR dx

≤ C

∫
Ω+

t

uR dx, a.e. t ∈ [0, T ],

which implies∫
Ω+

t

uR dx ≤ eCt

∫
Ω+

0

φdx, a.e. t ∈ [0, T ].

Similarly,∫
Ω−

t

−uR dx ≤ eCt

∫
Ω−

0

−φdx, a.e. t ∈ [0, T ].

Therefore, we have∫
BR

|uR| dx ≤ eCt

∫
BR

|φ|dx, a.e. t ∈ [0, T ],

both sides of which are continuous w.r.t. t. Thus the
conclusion is improved to hold in pointwise sense.

B.4 Error estimation for the original direct method

PROOF. [of Theorem 8] Note that φ, φ̂ ∈ I4c implies
u, û ∈ S4c. By Theorem 5, Assumptions 1)-5) imply that
there exists a decreasing function C1 : R+ → R+ with
C1(+∞) = 0, such that∫

|x|≥R

u(x, T ) dx ≤ C1(R),∫
|x|≥R

û(x, T ) dx ≤ C1(R),∀R > 0.

By Theorem 6, Assumptions 6)-8) imply that there
exists a decreasing function C2 : R+ → R+ with
C2(+∞) = 0, such that

∫
BR/2

(u(x, T )− uR(x, T )) dx ≤ C2(R),∫
BR/2

(û(x, T )− ûR(x, T )) dx ≤ C2(R),∀R > 0.

By Theorem 7, there exists a function C3 : R+ → R+,
such that∫

BR

|uR(x, T )− ûR(x, T )| dx ≤ C3(R)

∫
BR

|φ− φ̂| dx.

Thus we have∫
Rn

|u(x, T )− û(x, T )| dx

≤
∫
BR/2

|u(x, T )− û(x, T )| dx+ 2C1(R/2)

≤
∫
BR/2

|uR(x, T )− ûR(x, T )| dx+ 2C1(R/2) + 2C2(R)

≤2C1(R/2) + 2C2(R) + C3(R)δ.

For sufficiently large R and sufficiently small δ, we have
2C1(R/2) + 2C2(R) < ε/2 and C3(R)δ < ε/2, which
implies ∥u(x, T )− û(x, T )∥L1(Rn) < ε.

Lemma 18 Let u be a solution to (10). Then for any
C2 function w : Rn → R with ∇w(x) = w(x)D(x),
v(x, t) := w(x)u(x, t) is a solution to the equation

∂v

∂t
(x, t) =

1

2
∆v(x, t)− F̃ (x, t)T∇v(x, t)+ p̃(x, t)v(x, t),

where

F̃ (x, t) := F (x, t) +D(x),

p̃(x, t) := p(x, t) +
1

2
|D(x)|2 − 1

2
divD(x)− F (x, t)TD(x).

PROOF. The condition ∇w(x) = w(x)D(x) yields

∆w(x) = div (w(x)D(x))

= (∇w(x))TD(x) + w(x) divD(x)

=
(
|D(x)|2 + divD(x)

)
w(x),

w(x)∇u(x, t) = ∇v(x, t)− u(x, t)∇w(x)
= ∇v(x, t)− v(x, t)D(x).
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We compute

w(x)∆u(x, t)

=∆v(x, t)− 2 (∇w(x))T ∇u(x, t)− (∆w(x))u(x, t)

=∆v(x, t)− 2D(x)T (w(x)∇u(x, t))

−
(
|D(x)|2 + divD(x)

)
v(x, t)

=∆v(x, t)− 2D(x)T (∇v(x, t)− v(x, t)D(x))

−
(
|D(x)|2 + divD(x)

)
v(x, t)

=∆v(x, t)− 2D(x)T∇v(x, t)

+
(
|D(x)|2 − divD(x)

)
v(x, t).

Thus we have

∂v

∂t
(x, t) =

1

2
w(x)∆u(x, t)− F (x, t)T (w(x)∇u(x, t))

+ p(x, t)v(x, t)

=
1

2
∆v(x, t)− F̃ (x, t)T∇v(x, t) + p̃(x, t)v(x, t).

PROOF. [of Theorem 9] It is straightforward to com-
pute that

xest − x̂est =

1−

∫
Rn

w (u(x, T )− û(x, T )) dx∫
Rn

wu(x, T ) dx


−1


∫
Rn

xw (u(x, T )− û(x, T )) dx∫
Rn

wu(x, T ) dx

−

∫
Rn

w (u(x, T )− û(x, T )) dx∫
Rn

wu(x, T ) dx

xest

 .

Thus it is sufficient to show that

∥w (u(x, T )− û(x, T ))∥L1(Rn)

and ∥xiw (u(x, T )− û(x, T ))∥L1(Rn)

are sufficiently small, since
∫
Rn wu(x, T ) dx and xest are

fixedwhenφ is given. Take ∥w (u(x, T )− û(x, T ))∥L1(Rn)

as an example: By Theorem 8 and Lemma 18,
∥w (u(x, T )− û(x, T ))∥L1(Rn) can be made arbitrarily

small if ∥w (φ− φ̂)∥L1(BR) is sufficiently small, and F̃
and p̃ in Lemma 18, as substitutes of F and p, respec-
tively, meet the assumptions listed in Theorem 8. Note
that

∥w (u(x, T )− û(x, T ))∥L1(Rn) ≤ sup
x∈BR

|w(x)| ∥φ−φ̂∥L1(BR)

can be made arbitrarily small if ∥φ − φ̂∥L1(BR) is suffi-
ciently small, since w is fixed and so is supx∈BR

|w(x)|.
All that remains is a direct calculation for translating
Assumptions 1)-9) in Theorem 8 to Assumptions 5)-8)
in this theorem:

(1) It reduces to 5) and 6).
(2) ∣∣∣F̃ ∣∣∣2 + 2p̃ = |F |2 + 2p+ 2|D|2 + divD

≲ xT
(
|F1|2 + 2p2 + 2d21 + e2

)
Ix,

which coincides with Assumption 5) in this theo-
rem.

(3) It coincides with Assumption 6) in this theorem.
(4) It reduces to 2), since cx/|x| is bounded. It is why

the constant c in Theorem 8 can be set to 0 in this
theorem.

(5) It reduces to 7).
(6) It coincides with Assumption 7) in this theorem.
(7)

2
(
4|x|

∣∣∣F̃ ∣∣∣+ div F̃ + p̃
)

=8|x||F +D|+ 2divF + 2p+ |D|2 + divD

− 2FTD

≲xT
(
8 (|F1|+ d1) + 2p2 + d21 + e2 + 2 |F1| d1

)
Ix,

which coincides with Assumption 8) in this theo-
rem.

(8) It is trivial, since 12 + 2n+ 4|x||F |+ divF can be
estimated by a quadratic polynomial.

(9) It reduces to 5).

B.5 Error estimation for the extended direct method

Lemma 19 Assume that:

(1) divF (x, t) + 2p(x, t) ≤ C1,∀(x, t) ∈ UR;

(2) |F (x, t)|2 + 2p(x, t) ≤ C2,∀(x, t) ∈ UR;
(3) ∆p(x, t) ≤ C3,∀(x, t) ∈ UR,

where C1, C2 and C3 are non-negative constants. Let uR
be a non-negative solution to (10). Then we have∫

BR

|∇uR|2 dx

≤eC2T

∫
BR

φ2 dx+
eC2T − 1

C2
C3e

C1T

∫
BR

|∇φ|2 dx.

PROOF. Similar to the proof of Lemma 13.
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PROOF. [of Theorem 11] Write v := uR − ûR and

Ω±
t := {x ∈ BR : ±v(x, t) ≥ 0} .

Using Lemma 17 and Lemma 19, we have

d

dt

∫
Ω+

t

v dx

=

∫
Ω+

t

dv

dt
dx

=

∫
Ω+

t

(
1

2
∆v −

(
FT∇uR − F̂T∇ûR

)
+(puR − p̂ûR)) dx

=
1

2

∫
∂Ω+

t

∂v

∂ν
dx+

∫
Ω+

t

(divF + p)v dx

−
∫
Ω+

t

(
F − F̂

)T
∇ûR dx+

∫
Ω+

t

(p− p̂) ûR dx

≤C
∫
Ω+

t

v dx+ λ1

(∫
BR

|∇ûR|2 dx

) 1
2

+ λ2

∫
BR

ûR dx

≤C
∫
Ω+

t

v dx+K0 (λ1, λ2) , a.e. t ∈ [0, T ],

where K0 : R+ × R+ → R+ is an increasing func-
tion, which is independent of t (and, in fact, depends
on ∥φ∥H1

0 (Rn), ∥φ∥L1(Rn), and a series of constants ap-

peared in those lemmas and theorems we mentioned),
with K0 (λ1, λ2) → 0 as either λ1 → 0 or λ2 → 0. It
implies that∫

Ω+
t

v dx ≤ eCt − 1

C
K0 (λ1, λ2) , a.e. t ∈ [0, T ].

Similarly,∫
Ω−

t

−v dx ≤ eCt − 1

C
K0 (λ1, λ2) , a.e. t ∈ [0, T ].

Therefore, we have∫
BR

|v|dx ≤ eCt − 1

C
K0 (λ1, λ2) , a.e. t ∈ [0, T ],

both sides of which are continuous w.r.t. t. Thus the
conclusion is improved to hold in pointwise sense.
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