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Abstract. The direct method and the Yau-Yau algorithm are two crucial filtering methods4
in nonlinear filtering problems. Recently, a series of research works [22, 21, 32, 10, 19, 6, 28] in5
these two methods have gained great success in nonlinear numerical experiments. Therefore, a key6
issue is whether a general framework of convergence analyses can be developed for these numerical7
algorithms based on partial differential equations. The contributions of this work consist of two8
parts. The first one is that we set up a convergence analysis framework for the direct method and9
the Yau-Yau algorithm, which can show the deep connections between these two methods. They10
are different formulations of solving robust DMZ equation by reducing it to solve Yau-Yau PDE [2].11
The second one is that we prove the explicit convergence rates of the Yau-Yau algorithm with the12
spectral method and the direct method with Gaussian approximation, in terms of the numbers of13
spectral basis and time steps.14
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1. Introduction. Nonlinear filtering has always played an important role in17

both commercial and military industries. Given the noisy observation data, the aim18

of the filtering problem is to find the best estimate of the unknown state. After many19

years of study, the discrete-time filtering problem can be unified inside the Bayesian20

filtering framework. With the development of filtering sensors, the time interval of21

data acquisition becomes shorter and shorter, and the continuous filtering model can22

better adapt to such changes than the discrete model. A continuous-time filtering23

system can be given as follows,24

dxt = f(xt)dt+ gV (xt)dVt,

dyt = h(xt)dt+ dWt,
(1.1)25

where xt is some n-dimensional vector, yt is some m-dimensional vector, the functions26

f(·) : Rn → Rn, gV (·) : Rn → Rn×n are all assumed to be the Lipschitz and smooth,27

and h(·) : Rn → Rm is assumed to be smooth and the density function of the initial28

state x0 is σ0(x). The {Vt}t≥0 and {Wt}t≥0 processes are independent Brownian29

motions and their covariance matrices are E[dVtdV
⊤
t ] = Indt and E[dWtdW

⊤
t ] =30

Imdt.31

Given the sequential observations {ys}ts=0, we define the σ-algebra Yt generated32

by the {ys|0 ≤ s ≤ t}, i.e., Yt := σ({ys|0 ≤ s ≤ t}). For any given function φ, we are33

interested in computing the conditional expectation E[φ(xt)|Yt], which is the optimal34

estimate of φ(xt) in the minimum mean square error sense. In the 1960s, Duncan,35
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2 J. KANG, X. CHEN AND S. S-T. YAU

Mortensen, and Zakai independently derived Duncan-Mortensen-Zakai (DMZ) equa-36

tion [11, 24, 40], which is satisfied by the unnormalized conditional density of the state37

in filtering system with independent noises. Let Q(x) := gV (x)g
⊤
V (x) and we denote38

◦ as Stratonovich integral in this paper. The unnormalized density function σ(t, x) of39

xt conditioned on the observation history Yt satisfies the following DMZ equation:40

(1.2)

{
dσ(t, x) = L0σ(t, x)dt+ h⊤(x)σ(t, x) ◦ dyt,
σ(0, x) = σ0(x),

41

where42

L0(∗) :=
1

2

n∑
i,j=1

∂2

∂xi∂xj
(Qi,j(x) · ∗)−

n∑
i=1

∂

∂xi
(fi(x) · ∗)−

1

2
h(x)⊤h(x) · (∗).(1.3)43

Generally speaking, the DMZ equation is hard to solve. In the 1980s, Davis considered44

this problem and proposed a type of measure transformation that converts the DMZ45

equation, a type of stochastic partial differential equation (SPDE), into a partial46

differential equation (PDE) with stochastic coefficients, which is also referred to as47

the Robust DMZ equation [9]. The stability of robust DMZ equation is proved in detail48

in 2000 by Yau and Yau [37]. For some special DMZ equations, the direct method can49

be used to solve them. The direct method was introduced in [35] and generalized in50

[36, 33, 15]. However, they all need to assume the observation function h(x) is linear.51

Then, in 2003 , Yau and Lai solved the DMZ equation by transforming it into a series of52

ordinary differential equations (ODEs) when the initial distribution is Gaussian, which53

provided an important foundation for the following developments of direct methods54

[34]. Recently, Shi and Yau [29] designed an effective numerical method for time-55

invariant filtering problems by using the direct method and Gaussian approximation56

algorithm [29]. And soon, this work was extended to time- varying cases in [6]. As for57

solving the general DMZ equation, Yau and Yau, in 2008, developed a new algorithm58

called Yau-Yau algorithm to solve the “pathwise-robust” DMZ equation for the time-59

invariant system, and it has been proved theoretically that the Yau-Yau algorithm will60

converge to the true solution, as long as the growth rate of the observation function61

h(x) is greater than that of the drift function f(x) [39]. However, other advances in62

spectral methods [13], splitting-up method [41, 18] and kernel method [25] can only be63

established under the condition where h grows linearly or even bounded, whereas the64

Yau-Yau method has a broader range of applicability. Later, Luo and Yau generalized65

the “Yau-Yau” algorithm to the “time-varying” case [22, 21]. In 2020, Dong proposed66

to use the Legendre spectral method to solve the Yau-Yau algorithm [10]. Starting67

in 2019, a series of tensor algorithms are proposed to numerically implement higher68

dimensional Yau-Yau algorithms [32, 19].69

In earlier publications [22, 21, 32, 10, 19, 5, 6, 28], the (PDE-based) filtering al-70

gorithms, such as the direct method and Galerkin Yau-Yau algorithm, demonstrated71

excellent numerical efficiency. Such a PDE-based filtering framework combines fil-72

tering algorithms and PDE solvers together. So, it is valuable to study the explicit73

convergence rate of this framework. The PDE-based numerical algorithms of solv-74

ing the robust DMZ equations consists of two iterative steps: updating the initial75

value function and solving the Kolmogorov PDE. In the previous works [22, 10], the76

convergence analyses were focused on the forward Kolmogorov equation. However,77

there are no studies focused on the explicit convergence rate of the complete Yau-Yau78

algorithm and direct method.79
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EXPLICIT CONVERGENCE 3

So in this work, we start to formulate a suitable Galerkin spectral method for DMZ80

equation. Then, we calculate the explicit convergence rate of the Yau-Yau algorithm81

and the direct method. The technical approach of this paper has its roots in the82

stability and convergence of SPDE. The error analyses in this paper are motivated by83

several related papers such as [3], and [13].84

The main contributions of this paper are listed as follows:85

1. We proposed a truncated Gaussian approximation so that the direct method86

with N -th truncated Gaussian approximation can be viewed as a sort of87

Galerkin Yau-Yau algorithm according to Remark 3.8.88

2. In Section 4, we proved the explicit convergence rate of global error expecta-89

tion of the direct method with truncated Gaussian approximation and spec-90

tral Yau-Yau algorithm which is given in Theorem 4.8.91

3. In Section 4, we develop a framework of the convergence analyses of the direct92

method with N -th truncated Gaussian approximation and spectral Yau-Yau93

algorithm, which is given in Corollary 4.994

In the rest of the paper, we assume that H with the inner product ⟨·, ·⟩H is95

the Sobolev space Hm(Ω) for some m ≥ 0 , ⟨u, v⟩Hm(Ω) =
∫
Ω

∑
|α|≤mD

αuDαv dx96

with α as a multi-index denoting the order of derivatives and Ω ⊂ Rn is a bounded97

domain with smooth boundary [12] And (L(H), ∥·∥L(H)) denotes the space of bounded98

linear operators mapping from H to H, and ∥A∥L(H) := supx∈H
∥Ax∥H
∥x∥H

. In section99

2, we shall give some preliminary knowledge of the semi-group theory and different100

representations of SPDE. In section 3, we shall summarize the current PDE-based101

filtering algorithms. Finally, the main convergence results are given in section 4.102

2. Preliminary knowledge.103

2.1. Basics of Semi-group. At the beginning of this section, we shall introduce104

several important facts in semi-group theory.105

Definition 2.1. [26] A C0 semi-group (S(t))t≥0 on H is a family of operators106

in L(H) satisfying S(0) = I, S(t+ s) = S(t)S(s) for all s, t ≥ 0, and t → S(t)f is a107

continuous H-valued function for all f ∈ H. The subset D(A) ⊂ H is defined by108

D(A) :=

{
f ∈ H : lim

t→0

S(t)f − f

t
exists in H

}
;109

and we can define Af := limt→0
S(t)f−f

t , for f ∈ D(A). D(A) should be a dense set110

in H. And A : D(A) ⊂ H → H is the infinitesimal generator of C0 semi-group S(t).111

For any positive integer n, (−A)n can be determined trivially. Next, we shall112

introduce the fractional power of (−A)δ with δ > 0.113

Definition 2.2. (The fractional power of −A [23])114

Let δ > 0 and δ /∈ N. Then, there exists an n0 ∈ N such that n0 > δ > n0 − 1, if115

ϕ ∈ D(An0), then116

(2.1) (−A)δϕ :=
1

Γ(−δ)

∫ ∞

0

t−δ−1

[
S(t)−

n0−1∑
k=0

tk

k!
Ak

]
ϕdt,117

where Γ(·) is the gamma function.118

Then, we shall introduce the important smoothing properties of the semi-group.119

Lemma 2.3. (Smoothing properties of the semi-group [20])120
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4 J. KANG, X. CHEN AND S. S-T. YAU

Let δ ≥ 0 and 0 ≤ γ ≤ 1, then there exists a constant C > 0 such that121

(2.2) ∥(−A)δS(t)∥L(H) ≤ Ct−δ, ∥(−A)−δ(I − S(t))∥L(H) ≤ Ctδ,122

for ∀ t > 0.123

In the rest of the paper, we suppose the spectrum of A consists only of eigen-124

values (λn)
∞
n=1 ⊂ (−∞, 0). In Remark 2.6 in Section 2.2, we shall explain why this125

assumption is reasonable. Assume (λn)
∞
n=0 is ordered such that λn+1 ≤ λn for all126

n ∈ N and let ϕn be the eigenvector corresponding to λn. We further assume that127

{ϕ1, · · · , ϕn, . . . } is a basis of H. According to [23], for any δ > 0, if (−A)δϕ exists,128

we can rewrite the equation (2.1) as129

(2.3) (−A)δϕ =

∞∑
n=1

|λn|δ⟨ϕ, ϕn⟩Hϕn.130

Definition 2.4 (The fractional domain space [23]). Let δ > 0, the fractional131

domain space HA
δ is defined as132

(2.4) HA
δ :=

{
ϕ ∈ H,

∞∑
n=1

|λn|2δ⟨ϕ, ϕn⟩2H <∞

}
.133

Furthermore, there is a natural inner product structure for HA
δ , which is134

(2.5) ⟨ϕ, ψ⟩HA
δ
:=

∞∑
n=1

|λn|2δ⟨ϕ, ϕn⟩H⟨ψ, ϕn⟩H, ∀ϕ, ψ ∈ D((−A)δ).135

So we define the norm ∥ϕ∥2HA
δ

:=
∑∞
n=1 |λn|2δ⟨ϕ, ϕn⟩2H. In view of equation (2.3),136

∥ϕ∥HA
δ
= ∥(−A)δϕ∥H holds for ∀ ϕ ∈ D((−A)δ).137

For more details on this topic, we offer some references such as [26, 20].138

2.2. DMZ equation. We shall focus on the following linear SPDE:139

(2.6) dσ(t, x) = A(σ(t, x))dt+B(σ(t, x)) ◦ dyt.140

For the system with independent noises,

A(·) := L0(·) and B(·) := (·)h⊤.

We shall denote B = (Bi)
m
i=1 and yt = (yit)

m
i=1. For the SPDE (2.6), we assume that141

A is the generator of some C0 semi-group (S(t))t≥0 [20]. For 0 ≤ s ≤ t with fixed t,142

we consider the differential S(t− s)σ(s, x),143

(2.7) d(S(t− s)σ(s, x)) = −A(S(t− s)σ(s, x))ds+ S(t− s)dσ(s, x),144

and we use equation (2.6) for dσ(s, x), which yields145

d(S(t− s)σ(s, x)) = −A(S(t− s)σ(s, x))ds

+A(S(t− s)σ(s, x))ds+ S(t− s)B(σ(s, x)) ◦ dys
= S(t− s)B(σ(s, x)) ◦ dys.

(2.8)146

Integrate both sides of (2.8), we get147

S(0)σ(t, x) = σ(t, x) = S(t)σ(0, x) +

∫ t

0

S(t− s)B(σ(s, x)) ◦ dys,(2.9)148

where S(0) = I is the identity operator.149
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Remark 2.5. For a simple case, if we assume B in (2.6) is a zero-operator in (2.6),150

then the SPDE (2.6) can be simplified as a PDE151

(2.10) dσ(t, x) = A(σ(0, x))dt.152

We can find that (2.9) can be simplified as σ(t, x) = S(t)σ(0, x). So, the semi-group153

can be used as the solution operator for a parabolic PDE.154

Remark 2.6. In this paper, we assume that the eigenvalues of A are of the follow-155

ing order:156

(2.11) −∞ < · · · ≤ λn · · · ≤ λ1 < 0.157

Let ϕn denote the eigenvector corresponding to λn. It needs to be pointed out that158

if λ1 > 0, we can use the transformation σ̂(t, x) := e−ηtσ(t, x) with η > λ1. Observe159

that the normalized density functions of σ̂(t, x) and σ(t, x) are the same. σ̂(t, x) obeys160

the following SPDE161

dσ̂(t, x) = A(σ̂(t, x))− ησ̂(t, x) +B(σ̂(t, x)) ◦ dyt,162

which means that Â := A − η and the eigenvalues of Â associated with σ̂(t, x) are163

negative. Therefore, for DMZ equation (2.6), it is reasonable to assume that (2.11)164

holds.165

2.3. The spectral Galerkin method (SGM) . In general, we cannot directly166

calculate the explicit solution of a SPDE, since solving it is an infinite-dimensional167

problem. Galerkin method was proposed to truncate the SPDE as a finite-dimensional168

differential equation. The SGM is one of the most standard methods for truncated169

SPDE and PDE problems.170

Let us use HN := ⟨ϕ1, · · · , ϕN ⟩ to represent the linear space spanned by the171

eigenvectors ϕ1, · · · , ϕN with corresponding eigenvalue λ1, · · · , λN . For simplicity,172

we shall further assume {ϕ1, · · · , ϕN} is orthonormal. And PN : H → HN is the173

orthogonal projection from H into HN . In the rest of this paper, we shall omit the x174

in σ(t, x) for simplicity.175

Definition 2.7 (FiniteN Galerkin approximation [3, 13]). The finite N Galerkin176

approximation of (2.6), which is defined as σ(N)(t, x) =
∑N
i=1 ai(t)ϕi(x) with ai(·) ∈177

L2([0, T ]) ∩ C[0, T ], is defined by the following SPDE,178

(2.12) dσ(N)(s) = A(N)σ(N)(s)ds+

m∑
j=1

PN (Bjσ
(N)(s)) ◦ dyjs,179

where σ(N)(0) := PNσ(0) and A
(N) := PNAPN .180

In the rest of this subsection, we shall analyze the three forms of finite N Galerkin181

approximation.182

2.3.1. The weak form of the SGM. The weak form is obtained by solving183

the following equation, for k = 1, · · · , N , let ai(t) = ⟨σ(N)(t), ϕi(x)⟩HN
.184

We multiply both sides of (2.12) by ϕi and integrate them, which yields185

⟨σ(N)(t), ϕi(x)⟩HN
= ⟨σ(0), ϕi⟩HN

+

∫ t

0

⟨A(N)σ(N)(s), ϕi(x)⟩HN
ds

+

∫ t

0

m∑
j=1

⟨PNBj(σ(N)(s)), ϕi⟩HN
◦ dyjs.

186
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6 J. KANG, X. CHEN AND S. S-T. YAU

We observe that ⟨A(N)σ(N)(s), ϕi(x)⟩HN
= ai(s)⟨A(N)ϕi(x), ϕi(x)⟩HN

= λia(s) ,and187

⟨PNBj(σ(N)(s)), ϕi⟩HN
= ⟨Bj(σ(N)(s)), PNϕi⟩HN

, since PN is self-adjoint operator.188

So we have189

ai(t) = ⟨σ(0), ϕi⟩HN
+ λi

∫ t

0

ai(s)ds+

∫ t

0

m∑
j=1

⟨Bj(σ(N)(s)), ϕi⟩HN
◦ dyjs.(2.13)190

We shall call (2.13) the weak form of the SGM of (2.6).191

2.3.2. The mild form of the SGM. In the standard theory of SPDE, the192

weak form solution is equal to the mild form solution. We shall consider the semi-193

group S(N)(t) which can be viewed as the projection of S(t) onto HN , i.e., S(N)(t) :=194

PNS(t)PN . For 0 ≤ s ≤ t with fixed t, we consider the differential S(N)(t− s)σ(N)(s)195

by using the same method in (2.8), and obtain196

d((S(N))(t− s)σ(N)(s))

= −(A(N))(S(N)(t− s)σ(N)(s))ds+ S(N)(t− s)dσ(N)(s)

=

m∑
j=1

S(N)(t− s)(Bjσ
(N)(s)) ◦ dyjs,

(2.14)197

where we use the fact S(N)(t − s)PN = S(N)(t − s) since P 2
N = PN . Integrate both198

sides of (2.14) on [0, t], which yields199

σ(N)(t) = S(N)(t)σ(N)(0) +

∫ t

0

m∑
j=1

S(N)(t− s)(Bjσ
(N)(s)) ◦ dyjs.(2.15)200

(2.15) is the mild form of the SGM for (2.6). Generally, the mild solution and weak201

solution are equivalent. For more general cases on this topic, please refer to [20] for202

details.203

2.3.3. Fully discrete scheme of the mild SGM. We shall consider a suitable204

time discretization 0 = t0 < t1 < · · · < tl = T with l ∈ Z+, where tk = kτ , 0 ≤ k ≤ l205

and τ = T
l . Considering (2.15) on [tk, tk+1], we get206

σ(N)(tk+1) = S(N)(τ)σ(N)(tk) +

∫ tk+1

tk

m∑
j=1

S(N)(tk+1 − s)(Bjσ
(N)(s)) ◦ dyjs,(2.16)207

where 0 ≤ k ≤ l − 1.208

However, there is no explicit form of the integration in (2.16). Motivated by the209

Euler scheme since τ is small, we shall define σ
(N)
tk

as an approximation of σ(N)(tk)210

at time tk. So, the fully discrete scheme of mild SGM σ
(N)
tk

is defined in the following211

iterative equation,212

σ
(N)
tk+1

= S(N)(τ)σ
(N)
tk

+ S(N)(τ)

∫ tk+1

tk

m∑
j=1

Bj(σ
(N)
tk

) ◦ dyjk

= S(N)(τ)

[
σ
(N)
tk

+

∫ tk+1

tk

m∑
j=1

Bj(σ
(N)
s ) ◦ dyjs

]
,

(2.17)213

where σ
(N)
t0 = PNσ0. Similar to (2.17), we can construct a recursive equation for σtk .214
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EXPLICIT CONVERGENCE 7

3. The comparison for the PDE-based filtering algorithms. We shall215

introduce two numerical algorithms, the direct method and Yau-Yau algorithm, to216

solve the SPDE (2.6). We shall start with the numerical implementations of the fully217

discrete scheme of mild SGM defined in (2.17). The fully discrete scheme of the mild218

SGM can naturally divide the computation into two parts which is summarized into219

follows.220

Lemma 3.1. Consider the numerical formulations of the fully discrete scheme in221

one step, i.e.,222

σtk+1
= S(τ)

[
σtk +

∫ tk+1

tk

B(σs) ◦ dys
]
,(3.1)223

where τ = tk+1 − tk. Then, (3.1) can be divided into two steps:224

1. (Update step): Solve the following SPDE with σ1(tk, x) := σtk as initial con-225

dition,226

(3.2) d(σ1(t, x)) = B(σ1(t, x)) ◦ dyt, t ∈ [tk, tk+1].227

2. (Diffusion step): Solve the following PDE with σ2(tk, x) := σ1(tk+1, x) as228

initial condition,229

(3.3) dσ2(t, x) = A(σ2(t, x))dt, t ∈ [tk, tk+1].230

The solution of (3.3) can be viewed as the σtk+1
.231

Proof. We take the differential of

[
σtk +

∫ tk+1

tk

∑m
j=1Bj(σs) ◦ dyjs

]
σ1(t, x) :=232

σ1(tk, x)e
h⊤(yt−ytk ) which yields updating step (3.2). According to Remark 2.5, S(τ)233

is the solution operator of (3.3). So, we finish the proof. □234

Remark 3.2. For DMZ equation (1.2), the update step in Lemma 3.1 can be solved235

explicitly, i.e.,236

d(σ1(tk, x)e
h⊤(yt−ytk )) = σ1(tk, x)d(e

h⊤(yt−ytk ))(Since σ1(tk, x) is fixed)

= σ1(tk, x)e
h⊤(yt−ytk )d(h⊤(yt − ytk))

= σ1(t, x)h
⊤ ◦ dyt (Since h is independent of time)

(3.4)237

Then, it is easy to see that σ1(tk, x)e
h⊤(yt−ytk ) is the solution of (3.2) when B(·) =238

h⊤(·). This is exactly the updating step of the direct method that appeared in [29, 6].239

Now, we find that the key to the numerical method of DMZ equation is how to240

calculate diffusion step.241

3.1. The closed-form solution of the diffusion step - The direct method.242

In this subsection, we shall introduce direct method which corresponds to closed-form243

solution of the diffusion step. At first, we shall list the important assumptions for244

direct method.245

Assumption 3.3 (Assumptions for direct method).246

1. Q is a positive-definite matrix with constant coefficients.247

2. There exists a function ψ, such that f −Q · ∇ψ is a linear function.248

3. 1
2 (
∑n
i,j=1(Qi,j)

∂2ψ
∂xi∂xj

− 2f⊤∇(ψ) +∇(ψ)⊤(Q)∇(ψ) − h⊤h +
∑n
i=1

∂fi
∂xi

) is a249

quadratic function w.r.t. x.250
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We can summarize the direct method appearing in the works [29, 5] into the251

following proposition.252

Proposition 3.4 (The framework of direct method, Theorem 3.2 and 3.3 [29]).253

Assume Assumption 3.3 holds. Using the transformation σ̃2,k(t, x) := σ2,k(t, x)e
−ψ(x),254

the diffusion step of direct method is equivalent to the following parabolic equation:255

(3.5) dσ̃2,k(t, x) = (e−ψ(x)L0e
ψ(x))σ̃2,k(t, x)dt t ∈ [tk, tk+1].256

For (3.5), the posterior density σ̃2,k(tk+1, x) is Gaussian if the initial value σ̃2,k(tk, x)257

is Gaussian. So, we can approximate σ̃2,k(tk, x) by a sum of Gaussian densities. We258

decompose the original PDE into several sub-PDEs with Gaussian initial conditions.259

So, there are two major directions to numerically solve (3.5) by the direct method.260

• The first one is to numerically solve the kernel function of semi-group of (3.5)261

explicitly.262

• The second one is to give explicit Gaussian approximation for any distribu-263

tion.264

And we shall summarize the current direct methods in the follows Table Table 1.265

Methods Systems Reference
General framework Time-invariant Yau filtering [36, 33, 15]
Kernel function Time-invariant Yau filtering [38]
Kernel function Time-varying Yau filtering [5]

Gaussian approximation Time-invariant Yau filtering [28]
Gaussian approximation Time-varying Yau filtering [6]

Table 1
The development of direct method

3.2. The general approximation of the diffusion step - The Yau-Yau266

algorithms. In this subsection, we shall introduce the Galerkin Yau-Yau algorithms.267

We summarise the current Galerkin Yau-Yau algorithms [22, 21, 10, 19] into the268

following proposition.269

Proposition 3.5 (The framework of Galerkin Yau-Yau algorithms in indepen-270

dent noises cases). The diffusion step of Yau-Yau algorithms is approximated by271

following three steps:272

1. We shall choose a N -dimensional function space SN ⊂ H where SN is spanned273

by orthogonal basis {ψj}Nj=1.274

2. Then we approximate σ2,k(t, x) by σ̄
(N)
2,k (t, x) :=

∑n
j=1 aj|k(t)ψj((x) where the275

{aj|k(t)}Nj=1 can be computed via the following ODEs,276

(3.6)
d

dt
aj|k(t) =

d

dt
⟨σ̄(N)

2 (t, x), ϕj(x)⟩ = B(σ̄(N)
2,k (t, x), ψj(x)),277

for ∀1 ≤ j ≤ N, t ∈ [tk, tk+1]. Here B(u, v) := − 1
2

∑n
i,j=1Qi,l

∂u
∂xi

∂v
∂xl

+278 ∑n
i=1

∂v
∂xi

fi(x)u(x)− 1
2h(x)

⊤h(x)uv is ⟨L0u, v⟩ after integrating by part. The279

initial condition for (3.6)280

(3.7) aj|k(tk) = ⟨σ2,k(tk, x), ψj(x)⟩,∀1 ≤ j ≤ N.281

3. Finally, we approximate the σ1(tk+1, x) by σ̄
(N)
2,k (tk+1, x).282
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EXPLICIT CONVERGENCE 9

The central idea of the Yau-Yau Galerkin algorithms is to project the posterior283

density function into a finite-dimensional subspace SN . However, there is a natural284

question that needs to be answered. How do we choose the basis functions ψj for SN?285

The choice of the basis functions will affect the performance of the Yau-Yau Galerkin286

algorithm. In Table 2, we summarize current Galerkin Yau-Yau algorithms.

Basis Functions Systems Dimension Reference
Generalized Hermite functions Time-varying framework [22]
Generalized Hermite functions Time-varying n = 1 [21]
Generalized Hermite functions Time-invariant n = 2 [32]

Legendre polynomial Time-varying n ≤ 2 [10]
Generalized Hermite functions Time-invariant n ≤ 6 [19]

Table 2
Different basis functions for SGM of Yau-Yau algorithms

287

3.3. Summary of two PDE filtering algorithm. The framework for de-288

composing density by Gaussian was detailed by Genovese and Wasserman [14], who289

derived a convergence rate in Hellinger distance expressed as ∥√p − √
pk∥L2(Ω) ≤290

C(logm)
1
4 /m

1
4 , where p is the density function of a bounded random variable, and291

pk is its optimal estimation in mixed k Gaussian densities, with k ∼ m
2
3 (logm)

2
3 .292

Despite the utility of Gaussian models in distribution analysis, selecting the right pa-293

rameters is challenging due to the limitations of conventional methods such as the EM294

algorithm [29, 27, 31]. To address these limitations, we propose the N -th truncated295

Gaussian approximation, which improves accuracy and parameter selection.296

Definition 3.6. Let p(x) ∈ H be a density function. (wi, pi)
N
i=1, where pi ∈ H297

is a Gaussian density and wi is the real number, is called the HN truncated Gaussian298

approximation of p(x), if
∑N
i=1 wiPNpi(x) minimizes the following expression:299

(3.8) (w∗
i , p

∗
i )
N
i=1 = arg min

wi∈R,pi
∥PNp(x)−

N∑
i=1

wiPNpi(x)∥H,300

where pi is Gaussian density. Here PN : H → HN is the projection operator and301

HN = ⟨ϕ1, · · · , ϕN ⟩.302

Next, we shall prove an important result on N order truncated Gaussian approxima-303

tion.304

Lemma 3.7. The HN truncated Gaussian approximation for p(x) is equivalent to305

Galerkin approximation in HN for p(x), i.e.,306

(3.9)

N∑
i=1

w∗
i PNp

∗
i (x) = PNp(x).307

Proof. Firstly, the Galerkin approximation in HN for PNp(x) is to find the optimal308

approximation for p(x) in HN . That is to minimize the following expression309

(3.10) u∗(x) = arg min
u(x)∈HN

∥p(x)− u(x)∥H.310

Obviously, the solution is u∗(x) = PNp(x), where PN : H → HN is the projection311

operator.312

This manuscript is for review purposes only.



10 J. KANG, X. CHEN AND S. S-T. YAU

The mixed Gaussian densities are dense inH (we provide a Theorem in the appen-313

dix for readers’ convenience.), so that their projections to HN are dense in HN for any314

N . Now, we can select a set of Gaussian (pi(x))
N
i=1 such that (PNpi)

N
i=1 are linearly in-315

dependent. Recall HN := ⟨ϕ1, · · · , ϕN ⟩ and we define the matrix Mi,j := ⟨PNpi, ϕj⟩H316

with i, j = 1, · · · , N , so that we have (PNp1, · · · , PNpN )⊤ = M(ϕ1, · · · , ϕN )⊤. M is317

an invertible matrix by linear independence of PNpi. So, we can represent the PNp318

by using the linear combination of (PNp1, · · · , PNpN )⊤. □319

Remark 3.8. In real applications, one may choose the different Gaussian densities320

for Gaussian approximation in each steps. However, no matter what kinds of Gaussian321

densities (p(x))Ni=1 we choose, the HN truncated Gaussian approximation yields the322

unique optimal result
∑N
i=1 w

∗
i PNp

∗
i (x) = PNp(x). So, according to Lemma 3.7, HN323

truncated Gaussian approximation can be viewed as a sort of N -th order Galerkin324

spectral approximation.325

From Remark 3.8, the direct method and Yau-Yau algorithms emerge as essential326

techniques for the DMZ equation. A unified approach to algorithm analysis for various327

PDEs can be achieved by introducing an N -th order Galerkin analysis framework, ne-328

cessitating the development of suitable Galerkin basis functions. Motivated by signal329

processing and principal component analysis [30], basis function selection for SPDEs330

(2.6) is guided by eigenvalue maximization in H. Initially, v∗1 = argmaxv∈H
⟨Av,v⟩H
⟨v,v⟩H331

is chosen. Subsequently, functions are selected orthogonal to preceding ones, with332

v∗N = argmaxv⊥VN−1,v∈H
⟨Av,v⟩H
⟨v,v⟩H , where VN−1 = span{v∗1 , . . . , v∗N−1}. These func-333

tions, v∗i = ϕi, based on the min-max principle, correspond to the first N eigenvalues.334

Galerkin convergence analysis utilizes HN , spanned by eigenvectors ϕ1, . . . , ϕN with335

eigenvalues λ1, . . . , λN .336

4. Convergence in spectral number and time discretization. We recall337

H as the Sobolev space Hd(Ω) for d ≥ 0, where Ω ⊂ Rn is bounded with smooth338

boundary. The mapping σ(t, x) : [0, T ] → H signifies the posterior density. Due to339

the equivalence of mild and weak forms [20], our focus is on the mild form of SGM340

(2.15). In this analysis, we elucidate the convergence of the filtering algorithm via341

spectral methods. Initially, we present the explicit convergence rate for fully discrete342

scheme of SGM, akin to the direct method with truncated Gaussian approximation343

and Galerkin Yau-Yau algorithms. Following, we examine the time discretization344

convergence rate for this scheme.345

4.1. Main Assumptions. According to Remark 2.6, we shall add an assump-346

tion for the growth of |λn|. If the Ω is bounded with smooth boundary and A is347

the Laplace operator, then we can use Weyl law [1] which describes the asymptotic348

behavior (polynomial growth) of eigenvalues of the Laplace operator. And the result349

has been extended to the case that the Ω is a bounded manifold and A is the ellip-350

tic operator [4]. So, we naturally introduce the following assumption which is also351

considered by several related papers [7, 3].352

Assumption 4.1. (Assumption of the diffusion step) Consider the filtering system353

(1.1) and the associated the DMZ equation (2.6). For the n-th eigenvalue λn of the354

unbounded operator A, we assume that355

(4.1) |λn| > Cnα, ∀n ≥ 1,356

where α and C are some positive numbers. And the eigenfunctions {ϕ1, · · · , ϕn, · · · }357

of A are the orthonormal basis for H.358
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EXPLICIT CONVERGENCE 11

Luo and Yau proposed the moving-window trick [22] to overcome the weakness359

of bounded Ω. Recall that
∑m
k=1 S

N (t− s)(Bk(σ(s))) appears in the mild form SGM360

(2.15). In what follows, the premise is that the operator Bk is Lipschitz and bounded361

in the norm ∥·∥HA
δ
defined in Definition 2.4. Such assumption is used in many related362

papers such as [3] [13], and [7].363

Assumption 4.2. (Assumption of the updating step) Consider the filtering system364

(1.1) and the associated DMZ equation (2.6). We shall assume {Bk}mk=1 are Lipschitz365

operators on H which means that366

(4.2)

m∑
k=1

∥(Bk(X1 −X2))∥H ≤ KB∥X1 −X2∥H for ∀X1, X2 ∈ H,367

where KB is some positive constant. Furthermore, we shall assume that {Bk}mk=1 are368

bounded operators in the fractional domain space HA
δ with δ > 0, i.e.,369

(4.3)

m∑
k=1

∥(Bk(X1))∥HA
δ
≤ KBδ

(1 + ∥X1∥HA
δ
), ∀X1 ∈ H,370

where KBδ is some positive constant.371

Proposition 4.3. Given the linear SPDE (2.6) under Assumption 4.2 for B,372

for initial condition σ0 ∈ HA
δ where 1 > δ > 0 and p ≥ 2, there exists a unique mild373

solution σ(t) satisfying follows,374

(4.4) sup
t∈[0,T ]

E[∥σ(t)∥pHA
s
] < C(p)(E[∥σ(0)∥pHA

s
] + 1),375

for all s ≤ δ. Furthermore, there exists a constant C depending on p, such that376

(4.5)
(
E
[
∥σ(t1)− σ(t2)∥pHA

s

]) 1
p ≤ C(p)|t1 − t2|min{ 1

2 ,δ−s},377

where t1, t2 ∈ [0, T ] and for all s ≤ δ.378

Proof. By using Theorem 1 in [16], we can know that, if Assumption 4.2 is satisfied,379

then a unique mild solution σ(t) exists. The equation (4.4) and (4.5) are proved in380

the regularity results of [17]. □381

4.2. The convergence analyses. In this section, C(a, b, c) denotes a constant382

depending only on a, b, c. We recall S(N)(t) = PNS(t)PN and HN is the linear space383

spanned by the eigenvectors consisting of the first N eigenfunctions of the operator384

A. The convergence analysis unfolds in three stages: (i) error analysis for the finite N385

Galerkin approximation (2.12), presented in Theorem 4.6; (ii) convergence analysis for386

the mild SGM’s fully discrete scheme (2.17), depicted in Theorem 4.8; and (iii) analysis387

of the Yau-Yau algorithm and direct method with truncated Gaussian approximation,388

pivotal to the fully discrete SGM schemes.389

4.2.1. Error analysis of Finite N Galerkin approximation. The aim of390

this subsection is to prove the convergence of the finite N Galerkin approximation391

(2.12) of (2.6), i.e. to prove Theorem 4.6. To complete the proof, we first need to392

give three lemmas. The first two lemmas are designed to estimate the error term393

of S(t)σ(0) − S(N)(t)σ(0). The proof rely on a special version of the Burkholder-394

Davis-Gundy (BDG) inequality [8]. Finally, we prove Theorem 4.6 below by using395

Gronwall’s inequality.396
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12 J. KANG, X. CHEN AND S. S-T. YAU

Lemma 4.4. Let A be the operator of the diffusion term in (2.6), and let HN be397

the linear space spanned by the eigenvectors consisting of the first N eigenfunctions398

of the operator A. If Assumption 4.1 is satisfied and δ > 0, then399

(4.6) |λN+1|δ∥(PN − I)X∥H ≤ ∥X∥HA
δ
, ∀X ∈ HA

δ , δ > 0,400

where PN is the projection operator from H to HN and I is the identity map.401

Lemma 4.5. Consider the DMZ equation (2.6). Let the initial condition be σ(0) ∈402

HA
δ with 0 < δ < 1. And both Assumption 4.1 and Assumption 4.2 are satisfied, then403

σ(N), the solution to (2.12), follows404

sup
t∈[0,T ]

E
[
∥S(N)(t)σ(N)(0)− S(t)σ(0)∥H

]
≤ C(S(t), δ)N−αδ∥σ(0)∥HA

δ
.(4.7)405

The proofs of Lemma 4.4 and Lemma 4.5 can be found in Appendix B.406

Theorem 4.6. Consider the filtering system (1.1) and associated DMZ equation407

(2.6). Assumption 4.1 and Assumption 4.2 are satisfied. Suppose that initial value408

σ(0) ∈ HA
δ with 0 < δ < 1, p ≥ 2 and σ(N) is the solution of (2.12), then there exists409

a constant C := C(KBδ
, S(t),KB , T, supt∈[0,T ] ∥σ(t)∥HA

δ
) such that410

(4.8) sup
t∈[0,T ]

(
E
[
∥σ(N)(t)− σ(t)∥pH

] ) 1
p ≤ CN−αδ.411

Proof. For any t ∈ [0, T ], we decompose the error between σ(N) and σ as follows412

(E∥σ(N)(t)− σ(t)∥pH)
1
p ≤ ∥S(N)(t)σ(N)(0)− S(t)σ(0)∥H

+

m∑
k=1

(
E
∥∥∥ ∫ t

0

(S(N)(t− s)Bk(σ
(N)(s)− σ(s))− (S(t− s)− S(N)(t− s))Bk(σ(s))) ◦ dys

∥∥∥p) 1
p

=: I1 + I2.

(4.9)

413

Next, we only need to estimate the I1, and I2. For the first term I1, it is bounded by414

using the same method that appears in (4.6),415

(4.10) I1(t) ≤ C(S(t))N−αδ∥σ(0)∥HA
δ
.416

Then, we shall transform I2 into Itô’s form which allows us to use BDG inequality in417

[8]. Now, we have418

I2 =
1

2

m∑
k=1

(
E

∥∥∥∥∫ t

0

(S(N)(t− s)(B2
k(σ

(N)(s)− σ(s)))ds

∥∥∥∥p
H

) 1
p

+

m∑
k=1

(
E

∥∥∥∥∫ t

0

(S(N)(t− s)(Bk(σ
(N)(s)− σ(s)))dys

∥∥∥∥p
H

) 1
p

=:J1 + J2

(4.11)419
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The J1 is dominated by three additional terms as follows:420

J1(t) ≤
1

2

m∑
k=1

{(
E
[ ∫ t

0

∥(S(t− s)(B2
k(σ

(N)(s)− σ(s)))∥pHds
]) 1

p

+
(
E
[ ∫ t

0

∥(S(N)(t− s)− S(t− s))(B2
k(PN − I)(σ(s)− σ(t))∥pHds

]) 1
p

+
(
E
[ ∫ t

0

∥(S(N)(t− s)− S(t− s))(B2
k(PN − I)(σ(t)))∥pHds

]) 1
p

}
=:J11 + J12 + J13.

(4.12)421

Then, we shall estimate them separately. Trivally, we have PN is a bounded operator.422

Together with Assumption 4.2, it yields423

(4.13) J11 ≤ C(S(t),KB)

∫ t

0

E[∥σ(N)(s)− σ(s)∥pH]
1
p ds.424

The term J12 can be bounded by applying Lemma 4.5 and Assumption 4.2. Then,425

we get426

J12 ≤1

2
KB

∫ t

0

(E[∥(S(N)(t)− S(t))(σ(s)− σ(t))∥pH])
1
p ds

≤1

2
KBC(S(t), δ)N

−αδ(

∫ t

0

E[∥(σ(s)− σ(t))∥pHA
δ

]ds)
1
p .

(4.14)427

According to Proposition 4.3, ∥σ(t)∥HA
δ
is bounded, so J12 can be bounded as428

J12 ≤C(S(t), δ,KB , ∥σ(0)∥HA
δ
, T )N−αδ.(4.15)429

With the same procedure, we can bound J13 as follows,430

(4.16) J13 ≤ C(S(t), δ,KB , ∥σ(0)∥HA
δ
, T )N−αδ.431

A combination of the estimates (4.13),(4.15) and (4.16) yields432

J1 ≤ C(S(t), δ,KB , ∥σ(0)∥HA
δ
, T )N−αδ + C(S(t),KB)

∫ t

0

E[∥σ(N)(s)− σ(s)∥pH]
1
p ds.

(4.17)

433

Next, we shall start to estimate the J2. First, we apply the BDG inequality in [8] and434

get435 (
E

∥∥∥∥∥
∫ t

0

m∑
k=1

(S(N)(t− s)(Bkσ
(N)(s))− S(t− s)(Bkσ(s)))dys

∥∥∥∥∥
p

H

) 1
p

≤

(
E[

∫ t

0

m∑
k=1

∥(S(N)(t− s)Bk(σ
(N)(s))− S(t− s)Bk(σ(s)))

2ds∥
p
2

H]

) 1
p

.

(4.18)436

We can notice that the right-hand side is a kind of the norm. Therefore, by employing437

the embedding relations of the Lp spaces and the triangle inequality, we can decompose438
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this term into three components,439

J2 ≤(

∫ t

0

m∑
k=1

E∥S(t− s)(Bk(σ
(N)(s)− σ(s)))∥pHds)

1
p

+(

∫ t

0

m∑
k=1

E∥(S(N)(t− s)− S(t− s))(BkPN (σ(s)− σ(t)))∥pHds)
1
p

+(

∫ t

0

m∑
k=1

E∥(S(N)(t− s)− S(t− s))(BkPN (σ(t)))∥pHds)
1
p

=: J21 + J22 + J23

(4.19)440

In a similar way as for J11, we can estimate the J21 by the boundness of S(t) and441

Assumption 4.2, i.e.,442

(4.20) J21 ≤ C(S(t),KB)(

∫ t

0

E∥σ(N)(s)− σ(s)∥pHds)
1
p .443

For J21, we can use the method in J12 and Lemma 4.5,444

J22 ≤C(S(t), δ)N−αδ(

∫ t

0

m∑
k=1

E∥(Bk(σ(s)− σ(t)))∥pHA
δ

ds)
1
p .(4.21)445

It is easy to see that446

m∑
k=1

∥Bk(σ(s)− σ(t))∥pHA
δ

≤ (

m∑
k=1

∥Bk(σ(s)− σ(t))∥HA
δ
)p

≤ (2KB · sup
t∈[0,T ]

∥σ(t)∥HA
δ
)p.

(4.22)447

Using (4.22), J22 can be bounded by448

(4.23) J22 ≤ C(S(t), δ,KB , T, ∥σ(0)∥HA
δ
)N−αδ.449

The estimate of J23 can be calculated as the same reason in J22, and we can obtain450

(4.24) J23 ≤ C(S(t), δ,KB , T, ∥σ(0)∥HA
δ
)N−αδ.451

Coming back to the (4.19), by using (4.20),(4.23) and (4.24) we conclude that452

J2 ≤
(
C(S(t),KB)(

∫ t

0

E∥σ(N)(s)− σ(s)∥pHds)
1
p

+C(S(t), δ,KB , T, ∥σ(0)∥HA
δ
)
)
N−αδ,

(4.25)453

where the last inequality holds, since (
∫ t
0
E∥σ(N)(s)−σ(s)∥2Hds)

1
2 ≤ (

∫ t
0
E∥σ(N)(s)−454

σ(s)∥pHds)
1
p . Now, we have finished estimating the I2. Combining the (4.17), (4.25),455

(4.10), (4.11) and back to (4.9), we have456

(E∥σ(N)(t)− σ(t)∥pH)
1
p ≤ C̃1(S(t), δ,KB , T, ∥σ(0)∥HA

δ
)N−αδ

+ C̃2(S(t),KB)(

∫ t

0

E∥σ(N)(s)− σ(s)∥pHds)
1
p .

(4.26)457
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Taking the p power for both sides and using mean-value inequality, we have458

E∥σ(N)(t)− σ(t)∥pH ≤ Ĉ1(S(t), δ,KB , T, ∥σ(0)∥HA
δ
, p)N−pαδ

+ Ĉ2((S(t),KB), p)(

∫ t

0

E∥σ(N)(s)− σ(s)∥pHds).
(4.27)459

Donating the e(t) := E∥σ(N)(t) − σ(t)∥pH and taking the differential for both side of460

(4.27), it yields d
dte(t) ≤ Ĉ2e(t). By standard Gronwall’s inequality, we have461

(4.28) e(t) ≤ C(S(t), δ,KB , T, ∥σ(0)∥HA
δ
)N−pαδ.462

So, we finally finish the proof. □463

4.2.2. Error analysis of the fully discrete scheme of mild SGM . This464

subsection is devoted to analyzing the error between the conditional density function465

σ(tk) and its approximation σ
(N)
tk

by the fully discrete scheme of the mild SGM. We466

first give a lemma which will be used later.467

Lemma 4.7. Consider the DMZ equation (2.6). Assumptions Assumption 4.1 and468

Assumption 4.2 are satisfied and with the initial condition σ(0) ∈ HA
δ where δ > 0,469

for any t ∈ [0, T ], there is470

m∑
k=1

∥(S(N)(t)− S(N)([t]τ ))PNBk(σ(s))∥H ≤ C(S(t), τ,KBδ
)(1 + ∥σ∥HA

δ
)τ δ,(4.29)471

where [t]τ := min {ti, ti ≥ t, i = 0, 1, · · · ,K} and ti = iτ, τ = T
K .472

Proof. Firstly,473

m∑
k=1

∥S(N)(t)− S(N)([t]τ )Bk(σ)∥H =

m∑
k=1

∥PN (I − S(t− [t]τ ))S([t]τ ))Bk(σ)∥H

≤ C(S(t), τ)(t− [t]τ )
δ
m∑
k=1

∥Bk(σ)∥2HA
δ

≤ C(S(t), τ,KBδ)τ δ(1 + ∥σ∥HA
δ
).

474

where the first inequality comes from the Lemma 2.3 and the second one is due to475

Assumption 4.2. □476

The main goal in this paper is to analyze the error between σ(tk) and σ
(N)
tk

. Now,477

we present the main results of this paper.478

Theorem 4.8 (Main Theorem). Let 0 < δ < 1, assume σ(0) ∈ HA
δ and that479

Assumptions Assumption 4.1 and Assumption 4.2 are satisfied. Given σ
(N)
tk

as the480

fully discrete schemes of mild SGM for (2.6), as defined in (2.17), then there exists a481

constant C := C(S(t),KB ,KBδ , T, ∥σ(0)∥HA
δ
) such that482

(4.30) sup
0≤k≤K

(E∥σ(tk)− σ
(N)
tk

∥pH)
1
p ≤ C(N−αδ + τmin{δ, 12}),483

where α is defined in the Assumption 4.1, and σ(t) is the solution of (2.6).484
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Proof. Using Theorem 4.6, and the triangle inequality, it suffices to prove that485

(4.31) sup
0≤k≤K

(E∥σ(N)(tk)− σ
(N)
tk

∥pH)
1
p ≤ Cτ δ.486

According to the scheme (2.17), we have487

σ
(N)
tk

=(S(N)(τ))kσ(N)(0) +

k−1∑
i=1

S(N)(iτ)

m∑
j=1

Bj(σ
(N)
tk−i

) ◦∆yjk,

=(S(N)(tk)σ
(N)(0) +

k−1∑
i=1

S(N)(iτ)

m∑
j=1

Bj(σ
(N)
tk−i

) ◦∆yjk,

(4.32)488

where (S(N)(τ))k = S(N)(kτ) holds since it is a semi-group. And we decompose the489

error between σ(N)(tk) and σ
(N)
tk

as490

(E∥σ(N)(tk)− σ
(N)
tk

∥pH)
1
p =

(
E
∥∥∥ k−1∑
i=0

m∑
j=1

∥∥∥∫ ti+1

ti

(
S(N)(tk − s)PNBj(σ

(N)(s))

− S(N)(tk − ti)PNBj(σ
N
i )
)
◦ dyjs

∥∥∥p
H

) 1
p

(4.33)491

The stratonovich stochastic integral in (4.33) can be transformed into Itô’s form.492

Then according to S(N) = S(N)PN and for any k = 1, · · · ,K, the error can be493

bounded by the triangle inequality,494

(E∥σ(N)(tk)− σNk ∥pH)
1
p ≤

1

2

(
E
∥∥∥ k−1∑
i=0

m∑
j=1

∫ ti+1

ti

S(N)(tk − s)B2
j (σ

(N)(s)− σNti )ds
∥∥∥p
H

) 1
p

+
(
E
∥∥∥K−1∑
i=0

m∑
j=1

∫ ti+1

ti

[(S(N)(tk − s)Bj(σ
(N)(s)− σNti )]dy

j
s

∥∥∥p
H

) 1
p

=: I1 + I2.

(4.34)495

Next, we only need to estimate the I1, and I2. For the first term I1 we can notice496

that the right-hand side is a kind of norm. By choose k = K, we get497

I1 ≤ 1

2

(K−1∑
i=0

∫ ti+1

ti

m∑
j=1

E∥(S(N)(ti+1 − s)− S(N)(ti+1 − ti))B
2
j (σ

(N)(s))∥pHds
) 1

p

+
1

2

(K−1∑
i=0

∫ ti+1

ti

m∑
j=1

(E∥S(N)(ti+1 − ti)B
2
j (σ

(N)(s)− σ(N)(ti))∥pHds
) 1

p

+
1

2

(K−1∑
i=0

∫ ti+1

ti

E∥S(N)(ti+1 − ti)B
2
j (σ

(N)(ti)− σNti ))∥
p
Hds

) 1
p

=: I11 + I12 + I13.

498
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By using Lemma 4.7, I11 is bounded as follows499

I11 ≤ C(S(t),KBδ)

(
K−1∑
i=0

∫ ti+1

ti

τ2δ(1 + ∥σ(N)∥HA
δ
)pds

) 1
p

= C(S(t),KBδ)τ δ

(∫ T

0

(1 + ∥σ(N)(s)∥HA
δ
)pds

) 1
p

≤ C(S(t),KBδ , ∥σ(0)∥HA
δ
, T )τ δ,

(4.35)500

where the last inequality holds due to (4.4). Then, we estimate I12, and we have501

I12 ≤ C(S(t),KB)

(
K−1∑
i=0

∫ ti+1

ti

E∥σ(N)(s)− σ(N)(ti)∥pHds

) 1
p

(4.36)502

According to (4.5) in Proposition 4.3, we get503

I12 ≤ C(S(t),KBδ , T, ∥σ(0)∥HA
δ
)τmin{δ, 12}

+ C(S(t),KB , T )

(
K−1∑
i=0

sup
s∈[ti,ti+1]

E∥σ(N)(ti)− σ
(N)
ti ∥pHτ

) 1
p

.
(4.37)504

Next, we shall estimate I13. By using Assumption 4.2, we have505

(4.38) I13 ≤ C(S(t),KB , T )

(
K−1∑
i=0

sup
s∈[ti,ti+1]

E∥σ(N)(ti)− σ
(N)
ti ∥pHτ

) 1
p

.506

Collecting the above estimations for I11, I12, I13 together, we have that507

Ip1 ≤ C1(S(t),KB ,KBδ , T, p)τpmin{δ, 12}

+ C2(S(t),KB , T, p)(

k−1∑
i=0

E∥σ(N)(ti)− σ
(N)
i ∥pHτ).

(4.39)508

To estimate I2, we utilize the BDG inequality in [8] and get509

I2 ≤ C(S(t),KB , T )

(
K−1∑
i=0

sup
s∈[ti,ti+1]

E∥σ(N)(s)− σ
(N)
ti ∥pHτ

) 1
p

≤ C(S(t),KB , T )

(
K−1∑
i=0

sup
s∈[ti,ti+1]

E∥σ(N)(s)− σ
(N)
ti ∥pHτ

) 1
p

(4.40)510

Let e(k) := E∥σ(N)(tk)− σ
(N)
tk

∥pH. Using (4.34), (4.39) and (4.40), we have511

e(k) ≤ C̃1(S(t),KB ,KBδ , T, p))τpmin{δ, 12} + C̃2(S(t),KB , T, p)(

k−1∑
i=0

e(i)τ).(4.41)512

And consider e(k + 1)− e(k), we get513

(4.42) |e(k + 1)− e(k)| ≤ τC̃2e(k).514
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Trivially, we can choose a constant C0 such that,515

(4.43) e(1) ≤ C0C̃1(S(t),KB ,KBδ , T, p))τpmin{δ, 12}eC̃2(S(t),KB ,T,p)τ .516

We construct a function

ê(k) := C0C̃1(S(t),KB ,KBδ , T ))eC̃2(S(t),KB ,T )τk.

If we assume that for any k < n the e(k) < ê(k) holds, then by (4.42), we have517

e(n+ 1) < |e(n+ 1)− e(n)|+ e(n) ≤ (1 + τC̃2)ê(n)

≤ eC̃2τ ê(n) = ê(n+ 1).
(4.44)518

So we prove e(k) ≤ ê(k) for any k by induction. Then,519

E∥σ(N)(tk)− σ
(N)
tk

∥pH ≤ ê(K) ≤ C(S(t),KB ,KBδ , T )τpmin{δ, 12}(4.45)520

So, we finish the proof. □521

Corollary 4.9 (Convergence results of the direct method and Galerkin Yau-522

Yau algorithm). Let 0 < δ < 1, assume that σ(0) ∈ HA
δ and the Assumption 4.1 and523

Assumption 4.2 are satisfied. σ1(tk, x) is one of the following:524

1. σ1(tk, x) is the numerical approximation of the direct method with N -th order525

truncated Gaussian approximation, which is defined in Proposition 3.4.526

2. σ1(tk, x) is the numerical approximation of Galerkin Yau-Yau algorithm with527

basis HN = ⟨ϕ1, · · · , ϕN ⟩, which is defined in Proposition 3.5.528

Then, there exists a constant C := C(S(t),KB ,KBδ , T, ∥σ(0)∥HA
δ
) such that529

(4.46) sup
0≤k≤K

(E∥σ(tk)− σ1(tk, x)∥pH)
1
p ≤ C(N−αδ + τmin{δ, 12}),530

where α is defined in Assumption 4.1, and σ(t) is the solution of (2.6).531

Proof of Corollary 4.9 The two types of σ1(tk, x) correspond to the fully discrete532

schemes of mild SGM. The proof is direct consequence of Theorem 4.8. □533

4.3. Numerical Experiments. In this subsection, we chose this model specif-
ically as other comparative algorithms [13, 41] cannot handle cubic sensor problems,
highlighting our method’s unique advantage. We implemented the Hermite Spectral
Yau-Yau algorithm [21, 32] with scaling factor 2.4637. All numerical experiments were
conducted in Python on a Mac Pro 2024 laptop. The system dynamics are defined
as: {

dxt = dVt, x0 ∼ σ0 = e−x
4

dyt = x3tdt+ dWt, y0 = 0

where dWt and dVt are scalar independent Brownian motion processes. We investi-534

gate the relationship between the convergence rate, the number of spectral functions535

N , and the time discretization step size τ . For evaluation metrics, we employ the536

commonly used Root Mean Square Error (RMSE) and Mean Absolute Error (MAE),537

defined as:538

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2, MAE =
1

N

N∑
i=1

|xi − x̂i|(4.47)539
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Fig. 1. RMSE and MAE via N

where xi represents the true state and x̂i represents the estimated state. All reported540

results are averaged over 100 Monte Carlo simulation runs. We conducted a parameter541

sweep over time steps τ = {0.01, 0.02, 0.04} and number of basis functions N =542

{2, 4, 8, 16, 32, 64, 128}, with total steps fixed at 1000. The theorem suggests an error543

bound of C(N−αδ+τmin{δ, 12}), where error decreases with increasingN and decreasing544

τ . The results are presented in Figure 1.545

As shown in Figure 1, our results confirm the theoretical predictions. We observe546

that for a fixed τ , increasing the number of basis functions N consistently reduces547

RMSE and MAE across all tested time steps, supporting the theoretical prediction of548

improved approximation with larger N . Conversely, when N is fixed, smaller values549

of τ (i.e., finer time discretization) lead to lower RMSE and MAE, aligning with550

expectations from our main theorem regarding the roles of N and τ .551

From the MAE perspective, performance improves monotonically with increasing552

N . However, RMSE exhibits a non-monotonic trend: while initially decreasing with553

larger N , it eventually plateaus or slightly increases, particularly noticeable at τ =554

0.04. This suggests the existence of an optimal N for each τ value. We observe555

that the optimal N values (N = 16 for τ = 0.04, N = 64 for τ = 0.02, N = 128556

for τ = 0.01) approximately follow the relationship N ∼ τ−
αδ
2 ≈ τ−1.05, which is557

consistent with our theoretical analysis.558

5. Conclusion. In this paper, we develop a convergence analysis framework559

specifically for the direct and Yau-Yau algorithms, further introducing convergence560

analyses concerning spectral number and time steps. Our findings reveal that, for561

smooth enough σ(t) ∈ Hδ, i.e. δ ≥ 0.5, the error upper bound for time discretization562

is of order 0.5, and the convergence speed for the spectral number is N−αδ. This563

implies a relationship between the time discretization step and the spectral number564

i.e. τ−
αδ
2 ≈ N , as corroborated by numerical experiments across a series of works, such565

as the direct method appeared in [29, 6] and Yau-Yau algorithms [22, 21, 32, 10, 19].566

Appendix A. Appendix for Section IV. Proof of Lemma 4.4 By Assump-567

tion 4.1, we know that (ϕi)
∞
i=1 is an orthogonal basis of H. So, we have568

(A.1) |λN+1|2δ∥(PN − I)X∥2H = |λN+1|2δ
∞∑

i=N+1

⟨X,ϕi⟩2.569
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We know that |λi| ≥ |λN+1| for i ≥ N + 1 from (2.11) and using the Definition570

Definition 2.4, we have571

|λN+1|2δ
∞∑

i=N+1

⟨X,ϕi⟩2 ≤
∞∑

i=N+1

|λi|2δ⟨X,ϕi⟩2

≤ ∥(−A)δX∥2H = ∥X∥2HA
δ
.

(A.2)572

So, we finish the proof. □573

Proof of Lemma 4.5 According to Lemma 4.4, we have574

(A.3) |λN+1|δ∥(PN − I)X∥H ≤ ∥X∥HA
δ
, ∀X ∈ HA

δ , δ > 0.575

Firstly,576

∥S(N)(t)σ(N)(0)− S(t)σ(0)∥H ≤ ∥S(t)σ(N)(0)− S(t)σ(0)∥H
+ ∥S(N)(t)σ(N)(0)− S(t)σ(N)(0)∥H
= ∥(PN − I)S(t)σ(0)∥H + ∥(PN − I)(S(t)PN )σ(0)∥H
≤ 2∥(PN − I)S(t)σ(0)∥H.

(A.4)577

According to Lemma 2.3, S(t) is the bounded operator. Combining (A.3), we get578

∥S(N)(t)σ(N)(0)− S(t)σ(0)∥H ≤ 2∥(PN − I)S(t)σ(0)∥H
≤ C(S(t))|λN+1|−δ∥σ(0)∥HA

δ

(A.5)579

Finally, the proof is completed by the estimation of |λN+1| in Assumption 4.1. □580
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