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EXPLICIT CONVERGENCE ANALYSES OF PDE-BASED
FILTERING ALGORITHMS *

JIAYI KANGT, XIUQIONG CHEN f, AND STEPHEN S.-T. YAU#

Abstract. The direct method and the Yau-Yau algorithm are two crucial filtering methods
in nonlinear filtering problems. Recently, a series of research works [22, 21, 32, 10, 19, 6, 28] in
these two methods have gained great success in nonlinear numerical experiments. Therefore, a key
issue is whether a general framework of convergence analyses can be developed for these numerical
algorithms based on partial differential equations. The contributions of this work consist of two
parts. The first one is that we set up a convergence analysis framework for the direct method and
the Yau-Yau algorithm, which can show the deep connections between these two methods. They
are different formulations of solving robust DMZ equation by reducing it to solve Yau-Yau PDE [2].
The second one is that we prove the explicit convergence rates of the Yau-Yau algorithm with the
spectral method and the direct method with Gaussian approximation, in terms of the numbers of
spectral basis and time steps.
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1. Introduction. Nonlinear filtering has always played an important role in
both commercial and military industries. Given the noisy observation data, the aim
of the filtering problem is to find the best estimate of the unknown state. After many
years of study, the discrete-time filtering problem can be unified inside the Bayesian
filtering framework. With the development of filtering sensors, the time interval of
data acquisition becomes shorter and shorter, and the continuous filtering model can
better adapt to such changes than the discrete model. A continuous-time filtering
system can be given as follows,

dry = f(x)dt + gv (z,)d V4,

where x; is some n-dimensional vector, y; is some m-dimensional vector, the functions
FO) R - R™ gy (-) : R™ — R™ ™ are all assumed to be the Lipschitz and smooth,
and A(-) : R™ — R™ is assumed to be smooth and the density function of the initial
state zo is oo(z). The {Vi}i>0 and {W;},>0 processes are independent Brownian
motions and their covariance matrices are E[dV;dV,"] = I,dt and E[dW;dW, ] =
ILdt.

Given the sequential observations {ys}zzo, we define the o-algebra ), generated
by the {ys|0 < s < t}, i.e., Vi :=o({ys|0 < s <t}). For any given function ¢, we are
interested in computing the conditional expectation E[p(x+)|V:], which is the optimal
estimate of ¢(x;) in the minimum mean square error sense. In the 1960s, Duncan,
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2 J. KANG, X. CHEN AND S. S-T. YAU

Mortensen, and Zakai independently derived Duncan-Mortensen-Zakai (DMZ) equa-
tion [11, 24, 40], which is satisfied by the unnormalized conditional density of the state
in filtering system with independent noises. Let Q(x) := gy (z)gy (¥) and we denote
o as Stratonovich integral in this paper. The unnormalized density function o(t, z) of
x; conditioned on the observation history ); satisfies the following DMZ equation:

(1.2)

{da(t, ) = Loo(t,z)dt + hT (z)o(t, z) o dy,,
0(0,z) = oo(x),

where

13) L= 5 > axlax] (Quj(a Zaxl (i) 4) = 3h(a)Th(@) - (5).

5,j=1

Generally speaking, the DMZ equation is hard to solve. In the 1980s, Davis considered

this problem and proposed a type of measure transformation that converts the DMZ
equation, a type of stochastic partial differential equation (SPDE), into a partial
differential equation (PDE) with stochastic coefficients, which is also referred to as
the Robust DMZ equation [9]. The stability of robust DMZ equation is proved in detail
in 2000 by Yau and Yau [37]. For some special DMZ equations, the direct method can
be used to solve them. The direct method was introduced in [35] and generalized in
[36, 33, 15]. However, they all need to assume the observation function h(z) is linear.
Then, in 2003 , Yau and Lai solved the DMZ equation by transforming it into a series of
ordinary differential equations (ODEs) when the initial distribution is Gaussian, which
provided an important foundation for the following developments of direct methods
[34]. Recently, Shi and Yau [29] designed an effective numerical method for time-
invariant filtering problems by using the direct method and Gaussian approximation
algorithm [29]. And soon, this work was extended to time- varying cases in [6]. As for
solving the general DMZ equation, Yau and Yau, in 2008, developed a new algorithm
called Yau-Yau algorithm to solve the “pathwise-robust” DMZ equation for the time-
invariant system, and it has been proved theoretically that the Yau-Yau algorithm will
converge to the true solution, as long as the growth rate of the observation function
h(zx) is greater than that of the drift function f(x) [39]. However, other advances in
spectral methods [13], splitting-up method [41, 18] and kernel method [25] can only be
established under the condition where h grows linearly or even bounded, whereas the
Yau-Yau method has a broader range of applicability. Later, Luo and Yau generalized
the “Yau-Yau” algorithm to the “time-varying” case [22, 21]. In 2020, Dong proposed
to use the Legendre spectral method to solve the Yau-Yau algorithm [10]. Starting
in 2019, a series of tensor algorithms are proposed to numerically implement higher
dimensional Yau-Yau algorithms [32, 19].

In earlier publications [22, 21, 32, 10, 19, 5, 6, 28], the (PDE-based) filtering al-
gorithms, such as the direct method and Galerkin Yau-Yau algorithm, demonstrated
excellent numerical efficiency. Such a PDE-based filtering framework combines fil-
tering algorithms and PDE solvers together. So, it is valuable to study the explicit
convergence rate of this framework. The PDE-based numerical algorithms of solv-
ing the robust DMZ equations consists of two iterative steps: updating the initial
value function and solving the Kolmogorov PDE. In the previous works [22, 10], the
convergence analyses were focused on the forward Kolmogorov equation. However,
there are no studies focused on the explicit convergence rate of the complete Yau-Yau
algorithm and direct method.
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EXPLICIT CONVERGENCE 3

So in this work, we start to formulate a suitable Galerkin spectral method for DMZ
equation. Then, we calculate the explicit convergence rate of the Yau-Yau algorithm
and the direct method. The technical approach of this paper has its roots in the
stability and convergence of SPDE. The error analyses in this paper are motivated by
several related papers such as [3], and [13].

The main contributions of this paper are listed as follows:

1. We proposed a truncated Gaussian approximation so that the direct method
with N-th truncated Gaussian approximation can be viewed as a sort of
Galerkin Yau-Yau algorithm according to Remark 3.8.

2. In Section 4, we proved the explicit convergence rate of global error expecta-
tion of the direct method with truncated Gaussian approximation and spec-
tral Yau-Yau algorithm which is given in Theorem 4.8.

3. In Section 4, we develop a framework of the convergence analyses of the direct
method with N-th truncated Gaussian approximation and spectral Yau-Yau
algorithm, which is given in Corollary 4.9

In the rest of the paper, we assume that H with the inner product (-,-)% is
the Sobolev space H™(Q2) for some m > 0, (u,v)gmq) = fﬂzlalém D*uD*v dzx
with o as a multi-index denoting the order of derivatives and 2 C R” is a bounded
domain with smooth boundary [12] And (L(H), ||-||z(x)) denotes the space of bounded
linear operators mapping from H to H, and ||A[|z() = Sup,eyn HII\?TILH' In section
2, we shall give some preliminary knowledge of the semi-group theory and different
representations of SPDE. In section 3, we shall summarize the current PDE-based
filtering algorithms. Finally, the main convergence results are given in section 4.

2. Preliminary knowledge.

2.1. Basics of Semi-group. At the beginning of this section, we shall introduce
several important facts in semi-group theory.

DEFINITION 2.1. [26] A Cy semi-group (S(t))i>0 on H is a family of operators
in L(H) satisfying S(0) =1, S(t+ s) = S(¢)S(s) for all s,t >0, and t — S(t)f is a
continuous H-valued function for all f € H. The subset D(A) C H is defined by

D(A) := {f €M :lim % exists in H} ;

t—0

and we can define Af := lim;_,q %, for f € D(A). D(A) should be a dense set

in H. And A : D(A) C H — H is the infinitesimal generator of Cy semi-group S(t).

For any positive integer n, (—A)"™ can be determined trivially. Next, we shall
introduce the fractional power of (—A)° with § > 0.

DEFINITION 2.2. (The fractional power of —A [23])
Let 6 > 0 and § ¢ N. Then, there exists an ng € N such that ng > § > ng — 1, if
¢ € D(A™), then

1 ol gk
(2.1) (—A)°¢ = r(-a)/o o1 lS(t) - k;‘) HA’“

where T'(+) is the gamma function.

pdt,

Then, we shall introduce the important smoothing properties of the semi-group.

LEMMA 2.3. (Smoothing properties of the semi-group [20])

This manuscript is for review purposes only.
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4 J. KANG, X. CHEN AND S. S-T. YAU

Let 6 > 0 and 0 < v < 1, then there exists a constant C > 0 such that
(2.2) I(=A)°S ()l ey < CE0, [(=A) (I = St ey < CF,
forv t>0.

In the rest of the paper, we suppose the spectrum of A consists only of eigen-
values (A,)22; C (—00,0). In Remark 2.6 in Section 2.2, we shall explain why this
assumption is reasonable. Assume ()22, is ordered such that A\,;1 < A, for all
n € N and let ¢,, be the eigenvector corresponding to A,. We further assume that
{1, n,...} is a basis of H. According to [23], for any & > 0, if (—A)%¢ exists,
we can rewrite the equation (2.1) as

(23) (A6 =D [Aal’ (6, dn) 1n-

n=1

DEFINITION 2.4 (The fractional domain space [23]). Let 6 > 0, the fractional
domain space 7—[34 is defined as

(2.4) My = {¢ €M, Y Il (b, 6n)F < oo} :
n=1

Furthermore, there is a natural inner product structure for 7—[34, which is

(2.5) (@) pp = D Al (0, Sn)a (W, Sn)us Vo, € D((—A)°).

n=1
So we define the norm ||¢[|5,4 = Y2074 [Aal?(p, ¢n)3,. In view of equation (2.3),
5
[@ll2a = I(=A)°@lls holds for¥ ¢ € D((—A)°).
For more details on this topic, we offer some references such as [26, 20].

2.2. DMZ equation. We shall focus on the following linear SPDE:
(2.6) do(t,x) = A(o(t,z))dt + B(o(t,z)) o dy;.
For the system with independent noises,
A() = Lo(-) and B(-) := ()h'".

We shall denote B = (B;)"™, and y; = (y)™,. For the SPDE (2.6), we assume that
A is the generator of some Cj semi-group (S(t))¢>0 [20]. For 0 < s < t with fixed ¢,
we consider the differential S(t — s)o (s, z),

(2.7) d(S(t —s)o(s,z)) = —A(S(t — s)o(s,x))ds + S(t — s)do(s,x),
and we use equation (2.6) for do(s,x), which yields
d(S(t—s)o(s,z)) = —A(S(t — s)o(s,z))ds
(2.8) + A(S(t — s)o(s,x))ds + S(t — s)B(o(s,x)) o dys
= S(t —s)B(o(s,x)) o dys.
Integrate both sides of (2.8), we get

(29)  S(O)0(t) = o(t,2) = S(t)o(0,2) + / S(t — 5)B(o(s,)) o dy,,

where S(0) = I is the identity operator.

This manuscript is for review purposes only.
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EXPLICIT CONVERGENCE 5

Remark 2.5. For a simple case, if we assume B in (2.6) is a zero-operator in (2.6),
then the SPDE (2.6) can be simplified as a PDE

(2.10) do(t,z) = A(c(0,x))dt.

We can find that (2.9) can be simplified as o(¢,2) = S(t)o(0,x). So, the semi-group
can be used as the solution operator for a parabolic PDE.

Remark 2.6. In this paper, we assume that the eigenvalues of A are of the follow-
ing order:

(2.11) 00 < < Ape- < A <0

Let ¢, denote the eigenvector corresponding to A,. It needs to be pointed out that
if A1 > 0, we can use the transformation &(¢,x) := e~ "o (t,z) with n > X;. Observe
that the normalized density functions of 6 (¢, 2) and o(t, z) are the same. (¢, z) obeys
the following SPDE

do(t,x) = A(6(t,x)) —no(t,z) + B(6(t,x)) o dy,

which means that A := A — 7 and the eigenvalues of A associated with &(t,z) are
negative. Therefore, for DMZ equation (2.6), it is reasonable to assume that (2.11)
holds.

2.3. The spectral Galerkin method (SGM) . In general, we cannot directly
calculate the explicit solution of a SPDE, since solving it is an infinite-dimensional
problem. Galerkin method was proposed to truncate the SPDE as a finite-dimensional

differential equation. The SGM is one of the most standard methods for truncated
SPDE and PDE problems.

Let us use Hy := (¢1, -+ ,¢n) to represent the linear space spanned by the
eigenvectors ¢, - ,¢n with corresponding eigenvalue A1,---,Ay. For simplicity,
we shall further assume {¢1, -+ ,dn} is orthonormal. And Py : H — Hy is the

orthogonal projection from H into H . In the rest of this paper, we shall omit the z
in o(t,z) for simplicity.

DEFINITION 2.7 (Finite N Galerkin approximation [3, 13]). The finite N Galerkin
approzimation of (2.6), which is defined as o) (t,z) = Zfil a;(t)p;(x) with a;(-) €
L2([0,T]) N C[0,T), is defined by the following SPDE,

(2.12) do ™M (s) = AMe M (5)ds + Y~ Py (Bjo N (s)) o dy],
j=1
where o) (0) := Pyo(0) and AN) := Py APy.

In the rest of this subsection, we shall analyze the three forms of finite N Galerkin
approximation.

2.3.1. The weak form of the SGM. The weak form is obtained by solving
the following equation, for k = 1,--- , N, let a;(t) = (c™)(t), ¢s(2)) 3 -
We multiply both sides of (2.12) by ¢; and integrate them, which yields

(0™ (1), 6i(x)) s = (0(0), diren + / (AN (5), 65(2)) 30 ds

t m
+ / S Py B; (00(s), i)t 0 il
(R

This manuscript is for review purposes only.
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6 J. KANG, X. CHEN AND S. S-T. YAU

We observe that (AM o) (s), ¢i(2))ay = ai(s)(ANi(2), ¢i(2))my = Aia(s) ,and
(PyBj(cM(s)), ¢i)ay = (Bij(e™(s )) Pno¢i)uy, since Py is self-adjoint operator.
So we have

(2.13) cmw=<<>@mN+A/lu<m+/ B (0™ (s)), i) 0 dys.

We shall call (2.13) the weak form of the SGM of (2.6).

2.3.2. The mild form of the SGM. In the standard theory of SPDE, the
weak form solution is equal to the mild form solution. We shall consider the semi-
group S (t) which can be viewed as the projection of S(t) onto Hy, i.e., SN (t) :=
PnS(t)Py. For 0 < s < t with fixed ¢, we consider the differential SV)(t — 5)aN)(s)
by using the same method in (2.8), and obtain

d((S™N)(t = 5)0™ (s))
= —(A(N))(S(N)(t —5)o™(s))ds + ST (t — 5)do™) (s)

—Z%M (B0 ™) (s)) o dy.

(2.14)

where we use the fact S(N)(t — s)Py = SWV)(t — s) since P3 = Py. Integrate both
sides of (2.14) on [0, ¢], which yields

@15 o™M(t) = SMHa™(0 ‘/Zﬂm $)(Bjo™)(s)) o dyl.

(2.15) is the mild form of the SGM for (2.6). Generally, the mild solution and weak
solution are equivalent. For more general cases on this topic, please refer to [20] for
details.

2.3.3. Fully discrete scheme of the mild SGM. We shall consider a suitable

time discretization 0 =tg <t; < ---<t; =T with [ € Z*, where t;, = k7, 0 < k <
and 7 = T. Considering (2.15) on [ty, ty41], we get

tht1 .
(2.16) o™ (teg1) = SN (7)oM) (1) +/ ZS(N) thir — 8)(Bjo ™M (s)) o dyl,

tr j=1

where 0 < k <[ —1.
However, there is no explicit form of the integration in (2.16). Motivated by the

(V)

Euler scheme since 7 is small, we shall define o, as an approxnnatlon of a(M)(t,)

at time . So, the fully discrete scheme of mild SGM th_ is defined in the following
iterative equation,

k1 T

§ |
o) = S (ot + 5N (7) / 3 Bilelt) o]

(2.17) N m
1
= sM(r { (N>+/ ’ (N))odyi},

where at = Pyoy. Similar to (2.17), we can construct a recursive equation for oy, .

This manuscript is for review purposes only.
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3. The comparison for the PDE-based filtering algorithms. We shall
introduce two numerical algorithms, the direct method and Yau-Yau algorithm, to
solve the SPDE (2.6). We shall start with the numerical implementations of the fully
discrete scheme of mild SGM defined in (2.17). The fully discrete scheme of the mild
SGM can naturally divide the computation into two parts which is summarized into
follows.

LEMMA 3.1. Consider the numerical formulations of the fully discrete scheme in
one step, t.e.,

(3.1) Otyrr = S(7) [atk + /tHl B(os) o dys],

tr

where T = tgy1 — ti. Then, (3.1) can be divided into two steps:
1. (Update step): Solve the following SPDE with o1(ty,x) := oy, as initial con-
dition,

(3.2) d(o1(t,x)) = B(o1(t,x)) o dys, t € [tk, tkt1]-

2. (Diffusion step): Solve the following PDE with oa(tk,z) = o1(tg+1,2) as
initial condition,

(3.3) doo(t,z) = A(oa(t,x))dt, t € [tk, tpt1].
The solution of (3.3) can be viewed as the oy, , .

Proof. We take the differential of |oy, + ftt:+1 Z;n:l Bj(os) o dyl| o1(t,z) =

o1 (tg, x)ehT(yffytk) which yields updating step (3.2). According to Remark 2.5, S(7)
is the solution operator of (3.3). So, we finish the proof. O
Remark 3.2. For DMZ equation (1.2), the update step in Lemma 3.1 can be solved
explicitly, i.e.,
d(oq (tk,m)ehT(y‘_y‘k)) =0 (tk,x)d(ehT(y‘_y‘k))(Since o1(tg, x) is fixed)
B4 =oite,w)e" VBT (g~ )
= o1(t,z)h " ody; (Since h is independent of time)

Then, it is easy to see that o4 (tk,x)ehT(yt_ytk) is the solution of (3.2) when B(:) =
hT(-). This is exactly the updating step of the direct method that appeared in [29, 6].

Now, we find that the key to the numerical method of DMZ equation is how to
calculate diffusion step.

3.1. The closed-form solution of the diffusion step - The direct method.
In this subsection, we shall introduce direct method which corresponds to closed-form
solution of the diffusion step. At first, we shall list the important assumptions for
direct method.

Assumption 3.3 (Assumptions for direct method).
1. @ is a positive-definite matrix with constant coefficients.
2. There exists a function v, such that f — @ - V4 is a linear function.
n 2 n SN .
3. 3(X0 21 Qi) 5o =2/ V(W) + V()T (QV(W) —hTh+ 31, §) s a

quadratic function w.r.t. x.

This manuscript is for review purposes only.



8 J. KANG, X. CHEN AND S. S-T. YAU

We can summarize the direct method appearing in the works [29, 5] into the
following proposition.

PROPOSITION 3.4 (The framework of direct method, Theorem 3.2 and 3.3 [29)]).
Assume Assumption 3.3 holds. Using the transformation &5y (t, ) := o9 1, (t, x)e ¥,
the diffusion step of direct method is equivalent to the following parabolic equation:

(3.5) Ao i (t,2) = (e Y@ Loe¥ @) Gg 1 (t, 2)dt t € [ty tpyi]-

For (3.5), the posterior density &4, (tp+1, ) is Gaussian if the initial value &2, (tx, x)
is Gaussian. So, we can approximate &o (i, x) by a sum of Gaussian densities. We
decompose the original PDE into several sub-PDFEs with Gaussian initial conditions.

So, there are two major directions to numerically solve (3.5) by the direct method.
e The first one is to numerically solve the kernel function of semi-group of (3.5)
explicitly.
e The second one is to give explicit Gaussian approximation for any distribu-
tion.
And we shall summarize the current direct methods in the follows Table Table 1.

Methods Systems Reference
General framework Time-invariant Yau filtering | [36, 33, 15]
Kernel function Time-invariant Yau filtering [38]
Kernel function Time-varying Yau filtering [5]
Gaussian approximation | Time-invariant Yau filtering [28]
Gaussian approximation | Time-varying Yau filtering [6]
TABLE 1

The development of direct method

3.2. The general approximation of the diffusion step - The Yau-Yau
algorithms. In this subsection, we shall introduce the Galerkin Yau-Yau algorithms.
We summarise the current Galerkin Yau-Yau algorithms [22, 21, 10, 19] into the
following proposition.

PROPOSITION 3.5 (The framework of Galerkin Yau-Yau algorithms in indepen-
dent noises cases). The diffusion step of Yau-Yau algorithms is approximated by
following three steps:

1. We shall choose a N -dimensional function space Sy C H where Sy is spanned
by orthogonal basis {wj};\[:l

2. Then we approzimate o3 (t, ) by Eré k) (t,z) = Z?:l a;jii(t);((xz) where the
{aj|k(t)}§y:1 can be computed via the following ODEs,

d d

(36)  Za() = (05" (t.2).¢(x)) = B(c‘ré{i><t7x>,¢j<x>>,

for Vl < Jj < Nt € [ty tya]. Here B(u,v) == =333 1Q”6d;t 38;:}, +
S da: L f;(x)u(z) — 2h(z) Th(z)uv is (Lou,v) after mtegmtmg by part. The
initial condition for (3.6)

(3.7) aj|k(tk) = <O’27k(tk,$),¢j($)>,V1 <j<N.

3. Finally, we approzimate the oq(tgs1,2) by 551\]? (tgt1,).

This manuscript is for review purposes only.
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EXPLICIT CONVERGENCE 9

The central idea of the Yau-Yau Galerkin algorithms is to project the posterior
density function into a finite-dimensional subspace Sy. However, there is a natural
question that needs to be answered. How do we choose the basis functions ¢; for Sy?
The choice of the basis functions will affect the performance of the Yau-Yau Galerkin
algorithm. In Table 2, we summarize current Galerkin Yau-Yau algorithms.

Basis Functions Systems Dimension | Reference
Generalized Hermite functions | Time-varying | framework [22]
Generalized Hermite functions | Time-varying n=1 [21]
Generalized Hermite functions | Time-invariant n=2 [32]

Legendre polynomial Time-varying n <2 [10]
Generalized Hermite functions | Time-invariant n<6 [19]
TABLE 2

Different bastis functions for SGM of Yau-Yau algorithms

3.3. Summary of two PDE filtering algorithm. The framework for de-
composing density by Gaussian was detailed by Genovese and Wasserman [14], who
derived a convergence rate in Hellinger distance expressed as [|\/p — v/Pkllr20) <
C(log m)% / m#, where p is the density function of a bounded random variable, and
pi is its optimal estimation in mixed k Gaussian densities, with k ~ m%(log m)§
Despite the utility of Gaussian models in distribution analysis, selecting the right pa-
rameters is challenging due to the limitations of conventional methods such as the EM
algorithm [29, 27, 31]. To address these limitations, we propose the N-th truncated
Gaussian approximation, which improves accuracy and parameter selection.

DEFINITION 3.6. Let p(z) € H be a density function. (w;,p;)Y.,, where p; € H
is a Gaussian density and wZ is the real number, is called the Hy truncated Gaussian
approximation of p(x), sz _, wiPyp;(x) minimizes the following expression:

(38) ( 17pz) =1 = aIg Henn |PNp szprz |3‘-[a

where p; is Gaussian density. Here Py : H — Hpn is the projection operator and
HN = <¢17"' >¢N>

Next, we shall prove an important result on N order truncated Gaussian approxima-
tion.

LEMMA 3.7. The Hy truncated Gaussian approzimation for p(x) is equivalent to
Galerkin approximation in Hy for p(x), i.e.,

N
(3.9) Z w; Pnp; (v) = Pyp(z).

Proof. Firstly, the Galerkin approximation in Hy for Pyp(z) is to find the optimal
approximation for p(z) in Hy. That is to minimize the following expression

(3.10) u'(z) = arg (n)lm Ip(x) = u()[l3

Obviously, the solution is v*(z) = Pyp(z), where Py : H — Hy is the projection
operator.
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The mixed Gaussian densities are dense in H (we provide a Theorem in the appen-
dix for readers’ convenience.), so that their projections to H are dense in Hy for any
N. Now, we can select a set of Gaussian (p;(z))Y.; such that (Pyp;)Y; are linearly in-
dependent. Recall Hy := (¢1,--- ,¢n) and we define the matrix M; ; := (Pyp;, ¢j)n
with 4,5 = 1,---, N, so that we have (Pyp1, -, Pnpn)"T = M(¢1,--- ,én) . M is
an invertible matrix by linear independence of Pyp;. So, we can represent the Pyp
by using the linear combination of (Pypy,--- , Pnpn) . O

Remark 3.8. In real applications, one may choose the different Gaussian densities
for Gaussian approximation in each steps. However, no matter what kinds of Gaussian

densities (p(z))Y; we choose, the Hy truncated Gaussian approximation yields the

unique optimal result vazl w; Pnpf(z) = Pyp(z). So, according to Lemma 3.7, Hy
truncated Gaussian approximation can be viewed as a sort of N-th order Galerkin
spectral approximation.

From Remark 3.8, the direct method and Yau-Yau algorithms emerge as essential
techniques for the DMZ equation. A unified approach to algorithm analysis for various
PDEs can be achieved by introducing an N-th order Galerkin analysis framework, ne-
cessitating the development of suitable Galerkin basis functions. Motivated by signal
processing and principal component analysis [30], basis function selection for SPDEs

(2.6) is guided by eigenvalue maximization in H. Initially, v = arg max,cx %
is chosen. Subsequently, functions are selected orthogonal to preceding ones, with
VN = argmaXy | Vy_,vek %fi{;ﬁ{“, where Vy_1 = span{v],...,v5_;}. These func-

tions, v} = ¢;, based on the min-max principle, correspond to the first IV eigenvalues.
Galerkin convergence analysis utilizes H, spanned by eigenvectors ¢1, ..., ¢y with
eigenvalues A1,..., AN.

4. Convergence in spectral number and time discretization. We recall
H as the Sobolev space H%(Q) for d > 0, where  C R” is bounded with smooth
boundary. The mapping o(¢,z) : [0,7] — H signifies the posterior density. Due to
the equivalence of mild and weak forms [20], our focus is on the mild form of SGM
(2.15). In this analysis, we elucidate the convergence of the filtering algorithm via
spectral methods. Initially, we present the explicit convergence rate for fully discrete
scheme of SGM, akin to the direct method with truncated Gaussian approximation
and Galerkin Yau-Yau algorithms. Following, we examine the time discretization
convergence rate for this scheme.

4.1. Main Assumptions. According to Remark 2.6, we shall add an assump-
tion for the growth of |A,|. If the © is bounded with smooth boundary and A is
the Laplace operator, then we can use Weyl law [1] which describes the asymptotic
behavior (polynomial growth) of eigenvalues of the Laplace operator. And the result
has been extended to the case that the €2 is a bounded manifold and A is the ellip-
tic operator [4]. So, we naturally introduce the following assumption which is also
considered by several related papers [7, 3].

Assumption 4.1. (Assumption of the diffusion step) Consider the filtering system
(1.1) and the associated the DMZ equation (2.6). For the n-th eigenvalue \,, of the
unbounded operator A, we assume that

(4.1) [An| > Cn®, ¥n >1,

where « and C' are some positive numbers. And the eigenfunctions {¢1, -+, dpn, -+ }
of A are the orthonormal basis for H.
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EXPLICIT CONVERGENCE 11

Luo and Yau proposed the moving-window trick [22] to overcome the weakness
of bounded €. Recall that ;" ; SN (t — s)(Bk(c(s))) appears in the mild form SGM
(2.15). In what follows, the premise is that the operator By is Lipschitz and bounded
in the norm ||-||3,a defined in Definition 2.4. Such assumption is used in many related

papers such as [3] [13], and [7].

Assumption 4.2. (Assumption of the updating step) Consider the filtering system
(1.1) and the associated DMZ equation (2.6). We shall assume {By},-, are Lipschitz
operators on H which means that

(4.2) Z (Be(X1 — Xo))|ln < Kpl| X1 — Xa3 for VX1, Xy € H,

where Kp is some positive constant. Furthermore, we shall assume that {By},-, are
bounded operators in the fractional domain space H(‘;‘ with § > 0, i.e.,

(4.3) Z (Br(X)) g < Ky, (14 [ X1ll30), VX1 €H,

where Kpgs is some positive constant.

PROPOSITION 4.3. Given the linear SPDE (2.6) under Assumption 4.2 for B,
for initial condition oy € 7—[34 where 1 > 8 > 0 and p > 2, there exists a unique mild
solution o(t) satisfying follows,

(4.4) sup Ef[lo(t)]5,.4] < C(p)(E[llo(0)[5,4] + 1),

t€[0,T]

for all s < 6. Furthermore, there exists a constant C' depending on p, such that

1

(4.5) (E [||0(t1) - (-,r(152)||§;£?])5 < C(p)lts — tQ‘min{%,szs}v

where t1,ta € [0,T] and for all s <.

Proof. By using Theorem 1 in [16], we can know that, if Assumption 4.2 is satisfied,
then a unique mild solution o(t) exists. The equation (4.4) and (4.5) are proved in
the regularity results of [17]. O

4.2. The convergence analyses. In this section, C(a, b, c) denotes a constant
depending only on a,b,c. We recall S(N) () = Py S(t)Py and Hy is the linear space
spanned by the eigenvectors consisting of the first IV eigenfunctions of the operator
A. The convergence analysis unfolds in three stages: (i) error analysis for the finite N
Galerkin approximation (2.12), presented in Theorem 4.6; (ii) convergence analysis for
the mild SGM’s fully discrete scheme (2.17), depicted in Theorem 4.8; and (iii) analysis
of the Yau-Yau algorithm and direct method with truncated Gaussian approximation,
pivotal to the fully discrete SGM schemes.

4.2.1. Error analysis of Finite N Galerkin approximation. The aim of
this subsection is to prove the convergence of the finite N Galerkin approximation
(2.12) of (2.6), i.e. to prove Theorem 4.6. To complete the proof, we first need to
give three lemmas. The first two lemmas are designed to estimate the error term
of S(t)a(0) — SM(t)a(0). The proof rely on a special version of the Burkholder-
Davis-Gundy (BDG) inequality [8]. Finally, we prove Theorem 4.6 below by using
Gronwall’s inequality.
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LEMMA 4.4. Let A be the operator of the diffusion term in (2.6), and let Hy be
the linear space spanned by the eigenvectors consisting of the first N eigenfunctions
of the operator A. If Assumption 4.1 is satisfied and § > 0, then

(4.6) Al I(Py = DX I3 < [ Xlgga, VX € HG,6 >0,

where Py is the projection operator from H to Hy and I is the identity map.

LEMMA 4.5. Consider the DMZ equation (2.6). Let the initial condition be o(0) €
HE with 0 < § < 1. And both Assumption 4.1 and Assumption 4.2 are satisfied, then
oN) | the solution to (2.12), follows

wn s BlISMO0N(0) - SOoO)llu] < CSEON o 0) s

The proofs of Lemma 4.4 and Lemma 4.5 can be found in Appendix B.

THEOREM 4.6. Consider the filtering system (1.1) and associated DMZ equation
(2.6). Assumption 4.1 and Assumption 4.2 are satisfied. Suppose that initial value
o(0) € HE with0 <8 < 1, p>2 and o) is the solution of (2.12), then there exists
a constant C := C(Kp,, S(t), Kb, T, supycpo 1 0(t)|[34) such that

(1) (210 - ool )" <ones,

Proof. For any ¢ € [0,T], we decompose the error between o™ and o as follows

(4.9)
(Ello™t) = a@®)|5)7 < 1SN (£)a™(0) — S(t)a(0) ]l

30 (B[ [ (9= 9Bule ™) (0) = a(s) = ((t = 5) = S0 = ) By (o (s)) o s
k=1

=: Il + Ig.

Next, we only need to estimate the I, and I>. For the first term I, it is bounded by
using the same method that appears in (4.6),

(4.10) Li(t) < CSENN"[o(0)lg-

Then, we shall transform I into [t6’s form which allows us to use BDG inequality in
[8]. Now, we have

P\ ¥

H)

p
) :ZJ1 +J2
H

B=3) (E ‘ / (SNt — )(BU™(s) — o(s)))ds

=1

(4.11)

3=

/O (™t — 5)(By(0™ () — 0(s)))dys
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The J; is dominated by three additional terms as follows:

5t <33 { (o] [ Wt - 8o ™6 - aonias])’

=

(4.12) +(E[/Ot I(S™)(t = s) = S(t = $))(BE(Py = D{o(s) = o(t))I5,ds] )

+ (B[ 15— ) - 56 - N (BEE - Dioe)as])
=:Ji1 + Jiz + Jis.

Then, we shall estimate them separately. Trivally, we have Py is a bounded operator.
Together with Assumption 4.2, it yields

(4.13) T € C(8(0). Kp) [ Bl () = o(s) )7 ds

The term Jy2 can be bounded by applying Lemma 4.5 and Assumption 4.2. Then,
we get

D <5Ka [ (EIIS™® - S©)o() - a®)])ds
(4.14) 0

KON ([ Bll(o(s) - o(0)3 a9
According to Proposition 4.3, [|o(t)[|34 is bounded, so Ji2 can be bounded as
(4.15) Jia <C(S(1),6, K, 0(0) s, TIN5,

With the same procedure, we can bound .J;3 as follows,

(4.16) Jis < C(S(8),8, Kp, [0(0) |, TIN2.

A combination of the estimates (4.13),(4.15) and (4.16) yields

(4.17)
Ty < C(S(1), 8, K, |0(0)l 32, TIN ™ + C(S(t), Kp) / Elo™(s) - o(s)[15,] ds.

Next, we shall start to estimate the J,. First, we apply the BDG inequality in [8] and

get
) H

< (E[ |31~ 8)Bio™) () - 5 - s>Bk<o—<s>>>2ds|§;]>

0 k=1

3=

/O D (SNt = 5)(Bro™ () = S(t = 5)(Bro(s)))dys

k=1

(4.18

S

We can notice that the right-hand side is a kind of the norm. Therefore, by employing
the embedding relations of the LP spaces and the triangle inequality, we can decompose
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this term into three components,

Js <( / SO ES( — 5)(Brlo™ (s) — o(s))) [ds)

0 k=1

D Mt —s) - -8 o(s)—o P ds)v
(4.19) +</0 3 BISEO( 9) = St = N (Bealo(s) = o)l

([ 2 BISN (= 5) = St = ) (BrPalo )’

k=1
=: Jo1 + Joo + Jo3

In a similar way as for Ji1, we can estimate the Jo; by the boundness of S(t) and
Assumption 4.2, i.e.,

t
(4.20) Jar < C(S(t)7KB)(/O E|lo™(s) = o(s)[},ds) 7.
For J51, we can use the method in Ji5 and Lemma 4.5,
t m
(@21 Ja <CSO.N ([ Y El(Bulots) - a)lfpds)
0 k=1
It is easy to see that

> _IBi(a(s) = o )l5a < Q_I1Bi(a(s) = (1)) l3a)?
k=1 k=1

(4.22)
< (2Kp - sup |lo(t)]lya)”.
te[0,T]
Using (4.22), Ja2 can be bounded by
(4.23) Joz < C(S(t),6, K, T, [|o(0) | 30 )N .

The estimate of Jo3 can be calculated as the same reason in Joo, and we can obtain
(424) J2z < C(S(t)v 67 Kg,T, ”U(O) ||H?)N_a§'
Coming back to the (4.19), by using (4.20),(4.23) and (4.24) we conclude that
t
2 < (SO Kn) ([ Bla™(s) = o(s) )
0

+C(S(t), 0, K, T, 0(0)l33) ) N7,

(4.25)

where the last inequality holds, since (fot E|lo™)(s) —a(s)|2,ds)? < (fot Elle™)(s) -
a(s)||%ds)%. Now, we have finished estimating the I5. Combining the (4.17), (4.25),
(4.10), (4.11) and back to (4.9), we have

(Ele™ () — o)) 7 < C1(S(t), 8, Kp, T [|o(0) 52 ) N
(4.26)

+ (1), Kp)( / Ello™)(s) — o(s)|1%,ds)}
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EXPLICIT CONVERGENCE 15
Taking the p power for both sides and using mean-value inequality, we have
Ello™ () = a(t)l5, < Cr(S(1), 6, Kp, T [|o/(0) |5, p) N 77

+Ca(S(0,Kn).p)( | Elo™(s) - o(s)[fyds)

0

(4.27)

Donating the e(t) := E||o ( )(t) — o(t)||}, and taking the differential for both side of
(4.27), it yields “4e(t) < Cye(t). By standard Gronwall’s inequality, we have

(4.28) e(t) < C(S(t), 8, K, T, [[o(0) ||, )N 7.

So, we finally finish the proof. O

4.2.2. Error analysis of the fully discrete scheme of mild SGM . This
subsection is devoted to analyzing the error between the conditional density function

o(ty) and its approximation O’t N) by the fully discrete scheme of the mild SGM. We
first give a lemma which will be used later.

LEMMA 4.7. Consider the DMZ equation (2.6). Assumptions Assumption 4.1 and
Assumption 4.2 are satisfied and with the initial condition o(0) € H§ where § > 0,
for any t € [0,T7], there is

(4.29) D II(SM () = SM([1]:)) Px Br(o ()|l < C(S(t), 7, Ky ) (1 + [lorll0)7°,

where [t], :=min{t;, t; > ¢,i=0,1,--- , K} and t; = iT,7 = %

Proof. Firstly,

DoIS™M(@) = SUO([t]) Br(o)ll = Y 1Pn (I = S(t = [1]:))S([t]7)) Bi (o) |
k=1

k=1
< O(S(W.7)(t — [11)° 31 Bi(o) [0
k=1
< C(S(t)m, Ko )T (1 + [|ol0).

where the first inequality comes from the Lemma 2.3 and the second one is due to
Assumption 4.2. O

The main goal in this paper is to analyze the error between o () and a,giv). Now,
we present the main results of this paper.

THEOREM 4.8 (Main Theorem). Let 0 < & < 1, assume o(0) € HZ and that
Assumptions Assumption 4.1 and Assumption 4.2 are satisfied. Given Ut(N) as the
fully discrete schemes of mild SGM for (2.6), as defined in (2.17), then there exists a

constant C := C(S(t), K, Kps, T, ||0(0)||H§) such that
(4.30) sup (Ello(t) — ot [5)7 < C(N=00 4 7oin{od)),

0<k<K

where « is defined in the Assumption 4.1, and o(t) is the solution of (2.6).
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16 J. KANG, X. CHEN AND S. S-T. YAU

Proof. Using Theorem 4.6, and the triangle inequality, it suffices to prove that

(4.31) sup (E|o™(ty) — oM |p)7 < CF0.
0<k<K

According to the scheme (2.17), we have

o =(s™ (7))o ™) (0) + Z SN (i) 3 By (oh) o b,
(4.32)
(8™ (1)0 ™ (0) + Z SM(ir) Y- By(ot))) o Ay,

J

=1

where (SN (1))* = SV (k1) holds since it is a semi-group. And we decompose the

error between o) (t;) and aﬁff) as

(Blo ™) - oM = ( EHZZH/ St = )Py By ()

1
)p
H

The stratonovich stochastic integral in (4.33) can be transformed into Ité’s form.
Then according to S™) = SM Py and for any k = 1,---, K, the error can be
bounded by the triangle inequality,

(4.33)
~ S™M(t — t:) Py Bj(al)) o dy!

(4.34) '

Next, we only need to estimate the I;, and I5. For the first term I; we can notice
that the right-hand side is a kind of norm. By choose k = K, we get

1

1 tigr M %
<o / S EIS™ (ti1 — ) = SV (11— 1) B0 () )

=0 =1

=

/ ZEIIS(N) (tisr — 1) B30 () — o) (1)) 2

t;

=

1 i+1
+§(Z / BIS™(ti11 — ) B ™ (1) — o)) lI5ds )
=0 g

=:I11 + Io + Ii3.
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199 By using Lemma 4.7, I;; is bounded as follows

K-1 ot %
Iy <C(S(t), Kps) <Z / (1 + |U(N)||H5A)pd3>
i=0 Jti

1
P

500 (4.35) T
= C(S(1), Ko} ( [ax a<N><s>|H;>Pds>

< C(S(1), Kps. [|o(0) |32, T)7°,

501  where the last inequality holds due to (4.4). Then, we estimate I15, and we have

K-1 tit1 %
502 (4.36) Iip < C(S(t), Kp) (Z / Elo™(s) - U(N)(ti)H%dS)
i=0 7t

503 According to (4.5) in Proposition 4.3, we get

I12 S C(S(t)ﬂKBévT; HJ(O)H’H?)TmIH{é’%}

504 (437) K-—1 N P
+OSW),Ke,T) [ Y. sup Ele™(t) - a5 |

i—0 SElti,tit1]

505 Next, we shall estimate I13. By using Assumption 4.2, we have

1
K-—1 P
506 (4.38) 113g0(5(t),KB,T)<Z sup E||0(N)(ti)—0§jv)||§l7'> .

i=0 SE[tistit1]
507 Collecting the above estimations for I1, I12, [13 together, we have that

1P < Cy(S(t), K, Kpgs, T, p)r?™n{03 }

508 (4.39) k-1
+Co(S(), Kp, T.p) (> Bllo™ (1) — o™ |15, 7).
=0

509 To estimate I, we utilize the BDG inequality in [8] and get

B=

K-1
I, < C(S(t),Kp,T) (Z sup  Bllo™)(s) - aij“nzT)
i—0 SE€ltisti+]

510 (4.40)

K—1 »
SC(S(t),KB,T)<Z sup Eo—<N>(s)—a§jV>||g;T>

i—0 SEltiti+]
511 Let e(k) = Ello™(ty) — ot |2, Using (4.34), (4.39) and (4.40), we have
S0 (441) (k) < Ci(S(t), K, Ko, T,p)) " ™03} 4 Co(8(1), K, T, p) (Y eli)r)-
=0
513 And consider e(k + 1) — e(k), we get
511 (4.42) le(k 4+ 1) — e(k)| < 7Cye(k).
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18 J. KANG, X. CHEN AND S. S-T. YAU

Trivially, we can choose a constant C such that,
(4.43) e(1) < CoCy(S(t), Kp, Kps, T, p))r?min{o3} Ca(S(t). K. Top)T.
We construct a function
é(k) == CoC1(S(t), K, K s, T))eC2(SWKn.T)7k,
If we assume that for any k < n the e(k) < é(k) holds, then by (4.42), we have

e(n+1) <le(n+1) —e(n)| +e(n) < (1+71C2)é(n)

(4.44) < O e(m) = é(m 4 1),

So we prove e(k) < é(k) for any k by induction. Then,
(4.45) Bllo™(te) = ot |, < e(K) < C(S(t), K, Kps, T)r" ™ {4}

So, we finish the proof. O

COROLLARY 4.9 (Convergence results of the direct method and Galerkin Yau-
Yau algorithm). Let 0 < § < 1, assume that o(0) € H§' and the Assumption 4.1 and
Assumption 4.2 are satisfied. o1 (tx,x) is one of the following:

1. o1(tk, x) is the numerical approximation of the direct method with N-th order
truncated Gaussian approximation, which is defined in Proposition 3.4.
2. o1(tx, ) is the numerical approximation of Galerkin Yau-Yau algorithm with
basis Hy = (¢1,- -+, dn), which is defined in Proposition 3.5.
Then, there exists a constant C := C(S(t), Kp, Kps,T,[|0(0)[[34) such that

(4.46) sup (Ello(te) — o1 (tg, 2)[5)7 < C(N=0 4 pmin{od}),
0<k<K

where « is defined in Assumption 4.1, and o(t) is the solution of (2.6).

Proof of Corollary 4.9 The two types of oy (t;,x) correspond to the fully discrete
schemes of mild SGM. The proof is direct consequence of Theorem 4.8. O

4.3. Numerical Experiments. In this subsection, we chose this model specif-
ically as other comparative algorithms [13, 41] cannot handle cubic sensor problems,
highlighting our method’s unique advantage. We implemented the Hermite Spectral
Yau-Yau algorithm [21, 32] with scaling factor 2.4637. All numerical experiments were
conducted in Python on a Mac Pro 2024 laptop. The system dynamics are defined
as:

{ dey =dVy, xg~o0g= e
dy; = x3dt +dWy, yo =0

where dW; and dV; are scalar independent Brownian motion processes. We investi-
gate the relationship between the convergence rate, the number of spectral functions
N, and the time discretization step size 7. For evaluation metrics, we employ the
commonly used Root Mean Square Error (RMSE) and Mean Absolute Error (MAE),
defined as:

N N

1 1
4.4 MSE = |~ (2, — )2, MAE= > |z, -2
(4.47) RMS Nizl(xl IER Nizl\atl T
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Average RMSE vs N (100 trials) Average MAE vs N (100 trials)
2.25 2.00
—o— dt=0.01 —o— dt=0.01
2.00 1 dt = 0.02 1.75 A dt = 0.02
E 1.75 A —o- dt=004 |y o] —e— dt =0.04
< 1,50 >
o - g 1.25 4
815 ©
gt 2 1001
< 1.00 A
0.75 A
0.75 |
0.50 A
10! 102 10! 102
Number of Basis Functions (N) Number of Basis Functions (N)

Fic. 1. RMSE and MAE via N

where x; represents the true state and Z; represents the estimated state. All reported
results are averaged over 100 Monte Carlo simulation runs. We conducted a parameter
sweep over time steps 7 = {0.01,0.02,0.04} and number of basis functions N =
{2,4,8,16,32,064, 128}, with total steps fixed at 1000. The theorem suggests an error
bound of (N~ 7min{3:3}) where error decreases with increasing N and decreasing
7. The results are presented in Figure 1.

As shown in Figure 1, our results confirm the theoretical predictions. We observe
that for a fixed 7, increasing the number of basis functions N consistently reduces
RMSE and MAE across all tested time steps, supporting the theoretical prediction of
improved approximation with larger V. Conversely, when N is fixed, smaller values
of 7 (i.e., finer time discretization) lead to lower RMSE and MAE, aligning with
expectations from our main theorem regarding the roles of N and 7.

From the MAE perspective, performance improves monotonically with increasing
N. However, RMSE exhibits a non-monotonic trend: while initially decreasing with
larger N, it eventually plateaus or slightly increases, particularly noticeable at 7 =
0.04. This suggests the existence of an optimal N for each 7 value. We observe
that the optimal N values (N = 16 for 7 = 0.04, N = 64 for 7 = 0.02, N = 128
for 7 = 0.01) approximately follow the relationship N ~ 7=% ~ 77105 which is
consistent with our theoretical analysis.

5. Conclusion. In this paper, we develop a convergence analysis framework
specifically for the direct and Yau-Yau algorithms, further introducing convergence
analyses concerning spectral number and time steps. Our findings reveal that, for
smooth enough o(t) € Hg, i.e. § > 0.5, the error upper bound for time discretization
is of order 0.5, and the convergence speed for the spectral number is N~ This
implies a relationship between the time discretization step and the spectral number
fe. ™% &~ N , as corroborated by numerical experiments across a series of works, such
as the direct method appeared in [29, 6] and Yau-Yau algorithms [22, 21, 32, 10, 19].

Appendix A. Appendix for Section IV. Proof of Lemma 4.4 By Assump-
tion 4.1, we know that (¢;)$2; is an orthogonal basis of H. So, we have

(A1) APy = DX N5 = vl ™ D (X, 60
i=N+1
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We know that |[A;| > |[An41] for ¢ > N + 1 from (2.11) and using the Definition
Definition 2.4, we have

o0 oo

Pl D0 (X607 < Y PN )

(AQ) i=N+1 i=N+1
< =AY X1, = 1X 1B

So, we finish the proof. O
Proof of Lemma 4.5 According to Lemma 4.4, we have

(A.3) Al (P = DX |l < [ X0, VX € H', 6> 0.

Firstly,

159 ()™ (0) = 58 (0) |3 < [1S(£)o™(0) = S(t)o (0) |
+ 5 ()™ (0) = S()o ™ (0)

= [I(Px = D)S@)a(0)ll» + |(Pnv — D)(S(¢) Pn)o(0)]|

< 2[[(Py = I)S(t)o(0) 3

(A4)

According to Lemma 2.3, S(t) is the bounded operator. Combining (A.3), we get

IS™ (#)a ™ (0) = S(8)o(0) | < 2/[(Px — 1)S()o(0) |3

A5
(A-5) < O(S(1) A1l 0 (0)llpga

Finally, the proof is completed by the estimation of |Ay41] in Assumption 4.1. O
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