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Abstract

The famous filtering problem of estimating the state of a
stochastic dynamical system from noisy observations is of central
importance in engineering. This problem is reduced to solve the
Duncan-Mortensen-Zakai (DMZ) equation which is satisfied by the
unnormalized conditional density of the state given the observation
history. We first introduce a very general class of finite dimensional
filters which include Kalman filter and Benes filter as special cases.
For general nonlinear filtering problems, solving the DMZ equation
can be reduced to solving a Kolmogorov forward equation off-line,
and this is the so-called Yau-Yau algorithm. At last, we shall
introduce the filter based on the recurrent neural networks (RNNs).
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Goal of filterings

Goal: to form the
”best estimate” for
the true value of
some system, given
only some
potentially noisy
observations of that
system.
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Kalman filter and its applications

R. E. Kalman, 1960: Kalman filter – Optimal linear filter

Application:

in the navigation of Apollo 13 – by providing the estimates of
its trajectory to guide it to the Moon and back;

in the navigation systems of U.S. Navy nuclear ballistic missile
submarine;

in the guidance and navigation systems of cruise missiles, such
as the U.S. Navy’s Tomahawk missile and the U.S. Air Force’s
Air Launched Cruise Missile;

in the guidance and navigation systems of the NASA Space
Shuttle and the International Space Station.

Award: Because of Kalman filter, R. E. Kalman is awarded Charles
Stark Draper Prize – one of three prizes that constitute the ”Nobel
Prizes of Engineering”.
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Drawbacks of Kalman filter and its derivatives

R. E. Kalman and R. S. Bucy, 1961:
Kalman-Bucy filter – continuous time version of the Kalman filter

”They try all sorts of fixes, but basically the problem is such that
the linear theory does not apply”

– R. S. Bucy, SIAM News 26, Aug 1993

Failures of Kalman filter may due to

Nonlinearity: the outputs are not a linear function of the
inputs;

Non-Gaussian of the initial states.

Even its derivatives, such as Extended Kalman filter, Unscented
Kalman filter, Ensemble Kalman filter, etc can NOT avoid these
two dead spots completely.
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Nonlinear filterings (NLF)

Office of Naval Research (around 1995)

Given the noisy observation of the real states, can we give the
“accurate” estimates of the states instantaneously, provided as
much computational resources as one needs?

It has been an OPEN question for more than 50 years. It is finally
SOLVED theoretically in this talk.
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Attempts

Attempts without much success:

V. E. Beneš, 1981: derives an exact filter for a special class of
nonlinear problems, so-called Beneš filter;

– Does not include all linear problems.

Around 1980, S. Mitter and R. Brockett proposed to use Lie
algebra method to solve NLF. Finite dimensional Lie algebra
will give finite dimensional filter. In a series of papers, Yau
with his various collaborators classify all finite dimensional
nonlinear filters of maximal rank.
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Popular NLFs

Widely used NLFs nowadays:

Existing filters Shortcomings

Assumed-density filter Nonlinearity
(extended Kalman filter) Gaussian assumption of initial

state

Sequential Monte Carlo
methods (particle filter)

Can’t be implemented in real
time
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Signal based model

We consider the following signal based model:{
dxt = f(xt, t)dt+G(xt, t)dvt,

dyt = h(xt, t)dt+ dwt,
(1)

where

xt: states, n-vector;

f : drift term, n-vector;

G: diffusion term, n× r matrix;

yt: observation path, m-vector;

h: observation term, m-vector;

vt: r-vector Brownian motion with E[dvtdv
T
t ] = Q(t)dt;

wt: m-vector Brownian motion with E[dwtdw
T
t ] = S(t)dt and

S(t) > 0.

Assume y0 = 0 and x0, {vt, t ≥ 0}, {wt, t ≥ 0} are independent.
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Duncan-Mortensen-Zakai (DMZ) equation

1960s, Duncan, Mortensen and Zakai:
σ(x, t): unnormalized density function of xt conditioned on the
observation history Yt = {ys : 0 ≤ s ≤ t}.
It satisfies the DMZ equation:{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1(t)dyt

σ(x, 0) = σ0(x),
(2)

where σ0(x) is the probability density of the initial state x0, and

L(∗) ≡ 1

2

n∑
i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

n∑
i=1

∂(fi∗)
∂xi

. (3)
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“Pathwise-robust” DMZ equation

Construct robust state estimators from any observed sample paths:

For each “given” observation yt, let (Rozovsky, 1972)

σ(x, t) = exp [hT (x, t)S−1(t)yt]u(x, t),

it yields the “pathwise-robust” DMZ equation:
∂u

∂t
(x, t) +

∂

∂t
(hTS−1)T ytu(x, t)

= exp (−hTS−1yt)

[
L− 1

2
hTS−1h

]
[exp (hTS−1yt)u(x, t)]

u(x, 0) = σ0(x).
(4)
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Approximation

Let ui be the solution of the “pathwise-robust” DMZ equation
with yt freezed at t = τi−1, for τi−1 ≤ t ≤ τi, i = 1, 2, · · · , k, with
initial data

u1(x, 0) = σ0(x), ui(x, τi−1) = ui−1(x, τi−1), for i = 2, 3, · · · , k.

Expect:

û(x, t) =

k∑
i=1

χ[τi−1,τi](t)ui(x, t)→ u(x, t)

in some sense, as |Pk| = sup1≤i≤k(τi − τi−1)→ 0.
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Introduction to estimation algebra

1970s: Brockett and Clark, Brockett, and Mitter proposed
estimation algebras method
1983 (International Congress of Mathematics): Brockett proposed
the problem of classifying finite dimensional estimation algebras
(FDEA).
Advantages:

It takes into account of geometrical aspects of the situation.

As long as the estimation algebra is finite dimensional, the
finite dimensional recursive filter can be constructed explicitly.

Lie algebraic methods are highly useful for classifying
equivalence of finite dimensional filters.

The number of sufficient statistics in the Lie algebra method
linearly depends on state space dimension.
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Basic concept

If noises in state equation and observation equation are
independent standard Brownian motions, i.e., Q(t) = S(t) = I,
then we define

L0 :=
1

2

n∑
i=1

∂2

∂x2
i

−
n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi
− 1

2

m∑
i=1

h2
i . (5)

For i = 1, · · · ,m, Li is defined the zero degree differential
operator of multiplication by hi.

Definition 1

The estimation algebra E of a filtering system (1) is defined to be
the Lie algebra generated by {L0, L1, · · · , Lm}, i.e.,
E = 〈L0, h1, · · · , hm〉L.A.. Furthermore, if f = ∇φ for some
φ ∈ C∞(Rn), E is called exact.
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Basic concept

Definition 2

Let L(E) ⊂ E be the vector space consisting of all the
homogeneous degree 1 polynomials in E. Then the linear rank of
estimation algebra E is defined by r := dimL(E). Especially, if
r = n, we call E has maximal rank.

Based on the structure of linear rank, classifications of estimation
algebra have always been a research hotspot. Especially, from 1990
to 1997, in the series work of Yau and coworkers123, complete
classification of maximal rank estimation algebra has been
finished4,.

1Chen and Yau, Math. Control Signals Systems, 1996
2Chiou and Yau, SIAM J. Control Optim., 1994
3Yau, J. Math. Systems Estim. Control, 1994
4Yau, Internat. J. Control, 2003
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Basic concept

In 1994, Yau5 proposed a very useful theorem in underdetermined
PDE appearing in estimation algebra.

Theorem 3 (Yau)

Let F (x1, · · · , xn) be a C∞ function on Rn. Suppose that there
exists a path c : R→ Rn and δ > 0 such that limt→∞ ‖c(t)‖ =∞
and limt→∞ supBδ(c(t)) F = −∞, where
Bδ(c(t)) = {x ∈ Rn : ‖x− c(t)‖ < δ}. Then there are no C∞

functions f1, f2, · · · , fn on Rn satisfying the equation

n∑
i=1

∂fi
∂xi

+

n∑
i=1

f2
i = F. (6)

5Yau, J. Math. Systems Estim. Control, 1994
Stephen S.-T. Yau
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Structures of finite-dimensional exact estimation algebras

We shall survey some estimation algebra related results in 1990s.
Let η :=

∑n
i=1

∂fi
∂xi

+
∑n

i=1 f
2
i +

∑m
i=1 h

2
i and

Di := ∂
∂xi
− fi, 1 ≤ i ≤ n. Following result describes finite

dimensionality of E by an algebraic condition6.

Theorem 4 (Tam, Wong, & Yau)

Suppose E is an exact estimation algebra. Then E is finite-dimensional if
and only if ∇hTi Jjη is a constant for 1 ≤ i ≤ m and all j = 0, 1, · · ·
where Jη is the Hessian matrix of η.

Theorem 5 (Dong, Tam, Wong & Yau)

Suppose E is a finite-dimensional exact estimation algebras of maximal
rank. Then it is a real vector space of dimension 2n+ 2 with basis given
by 1, x1, x2, · · · , xn, D1, · · · , Dn and L0.

6Tam, Wong and Yau, SIAM J. Control Optim., 1990
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Estimation algebras of maximal rank with Ω-matrix in
constant coefficients

For estimation algebra E whose Ω-matrix has constant entries, in
1994, Yau7 proposed a sufficient condition for E to be finite
dimensional:{

deg(η) ≤ 2

deg(hi) ≤ 1, i = 1, · · · ,m
=⇒dimE <∞ (7)

and conversely, if E is finite dimensional, then h1, · · · , hm are
affine in x, i.e., the observation matrix H = [∇h1, · · · ,∇hm] is a
constant matrix. Furthermore, if the observation matrix has rank
n, then η is a polynomial of degree at most 2 and E is of dimension
2n+ 2 with a basis given by 1, x1, · · · , xn, D1, · · · , Dn, L0.

7Yau, J. Math. Systems Estim. Control, 1994
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Wei-Norman approach

Robust DMZ equation is a time-varying PDE. Generally, we
consider following PDE:

∂u

∂t
= a1(t)A1u+ · · ·+ am(t)Amu, (8)

where the Ai’s are linear partial differential operators in
x1, · · · , xn, and the ai’s are given functions of time t. We shall
assume that the Lie algebra generated by the operators Ai’s is
finite dimensional. Without loss of generality, we can assume Ai’s
consist a basis of Lie algebra.
The central idea of Wei-Norman theory is to find a solution of the
form

u(t, x) = eg1(t)A1 · · · egm(t)Amψ(x), (9)

where the gi’s satisfy a system of ODEs and can be determined
uniquely.
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Classification of maximal rank estimation algebra

The programme of classifying FDEA of maximal rank was begun in
1990 by Yau. There are four crucial steps here. First we define
following Wong matrix Ω = (ωij). where

ωij =
∂fj
∂xi
− ∂fi
∂xj

, ∀1 ≤ i, j ≤ n.

Obviously, ωij = −ωji, i.e., Ω is an anti-symmetric matrix.
Step 1. In 1990, Yau first observed that Wong’s Ω matrix plays an
important role. As the first crucial step, he classifies all finite
dimensional estimation algebras of maximal rank if Wong’s matrix
has entries in constant coefficients8. Later, Chiou and Yau9 study
maximal rank estimation algebra when state dimension n ≤ 2.

8Yau, J. Math. Systems Estim. Control, 1994
9Chiou and Yau, SIAM J. Control Optim., 1994
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Classification of maximal rank estimation algebra

Step 2.The second crucial step was due to Chen and Yau10 in
1996. They developed quadratic structure theory. In particular,
they introduced the notion of quadratic rank k. In this way, the
Wong’s Ω-matrix is divided into three parts:
(1) (ωij), 1 ≤ i, j ≤ k;
(2) (ωij), k + 1 ≤ i, j ≤ n
(3) (ωij), 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, or 1 ≤ j ≤ k, k + 1 ≤ i ≤ n.
Chen and Yau (1997) proved among many other things that part
(1) is a matrix with constant coefficients.

10Chen and Yau, SIAM J. Control Optim., 1997
Stephen S.-T. Yau
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Classification of maximal rank estimation algebra

Step 3. In 1997, Wu, Yau and Hu11 first proved the weak Hessian
matrix non-decomposition theorem for general n. Thus part (2) is
also a constant matrix for arbitrary n. In 1999, Yau, Wu and Wong
12dropped the restriction of cyclical condition and extended to
strong Hessian nondecomposition theorem successfully.

Theorem 6 (Strong Hessian nondecomposition theorem)

Let η4(x1, x2, · · · , xn) be a homogeneous polynomial of degree 4 in

x1, x2, · · · , xn over R. Let H(η4) =
(

∂2η4
∂xi∂xj

)
, k + 1 ≤ i, j ≤ n, be the

Hessian matrix of η4. Then H(η4) can not be decomposed as
∆(x)∆(x)T , where ∆(x) = (βij)1≤i,j≤n is an anti-symmetric matrix
with βij linear functions in x, unless η4 and ∆ are trivial, i.e.,
H(η4) = ∆(x)∆(x)T implies ∆ = 0 and η4 = 0.

11Wu, Yau and Hu, preprint,1997
12Yau, Wu and Wong, Mathematical Research Letters,1999
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Classification of maximal rank estimation algebra

Step 4. This final step was also done in 1997. Yau and Hu13 used
the full power of the quadratic structure theory developed by Chen
and Yau (1997)14 to prove that the matrix part (3) is with the
constant coefficients.

13Yau and Hu, preprint,1997
14Chen and Yau, SIAM J. Control Optim.,1997
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Classification of maximal rank estimation algebra

The above four steps complete the classification of FDEA of
maximal rank. Therefore, Yau and his coworkers have proved the
following theorem15.

Theorem 7 (Complete classification)

Suppose that the state space of the filtering system is of dimension
n. If E is the finite dimensional estimation algebra with maximal
rank, then f = (α1, · · · , αn) +∇φ, where φ is a smooth function
and αi, 1 ≤ i ≤ n, are affine functions and E is a real vector space
of dimension 2n+ 2 with basis given by
1, x1, · · · , xn, D1, · · · , Dn, L0.

As an immediate result, Mitter conjecture holds for maximal rank
FDEA, which states any function in E is an affine function.

15Yau, Internat. J. Control, 2003
Stephen S.-T. Yau
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Progress of classification of non-maximal rank case

At the beginning of 20 century, classification of non-maximal rank
estimation algebras becomes a very important and difficult
problem.

2006: Classification of estimation algebra with state
dimension 2. (Wu and Yau)16;

2018: Linear structure of Ω and Mitter conjecture of state
dimension 3, rank 2 case (Shi and Yau)17 18;

2020: Existence of novel finite dimensional filters (Jiao and
Yau)19.

16Wu and Yau, SIAM J. Control Optim., 2006
17Shi and Yau, SIAM J. Control Optim., 2017
18Shi and Yau, Internat. J. Control, 2020
19Jiao and Yau, SIAM J. Control Optim., 2020
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Classification of estimation algebra with state dimension 2

The most basic situation in non-maximal rank estimation algebra is
that state dimension equal to 2. In work of Wu and Yau, general
considerations and approaches toward the classification are
proposed. Some structual results are obtained. The properties of
Euler operators and the solution to an underdetermined PDE are
extended.

Theorem 8 (Complete classification theorem, Wu & Yau)

Let state dimension n = 2. If E is finite-dimensional, then
(1) if hi’s are constants, E = {L0} or E = {L0, 1}.
(2) otherwise, Ω-matrix has constant entries. hi’s must be affine in
x1 and x2. E has dimension of either 4, 5, or 6.
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Classification of estimation algebra with state dimension 3
and linear rank 2

Later, Shi and Yau study the structure of FDEA with state
dimension 3 and rank 2 by using the theories of the Euler operator
and underdetermined PDE. A powerful tool of their proof is
technique of infinite sequence of differential operators.

Theorem 9 (Shi & Yau)

Let E be finite dimensional estimation algebras with state dimension 3
and rank 2. Then Ω has linear structure, i.e., entries of Ω are polynomial
of degree 1.

Theorem 10 (Mitter conjecture, Shi & Yau)

The Mitter conjecture holds for state dimension 3, linear rank 2 case,
that is any function in estimation algebra E is affine in x.
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Novel finite dimensional filters

In 2020, Jiao and Yau solved construction of non-Yau type finite
dimensional filter on arbitrary state dimension.

Theorem 11 (Jiao & Yau)

Nonlinear filtering system is given by,
dx1 = (x1 + x2 + · · ·+ xn + γ(x1 + x2 + · · ·+ xn))dt+ dw1,

dxj =
∑
i 6=j xidt+ dwj , 2 ≤ j ≤ n

dyk =
√

k
k+1 (− 1

kx3 −
1
kx4 − · · · −

1
kxk+2 + xk+3)dt+ dvk, 1 ≤ k ≤ n− 3

dyn−2 = 1√
n−2 ((n− 2)x2 − x3 − · · · − xn)dt+ dvn−2,

(10)
where γ is a C∞ function. Then in this filtering system, entries of
Wong’s Ω-matrix are not necessarily to be constants or polynomials.
Dimension of estimation algebra is 2n− 2 and linear rank of estimation
algebra is n− 2.
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Drawbacks of the Lie algebraic method

The basic idea of the Lie algebraic method is that solving the DMZ
equation is transformed into solving a series of ordinary differential
equations (ODEs), Kolmogorov equation, and some first-order
linear partial differential equations (PDEs). However, the basis of
the estimation algebra must be known in this method.
The direct method is the other approach to solve DMZ equation
which works well especially for the Yau filtering system. Comparing
with the Lie algebra method, we do not need to solve the basis of
the estimation algebra, as well as integrate several first-order linear
PDEs.
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Works on direct method

We studied the direct method w.r.t. time-invariant systems 20

21 22 23. Under some assumptions, solving the DMZ equation
can be transformed into solving a series of ODEs and a
Kolmogorov equation.

We extended the direct method to time-varying systems 24 25.
and in the latest work in 2019, the general direct method we
proposed can treat nearly most general Yau filtering problems
under natural assumptions.

20Hu and Yau, IEEE Trans Aerosp Electron Syst., 2002.
21Yau and Yau, IEEE CDC, 1994.
22Yau and Hu, IEEE Trans. Automat. Contr., 2001.
23Yau and Yau, IEEE Trans Aerosp Electron Syst., 2004.
24Chen, Luo and Yau, IEEE Trans Aerosp Electron Syst., 2017.
25Chen, Shi and Yau, IEEE Trans. Automat. Contr., 2019.
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Assumptions

We shall introduce the direct method for time-varying system (1)
proposed in 2019 26. We assume that G(xt, t) = G(t) and define
Ḡ(t) , G(t)Q(t)GT (t).
Furthermore, we consider the time-varying Yau filtering system,
i.e.,

f(x, t) = L(t)x+ l(t) +∇xφ(t, x), (11)

where L(t) = (lij(t)), 1 ≤ i, j ≤ n, lT (t) = (l1(t), · · · ln(t)) and
φ(t, x) is a C∞ function w.r.t. x on Rn.

26Chen, Shi and Yau, IEEE Trans. Automat. Contr., 2019.
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Assumption 1

Ḡ(t) = G(t)Q(t)GT (t) is a positive definite matrix.

Since Ḡ(t) is positive definite, then we can find a positive definite
matrix Π(t) > 0 such that

Ḡ(t) = Π(t)ΠT (t) (12)

according to Cholesky decomposition.
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Kolmogorov forward equation

Proposition 1 (DMZ equation → Kolmogorov equation)

For every τi−1 ≤ t ≤ τi, let

ũi(τi, x) = exp

 m∑
j=1

yj(τi−1)hj(x)

ui(τi, x), (13)

then ũi satisfies the Kolmogorov forward equation (KFE):
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∂ũi
∂t

(t, x) =
1

2

n∑
ι,j=1

Ḡιj(t)
∂2ũi
∂xι∂xj

(t, x)−
n∑
ι=1

fι
∂ũi
∂xι

(t, x)

−

(
n∑
ι=1

∂fι
∂xι

(t, x) +
1

2
hTS−1h

)
ũi(t, x),

ũ1(0, x) =σ0(x),

ũi(τi−1, x) = exp
[
hT (x, τi−1)S−1(τi−1)(yτi−1 − yτi−2)

]
· ũi−1(τi−1, x),

i = 2, 3, · · · k.

(14)
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Transformation

Proposition 2

Under the Assumption 1, and let ũi(t, x) be the solution of (14) in
[τi−1, τi], i = 1, 2, · · · k, f(x, t) satisfies (11). Let

ũi(t, x) = eφ̄(t,x)ψ̃i(t, x), (15)

where φ̄(t, x)satisfies ∇xφ̄(t, x) = Ḡ−1(t)∇xφ(t, x) and Ḡ(t) is
defined in Assumption 1, then ψ̃i(t, x) satisfies the following
equation:
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∂ψ̃i
∂t

(t, x) =
1

2

n∑
ι,j=1

Ḡιj(t)
∂2ψ̃i
∂xι∂xj

(t, x)

− (Lx+ l)T∇ψ̃i(t, x)− 1

2
q̄(t, x)ψ̃i(t, x),

ψ̃1(0, x) =σ0(x)e−φ̄(0,x),

ψ̃i(τi−1, x) = exp
[
hT (x, τi−1)S−1(τi−1)(yτi−1 − yτi−2)

]
· ψ̃i−1(τi−1, x), i = 2, 3, · · · k,

(16)
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where

q̄(t, x) =−
n∑

i,j=1

Ḡij(t)
∂2φ̄

∂xi∂xj
(t, x) +∇xφ̄T (t, x)Ḡ(t)∇xφ̄(t, x)

+ 2(Lx+ l)T∇xφ̄(t, x) + 2

n∑
i=1

∂2φ(t, x)

∂2x2
i

+ 2
∂φ̄(t, x)

∂t

+

n∑
p,l=1

S−1
pl (t)hp(x, t)hl(x, t) + 2tr(L).

(17)
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Transformation

Theorem 12

Under the Assumption 1, and ψ̃i(t, x) is the solution of (16), let

ψ̃i(t, x) = ψi(t, z), (18)

where
z = B(t)x,

B(t) = Π−1(t),
(19)

and Π(t) is defined in equation (12).
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Then ψi(t, z) is the solution of the following equation:

∂ψi
∂t

(t, x) =
1

2
∆ψi(t, x)− 1

2
˜̄q(t, x)ψi(t, x)

−
[(

dB

dt
B−1 +BLB−1

)
x+Bl

]T
∇ψi(t, x)

ψ1(0, x) =σ0(Π(0)x) exp
(
−φ̄(0,Π(0)x)

)
ψi(τi−1, x) = exp

[
hT (Π(τi−1)x, τi−1)S−1(τi−1)

(yτi−1 − yτi−2)
]
ψi−1(τi−1, x),

i = 2, 3, · · · k.
(20)

where
˜̄q(t, z) := q̄(t,Π(t)z), (21)
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Assumption

Assumption 2

˜̄q(t, x) in (21) is quadratic w.r.t. x.

It follows naturally ˜̄q(t, x) can be rewritten as

−1

2
˜̄q(t, x) = xT Q̄(t)x+ pT (t)x+ r(t), (22)

where Q̄(t) is a n× n symmetric matrix, p(t) is a n× 1 vector and
r(t) is a scalar.
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Main theorem

Theorem 13

Under Assumption 1 and Assumption 2, we consider the following
equation:

∂ψi
∂t

(t, x) =
1

2
∆ψi(t, x)− 1

2
˜̄q(t, x)ψi(t, x)

−
[(

dB

dt
B−1 +BLB−1

)
x+Bl

]T
∇ψi(t, x)

ψi(τi−1, x) = exp
{
xTA(τi−1)x+ bT (τi−1)x+ c(τi−1)

}
,

(23)
where A(τi−1) is a n× n symmetric matrix, b(τi−1) is a n× 1
column vector, xT = (x1, x2, . . . , xn) is a row vector and c(τi−1)is
a scalar. Then the solution of (23) is of the following form:
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ψi(t, x) = exp
{
xTA(t)x+ bT (t)x+ c(t)

}
, (24)

where A(t) is a n× n matrix function w.r.t. t which is symmetric,
b(t) is a n× 1 column vector function w.r.t. t and c(t) is a scalar
function w.r.t. t, and they satisfy the following ODEs:

dA(t)

dt
= 2A2(t)− 2A(t)D(t) + Q̄(t),

dbT (t)

dt
= 2bT (t)A(t)− bT (t)D(t)− 2dT (t)A(t) + pT (t),

dc(t)

dt
= trA(t) +

1

2
bT b(t)− dT (t)b(t) + r(t),

(25)

where

D(t) =
dB

dt
B−1 +BLB−1, d(t) = B(t)l(t). (26)
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Theorem 13 requires that the initial value ψi(τi−1, x) at every τi−1

must be Gaussian. We first give a new way to do Gaussian
approximation in algorithm 1, then non-Gaussian function can be
approximated by the sum of several Gaussian functions and we can
use Theorem 13 for every Gaussian function. The general direct
method is summarized in Algorithm 2.
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Gaussian approximation

Algorithm 1 Gaussian approximation

1: Let f(x) = φ(x) and the threshold E = α ·maxφ(x), where α
is a given small number.

2: Fitting the peaks of f(x) which are larger than E with gaussian
distributions. Suppose the sum of gaussian distributions in this
step is g(x).

3: Let f1(x) = f(x) − g(x). If f1(x) has no peaks whose values
larger than E, then go to step 4. Otherwise, let f(x) = f1(x)
and go to step 2.

4: Let f2(x) = −f1(x). If f2(x) has no peaks which are larger
than E, then done. Otherwise, let f(x) = f2(x) and go to step
2.
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Algorithm 2 General direct method for time-varying system

1: Initialization: give T,∆t, σ0(x) and the parameter α in Algo-
rithm 1. Let k = T

∆t , and {0 = τ0 < τ1 < τ2 < ... < τk = T}.
2: for i = 1 : k do
3: Using Algorithm 1 to get the Gaussian approximation

ψi(τi−1, x) ≈
∑k(i)

ι=1 αi,ιN (µi,ι, σi,ι).
4: For each Gaussian distribution N (µi,ι, σi,ι), suppose the so-

lution of (23) with initial condition N (µi,ι, σi,ι) is ψi,ι(τi, x).
Solving (25), we obtain ψi,ι(τi, x). Then ψi(τi, x) =∑k(i)

ι=1 αi,ιûi,ι(τi, x).
5: Calculate ψi+1(τi, x) by ψi(τi, x) and (20).
6: Calculate ψ̃i(ti, x), ũi(ti, x) by (18),(15).
7: Calculate ui(ti, x), σ(ti, x).
8: Calculate conditional density function by normalization.
9: end for
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Introduction

In 2008 1, Yau and Yau show that the DMZ equation (4)
admits a unique nonnegative weak solution u which can be
approximated by a solution uR of the DMZ equation on the
ball BR with uR|∂BR = 0. The error of this approximation is
bounded by a function of R which tends to zero as R goes to
infinity. The solution uR can in turn be approximated
efficiently by an algorithm depending only on solving the
observation-independent Kolmogorov equation on BR.

1Yau and Yau, SIAM J. Control Optim., 2008
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In 2013 27, Luo and Yau extend the algorithm developed
previously by Yau and Yau to the most general setting of
nonlinear filterings, where the explicit time-dependence is in
the drift term, observation term, and the variance of the noises
could be a matrix of functions of both time and the states.

There are some works investigating Hermite spectral method
28, proper orthogonal decomposition method 29 and Legendre
spectral method 30, to numerically solve the forward
Kolmogorov equation which help to solve the DMZ equation.

27Luo and Yau, IEEE Trans. Automat. Contr., 2013a
28Luo and Yau, IEEE Trans. Automat. Contr., 2013b
29Wang, Luo, Yau and Zhang, IEEE Trans. Automat. Contr., 2020
30Dong, Luo and Yau, IEEE Trans. Automat. Contr., 2013
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Assumptions

In the work of Luo and Yau 31, the general case of (1) was
considered:
Assumptions:

1 The operator L defined in (3) is uniform elliptic.

2 ||GQGT ||∞ <∞, for all (x, t) ∈ Rn × [0, T ].

3 The initial density function σ0(x) decays fast enough.

Namely,
∫
Rn e
√

1+|x|2σ0(x)dx <∞.

31Luo and Yau, IEEE Trans. Automat. Contr., 2013a
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Notations

Let us denote

Dwg :=

[
n∑
i=1

(GQGT )ij
∂g

∂xi

]n
j=1

; (27)

D2
wg :=

n∑
i,j=1

(GQGT )ij
∂2g

∂xi∂xj
; (28)

K(x, t) := hT (x, t)S−1(t)yt, (29)

and

N(x, t) := − ∂

∂t

(
hTS−1

)
yt −

1

2
D2
wK +

1

2
DwK · ∇K

− f · ∇K − 1

2

(
hTS−1h

)
. (30)
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Step 1 for validation

Theorem 14 (uR is a good approximation of u)

For any T > 0. Assume the following conditions are satisfied, for
all (x, t) ∈ Rn × [0, T ]:

1 N(x, t) + 3
2n
∣∣∣∣GQGT ∣∣∣∣∞ + |f −DwK| ≤ C, (31)

2 e−
√

1+|x|2 [14n
∣∣∣∣GQGT ∣∣∣∣∞ + 4 |f −DwK|

]
≤ C̃, (32)

where C, C̃ are constants possibly depending on T . Let R� 1.
Then v := u− uR ≥ 0 for all (x, t) ∈ BR × [0, T ] and∫

BR
2

v(x, T ) ≤ Ce−
9
16
R

∫
Rn
e
√

1+|x|2σ0(x), (33)

where C = C(T ).

Stephen S.-T. Yau
Complete Solution to the Most General Nonlinear Filtering Problems and Its Implementation
51 / 75



Filtering problems
Finite dimensional filter

Yau-Yau algorithm
Neural network filter

Validation of our algorithm
Aim and assumptions
Our alogrithm
Experiments

Step 2 for validation

Theorem 15 (uR is well approximated by ui,R, as |Pk| → 0)

Assume that

1 N(x, t) ≤ C, (34)

2 There exists some α ∈ (0, 1), such that

|N(x, t)−N(x, t; t̄)| ≤ C̃|t− t̄|α, (35)

for all (x, t) ∈ BR(0)× [0, T ], t̄ ∈ [0, T ], and N(x, t; t̄) denotes the
observation yt contained in N(x, t) be freezed at yt̄.
For any 0 ≤ τ ≤ T , let Pk = {0 = τ0 < τ1 < τ2 < · · · < τk = τ}
be a partition of [0, τ ], where τi = iτ

k .
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Then
uR(x, τ) = lim

k→∞
uk,R(x, τ),

in the L1 sense in space and the following estimate holds:∫
BR(0)

|uR − uk,R|(x, τ) ≤ C 1

kα
, (36)

where C = C(T,
∫
R σ0). The right-hand side of (36) tends to zero

as k →∞.
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Aim and assumptions

Aim of design: Two features have to be kept:

1 in real time: instantaneous feedback;

2 without memory: previous observation data are not necessary.

Assumptions:

The time sequence of the observation is known aprioprily,
denote as Pk = {0 = τ0 ≤ τ1 ≤ · · · ≤ τk = T}.
The observation data {yτi}ki=0 are unknown until the on-line
experiment runs.
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Observation

Observation:

For each τi−1 ≤ t ≤ τi, let

ũi(x, t) = exp
[
hT (x, t)S−1(t)yτi−1

]
ui(x, t), (37)

then ũi(x, t) satisfies the forward Kolmogorov equation (FKE)

∂ũi
∂t

(x, t) =

(
L− 1

2
hTS−1h

)
ũi(x, t). (38)

Advantage:

(L− 1
2h

TS−1h) is independent of yt. Hence, ũi can be
pre-computed.

Stephen S.-T. Yau
Complete Solution to the Most General Nonlinear Filtering Problems and Its Implementation
55 / 75



Filtering problems
Finite dimensional filter

Yau-Yau algorithm
Neural network filter

Validation of our algorithm
Aim and assumptions
Our alogrithm
Experiments

Design of Yau-Yau algorithm

Off-line:

Pick {φn(x)}∞n=0: a set of complete orthonormal base in
L2(R).

Compute the solution of FKE (38) at time τi with initial value
φn(x) at τi−1, store each solution denoted as
U(τi, τi−1)φn(x).

On-line:

Update ũi+1(x, τi) by
ũi+1(x, τi) = exp [hT (x, τi)S

−1(τi)(yτi − yτi−1)]ũi(x, τi).

Projection: ũi(x, τi−1) =
∑∞

n=0 ĉi,nφn(x) ∈ L2(R).

Synchronize with off-line data:
ũi(x, τi) =

∑∞
n=0 ĉi,n [U(τi, τi−1)φn(x)] .
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Experiment of almost linear filtering

We consider {
dxt = dvt

dyt = xt(1 + 0.25 cosxt)dt+ dwt,
(39)

where xt, yt ∈ R and E[dvTt dvt] = E[dwTt dwt] = 1. Suppose the
signal at the beginning is somewhere near 0 (or somewhere near
9).

The FKE from our model (39) is

ut =
1

2
uxx −

1

2
x2(1 + cosx)2u (40)

Assume further that the initial distribution of x0 is u0(x) = e
−x2
2

(or u0(x) = e
−(x−9)2

2 ).
Stephen S.-T. Yau

Complete Solution to the Most General Nonlinear Filtering Problems and Its Implementation
57 / 75



Filtering problems
Finite dimensional filter

Yau-Yau algorithm
Neural network filter

Validation of our algorithm
Aim and assumptions
Our alogrithm
Experiments

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

time

E
[x

t]

Almost linear sensor

 

 
real state
particle filter with 10 particles
particle filter with 50 particles
our algorithm Figure 1: Almost linear filter

is investigated with our
algorithm and the particle
filter with 10 and 50
particles. The total
experimental time is
T = 50s. And the update
time is 4t = 0.01.

Comparison in efficiency: The CPU times of particle filter with 10 and

50 particles are 5.00s and 35.75s, respectively, while that of our algorithm

is only 2.62s.
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Experiment of cubic sensor

We consider {
dxt = dvt

dyt = x3
tdt+ dwt,

(41)

where xt, yt ∈ R and E[dvTt dvt] = 1, E[dwTt dwt] = 1. Assume the
initial state is somewhere near 0.

The KFE is

ut =
1

2
uxx −

1

2
x6u. (42)

Furthermore, we assume the initial distribution is u0(x) = e−x
4/4.
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Figure 2: Cubic sensor for T = 50, with the
time step 4t = 0.01s, by both particle filter
and our algorithm.

Comparison in
efficiency: The CPU

time for our algorithm

is 4.9s, while that for

the particle filter is

37.17s. Our

algorithm costs

0.001s to update,

which is 10 times less

than the update time.
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Framework

In this work, we formulate the finite dimensional filter as the
dynamical system with stochastic inputs32. Therefore, one natural
idea is to approximate finite dimensional filters by RNN, i.e., we
can solve filtering problems by RNN.

Finite Dimensional

Filter

Dynamical

System

RNN

Formulated as Approximated by

Approximate

32Chen, Tao, Xu and Yau, IEEE Trans. Neural Netw. Learn. Syst., 2022
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Universal Approximation of Multilayer Feedforward
Networks

Let Σr,N (κ) be the class of functions

{ζ̄ = (ζ̄1, · · · , ζ̄N )T : Rr → RN : ζ̄l(x) =

q∑
j=1

βl,jκ(Aj(x)),

x ∈ Rr, βl,j ∈ R, Aj ∈ Ar, 1 ≤ l ≤ N, q = 1, 2, · · · } ,

where κ : R→ [0, 1] is the activation function and Aj is affine
function. Apparently, ζ̄ represents the standard three-layered
feedforward network with r input-neurons, q hidden-neurons and N
output-neuron, which is shown in Fig. 3. It is well-known that this
class of feedforward network functions are capable to approximate
any continuous function over a compact set to any desired degree
of accuracy33.

33Hornik, Stinchcombe and White, Neural Netw. 1989
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…

…

…

input layer
output layer

hidden layer

Figure 3: Three-layered feedforward network with r input-neurons, q
hidden-neurons and N output-neuron.
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Universal approximation of RNN with stochastic inputs

An open dynamical system in discrete time can be represented by
the following equations:{

sk+1 = η(sk, αk+1), state transition

βk = ξ(sk), output equation
(43)

where αk is the stochastic external input, sk is the state and βk is
the observable output for ∀ k ≥ 1.
Now we aim to approximate the open dynamical system (43) with
stochastic inputs by a class of RNNs. We define the truncation
operator TK with level K > 0 as

TK(xi) =

{
xi if |xi| ≤ K
K · sign(xi) otherwise ,

(44)

and TK(x) := (TK(x1), · · · , TK(xn))T for x = (x1, · · · , xn)T.
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Definition 16

For any squashing function κ, and r1, r2, r3 ∈ N, RNN r1,r2,r3(κ)
is a class of functions with the following state space model form:{

s̃k+1 = η̃(s̃k, αk+1),

β̃k = ξ̃(s̃k),
(45)

where αk ∈ Rr1 is the input, s̃k ∈ Rr2 is the hidden state,
β̃k ∈ Rr3 is the output, and

η̃(s̃, α) = η̄(TKs s̃, TKαα), (46)

ξ̃(s̃) = ξ̄(TKs s̃), (47)

in which η̄ ∈ Σr1+r2,r2(κ), ξ̄ ∈ Σr2,r3(κ), Ks and Kα are two
positive numbers which are the parameters of the RNN.
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Unfold

Figure 4: Recurrent neural networks with input α, hidden state s̃ and
output β̃.
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Theorem 17

Let η(·) : Rr2 × Rr1 → Rr2 and ξ(·) : Rr2 → Rr3 be continuous,
the external stochastic inputs αk ∈ Rr1 , the inner state sk ∈ Rr2 ,
and the output βk ∈ Rr3 , k = 1, 2, · · · . For any open dynamical
system of the form (43), if the following conditions hold:

{αk, k ≥ 1} and {sk, k ≥ 1} are uniformly integrablea;

for ∀ s, s̄ ∈ L1(Ω;Rr2) and ∀ α, ᾱ ∈ L1(Ω;Rr1),
‖η(s, α)− η(s̄, ᾱ)‖1 ≤ Cη1 ‖s− s̄‖1 + Cη2 ‖α− ᾱ‖1, and the
Lipschitz constant Cη1 satisfies |Cη1| < 1;

for ∀ ε > 0, there exists δ > 0, such that for any
s, s̄ ∈ L1(Ω;Rr2) satisfying ‖s− s̄‖1 < δ, we have
‖ξ(s)− ξ(s̄)‖1 < ε,

a{αk, k ≥ 1} is uniformly integrable means that lim
M→+∞

(
sup
k≥1

E[|αk|I|αk|>M ] = 0

)
.
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then (43) can be approximated by the functions in RNN r1,r2,r3(κ)
with an arbitrary accuracy, i.e., for ∀ ε > 0, there exist functions η̃
and ξ̃ of forms (46)-(47), which determine the RNN system (45)
with the same input {αk, k ≥ 1} of (43), such thata

lim
k→∞

‖sk − s̃k‖1 < ε,

lim
k→∞

∥∥∥βk − β̃k∥∥∥
1
< ε,

(48)

where s̃k and β̃k are the state and output of the RNN system (45),
respectively.

aThe norm ‖·‖1 := E[| · |].
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RNN based finite dimensional filters

The discrete time-invariant filtering system considered here is as
follows: {

xk = f(xk−1) + g(xk−1)wk−1,

yk = h(xk) + vk.
(49)

For finite dimensional filters, we have the following evolution
functions of the sufficient statistics Sk|k and the optimal estimate
E[xk|Yk]: {

Sk|k = Φ(Sk−1|k−1, yk),

E[xk|Yk] = Γ(Sk|k),
(50)

where Φ and Γ are some functions determined by the system (49)
and the explicit forms may be unknown.
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Using the universal approximation of RNN in Theorem 17, we can
approximate open dynamical system (50) by a RNN system which
is as follows: {

S̃k|k = Φ̃(S̃k−1|k−1, yk),

x̂k|k = Γ̃(S̃k|k),
(51)

where S̃k|k and x̂k|k are defined as the state and output of the
RNN system (51), respectively.
Using the data {yk,E[xk|Yk]}k≥0, we can train RNN system (51)
such that E[xk|Yk] can be well approximated by the output x̂k|k,
which can be regarded as the estimate of the state xk of (49)
based on observation history Yk. And we call this filtering method
as RNN filter (RNNF).
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Naturally, we aim to minimize

L0(θ) :=
1

K1 + 1
E

[
K1∑
k=0

|x̂k|k − E[xk|Yk]|2
]
, (52)

where K1 ∈ N is the total time step in training, and θ represents
all the trainable parameters in RNNF which determines x̂k|k.
Observing that

E
[
|xk − x̂k|k|2

]
=E

[
|xk − E[xk|Yk]|2

]
+ E

[
|E[xk|Yk]− x̂k|k|2

]
,

it follows that

argminθ L0(θ) = argminθ L(θ), (53)

where

L(θ) :=
1

K1 + 1
E

[
K1∑
k=0

|x̂k|k − xk|2
]
. (54)
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Therefore, instead of data {yk,E[xk|Yk]}k≥0 where E[xk|Yk]
cannot be obtained in most cases, we only need data {yk, xk}k≥0

which can be easily generated from the system (49). We need to
remark that this step is crucial since it allows us to get accessible
data.
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Theorem 18

Consider a discrete filtering system (49) with optimal FDF. We
make the following assumptions:

the sufficient statistics
{
Sk|k

}
k≥0

and the observations

{yk}k≥0 are uniformly integrable;

function Φ is Lipschitz, i.e., for any S, S̄ ∈ RnS and
y, ȳ ∈ Rm,∥∥Φ(S, y)− Φ(S̄, ȳ)

∥∥
1
≤ CΦ1

∥∥S − S̄∥∥
1

+ CΦ2 ‖y − ȳ‖1 ,
(55)

where nS is the dimension of Sk|k, CΦ1 and CΦ2 are Lipschitz
constants, and CΦ1 satisfies |CΦ1| < 1;

for ∀ ε > 0, there exists δ > 0, such that for any
s, s̄ ∈ L1(Ω;RnS ) satisfying ‖s− s̄‖1 < δ, we have
‖Γ(s)− Γ(s̄)‖1 < ε.
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then for any ε > 0, there exists a RNNF (51), i.e., there exist Φ̃
and Γ̃ represented by feedforward networks, i.e.,

Φ̃(s, y) = Φ̄(TK1s, TK2y), (56)

Γ̃(s) = Γ̄(TK1s), (57)

such that
lim
k→∞

∥∥∥Sk|k − S̃k|k∥∥∥
1
< ε, (58)

and
lim
k→∞

∥∥x̂k|k − E[xk|Yk]
∥∥

1
< ε. (59)
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Summary

In this report, we introduced several works on filtering problems.
The first two works, finite dimensional filter and Yau-Yau
algorithm, are based on DMZ equation and can be used to obtain
the conditional density function of the state. Lie algebraic method
and direct method are for systems with finite dimensional filters,
and the former is more theoretical and we only need to solve a
series of ODEs in the latter. Yau-Yau algorithm can be used to
deal with the general nonlinear filtering problems and we only need
to solve a Kolmogorov equation off-line. More recently, we also
investigate to use deep learning in filtering problems, and this
result has also been included in this report.
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THANKS!
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