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AN UPPER ESTIMATE OF INTEGRAL POINTS IN REAL
SIMPLICES WITH AN APPLICATION TO SINGULARITY

THEORY

Stephen T. Yau and Letian Zhang

Abstract. Let ∆(a1, a2, · · · , an) be an n-dimensional real simplex with vertices at
(a1, 0, · · · , 0), (0, a2, · · · , 0), · · · , (0, 0, · · · , an). Let P(a1,a2,··· ,an) be the number of pos-

itive integral points lying in ∆(a1, a2, · · · , an). In this paper we prove that
n!P(a1,a2,··· ,an) ≤ (a1 − 1)(a2 − 1) · · · (an − 1). As a consequence we have proved the

Durfee conjecture for isolated weighted homogeneous singularities: n!pg ≤ µ, where pg

and µ are the geometric genus and Milnor number of the singularity, respectively.

1. Introduction

Let ∆(a1, a2, . . . , an) be an n-dimensional simplex described by

(1.1)
x1

a1
+

x2

a2
+ · · ·+ xn

an
≤ 1, x1, x2, . . . , xn ≥ 0,

where a1 ≥ a2 ≥ · · · ≥ an ≥ 1 are positive real numbers. Define P(a1,a2,...,an) and
Q(a1,a2,...,an) to be the number of positive and nonnegative integral solutions of (1.1),
respectively (i.e. the number of positive and nonnegative integral points in simplex

∆(a1, a2, . . . , an)). If we let a =
1
a1

+
1
a2

+· · ·+ 1
an

, then P(a1,a2,...,an) and Q(a1,a2,...,an)

are related by the following formulas:

Q(a1,a2,...,an) = P(a1(1+a),a2(1+a),...,an(1+a))(1.2)
P(a1,a2,...,an) = Q(a1(1−a),a2(1−a),...,an(1−a)).(1.3)

Hence, the study of P(a1,a2,...,an) and the study of Q(a1,a2,...,an) are equivalent. The
computation of Q(a1,a2,...,an) has received attention from many distinguished math-
ematicians. Hardy and Littlewood wrote several papers on the subject that have
applications to problems of Diophantine approximation ([Ha–Li 1], [Ha–Li 2], [Ha–
Li 3]). D. C. Spencer followed up the efforts of Hardy and Littlewood and wrote
two papers on the estimation of Q(a1,a2,...,an) as well ([Sp 1], [Sp 2]). Their results,
however, are asymptotic in nature and are not useful in the applications described
below. In recent years, tremendous effort has been put into finding exact formulas
for Q(a1,a2,...,an) and P(a1,a2,...,an) where a1, a2, . . . , an are positive integers (see [Mo],
[Po], [Ca–Sh], [Br–Ve], [Di–Ro], [Ka–Kh]). However, since these results are limited to
integral simplices, they have no known application to number theory. Furthermore,
the exact formulas involve generalized Dedekind sums or other complicated terms
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[Ba], and therefore it is difficult to determine the order of magnitude of P(a1,a2,...,an).
Ideally, we would like to get a formula for P(a1,a2,...,an) in terms of a polynomial in
a1, a2, . . . , an, where a1, a2, . . . , an are not limited to integers, but can be any positive
real numbers. Although such an exact formula may not exist, a relatively sharp up-
per estimate would suffice for the purpose of many applications in number theory and
singularity theory. Barvinok and Pommersheim [Ba-Po] wrote an excellent article on
topics related to lattice points in rational polyhedra. Currently the research area of
lattice points in simplices is extremely active. For more information, we refer the
readers to the collection “Integer Points in Polyhedra – Geometry, Number Theory,
Algebra, Optimization,” a Snowbird Conference Proceedings recently published by
the AMS (Contemporary Mathematics, vol. 374, 2005).

According to Granville [Gr], finding an upper polynomial estimate of P(a1,a2,...,an)

is an extremely important subject in number theory. It could be applied to finding
large gaps between primes, to Waring’s problem, to primality testing and factoring
algorithms, and to bounds for the least prime k-th power residues and non-residues
(mod n). Given a set P of primes p1 < p2 < · · · < pn < y, number theorists are
interested in counting the number of integers m ≤ yu where m = pl1

1 pl2
2 · · · pln

n for all
u ≥ 2. This is equivalent to counting the number of (l1, l2, . . . , ln) ∈ Zn

≥0 such that
l1p1 + l2p2 + · · · + lnpn ≤ log yu, which is also equivalent to counting the number of
(l1, l2, . . . , ln) ∈ Zn

≥0 such that

(1.4)
l1
a1

+
l2
a2

+ · · ·+ ln
an

≤ 1, where ai =
log yu

log pi
.

Observe that the ai’s are not integral in general. For more information about appli-
cations of P(a1,a2,...,an) and Q(a1,a2,...,an), see Carl Pomerance’s ICM 1994 lecture at
Zürich [Pom 1] and his lecture notes [Pom 2].

The current method for counting P(a1,a2,...,an) is the polynomial estimate (1.6)
provided by number theorists. Attach a unit cube to the right of and above each
lattice point of ∆(a1, a2, . . . , an). Then

Q(a1,a2,...,an) =
∑

volume of the unit cube attached to each lattice point

≤ volume of

{
(x1, x2, . . . , xn) ∈ Rn

+ :
n∑

i=1

x1 − 1
ai

≤ 1

}

=
1
n!

(a1a2 · · · an)(1 +
n∑

i=1

1
ai

)n.(1.5)

In view of (1.2), (1.5) can be rewritten as

(1.6) P(a1,a2,...,an) ≤
1
n!

a1a2 · · · an.

The estimate of P(a1,a2,...,an) given by (1.6) is interesting. However, it is not strong
enough to be useful, particularly when many of the ai’s are small [Gr]. The purpose
of this paper is to prove the following upper bound.
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Theorem 1.1. Let Pn = P(a1,a2,...,an) = #{(x1, . . . , xn) ∈ Zn
+ :

x1

a1
+

x2

a2
+ · · ·+ xn

an
≤

1}, where a1 ≥ a2 ≥ · · · ≥ an ≥ 1 are real numbers. If n ≥ 3, then

(1.7) n! · Pn ≤ (a1 − 1)(a2 − 1) · · · (an − 1).

Equality in (1.7) holds if and only if an = 1.

Several mathematicians have attempted to prove Theorem 1.1 for separate cases
of n. In fact, Theorem 1.1 was proven for n = 3 by Xu and Yau [Xu–Ya 1], for n = 4
and 5 by Xu, Lin and Yau [Xu–Ya 2] [Li–Ya 1] [Li–Ya 2], and for n = 6 by Wang and
Yau [Wa–Ya].

In geometry and in singularity theory, Theorem 1.1 is connected with the Durfee
conjecture. Let f : (Cn, 0) → (C, 0) be a germ of a complex analytic function with an
isolated critical point at the origin, and let M be a resolution of V = {(z1, z2, . . . , zn) ∈
Cn : f(z1, z2, . . . , zn) = 0}. The Milnor number of the singularity (V, 0) is

(1.8) µ = dim C{z1, z2, . . . , zn}/(fz1 , fz2 , . . . , fzn
).

The geometric genus of the singularity (V, 0) is

(1.9) pg = dim Hn−2(M,O).

Both µ and pg are important invariants of the singularity (V, 0). As a corollary of
Theorem 1.1, we have proven the following Durfee conjecture [Du] asked in 1978.

Theorem 1.2 (Durfee conjecture). Let (V, 0) be an isolated singularity defined by
a weighted homogeneous polynomial f(z1, z2, . . . , zn). Then n! · pg ≤ µ and equality
holds if and only if µ = 0.

The importance of the Durfee conjecture is that it gives a necessary condition for a
singularity to be a hypersurface. It also gives an obstruction to embedding a strongly
pseudo-convex (2n− 1)-dimensional CR-manifold in Cn+1.

The connection between the Durfee conjecture and the upper polynomial esti-
mate of P(a1,a2,...,an) in real simplices is as follows. A polynomial f(z1, z2, . . . , zn) is
weighted homogeneous of the type (w1, w2, . . . , wn), where w1, w2, . . . , wn are fixed
positive rational numbers, if f can be expressed as a linear combination of monomials

zi1
1 zi2

2 · · · zin
n for which

i1
w1

+
i2
w2

+ · · · + in
wn

= 1. If f(z1, z2, . . . , zn) is a weighted

homogeneous polynomial of type (a1, a2, . . . , an) with an isolated singularity at the
origin, then Milnor and Orlik [Mi–Or] have proven that µ = (a1−1)(a2−1) · · · (an−1).
On the other hand, Merle and Teissier [Me–Te] showed that pg is exactly the number
Pn of positive integral points appearing in Theorem 1.1 (the Rough Estimate GLY
conjecture). Therefore by proving Theorem 1.1, we have proven the Durfee conjecture.

Theorem 1.1 is the Rough Upper Estimate in the GLY conjecture [Li–Ya 3] [Wa–
Ya]. The Durfee conjecture in Theorem 1.2 is not sharp although it has been an
open question for more than a quarter of century. In 1995, the first author formu-
lated the Yau conjecture (see Section 2 below), which is sharper than the Durfee
conjecture. More importantly, it gives an intrinsic characterization of homogeneous
singularities. In order to prove the Yau conjecture, Lin and Yau [Li–Ya 3] [Wa–Ya],
independently Granville, formulated the Sharp Upper Estimate GLY conjecture (see
Section 2 below). The Sharp Estimate GLY conjecture is true only if an is suffi-
ciently large. Consequently, when we use induction to prove the Sharp Estimate by
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slicing an n-dimensional simplex along the xn-axis into several (n − 1)-dimensional
simplices, we cannot apply the lower-dimensional Sharp Estimate conjecture to every
level. The Rough Estimate is necessary in order to complete the proof of the Sharp
Estimate. Hence, proving the Rough Estimate GLY conjecture is a critical first step
to proving the complete GLY conjecture. We hope to address the Sharp Estimate
GLY conjecture in the future paper.

2. The GLY conjecture on number of integral points and the Yau
conjecture in singularity theory

The following is a thirty-year-old problem in singularity theory.
Problem: Let f : (Cn, 0) → (C, 0) be a complex analytic function with isolated critical
point at the origin. Find an intrinsic characterization for f to be a homogeneous
polynomial.

In 1971, Saito [Sa] gave an intrinsic characterization for f to be a weighted homo-
geneous polynomial.

Theorem 2.1 (Saito [Sa]). Let f : (Cn, 0) → (C, 0) be a complex analytic function
with isolated critical point at the origin. Then f is a weighted homogeneous polynomial
after biholomorphic change of coordinates if and only if µ = τ , where
µ = dim C{z1, z2, · · · , zn}/(fz1 , fz2 , · · · , fzn

) and
τ = dim C{z1, z2, · · · , zn}/(f, fz1 , fz2 , · · · , fzn

).

In order to characterize homogeneous polynomials with isolated singularity, the
first author made the following conjecture in 1995.

Conjecture 2.1 (Yau Conjecture). Let f : (Cn, 0) → (C, 0) be a weighted homoge-
neous polynomial with an isolated singularity at the origin. Let µ, pg, and ν be the Mil-
nor number, geometric genus and multiplicity of the singularity V = {z : f(z) = 0},
then

(2.1) µ− p(ν) ≥ n!pg,

where p(ν) = (ν − 1)n − ν(ν − 1) · · · (ν − n + 1), and equality holds if and only if f is
a homogeneous polynomial.

Theorem 2.1 together with Yau conjecture will give an intrinsic characterization
for a complex analytic function to be a homogeneous function after a biholomorphic
change of variables. The Yau conjecture was answered affirmatively by Xu and Yau
[Xu–Ya 2] for n = 3 and Lin and Yau [Li–Ya 4] for n = 4. In order to prove the Yau
conjecture above, Lin, Yau [Li–Ya 3], and Granville have formulated the following
GLY conjecture.

Before we state the GLY conjecture, it is convenient to introduce some notations.
Recall the Stirling number of the first kind (see [Co] for more information on Stirling
number):

(2.2) sn−1
k =

∑
1≤i1<i2<···<ik≤n−1

i1i2 · · · ik, Sn−1
0 = 1, Sn−1

n−1 = 1 · 2 · · · (n− 1),
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where i1, i2, · · · , ik are integers. It has the following property:

x(x− 1)(x− 2) · · · (x− n + 1)

= xn −

(
n∑

i=1

i1

)
xn−1 + (−1)2

 ∑
1≤i1<i2≤n−1

i1i2

xn−2

+ · · ·+ (−1)k

 ∑
1≤i1<i2<···<ik≤n−1

i1i2 · · · ik

xn−k + · · ·+ (−1)n−1

(
n−1∏
i=1

i

)
x

= xn + (−1)Sn−1
1 xn−1 + (−1)2Sn−1

2 xn−2 + · · ·+ (−1)kSn−1
k xn−k

+ · · ·+ (−1)n−1Sn−1
n−1x.

Let a1, a2, · · · , an be positive real numbers. We shall denote

An
n−k =

(
n∏

i=1

ai

) ∑
1≤i1<i2<···<ik≤n

1
ai1ai2 · · · aik

,

An
n =

n∏
i=1

ai, An
0 = 1.

Observe that An
n−k is a polynomial in a1, a2, · · · , an of degree n− k.

Conjecture 2.2 (Granville-Lin-Yau (GLY) conjecture [Li–Ya 3] [Wa–Ya]). Let Pn =
P(a1,a2,...,an) = #{(x1, . . . , xn) ∈ Zn

+ :
x1

a1
+

x2

a2
+ · · · + xn

an
≤ 1}, where a1 ≥ a2 ≥

· · · ≥ an ≥ 1 are real numbers. If n ≥ 3, then
(I) Rough (General) Upper Estimate For all an ≥ 1,

(2.3) n! · Pn ≤ (a1 − 1)(a2 − 1) · · · (an − 1).

Equality holds if and only if an = 1.
(II) Sharp Upper Estimate For an sufficiently large: there exists an integer

βn(n) that depends on n such that when an ≥ βn(n), then

n! · P(a1,...,an) ≤ An
n + (−1)

Sn−1
1

n
An

n−1 + (−1)2
Sn−1

2(
n−1

1

)An−1
n−2 + (−1)3

Sn−1
3(

n−1
2

)An−1
n−3

+ · · ·+ (−1)k+1
Sn−1

k+1(
n−1

k

)An−1
n−k−1 + · · ·+ (−1)n−1 Sn−1

n−1(
n−1
n−2

)An−1
1 .(2.4)

Equality holds if and only if a1 = a2 = · · · = an ∈ Z≥0.

The GLY conjecture was proven by Xu and Yau for n = 3 [Xu–Ya 1] and n = 4
[Xu–Ya 3], Lin and Yau for n = 5 [Li–Ya 2] and Wang and Yau for 3 ≤ n ≤ 6
[Wa–Ya]. In fact, Wang and Yau’s method in [Wa–Ya] can be used to prove the GLY
conjecture for any fixed n. It has been checked that the GLY conjecture is true for
n ≤ 10. However, it takes a long time (several weeks for n = 10) for computer to do
the computation. The purpose of this paper is to give a proof of the Rough Estimate
GLY conjecture for all n.
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3. Three lemmas

Before proving Theorem 1.1, we need to establish three technical lemmas.

Lemma 3.1. Given any positive real number β where 0 < β < 1, let a > 1 be any
number such that β = a−bac, where bac denotes the greatest positive integer less than
or equal to a. If n ≥ 3, then

(3.1) a− 1 > (n + 1)
bac−1∑
k=0

(k + β)n

an
.

Proof. We shall prove (3.1) by induction on bac. Consider the expression

(3.2) a− 1− (n + 1)
bac−1∑
k=0

(k + β)n

an
.

For bac = 1, we have a = 1 + β and bac − 1 = 0, therefore (3.2) becomes

a− 1− (n + 1)
bac−1∑
k=0

(k + β)n

an
= 1 + β − 1− (n + 1)

βn

(1 + β)n

= β

[
1− nβn−1 + βn−1

(1 + β)n

]
.(3.3)

For n ≥ 2, (1+β)n = βn +nβn−1 + · · ·+1 > nβn−1 +βn−1, so the right-hand-side
of (3.3) is positive. To finish the proof, we need to show that if the statement of
Lemma 3.1 is true for a, then it is also true for a. By the induction hypothesis, we
have

(3.4) a− 1 > (n + 1)
bac−1∑
k=0

(k + β)n

an
.

Then

(a + 1)− 1− (n + 1)
ba+1c−1∑

k=0

(k + β)n

(a + 1)n
= a− n + 1

(a + 1)n

bac−1∑
k=0

(k + β)n + an


> a− n + 1

(a + 1)n

(
an(a− 1)

n + 1
+ an

)
= a

[
1− an + nan−1

(a + 1)n

]
> 0.(3.5)

The last inequality in (3.5) comes from (a+1)n = an+nan−1+· · ·+1 > an+nan−1. �

Lemma 3.2. Let m ≥ 2 and n ≥ 3 be positive integers, then

(3.6) m− 1 > (n + 1)
m−1∑
k=1

kn

mn
.

Proof. It is easy to see that Lemma 3.2 is true for m = 2. The proof of general
m ≥ 2 follows easily by induction. The argument is identical to that of Lemma 3.1.
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Proposition 3.1. Given any positive real number β where 0 ≤ β < 1, let a > 1 be
any number such that β = a−bac, where bac denotes the greatest positive integer less
than or equal to a. If n ≥ 3, then

(3.7) a− 1 > (n + 1)
bac−1∑
k=0

(k + β)n

an
.

Proof. Immediate consequence of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let aj−1, aj , . . . , an+1 be real numbers and β = an+1−ban+1c. Assume
that aj−1 > 1 and aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1 > 1. If

an

an+1
β ≥ 1, and

(3.8)
n+1∏
i=j

(ai − 1) > (n + 1)
ban+1c−1∑

k=0

 (k + β)j−1

aj−1
n+1

n∏
i=j

(
ai

an+1
(k + β)− 1

) ,

then

(3.9)
n+1∏

i=j−1

(ai − 1) > (n + 1)
ban+1c−1∑

k=0

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) .

Proof. For fixed aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1 > 1, let
(3.10)

F (aj−1) =
n+1∏

i=j−1

(ai − 1)− (n + 1)
ban+1c−1∑

k=0

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) .

To prove the lemma, we only need to prove that F (aj−1) is a strictly increasing
function of aj−1 and F (1) ≥ 0.

If aj−1 = 1, then
aj−1

an+1
(k + β) − 1 < 0 for 0 ≤ k ≤ ban+1c − 1. Moreover, by the

assumptions aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1 > 1 and
an

an+1
β ≥ 1, we have

ai

an+1
β ≥ 1

for all i where j ≤ i ≤ n. Therefore

(3.11)
n∏

i=j

(
ai

an+1
(k + β)− 1

)
≥ 0 for 0 ≤ k ≤ ban+1c − 1,

and

(3.12) (n + 1)
ban+1c−1∑

k=0

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) ≤ 0.

Hence, we have shown that F (1) ≥ 0. Next, we compute

dF

daj−1
=

n+1∏
i=j

(ai − 1)− (n + 1)
ban+1c−1∑

k=0

 (k + β)j−1

aj−1
n+1

n∏
i=j

(
ai

an+1
(k + β)− 1

)(3.13)

> 0 by (3.8),

so F (aj−1) is a strictly increasing function of aj−1. Thus, F (aj−1) > 0 for aj−1 >
1. �
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Now we introduce Lemma 3.4, which is slightly different from Lemma 3.3. In
Lemma 3.4, we let

an

an+1
β < 1 and ignore the layer k = 0 on the right-hand-side of

(3.9).

Lemma 3.4. Let aj−1, aj , . . . , an+1 be real numbers and β = an+1−ban+1c. Assume
that aj−1 > 1 and aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1 > 1. If

an

an+1
β < 1, and

(3.14)
n+1∏
i=j

(ai − 1) > (n + 1)
ban+1c−1∑

k=1

 (k + β)j−1

aj−1
n+1

n∏
i=j

(
ai

an+1
(k + β)− 1

) ,

then

(3.15)
n+1∏

i=j−1

(ai − 1) > (n + 1)
ban+1c−1∑

k=1

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) .

Proof. The proof of Lemma 3.4 is similar to that of Lemma 3.3. For fixed
aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1 > 1, let
(3.16)

G(aj−1) =
n+1∏

i=j−1

(ai − 1)− (n + 1)
ban+1c−1∑

k=1

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) .

It suffices to show that G(aj−1) is a strictly increasing function of aj−1 and G(1) ≥ 0.

Letting aj−1 = 1, it can be seen that
aj−1

an+1
(k + β)− 1 < 0 for 1 ≤ k ≤ ban+1c − 1.

Furthermore, since k ≥ 1 and aj ≥ aj+1 ≥ · · · ≥ an ≥ an+1, we have

(3.17)
n∏

i=j

(
ai

an+1
(k + β)− 1

)
≥ 0 for 1 ≤ k ≤ ban+1c − 1,

and

(3.18) (n + 1)
ban+1c−1∑

k=1

 (k + β)j−2

aj−2
n+1

n∏
i=j−1

(
ai

an+1
(k + β)− 1

) ≤ 0.

Therefore, G(1) ≥ 0. We then compute

dG

daj−1
=

n+1∏
i=j

(ai − 1)− (n + 1)
ban+1c−1∑

k=1

 (k + β)j−1

aj−1
n+1

n∏
i=j

(
ai

an+1
(k + β)− 1

)(3.19)

> 0 by (3.14).

so G(aj−1) is a strictly increasing function of aj−1. We conclude that G(aj−1) > 0
for aj−1 > 1. �
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4. Main result

The purpose of this section is to prove Theorem 1.1 (the Rough Estimate GLY
conjecture).

We first consider the case where an > 1. Our intention is to show that if Theorem
1.1 is true for n-dimensional simplices, then it must also be true for (n+1)-dimensional
simplices. From [Xu–Ya 1], Theorem 1.1 was proven for n = 3, which shall be our
base case in the induction. Let n ≥ 3 and Pn = P(a1,a2,...,an) be the number of positive
integral solutions satisfying

(4.1)
x1

a1
+

x2

a2
+ · · ·+ xn

an
≤ 1,

where a1, a2, . . . , an are positive real numbers such that a1 ≥ a2 ≥ · · · ≥ an > 1. By
the induction hypothesis, we have

(4.2) n! · Pn <
n∏

i=1

(ai − 1).

Consider Pn+1 = P(a1,a2,...,an+1), which is the number of positive integral solutions
satisfying

(4.3)
x1

a1
+

x2

a2
+ · · ·+ xn+1

an+1
≤ 1,

where a1, a2, . . . , an+1 are positive real numbers such that a1 ≥ a2 ≥ · · · ≥ an+1 > 1.
We slice the (n + 1)-dimensional simplex described by (4.3) along the xn+1 axis
into ban+1c similar n-dimensional simplices described by (4.1). Specifically, the n-
dimensional simplex at xn+1 = ban+1c − k, where ban+1 − 1c ≥ k ≥ 0, is

(4.4)
x1

a1
an+1

(k + β)
+

x2
a2

an+1
(k + β)

+ · · ·+ xn
an

an+1
(k + β)

≤ 1,

where β = an+1 − ban+1c. We are going to consider two cases.
Case 1:

an

an+1
β ≥ 1

When we sum up the number of lattice points in each n-dimensional simplex de-
scribed by (4.4), we have the following estimate according to the induction hypothesis
in (4.2).

(4.5) n! · Pn+1 <

ban+1c−1∑
k=0

[
n∏

i=1

(
ai

an+1
(k + β)− 1

)]
.

Our goal in this case is to show that

(4.6) (n + 1)
ban+1c−1∑

k=0

[
n∏

i=1

(
ai

an+1
(k + β)− 1

)]
<

n+1∏
i=1

(ai − 1).

From Proposition 3.1, we have

(4.7) (n + 1)
ban+1c−1∑

k=0

(k + β)n

an
n+1

< (an+1 − 1).
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If we repeatedly apply Lemma 3.3 to (4.7), then after n times we will have (4.6). The
inequality sign in (4.6) indicates that when an+1 > 1, Theorem 1.1 is strictly larger
than Pn+1.
Case 2:

an

an+1
β < 1

Examining (4.4) closely, we see that if
an

an+1
β < 1, then the number of lattice

points is zero in the layer k = 0 of the (n+1)-dimensional simplex. Therefore, k goes
from 1 to ban+1c − 1 in this case.

From (4.2), the number of lattice points in (4.3) has the following estimate:

(4.8) n! · Pn+1 <

ban+1c−1∑
k=1

[
n∏

i=1

(
ai

an+1
(k + β)− 1

)]
.

Therefore we only need to show that if
an

an+1
β < 1, then

(4.9) (n + 1)
ban+1c−1∑

k=1

[
n∏

i=1

(
ai

an+1
(k + β)− 1

)]
<

n+1∏
i=1

(ai − 1).

From Proposition 3.1, we have

(an+1 − 1) > (n + 1)
ban+1c−1∑

k=0

(k + β)n

an
n+1

> (n + 1)
ban+1c−1∑

k=1

(k + β)n

an
n+1

.(4.10)

Again, we can repeatedly apply Lemma 3.4 to (4.10), and after n times we will
have (4.9). Thus far, we have shown that if a1 ≥ a2 ≥ a3 ≥ · · · ≥ an > 1, then
n! · Pn < (a1 − 1)(a2 − 1) · · · (an − 1). Finally, notice that if an = 1, then the number
of lattice points in any n-dimensional simplex becomes zero, so our upper estimate
becomes an equality if and only if an = 1. This completes the proof of Theorem
1.1. �
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(1971) 123–142.

[Sp 1] D. C. Spencer, On a Hardy-Littlewood problem of diophantine approximation, Math.

Proc. Cambridge Philos. Soc. 35 (1939) 527–547.
[Sp 2] , The lattice points of tetrahedra, J. Math. Phys. 21 (1942)189–197.

[Wa–Ya] X. Wang and S. S.-T. Yau, On the GLY Conjecture of upper estimate of positive integral
points in real tetrahedra, preprint.

[Xu–Ya 1] Y.-J. Xu and S. S.-T. Yau, A sharp estimate of the number of integral points in a tetra-

hedron, J. Reine Angew. Math. 423 (1992) 199–219.
[Xu–Ya 2] , Sharp estimate of the number of integral points In a 4-dimensional tetrahedron,

J. Reine Angew. Math. 473 (1996) 1–23.

Department of Mathematics, Statistics & Computer Science, M/C 249, University of

Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois, 60607
E-mail address: yau@uic.edu

Illinois Mathematics and Science Academy, 1500 W. Sullivan Rd., Aurora, Illinois,
60506

E-mail address: letian@imsa.edu


