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Abstract
Let (V , 0) be an isolated hypersurface singularity. We introduce a series of new derivation
Lie algebras Lk(V ) associated to (V , 0). Its dimension is denoted as λk(V ). The Lk(V ) is
a generalization of the Yau algebra L(V ) and L0(V ) = L(V ). These numbers λk(V ) are
new numerical analytic invariants of an isolated hypersurface singularity. In this article we
compute L1(V ) for fewnomial isolated singularities (Binomial, Trinomial) and obtain the
formulas of λ1(V ). We also formulate a sharp upper estimate conjecture for the Lk(V ) of
weighted homogeneous isolated hypersurface singularities and we prove this conjecture for
large class of singularities. Furthermore, we formulate another inequality conjecture and
prove it for binomial and trinomial singularities.
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1 Introduction

The algebra of germs of holomorphic functions at the origin ofCn is denoted asOn . Clearly,
On can be naturally identified with the algebra of convergent power series in n indeterminates
with complex coefficients. As a ring On has a unique maximal ideal m, the set of germs of
holomorphic functions which vanish at the origin. Let C[x1, . . . , xn] be the polynomial
ring. For any f ∈ C[x1, . . . , xn], we denote by V = V ( f ) the germ at the origin of Cn

of hypersurface { f = 0} ⊂ C
n . In other words, if the origin is an isolated zero of the

gradient of f , then V is a germ of isolated hypersurface singularity. According to Hilbert’s
Nullstellensatz for an isolated singularity V = V ( f ) = { f = 0} the factor-algebra A(V ) =
On/( f ,

∂ f
∂x1

, . . . ,
∂ f
∂xn

) is finite dimensional. This factor-algebra is called the moduli algebra
of V and its dimension τ(V ) is called Tyurina number. The Mather-Yau theorem stated that:
Let V1 and V2 be two isolated hypersurface singularities and, A(V1) and A(V2) be the moduli
algebra, then (V1, 0) ∼= (V2, 0) ⇐⇒ A(V1) ∼= A(V2).

Recall that the order of the lowest nonvanishing term in the power series expansion of f
at 0 is called the multiplicity (denoted by mult( f )) of the singularity (V , 0). A polynomial
f ∈ C[x1, . . . , xn] is said to be weighted homogeneous if there exist positive rational num-
bers w1, · · · , wn (weights of x1, . . . , xn) and d such that,

∑
aiwi = d for each monomial∏

xaii appearing in f with nonzero coefficient. The number d is called weighted homoge-
neous degree (w-degree) of f with respect to weights w j . The weight type of f is denoted
as (w1, . . . , wn; d). Without loss of generality, we can assume that w-deg f = 1. According
to ( [24,30]) the weight types of 1 or 2-dimensional weighted homogeneous hypersurface
singularities are topological invariants. The Milnor number of the isolated hypersurface sin-
gularity is defined by μ = dimOn

/
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

). The Milnor number in case of weighted

homogeneous hypersurface singularity is calculated by: μ = ( 1
w1

− 1)( 1
w2

− 1) . . . ( 1
wn

− 1)
[21]. In 1971, Saito was the first person who gave the necessary and sufficient numerical
condition for V to be defined by a weighted homogeneous polynomial. His beautiful the-
orem says that f is a weighted homogeneous polynomial after a biholomorphic change of
coordinates ⇐⇒ μ = τ [23].

An important class of weighted homogeneous isolated hypersurface singularity is fewno-
mial singularities which are defined by Elashvili and Khimshiashvili [9]. A weighted
homogeneous polynomial f (x1, . . . , xn) is called fewnomial if number of variables coin-
cides with number of monomials ( [9,19,20,33]). According to Ebeling and Takahashi [10],
the fewnomial singularity, which is defined by a fewnomial polynomial, is also called an
invertible singularity.

It is well-known that for any isolated hypersurface singularity (V , 0) ⊂ (Cn, 0) where
V = V ( f ) = { f = 0}, based on the Mather-Yau theorem [22], one considers the Lie
algebra of derivations of moduli algebra A(V ) := On/( f ,

∂ f
∂x1

, . . . ,
∂ f
∂xn

), i.e., L(V ) =
Der(A(V ), A(V )). It is known that L(V ) is a finite dimensional solvable Lie algebra ([28,
29]). L(V ) is called the Yau algebra of V in [31] and [20] in order to distinguish from Lie
algebras of other types appearing in singularity theory ( [1,2]). The Yau algerba plays an
important role in singularities. Yau and his collabrators have been systematically studying
the Lie algebras of isolated hypersurface singularities begin from eighties (see, e.g., [27]–
[3,5,7,12,25,26,29,32,33]–[6,11,18]).

In the theory of isolated singularities, one always wants to find invariants associated
to the isolated singularities. Hopefully with enough invariants found, one can distinguish
between isolated singularities. However, not many invariants are known. In this paper we
introduce the new series new derivation Lie algebra associated to the isolated hypersurface
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singularity (V , 0). For any isolated hypersurface singularity (V , 0) ⊂ (Cn, 0) defined by
the holomorphic function f (x1, . . . , xn), let Hess( f ) be the Hessian matrix ( fi j ) of the
second order partial derivatives of f and h( f ) be the Hessian of f , i.e. the determinant of
this matrix Hess( f ). More generally, for each k satisfying 0 ≤ k ≤ n we denote by hk( f )
the ideal in On generated by all k × k-minors in the matrix Hess( f ). In particular, the ideal
hn( f ) = (h( f )) is a principal ideal. For each k as above, consider the graded k-th Hessian
algebra of the polynomial f defined by

Hk( f ) = On/( f + J ( f ) + hk( f )).

In particular, H0( f ) is exactly the well-known moduli algebra A(V ).
It is easy to check that the isomorphism class of the local k-th Hessian algebra Hk( f ) is

contact invariant of f , i.e. depends only on the isomorphism class of the germ (V , 0) [8].
The dimension of Lk(V ) is denoted by λk(V ) which is new numerical analytic invariant of
an isolated hypersurface singularity.

Recall that in [13], we also generalized the Yau algebra and introduced a new series of
k-th Yau algebras Lk(V )which are defined to be the Lie algebras of derivations of the moduli
algebras Ak(V ) = On/( f ,mk J ( f )), k ≥ 0, i.e., Lk(V ) = Der(Ak(V ), Ak(V )) and where
m is the maximal ideal of On . In particular, it is Yau algebra when k = 0. The dimension of
Lk(V ) is denoted by λk(V ).

It is interesting to bound the Yau number with a number which depends on weight type.
In [33], Yau and Zuo firstly proposed the sharp upper estimate conjecture that bound the
Yau number λ(V ). They also proved that this conjecture holds in case of binomial isolated
hypersurface singularities. Furthermore, in [12], this conjecture was verified for trinomial
singularities (the definitions of fewnomial, binomial, and trinomial singularities can be found
in [33]).

Anatural interesting question is:whether one cangive a sharp bound for the new introduced
λk(V ) of an isolated hypersurface singularities (V , 0).Weproposed the following sharp upper
estimate conjecture.

Conjecture 1.1 For each 0 ≤ k ≤ n, assume that λk({xa11 + . . . + xann = 0}) =
hk(a1, · · · , an). Let (V , 0) = {(x1, x2, · · · , xn) ∈ C

n : f (x1, x2, . . . , xn) = 0}, (n ≥ 2) be
an isolated singularity defined by the weighted homogeneous polynomial f (x1, x2, . . . , xn)
of weight type (w1, w2, . . . , wn; 1) and mult( f ) ≥ 4. Then λk(V ) ≤ hk(1/w1, . . . , 1/wn).

Remark 1.1 The inequality in Conjecture 1.1 holds true under the condition of mult( f ) = 3
and k = 0 for binomial singularities [33] and trinomial singularities [12]. However, in this
paper, we will give some examples which show that the inequality does not hold for k = 1
and mult( f ) = 3 for binomial and trinomial singularities (see Remarks 3.2–3.8).

In [13]we also formulate a similar inequality conjecture as above for theλk(V )ofweighted
homogeneous isolated hypersurface singularities and we have also proven this conjecture for
large class of singularities, i.e., for binomial and trinomial singularities. Another natural inter-
esting question is: whether there is any relation between the numerical invariants λk(V ) and
λk(V ) of isolated hypersurface singularities (V , 0). We proposed the following an Inequality
conjecture.

Conjecture 1.2 With the above notations, let (V , 0) be an isolated hypersurface singularity
defined by f ∈ On, n ≥ 2, and mult( f ) ≥ 3. Then for each i ≥ 0,

· · · > λ(i+1)(V ) > λi (V ) · · · > λ0(V ) ≥ λl(V ), l = 1, 2, . . . , n.
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1816 N. Hussain et al.

In [6], we studied Ln(V ) (note that we use a different notation L∗(V ) in stead of Ln(V )

there) and obtained the following result.

Theorem 1.1 ([6], TheoremD)Let f be aweightedhomogeneouspolynomial inC[x1, x2, . . . ,
xn] (2 ≤ n ≤ 4) with respect to weight system (w1, w2, . . . , wn; 1) and with mult( f ) ≥ 3.
Suppose that f defines an isolated singularity (V , 0), then

λn(V ) = λ(V ).

Remark 1.2 It follows from Theorem 1.1 that λ0(V ) = λ2(V ) for binomial singularities and
λ0(V ) = λ3(V ) for trinomial singularities.

The main purpose of this paper is to verify the Conjecture 1.1 and 1.2 for binomial and
trinomial singularities. We obtain the following main results.

Main Theorem A Let (V , 0) = {(x1, x2, . . . , xn) ∈ C
n : xa11 +· · ·+ xann = 0}, (n ≥ 2; ai ≥

3, 1 ≤ i ≤ n). Then

λ1(V ) = h1(a1, · · · , an) =
n∑

j=1

a j − 3

a j − 2

n∏

i=1

(ai − 2).

Main Theorem B Let (V , 0) be a binomial singularity defined by the weighted homogeneous
polynomial f (x1, x2) (see Corollary 2.1) with weight type (w1, w2; 1) and mult( f ) ≥ 4.
Then

λ1(V ) ≤ h1

(
1

w1
,
1

w2

)

=
2∑

j=1

1
w j

− 3

1
w j

− 2

2∏

i=1

(
1

wi
− 2

)

.

Main Theorem C Let (V , 0) be a fewnomial singularity defined by the weighted homoge-
neous polynomial f (x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1) and
mult( f ) ≥ 4. Then

λ1(V ) ≤ h1

(
1

w1
,
1

w2
,
1

w3

)

=
3∑

j=1

1
w j

− 3

1
w j

− 2

3∏

i=1

(
1

wi
− 2

)

.

Main Theorem D Let (V , 0) be a binomial singularity defined by the weighted homogeneous
polynomial f (x1, x2) (see Corollary 2.1) with weight type (w1, w2; 1) and mult( f ) ≥ 3.
Then

λ2 > λ1 > λ0 = λ2 > λ1.

Main Theorem E Let (V , 0) be a trinomial singularity defined by the weighted homoge-
neous polynomial f (x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1) and
mult( f ) ≥ 3. Then

λ2 > λ1 > λ0 = λ3 > λ1.

Remark 1.3 In main Theorem E, the λ2(V ) is extremely complicated to compute.

Main Theorem F Let (V f , 0) ⊂ (Cn, 0) and (Vg, 0) ⊂ (Cm, 0) be defined by weighted
homogeneous polynomials f (x1, x2, · · · , xn) = 0 of weight type (w1, w2 · · · , wn; 1) and
g(y1, y2, · · · , ym) = 0 of weight type (wn+1, wn+2, · · · , wn+m; 1) respectively. With the
above notations. Then

L1(V f +g) = L1(V f ) ⊗ H1(Vg) + H1(V f ) ⊗ L1(Vg). (1.1)
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We obtain the following result as an immediately corollary of Theorem F.

Corollary 1.1 Let (V f , 0) ⊂ (Cn, 0) and (Vg, 0) ⊂ (Cm, 0) be defined by weighted
homogeneous polynomials f (x1, x2, · · · , xn) = 0 of weight type (w1, w2 · · · , wn; 1) and
g(y1, y2, · · · , ym) = 0 of weight type (wn+1, wn+2, · · · , wn+m; 1) respectively. With the
above notations, letμ1(V f ),μ1(Vg) be dimensions of the 1-st Hessian algebras H1(V f ) and
H1(Vg) respectively. Then

λ1(V f +g) = μ1(V f )λ1(Vg) + μ1(Vg)λ1(V f ). (1.2)

2 Generalities on derivation Lie algebras of isolated singularities

In this section we shall briefly defined the basic definitions and important results which are
helpful to solve the problem. The following basic concepts and results will be used to compute
the derivation Lie algebras of isolated hypersurface singularities.

Let A, B be associative algebras over C. The subalgebra of endomorphisms of A gen-
erated by the identity element and left and right multiplications by elements of A is called
multiplication algebra M(A) of A. The centroidC(A) is defined as the set of endomorphisms
of A which commute with all elements of M(A). Obviously, C(A) is a unital subalgebra of
End(A). The following statement is a particular case of a general result from Proposition 1.2
of [4]. Let S = A ⊗ B be a tensor product of finite dimensional associative algebras with
units. Then

DerS ∼= (DerA) ⊗ C(B) + C(A) ⊗ (DerB).

We will only use this result for commutative associative algebras with unit, in which case
the centroid coincides with the algebra itself and one has following result for commutative
associative algebras A, B:

Theorem 2.1 ([4]) For commutative associative algebras A, B,

DerS ∼= (DerA) ⊗ B + A ⊗ (DerB). (2.1)

We shall use this formula in the sequel.

Definition 2.1 Let J be an ideal in an analytic algebra S. Then DerJ S ⊆ DerCS is Lie
subalgebra of all σ ∈ DerCS for which σ(J ) ⊂ J .

We shall use the following well-known result to compute the derivations.

Theorem 2.2 ([33]) Let J be an ideal in R = C{x1, · · · , xn}. Then there is a natural iso-
morphism of Lie algebras

(DerJ R)/(J · DerCR) ∼= DerC(R/J ).

Recall that a derivation of commutative associative algebra A is defined as a linear endo-
morphism D of A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b). Thus for such an
algebra A one can consider the Lie algebra of its derivations Der(A, A) with the bracket
defined by the commutator of linear endomorphisms.

Definition 2.2 Let (V , 0) be an isolated hypersurface singularity. The series new derivation
Lie algebra arising from the isolated hypersurface singularity (V , 0) is defined as Lk(V ) :=
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1818 N. Hussain et al.

Der(Hk( f ), Hk( f )), 0 ≤ k ≤ n (where Hk( f ) = On+1/( f + J ( f ) + hk( f )) and hk( f )
is the ideal in On generated by all k × k-minors in the matrix Hess( f )). Its dimension is
denoted as λk(V ). In particular, H0( f ) is exactly the well-knownmoduli algebra A(V ). Thus
Lk(V ) is a generalization of Yau algebra L(V ) and L0(V ) = L(V ). These numbers λk(V )

are new numerical analytic invariants of an isolated hypersurface singularity.

Definition 2.3 A polynomial f ∈ C[x1, x2, . . . , xn] is called quasi-homogeneous (or
weighted homogeneous) if there exist positive rational numbers w1, . . . , wn (called weights

of indeterminates x j ) and d such that, for each monomial
∏

x
k j
j appearing in f with non-

zero coefficient, one has
∑

w j k j = d . The number d is called the quasi-homogeneous
degree (w-degree) of f with respect to weights w j and is denoted deg f . The collection
(w; d) = (w1, · · · , wn; d) is called the quasi-homogeneity type (qh-type) of f .

Definition 2.4 An isolated hypersurface singularity inCn is fewnomial if it can be defined by
a n-nomial in n variables and it is a weighted homogeneous fewnomial isolated singularity
if it can be defined by a weighted homogeneous fewnomial. 3-nomial isolated hypersurface
singularity is also called trinomial singularity.

Proposition 2.1 Let f be a weighted homogeneous fewnomial isolated singularity with
mult( f ) ≥ 3. Then f analytically equivalent to a linear combination of the following three
series:

Type A. xa11 + xa22 + · · · + xan−1
n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann x1, n ≥ 2.

Proposition 2.1 has an immediate corollary.

Corollary 2.1 Each binomial isolated singularity is analytically equivalent to one from the
three series: A) xa11 + xa22 , B) xa11 x2 + xa22 , C) xa11 x2 + xa22 x1.

Wolfgang and Atsushi [10] give the following classification of weighted homogeneous
fewnomial singularities in case of three variables.

Proposition 2.2 [10] Let f (x1, x2, x3) be a weighted homogeneous fewnomial isolated sin-
gularity with mult( f ) ≥ 3. Then f is analytically equivalent to following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x1,
Type 5. xa11 x2 + xa22 x1 + xa33 .

3 Proof of main theorems

In order to prove the main theorems, we need to prove following propositions.

Proposition 3.1 Let (V , 0) be aweighted homogeneous fewnomial isolated singularity which
is defined by f = xa11 + xa22 + · · · + xann (ai ≥ 3, i = 1, 2, . . . , n) with weight type
( 1
a1

, 1
a2

, . . . , 1
an

; 1). Then

λ1(V ) =
n∑

j=1

a j − 3

a j − 2

n∏

i=1

(ai − 2).
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Proof The generalized moduli algebra

H1(V ) = C{x1, x2, x3, . . . , xn}/( J̃ ( f ))

and where J̃ ( f ) is ideal of 2nd order partial derivative of f . It is note that H1(V ) has
dimension

∏n
i=1(ai − 2) and has a monomial basis of the form

{xi11 xi22 · · · xinn , 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, . . . , 0 ≤ in ≤ an − 3},
with following relations:

xa1−2
1 = 0, xa2−2

2 = 0, xa3−2
3 = 0, . . . , xan−2

n = 0. (3.1)

In order to compute a derivation D of H1(V ) it suffices to indicate its values on the generators
x1, x2, . . . , xn which can bewritten in terms of themonomial basis.Without loss of generality,
we write

Dx j =
a1−3∑

i1=0

a2−3∑

i2=0

. . .

an−3∑

in=0

c ji1,i2,··· ,in x
i1
1 xi22 · · · xinn , j = 1, 2, . . . , n.

Using the above relations (3.1) one easily finds the necessary and sufficient conditions defin-
ing a derivation of H1(V ) as follows:

c10,i2,i3,,··· ,in = 0; 0 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3, . . . , 0 ≤ in ≤ an − 3;
c2i1,0,i3,,··· ,in = 0; 0 ≤ i1 ≤ a1 − 3, 0 ≤ i3 ≤ a3 − 3, . . . , 0 ≤ in ≤ an − 3;
c3i1,i2,0,··· ,in = 0; 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, . . . , 0 ≤ in ≤ an − 3;

...

cni1,i2,i3,...,in−1,0 = 0; 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, . . . , 0 ≤ in−1 ≤ an−1 − 3.

Therefore we obtain the following description of Lie algebras in question:

xi11 xi22 · · · xinn ∂1, 1 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3, . . . , 0 ≤ in ≤ an − 3;
xi11 xi22 · · · xinn ∂2, 0 ≤ i1 ≤ a1 − 3, 1 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3, . . . , 0 ≤ in ≤ an − 3;
xi11 xi22 · · · xinn ∂3, 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, 1 ≤ i3 ≤ a3 − 3, 0 ≤ i4 ≤ a4 − 3,

0 ≤ i5 ≤ a5 − 3, 0 ≤ i6 ≤ a6 − 3, . . . , 0 ≤ in ≤ an − 3;
.
.
.

xi11 xi22 . . . xinn ∂n, 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3, . . . , 1 ≤ in ≤ an − 3.

Therefore we have the following formula

λ1(V ) =
n∑

j=1

a j − 3

a j − 2

n∏

i=1

(ai − 2).

�
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Remark 3.1 Let (V , 0) be a weighted homogeneous fewnomial isolated singularity of type
A which is defined by f = xa11 + xa22 (a1 ≥ 3, a2 ≥ 3) with weight type ( 1

a1
, 1
a2

; 1). Then
it follows from Proposition 3.1 that

λ1(V ) = 2a1a2 − 5(a1 + a2) + 12.

Proposition 3.2 Let (V , 0) be a binomial isolated singularity of type B which is defined by
f = xa11 + xa22 x1 (a1 ≥ 3, a2 ≥ 2) with weight type ( 1

a1
, a1−1
a1a2

; 1). Then

λ1(V ) =
⎧
⎨

⎩

2a1a2 − 5(a1 + a2) + 15; a1 ≥ 4, a2 ≥ 3
a2 − 2; a1 = 3, a2 ≥ 3
0; a1 ≥ 3, a2 = 2.

Furthermore, assuming that mult( f ) ≥ 4, we have

2a1a2 − 5(a1 + a2) + 15 ≤ 2a21a2
a1 − 1

− 5

(
a1a2
a1 − 1

+ a1

)

+ 12.

Proof It follows that the generalized moduli algebra

H1(V ) = C{x1, x2}/
(

∂2 f

∂x21
,

∂2 f

∂x1∂x2
,
∂2 f

∂x22

)

has dimension a1a2 − 2(a1 + a2) + 5 and has a monomial basis of the form

{xi11 xi22 , 0 ≤ i1 ≤ a1 − 3; 0 ≤ i2 ≤ a2 − 3; xa2−2
2 }, (3.2)

with the following relations:

xa1−2
1 = 0, (3.3)

xa2−1
2 = 0, (3.4)

x1x
a2−2
2 = 0. (3.5)

In order to compute a derivation D of H1(V ) it suffices to indicate its values on the
generators x1, x2 which can be written in terms of the basis (3.2). Without loss of generality,
we write

Dx j =
a1−3∑

i1=0

a2−3∑

i2=0

c ji1,i2 x
i1
1 xi22 + c j0,a2−2x

a2−2
2 , j = 1, 2.

Using the relations (3.3)–(3.5) one easily finds the necessary and sufficient conditions defining
a derivation of H1(V ) as follows:

c10,0 = c10,1 = · · · = c10,a2−3 = 0; (3.6)

c20,0 = c21,0 = · · · = c2a1−4,0 = 0. (3.7)

Using (3.6) and (3.7) we obtain the following description of the Lie algebras in question. The
following derivations form a basis of DerH1(V ):

xi11 xi22 ∂1, 1 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3; xi11 xi22 ∂2, 1 ≤ i1 ≤ a1 − 3, 1 ≤ i2 ≤ a2 − 3;
xi22 ∂2; 1 ≤ i2 ≤ a2 − 2; xa1−3

1 ∂2.
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Therefore we have the following formula

λ1(V ) = 2a1a2 − 5(a1 + a2) + 15.

In case of a1 = 3, a2 ≥ 3 we have following basis:

xi22 ∂2, 1 ≤ i2 ≤ a2 − 2.

Therefore we have

λ1(V ) = a2 − 2.

It is follows from Proposition 3.1 we have

h1(a1, a2) = 2a1a2 − 5(a1 + a2) + 12.

After putting the weight type ( 1
a1

, a1−1
a1a2

; 1) of binomial isolated singularity of type Bwe have

h1(
1

w1
,
1

w2
) = 2a21a2

a1 − 1
− 5(a1 + a1a2

a1 − 1
) + 12.

Finally we need to show that

2a1a2 − 5(a1 + a2) + 15 ≤ 2a21a2
a1 − 1

− 5(
a1a2
a1 − 1

+ a1) + 12. (3.8)

After solving 3.8 we have (a1 − 5)(a2 − 3) + a1a2 − 12 ≥ 0. �
Remark 3.2 Note that, for mult( f ) = 3, the inequality in Proposition 3.2 does not hold true
when a1 ≥ 5 and a2 = 2.

Proposition 3.3 Let (V , 0) be a binomial isolated singularity of type C which is defined by
f = xa11 x2 + xa22 x1 (a1 ≥ 2, a2 ≥ 2) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1). Then

λ1(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2a1a2 − 5(a1 + a2) + 19; a1 ≥ 5, a2 ≥ 5
a2 + 1; a1 = 3, a2 ≥ 3
3a2 − 2; a1 = 4, a2 ≥ 5
9; a1 = 4, a2 = 4
0; a1 = 2, a2 ≥ 2

Furthermore, assuming that mult( f ) ≥ 4, we have

2a1a2 − 5(a1 + a2) + 19 ≤ 2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 5(a1a2 − 1)

(
a1 + a2 − 2

(a1 − 1)(a2 − 1)

)

+ 12.

Proof It follows that the generalized moduli algebra

H1(V ) = C{x1, x2}/
(

∂2 f

∂x21
,

∂2 f

∂x1∂x2
,
∂2 f

∂x22

)

has dimension a1a2 − 2(a1 + a2) + 7 and has a monomial basis of the form

{xi11 xi22 , 0 ≤ i1 ≤ a1 − 3; 0 ≤ i2 ≤ a2 − 3; xa1−2
1 ; xi22 , a2 − 2 ≤ i2 ≤ a2 − 1}, (3.9)

with the following relations:

a1x
a1−1
1 + a2x

a2−1
2 = 0, (3.10)

123



1822 N. Hussain et al.

xa1−2
1 x2 = 0, (3.11)

x1x
a2−2
2 = 0. (3.12)

In order to compute a derivation D of H1(V ) it suffices to indicate its values on the
generators x1, x2 which can be written in terms of the basis (3.9). Without loss of generality,
we write

Dx j =
a1−3∑

i1=0

a2−3∑

i2=0

c ji1,i2 x
i1
1 xi22 + c ja1−2,0x

a1−2
1 +

a2−1∑

i2=a2−2

c j0,i2 x
i2
2 , j = 1, 2.

Using the relations (3.10)–(3.12) one easily finds the necessary and sufficient conditions
defining a derivation of H1(V ) as follows:

c10,0 = c10,1 = · · · = c10,a2−4 = 0; (3.13)

c20,0 = c21,0 = · · · = c2a1−4,0 = 0; (3.14)

−(a1 − 1)a2c
1
1,0 + a1a2c

2
0,1 = 0. (3.15)

Using (3.13)–(3.15) we obtain the following description of the Lie algebras in question. The
following derivations form a basis of DerH1(V ):

xi11 xi22 ∂1, 1 ≤ i1 ≤ a1 − 3, 1 ≤ i2 ≤ a2 − 3; xi11 xi22 ∂2,

1 ≤ i1 ≤ a1 − 3, 1 ≤ i2 ≤ a2 − 3;
xi22 ∂1; a2 − 3 ≤ i2 ≤ a2 − 1; x1∂1 + a1 − 1

a2 − 1
x2∂2; xi11 ∂1,

2 ≤ i1 ≤ a1 − 2; xi22 ∂2, 2 ≤ i2 ≤ a2 − 1;
xi11 ∂2, a1 − 3 ≤ i1 ≤ a1 − 2.

Therefore we have the following formula

λ1(V ) = 2a1a2 − 5(a1 + a2) + 19.

In case of a1 = 3, a2 ≥ 3 we have following basis:

xa2−2
2 ∂1 + 3x1

a2
∂2; xa2−1

2 ∂1; x1∂1 + 2x2
a2 − 1

∂2; xi22 ∂2, 2 ≤ i2 ≤ a2 − 1.

Therefore we have the following formula

λ1(V ) = a2 + 1.

In case of a1 = 4, a2 ≥ 5 we have following basis:

xi22 ∂1; a2 − 3 ≤ i2 ≤ a2 − 1; x1∂1 + 3x2
a2 − 1

∂2; x1xi22 ∂1, 1 ≤ i2 ≤ a2 − 3;
x21∂1; xi22 ∂2, 2 ≤ i2 ≤ a2 − 1; x21∂2; x1xi22 ∂2, 1 ≤ i2 ≤ a2 − 3.

Therefore we have the following formula

λ1(V ) = 3a2 − 2.

In case of a1 = 4, a2 = 4 we have following basis:

x22∂1; x32∂1; x1x2∂1; x21∂1; x22∂2; x32∂2; x1x2∂2; x21∂2.
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Therefore we have the following formula

λ1(V ) = 9.

It is follows from Proposition 3.1 and binomial isolated singularity of type C we have

h1(
1

w1
,
1

w2
) = 2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 5(

a1a2 − 1

a2 − 1
+ a1a2 − 1

a1 − 1
) + 12.

Finally we need to show that

2a1a2 − 5(a1 + a2) + 19 ≤ 2(a1a2 − 1)2

(a1 − 1)(a2 − 1)
− 5(

a1a2 − 1

a2 − 1
+ a1a2 − 1

a1 − 1
) + 12.

(3.16)

After solving (3.16) we have

a1a
2
2 [(a2 − 2)(a1 − 3) − a1(a2 − 5)] + a32 + 3a21a2 + 11a22(a1 − 1) + 8a1a2(a1 − 4)

+2a21(a2 − 4) + a1a2(a1 − 4) + 17a1 + 4(a2 − 4) + (a1 − 4) ≥ 0.

In case of a1 = 3, a2 ≥ 4, we need to prove that:

a2 + 1 ≤ 2(3a2 − 1)2

2(a2 − 1)
− 5(

3a2 − 1

a2 − 1
+ 3a2 − 1

2
) + 12. (3.17)

After solving 3.17 we have

a22 + 8a2 − 15 ≥ 0.

In case of a1 = 4, a2 ≥ 5, we need to prove that:

3a2 − 2 ≤ 2(4a2 − 1)2

3(a2 − 1)
− 5(

4a2 − 1

a2 − 1
+ 4a2 − 1

3
) + 12. (3.18)

After solving 3.18 we have

a2(a2 − 2) − 10 ≥ 0.

�

Remark 3.3 For mult( f ) = 3, the inequality in Proposition 3.3 does not hold true when
a1 = 2 and a2 ≥ 3.

Remark 3.4 Let (V , 0) be a fewnomial surface isolated singularity of type 1 (see Proposi-
tion 2.2) which is defined by f = xa11 + xa22 + xa33 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 3) with weight
type ( 1

a1
, 1
a2

, 1
a3

; 1). Then it follows from Proposition 3.1 that

λ1(V ) = 3a1a2a3 + 16(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 36.

For the proofs of Propositions 3.4, 3.6 and 3.7, we skip the details due to space con-
straints.Interested readers can find all the detailed proofs in a longer version of this paper.
http://archive.ymsc.tsinghua.edu.cn/pacm_download/89/11720-HYZ20.pdf.
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Proposition 3.4 Let (V , 0) be a fewnomial surface isolated singularity of type 2 which
is defined by f = xa11 x2 + xa22 x3 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
( 1−a3+a2a3

a1a2a3
, a3−1
a2a3

, 1
a3

; 1). Then

λ1(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 − 7(a1a2 + a1a3 + a2a3) + 20(a1 + a3)
+16a2 − 55; a1 ≥ 4, a2 ≥ 4, a3 ≥ 4
2a1a3 − a1 − 3a3 − 1; a1 ≥ 3, a2 = 3, a3 ≥ 4
2a2a3 − 5a2 − a3 + 5; a1 = 3, a2 ≥ 4, a3 ≥ 4
2a1a2 − 3a1 − 5a2 + 10; a1 ≥ 3, a2 ≥ 3, a3 = 3
a3 − 3; a1 = 2, a2 ≥ 2, a3 ≥ 3
a1 − 3; a1 ≥ 3, a2 = 2, a3 ≥ 3.

Furthermore, assuming that mult( f ) ≥ 4, we have

3a1a2a3 − 7(a1a2 + a1a3 + a2a3) + 20(a1 + a3) + 16a2 − 55 ≤ 3a1a22a
3
3

(1 − a3 + a2a3)(a3 − 1)

− 7

(
a1a22a

2
3

(1 − a3 + a2a3)(a3 − 1)
+ a1a2a23

1 − a3 + a2a3
+ a2a23

a3 − 1

)

+ 16

(
a1a2a3

1 − a3 + a2a3

+ a2a3
a3 − 1

+ a3

)

− 36.

Remark 3.5 For mult( f ) = 3, the inequality in Proposition 3.4 is not true when a1 = 2,
a2 ≥ 3 and a3 ≥ 3.

Proposition 3.5 Let (V , 0) be a fewnomial surface isolated singularity of type 3 which is
defined by f = xa11 x2 + xa22 x3 + xa33 x1 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 2) with weight type

(
1 − a3 + a2a3
1 + a1a2a3

,
1 − a1 + a1a3
1 + a1a2a3

,
1 − a2 + a1a2
1 + a1a2a3

; 1
)

.

Then

λ1(V ) =
⎧
⎨

⎩

3a1a2a3 + 20(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3)
−63; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
a3 − 2; a1 = 2, a2 ≥ 2, a3 ≥ 2

Furthermore, assuming that mult( f ) ≥ 4, we have

3a1a2a3 + 20(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 63

≤ 3(1 + a1a2a3)3

(1 − a3 + a2a3)(1 − a1 + a1a3)(1 − a2 + a1a2)

+16

(
1 + a1a2a3

1 − a3 + a2a3
+ 1 + a1a2a3

1 − a1 + a1a3
+ 1 + a1a2a3

1 − a2 + a1a2

)

−7

(
(1 + a1a2a3)2

(1 − a3 + a2a3)(1 − a1 + a1a3)
+ (1 + a1a2a3)2

(1 − a1 + a1a3)(1 − a2 + a1a2)

+ (1 + a1a2a3)2

(1 − a3 + a2a3)(1 − a2 + a1a2)

)

− 36.

Proof It is easy to see that the moduli algebra

H1(V ) = C{x1, x2, x3}/
(

∂2 f

∂x21
,

∂2 f

∂x1∂x2
,

∂2 f

∂x1∂x3
,
∂2 f

∂x22
,
∂2 f

∂x23
,

∂2 f

∂x2∂x3

)
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has dimension a1a2a3 − 2(a1a2 + a1a3 + a2a3)+ 5(a1 + a2 + a3)− 14 and has a monomial
basis of the form

{xi11 xi22 xi33 , 0 ≤ i1 ≤ a1 − 3; 0 ≤ i2 ≤ a2 − 3; 0 ≤ i3 ≤ a3 − 3; xa1−2
1 xi33 , 0 ≤ i3 ≤ a3 − 3;

xi22 xa3−2
3 , 0 ≤ i2 ≤ a2 − 3; xi11 xa2−2

2 , 0 ≤ i1 ≤ a1 − 3},
and in case of a1 = 2, a2 ≥ 2, a3 ≥ 2 the monomial basis are {xi33 , 0 ≤ i3 ≤ a3 − 2}

with the following relations:

xa1−2
1 x2 = 0, xa2−2

2 x3 = 0, xa3−2
3 x1 = 0, xa1−1

1 = 0, xa2−1
2 = 0, xa3−1

3 = 0. (3.19)

In order to compute a derivation D of H1(V ) it suffices to indicate its values on the
generators x1, x2, x3 which can be written in terms of the basis. Thus we can write

Dx j =
a1−3∑

i1=0

a2−3∑

i2=0

a3−3∑

i3=0

c ji1,i2,i3x
i1
1 xi22 xi33 +

a1−3∑

i1=0

c ji1,a2−2,0x
i1
1 xa2−2

2 +
a3−3∑

i3=0

c ja1−2,0,i3
xa1−2
1 xi33

+
a2−3∑

i2=0

c j0,i2,a3−2x
i2
2 xa3−2

3 , j = 1, 2, 3.

Using the relations (3.19) one easily finds the necessary and sufficient conditions defining a
derivation of H1(V ) as follows:

c10,i2,i3 = 0; 0 ≤ i2 ≤ a2 − 4, 0 ≤ i3 ≤ a3 − 3, c10,a2−3,0 = 0; (3.20)

c2i1,0,i3 = 0; 0 ≤ i1 ≤ a1 − 3, 0 ≤ i3 ≤ a3 − 4, c20,0,a3−3 = 0; (3.21)

c3i1,i2,0 = 0; 0 ≤ i1 ≤ a1 − 4, 0 ≤ i2 ≤ a2 − 3, c3a1−3,0,0 = 0. (3.22)

Using (3.20)–(3.22) we obtain the following description of Lie algebras in question:

xi11 xi22 xi33 ∂1, 1 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3; xi22 xa3−2
3 ∂1, 1 ≤ i2 ≤ a2 − 4,

xa2−3
2 xi33 ∂1, 1 ≤ i3 ≤ a3 − 2; xi11 xa2−2

2 ∂1, 1 ≤ i1 ≤ a1 − 3; xa1−2
1 xi33 ∂1, 0 ≤ i3 ≤ a3 − 3;

xi11 xi22 xi33 ∂2, 0 ≤ i1 ≤ a1 − 3, 1 ≤ i2 ≤ a2 − 3, 0 ≤ i3 ≤ a3 − 3; xa1−2
1 xi33 ∂2, 0 ≤ i3 ≤ a3 − 3;

xi11 xa2−2
2 ∂2, 1 ≤ i1 ≤ a1 − 3; xa2−2

2 ∂2; xi11 xa3−3
3 ∂2, 1 ≤ i1 ≤ a1 − 3,

xi11 xi22 xi33 ∂3, 0 ≤ i1 ≤ a1 − 3, 0 ≤ i2 ≤ a2 − 3, 1 ≤ i3 ≤ a3 − 3;
xa2−2
2 ∂3; xi11 xa2−2

2 ∂3, 1 ≤ i1 ≤ a1 − 3; xa3−2
3 ∂2; xa3−2

3 ∂3; xa2−2
2 ∂1;

xa1−3
1 xi22 ∂3, 1 ≤ i2 ≤ a2 − 3; xa1−2

1 xi33 ∂3, 0 ≤ i3 ≤ a3 − 3; xa3−2
3 ∂1;

xi22 xa3−2
3 ∂3, 1 ≤ i2 ≤ a2 − 3; xi22 xa3−2

3 ∂2, 1 ≤ i2 ≤ a2 − 3.

Therefore we have

λ1(V ) = 3a1a2a3 + 20(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 63.

In case of a1 = 2, a2 ≥ 2, a3 ≥ 2, we obtain the following basis:

xi33 ∂3, 1 ≤ i3 ≤ a3 − 2.

Furthermore, we need to show that when a1 ≥ 3, a2 ≥ 3, a3 ≥ 3, then

3a1a2a3 + 20(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 63

≤ 3(1 + a1a2a3)3

(1 − a3 + a2a3)(1 − a1 + a1a3)(1 − a2 + a1a2)
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+16

(
1 + a1a2a3

1 − a3 + a2a3
+ 1 + a1a2a3

1 − a1 + a1a3

+ 1 + a1a2a3
1 − a2 + a1a2

)

− 7 (
(1 + a1a2a3)2

(1 − a3 + a2a3)(1 − a1 + a1a3)

+ (1 + a1a2a3)2

(1 − a1 + a1a3)(1 − a2 + a1a2)

+ (1 + a1a2a3)2

(1 − a3 + a2a3)(1 − a2 + a1a2)

)

− 36.

After simplification we get

8(a1a2 + a2a3 + a1a3) + a1(a2 − 3) + a2(a3 − 3) + a3(a1 − 3)

+6a21 [a2(a3 − 3) + a3(a2 − 3)]
+6a22 [a1(a3 − 3) + a3(a1 − 3)] + 6a23 [a1(a2 − 3) + a2(a1 − 3)]
+6(a21 + a22 + a23) + 6(a31a2 + a32a3

+a33a1) + 4a21a
2
2a

2
3 + 8(a1a

2
2a3 + a1a2a

2
3)

+4a21a2a3 + 2a1a2a3[3a1 − 8] + a31a2a
2
3(a3 − 3)(a2 − 3)

+a21a
2
3(a3 − 3)(a1a2 − 2) + 2a21a2a

2
3(a3 + a2 − 6)

+6a1a2a
3
3(a1 − 3) + a21a

3
2a3(a3 − 3)(a1 − 3)

+a21a
2
2(a1 − 3)(a2a3 − 2) + 2a31a2a3(a2 − 3) + 2a21a

2
2a3(a1 − 3 + (a3 − 3))

+a1a
2
2a

3
3(a2 − 3)(a1 − 3) + a22a

2
3(a2 − 3)(a1a3 − 2) + 14 ≥ 0.

�
Remark 3.6 For mult( f ) = 3, the inequality in Proposition 3.5 is not true when a1 = 2,
a2 ≥ 2 and a3 ≥ 3.

Proposition 3.6 Let (V , 0) be a fewnomial surface isolated singularity of type 4 which is
defined by f = xa11 +xa22 +xa33 x1 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 2) withweight type ( 1

a1
, 1
a2

, a1−1
a1a3

; 1).
Then

λ1(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

3a1a2a3 + 16(a1 + a3) + 20a2 − 7(a1a2 + a1a3 + a2a3)
−45; a1 ≥ 4, a2 ≥ 3, a3 ≥ 3
2a2a3 − 3a2 − 5a3 + 7; a1 = 3, a2 ≥ 3, a3 ≥ 2
a2 − 3; a1 ≥ 4, a2 ≥ 3, a3 = 2

Furthermore, assuming that mult( f ) ≥ 4, we have

3a1a2a3 + 16(a1 + a3) + 20a2 − 7(a1a2 + a1a3 + a2a3) − 45

≤ 3a21a2a3
a1 − 1

+ 16

(

a1 + a2 + a1a3
a1 − 1

)

−7(a1a2 + a1a2a3
a1 − 1

+ a21a3
a1 − 1

) − 36.

Remark 3.7 For mult( f ) = 3, the inequality in Proposition 3.6 is not true when a1 ≥ 5,
a2 ≥ 5 and a3 = 2.

Proposition 3.7 Let (V , 0) be a fewnomial surface isolated singularity of type 5 which
is defined by f = xa11 x2 + xa22 x1 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
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( a2−1
a1a2−1 ,

a1−1
a1a2−1 ,

1
a3

; 1). Then

λ1(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3a1a2a3 + 16(a1 + a2) + 26a3 − 7(a1a2 + a1a3 + a2a3)
−59; a1 ≥ 5, a2 ≥ 5, a3 ≥ 3
a3 − 3; a1 = 2, a2 ≥ 2, a3 ≥ 3
2a2a3 − 5a2 + 2a3 − 5; a1 = 3, a2 ≥ 3, a3 ≥ 3
6a2a3 − 14a2 − 8a3 + 17; a1 = 4, a2 ≥ 4, a3 ≥ 3

Furthermore, assuming that mult( f ) ≥ 4, we have

3a1a2a3 + 16(a1 + a2) + 26a3 − 7(a1a2 + a1a3 + a2a3) − 59

≤ 3a3(a1a2 − 1)2

(a2 − 1)(a1 − 1)
+ 16(

a1a2 − 1

a2 − 1
+ a1a2 − 1

a1 − 1

+a3) − 7(
(a1a2 − 1)2

(a2 − 1)(a1 − 1)
+ a3(a1a2 − 1)

a1 − 1
+ a3(a1a2 − 1)

a2 − 1
) − 36.

Remark 3.8 For mult( f ) = 3, the inequality in Proposition 3.7 is not true when a1 = 2,
a2 ≥ 3 and a3 ≥ 3.

Proof of Main TheoremA It is an immediate corollary of Proposition 3.1. �

Proof of Main Theorem B Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated
singularity. Then f can be divided into the following three types:

Type A. xa11 + xa22 ,
Type B. xa11 x2 + xa22 ,
Type C. xa11 x2 + xa22 x1.
The Main Theorem B is an immediate corollary of Remark 3.1, Propositions 3.2, and

Proposition 3.3. �

Proof of Main Theorem C Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial iso-
lated surface singularity. Then f can be divided into the following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x1,
Type 5. xa11 x2 + xa22 x1 + xa33 .
The Main Theorem C is an immediate corollary of Remark 3.4, Propositions 3.4, 3.5,

3.6, and 3.7. �

Proof of Main TheoremD It is easy to see, from Remarks 1.2, 3.1, Propositions 3.2–3.3,
Propositions 4.1–4.3 in [33], Propositions 3.1–3.3 in [14], and Propositions 3.2–3.4 in [13],
the inequality λ2 > λ1 > λ0 = λ2 > λ1 holds true. �

Proof of Main Theorem E It is easy to see, from Remarks 1.2, 3.4, Propositions 3.4–3.7,
Proposition 4.1 in [33], Propositions 3.1, 3.2 in [12], Propositions 3.4, 3.5 in [14], Proposi-
tions 3.5-3.9 in [13], and Propositions 3.4–3.8 in [16], the inequality λ2 > λ1 > λ0 = λ3 >

λ1 holds true. �

Proof of Main Theorem F In the following, we use the notations On+m := C{x1, . . . , xn, y1,
. . . , ym}, On := C{x1, . . . , xn} and Om := C{y1, . . . , ym}.
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L1(V f +g) = DerOn+m

/(
∂2( f + g)

∂x21
, . . . ,

∂2( f + g)

∂ y2m
,
∂2( f + g)

∂x1∂x2
, . . . ,

∂2( f + g)

∂x1∂ ym
,

. . . ,
∂2( f + g)

∂ ym−1∂ ym

)

= DerOn+m

/(
∂2 f

∂x21
, . . . ,

∂2 f

∂x2n
,

∂2 f

∂x1∂x2
, . . . ,

∂2 f

∂x1∂xn
, . . . ,

∂2 f

∂xn−1∂xn

∂2g

∂ y21
, . . . ,

∂2g

∂ y2m
,

∂2g

∂ y1∂ y2
, . . . ,

∂2g

∂ y1∂ ym
, . . . ,

∂2g

∂ ym−1∂ ym

)

= Der[On

/(
∂2 f

∂x21
, . . . ,

∂2 f

∂x2n
,

∂2 f

∂x1∂x2
, . . . ,

∂2 f

∂x1∂xn
, . . . ,

∂2 f

∂xn−1∂xn

)

⊗Om

/(
∂2g

∂ y21
, . . . ,

∂2g

∂ y2m
,

∂2g

∂ y1∂ y2
, . . . ,

∂2g

∂ y1∂ ym
, . . . ,

∂2g

∂ ym−1∂ ym

)

]

= Der[On

/(
∂2 f

∂x21
, . . . ,

∂2 f

∂x2n
,

∂2 f

∂x1∂x2
, . . . ,

∂2 f

∂x1∂xn
, . . . ,

∂2 f

∂xn−1∂xn

)

]

⊗Om

/(
∂2g

∂ y21
, . . . ,

∂2g

∂ y2m
,

∂2g

∂ y1∂ y2
, . . . ,

∂2g

∂ y1∂ ym
, . . . ,

∂2g

∂ ym−1∂ ym

)

+On

/(
∂2 f

∂x21
, . . . ,

∂2 f

∂x2n
,

∂2 f

∂x1∂x2
, . . . ,

∂2 f

∂x1∂xn
, . . . ,

∂2 f

∂xn−1∂xn

)

⊗Der[Om

/(
∂2g

∂ y21
, . . . ,

∂2g

∂ y2m
,

∂2g

∂ y1∂ y2
, . . . ,

∂2g

∂ y1∂ ym
, . . . ,

∂2g

∂ ym−1∂ ym

)

]
= L1(V f ) ⊗ H1(Vg) + H1(V f ) ⊗ L1(Vg).

The first equality above comes from the fact that f , g are weighted homogeneous while the
fourth equality follows from the Theorem 2.1. �
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