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ABSTRACT. Mather-Yau theorem leads to the massive study about moduli algebras of isolated
hypersurface singularities. In this paper, the Tjurina ideal is generalized as T-principal ideals of
certain T-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a
T-map, which creates many new invariants. Firstly, we compute two new invariants associated
to ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial
growth of these invariants. Secondly, the language of T-maps is applied to generalize the well-
known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to the
Milnor number of its principal part. Finally, we use two conditions T-fullness and T-dependence
to determine whether an ideal is a T-principal ideal and provide a constructive way of giving a
generator of a T-principal ideal. As a result, the problem about reconstruction of a hypersurface
singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues
in the cases of the 0-th and 1-st moduli algebra, which inspired our solution.
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1. INTRODUCTION

The motivation of this research is Mather-Yau theorem [MYS82]. Let C{x1, z2, ..., x5} (C{x}
for short) be the ring of complex convergent power series of n variables at (C™,0) For an isolated
hypersurface singularity (V,0) C (C",0) defined by the analytic germ f : (C",0) — (C,0), one
has the moduli algebra A(V) := O,/ ( f, g—gfl, e %) which is finite dimensional. The well-
known Mather-Yau theorem states that: Let (V4,0) and (V2,0) be two isolated hypersurface
singularities, A (V1) and A (V2) be their respective moduli algebras, then (V7,0) = (V3,0) <
A (V1) =2 A(Va). The biholomorphic classes of isolated hypersurface singularities correspond
to isomorphism classes of commutative C-algebras. The Mather-Yau theorem plays a very
important role in the classification of isolated hypersurface singularities.

In the classification theory of isolated singularities, one always wants to find invariants asso-
ciated to the isolated singularities. Hopefully with enough invariants found, one can distinguish
between isolated singularities. Mather-Yau theorem tells us that the moduli algebra A(V) is a
complete invariant of an isolated hypersurface singularity (V,0). All information about singu-
larities can be taken from its moduli algebra. It is natural to ask if there are other C-analytic
algebras play similar role as the moduli algebra? In this paper, we call a local algebra which
satisfies Mather-Yau theorem a walid moduli algebra. Since a valid moduli algebra is often a
quotient ring of C{x} modulo an ideal, we call a map @ : C{x} — {ideals of C{x}} a moduli
ideal map if for any f € C{x}, C{x}/Q(f) is a local algebra invariant of singularity (V'(f),0).
For example, the k-th Tjurina ideal map Q = Ty : f — (f) + (2)*J(f), J(f) = (%, cey E?m];)
is a moduli ideal map. @Q is called valid if each C{x}/Q(f) is a valid moduli algebra when
(V(f),0) is an isolated hypersurface singularity. In past years, Yau, Zuo and their collaborators
have introduced many new local algebras to singularities: higher Nash Blow-up local algebra
([HMYZ23]), k-th local Hessian algebra ([HYZ21]), k-th moduli algebra ([HLYZ23|]) and k-th

singular local moduli algebra ([MYZ23]). These local algebras are new invariants of singularities.

They play important roles in the classification theory of singularities. It is a natural question
whether these new algebras are valid moduli algebras. The answer is yes for k-th moduli algebra
(see generalized Mather-Yau theorem, |[GLS07]). Moreover, the authors have proven that the
k-th local Hessian algebra is also a valid moduli algebra for some k& (J[CHYZ20]).

For a hypersurface singularity (V(f),0), its Tjurina ideal is defined by T'(f) := (f) + J(f),
whose corresponding moduli algebra C{x}/T(f) is also called Tjurina algebra or moduli algebra.
In [OR23], Rodrigues proposed the problem how to find a necessary and sufficient condition that
an ideal I of C{x} is a Tjurina ideal. By introduction of the conceptions of T-fullness and 7T-
dependence, the problem was finally solved. If one can further find an f € C{x} such that
I =T(f), then the problem of reconstructing a hypersurface singularity from its moduli algebra
is also solved, since an analytic algebra is given by C{x} modulo an ideal. Motivated from his
work, we propose a more general problem:

Question 1.1. Let Q : C{x} — {ideals of C{x}} be a valid moduli ideal map. For an ideal
I «C{x}, how to find a necessary and sufficient condition that I = Q(g) for some g € C{x}.

Many well-known valid moduli ideal maps are of the form Q(f) = (Q1(f), ..., @m(f)), where
m is a fixed integer and all @Q; : C{x} — C{x} are C-linear maps. For example, Tjurina ideal
map is of this form. From this, the problem has an algebraic generalization stated as below:
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Question 1.2. Let A be an algebra over a field F', Q : A — {ideals of A} is a map of the form
Q(f) = (Q1(f), ., Qm(f)), where m is a fized integer and Q; € Endp(A). Then for an ideal
I <A, how to find a necessary and sufficient condition that I = Q(g) for some g € A.

In our article, we solved Question when @ is a T-map (see Definition and A is
a Noetherian F-algebra where F' is an infinite residue field. The introduction of T-map is of
importance, since it includes many well-known moduli ideal maps: higher order Tjurina ideal
map (the sum of higher order Jacobian ideals ([DGI20])), k-th Tjurina ideal map (JHLYZ23])
and k-th local Hessian ideal map ([HYZ2I]). Our solution is motivated from [OR23|, with
necessary adjustments. We introduce the ideal of antiderivatives, T-fullness and T-dependence
with respect to (w.r.t. for short) T-maps (see subsection and prove our main theorem:

Theorem A. (Theorem and Algorithm Let F be an infinite field and A be a Noe-
therian local F-algebra with mazimal ideal m. Suppose A/m ~ F. Let Q be a fized T-map of
F-algebra A. For an ideal I < A, it is a T-principal ideal if and only if I is T-full and A(I)
is T-dependent. Moreover, if I is a T-principal ideal, then a generator of I can be explicitly
calculated.

The notions “T-full” and “T-dependent” are conditions w.r.t. (). Besides, a T-principal ideal
refers to an ideal of the form Q(f), f € A. For example, Tjurina ideals are those T-principal
ideals in the C-algebra C{x}, when Q(f) = U’%""’ (%{L) for all f € C{x}. We point out
that the theorem holds for an arbitrary infinite field, even with a positive characteristic. For

example, A = F,((t))[z1, 2, ..., x,] with F' =1TF,((t)) also satisfies the assumption. However, the

correctness of the theorem when F' is a finite field has not been verified, but we conjecture that
it is also true.

Furthermore, we give a constructive method to recover a hypersurface singularity from its k-th
moduli ideal in Algorithm This gives an answer to well-known reconstruction problem in
[Yau87] given by the second author: How can one construct the singularity (V,0) explicitly from
moduli algebra A(V'). The difficulty of this problem is reduced to the computation of the ideal
of antiderivatives. In subsection we provide approaches to finding ideals of antiderivatives
w.r.t. higher order Tjurina ideal maps and k-th Tjurina ideal maps.

Besides, we introduce various invariants associated with the ideal of antiderivatives (see sub-
section . In subsection we introduce a series of invariants of singularities py, o
and T-threshold. Briefly, for f € C{ax} which defines an isolated singularity at the origin,
A(Ty(f)) is defined to be the ideal of antiderivatives of k-th Tjurina ideal Ty (f) w.r.t. Ti. Then
o = dimec A(Tk(f))/Ti(f)? and py, := dime Ti(f)/A(T(f)) are two new invariants of singu-
larities. We prove that p, decreases to 0 when k tends to infinity and define the T-threshold of
f to be the smallest number r such that T,.(f) = A(T,.(f)).

We complete the computation of these invariants for ADE curve singularities. As a result, we
have verified the following conjecture for ADE curve singularities.

Conjecture Let (X,0) = (V(f),0) C (C",0) be an isolated hypersurface singularity.
Then T-threshold of f is the smallest integer N such that {o}}r>n is a polynomial in k of
degree n — 1.

Theorem B. Conjecture holds for ADE curve singularities.

We are able to find the leading term of the polynomial in Conjecture by sandwiching
o1 between two polynomials of k.



4 QUAN SHI, STEPHEN S.-T. YAU, AND HUAIQING ZUO

Proposition Suppose (X,0) = (V(f),0) C (C™,0) is an isolated singularity, then:
2 lord(f) -y
(n—1)! '
Here ord(f) denotes the minimal degree among all monomial terms appearing in f. For two
sequences {an},{bn} C C, we denote ay, ~ by, if an/b, — 1 when n — co.

O ~

Corollary If Conjecture holds, then the leading term of this polynomial is
2" ord (1) o1
(n—1)! ’

In subsection the language of T-maps is applied to the ring of formal power series.
Despite contact equivalence, right equivalence is also an important relation in classification of
singularities. Among all right invariants, Milnor number is possibly the most widely known
one. It is a well-known theorem that for a semi quasi-homogeneous (SQH for short) series
f € K[[z]] := K]|[x1,22,...,x,]], the Milnor number of f coincides with that of the principal
part f, of f (see [BGMII]). In this paper, we generalize this theorem to the k-th Milnor
number g (f), which is the dimension of the quotient ring of K[[z]] modulo the k-th Jacobian
ideal Ji,(f) = m*J(f) (see [HLYZ23]) and is also a right invariant. Using the tools about regular
sequence, we finally proved the following:

Theorem C. (Theorem Suppose f € Klz]| is an SQH series w.r.t. w € NZ; i.e.
p(fw) < oco. Then for k < mini{ord(g—é)}, pr(fw) = me(f).

Moreover, we believe the result is correct for all & > 0. Hence we propose the following
conjecture:

Conjecture Suppose f € K[[z]] is an SQH series w.r.t. w € N2 ie. u(fy) < oco. Then
for all k € N, pg(fuw) = px(f)-

Apart from the three above Theorems, we also give a geometric interpretation of ideals of
antiderivatives w.r.t. Tjurina ideal map Ty. For an ideal I < C{x}, the ideal of antiderivatives
of I w.rt. Ty (namely, A(I)) is closely related to the well-known second fundamental exact
sequence for Kahler differential (see Theorem [2.9). We illustrate and prove this connection
in subsection Briefly, A(I) coincides with the kernel of the first homomorphism in the
second fundamental exact sequence. We also call the ideal of antiderivatives defined above as
locally defined ideal of antiderivatives. In fact, we can generalize the locally defined ideal of
antiderivatives to a global version. Consider the global objects complex space (X,Ox) and
coherent ideal sheaf 7 of Ox. In subsection we further define the (globally defined) ideal
sheaf of antiderivatives A(Z) for Z. Besides, we prove if X is smooth, then for each p € X, the
stalk A(Z), is equal to the locally defined ideal A(Z,) <« Ox, = C{z}.

In the appendix we give the code for computing ideals of antiderivatives for T} and the
invariants oy, pr. We only provide the code for two variables and the code for three variables is
similar.

Remark: After completing the project, we find this paper [OR24]. We would like to point
out that our work overlaps merely a small part with this preprint. Our Theorem A and the
main theorem of [OR24] are both related to reconstruction of a hypersurface singularity from its
moduli algebra. We would like to emphasize that our Theorem A can be applied to T-maps
on local algebras over infinite field F' with residue field F', which includes Tjurina ideal map
and 1-st Tjurina ideal map of C{z}. For example, it can be applied to all of the six maps in
Examples Moreover, we do not even require the characteristic of F' to be zero.
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2. PRELIMINARY

2.1. Invariants of Singularities. Let (X,0) C (C",0) be the common zero locus of some
functions fi, f2, ..., fm which are analytic near 0. If m = 1, (X,0) is called a hypersurface
singularity. The singular locus of (X,0), denoted as (SingX,0) is the zero locus of f; and its
partial derivatives. The singular locus is often called the singularity of (X,0). Sometimes, if
not confusing, we call (X,0) a singularity. A singularity is called isolated if (SingX,0) is a
single point. A morphism of two analytic space germs (X,0) C (C",0) and (Y,0) C (C™,0) is
a restriction of a holomorphic map germ f : (C",0) — (C™,0) to (X,0), such that (f(X),0) C
(Y,0). (X,0) and (Y,0) are called isomorphic if and only if there are two morphisms between
them which are inverse to each other. It is equivalent to say (X, 0) and (Y, 0) are biholomorphic.

The classification of singularities is based on such isomorphisms. A natural idea of algebraic
geometry is to consider the valid functions on spaces i.e. analytic space germs. The function on
(X,0) are those analytic germs. By Hilbert-Riickert theorem(|GLS0T]), the ring of holomorphic
function of (X,0) is C{z1,x2,...,2n}/I, where I is the ideal of analytic germs vanishing at
(X,0). C{z1,x9,...,z,} is a Henselian, Noetherian UFD as corollaries of Weierstraf$ Preparation
theorem (|[GLSO7]). If not confusing, we abbreviate C{x1, z3, ..., x,} as C{x} and denote m as
its maximal ideal.

Two analytic germs f and g in C{xz} are called right equivalent if there exists a ¢ €
Aut((C{zx}) such that ¢(f) = g, called contact equivalent if ¢(f) = ug, where ¢ € Aut(C{x})
and u € C{x}* is a unit. Note that the two types of equivalence induce an isomorphism of sin-
gularities since ¢ is always given by an isomorphism of analytic space germs. It is not difficult
to verify two analytic space germs are isomorphic if and only if their corresponding analytic
algebras are isomorphic. Another question is whether such isomorphism can be determined by
simpler algebras. Mather and Yau ([MY82]) proved two isolated hypersurface singularities are
isomorphic if and only if their moduli algebras are isomorphic. The Mather Yau theorem is
slightly generalized in [GLSQT7], stated as below:

Theorem 2.1 ([GLS07], Theorem 2.26; [GLS23], Theorem 1). Let f,g € m C C{z}, the
following are equivalent:
(1) f is contact equivalent to g.
(2) For all k > 1, C{x}/Ti(f) =~ C{x}/Tk(9).
(8) There is some k > 1 such that C{x}/T}(f) ~ C{x}/Tr(g).
Here, Ty, is the k-th Tjurina ideal Ty(f) := (f) +w*J(f). In particular, To(f) = T(f).
Moreover, if f has an isolated singularity, then f is contact equivalent to g if and only if

T(f) =T(g)-

Hence, Mather-Yau theorem leads to the massive study of moduli algebras, the generalization
of which is the main objects studied in this paper.

For a hypersurface singularity, there are a series of invariants: Milnor number ([GLS07)]),
Tjurina number ([GLS0T7]), higher Jacobian algebra (The quotient for higher order Jacobian,
[DGI20]), spectrum number ([vS20]), Igusa Zeta function ([Igu00]) and Bernstein-Sato polyno-
mial ([AMJNnB2I]). Besides, moduli ideal maps often generate invariants, for examples, the
Krull dimension or linear dimension over C of their quotient rings. The following are three kinds
of moduli ideal maps.

Higher order Tjurina ideal: For f € C{x}, T'(f) = (f, ngl, 97y is the Tjurina ideal of f.

B
For an ideal I <C{x}, we define the action of T" over I as T(I) = >_;c; T(f). T* is defined to
be the compositions of T' by k times i.e. T*(f) = T(T(---T(f))) is the ideal generated by f

and all its partial derivatives whose orders are not greater than k. It is well-known that for any
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e € Aut(C{zx}), o(T(f)) = T(¢(f)) and T'(uf) = T(f) for any unit u. By a simple induction,
we have o(T*(f)) = TF(o(f)) for all ¢ € Aut(C{z}) and T*(uf) = T*(f) for any unit w.
Hence, T is a moduli ideal map.

k-th Tjurina ideal: In [HLYZ23|, Tk (f) := (f)+mFJ(f) is called the k-th Tjurina ideal, where
m is the maximal ideal of C{z} and J(f) is the Jacobian ideal of f. One can easily check T}, is
a moduli ideal map by noticing two facts: (1) Tip(uf) = T (f) for any unit u; (2) ¢(m) = m for
any ¢ € Aut(C{x}).

k-th local Hessian ideal: The k—th local Hessian ideal is first introduced in [HYZ21]. Let
f e C{x}, J(f) be its Jacobian ideal and Hess(f) = (%aéj)ij be its Hessian matrix. Let hy(f)
denote the ideal generated by all k x k-minors in Hess(f), then I (f) == (f) + J(f) + hx(f)
is called the k-th local Hessian ideal of f and Hy(f) := C{x}/I}['(f) is called the k-th Hessian
algebra. As shown in [HYZ21], I} is a moduli ideal map.

Let @ stand for anyone of the three above. It is a natural problem whether an ideal of C{x} is
of the form Q(f), f € C{zx}. For Q = T and @ = T}, the Tjurina ideal map, Rodrigues ([OR23]
and [OR24]) gave two conditions and solve the problem. In this article, we will generalize his
work, at least to ideal maps including the three above.

A simple observation is that all of three can be written as a sum of principal ideals associated
with f and for all a,g € C{x}, Q(ag) C Q(g). It is important for our generalization in section
4l

For a hypersurface singularity (V' (f),0), p = dim¢c C{x}/J(f) and 7 = dim¢c C{x}/T(f) are
called Milnor number and Tjurina number respectively. They are two important invariants.

Lemma 2.2. (|[GLS07], Lemma 2.3) U C C" is an open neighborhood of 0. Let f : U — C be
holomorphic, then the following are equivalent:

(a) 0 is an isolated critical point of f.

(b) p(f,0) < oo.

(c) 0 is an isolated singularity of f~1(f(0)) = V(f — £(0)).

(4) ~(f — 1(0),0) < oo.

The lemma can be slightly generalized:

Lemma 2.3. Let f € C{x} be a holomorphic function with f(0) = 0, then the following are
equivalent:

(a) dim C{x}/m*J(f) < oo for all k > 0.

(b) dim C{z}/m*J(f) < oo for some k > 0.

(c) (V(f),0) is an isolated singularity.

(d) dim C{z}/(f) + mFJ(f) < oo for all k > 0.

(e) dim C{z}/(f) + mkJ(f) < oo for some k > 0.

(f) There exists some r > 0 such that m" C J(f).

Proof. Since (f) +m*J(f) C (f) + J(f) and m*J(f) C J(f), by Lemma (a), (b), (d)
and (e) all imply (c¢). Moreover, it is clear that (f) implies (a), (b), (d) and (e). Hence, it
suffices to prove that (c) implies (f). Suppose f defines an isolated singularity. By Lemma
dimec C{x}/J(f) < oo and hence y/J(f) D m. Since C{z} is Noetherian, there exists some
r>0st. m"CJ(f).

(I

Remark 2.4. The proof of (¢) = (f) is also true for any ideal I other than J(f), as long as
dim C{z}/I < cc.
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2.2. Commutative Algebra. In this subsection, we review some facts about commutative
algebra and Kéhler differential.

Theorem 2.5. (Artin-Rees, [AMG9], Corollary 10.10) Let A be a Noetherian ring, I be an ideal
and M be a finitely generated A-module. If M’ is a submodule of M, then there exists a k > 0
such that I"M 0\ M’ = I""*(I*M N M'), for all n > k.

The next is the basis theorem of finitely generated modules over a principal ideal domain
(PID for short).

Theorem 2.6. (Basis Theorem, [Rotl0], Theorem 9.12) If R is a PID, then every finitely
generated R-module is a direct sum of cyclic modules in which each cyclic summand is either
primary or is isomorphic to R.

If R is a discrete valuation ring (DVR for short), with w a uniformizer, then every finitely
generated R—module is a direct sum of a free module and some cyclic modules of the form
R/w"R for some k. If M = R* ® (@)_, R/w" R),k; > 1, then a + 7 is the minimal number of
generators of M. We call a + r the rank of M.

Lastly, we recall some notions about regular sequence. Let A be a local ring and M be a
finitely generated A-module. (fi, fa, ..., fr) € M" is called a regular sequence if for all 1 <14 <r,
fi is not a zero-divisor in M/ Z;_:ll Af;.

Proposition 2.7. ([Eis95], Corollary 17.2) If R is a Noetherian local ring and (z1,x2, ..., Tr)
is a reqular sequence in R, then any permutation of (x1,x2,...,2,) i again a reqular sequence.

Theorem 2.8. ([Mat80], Theorem 31) Let (A,m) be a Cohen-Macaulay ring. Then:
(i) for every proper ideal I of A, we have

ht/ + dim A/I = dim A;

(ii) for every sequence aji,as, ...,a, in m, the following are equivalent:
(1) the sequence ay,as, ...,a, is A—reqular;
(2) ht(al, a2,y ..., ar) =T.

The following is the second fundamental exact sequence for Kdhler differential, we state it in
a way assemble to Theorem [4.42

Theorem 2.9 (second fundamental exact sequence for Kahler differential). Let 7 : B — C' be
a surjection of A-algebras with kernel I, then we have the following exact sequence:

Ii)QB/A(X)C—)Qc/A—)O

where d(a) = da ® 1 for all a € I is a B-module homomorphism and d : I — Qpa is the
restriction of d : B — Qp,4. Furthermore, I? is contained in ker d.

We may refer to [Har77] and [GLS07] for this theorem. Their statements are slightly different,
where the first map of the corresponding sequence in these books is I /12 40 B/A ® C, but in
fact they are equivalent to ours.

For complex space (X,Ox), we can also define Kéhler differential. When X = D C C”
is an open subset, Qx is the free module @?:1 Op - dx; and d is naturally defined. Locally,
(X,0x) = (V(I),(Op/I)|v(z)) is a complex model space, Qx = Qp/(ZQp + OpdZ). The
derivation is defined to be the pullback of the quotient map d: Op/Z — Qp/(ZQp + OpdI) by
the inclusion map V(Z) < D.
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3. T-FULLNESS AND T-DEPENDENCE FOR TJURINA IDEAL

3.1. T-fullness and T-dependence. In [OR23|, Rodrigues first developed the conceptions
of T-fullness and T-dependence. Those are two conditions characterizing whether an ideal
of C{x} is a Tjurina ideal. Let I <« C{x} be an ideal and T be the Tjurina ideal map i.e.

T(f) = (f, 2 (%1 " (% ). The action of T can be naturally extended to the set of ideals: T'(I) :=
e T(f) We call A( ) :={f € C{x} | T(f) C I} the ideal of antiderivatives of I. Since
T(af) CT(f) a,f e C{x} and T'(f +g) CT(f)+T(g) for all f,g € C{zx}, A(I) is actually an
ideal.

Definition 3.1. [ is called T-full if T(A(I)) = I.

For an ideal J = (g1,92,..,9m) < C{x}, let S = C{x}[y1,¥2,...,ym] be a polynomial ring
over C{x} and o := ), giy;. T(0) := (o, gw"l e %) is the Tjurina ideal of o and T'(J)S is a
homogeneous ideal of S. The original definition of T-dependent is stated in the language of alge-

braic geometry. Here for simplicity, we give an equivalent definition illustrated in commutative
algebra.

Definition 3.2. J is called T-dependent if (7 (o) : T'(J)S) ¢ mS.

A subtle thing is whether it is well-defined. In J[OR23], Rodrigues proved the definition is
independent of the choice of generators of J and hence well-defined. The proof will also appear
in subsection which is slightly adjusted to fit in more general cases. Below is the main
theorem of [OR23):

Theorem 3.3. [ is a Tjurina ideal if and only if I is T-full and A(I) is T-dependent.

Roughly speaking, T-fullness guarantees I can be generated by some analytic germs and their
partial derivatives. It can be seen clearly especially in the monomial case.

3.2. an Example: Monomial Ideal Case. It is also an interesting problem when a monomial
ideal of C{x} is a Tjurina ideal. In this subsection, we give a characterization of a T-full
monomial ideal and review some recent results associated with the problem. Notations are
followed from [OR23], also reviewed in subsection The following proposition shows the
ideal of antiderivatives of a monomial ideal is also a monomial ideal.

Proposition 3.4. If I<C{x} is a monomial ideal, so is A(I). Moreover, A(I) =i, QZ, where
Qg is the monomial ideal generated by xy - I and INClxy, ..., Tk, ..., z,]. Here (C[zl, vy By vy Ty
refers to the polynomial ring of n — 1 variables apart from xy,.

Remark 3.5. Throughout the article, we adopt multi-index. That is, %, a = (a!,a?,...,a") €
" in Clz1,...,2n). For a € N, |a| := 3" | o is called the

. 1
N" refers to the monomial ¢ -- -z,

length o_f a. We call a1 < ay, if 0/1 < oﬂé, for all 1 < ¢ < n. If not confusing, we set
e; = (6]))"_, € N" as the normal orthogonal vectors. For a € N", Suppax := {i | a; # 0} is
called the support of a.

Proof. 1t is obvious that f € A([) if and only if every monomial term of f is A([), since I is
a monomial ideal. So it sufﬁces to work on the second statement.

Let P, = {f € C{z} | f, 2 (%k € I}, then A(I) = (i, Pr. We only need to show P, = Q.
For a subset W C C{x}, we use aa (W) to stand for {a“’ | we Wt

On one hand, since I is a monomial ideal, we have 8 (xxI) = I. Moreover, a%k(l N
Clx1, z2, ..., Tk, ..., xy)) = 0, and hence Qr C FPr. On the other hand, for x® € P, if zy
does not appear in %, then * € Clzy, z2, .., Tk, ..., xn| N I. Otherwise, we have x® € xI, or
P C Q. U
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In the next theorem, we give a characterization of T-full monomial ideals.

Theorem 3.6. Let I <« C{x} be a monomial ideal, then I is T-full if and only if there exist
ai, .., 0 € N such that [ = ({®*7% |1 <i<m,1<j<n,a; —e; >0}).

Proof. 1t is clear that the theorem is equivalent to the following statement:

I is T-full if and only if for any x* € I, there exists an 1 < i < n such that £*¢ ¢ € I for
all 1 < j <n satisfying o +e; —e; > 0.

So it suffices to prove the statement above. The argument for “only if” is easy. By assumption,
we have £*T¢ € A(I) and hence z* € T(A([)). For “if’, since A(I) is a monomial ideal, then
there exists an ® such that 2 = z or £P~¢ = z for some i. In both cases we have
x>te € A(I) for some i, so x*t¢i~% € [, 0

Remark 3.7. T-full monomial ideals can be easily distinguished through the Newton diagrams.
For n = 2, they correspond to the diagrams whose corners towards left-down appear as twins
different by (1,—1) as figure 1 shows.

v

FIGURE 1.

Combining Proposition with Theorem the ideal of antiderivatives of a T-full
monomial ideal can be calculated as below:

Corollary 3.8. Let [ <C{x} be a T-full monomial ideal. By Theorem we may assume
I=({x* % |1 <i<m1<j<no;—e >0}). Then A(I) = (L, Qk, where Q) =
el + ({x ¢ ac A} + ({xPe, 8 B,l#k}) and A={a e N" | e,-a=1}, B={8¢
N" | ey -3 =0}.

Most recently, [ES22] has answered the question when a Tjurina ideal is a monomial ideal by
introducing Jacobian semigroup ideals and applying the tool of matroid. Its main theorem is
stated as below:

Theorem 3.9. ([ES22]) Let 0 # f € C{x} and I := T(f) be its Tjurina ideal. Then I is a
monomial ideal if and only if f is right equivalent to a Thom-Sebastiani polynomial. Here a
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Thom-Sebastiani polynomial refers to a polynomial of the form 3 ", azai, where o' € N" and
Suppa’ are disjoint subsets of {1,2,...,n}.

At last, we give two examples of monomial ideals. The first one is T-full but not T-dependent
and the second one is T-dependent but not T-full.

Example 3.10. n = 3,1 = (23?23, 2%y23, 229222, 97, 298, 2¢/5).

By Theorem I is T-full. But one may compute that the C-dimension of I/(x,y,z)I
is 6. By Nakayama’s lemma, the minimal number of generators of I is 6 and hence I is not a
Tjurina ideal. By Theorem I not T-dependent.

Example 3.11. n = 2,1 = (zy).

A(I) = (2*y?), T(A(D)) = (z%y,2y?), 0 = 2%y’a, T(0) = (zy’a,2°ya). Since aT(A(D)) =
T (o) and o & m[a], A(I) is T-dependent. There is a single corner in the Newton diagram of I
and hence I is not T-full.

4. T-MAP

In this section, we will introduce the conception of T-map and some of its applications.
In the first subsection, we introduce the notions of T-map, T-principal ideal and ideal of an-
tiderivatives. In the second subsection, we introduce two new invariants oy = dimc A(I)/I?
and pg = dimg I/A(I) associated with k-th Tjurina ideal I and its ideal of antiderivatives A([I)
w.r.t. k-th Tjurina ideal map. We find there exists a polynomial P € Z[z] such that o, = P(k)
for all k sufficiently large. In the third subsection, we give a geometric interpretation of ideals
of antiderivatives w.r.t. Tjurina ideal map. In the fourth subsection, we first review the well-
known theorem that the Milnor number of a semi quasi-homogeneous series f € K[[x]] coincides
with the Milnor number of its principal part. Then we generalize the theorem to pj, whenever
k< mini{ord(g—i)}. In the fifth and the sixth subsections, we generalize the main theorem of
[OR23] to some types of Noetherian local algebras so that many kinds of moduli ideal maps in
subsection can be included. Furthermore, we give an approach to finding a generator for
a T-principal ideal.

4.1. T-map and Ideal of Antiderivatives. From now on, R is a ring and A is a Noetherian
R-algebra. We will define abstract “Tjurina ideals” for A.

Definition 4.1. The set of all ideals of A is denoted as J. A map @ : A — T is called a
quasi-T-map if there is an integer m and R-linear maps @Q1,Q2,...,Qm : A — A such that
Q(f) = (Qi(f), ..., Qm(f)) for all f € A. A quasi-T-map @ is called a T-map if it has the
following property:

Qaf) S Q(f), foralla, fe A  (x).

Remark 4.2. By definition, we can easily deduce the following properties of a T-map Q:
() QUf +9) € Qf) + Q(g)-
(i) If (f) = (g9), then Q(f) = Q(g).

Remark 4.3. We note that R—linear maps Q1, Qo, ..., Q. are also parts of the definition.

T-maps appear rather frequently in singularity theory. Here are some typical examples. (3),
(4) and (5) in Example are those moduli ideal maps mentioned in subsection

Example 4.4. (quasi-T-maps)
(1) A=C{x},R=C and Q(f) = Ji(f) = (x)*J(f) is the k-th Jacobian ideal.
(2) A=C{x},R=C and Q(f) is the Nash blow-up ideal of f in [HMYZ23].
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Example 4.5. (7-maps)
(1) A is an arbitrary R—algebra and Q(f) = (f);
(2) A is an arbitrary R—algebra and Q(f) = (f,01(f),..,0x(f)), where 0; € Derr(A) are R-
derivations;
(3) A=C{z},R=C, Q=T
(4) A=C{x},R=C, Q =Tyj;
(5) A= (C{x} R=C, Q=1I};
(6) A=Tyllall, R=TFp, QU) = (£, G G-

Fix a T-map Q, we call an ideal I < A a T-principal ideal if there exists an f € A such that

I = Q(f). Such an f is called a generator of I w.r.t. @. It is an interesting problem when an
ideal is a T-principal ideal. Before solving this problem, we will develop some basic notions.

Definition 4.6. Notations as in Definition for an ideal I = (gl,gg,. awgn) <A, Q(I) :=
{Q(f) | feTI})=Q(g1)+Q(92) + ... + Q(gn). For another T-map Q' = (QY, ..., Q..), we define
the composition of @" and Q as (Q'Q)(f) = Q"(Q(f)) = ({Qi(Q;(f)), 1 <i<r1<j<m}).

It is also a T-map.

One can check the composition of T-maps satisfies the associative rule and U(f) = (f) is the
unit of this operation. We write this property as below.

Proposition 4.7. Notations are as above. My := {T-maps of A} with the composition as the
multiplication is a semigroup with unit element U(f) = (f).

From now on, we will always assign @) as the fixed T-map of A. When stating properties of
T-maps, we will omit the notion “with respect to ”. Following the step of [OR23], it is natural
to introduce the ideal of antiderivatives:

Definition 4.8. Suppose I < A is an ideal, then the ideal of antiderivatives A([) is defined to
be the set of all the elements whose images under () are contained in [ i.e.

A(l):={feA|Q(f) €I}
Remark 4.9. By (%) property, one can easily check A(7) is an ideal.

Proposition 4.10. Notations are as above. Let Q' be another T-map. To avoid confusion, we
denote Ag, A and Agiq as the ideals of antiderivatives w.r.t. Q, Q" and Q'Q respectively.
Then we have Agg(I) = Ag(Ag/ (1)) for any ideal I < A.

Proof. Suppose f € Ag(I), then (Q'Q)(f) € I. Hence, for all g € Q(f), Q'(g9) € I
Therefore, Q(f) C Ag/(I) i.e. f € Ag(Ag/(I)). Conversely, since f € Ag(Ag/(I)), we hav
Q(f) € Ag/(I) and hence Q'(Q(f)) C I. It is equivalent to say f € Ago(]). D

For the convenience of applying the language of T-maps to singularity theory, we may give
some definitions as counterparts of right and contact equivalence.

Definition 4.11. For f,g € A, we call them right (resp. contact) equivalent if there exists
a ¢ € Autg(A) such that o(f) = g (resp. ¢(f) = ug, for some unit u € A*). Clearly, the
definition coincides with the original one when R = C and A = C{x}.

Definition 4.12. A T-map Q is called stable under contact equivalence, if for any ¢ € Autg(A),
@ is compatible with ¢ i.e. Q(o(f)) = p(Q(f)) for all f € A.

Proposition 4.13. If Q is stable under contact equivalence and I<A is an ideal, then o(A(I)) =
A(p(I)) for all ¢ € Autr(A).
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Proof. On one hand, for any f € p(A([1)), there exists a g € A(I) such that f = ¢(g). Since
Q(f) = Qelg)) = ¢(Q(9)) S w(I), we have p(A(I)) S A(p(I)). On the other hand, for
any f € A(p(I)), we have Q(f) C ¢(I). Hence Q(o~'(f)) C I, then p='(f) € A(I), or
fee(A)). O

Remark 4.14. The three kinds of T-maps in subsection are all stable under contact
equivalence. A simple corollary of Proposition is that T'—maps stable under contact
equivalence induce moduli invariants:

Corollary 4.15. Suppose Q) is stable under contact equivalence. For all ¢ € Autg(A) and an
ideal J C A(I), the homomorphism A(I))J < A(p(I))/(J) induced by ¢ is an isomorphism.

For A = C{z},R = C and Q = T the Tjurina ideal map, [OR23] gave an algorithm to
compute A(I). We give a brief description of it as below. The algorithm also holds for @ = Tj.

Algorithm 4.16. Let I = (f1, fa,..., fm) be an ideal of A and Q(g) = (Q1(9), ..., Qm(g)).
Step 1: Compute My, = {(a) € A™ | >, a;Qr(fi) € I}.
Step 2: Let I, = {)>_, a:fi | (a) € My}. Compute (), I = A(I).

Now let Q = T be the Tjurina ideal map. By a simple induction we have the ideal of
antiderivatives w.r.t. T% is A* composing the A w.r.t. T by k times. This gives a method to
compute the ideal of antiderivatives for higher order Tjurina ideal map.

In the next subsection, we will apply this algorithm to compute a series of new invariants
associated with k-th Tjurina ideal and its ideal of antiderivatives for ADE singularities.

4.2. Invariants Associated with T} and Its Ideal of Antiderivatives. Suppose (X,0) =
(V(f),0) is an isolated hypersurface singularity and I = Tj(f)<A := C{x}, then A/I is of finite
dimension over C by Lemma Since A is Noetherian, /12 is a finitely generated A/I-module
and hence has finite dimension over C. For Q = T}, since I? C A(I) and A(I)/I? C I/I?, we
have A(I)/I? is also of finite dimension. By Corollary dimc(A(I)/1?) is a contact
invariant. The same properties hold for I/A(I) as well. Hence for each k, we obtain two new
invariants. For I = Ti(f) and Q = T}, we denote oy as dimc A(I)/I? and py, as dime I/A(T).
Next, we will prove the stationary property of pr when k& tends to infinity and calculate oy, px
and T-threshold (defined later) for ADE curve singularities (for classification, see [Ad75]). The
code for computing A(I), dim A(I)/I? and dim I/A(I) is Code in the appendix.

Proposition 4.17. Suppose (X,0) = (V(f),0) is an isolated singularity, then {pg}r>0 is a
decreasing sequence. Moreover, there exists an N such that pr, = 0 for all k > N. We call the
minimum of such N the T-threshold of f, denoted as Tt(f).

Proof. We first prove {pi} is decreasing. To avoid confusion, let Ay and Agiq be the ideals
of antiderivatives of (I,Q) = (Tx(f),Tx) and (Tx+1(f), Tr+1) respectively. Set I = Ty (f) and
Iiy1 = Try1(f). Since Iiq C Iy, i Ipy1/(Tg+1NAg) < I/ Ak is an inclusion. It suffices to show
Iyt N AL € Apyq. For any g € Iy N Ay, we have g € I C Ij, and m*.J(g) C (f) +mFJI(f),
where m = (z) is the maximal ideal of C{z}. Then m**1J(g) C m(f) +mF*1J(f) C I141, hence
g€ Ay

Now we prove p, = 0 for k sufficiently large. Let Q = Ty, I = Ti(f) and A(I) be the
ideal of antiderivatives of I w.r.t. @. Since (X,0) is an isolated singularity, there is an integer
I such that m’ C J(f) and hence (f) + m** C I. Clearly, f € A(I), so it suffices to show
for any k large enough, o € N, |a| = k and u € J(f), then m*J(z%u) C m**!. Notice that
J(x®u) C mFLI(f) + mF, then mFJ(z%u) C m?*~!. Thus A(I) =TI for all k > [ + 1. O
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Lemma 4.18. For (R,A,Q) = (C,C{x},T}), if I is a monomial ideal, then A(I) is also
monomial, given by
1) =(Quji €N"[i| =k, 1<j<n.
i,
Here,

Q(m) = Ay + Bag),

=z -2 2% 2’ e I}),
= ({z*eI|a? =0}).

Proof. The argument is the same as Proposition [3.4] Let

p={feca}| ot 3L

B (4.3) =

eI}

Then we have I = ﬂ ”) It suffices to show Q(; ;) = F3,). On one hand, for a generator
o)

zj-x* of A ;), one ﬁnds x5 = (zj-2%) = (&l +1)z>t? € . Besides, %(azo‘) =0 for o/ =0, and
hence we have Q(; ;) C P ;). On the other hand, since I is a monomial ideal and the operator
i, 0

x" - 57— sends momomials to monomials, P; ;) is also monomial. For a monomial % € F; 5, if

z; is not a factor, then x* € By; jy. Otherwise, z® € A(; ;). Therefore, P; jy = Q; j)- ]

4,5)

We will compute pg, or and T-threshold for ADE curve singularities A,,, D, Fg, F7, Eg. To
avoid repetition, we compute those invariants for D,, and only provide results for other types.
Besides, we will compute the ideal of antiderivatives for ADE surface singularities.

Proposition 4.19. For D, = V(2™ ! 4+ zy?), m > 4, we have
(@™ +ay?, 3(m — D)2 Py + 2™yt ay? 2%y 2, k=0,
AT gy = B ), E=
(
(

o™ ay?) 4 (@R Ry oyt g2 ame2y) 2 <k <m - 3,
m 1 + Ty ) + (xm+k—2’ :EkyQ, ...,I‘yk+1, yk+2,l‘k+1y), k >m — 2’

m, k=0, m, k=0,
pk={m—-3—-k, 1<k<m-—-4, opr=ym+T7k+4, 1<k<m-—4,
0, k>m—3, 2m+6k+1, k> m — 3,

and Tt(z™ 1 + 2y?) =m — 3.

Remark 4.20. For an ideal I < C{x}, we sometimes split / to a sum of finite dimensional
C-vector spaces and a monomial ideal as C-vector spaces. This will simplify the computation
of dimc C{zx}/I. For example, in the proof, we use Iy = (2™, y3, 2%y) + spanc{z™ ! + xy?}. It
means the sum of monomial ideal (z™, 33, z%y) and C-vector space spanc{z™ 1 + zy?}.

Proof. We first compute oy by definition:

I=T("" +ay?) = ((m = Da™ 2 + % zy) = (m = D™+ y%, 2™ % ay),
2= ((m— 1% 1yt (m = )2y + a2y 270 g0yt My, 2y,

Following Algorithm we compute A(I) as below:

My = {(a,b) € A% | a(m—2)(m—1)a™ 2 +by € I}, My = {(a,b) € A% | 2ay+bx € I}. Hence
Iy = (a™, g%, 2®y)+spanc{a™ ' +ay’} and Iy = (™1, y!, ay?)+spanc {3(m—1)2™?y+y°}. So
we have A(I) = I1NIy = spang{z™ +xy?}+spangc {3(m—1) 2™ 2y+33}+(y4, 292, 22y?, 2™ 1),
One may check 2™, ..., z?m4 zy3, 2™ 1 + 2y, 2™ 2y + y3 is a basis of A(I)/I?. Therefore,
agp =m.
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Since I = spang{(m — 1)2™ 2 + 52} + (2™ 1,43, 29), we have py = m.

For o1, one can compute I = Ty (2™ ! + 2y?) = (2™ 1, 2%y, 2y?, %), which is a monomial
ideal. By Lemma A(I) is a monomial ideal as well. One can compute the P ;) in
Lemma [4.18

P ) :I7 P 9 — (wmilaxm72y7wy27y3)7

oz oy
Po=1 P o =1
Yoy T Yas

Hence A(I) = (x™ 1, 2™ 2y, 2y?,y3), I? = (2?2, 2™y, aty? 2393, 22y, 29®, yb). Since

T T T T T e VR e T A T A TR T i
is a basis of A(I)/I?, we have o1 = m + 11. Since 2%y, ..., 2™ 3y is a basis of I/A(I), we have
p1=m —4.
Next, we compute o, k > 2. A simple observation shows that I = Tj(z™ ' + 29?) =
( mfl_’_my )+( m+k72 k+1y’x y e yk+17yk+2) Let U; —{’U,EI’.IJ k— z@u GI} and V; =

{vellziy* “9” el}. Suppose a((m D™ 2 4 y?) + b2 pepphtly + —|—ck+2yk+2 e U,
then

2y a((m — Da™ 2+ 92) + (m + k — 2)ba™ 73 1 (k+ Dby + ...+ oy e I

Hence U; = I, for all 0 < i < k. Applying the same argument to V;, for a((m — 1)2™" +y?) +
b tE=2 oy pb Ly + L+ cp oyt €V, we have

'y 2azy 4+ 12" 4 L+ epa (b + 2)y ) € 1

Hence V; = I, for all 0 < i < k — 1. As for V}, the only restriction is cizFtt € I. Thus ¢ €
(y’xmax{m—k—&ﬂ}) and A(I) — (xm_1+:ry2)+(xm+k_2,asky2, ...,l’yk+1, yk+2)+($max{m—27k+l}y)‘
Hence we have Tt(z™ ! 4 xy?) = m — 3. Let J := (a2™TF=2 2F 1y . oyl ¢F*+2) then
12 — ((xm—l + :Ey2)2) + (J:m—l + l‘yZ)J + J2,

Casel: m—2>k+1.

AL = @™+ ay?) + (2" 2y) + (@ 2P eyt )
— (:L,m—l+xy2)+(xm—2y’xy3)+(xm+k 2 mkyQ yk+2)

k—
:Zspan(c{x( O ) e M A T T TR T TARE

k—2
= Zspan(c{x (2™t + 2y} + L.
=0

Moreover, {z'(z™ ! + xy?)}o<i<k_2 is linearly independent in C{z}/L, that is, A(I) =
(@D spang{z* (2™ 4+ 2y?)}) @ L is a direct sum of C-linear spaces.
Since J? = (g2mt2k—4 gmA2k—ly p2k+2y2 2 2k+1y3 42k +) we can write I? as below:
I’ = (A)+ (B) + K,
B — $m+ky + fEk+2 3

_ 2m—+k—3 m+2k—1 2k+2 2 2k+1,. 3 k+1 4 2k+4
K=(z N y, xRy ey yt ok yP a?yl, oy PR,

Moreover, A,...,a* 2A yA, ..., x*3yA, B, ...,.2* 2B is a basis of I?/K. Since K C L, o}, =
dm(L/K)+k—-1—-(k—-1)—(k—=2)—(k—1)=m+ Tk + 4.
A similar argument shows that pp =m — 3 — k.
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Case 2: k> m — 2.
A(I) = (2™ L 4 ay?) 4 (@2 Ry phy2 kL 2y
One can obtain the following decomposition:
I'=(f)+J,
I? = (O) + (B) + (A1, Ag, ..., Ai2) + K,

Moreover, the following are C-bases of I/.J and I?/K respectively:
k—2 k—3 k—2
f?"'?x f?yf7"'7x y?""y f
and

k—2 k—m+2 k—m+2

Al, ceey L Al, AQ, ey L met AQ, ceey Ak+1, ey L mt Ak+1,
k—m~+2 k—m+2, m—4
Ak+2,...,l’ mt Ak+2,...,Ak+2,...,IL‘ m ym Ak+27
-3 k—m+1, m—3 -2 k— -2 k—2

ym "41454-27“'711j m ym Ak+27ym Ak+2,...,$ mym Ak—i—?v"'ay Ak+27
B, ..., z"m*2p,

C, ..,z 2C, yC, ..., xk_SyC, ey yk_QC.

Since K C J, one can calculate o, by o, = dim I/J +dim J/K —dim I?/K = 2m+6k+1.

Applying the same argument, one can obtain the results for A,,, Fg, Fs:

Proposition 4.21. For A, = V(2™ +y?), m > 2, we have
(z™ 2™y, y%), k=0,1,
A(Tk<1‘m+1 + yQ)) — (xm+1 4 y2) 4 (merk’xmy?xkflyZ’ _“7yler1)7 2<k<m-—1,
(xm+1 + y2) + (xk% $k_1y27 "'7yk+1)7 k 2 m,

m-—1, k=0,1,
m+1, k=0,
m-+6, k=1,
prp=sm—k 1<k<m-1, o=
m+5bk+1, 2<k<m-—1,
0, k>m,

2m +4k+1, k> m,
and Tt(z™ +y?) = m.
Proposition 4.22. For Eg = V(2> + y*), we have
(2%, 2%y, y*), k=0,
A(Tk(xs + y4)) = (373, ‘7:2?/) 93?%3, y4)7 k= 17
(@ +y*) + (@25, a?yF, ayh ), k> 2,

5, k=0, 7, k=0,
pe=1R1 k=1, op=<18, k=1,
0, k>2, 6k + 13, k> 2,

and Tt(z3 +y*) = 2.

15

F=aml L gy? O = f2, B = aMHh=2f A, = ghtml=iyi | k8= 240

_ +k—2 k+1 k+1 k42
J = (™ STy Yy Ty ),

_ m+2k _m-+2k—1 2k+2 2 2k+1_3 2k—m+4_ 4 k—m+4_ k+4 _k—m-+3 k+m-+1 2k+4
K_(:L‘ ?‘/I: y7x y’x y’$ y?"'?'fl: y ’x y ?"'7y )'
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Proposition 4.23. For E; = V(23 + xy3), we have

(23 + zy3, 152%y% + 295, 295, 45), k=0,
A(Tp (2P +ay®)) = ¢ (32%y + o°, 2, 23y, 2292, 2y, o0), k=1,
(SE3 + :L‘y3) + (3l‘2yk + yk+37 l‘k+2, s :L‘3yk_l, x2yk+1’ :Eyk+2, yk+4)7 k > 2’

6, k=0, 8, k=0,
Prk=1.2, k=1, o0,=1<19, k=1,
0, k 2, 6k+157 k227

and Tt(z3 + zy?) = 2.
Proposition 4.24. For Eg = V(2 + y°), we have

(23, 2%y*, yP), k=0,
A(Ti(2® +4°)) = < (23, 229°, 2y*, 4°), k=1,
("'E + y ) ( k+27 "'7x2yk’$yk+37yk+4)7 k Z 27

6, k=0, 10, k=0,
e k=1, o k=1,
PR 1 k=2 7" T Y28 k=2
0, k>3, 17+ 6k, k>3,

and Tt(x3 + y°) = 3.

Next, we provide a lemma which relate the ideal of antiderivatives of ADE surface singularities
to ADE curve singularities.

Lemma 4.25. Suppose f € C{x} = C{z1,...,x,} is an analytic germ with an isolated singu-
larity at the origin. Let u be a new variable and f =u?+ f € C{u,x} be another analytic germ
with an isolated singularity. Notations are shown in the remark below.

For k =0, we have:

A(To(f)) = (@) + (u-T5 (f) + (AT (),
and for k > 1, we have:
A(Ti(f)) = (F) + (Rg) + (Ag - u) + (mfH?) 4 4 (mpu®) + (uPH),
where (S),S C C{u,x} is the ideal generated by S. Ay and ¥y are ideals in C{x} given by
Ap=(mF-J(f) +mb=t. fombE)nmk and U, = AT(TE(f)) NmEJ(f).

Moreover, if f is quasi-homogeneous, then
A(Ti() = (F) + (Tx) + (Ag - ).

Remark 4.26. Let k be an positive integer. To avoid confusion, let T}’ denote the k-th Tjurina
ideal map in C{x} and T} is the Tjurina ideal map in C{u,x}. Moreover, m, refers to the
maximal ideal of C{x} and J(f) the Jacobian ideal of f in C{x}. Besides, for an ideal I in
C{z}, A*(I) € C{z} is the ideal of antiderivatives w.r.t. 7. For ideal J in C{u,xz}, A(J) is
the ideal of antiderivatives w.r.t. Tj.

In all, notations attached with an * or , are ones associated with C{ax} while others are
associated with C{u, x}.

Proof. We will also follow Algorithm
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When k = 0, we have To(f) = (u, f, J(f)). Suppose au+3> 7, Zgg{ € A( (f)), where a, b; €
C{u,x}. Then, by taking 2 and a%]_, we have a € T§(f)+ (u) and Y ", Zaxlam € To(f) Since
u € To(f), we may assume b; € C{z}. Under this assumption, we obtain 3.7 b Zaa: 8:c eT§(f)
and hence the assertion is proven.

When k > 1, we have Tk(f) = (f)—i—(mx, u)*(u, J(f)). Suppose " aiqu'ttx*+>" bﬂgujwﬁ% €
A(Ty(f)), where i,j > 0,c,8 € N* with i + |a| = j + |8 = k. For s > 0,y € N", s + |y| = k,
apply usw’V%. If s > 1, we obtain no restriction to all a and b. If s = 0, we get one restriction:

Since ux® € Ty(f) if |a| = k, we may assume age € C{x}. Under these circumstances, by
considering the degree of u, we have Z|a| apax™ € Ag.

For general s,~ as before, uS:L"Va%q provides no restriction to aiq, since u*TitlgBtr—eq
is always in Tj(f). Hence we can focus only on ijlﬁuj:vﬁ%. Also, if s > 1, we have

ujJrst*'Y*qu—i e Tr(f) and u7+5wﬁ+788 I e Tu(f). So these uS:U"Ya%q give no restriction.

0z
For s = 0, we have:

of O*f 5
§ J pBty—e I pB+Y cT
blﬂu qa +u 8161(9.%(1] k(f)-

If j > 1, we also have bjg(u/aPt7—¢a 8f +ujmﬂ+’7 xlax ) € Ti(f). So it suffices to consider the

condition W' =32, 37 5 boig (Pt =€ 8f +mﬁ+7

as before. Again considering the degree of u, we have W € (f) 4 (mgz, u)*(u, J(f)) if and only if
W e (mg,w)*1(f) + (Mg, u)*(u, J(f)) = (Mg, w)*1(f) + (mg, uw)*(u, J(f)). Therefore, we have
> bowmﬂ% e A™(Ti¥( f)). Concluding all restrictions, we have verified the first assertion.

As for the second assertion, let I = (f) + (¥3) 4+ (A - u). Since f € myJ(f), we have

mk=1f C mEJ(f). Since A*(Ti7(f)) is an ideal and f € A*(T}7(f)), we have mk=lf c 0. For
all z& € mh—1, %2 = :I:O‘f—wo‘f € I. This implies m*~1u? c I. To show mF=2u? C I,
suffices to verify m¥=2u - f € (Ay, - u). It is clear by definition.

Next, we perform induction on r, aiming to show m];*’"u’qu1 C I. The case for £k = 1,2
has been done as above. Suppose it is true for all » < k — 1. Since (mF~"*ly"=1) c I by
induction hypothesis and m*¥~"w"~1f C mkF=7+1y =1 for all z%u™ € mb—mu ) gour ! =

ayrlf gy f e O

) € T (f). We may assume boig € C{z}

axx

We have an easy corollary of the lemma.

Corollary 4.27. Notations are as in Lemma [4.25] Let pip(f) and Tt(f) be invariants of
f € C{x} and pr(f) and Tt(f) be those of f € C{u,x}. Then

Po(f) =70(f) + po(f), and
oo(f) = oo(f).

where 1o(f) is the Tjurina number of f. Furthermore, if f is quasi-homogeneous, we have

Tt(f) = max{Tt(f), mm(f)},

where mm(f) is the smallest integer v such that m2" C m”J(f).

Proof. The first assertion follows from the isomorphism

To(f)/A(To(f)) = Tg (/) /AT (f)) ® (Cla} /TG (f))u
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between vector spaces. T~he second assertion follows from Ty(f)? = (u?) + (TE(f) -u) + (TE(f))?
and then A(To(f))/(To(f))? =~ A™(Tg (f))/(T§(f))?.

As for the third assertion, since (U -u) C (Ag -u) and (Ag - u?) C (mF~1u?), we have
AT (f))NC{z} = (V) + (mEL . f). Because mE~1. f C mFJ(f) and f € A®(TZ(f)), we have
A(T(f)) N C{x} = U;. Morever, A(Tj(f)) N (C{x} - u) = Ay, - u. Hence, A(Ti(f)) = Ti(f) if
and only if ¥, = m¥J(f) and Ay = m”®. The smallest number k satisfying respective conditions
are Tt(f) and mm(f) respectively. O

Next we compute the ideal of antiderivatives for ADE surface singularities. We only give Ay
and Wy so that readers can recover A(Tk(f)) by Lemma We point out that we have
deliberately written A in the form (f) 4+ (A Nm*J(f)) in the previous computation for curve
singularities.

Proposition 4.28. For D,, = V(:cm_l + l’y2 + u2), m > 4, we have
Ak = (':Uya xm—Q’ yQ) N m];a
U, — (xm+k_2’ xky27 ) myk—'—l? yk+2a xm—Qy)’ 1<k<m-— 3,
k= (=2 gk Rl R Rl s gy
Proposition 4.29. For A, = V(2™ + y2 +u?),m > 2, we have
Ak = (xm’y) N ml;’
\I/]g = (xm+k’$my7xk_1y27"‘7yk+1)72 S k S m — 17
(zky, 2k 1y?, L yF ) k> m.
Proposition 4.30. For Eg = V(2 + y* + u?), we have

Ak = (‘/1:27 $927y3) N m:’fm

U, = (x2+k7 ...,HZka, acyk+2).
Proposition 4.31. For E; = V(2 + 2y + u?), we have
(322 + 4, xy?), k = 1,
A =
(@®, 9% ay?) N, k> 2,
Wy, = (32" + g2 a2 Byt Ay a2 ),
Proposition 4.32. For Es = V(2 + y° + u?), we have
A = (2%, 2y, y") Nmb
U, = (903,9523/3,33244,1/5),/{ =1,

Below are the invariants for Dg, Fg, /7 when 0 < k£ < 12.

Example 4.33. We distinguish invariants of f and f by adding a~over those of f.
(D) f=a+ay’ f=f+u

ElOo|1]|2]3] 4 ) 6 7 8 9 | 10 | 11 | 12
pr| 612 1110] 0 0 0 0 0 0 0 0 0
pr 11216 | 3| 1] 0 0 0 0 0 0 0 0 0

o | 6 |17 (24|31 | 37 | 43 | 49 | 55 | 61 | 67 | T3 | 79 | 85
O | 6 | 285589 (130|178 | 234 | 298 | 370 | 450 | 538 | 634 | 738
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One can find 65, = 4k? + 12k + 18,4 < k < 12 and o}, = 6k + 13,k > 3.

3 10 | 11 | 12
0 0 0 0
0 0 0 0
op| 7 |18 (2531 | 37 | 43 | 49 | 55 | 61 | 67 | 73 | 79 | 85
0| 7 129(56]90 130|178 | 234 | 298 | 370 | 450 | 538 | 634 | 738
One can find 64, = 4k% + 12k + 18,3 < k < 12 and oy, = 6k + 13,k > 2.

)
| O Ot
jes) Newll e
jen) Nenl N |
| O
[en) Newjl iNe)

(3) f=a*+ay®, f=f+u

ElOo|1]|2]3] 4 ) 6 7 8 9 | 10 | 11 | 12
pr| 612101 0] 0 0 0 0 0 0 0 0 0
|13 7131 1] 0 0 0 0 0 0 0 0 0

o | 8 119]27[33] 39 | 45 | 51 | 57 | 63 | 69 | 75 | 81 | 87
Gr| 8 |30 |58]92] 133|181 | 237 [ 301 | 373 | 453 | 541 | 637 | 741
One can find 65, = 4k* + 12k + 21,4 < k < 12 and o), = 6k + 15,k > 2.

Remark 4.34. As in [Ad75], germs f € C{a} and f = f + u? are called stable equivalent.
Moduli algebra itself can not tell the difference between stable equivalent singularities if not given
the dimension of ambient space. However, by Proposition [4.38| shows invariants o} implies
the dimension of the singularities and hence separate apart stable equivalent singularities.

So far, some interesting things have happened: (a) There is a polynomial P € Z[z|, such
that {ox}r>1e(r) = {P(k)}r>1e(s); (b) Tt is the smallest integer N such that {o}}r>n fits a
polynomial of k. We state the findings as in the following conjecture.

Conjecture 4.35. Let (X,0) = (V(f),0) C (C",0) be an isolated hypersurface singularity.
Then Tt(f) is the smallest integer N such that {0} }x>n s a polynomial of k of degree n — 1.

Remark 4.36. Our calculation shows that the conjecture holds for ADE curve singularities.
Below are a few examples other than ADE singularities, which support our conjecture.
Example 4.37.
(1) f=a%+ay

k10| 1]2] 3 4 5 6 7 8 9 | 10 | 11 | 12

Pr | 57|13 7 | 2 0 0 0 0 0 0 0 0 0

o | 17168 |85 |103 | 117|129 | 141 | 153 | 165 | 177 | 189 | 201 | 213
One can find o, = 12k + 69, 3 < k < 12.

(2) f =% +zy®
k1 0] 1] 21345671819 10]11]12
on | 44 |40 [ 34 |26 | 18|10 6 | 210001 0]o0

oy | 256 | 267 | 284 | 307 | 334 | 365 | 391 | 417 | 441 | 463 | 485 | 507 | 529
One can find o} = 22k + 265, 8 < k < 12.
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(3) f=z(z+y)(z+2y)(z + 3y)(z + 4y)(z + 5y)
kK101 |2]|3]4 5 6 7 8 9 10 | 11 | 12
pr 141101 4|0 | 0 0 0 0 0 0 0 0 0
o |36 |47 164 | 81|93 | 105|117 | 129|141 | 153 | 165 | 177 | 189
One can find o5, = 12k + 45, 3 < k <12.

(4) f=2"+y°+2°
k10| 1 2 3 4 5 6 7 8 9 10 11 12
pr | 381 32| 20 | 8 0 0 0 0 0 0 0 0 0
or | 82109 | 172 | 252 | 339 | 430 | 533 | 648 | 775 | 914 | 1065 | 1228 | 1403
One can find o}, = 6k + 37k + 95, 4 < k < 12.

(5) f =2’y +y2+ 2%
kK10 |1]2] 3 4 5 6 7 8 9 |10 | 11 12
pr 1216 | 0| O 0 0 0 0 0 0 0 0 0
or | 1239 (85| 136|199 | 274 | 361 | 460 | 571 | 694 | 829 | 976 | 1135
One can find o}, = 6k + 21k + 19, 2 < k < 12.

Though the correctness of the conjecture is not verified, we can prove the following estimation:

Proposition 4.38. Suppose (X,0) = (V(f),0) C (C",0) is an isolated singularity, then:
2"~ lord(f)
(n—1)!
Here ord(f) denotes the minimal degree among all monomial terms appearing in f. Besides, for

two sequences {an},{bn} C C, a,, ~ b, means a, /b, — 1 when n — co.

gL,

O ~

Proof. For t € N, let [(t) = (”jt) be the cardinality of the set
{(z1, 22, ....xp) EN" | z1 + 22 + ... + )y < t}.

By Lemma there exists an integer w, such that m* C J(f). For a non-negative in-
teger t, we set Ly = dimC{z}/((f?) + (f)m’ + m?) and R; = dim C{x}/((f) + m). Since
or = dim C{zx}/Ty(f)? — dim C{x}/T}(f) for large k (Lemma [4.17)), we have the following
estimation:

Ly — Riywy < 0k < Ly — Ry, (~).

In fact, L; and R; can be explicitly calculated when ¢ > ord(f).
Ol"d(f) tnfl
(n—1)! ’
Li=12t—1)— (2t =1 —ord(f)) = l(t—1)) = I(t — 1 — ord(f))
(21 + Dord(f) -

(n—1)!

Applying the calculation to (~), we are done. O

Ri=1(t—1)—1I(t—ord(f)—1) ~

~

With this proposition, we have a direct corollary.

Corollary 4.39. If Congecture|4.35 holds, the leading term of this polynomial is Wk”_l,

Remark 4.40. In Proposition we have shown that
dime I/1? = Ry — Ly = 1(2t — 1) — (2t — 1 — ord(f)),
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where I = (f) +m! C C{x} is an ideal. If f =7 | 27 is a homogeneous Brieskorn singularity,
then mFJ(f) = m**" for large k. Consequently, we have

op=12(k+r)—1)=12(k+7r)—1—ord(f)),
a polynomial, for large k. It also convinces us that Conjecture is true.

4.3. A Geometric Interpretation for the Ideal of Antiderivatives. In this subsection,
we are going to give a geometric interpretation of the ideal of antiderivatives w.r.t. Tjurina ideal
map. Hence, all As in this subsection refer to the ideals of antiderivatives w.r.t. Tjurina ideal

map. The motivation of the following construction comes from the well-known exact sequence
for Kédhler differential (Theorem ).

Lemma 4.41. Suppose I Cm C C{x} is an ideal, then we have the following exact sequence:
0— A(I) — I i) Q(C{m} & (C{m}/[ — Q(C{m}/[ — 0.

Proof. Tt suffices to check A(I) = kerd. Since Qcyzy = ;L C{z}dr;, Qo ® Cla}/I ~
D, (C{x}/I)dz;. Therefore, f € kerd if and only if 887}?: € I for all 1 < i < n. By definition,
kerd = A(I) = {f € I|J(f) CI}. 0

Now suppose (X, Ox) is a complex space and Z is the complex subspace given by coherent

ideal sheaf Z. We have a natural morphism « : Z — Qx ® Ox/Z given by f +— df @ 1. It gives
a global exact sequence for X/Z.

Theorem 4.42. Notations as above, we have the exact sequence:
-5 Qx®0x/T —i.0z7 — 0 (E))
where © : Z — X 1is the natural closed embedding.

Proof. For p ¢ Z, (Ox/I), = 0 and (i,Oz), = 0. For all p € Z, taking stalks of (E), the
sequences coincide with the (algebraic) sequences in Theorem So we are done. t

Definition 4.43. For a coherent ideal sheaf Z of Ox, the ideal sheaf of antiderivatives is defined
by the kernel of « in the above exact sequence.

Remark 4.44. Since i is a closed embedding and hence finite, by [GLS07|, Theorem 1.67, i,Oz
is coherent. Since Z, Qx ® Ox/Z and i,Oyz are all coherent, then so is A(Z).

The following theorem shows for each p € X, the stalk A(Z), coincides with A(Z,) «Ox p in
local sense. Hence our global definition gives A a geometric interpretation.

Theorem 4.45. Let X = D C C" be an open subset and I be a coherent ideal sheaf of Ox.
Then for each p € X, A(Z), is the ideal of antiderivatives of the ideal I, in the local ring
OXJ) = C{LE —p}.

Proof. Without loss of generality, we set p = 0. Under such assumptions, Ox, = C{x}.
Applying Theorem and taking stalk at p, one may find it is the exact sequence in Lemma
[4.411 O

4.4. k-th Milnor Number of Semi Quasi-Homogeneous Singularity. In [BGMII], the
notion of semi quasi-homogeneity (SQH for short) was provided. The authors proved the Milnor
number of an SQH series is equal to the Milnor number of its principal part. We will apply
their method to prove an inequality associated with some types of quasi-T-maps. Besides, we
prove the equality between the k-th Milnor number of an SQH series and the Milnor number of
its principal part.
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In this section, K[[z1, 22, ..., x,]] always refers to the ring of formal power series over a field
K. We abbreviate K{[[x1, 22, ...,z,]] as K[[z]] and m is the maximal ideal of K[[z]]. We will
focus on some quasi-T-maps on the K-algebra K[[z]], where K is an arbitrary field. We first
define the notions continuous and efficient for a linear endomorphism of K{[z]]:

Definition 4.46. A linear map P € Endg (K |[[x]]) is called continuous if there exists an integer
d such that ord(P(f)) > ord(f) — d for all f € K[[z]].

Remark 4.47. There is a natural topology on K[[z]], that is, the m-adic topology. The open
basis near 0 is given by the filtration m D m? D m3 D ---. A sequence {f;}2, C K|[z]] is
called a Cauchy sequence, if for any integer k > 0, there exists N, > 0 such that f; — fi4; € m¥
for all ¢ > Nj. It is not hard to check each Cauchy sequence in K{[x]] converges to a unique
series. A continuous endomorphism is automatically a continuous map from K[[z]] to itself
when considering the m-adic topology.

Lemma 4.48. Suppose P € Endg (K[[x]]) is continuous, then for all f =) a,x¥ € K|[x]],
P(f) = 2y auP(x").

Proof. Let Cy, : K[[z]] — K[[z]]/m**! — K[[z]] be the canonical truncation. Namely, it maps
> w @Y 10 301, < awx”. Forall k € N, we have f = Cy(f)+(f—Ck(f)), where ord(f—Cy(f)) =
k+1. Since P(Ck(f)) = Xjy< @ P(x?) and ord(P(f —Ci(f))) 2 k+1-d, P(Ci(f)) is a Cauchy
sequence tending to P(f) in m-adic topology. Therefore, we have }_,, -\ avP(x”) — P(f) i.e.
P(f) = Xy awP(z"). 0

Remark 4.49. The lemma is not trivial since it works for infinite sums.

Definition 4.50. For f € K[[z]] and quasi-T-map Q, we define ug(f) := dimg K[[z]]/Q(f).
If the dimension is infinite, we simply write pg(f) = oo.

As in [BGMTI], for w = (w',w?,...,w") € N’ and f =Y, apz® € K[[z]], the principal part
of f w.r.t wis defined to be fu, =Y, minimal @v
for short) w.r.t. a continuous quasi-T-map @ and w ((Q,w) in short) if pg(fw) is finite.

For f =", a,x® € K[[x]], its support is defined as Supp(f) := {v € N" | a, # 0}.

For a quasi-T-map @ : K|[[z]] — {Ideals of K[[x]]}, it can be naturally extended to K[z, t]] —
{Ideals of K[[x,t]]} in a natural way. That is, assuming @ = (Q1, ..., @), then for f =322 f;-
te K[[:L',t]], Q](f) = Zfio Qj(fl) -¢* and Q(f) = (Ql(f)v o Qm(f)) Let d = min’uGSupp(f) v

w and f = t_df(twlxlw--,twnmn) = fuw + tg, where g € K][[z,t]]. Then we have Qz(f) =
Qi(fw) +tQi(g) for each i.

Definition 4.51. Let w € N and ¢, : K[[z,t]] = K[[z,t]] is such that z; — it t.
A linear map P € Endg (K[[z]]) is called efficient w.r.t. w if P is continuous and there is an
integer e such that for each monomial ¥, @, (P(x")) = t°P(py(x?)).

V. f is called semi quasi-homogeneous (SQH

Example 4.52. Consider K[[x,y]] and w = (1,1), then P = 22439, is efficient with e = 4,
while P = 0, + 0,0, is continuous yet not efficient.

Definition 4.53. A quasi-T-map Q = (Q1,...,Qm) (ie. Q(f) = (Qi(f),...,Qm(f)) for all
f € K[[x]]) is called continuous (efficient resp.) if all @); are continuous (efficient resp.).

Proposition 4.54. Notations are as above. Let Q) be an efficient quasi-T-map and w € Nsg.
Suppose f =3 apx? is SQH w.r.t. (Q,w), and K|[[z,t]]/Q(f)K[x,t]] is finitely generated as a
K[[t]]-module, then pug(fw) > no(f). The equality holds if and only if K|[x,t]]/Q(f)K|[[z, ] is
torsion-free as a K|[[t]]-module.
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Proof. Let L be the fraction field of K[[f]] and ¢y : @; — t*'x;,t — ¢ be an automor-
phism of L[[z]]. By Lemma and the definition of efficiency, we have ¢, (Q(f))L[[x]] =
Q(ow(f))L][x]] = Q(f)L][x]] and the following isomorphisms:
Kz, 1))/ Q(f) K[z, 1] @k L =~ L{[]]/Q(f)L([]
=~ L[z]]/o(Q(f)) Ll[z]] = L{[2]]/Q(f) L[]
The first isomorphism is due to Lemma below. Also by using Lemma below, we
have dimy, L{[z]]/Q(f)L{[z]] = nq(f)-

Since K[[t]] is a discrete valuation ring, the L-dimension of K[z, t]]/Q(f)K [z, ]] Qg L is
the free rank of K [[x, t]]/Q(f) K[[z, t]] by Theorem Since K[z, 1]]/Q(f) K[, t tl]@ kg K =~

K[[2]}/Q(f,) and u(f,) is the rank of K([e, {]/Q(f)K ][z, ], we have ug(fu) > ng(f). The

condition for equality is obvious. [l
Remark 4.55. (1) It is clear that Q f — (f, g—afl, - %), the Tjurina ideal map, satisfies all
conditions. And < holds when f ¢ ( o ,8‘%).

(2) The “finitely generated” condition is necessary. Let K = C, f = 22 + x> + y* € Cl[z,y]],
and w = (f f) then f,, = 22 + y3. Consider quasi-T-maps maps Q1 and Q2 defined below.

: Zaijxlyj — Z aijx’yj) + ais(zy’® — 2%) + agor?,
1,725

Zazﬂy = (Y aya'y’) + any’,

4,525
Q= (Ql, Q2).

Then Q(fw) = (2% y*) and Q(f) = (xv?,¢?), and K[[z,y,]]/Q(f)K|[[z,y,t]] is not finitely
generated. We have u(f,) =3 < u(f) = oo.
(3) We will soon later see the k-th Jacobian ideal map, Ji : g — mF - (aaTglv s aaTgn), satisfies all
conditions.

The following two lemmas may be well-known for experts. However, we did not find suitable

references. Hence, we give complete proofs below.

Lemma 4.56. Let I C K[z, t]] be an ideal of K [[x,t]] such that K|z, t]]/1 is a finitely generated
K{[t]]-module. L := K((t)) is the field of Laurent series over K, then K|[z,t]]/I @y L =~
L[[z]]/IL[[x]] as L-algebras.

Proof. Let A = K[[z,t]], then A/I @k L = Ai/IA; is the localization of A/I. We claim
m” C I A; for some r > 0. If not, there exists an x; such that :zr:i’C ¢ I A for all k. Since A/I is a
finitely generated K[[t]]-module, A;/IA; is a finite L-linear space. Hence z;, 27, ...,
dependent for some p, which implies z¥’ € IA;. Contradictory!

Hence A;/IA; = Ai/(IA; + m"A;) ~ B/I'B, where B = A;/m"A; = L[[z]]/m"L[[z]] =
Llz]/((x)L[[z]])" and I’ is the image of I in B. The same argument holds for L[[z]]/IL[[z]], for
we only need to notice m” C IL[[x]]. O

Lemma 4.57. Let I = (f1,..., fm) C Kl[z]] be an ideal. L := K((t)) is the field of Laurent
series over K. Then dimy, L{[z]]/IL[[x]] < oo if and only if dimg K[[z]]/] < co. Moreover, if

the finiteness holds, then those dimensions coincide.

p . .
x; is linearly

Proof. Suppose K|[x]]/I is finite dimensional, then m” C I for some r. Since I L[[z]] 2 m" L[[z]],
dimy, L{[x]]/IL[[z]] is finite. Conversely, suppose L[[x]]/IL[[z]] is finite dimensional, then m" C
IL[[z]] for some r. Hence % = }_, f;g;,9; € L[[z]], for all @ € N",|a| = r. Consider the
degree-zero part of all g; w.r.t. t, we have ® € I for all i. Therefore, I 2 m".
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If both finiteness holds, it suffices to show a finite set of monomials {x®i};cr is linearly
dependent in K|[[x]]/I if and only if in L[[z]]/IL[[x]]. The “only if” is trivial. As for “if”,
suppose »_ hjx® =3, fjl; (+), hi € L and l; € L[[z]]. We may assume the degree-zero part
of hy w.r.t. t is not 0. By considering the degree-zero part of (+) w.r.t. ¢, we are done. U

Let Ji(f) := m*J(f) be the k-th Jacobian ideal. The dimension of its quotient algebra is
called the k-th Milnor number p(f) := dimg K[[x]]/Ji(f). One can prove Q = Jj is efficient

w.r.t. any weight w € N%,. Two see this, it suffices to check g — x® - g—i

and |a| = k. It is not hard to check ¢, (x®) - &p“gfsﬁ) =1 (™ - %) for all B € NZ.
Suppose w € N2 is a weight. In [BGMI11], the authors proved when @ = J = Jy and pu(fw) <

0o, that K[[z]]/Q(f) is a free K[[t]]-module of rank p(f,) and hence torsion free and finitely

generated. We will base on this fact and prove pg(f) = pr(fw), whenever k < mini{ord(g—i)}

and pu(fuw) < oo.

is efficient for all 7

Lemma 4.58. Suppose I = (g1,92,...,9m) S K]l[z,t]] is an ideal such that K|z, t]]/I is a
finitely generated K[[t]]-module. Then K|z, t]]/mI is also finitely generated.

Proof. We may emphasize m is the maximal ideal of K{[z]]. Let e, eq,...,e, € K[[z,t]] whose
image in the quotient ring K[[x,t]]/I is a set of generators. Since > g; - K[[z,t]] + mI = I, we
have ey, eg, ..., e, together with g1, go, ..., gm generates K|[[x,t]]/ml. O

As a corollary, K[z, t]]/m*J(f) is finitely generated as a K[[t]]-module if u(f,) < co. We
have so far proved the “finitely generated” condition in Proposition [4.54] Hence we have a
simple corollary as below.

Corollary 4.59. Suppose fis SQH w.r.t. Q = Ji, andw € N2 is a weight such that p( fu) < 0o
(equivalently, p(fu) < 00), then pi(f) < pu(fw)-

Remark 4.60. The same argument also holds for Q = T} (i.e. Q(f) = (f) +m*J(f) for all

f € K]l[x]]), since Ti(f) 2 Ji(f). Thus we have 7(f) < 7(fy) for all k € N if 7(fy) < oo,
where 73, is the k-th Tjurina number. But the equality does not generally hold.

Next, we are going to show that the equality holds for uj; when k < mini{ord(%)}. By

Proposition m it is equivalent that K|[z,t]]/Q(f)K|[x,]] is torsion-free. Before giving a
proof, we need to do some preparation for regular sequence.

Let A be a ring. We define A((t)) := [[;c; A whose elements are written as >, a;t’, a; € A.
It is an A[t]-module but not an A[[t]]-module. For A = K]lz]] and L := K((t)), L[[z]] is
contained in A((t)) in set-theoretical sense. The following lemma tells us how elements of L][[x]]
are like in K[[x]]((t)).

Lemma 4.61.
L)) = {) _ai(@)t' | a; € K[[z]] s.t. a; — 0,i — —oo} € K[[]}((t))
1€EZ
Here the convergence is in m-adic topological sense.

Proof. Simply by swapping the order of summation. O

Lemma 4.62. Suppose (f1, fa, ..., fr) is a reqular sequence in K|[x]], then it is also regular in
L[[x]] where L = K((t)).

Proof. Without a loss of generality, it suffices to prove f,. is a non-zero divisor in the quo-

tient ring K[[]}/(f1, fo. . fr1)Ll[x]). Suppose afy € (fur for. fo)Llia]), a = Tas(a)ti €
L[[z]] ¢ K[[z]]((t)). Considering the grading w.r.t. ¢, we have a; € I := (f1, fo, ..., fr—1) C
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K [[z]]. Therefore a; = Z;i af fi af € Kl[z]]. We need to select suitable ag such that
al — 0,7 — —oo. Suppose a; € m™, n; — oo when i — —oo. By Artin-Rees theorem (Theorem
, there exists an N > 0 such that for all n > N and k > 0, m**" N1 = m¥(m"NI). We may
assume n; > N for all 7+ < 0, then we can select af € m™ N hence tending to 0. O

Theorem 4.63. Suppose f € K|[[x]] is SQH w.r.t. Q = J;, and w € N i.e. p(fy) < oo. Then
for k < ming{ord(55)}. pi(fu) = p(f).

Proof. By Lemma and Proposition it suffices to prove K|[x,t]]/Ji(f) is torsion
free. We prove it by induction. The case for k = 0 is proved in [BGM11]. Suppose K|[z,t]]/Jx(f)

is torsion-free.
Notations are as in Proposition 4.544 Since p(f) < oo, by theorem (DL oL oL

01’ Ox2? """ Oxn

is a regular sequence in K[[z]]. By Lemma 4.62L (3‘%, 887];, e 88712) is also regular in L[[z]].
¢ : L[[x]] — L[], with z; — ¥ 2;, ¢ — t, is an automorphism of L{[z]]. Since 887{1- = t*wigo(g—i),
(68—;1, ey %) is also a regular sequence.

Suppose ¢ - a(x) € Jpy1(f) € Ji(f). On one hand, by the induction hypothesis a(x) €
Jk. We may assume a(x) = 32, >k aiawa%,aia € K][t]]. On the other hand, since

A N

ta(x) € Jp1(f) = mbtL. (867{?1,..., %), one can write ta(x) =), bi%, where b; € L{[z]] and
ord(b;) = k + 1. Let ¢; := )44 @ia®™ — b;, then 3, Cic’% =0 € L[z]].
Since (%,%,...,%) is regular in L[[z]], we have ¢, € (%7%7“"%8”{1)' However,

k< mini{ord(%)} implies Z‘ aj=k @na®® = 0. By Proposition regularity is independent
of permutation, thus we have a = 0. So we are done.

However, it seems that ug(fw) = wr(f) as well when k > mini{ord(g—gi)}. Here are some

examples.

Example 4.64. The following are computed by SINGULAR.
(1) f=a+ 4> + 28+ a?y?22 N e C,w = (1,1,1).

px \ k o123 [4|5|6 | 78] 9]10
3+ yd + 23+ Xey?2? [ 811120 [ 35| 56 | 84 [ 120 | 165 | 220 | 286 | 364
o3+ + 23 8112035 |56|84 120|165 | 220 | 286 | 364

(2) f =2 +y* + 2° + M\Py*25, A e C,w = (20,15,12).

px \ k 0|12 (3[4 5|6 | 78] 9]10
23+ oyt 4+ 25+ Aadyte® [ 2412736 (52| 75| 105 | 143 | 190 | 247 | 315 | 395
3yt 420 24 (27 (36|52 |75 (105 | 143 | 190 | 247 | 315 | 395

3) f =2y + 122+ 2z + Azt + v + 24, A e Cw = (1,1,1).

e\ k ol1[2[3]4|5]6 | 7]8]9]10
2Py +ylz+22r Nt oyt 24 [ 8114243960 (88124 | 169 | 224 | 290 | 368
2y +y?z + 22w 8114(24(39]60]|88 124|169 | 224 | 290 | 368

Hence we make a conjecture.

Conjecture 4.65. Suppose f € K([x]] is SQH w.r.t. Q = J, and w € N%,. Equivalently,
p(fw) < oo. Then for all k € N, ux(fuw) = p(f).
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4.5. T-fullness and T-dependence: a New Definition. In this and the next subsections,
we will determine whether an ideal of a local Noetherian algebra over an infinite field is a 7T-
principal ideal. We further assume A is a local ring and m is its maximal ideal. Remember that
Q@ is a fixed T-map and we omit the notion of “w.r.t. Q” when stating properties about T-maps.

Definition 4.66. An ideal I of A is called T-full if and only Q(A(I)) = 1.
With this definition, the following proposition is straightforward:
Proposition 4.67. Suppose I < A is a T-principal ideal, then I is T-full.

However, as a typical example, a T-full ideal of (R, A, Q) = (C,C{x},Tp) is not necessarily a
Tjurina ideal, thus we need an additional condition. On some scale, T-full implies surjectivity,
showing an ideal is possibly generated by the image (). The following condition essentially tests
whether it can be generated by one element.

Definition 4.68. Suppose J = (g1,92,...,9-) < A is an ideal and consider the graded ring
S = Aly1,v2,...,yr]. Let ¢ = > giy; and Qo) = (Q1(0),Q2(0), ..., Qm(0)), where each Q;
acts on the coefficient ring A and acts as identity on y1,¥2,...,y,. We call J T-dependent if
(Q(o) : Q(J)S) ¢ mS. Equivalently, there is a P € P'; ! such that mS C P and (Q(J)S)(p) =
(Q(2))(p)-

Clearly, there is some trouble with “well-defined”: whether the condition is independent of
the choice of g1, g9, ..., gr.

Proposition 4.69. The definition of T-dependence is independent of the choice of generators
of J.

Before proving the proposition, we shall translate the definition into the language of algebraic
geometry. Basic notations are followed from [Har77]. First, identify Q(o) with its homogeneous
sheafification, an ideal sheaf of ]P)Q_l. Second, let 7 : ]P’TA_1 — SpecA be the canonical projection,
then 7*(Q(J)) is equal to (1.5)™~, another ideal sheaf. It is clear that Q(o) — 7©*(Q(J)). Set
F = 7*(Q(J))/Q(0), which is a coherent (’)qu—module and thus SuppF is a closed subset of
IP’Z(l. Since (J : I)~ = (J~ : I"™) for finitely generated graded ideals I,.J, we have P ¢ SuppF
if and only if (Q(J)S)p) = (Q(0))(p). Therefore, (Q(o) : Q(J)S) ¢ mS in Definition
can be restated as mS ¢ SuppF. Since mS is the minimal element of 7—!(m) under the order
“containing”, it is also equivalent to say 7—'(m) ¢ SuppF. The following proof is basically
applying ([OR23], Lemma 3.8) to our notations.

Proof. Suppose hi, ha, ..., h; is another set of generators of J. Define o', S/, 7’ and F’ for it
correspondingly, where z1, 29, ..., 2; are variables of S’. We may assume J # 0. It suffices to
show 7~1(m) ¢ SuppF implies 7'~!(m) ¢ SuppF’.

By definition, g; = Ej rijhj, for some r;; € A. Suppose all rj; € m, then J C mJ. By
Nakayama’s lemma, J = 0, contradictory. Therefore, at least one r;; € m. We construct
®:S5" — S by z — >, miyi. It is a homomorphism of graded A-algebras and hence induces
o : U — Pf;l for SpecA-schemes by ([Har77], Chapter II, Ex 2.14), where U is the open
subscheme given by U = {p € ProjS | p 7 ®(S.)}. One can find that 7—!(m) N U # &, since
there is an 7;; € m and then mS 2 ®(S’ ). Consider the following commutative diagram:

U Pt
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By the construction of ¢, we have o|y = ¢*o’ since ®(¢’) = o. Then ©*(Q(J)) =
*™*(Q(J)) and Q(o)|y = ¢*(Q(c")). Therefore Fly = p*F'.

As above, mS € U \ SuppF = ¢~ }(P'; 1\ SuppF’). And hence we have p(mS) ¢ SuppF'.

Observing that mS’ C ®~!(mS), we have p(mS) € 7'~(m). O

In the rest of the article, we only consider the case R is an infinite field, even though the
definition of T-full and T-dependence is valid for local Noetherian algebras over arbitrary rings.

4.6. Determination of a T-principal Ideal and Construction of a Generator. In this
subsection, we are going to generalize the main theorem of [OR23] up to the level of commutative
algebra. From now on, F' is an infinite field and A is an Noetherian local F-algebra with maximal
ideal m. Let @ be a fixed T-map of A.

Definition 4.70. For )\ € IP’%_l, define py as the prime ideal ({A\iy; — Njys | 1 < 4,5 < r})<
F[y1,y2,...,yr]. Note that the definition is reasonable, say it does not depend on the choice of
representative element of A\. Here and below IP’}:l is always in set-theoretical sense, while Pf{l
is in scheme-theoretical sense.

Lemma 4.71. For Fly1,y2,...,Yr|, Px as above, then f € py if and only if f(X\) = 0. (This
lemma also suits for F' finite.)

Proof. The necessity is trivial, we only prove the sufficiency. Since p) is a homogeneous ideal,
then it suffices to prove the following result:

For A € F", my := (21 — A1, ..., 2r — A\p) < F[z1, ..., 2], then a polynomial f € m, if and only if
f(A) =0.

If r = 1, it is trivial. Suppose it holds for r — 1. Since f(z1,...,2r) — f(A1,22,...,2,) IS a
multiple of z; — A1 and f(A1, 22, ..., 2r) € (22 — A2, ..., 2r — Ar) by induction hypothesis, we are
done. |

Lemma 4.72. For R = F[y1,%2,...,yr], px as above, we have (), pr—1 px = 0.
F

Proof. First notice I = ﬂ/\eP}” py is a homogeneous ideal, so we only need to consider the
homogeneous polynomials. Suppose f € I is a homogeneous polynomial. By Lemma [4.71

f € py implies f(A1, A2, ..., A\r) = 0. Since A runs through the whole IF’;TI, f must be 0. O
Lemma 4.73. Suppose A/m ~ F. For ideal I <A, if IS ¢ mS, then I ¢ p\S +mS, for some
AePj!

Proof. Let © : Aly1,vy2,...,yr] = F[y1,y2,...,yr] be the projection of coefficients. Suppose
I CpyS+mS forall A € Pt then T C ﬂ/\epgq(ms +paS) := J. Since J contains the kernel
of 7 i.e. mS, J = w1 (n(J)). However, 7(J) = (7(mS + prS) = (p» = 0 by Lemma m a
contradiction. |

Remark 4.74. The assumption that F' is infinite is necessary. For if F' is finite, then [p) is
a finite intersection of finitely generated ideals. We may take the product of all the generators
throughout all the components, then it is in the intersection.

Lemma 4.75. Let B be a local ring and n be its maximal ideal. For ideals I,J <1 B, P be a
prime ideal of C' = Bly1,y2, ..., yr| containing nC. If IC(py = JC(py, then I = J.

Proof. Symmetrically, it suffices to show I C J. For any h € I, h = g%, for some g € J and
some homogeneous polynomials G, G2 with the same degree and G2 ¢ P. Then there exists
a G3 € C'\ P homogeneous such that G3(hG2 — gG1) = 0 (). Noting that G2 and G3 both
have some coefficients in B \ n, and hence there is a term in G2G3 whose coefficient is in B*.
Considering the coefficient of this term in (%), we have h € (g). Therefore, I C J. O
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Theorem 4.76. Suppose A/m ~ F. For an ideal I < A, it is a T-principal ideal if and only if
I is T-full and A(I) is T-dependent.

Proof. Notations are as in Definition We first prove the necessity.

Suppose I = Q(f) is a T-principal ideal. As in Proposition I is automatically T-
full. Suppose A(I) = (g1,92,-..,9») and without a loss of generality, we set g1 = f. Hence
f=91+0-g2+...40-g,. So we may assume f = > \;g;, where (A1,...,\,) € F"\{0}. Consider
P =mS + p)S and assume P € D, (y;), then A\; # 0. We have an estimation below:

Ai Y

ISpy = Q(f)Sp) € Q<Z(>\7 - E)gi)S(P) + Qo /y)S(p)

C IPp)+(Q(0))(p) € ISp).

i

By Nakayama’s lemma, and consider the S(p)-module IS p) and its submodule (Q(c))p), we
have (15)(p) = (Q(0))(p)-

Next, we prove the sufficiency.

Suppose I is T-full and A(I) is T-dependent, then (Q(c) : IS) ¢ mS. By Lemma [4.73] it
is even not contained in some P =mS + p)S € P/, !, say (Q(a))(p) = (IS)(p)- We may assume
P € D4(y;) and hence A\; # 0. We have an estimation below:

1905 + QY (Ga)Sir)

%

I1S(py = (Q(0))(p) = Qo/y1)Sp) C Q(Z(ij _ %

i

C IPpy+ QD Xigi)Sp) € IS(p).

Therefore, I P(py+Q(>_; Xigi)S(p) = 1S(p). By Nakayama’s lemma, considering S p)-modules
ISpy and Q(_; Xigi)S(py, we have Q(>_; Xigi)S(py = IS(p). By Lemma we have [ =
Q2 Aigi)- O
Remark 4.77. Essentially, the proof shows that I = Q(3_, \ig;) if and only if (Q(0) : 1S) ¢

mS + p)S. And the sufficiency part shows that if A(T) is T-dependent and [ is T-full, then such
Py exists.

Remark 4.78. The theorem can be applied to all of the examples in Example

Although the theorem provides a criterion for local Noetherian F-algebra with infinite residue
field F', the behaviour when F' is finite is note quite clear. We make a conjecture below:

Conjecture 4.79. Let F be an arbitrary field and A be a local Noetherian F-algebra with
mazimal ideal m. @Q is a fired T-map. Suppose A/m ~ F, then for an ideal I < A, I is T-
principal if and only if I is T-full and A(I) is T-dependent.

In [OR23], Rodrigues proved the following result:

Corollary 4.80. ([OR23] Corollary 3.13) Suppose 0 # I «C{x} is a Tjurina ideal and A(I) =
(91,92, -, 9r). Then I =T(> ) Akgr) for [A1, ..., \r] in a non-empty open set of}P’TC_l.

But in fact, such an open set can be described in detail as in the following lemma.

Lemma 4.81. Notations are as in Theorem . Suppose 0 # I = Q(f) <A is a T-
principal ideal. Let J = (Q(o) : IS), where A(I) = (91,92, .-, 9r), S = Aly1,92,...,yr] and
o=> g 7:Ay1,y2, ., yr] > Fly1,y2,...,yr| is the projection of coefficients. Then the set
U={\eP: | IT=0Q(3, M\gk)} coincides with the open set Z(w(J))¢, where Z(m(J)) refers
to the common zero locus of polynomials in w(.J).
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Proof. By repeating the proof of Theorem we have U = {\ | J ¢ mS 4+ p S} = {\ |
7(J) ¢ pa}. By Lemma U={XNXEZ(r(J)}=Z(n(J]))e. O

The above lemma also provides an algorithm to compute a generator for a T-principal ideal
I. When Q = T}, or T*, we can compute the ideal of antiderivatives explicitly. We write the
algorithm as following.

Algorithm 4.82. Notations are as in Lemma[{.81 By the following steps, one can check an
ideal is T-principal with respect to @ and obtain a generator if the ideal is T-principal.

Step 1: Compute a set of generators g1,92, ..., 9r of A(I).

Step 2: Check if T(A(I)) =1.

Step 3: If T(A(I)) # I, return false; Otherwise, compute the colon ideal J = (Q(o) : IS).
Step 4: If J CmS, return false; Otherwise, find a A € F" such that X € Z(w(J))¢, then Y, Xigi
18 a generator.

5. APPENDIX: CODES

Code 5.1. Computing A(]), pi and oy. (SINGULAR)

LIB ”"hnoether.lib”;
ring r = 0, (x,y),ds;
int k = 20;
poly f = x"4dxy+xx*xy 5;
def J = jacob(f);
ideal m = x,y;
ideal Tt = f m kxJ;
ideal Tk = std(Tt);
int u = size(Tk);
matrix B[1][u] = Tk;
matrix Cl[k+1][u];
matrix C2[k+1][u];
matrix temp[1l][u];
int i;
int j;
for( i =1; 1i<=u; i ++)

temp = jacob (B[1,i]);

for( j =0 ; j <=k j ++){

Cl[j+1,i] = x"j*y (k—j)*temp[1,1];
C2[j+1,i] = x"j*y " (k_j)stemp[1,2]:

}
matrix ttp[1][u];
def res = modulo(ttp,ttp);
for(j =1 ; j <=k+1 ; j ++){
for(i =1 ; i <=u; i ++)
ttp[1,1] = C1[j,i];
}

def rec = modulo(ttp ,B);
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def recc = intersect(res,rec);

res = recc;

for(j =1 ; j <=k+1 ; j ++){
for(i =1 ; i <=u; i ++)
ttp[1,i] = C2[j,i];
}

def rec = modulo(ttp ,B);

def recc = intersect(res,rec);
res = recc;

matrix Res = res;

int uu = size(res);

matrix D[1][uu];
for(i =1 ; i <=uu ; i ++)
for(j =1 ; j<=u; j ++){
D[1,i] = DJ[1,i]+Res[j,i]*B[1,j];

}
ideal Delta = std(D);

ideal T = std(Tk"2);

ideal D1 = groebner (Delta);
int sigma = vdim(I)-vdim(D1);
sigma;

int rho = —vdim (Tk)+vdim (D1);
rho;
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