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Abstract. Mather-Yau theorem leads to the massive study about moduli algebras of isolated

hypersurface singularities. In this paper, the Tjurina ideal is generalized as T -principal ideals of

certain T -maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a

T -map, which creates many new invariants. Firstly, we compute two new invariants associated

to ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial

growth of these invariants. Secondly, the language of T -maps is applied to generalize the well-

known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to the

Milnor number of its principal part. Finally, we use two conditions T-fullness and T-dependence

to determine whether an ideal is a T -principal ideal and provide a constructive way of giving a

generator of a T -principal ideal. As a result, the problem about reconstruction of a hypersurface

singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues

in the cases of the 0-th and 1-st moduli algebra, which inspired our solution.
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1. Introduction

The motivation of this research is Mather-Yau theorem [MY82]. Let C{x1, x2, ..., xn} (C{x}
for short) be the ring of complex convergent power series of n variables at (Cn, 0) For an isolated

hypersurface singularity (V, 0) ⊂ (Cn, 0) defined by the analytic germ f : (Cn, 0) → (C, 0), one
has the moduli algebra A(V ) := On/

(
f, ∂f

∂x1
, . . . , ∂f

∂xn

)
which is finite dimensional. The well-

known Mather-Yau theorem states that: Let (V1, 0) and (V2, 0) be two isolated hypersurface

singularities, A (V1) and A (V2) be their respective moduli algebras, then (V1, 0) ∼= (V2, 0) ⇐⇒
A (V1) ∼= A (V2). The biholomorphic classes of isolated hypersurface singularities correspond

to isomorphism classes of commutative C-algebras. The Mather-Yau theorem plays a very

important role in the classification of isolated hypersurface singularities.

In the classification theory of isolated singularities, one always wants to find invariants asso-

ciated to the isolated singularities. Hopefully with enough invariants found, one can distinguish

between isolated singularities. Mather-Yau theorem tells us that the moduli algebra A(V ) is a

complete invariant of an isolated hypersurface singularity (V, 0). All information about singu-

larities can be taken from its moduli algebra. It is natural to ask if there are other C-analytic
algebras play similar role as the moduli algebra? In this paper, we call a local algebra which

satisfies Mather-Yau theorem a valid moduli algebra. Since a valid moduli algebra is often a

quotient ring of C{x} modulo an ideal, we call a map Q : C{x} → {ideals of C{x}} a moduli

ideal map if for any f ∈ C{x}, C{x}/Q(f) is a local algebra invariant of singularity (V (f), 0).

For example, the k-th Tjurina ideal map Q = Tk : f 7→ (f) + (x)kJ(f), J(f) = ( ∂f
∂x1

, ..., ∂f
∂xn

)

is a moduli ideal map. Q is called valid if each C{x}/Q(f) is a valid moduli algebra when

(V (f), 0) is an isolated hypersurface singularity. In past years, Yau, Zuo and their collaborators

have introduced many new local algebras to singularities: higher Nash Blow-up local algebra

([HMYZ23]), k-th local Hessian algebra ([HYZ21]), k-th moduli algebra ([HLYZ23]) and k-th

singular local moduli algebra ([MYZ23]). These local algebras are new invariants of singularities.

They play important roles in the classification theory of singularities. It is a natural question

whether these new algebras are valid moduli algebras. The answer is yes for k-th moduli algebra

(see generalized Mather-Yau theorem, [GLS07]). Moreover, the authors have proven that the

k-th local Hessian algebra is also a valid moduli algebra for some k ([CHYZ20]).

For a hypersurface singularity (V (f), 0), its Tjurina ideal is defined by T (f) := (f) + J(f),

whose corresponding moduli algebra C{x}/T (f) is also called Tjurina algebra or moduli algebra.

In [OR23], Rodrigues proposed the problem how to find a necessary and sufficient condition that

an ideal I of C{x} is a Tjurina ideal. By introduction of the conceptions of T -fullness and T -

dependence, the problem was finally solved. If one can further find an f ∈ C{x} such that

I = T (f), then the problem of reconstructing a hypersurface singularity from its moduli algebra

is also solved, since an analytic algebra is given by C{x} modulo an ideal. Motivated from his

work, we propose a more general problem:

Question 1.1. Let Q : C{x} → {ideals of C{x}} be a valid moduli ideal map. For an ideal

I ◁ C{x}, how to find a necessary and sufficient condition that I = Q(g) for some g ∈ C{x}.

Many well-known valid moduli ideal maps are of the form Q(f) = (Q1(f), ..., Qm(f)), where

m is a fixed integer and all Qi : C{x} → C{x} are C-linear maps. For example, Tjurina ideal

map is of this form. From this, the problem has an algebraic generalization stated as below:
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Question 1.2. Let A be an algebra over a field F , Q : A → {ideals of A} is a map of the form

Q(f) = (Q1(f), ..., Qm(f)), where m is a fixed integer and Qi ∈ EndF (A). Then for an ideal

I ◁ A, how to find a necessary and sufficient condition that I = Q(g) for some g ∈ A.

In our article, we solved Question 1.2 when Q is a T -map (see Definition 4.1) and A is

a Noetherian F -algebra where F is an infinite residue field. The introduction of T -map is of

importance, since it includes many well-known moduli ideal maps: higher order Tjurina ideal

map (the sum of higher order Jacobian ideals ([DGI20])), k-th Tjurina ideal map ([HLYZ23])

and k-th local Hessian ideal map ([HYZ21]). Our solution is motivated from [OR23], with

necessary adjustments. We introduce the ideal of antiderivatives, T -fullness and T -dependence

with respect to (w.r.t. for short) T -maps (see subsection 4.5) and prove our main theorem:

Theorem A. (Theorem 4.76 and Algorithm 4.82) Let F be an infinite field and A be a Noe-

therian local F -algebra with maximal ideal m. Suppose A/m ≃ F . Let Q be a fixed T -map of

F -algebra A. For an ideal I ◁ A, it is a T -principal ideal if and only if I is T -full and ∆(I)

is T -dependent. Moreover, if I is a T -principal ideal, then a generator of I can be explicitly

calculated.

The notions “T -full” and “T -dependent” are conditions w.r.t. Q. Besides, a T -principal ideal

refers to an ideal of the form Q(f), f ∈ A. For example, Tjurina ideals are those T -principal

ideals in the C-algebra C{x}, when Q(f) = (f, ∂f
∂x1

, ..., ∂f
∂xn

) for all f ∈ C{x}. We point out

that the theorem holds for an arbitrary infinite field, even with a positive characteristic. For

example, A = Fp((t))[x1, x2, ..., xn] with F = Fp((t)) also satisfies the assumption. However, the

correctness of the theorem when F is a finite field has not been verified, but we conjecture that

it is also true.

Furthermore, we give a constructive method to recover a hypersurface singularity from its k-th

moduli ideal in Algorithm 4.82. This gives an answer to well-known reconstruction problem in

[Yau87] given by the second author: How can one construct the singularity (V, 0) explicitly from

moduli algebra A(V ). The difficulty of this problem is reduced to the computation of the ideal

of antiderivatives. In subsection 4.1, we provide approaches to finding ideals of antiderivatives

w.r.t. higher order Tjurina ideal maps and k-th Tjurina ideal maps.

Besides, we introduce various invariants associated with the ideal of antiderivatives (see sub-

section 4.1). In subsection 4.2, we introduce a series of invariants of singularities ρk, σk
and T -threshold. Briefly, for f ∈ C{x} which defines an isolated singularity at the origin,

∆(Tk(f)) is defined to be the ideal of antiderivatives of k-th Tjurina ideal Tk(f) w.r.t. Tk. Then

σk := dimC∆(Tk(f))/Tk(f)
2 and ρk := dimC Tk(f)/∆(Tk(f)) are two new invariants of singu-

larities. We prove that ρk decreases to 0 when k tends to infinity and define the T -threshold of

f to be the smallest number r such that Tr(f) = ∆(Tr(f)).

We complete the computation of these invariants for ADE curve singularities. As a result, we

have verified the following conjecture for ADE curve singularities.

Conjecture 4.35. Let (X, 0) = (V (f), 0) ⊂ (Cn, 0) be an isolated hypersurface singularity.

Then T -threshold of f is the smallest integer N such that {σk}k≥N is a polynomial in k of

degree n− 1.

Theorem B. Conjecture 4.35 holds for ADE curve singularities.

We are able to find the leading term of the polynomial in Conjecture 4.35 by sandwiching

σk between two polynomials of k.
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Proposition 4.38. Suppose (X, 0) = (V (f), 0) ⊂ (Cn, 0) is an isolated singularity, then:

σk ∼ 2n−1ord(f)

(n− 1)!
kn−1.

Here ord(f) denotes the minimal degree among all monomial terms appearing in f . For two

sequences {an}, {bn} ⊂ C, we denote an ∼ bn if an/bn → 1 when n → ∞.

Corollary 4.39. If Conjecture 4.35 holds, then the leading term of this polynomial is
2n−1ord(f)

(n−1)! kn−1.

In subsection 4.4, the language of T -maps is applied to the ring of formal power series.

Despite contact equivalence, right equivalence is also an important relation in classification of

singularities. Among all right invariants, Milnor number is possibly the most widely known

one. It is a well-known theorem that for a semi quasi-homogeneous (SQH for short) series

f ∈ K[[x]] := K[[x1, x2, ..., xn]], the Milnor number of f coincides with that of the principal

part fw of f (see [BGM11]). In this paper, we generalize this theorem to the k-th Milnor

number µk(f), which is the dimension of the quotient ring of K[[x]] modulo the k-th Jacobian

ideal Jk(f) = mkJ(f) (see [HLYZ23]) and is also a right invariant. Using the tools about regular

sequence, we finally proved the following:

Theorem C. (Theorem 4.63) Suppose f ∈ K[[x]] is an SQH series w.r.t. w ∈ Nn
>0 i.e.

µ(fw) < ∞. Then for k ≤ mini{ord( ∂f
∂xi

)}, µk(fw) = µk(f).

Moreover, we believe the result is correct for all k ≥ 0. Hence we propose the following

conjecture:

Conjecture 4.65. Suppose f ∈ K[[x]] is an SQH series w.r.t. w ∈ Nn
>0 i.e. µ(fw) < ∞. Then

for all k ∈ N, µk(fw) = µk(f).

Apart from the three above Theorems, we also give a geometric interpretation of ideals of

antiderivatives w.r.t. Tjurina ideal map T0. For an ideal I ◁ C{x}, the ideal of antiderivatives

of I w.r.t. T0 (namely, ∆(I)) is closely related to the well-known second fundamental exact

sequence for Kähler differential (see Theorem 2.9). We illustrate and prove this connection

in subsection 4.3. Briefly, ∆(I) coincides with the kernel of the first homomorphism in the

second fundamental exact sequence. We also call the ideal of antiderivatives defined above as

locally defined ideal of antiderivatives. In fact, we can generalize the locally defined ideal of

antiderivatives to a global version. Consider the global objects complex space (X,OX) and

coherent ideal sheaf I of OX . In subsection 4.3, we further define the (globally defined) ideal

sheaf of antiderivatives ∆(I) for I. Besides, we prove if X is smooth, then for each p ∈ X, the

stalk ∆(I)p is equal to the locally defined ideal ∆(Ip) ◁OX,p = C{x}.
In the appendix we give the code for computing ideals of antiderivatives for Tk and the

invariants σk, ρk. We only provide the code for two variables and the code for three variables is

similar.

Remark: After completing the project, we find this paper [OR24]. We would like to point

out that our work overlaps merely a small part with this preprint. Our Theorem A and the

main theorem of [OR24] are both related to reconstruction of a hypersurface singularity from its

moduli algebra. We would like to emphasize that our Theorem A can be applied to T -maps

on local algebras over infinite field F with residue field F , which includes Tjurina ideal map

and 1-st Tjurina ideal map of C{x}. For example, it can be applied to all of the six maps in

Examples 4.5. Moreover, we do not even require the characteristic of F to be zero.
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2. Preliminary

2.1. Invariants of Singularities. Let (X, 0) ⊆ (Cn, 0) be the common zero locus of some

functions f1, f2, ..., fm which are analytic near 0. If m = 1, (X, 0) is called a hypersurface

singularity. The singular locus of (X, 0), denoted as (SingX, 0) is the zero locus of f1 and its

partial derivatives. The singular locus is often called the singularity of (X, 0). Sometimes, if

not confusing, we call (X, 0) a singularity. A singularity is called isolated if (SingX, 0) is a

single point. A morphism of two analytic space germs (X, 0) ⊆ (Cn, 0) and (Y, 0) ⊆ (Cm, 0) is

a restriction of a holomorphic map germ f : (Cn, 0) → (Cm, 0) to (X, 0), such that (f(X), 0) ⊆
(Y, 0). (X, 0) and (Y, 0) are called isomorphic if and only if there are two morphisms between

them which are inverse to each other. It is equivalent to say (X, 0) and (Y, 0) are biholomorphic.

The classification of singularities is based on such isomorphisms. A natural idea of algebraic

geometry is to consider the valid functions on spaces i.e. analytic space germs. The function on

(X, 0) are those analytic germs. By Hilbert-Rückert theorem([GLS07]), the ring of holomorphic

function of (X, 0) is C{x1, x2, ..., xn}/I, where I is the ideal of analytic germs vanishing at

(X, 0). C{x1, x2, ..., xn} is a Henselian, Noetherian UFD as corollaries of Weierstraß Preparation

theorem ([GLS07]). If not confusing, we abbreviate C{x1, x2, ..., xn} as C{x} and denote m as

its maximal ideal.

Two analytic germs f and g in C{x} are called right equivalent if there exists a φ ∈
Aut((C{x}) such that φ(f) = g, called contact equivalent if φ(f) = ug, where φ ∈ Aut(C{x})
and u ∈ C{x}∗ is a unit. Note that the two types of equivalence induce an isomorphism of sin-

gularities since φ is always given by an isomorphism of analytic space germs. It is not difficult

to verify two analytic space germs are isomorphic if and only if their corresponding analytic

algebras are isomorphic. Another question is whether such isomorphism can be determined by

simpler algebras. Mather and Yau ([MY82]) proved two isolated hypersurface singularities are

isomorphic if and only if their moduli algebras are isomorphic. The Mather Yau theorem is

slightly generalized in [GLS07], stated as below:

Theorem 2.1 ([GLS07], Theorem 2.26; [GLS23], Theorem 1). Let f, g ∈ m ⊂ C{x}, the

following are equivalent:

(1) f is contact equivalent to g.

(2) For all k ≥ 1, C{x}/Tk(f) ≃ C{x}/Tk(g).

(3) There is some k ≥ 1 such that C{x}/Tk(f) ≃ C{x}/Tk(g).

Here, Tk is the k-th Tjurina ideal Tk(f) := (f) +mkJ(f). In particular, T0(f) = T (f).

Moreover, if f has an isolated singularity, then f is contact equivalent to g if and only if

T (f) ≃ T (g).

Hence, Mather-Yau theorem leads to the massive study of moduli algebras, the generalization

of which is the main objects studied in this paper.

For a hypersurface singularity, there are a series of invariants: Milnor number ([GLS07]),

Tjurina number ([GLS07]), higher Jacobian algebra (The quotient for higher order Jacobian,

[DGI20]), spectrum number ([vS20]), Igusa Zeta function ([Igu00]) and Bernstein-Sato polyno-

mial ([AMJNnB21]). Besides, moduli ideal maps often generate invariants, for examples, the

Krull dimension or linear dimension over C of their quotient rings. The following are three kinds

of moduli ideal maps.

Higher order Tjurina ideal: For f ∈ C{x}, T (f) = (f, ∂f
∂x1

, ..., ∂f
∂xn

) is the Tjurina ideal of f .

For an ideal I ◁ C{x}, we define the action of T over I as T (I) =
∑

f∈I T (f). T k is defined to

be the compositions of T by k times i.e. T k(f) = T (T (· · ·T (f))) is the ideal generated by f

and all its partial derivatives whose orders are not greater than k. It is well-known that for any
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φ ∈ Aut(C{x}), φ(T (f)) = T (φ(f)) and T (uf) = T (f) for any unit u. By a simple induction,

we have φ(T k(f)) = T k(φ(f)) for all φ ∈ Aut(C{x}) and T k(uf) = T k(f) for any unit u.

Hence, T k is a moduli ideal map.

k-th Tjurina ideal: In [HLYZ23], Tk(f) := (f)+mkJ(f) is called the k-th Tjurina ideal, where

m is the maximal ideal of C{x} and J(f) is the Jacobian ideal of f . One can easily check Tk is

a moduli ideal map by noticing two facts: (1) Tk(uf) = Tk(f) for any unit u; (2) φ(m) = m for

any φ ∈ Aut(C{x}).
k-th local Hessian ideal: The k−th local Hessian ideal is first introduced in [HYZ21]. Let

f ∈ C{x}, J(f) be its Jacobian ideal and Hess(f) = ( ∂2f
∂xi∂xj

)ij be its Hessian matrix. Let hk(f)

denote the ideal generated by all k × k-minors in Hess(f), then IHk (f) := (f) + J(f) + hk(f)

is called the k-th local Hessian ideal of f and Hk(f) := C{x}/IHk (f) is called the k-th Hessian

algebra. As shown in [HYZ21], IHk is a moduli ideal map.

Let Q stand for anyone of the three above. It is a natural problem whether an ideal of C{x} is

of the form Q(f), f ∈ C{x}. For Q = T0 and Q = T1, the Tjurina ideal map, Rodrigues ([OR23]

and [OR24]) gave two conditions and solve the problem. In this article, we will generalize his

work, at least to ideal maps including the three above.

A simple observation is that all of three can be written as a sum of principal ideals associated

with f and for all a, g ∈ C{x}, Q(ag) ⊆ Q(g). It is important for our generalization in section

4.

For a hypersurface singularity (V (f), 0), µ = dimCC{x}/J(f) and τ = dimCC{x}/T (f) are
called Milnor number and Tjurina number respectively. They are two important invariants.

Lemma 2.2. ([GLS07], Lemma 2.3) U ⊆ Cn is an open neighborhood of 0. Let f : U → C be

holomorphic, then the following are equivalent:

(a) 0 is an isolated critical point of f .

(b) µ(f, 0) < ∞.

(c) 0 is an isolated singularity of f−1(f(0)) = V (f − f(0)).

(d) τ(f − f(0), 0) < ∞.

The lemma can be slightly generalized:

Lemma 2.3. Let f ∈ C{x} be a holomorphic function with f(0) = 0, then the following are

equivalent:

(a) dimC{x}/mkJ(f) < ∞ for all k ≥ 0.

(b) dimC{x}/mkJ(f) < ∞ for some k ≥ 0.

(c) (V (f), 0) is an isolated singularity.

(d) dimC{x}/(f) +mkJ(f) < ∞ for all k ≥ 0.

(e) dimC{x}/(f) +mkJ(f) < ∞ for some k ≥ 0.

(f) There exists some r ≥ 0 such that mr ⊆ J(f).

Proof. Since (f) + mkJ(f) ⊆ (f) + J(f) and mkJ(f) ⊆ J(f), by Lemma 2.2, (a), (b), (d)

and (e) all imply (c). Moreover, it is clear that (f) implies (a), (b), (d) and (e). Hence, it

suffices to prove that (c) implies (f). Suppose f defines an isolated singularity. By Lemma

2.2, dimCC{x}/J(f) < ∞ and hence
√

J(f) ⊃ m. Since C{x} is Noetherian, there exists some

r ≥ 0 s.t. mr ⊆ J(f).

□

Remark 2.4. The proof of (c) ⇒ (f) is also true for any ideal I other than J(f), as long as

dimC{x}/I < ∞.
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2.2. Commutative Algebra. In this subsection, we review some facts about commutative

algebra and Kähler differential.

Theorem 2.5. (Artin-Rees, [AM69], Corollary 10.10) Let A be a Noetherian ring, I be an ideal

and M be a finitely generated A-module. If M ′ is a submodule of M , then there exists a k ≥ 0

such that InM ∩M ′ = In−k(IkM ∩M ′), for all n ≥ k.

The next is the basis theorem of finitely generated modules over a principal ideal domain

(PID for short).

Theorem 2.6. (Basis Theorem, [Rot10], Theorem 9.12) If R is a PID, then every finitely

generated R-module is a direct sum of cyclic modules in which each cyclic summand is either

primary or is isomorphic to R.

If R is a discrete valuation ring (DVR for short), with ϖ a uniformizer, then every finitely

generated R−module is a direct sum of a free module and some cyclic modules of the form

R/ϖkR for some k. If M = Ra ⊕ (
⊕r

i=1R/ϖkiR), ki ≥ 1, then a+ r is the minimal number of

generators of M . We call a+ r the rank of M .

Lastly, we recall some notions about regular sequence. Let A be a local ring and M be a

finitely generated A-module. (f1, f2, ..., fr) ∈ M r is called a regular sequence if for all 1 ≤ i ≤ r,

fi is not a zero-divisor in M/
∑i−1

j=1Afj .

Proposition 2.7. ([Eis95], Corollary 17.2) If R is a Noetherian local ring and (x1, x2, ..., xr)

is a regular sequence in R, then any permutation of (x1, x2, ..., xr) is again a regular sequence.

Theorem 2.8. ([Mat80], Theorem 31) Let (A,m) be a Cohen-Macaulay ring. Then:

(i) for every proper ideal I of A, we have

htI + dimA/I = dimA;

(ii) for every sequence a1, a2, ..., ar in m, the following are equivalent:

(1) the sequence a1, a2, ..., ar is A−regular;

(2) ht(a1, a2, ..., ar) = r.

The following is the second fundamental exact sequence for Kähler differential , we state it in

a way assemble to Theorem 4.42.

Theorem 2.9 (second fundamental exact sequence for Kähler differential). Let π : B → C be

a surjection of A-algebras with kernel I, then we have the following exact sequence:

I
d−→ ΩB/A ⊗ C −→ ΩC/A −→ 0

where d(a) = da ⊗ 1 for all a ∈ I is a B-module homomorphism and d : I → ΩB/A is the

restriction of d : B → ΩB/A. Furthermore, I2 is contained in ker d.

We may refer to [Har77] and [GLS07] for this theorem. Their statements are slightly different,

where the first map of the corresponding sequence in these books is I/I2
d−→ ΩB/A ⊗C, but in

fact they are equivalent to ours.

For complex space (X,OX), we can also define Kähler differential. When X = D ⊂ Cn

is an open subset, ΩX is the free module
⊕n

i=1OD · dxi and d is naturally defined. Locally,

(X,OX) = (V (I), (OD/I)|V (I)) is a complex model space, ΩX = ΩD/(IΩD + ODdI). The

derivation is defined to be the pullback of the quotient map d : OD/I → ΩD/(IΩD +ODdI) by
the inclusion map V (I) ↪→ D.
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3. T -fullness and T -dependence for Tjurina Ideal

3.1. T -fullness and T -dependence. In [OR23], Rodrigues first developed the conceptions

of T -fullness and T -dependence. Those are two conditions characterizing whether an ideal

of C{x} is a Tjurina ideal. Let I ◁ C{x} be an ideal and T be the Tjurina ideal map i.e.

T (f) = (f, ∂f
∂x1

, ..., ∂f
∂xn

). The action of T can be naturally extended to the set of ideals: T (I) :=∑
f∈I T (f). We call ∆(I) := {f ∈ C{x} | T (f) ⊆ I} the ideal of antiderivatives of I. Since

T (af) ⊆ T (f) a, f ∈ C{x} and T (f + g) ⊆ T (f) + T (g) for all f, g ∈ C{x}, ∆(I) is actually an

ideal.

Definition 3.1. I is called T -full if T (∆(I)) = I.

For an ideal J = (g1, g2, .., gm) ◁ C{x}, let S = C{x}[y1, y2, ..., ym] be a polynomial ring

over C{x} and σ :=
∑

i giyi. T (σ) := (σ, ∂σ
∂x1

, ..., ∂σ
∂xn

) is the Tjurina ideal of σ and T (J)S is a

homogeneous ideal of S. The original definition of T -dependent is stated in the language of alge-

braic geometry. Here for simplicity, we give an equivalent definition illustrated in commutative

algebra.

Definition 3.2. J is called T -dependent if (T (σ) : T (J)S) ̸⊂ mS.

A subtle thing is whether it is well-defined. In [OR23], Rodrigues proved the definition is

independent of the choice of generators of J and hence well-defined. The proof will also appear

in subsection 4.5, which is slightly adjusted to fit in more general cases. Below is the main

theorem of [OR23]:

Theorem 3.3. I is a Tjurina ideal if and only if I is T -full and ∆(I) is T -dependent.

Roughly speaking, T -fullness guarantees I can be generated by some analytic germs and their

partial derivatives. It can be seen clearly especially in the monomial case.

3.2. an Example: Monomial Ideal Case. It is also an interesting problem when a monomial

ideal of C{x} is a Tjurina ideal. In this subsection, we give a characterization of a T -full

monomial ideal and review some recent results associated with the problem. Notations are

followed from [OR23], also reviewed in subsection 3.1. The following proposition shows the

ideal of antiderivatives of a monomial ideal is also a monomial ideal.

Proposition 3.4. If I◁C{x} is a monomial ideal, so is ∆(I). Moreover, ∆(I) =
⋂n

i=1Qi, where

Qk is the monomial ideal generated by xk · I and I ∩C[x1, ..., x̂k, ..., xn]. Here C[x1, ..., x̂k, ..., xn]
refers to the polynomial ring of n− 1 variables apart from xk.

Remark 3.5. Throughout the article, we adopt multi-index. That is, xα,α = (α1, α2, ..., αn) ∈
Nn refers to the monomial xα

1

1 · · ·xαn

n in C[x1, ..., xn]. For α ∈ Nn, |α| :=
∑n

i=1 α
i is called the

length of α. We call α1 ≤ α2, if αi
1 ≤ αi

2, for all 1 ≤ i ≤ n. If not confusing, we set

ej = (δji )
n
i=1 ∈ Nn as the normal orthogonal vectors. For α ∈ Nn, Suppα := {i | αi ̸= 0} is

called the support of α.

Proof. It is obvious that f ∈ ∆(I) if and only if every monomial term of f is ∆(I), since I is

a monomial ideal. So it suffices to work on the second statement.

Let Pk = {f ∈ C{x} | f, ∂f
∂xk

∈ I}, then ∆(I) =
⋂n

k=1 Pk. We only need to show Pk = Qk.

For a subset W ⊆ C{x}, we use ∂
∂xk

(W ) to stand for { ∂w
∂xk

| w ∈ W}.
On one hand, since I is a monomial ideal, we have ∂

∂xk
(xkI) = I. Moreover, ∂

∂xk
(I ∩

C[x1, x2, ..., x̂k, ..., xn]) = 0, and hence Qk ⊆ Pk. On the other hand, for xα ∈ Pk, if xk
does not appear in xα, then xα ∈ C[x1, x2, .., x̂k, ..., xn] ∩ I. Otherwise, we have xα ∈ xkI, or

Pk ⊆ Qk. □
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In the next theorem, we give a characterization of T -full monomial ideals.

Theorem 3.6. Let I ◁ C{x} be a monomial ideal, then I is T -full if and only if there exist

α1, ..,αm ∈ Nn such that I = ({xαi−ej | 1 ≤ i ≤ m, 1 ≤ j ≤ n,αi − ej ≥ 0}).

Proof. It is clear that the theorem is equivalent to the following statement:

I is T -full if and only if for any xα ∈ I, there exists an 1 ≤ i ≤ n such that xα+ei−ej ∈ I for

all 1 ≤ j ≤ n satisfying α+ ei − ej ≥ 0.

So it suffices to prove the statement above. The argument for “only if” is easy. By assumption,

we have xα+ei ∈ ∆(I) and hence xα ∈ T (∆(I)). For “if”, since ∆(I) is a monomial ideal, then

there exists an xβ such that xβ = xα or xβ−ei = xα for some i. In both cases we have

xα+ei ∈ ∆(I) for some i, so xα+ei−ej ∈ I. □

Remark 3.7. T -full monomial ideals can be easily distinguished through the Newton diagrams.

For n = 2, they correspond to the diagrams whose corners towards left-down appear as twins

different by (1,−1) as figure 1 shows.

Figure 1.

Combining Proposition 3.4 with Theorem 3.6, the ideal of antiderivatives of a T -full

monomial ideal can be calculated as below:

Corollary 3.8. Let I ◁ C{x} be a T -full monomial ideal. By Theorem 3.6, we may assume

I = ({xαi−ej | 1 ≤ i ≤ m, 1 ≤ j ≤ n,αi − ej ≥ 0}). Then ∆(I) =
⋂n

i=1Qk, where Qk =

xkI + ({xα−ek ,α ∈ A}) + ({xβ−el ,β ∈ B, l ̸= k}) and A = {α ∈ Nn | ek · α = 1}, B = {β ∈
Nn | ek · β = 0}.

Most recently, [ES22] has answered the question when a Tjurina ideal is a monomial ideal by

introducing Jacobian semigroup ideals and applying the tool of matroid. Its main theorem is

stated as below:

Theorem 3.9. ([ES22]) Let 0 ̸= f ∈ C{x} and I := T (f) be its Tjurina ideal. Then I is a

monomial ideal if and only if f is right equivalent to a Thom-Sebastiani polynomial. Here a
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Thom-Sebastiani polynomial refers to a polynomial of the form
∑m

i=1 x
αi
, where αi ∈ Nn and

Suppαi are disjoint subsets of {1, 2, ..., n}.

At last, we give two examples of monomial ideals. The first one is T -full but not T -dependent

and the second one is T -dependent but not T -full.

Example 3.10. n = 3, I = (xy2z3, x2yz3, x2y2z2, y7, xy6, zy6).

By Theorem 3.6, I is T -full. But one may compute that the C-dimension of I/(x, y, z)I

is 6. By Nakayama’s lemma, the minimal number of generators of I is 6 and hence I is not a

Tjurina ideal. By Theorem 3.3, I not T -dependent.

Example 3.11. n = 2, I = (xy).

∆(I) = (x2y2), T (∆(I)) = (x2y, xy2), σ = x2y2α, T (σ) = (xy2α, x2yα). Since αT (∆(I)) =

T (σ) and α ̸∈ m[α], ∆(I) is T -dependent. There is a single corner in the Newton diagram of I

and hence I is not T -full.

4. T -map

In this section, we will introduce the conception of T -map and some of its applications.

In the first subsection, we introduce the notions of T -map, T -principal ideal and ideal of an-

tiderivatives. In the second subsection, we introduce two new invariants σk = dimC∆(I)/I2

and ρk = dimC I/∆(I) associated with k-th Tjurina ideal I and its ideal of antiderivatives ∆(I)

w.r.t. k-th Tjurina ideal map. We find there exists a polynomial P ∈ Z[x] such that σk = P (k)

for all k sufficiently large. In the third subsection, we give a geometric interpretation of ideals

of antiderivatives w.r.t. Tjurina ideal map. In the fourth subsection, we first review the well-

known theorem that the Milnor number of a semi quasi-homogeneous series f ∈ K[[x]] coincides

with the Milnor number of its principal part. Then we generalize the theorem to µk, whenever

k ≤ mini{ord( ∂f
∂xi

)}. In the fifth and the sixth subsections, we generalize the main theorem of

[OR23] to some types of Noetherian local algebras so that many kinds of moduli ideal maps in

subsection 2.1 can be included. Furthermore, we give an approach to finding a generator for

a T -principal ideal.

4.1. T -map and Ideal of Antiderivatives. From now on, R is a ring and A is a Noetherian

R-algebra. We will define abstract “Tjurina ideals” for A.

Definition 4.1. The set of all ideals of A is denoted as I. A map Q : A → I is called a

quasi-T -map if there is an integer m and R-linear maps Q1, Q2, ..., Qm : A → A such that

Q(f) = (Q1(f), ..., Qm(f)) for all f ∈ A. A quasi-T -map Q is called a T -map if it has the

following property:

Q(af) ⊆ Q(f), for all a, f ∈ A (∗).

Remark 4.2. By definition, we can easily deduce the following properties of a T -map Q:

(i) Q(f + g) ⊆ Q(f) +Q(g).

(ii) If (f) = (g), then Q(f) = Q(g).

Remark 4.3. We note that R−linear maps Q1, Q2, ..., Qm are also parts of the definition.

T -maps appear rather frequently in singularity theory. Here are some typical examples. (3),

(4) and (5) in Example 4.5 are those moduli ideal maps mentioned in subsection 2.1.

Example 4.4. (quasi-T -maps)

(1) A = C{x}, R = C and Q(f) = Jk(f) = (x)kJ(f) is the k-th Jacobian ideal.

(2) A = C{x}, R = C and Q(f) is the Nash blow-up ideal of f in [HMYZ23].
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Example 4.5. (T -maps)

(1) A is an arbitrary R−algebra and Q(f) = (f);

(2) A is an arbitrary R−algebra and Q(f) = (f, ∂1(f), .., ∂k(f)), where ∂i ∈ DerR(A) are R-

derivations;

(3) A = C{x}, R = C, Q = T k;

(4) A = C{x}, R = C, Q = Tk;

(5) A = C{x}, R = C, Q = IHk ;

(6) A = Fp[[x]], R = Fp, Q(f) = (f, ∂
pf

∂xp
1
, ..., ∂

pf
∂xp

n
).

Fix a T -map Q, we call an ideal I ◁ A a T -principal ideal if there exists an f ∈ A such that

I = Q(f). Such an f is called a generator of I w.r.t. Q. It is an interesting problem when an

ideal is a T -principal ideal. Before solving this problem, we will develop some basic notions.

Definition 4.6. Notations as in Definition 4.1, for an ideal I = (g1, g2, ..., gn) ◁ A, Q(I) :=

({Q(f) | f ∈ I}) = Q(g1) +Q(g2) + ...+Q(gn). For another T -map Q′ = (Q′
1, ..., Q

′
r), we define

the composition of Q′ and Q as (Q′Q)(f) = Q′(Q(f)) = ({Q′
i(Qj(f)), 1 ≤ i ≤ r, 1 ≤ j ≤ m}).

It is also a T -map.

One can check the composition of T -maps satisfies the associative rule and U(f) = (f) is the

unit of this operation. We write this property as below.

Proposition 4.7. Notations are as above. MT := {T -maps of A} with the composition as the

multiplication is a semigroup with unit element U(f) = (f).

From now on, we will always assign Q as the fixed T -map of A. When stating properties of

T -maps, we will omit the notion “with respect to Q”. Following the step of [OR23], it is natural

to introduce the ideal of antiderivatives:

Definition 4.8. Suppose I ◁ A is an ideal, then the ideal of antiderivatives ∆(I) is defined to

be the set of all the elements whose images under Q are contained in I i.e.

∆(I) := {f ∈ A | Q(f) ⊆ I}.

Remark 4.9. By (∗) property, one can easily check ∆(I) is an ideal.

Proposition 4.10. Notations are as above. Let Q′ be another T -map. To avoid confusion, we

denote ∆Q, ∆Q′ and ∆Q′Q as the ideals of antiderivatives w.r.t. Q, Q′ and Q′Q respectively.

Then we have ∆Q′Q(I) = ∆Q(∆Q′(I)) for any ideal I ◁ A.

Proof. Suppose f ∈ ∆Q′Q(I), then (Q′Q)(f) ⊆ I. Hence, for all g ∈ Q(f), Q′(g) ⊆ I.

Therefore, Q(f) ⊆ ∆Q′(I) i.e. f ∈ ∆Q(∆Q′(I)). Conversely, since f ∈ ∆Q(∆Q′(I)), we have

Q(f) ⊆ ∆Q′(I) and hence Q′(Q(f)) ⊂ I. It is equivalent to say f ∈ ∆Q′Q(I). □

For the convenience of applying the language of T -maps to singularity theory, we may give

some definitions as counterparts of right and contact equivalence.

Definition 4.11. For f, g ∈ A, we call them right (resp. contact) equivalent if there exists

a φ ∈ AutR(A) such that φ(f) = g (resp. φ(f) = ug, for some unit u ∈ A∗). Clearly, the

definition coincides with the original one when R = C and A = C{x}.

Definition 4.12. A T -map Q is called stable under contact equivalence, if for any φ ∈ AutR(A),

Q is compatible with φ i.e. Q(φ(f)) = φ(Q(f)) for all f ∈ A.

Proposition 4.13. If Q is stable under contact equivalence and I◁A is an ideal, then φ(∆(I)) =

∆(φ(I)) for all φ ∈ AutR(A).
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Proof. On one hand, for any f ∈ φ(∆(I)), there exists a g ∈ ∆(I) such that f = φ(g). Since

Q(f) = Q(φ(g)) = φ(Q(g)) ⊆ φ(I), we have φ(∆(I)) ⊆ ∆(φ(I)). On the other hand, for

any f ∈ ∆(φ(I)), we have Q(f) ⊆ φ(I). Hence Q(φ−1(f)) ⊆ I, then φ−1(f) ∈ ∆(I), or

f ∈ φ(∆(I)). □

Remark 4.14. The three kinds of T -maps in subsection 2.1 are all stable under contact

equivalence. A simple corollary of Proposition 4.13 is that T−maps stable under contact

equivalence induce moduli invariants:

Corollary 4.15. Suppose Q is stable under contact equivalence. For all φ ∈ AutR(A) and an

ideal J ⊆ ∆(I), the homomorphism ∆(I)/J
φ̄−→ ∆(φ(I))/φ(J) induced by φ is an isomorphism.

For A = C{x}, R = C and Q = T the Tjurina ideal map, [OR23] gave an algorithm to

compute ∆(I). We give a brief description of it as below. The algorithm also holds for Q = Tk.

Algorithm 4.16. Let I = (f1, f2, ..., fm) be an ideal of A and Q(g) = (Q1(g), ..., Qm(g)).

Step 1: Compute Mk = {(a) ∈ Am |
∑

i aiQk(fi) ∈ I}.
Step 2: Let Ik = {

∑
i aifi | (a) ∈ Mk}. Compute

⋂
k Ik = ∆(I).

Now let Q = T be the Tjurina ideal map. By a simple induction we have the ideal of

antiderivatives w.r.t. T k is ∆k, composing the ∆ w.r.t. T by k times. This gives a method to

compute the ideal of antiderivatives for higher order Tjurina ideal map.

In the next subsection, we will apply this algorithm to compute a series of new invariants

associated with k-th Tjurina ideal and its ideal of antiderivatives for ADE singularities.

4.2. Invariants Associated with Tk and Its Ideal of Antiderivatives. Suppose (X, 0) =

(V (f), 0) is an isolated hypersurface singularity and I = Tk(f)◁A := C{x}, then A/I is of finite

dimension over C by Lemma 2.3. Since A is Noetherian, I/I2 is a finitely generated A/I-module

and hence has finite dimension over C. For Q = Tk, since I2 ⊆ ∆(I) and ∆(I)/I2 ⊆ I/I2, we

have ∆(I)/I2 is also of finite dimension. By Corollary 4.15, dimC(∆(I)/I2) is a contact

invariant. The same properties hold for I/∆(I) as well. Hence for each k, we obtain two new

invariants. For I = Tk(f) and Q = Tk, we denote σk as dimC∆(I)/I2 and ρk as dimC I/∆(I).

Next, we will prove the stationary property of ρk when k tends to infinity and calculate σk, ρk
and T -threshold (defined later) for ADE curve singularities (for classification, see [Ad75]). The

code for computing ∆(I), dim∆(I)/I2 and dim I/∆(I) is Code 5.1 in the appendix.

Proposition 4.17. Suppose (X, 0) = (V (f), 0) is an isolated singularity, then {ρk}k≥0 is a

decreasing sequence. Moreover, there exists an N such that ρk = 0 for all k ≥ N . We call the

minimum of such N the T -threshold of f , denoted as Tt(f).

Proof. We first prove {ρk} is decreasing. To avoid confusion, let ∆k and ∆k+1 be the ideals

of antiderivatives of (I,Q) = (Tk(f), Tk) and (Tk+1(f), Tk+1) respectively. Set Ik = Tk(f) and

Ik+1 = Tk+1(f). Since Ik+1 ⊆ Ik, i : Ik+1/(Ik+1∩∆k) ↪→ Ik/∆k is an inclusion. It suffices to show

Ik+1 ∩∆k ⊆ ∆k+1. For any g ∈ Ik+1 ∩∆k, we have g ∈ Ik+1 ⊆ Ik and mkJ(g) ⊆ (f) +mkJ(f),

where m = (x) is the maximal ideal of C{x}. Then mk+1J(g) ⊆ m(f)+mk+1J(f) ⊆ Ik+1, hence

g ∈ ∆k+1.

Now we prove ρk = 0 for k sufficiently large. Let Q = Tk, I = Tk(f) and ∆(I) be the

ideal of antiderivatives of I w.r.t. Q. Since (X, 0) is an isolated singularity, there is an integer

l such that ml ⊆ J(f) and hence (f) + mk+l ⊆ I. Clearly, f ∈ ∆(I), so it suffices to show

for any k large enough, α ∈ Nn, |α| = k and u ∈ J(f), then mkJ(xαu) ⊆ mk+l. Notice that

J(xαu) ⊆ mk−1J(f) +mk, then mkJ(xαu) ⊆ m2k−1. Thus ∆(I) = I for all k ≥ l + 1. □
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Lemma 4.18. For (R,A,Q) = (C,C{x}, Tk), if I is a monomial ideal, then ∆(I) is also

monomial, given by

∆(I) =
⋂
i,j

Q(i,j), i ∈ Nn, |i| = k, 1 ≤ j ≤ n.

Here,

Q(i,j) = A(i,j) +B(i,j),

A(i,j) = ({xj · xα | xα · xi ∈ I}),

B(i,j) = ({xα ∈ I | αj = 0}).

Proof. The argument is the same as Proposition 3.4. Let

P(i,j) = {f ∈ C{x} | f,xi · ∂f

∂xj
∈ I}.

Then we have I =
⋂

i,j P(i,j). It suffices to show Q(i,j) = P(i,j). On one hand, for a generator

xj ·xα of A(i,j), one finds x
i ∂
∂xj

(xj ·xα) = (αj+1)xα+i ∈ I. Besides, ∂
∂xj

(xα) = 0 for αj = 0, and

hence we have Q(i,j) ⊆ P(i,j). On the other hand, since I is a monomial ideal and the operator

xi · ∂
∂xj

sends momomials to monomials, P(i,j) is also monomial. For a monomial xα ∈ P(i,j), if

xj is not a factor, then xα ∈ B(i,j). Otherwise, xα ∈ A(i,j). Therefore, P(i,j) = Q(i,j). □

We will compute ρk, σk and T -threshold for ADE curve singularities Am, Dm, E6, E7, E8. To

avoid repetition, we compute those invariants for Dm and only provide results for other types.

Besides, we will compute the ideal of antiderivatives for ADE surface singularities.

Proposition 4.19. For Dm = V (xm−1 + xy2), m ≥ 4, we have

∆(Tk(x
m−1+xy2)) =


(xm−1 + xy2, 3(m− 1)xm−2y + y3, xm, y4, xy3, x2y2, xm−1), k = 0,

(xm−1, xm−2y, xy2, y3), k = 1,

(xm−1 + xy2) + (xm+k−2, xky2, ..., xyk+1, yk+2, xm−2y), 2 ≤ k ≤ m− 3,

(xm−1 + xy2) + (xm+k−2, xky2, ..., xyk+1, yk+2, xk+1y), k ≥ m− 2,

ρk =


m, k = 0,

m− 3− k, 1 ≤ k ≤ m− 4,

0, k ≥ m− 3,

σk =


m, k = 0,

m+ 7k + 4, 1 ≤ k ≤ m− 4,

2m+ 6k + 1, k ≥ m− 3,

and Tt(xm−1 + xy2) = m− 3.

Remark 4.20. For an ideal I ◁ C{x}, we sometimes split I to a sum of finite dimensional

C-vector spaces and a monomial ideal as C-vector spaces. This will simplify the computation

of dimCC{x}/I. For example, in the proof, we use I1 = (xm, y3, x2y) + spanC{xm−1 + xy2}. It
means the sum of monomial ideal (xm, y3, x2y) and C-vector space spanC{xm−1 + xy2}.

Proof. We first compute σ0 by definition:

I = T (xm−1 + xy2) = ((m− 1)xm−2 + y2, xy) = ((m− 1)xm−2 + y2, xm−1, y3, xy),

I2 = ((m− 1)2x2m−4 + y4, (m− 1)xm−1y + xy3, x2m−3, y5, xy4, xmy, x2y2).

Following Algorithm 4.16, we compute ∆(I) as below:

M1 = {(a, b) ∈ A2 | a(m−2)(m−1)xm−2+by ∈ I}, M2 = {(a, b) ∈ A2 | 2ay+bx ∈ I}. Hence
I1 = (xm, y3, x2y)+spanC{xm−1+xy2} and I2 = (xm−1, y4, xy2)+spanC{3(m−1)xm−2y+y3}. So
we have ∆(I) = I1∩I2 = spanC{xm−1+xy2}+spanC{3(m−1)xm−2y+y3}+(y4, xy3, x2y2, xm−1).

One may check xm, ..., x2m−4, xy3, xm−1 + xy2, xm−2y + y3 is a basis of ∆(I)/I2. Therefore,

σ0 = m.
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Since I = spanC{(m− 1)xm−2 + y2}+ (xm−1, y3, xy), we have ρ0 = m.

For σ1, one can compute I = T1(x
m−1 + xy2) = (xm−1, x2y, xy2, y3), which is a monomial

ideal. By Lemma 4.18, ∆(I) is a monomial ideal as well. One can compute the P(i,j) in

Lemma 4.18:

Px ∂
∂x

= I, Px ∂
∂y

= (xm−1, xm−2y, xy2, y3),

Py ∂
∂y

= I, Py ∂
∂x

= I.

Hence ∆(I) = (xm−1, xm−2y, xy2, y3), I2 = (x2m−2, xm+1y, x4y2, x3y3, x2y4, xy5, y6). Since

xm−1, ..., x2m−3, xm−2y, xm−1y, xmy, xy2, x2y2, x3y2, y3, xy3, x2y3, y4, xy4, y5

is a basis of ∆(I)/I2, we have σ1 = m+ 11. Since x2y, ..., xm−3y is a basis of I/∆(I), we have

ρ1 = m− 4.

Next, we compute σk, k ≥ 2. A simple observation shows that I = Tk(x
m−1 + xy2) =

(xm−1+xy2)+(xm+k−2, xk+1y, xky2, ..., xyk+1, yk+2). Let Ui = {u ∈ I | xiyk−i ∂u
∂x ∈ I} and Vi =

{v ∈ I | xiyk−i ∂v
∂y ∈ I}. Suppose a((m−1)xm−2+y2)+ bxm+k−2+ c1x

k+1y+ ...+ ck+2y
k+2 ∈ Ui,

then

xiyk−i[a((m− 1)xm−2 + y2) + (m+ k − 2)bxm+k−3 + (k + 1)c1x
ky + ...+ ck+1y

k+1] ∈ I.

Hence Ui = I, for all 0 ≤ i ≤ k. Applying the same argument to Vi, for a((m− 1)xm−2 + y2) +

bxm+k−2 + c1x
k+1y + ...+ ck+2y

k+2 ∈ Vi, we have

xiyk−i[2axy + c1x
k+1 + ...+ ck+2(k + 2)yk+1] ∈ I.

Hence Vi = I, for all 0 ≤ i ≤ k − 1. As for Vk, the only restriction is c1x
k+1 ∈ I. Thus c1 ∈

(y, xmax{m−k−3,0}) and ∆(I) = (xm−1+xy2)+(xm+k−2, xky2, ..., xyk+1, yk+2)+(xmax{m−2,k+1}y).

Hence we have Tt(xm−1 + xy2) = m − 3. Let J := (xm+k−2, xk+1y, ..., xyk+1, yk+2), then

I2 = ((xm−1 + xy2)2) + (xm−1 + xy2)J + J2.

Case 1: m− 2 ≥ k + 1.

∆(I) = (xm−1 + xy2) + (xm−2y) + (xm+k−2, xky2, ..., xyk+1, yk+2)

= (xm−1 + xy2) + (xm−2y, xy3) + (xm+k−2, xky2, yk+2)

=
k−2∑
i=0

spanC{xi(xm−1 + xy2)}+ (xm+k−2, xm−2y, xky2, xy3, yk+2)

:=
k−2∑
i=0

spanC{xi(xm−1 + xy2)}+ L.

Moreover, {xi(xm−1 + xy2)}0≤i≤k−2 is linearly independent in C{x}/L, that is, ∆(I) =

(
⊕k−2

i=0 spanC{xi(xm−1 + xy2)})⊕ L is a direct sum of C-linear spaces.
Since J2 = (x2m+2k−4, xm+2k−1y, x2k+2y2, x2k+1y3, ..., y2k+4), we can write I2 as below:

I2 = (A) + (B) +K,

A = 2xmy2 + x2y4 − xmy3,

B = xm+ky + xk+2y3,

K = (x2m+k−3, xm+2k−1y, x2k+2y2, x2k+1y3, xk+1y4, xky5, x2y6, xyk+4, y2k+4).

Moreover, A, ..., xk−2A, yA, ..., xk−3yA,B, ..., xk−2B is a basis of I2/K. Since K ⊆ L, σk =

dim(L/K) + k − 1− (k − 1)− (k − 2)− (k − 1) = m+ 7k + 4.

A similar argument shows that ρk = m− 3− k.
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Case 2: k ≥ m− 2.

∆(I) = (xm−1 + xy2) + (xm+k−2, xk+1y, xky2, ..., xyk+1, yk+2) = I.

One can obtain the following decomposition:

I = (f) + J,

I2 = (C) + (B) + (A1, A2, ..., Ak+2) +K,

f = xm−1 + xy2, C = f2, B = xm+k−2f,Ai = xk+m+1−iyi + xk+3−iy2+i,

J = (xm+k−2, , xk+1y, ..., xyk+1, yk+2),

K = (xm+2k, xm+2k−1y, x2k+2y2, x2k+1y3, x2k−m+4y4, ..., xk−m+4yk+4, xk−m+3yk+m+1, ..., y2k+4).

Moreover, the following are C-bases of I/J and I2/K respectively:

f, ..., xk−2f, yf, ..., xk−3y, ..., yk−2f

and

A1, ..., x
k−2A1, A2, ..., x

k−m+2A2, ..., Ak+1, ..., x
k−m+2Ak+1,

Ak+2, ..., x
k−m+2Ak+2, ..., Ak+2, ..., x

k−m+2ym−4Ak+2,

ym−3Ak+2, ..., x
k−m+1ym−3Ak+2, y

m−2Ak+2, ..., x
k−mym−2Ak+2, ..., y

k−2Ak+2,

B, ..., xk−m+2B,

C, ..., xk−2C, yC, ..., xk−3yC, ..., yk−2C.

Since K ⊆ J , one can calculate σk by σk = dim I/J+dim J/K−dim I2/K = 2m+6k+1. □

Applying the same argument, one can obtain the results for Am, E6, E8:

Proposition 4.21. For Am = V (xm+1 + y2), m ≥ 2, we have

∆(Tk(x
m+1 + y2)) =


(xm+1, xmy, y2), k = 0, 1,

(xm+1 + y2) + (xm+k, xmy, xk−1y2, ..., yk+1), 2 ≤ k ≤ m− 1,

(xm+1 + y2) + (xky, xk−1y2, ..., yk+1), k ≥ m,

ρk =


m+ 1, k = 0,

m− k, 1 ≤ k ≤ m− 1,

0, k ≥ m,

σk =


m− 1, k = 0, 1,

m+ 6, k = 1,

m+ 5k + 1, 2 ≤ k ≤ m− 1,

2m+ 4k + 1, k ≥ m,

and Tt(xm+1 + y2) = m.

Proposition 4.22. For E6 = V (x3 + y4), we have

∆(Tk(x
3 + y4)) =


(x3, x2y3, y4), k = 0,

(x3, x2y, xy3, y4), k = 1,

(x3 + y4) + (x2+k, ..., x2yk, xyk+2), k ≥ 2,

ρk =


5, k = 0,

1, k = 1,

0, k ≥ 2,

σk =


7, k = 0,

18, k = 1,

6k + 13, k ≥ 2,

and Tt(x3 + y4) = 2.
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Proposition 4.23. For E7 = V (x3 + xy3), we have

∆(Tk(x
3+xy3)) =


(x3 + xy3, 15x2y2 + 2y5, xy5, y6), k = 0,

(3x2y + y3, x4, x3y, x2y2, xy4, y5), k = 1,

(x3 + xy3) + (3x2yk + yk+3, xk+2, ..., x3yk−1, x2yk+1, xyk+2, yk+4), k ≥ 2,

ρk =


6, k = 0,

2, k = 1,

0, k ≥ 2,

σk =


8, k = 0,

19, k = 1,

6k + 15, k ≥ 2,

and Tt(x3 + xy3) = 2.

Proposition 4.24. For E8 = V (x3 + y5), we have

∆(Tk(x
3 + y5)) =


(x3, x2y4, y5), k = 0,

(x3, x2y3, xy4, y5), k = 1,

(x3 + y5) + (xk+2, ..., x2yk, xyk+3, yk+4), k ≥ 2,

ρk =


6, k = 0,

2, k = 1,

1, k = 2,

0, k ≥ 3,

σk =


10, k = 0,

21, k = 1,

28, k = 2,

17 + 6k, k ≥ 3,

and Tt(x3 + y5) = 3.

Next, we provide a lemma which relate the ideal of antiderivatives of ADE surface singularities

to ADE curve singularities.

Lemma 4.25. Suppose f ∈ C{x} = C{x1, ..., xn} is an analytic germ with an isolated singu-

larity at the origin. Let u be a new variable and f̃ = u2 + f ∈ C{u,x} be another analytic germ

with an isolated singularity. Notations are shown in the remark below.

For k = 0, we have:

∆(T0(f̃)) = (u2) + (u · T x
0 (f)) + (∆x(T x

0 (f))),

and for k ≥ 1, we have:

∆(Tk(f̃)) = (f̃) + (Ψk) + (Λk · u) + (mk−1
x u2) + ...+ (mxu

k) + (uk+1),

where (S), S ⊂ C{u,x} is the ideal generated by S. Λk and Ψk are ideals in C{x} given by

Λk = (mk
x · J(f) +mk−1

x · f : mk
x) ∩mk

x and Ψk = ∆x(T x
k (f)) ∩mk

xJ(f).

Moreover, if f is quasi-homogeneous, then

∆(Tk(f̃)) = (f̃) + (Ψk) + (Λk · u).

Remark 4.26. Let k be an positive integer. To avoid confusion, let T x
k denote the k-th Tjurina

ideal map in C{x} and Tk is the Tjurina ideal map in C{u,x}. Moreover, mx refers to the

maximal ideal of C{x} and J(f) the Jacobian ideal of f in C{x}. Besides, for an ideal I in

C{x}, ∆x(I) ⊆ C{x} is the ideal of antiderivatives w.r.t. T x
k . For ideal J in C{u,x}, ∆(J) is

the ideal of antiderivatives w.r.t. Tk.

In all, notations attached with an x or x are ones associated with C{x} while others are

associated with C{u,x}.

Proof. We will also follow Algorithm 4.16.
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When k = 0, we have T0(f̃) = (u, f, J(f)). Suppose au+
∑n

i=1 bi
∂f
∂xi

∈ ∆(T0(f̃)), where a, bi ∈
C{u,x}. Then, by taking ∂

∂u and ∂
∂xj

, we have a ∈ T x
0 (f)+(u) and

∑n
i=1 bi

∂2f
∂xi∂xj

∈ T0(f̃). Since

u ∈ T0(f̃), we may assume bi ∈ C{x}. Under this assumption, we obtain
∑n

i=1 bi
∂2f

∂xi∂xj
∈ T x

0 (f)

and hence the assertion is proven.

When k ≥ 1, we have Tk(f̃) = (f̃)+(mx, u)
k(u, J(f)). Suppose

∑
aiαu

i+1xα+
∑

bjlβu
jxβ ∂f

∂xl
∈

∆(Tk(f̃)), where i, j ≥ 0,α,β ∈ Nn with i + |α| = j + |β| = k. For s ≥ 0,γ ∈ Nn, s+ |γ| = k,

apply usxγ ∂
∂u . If s ≥ 1, we obtain no restriction to all a and b. If s = 0, we get one restriction:

mk
x(

∑
|α|=k

a0αx
α) ⊆ Tk(f̃).

Since uxα ∈ Tk(f̃) if |α| = k, we may assume a0α ∈ C{x}. Under these circumstances, by

considering the degree of u, we have
∑

|α| a0αx
α ∈ Λk.

For general s,γ as before, usxγ ∂
∂xq

provides no restriction to aiα, since us+i+1xβ+γ−eq

is always in Tk(f̃). Hence we can focus only on
∑

bjlβu
jxβ ∂f

∂xl
. Also, if s ≥ 1, we have

uj+sxβ+γ−eq ∂f
∂xl

∈ Tk(f̃) and uj+sxβ+γ ∂2f
∂xl∂xq

∈ Tk(f̃). So these usxγ ∂
∂xq

give no restriction.

For s = 0, we have: ∑
bjlβ[u

jxβ+γ−eq ∂f

∂xl
+ ujxβ+γ ∂2f

∂xl∂xq
] ∈ Tk(f̃).

If j ≥ 1, we also have bjlβ(u
jxβ+γ−eq ∂f

∂xl
+ujxβ+γ ∂2f

∂xl∂xq
) ∈ Tk(f̃). So it suffices to consider the

conditionW =
∑

l

∑
|β|=k b0lβ(x

β+γ−eq ∂f
∂xl

+xβ+γ ∂2f
∂xl∂xq

) ∈ Tk(f̃). We may assume b0lβ ∈ C{x}
as before. Again considering the degree of u, we have W ∈ (f̃) + (mx, u)

k(u, J(f)) if and only if

W ∈ (mx, u)
k−1(f̃) + (mx, u)

k(u, J(f)) = (mx, u)
k−1(f) + (mx, u)

k(u, J(f)). Therefore, we have∑
b0lβx

β ∂f
∂xl

∈ ∆x(T x
k (f̃)). Concluding all restrictions, we have verified the first assertion.

As for the second assertion, let I = (f̃) + (Ψk) + (Λk · u). Since f ∈ mxJ(f), we have

mk−1
x f ⊆ mk

xJ(f). Since ∆x(T x
k (f)) is an ideal and f ∈ ∆x(T x

k (f)), we have mk−1
x f ⊂ Ψk. For

all xα ∈ mk−1
x , xαu2 = xαf̃ − xαf ∈ I. This implies mk−1

x u2 ⊂ I. To show mk−2
x u3 ⊂ I, it

suffices to verify mk−2
x u · f ∈ (Λk · u). It is clear by definition.

Next, we perform induction on r, aiming to show mk−r
x ur+1 ⊂ I. The case for k = 1, 2

has been done as above. Suppose it is true for all r ≤ k − 1. Since (mk−r+1ur−1) ⊂ I by

induction hypothesis and mk−r
x ur−1f ⊂ mk−r+1

x ur−1, for all xαur+1 ∈ mk−r
x ur+1, xαur+1 =

xαur−1f̃ − xαur−1f ∈ I. □

We have an easy corollary of the lemma.

Corollary 4.27. Notations are as in Lemma 4.25. Let ρk(f) and Tt(f) be invariants of

f ∈ C{x} and ρk(f̃) and Tt(f̃) be those of f̃ ∈ C{u,x}. Then

ρ0(f̃) = τ0(f) + ρ0(f), and

σ0(f̃) = σ0(f),

where τ0(f) is the Tjurina number of f . Furthermore, if f is quasi-homogeneous, we have

Tt(f̃) = max{Tt(f),mm(f)},

where mm(f) is the smallest integer r such that m2r
x ⊆ mr

xJ(f).

Proof. The first assertion follows from the isomorphism

T0(f)/∆(T0(f)) ≃ T x
0 (f)/∆

x(T x
0 (f))⊕ (C{x}/T x

0 (f))u
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between vector spaces. The second assertion follows from T0(f̃)
2 = (u2)+ (T x

0 (f) ·u)+ (T x
0 (f))

2

and then ∆(T0(f̃))/(T0(f̃))
2 ≃ ∆x(T x

0 (f))/(T
x
0 (f))

2.

As for the third assertion, since (Ψk · u) ⊆ (Λk · u) and (Λk · u2) ⊆ (mk−1
x u2), we have

∆(Tk(f̃))∩C{x} = (Ψk) + (mk−1
x · f). Because mk−1

x · f ⊆ mkJ(f) and f ∈ ∆x(T x
k (f)), we have

∆(Tk(f̃)) ∩ C{x} = Ψk. Morever, ∆(Tk(f̃)) ∩ (C{x} · u) = Λk · u. Hence, ∆(Tk(f̃)) = Tk(f̃) if

and only if Ψk = mk
xJ(f) and Λk = mk

x. The smallest number k satisfying respective conditions

are Tt(f) and mm(f) respectively. □

Next we compute the ideal of antiderivatives for ADE surface singularities. We only give Λk

and Ψk so that readers can recover ∆(Tk(f̃)) by Lemma 4.25. We point out that we have

deliberately written ∆ in the form (f) + (∆ ∩ mkJ(f)) in the previous computation for curve

singularities.

Proposition 4.28. For Dm = V (xm−1 + xy2 + u2),m ≥ 4, we have

Λk = (xy, xm−2, y2) ∩mk
x,

Ψk =

{
(xm+k−2, xky2, ..., xyk+1, yk+2, xm−2y), 1 ≤ k ≤ m− 3,

(xm+k−2, xky2, ..., xyk+1, yk+2, xk+1y), k ≥ m− 2.

Proposition 4.29. For Am = V (xm+1 + y2 + u2),m ≥ 2, we have

Λk = (xm, y) ∩mk
x,

Ψk =

{
(xm+k, xmy, xk−1y2, ..., yk+1), 2 ≤ k ≤ m− 1,

(xky, xk−1y2, ..., yk+1), k ≥ m.

Proposition 4.30. For E6 = V (x3 + y4 + u2), we have

Λk = (x2, xy2, y3) ∩mk
x,

Ψk = (x2+k, ..., x2yk, xyk+2).

Proposition 4.31. For E7 = V (x3 + xy3 + u2), we have

Λk =

{
(3x2 + y3, xy2), k = 1,

(x2, y3, xy2) ∩mk
x, k ≥ 2,

Ψk = (3x2yk + yk+3, xk+2, ..., x3yk−1, x2yk+1, xyk+2, yk+4).

Proposition 4.32. For E8 = V (x3 + y5 + u2), we have

Λk = (x2, xy3, y4) ∩mk
x

Ψk =

{
(x3, x2y3, xy4, y5), k = 1,

(x3 + y5) + (xk+2, ..., x2yk, xyk+3, yk+4), k ≥ 2.

Below are the invariants for D6, E6, E7 when 0 ≤ k ≤ 12.

Example 4.33. We distinguish invariants of f and f̃ by adding a˜over those of f̃ .

(1) f = x5 + xy2, f̃ = f + u2.

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 6 2 1 0 0 0 0 0 0 0 0 0 0

ρ̃k 12 6 3 1 0 0 0 0 0 0 0 0 0

σk 6 17 24 31 37 43 49 55 61 67 73 79 85

σ̃k 6 28 55 89 130 178 234 298 370 450 538 634 738
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One can find σ̃k = 4k2 + 12k + 18, 4 ≤ k ≤ 12 and σk = 6k + 13, k ≥ 3.

(2) f = x3 + y4, f̃ = f + u2

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 5 1 0 0 0 0 0 0 0 0 0 0 0

ρ̃k 11 5 2 0 0 0 0 0 0 0 0 0 0

σk 7 18 25 31 37 43 49 55 61 67 73 79 85

σ̃k 7 29 56 90 130 178 234 298 370 450 538 634 738

One can find σ̃k = 4k2 + 12k + 18, 3 ≤ k ≤ 12 and σk = 6k + 13, k ≥ 2.

(3) f = x3 + xy3, f̃ = f + u2

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 6 2 0 0 0 0 0 0 0 0 0 0 0

ρ̃k 13 7 3 1 0 0 0 0 0 0 0 0 0

σk 8 19 27 33 39 45 51 57 63 69 75 81 87

σ̃k 8 30 58 92 133 181 237 301 373 453 541 637 741

One can find σ̃k = 4k2 + 12k + 21, 4 ≤ k ≤ 12 and σk = 6k + 15, k ≥ 2.

Remark 4.34. As in [Ad75], germs f ∈ C{x} and f̃ = f + u2 are called stable equivalent.

Moduli algebra itself can not tell the difference between stable equivalent singularities if not given

the dimension of ambient space. However, by Proposition 4.38 shows invariants σk implies

the dimension of the singularities and hence separate apart stable equivalent singularities.

So far, some interesting things have happened: (a) There is a polynomial P ∈ Z[x], such
that {σk}k≥Tt(f) = {P (k)}k≥Tt(f); (b) Tt is the smallest integer N such that {σk}k≥N fits a

polynomial of k. We state the findings as in the following conjecture.

Conjecture 4.35. Let (X, 0) = (V (f), 0) ⊂ (Cn, 0) be an isolated hypersurface singularity.

Then Tt(f) is the smallest integer N such that {σk}k≥N is a polynomial of k of degree n− 1.

Remark 4.36. Our calculation shows that the conjecture holds for ADE curve singularities.

Below are a few examples other than ADE singularities, which support our conjecture.

Example 4.37.

(1) f = x6 + xy7

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 57 13 7 2 0 0 0 0 0 0 0 0 0

σk 17 68 85 103 117 129 141 153 165 177 189 201 213
One can find σk = 12k + 69, 3 ≤ k ≤ 12.

(2) f = x10y + xy15

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 44 40 34 26 18 10 6 2 0 0 0 0 0

σk 256 267 284 307 334 365 391 417 441 463 485 507 529
One can find σk = 22k + 265, 8 ≤ k ≤ 12.
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(3) f = x(x+ y)(x+ 2y)(x+ 3y)(x+ 4y)(x+ 5y)

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 14 10 4 0 0 0 0 0 0 0 0 0 0

σk 36 47 64 81 93 105 117 129 141 153 165 177 189
One can find σk = 12k + 45, 3 ≤ k ≤ 12.

(4) f = x3 + y5 + z6

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 38 32 20 8 0 0 0 0 0 0 0 0 0

σk 82 109 172 252 339 430 533 648 775 914 1065 1228 1403

One can find σk = 6k2 + 37k + 95, 4 ≤ k ≤ 12.

(5) f = x2y + y2z + z2y

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ρk 12 6 0 0 0 0 0 0 0 0 0 0 0

σk 12 39 85 136 199 274 361 460 571 694 829 976 1135

One can find σk = 6k2 + 21k + 19, 2 ≤ k ≤ 12.

Though the correctness of the conjecture is not verified, we can prove the following estimation:

Proposition 4.38. Suppose (X, 0) = (V (f), 0) ⊂ (Cn, 0) is an isolated singularity, then:

σk ∼ 2n−1ord(f)

(n− 1)!
kn−1.

Here ord(f) denotes the minimal degree among all monomial terms appearing in f . Besides, for

two sequences {an}, {bn} ⊂ C, an ∼ bn means an/bn → 1 when n → ∞.

Proof. For t ∈ N, let l(t) =
(
n+t
t

)
be the cardinality of the set

{(x1, x2, ..., xn) ∈ Nn | x1 + x2 + ...+ xn ≤ t}.

By Lemma 2.3, there exists an integer w, such that mw ⊆ J(f). For a non-negative in-

teger t, we set Lt = dimC{x}/((f2) + (f)mt + m2t) and Rt = dimC{x}/((f) + mt). Since

σk = dimC{x}/Tk(f)
2 − dimC{x}/Tk(f) for large k (Lemma 4.17), we have the following

estimation:

Lk −Rk+w ≤ σk ≤ Lk+w −Rk (∼).

In fact, Lt and Rt can be explicitly calculated when t > ord(f).

Rt = l(t− 1)− l(t− ord(f)− 1) ∼ ord(f)

(n− 1)!
tn−1,

Lt = l(2t− 1)− (l(2t− 1− ord(f))− l(t− 1))− l(t− 1− ord(f))

∼ (2n−1 + 1)ord(f)

(n− 1)!
tn−1.

Applying the calculation to (∼), we are done. □

With this proposition, we have a direct corollary.

Corollary 4.39. If Conjecture 4.35 holds, the leading term of this polynomial is 2n−1ord(f)
(n−1)! kn−1.

Remark 4.40. In Proposition 4.38, we have shown that

dimC I/I2 = Rt − Lt = l(2t− 1)− l(2t− 1− ord(f)),
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where I = (f) +mt ⊆ C{x} is an ideal. If f =
∑n

i=1 x
r
i is a homogeneous Brieskorn singularity,

then mkJ(f) = mk+r for large k. Consequently, we have

σk = l(2(k + r)− 1)− l(2(k + r)− 1− ord(f)),

a polynomial, for large k. It also convinces us that Conjecture 4.35 is true.

4.3. A Geometric Interpretation for the Ideal of Antiderivatives. In this subsection,

we are going to give a geometric interpretation of the ideal of antiderivatives w.r.t. Tjurina ideal

map. Hence, all ∆s in this subsection refer to the ideals of antiderivatives w.r.t. Tjurina ideal

map. The motivation of the following construction comes from the well-known exact sequence

for Kähler differential (Theorem 2.9 ).

Lemma 4.41. Suppose I ⊆ m ⊂ C{x} is an ideal, then we have the following exact sequence:

0 −→ ∆(I) −→ I
d−→ ΩC{x} ⊗ C{x}/I −→ ΩC{x}/I −→ 0.

Proof. It suffices to check ∆(I) = ker d. Since ΩC{x} =
⊕n

i=1C{x}dxi, ΩC{x} ⊗ C{x}/I ≃⊕n
i=1(C{x}/I)dxi. Therefore, f ∈ ker d if and only if ∂f

∂xi
∈ I for all 1 ≤ i ≤ n. By definition,

ker d = ∆(I) = {f ∈ I | J(f) ⊆ I}. □

Now suppose (X,OX) is a complex space and Z is the complex subspace given by coherent

ideal sheaf I. We have a natural morphism α : I → ΩX ⊗OX/I given by f 7→ df ⊗ 1. It gives

a global exact sequence for X/Z.

Theorem 4.42. Notations as above, we have the exact sequence:

I α−→ ΩX ⊗OX/I → i∗OZ −→ 0 ((E))

where i : Z ↪→ X is the natural closed embedding.

Proof. For p ̸∈ Z, (OX/I)p = 0 and (i∗OZ)p = 0. For all p ∈ Z, taking stalks of (E), the

sequences coincide with the (algebraic) sequences in Theorem 2.9. So we are done. □

Definition 4.43. For a coherent ideal sheaf I of OX , the ideal sheaf of antiderivatives is defined

by the kernel of α in the above exact sequence.

Remark 4.44. Since i is a closed embedding and hence finite, by [GLS07], Theorem 1.67, i∗OZ

is coherent. Since I, ΩX ⊗OX/I and i∗OZ are all coherent, then so is ∆(I).

The following theorem shows for each p ∈ X, the stalk ∆(I)p coincides with ∆(Ip) ◁OX,p in

local sense. Hence our global definition gives ∆ a geometric interpretation.

Theorem 4.45. Let X = D ⊂ Cn be an open subset and I be a coherent ideal sheaf of OX .

Then for each p ∈ X, ∆(I)p is the ideal of antiderivatives of the ideal Ip in the local ring

OX,p = C{x− p}.

Proof. Without loss of generality, we set p = 0. Under such assumptions, OX,p = C{x}.
Applying Theorem 4.42 and taking stalk at p, one may find it is the exact sequence in Lemma

4.41. □

4.4. k-th Milnor Number of Semi Quasi-Homogeneous Singularity. In [BGM11], the

notion of semi quasi-homogeneity (SQH for short) was provided. The authors proved the Milnor

number of an SQH series is equal to the Milnor number of its principal part. We will apply

their method to prove an inequality associated with some types of quasi-T -maps. Besides, we

prove the equality between the k-th Milnor number of an SQH series and the Milnor number of

its principal part.
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In this section, K[[x1, x2, ..., xn]] always refers to the ring of formal power series over a field

K. We abbreviate K[[x1, x2, ..., xn]] as K[[x]] and m is the maximal ideal of K[[x]]. We will

focus on some quasi-T -maps on the K-algebra K[[x]], where K is an arbitrary field. We first

define the notions continuous and efficient for a linear endomorphism of K[[x]]:

Definition 4.46. A linear map P ∈ EndK(K[[x]]) is called continuous if there exists an integer

d such that ord(P (f)) ≥ ord(f)− d for all f ∈ K[[x]].

Remark 4.47. There is a natural topology on K[[x]], that is, the m-adic topology. The open

basis near 0 is given by the filtration m ⊃ m2 ⊃ m3 ⊃ · · · . A sequence {fi}∞i=1 ⊂ K[[x]] is

called a Cauchy sequence, if for any integer k > 0, there exists Nk > 0 such that fi − fi+1 ∈ mk

for all i ≥ Nk. It is not hard to check each Cauchy sequence in K[[x]] converges to a unique

series. A continuous endomorphism is automatically a continuous map from K[[x]] to itself

when considering the m-adic topology.

Lemma 4.48. Suppose P ∈ EndK(K[[x]]) is continuous, then for all f =
∑

v avx
v ∈ K[[x]],

P (f) =
∑

v avP (xv).

Proof. Let Ck : K[[x]] → K[[x]]/mk+1 ↪→ K[[x]] be the canonical truncation. Namely, it maps∑
v avx

v to
∑

|v|≤k avx
v. For all k ∈ N, we have f = Ck(f)+(f−Ck(f)), where ord(f−Ck(f)) ≥

k+1. Since P (Ck(f)) =
∑

|v|≤k avP (xv) and ord(P (f−Ck(f))) ≥ k+1−d, P (Ck(f)) is a Cauchy

sequence tending to P (f) in m-adic topology. Therefore, we have
∑

|v|≤k avP (xv) → P (f) i.e.

P (f) =
∑

v avP (xv). □

Remark 4.49. The lemma is not trivial since it works for infinite sums.

Definition 4.50. For f ∈ K[[x]] and quasi-T -map Q, we define µQ(f) := dimK K[[x]]/Q(f).

If the dimension is infinite, we simply write µQ(f) = ∞.

As in [BGM11], for w = (w1, w2, ..., wn) ∈ Nn
>0 and f =

∑
v avx

v ∈ K[[x]], the principal part

of f w.r.t w is defined to be fw =
∑

v·w minimal avx
v. f is called semi quasi-homogeneous (SQH

for short) w.r.t. a continuous quasi-T -map Q and w ((Q,w) in short) if µQ(fw) is finite.

For f =
∑

v avx
v ∈ K[[x]], its support is defined as Supp(f) := {v ∈ Nn | av ̸= 0}.

For a quasi-T -mapQ : K[[x]] → {Ideals of K[[x]]}, it can be naturally extended toK[[x, t]] →
{Ideals of K[[x, t]]} in a natural way. That is, assuming Q = (Q1, ..., Qm), then for f =

∑∞
i=0 fi ·

ti ∈ K[[x, t]], Qj(f) :=
∑∞

i=0Qj(fi) · ti and Q(f) := (Q1(f), ..., Qm(f)). Let d = minv∈Supp(f) v ·
w and f̂ = t−df(tw

1
x1, ..., t

wn
xn) = fw + tg, where g ∈ K[[x, t]]. Then we have Qi(f̂) =

Qi(fw) + tQi(g) for each i.

Definition 4.51. Let w ∈ Nn
>0 and φw : K[[x, t]] → K[[x, t]] is such that xi 7→ tw

i
xi, t 7→ t.

A linear map P ∈ EndK(K[[x]]) is called efficient w.r.t. w if P is continuous and there is an

integer e such that for each monomial xv, φw(P (xv)) = teP (φw(x
v)).

Example 4.52. Consider K[[x, y]] and w = (1, 1), then P = x2y3∂x is efficient with e = 4,

while P = ∂x + ∂x∂y is continuous yet not efficient.

Definition 4.53. A quasi-T -map Q = (Q1, ..., Qm) (i.e. Q(f) = (Q1(f), ..., Qm(f)) for all

f ∈ K[[x]]) is called continuous (efficient resp.) if all Qi are continuous (efficient resp.).

Proposition 4.54. Notations are as above. Let Q be an efficient quasi-T -map and w ∈ N>0.

Suppose f =
∑

avx
v is SQH w.r.t. (Q,w), and K[[x, t]]/Q(f̂)K[[x, t]] is finitely generated as a

K[[t]]-module, then µQ(fw) ≥ µQ(f). The equality holds if and only if K[[x, t]]/Q(f̂)K[[x, t]] is

torsion-free as a K[[t]]-module.
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Proof. Let L be the fraction field of K[[t]] and φw : xi → tw
i
xi, t 7→ t be an automor-

phism of L[[x]]. By Lemma 4.48 and the definition of efficiency, we have φw(Q(f))L[[x]] =

Q(φw(f))L[[x]] = Q(f̂)L[[x]] and the following isomorphisms:

K[[x, t]]/Q(f̂)K[[x, t]]⊗K[[t]] L ≃ L[[x]]/Q(f̂)L[[x]]

≃ L[[x]]/φ(Q(f))L[[x]] ≃ L[[x]]/Q(f)L[[x]]

The first isomorphism is due to Lemma 4.56 below. Also by using Lemma 4.57 below, we

have dimL L[[x]]/Q(f)L[[x]] = µQ(f).

Since K[[t]] is a discrete valuation ring, the L-dimension of K[[x, t]]/Q(f̂)K[[x, t]]⊗K[[t]] L is

the free rank ofK[[x, t]]/Q(f̂)K[[x, t]] byTheorem 2.6. SinceK[[x, t]]/Q(f̂)K[[x, t]]⊗K[[t]]K ≃
K[[x]]/Q(fw) and µ(fw) is the rank of K[[x, t]]/Q(f̂)K[[x, t]], we have µQ(fw) ≥ µQ(f). The

condition for equality is obvious. □

Remark 4.55. (1) It is clear that Q : f 7→ (f, ∂f
∂x1

, ..., ∂f
∂xn

), the Tjurina ideal map, satisfies all

conditions. And < holds when f ̸∈ ( ∂f
∂x1

, ..., ∂f
∂xn

).

(2) The “finitely generated” condition is necessary. Let K = C, f = x2 + xy3 + y4 ∈ C[[x, y]],
and w = (12 ,

1
4), then fw = x2 + y3. Consider quasi-T -maps maps Q1 and Q2 defined below.

Q1 :
∑
i,j

aijx
iyj 7→ (

∑
i,j≥5

aijx
iyj) + a13(xy

3 − x2) + a20x
2,

Q2 :
∑
i,j

aijx
iyj 7→ (

∑
i,j≥5

aijx
iyj) + a04y

4,

Q := (Q1, Q2).

Then Q(fw) = (x2, y4) and Q(f) = (xy3, y3), and K[[x, y, t]]/Q(f̂)K[[x, y, t]] is not finitely

generated. We have µ(fw) = 3 < µ(f) = ∞.

(3) We will soon later see the k-th Jacobian ideal map, Jk : g 7→ mk · ( ∂g
∂x1

, ..., ∂g
∂xn

), satisfies all

conditions.

The following two lemmas may be well-known for experts. However, we did not find suitable

references. Hence, we give complete proofs below.

Lemma 4.56. Let I ⊆ K[[x, t]] be an ideal of K[[x, t]] such that K[[x, t]]/I is a finitely generated

K[[t]]-module. L := K((t)) is the field of Laurent series over K, then K[[x, t]]/I ⊗K[[t]] L ≃
L[[x]]/IL[[x]] as L-algebras.

Proof. Let A = K[[x, t]], then A/I ⊗K[[t]] L = At/IAt is the localization of A/I. We claim

mr ⊆ IAt for some r > 0. If not, there exists an xi such that xki ̸∈ IAt for all k. Since A/I is a

finitely generated K[[t]]-module, At/IAt is a finite L-linear space. Hence xi, x
2
i , ..., x

p
i is linearly

dependent for some p, which implies xpi ∈ IAt. Contradictory!

Hence At/IAt = At/(IAt + mrAt) ≃ B/I ′B, where B = At/m
rAt = L[[x]]/mrL[[x]] =

L[x]/((x)L[[x]])r and I ′ is the image of I in B. The same argument holds for L[[x]]/IL[[x]], for

we only need to notice mr ⊆ IL[[x]]. □

Lemma 4.57. Let I = (f1, ..., fm) ⊆ K[[x]] be an ideal. L := K((t)) is the field of Laurent

series over K. Then dimL L[[x]]/IL[[x]] < ∞ if and only if dimK K[[x]]/I < ∞. Moreover, if

the finiteness holds, then those dimensions coincide.

Proof. SupposeK[[x]]/I is finite dimensional, then mr ⊆ I for some r. Since IL[[x]] ⊇ mrL[[x]],

dimL L[[x]]/IL[[x]] is finite. Conversely, suppose L[[x]]/IL[[x]] is finite dimensional, then mr ⊆
IL[[x]] for some r. Hence xα =

∑
j fjgj , gj ∈ L[[x]], for all α ∈ Nn, |α| = r. Consider the

degree-zero part of all gj w.r.t. t, we have xα ∈ I for all i. Therefore, I ⊇ mr.
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If both finiteness holds, it suffices to show a finite set of monomials {xαi}i∈I is linearly

dependent in K[[x]]/I if and only if in L[[x]]/IL[[x]]. The “only if” is trivial. As for “if”,

suppose
∑

hix
αi =

∑
j fjlj (+), hi ∈ L and lj ∈ L[[x]]. We may assume the degree-zero part

of h1 w.r.t. t is not 0. By considering the degree-zero part of (+) w.r.t. t, we are done. □

Let Jk(f) := mkJ(f) be the k-th Jacobian ideal. The dimension of its quotient algebra is

called the k-th Milnor number µk(f) := dimK K[[x]]/Jk(f). One can prove Q = Jk is efficient

w.r.t. any weight w ∈ Nn
>0. Two see this, it suffices to check g 7→ xα · ∂g

∂xi
is efficient for all i

and |α| = k. It is not hard to check φw(x
α) · ∂φw(xβ)

∂xi
= tw

i · φw(x
α · ∂xβ

∂xi
) for all β ∈ Nn

>0.

Suppose w ∈ Nn
>0 is a weight. In [BGM11], the authors proved when Q = J = J0 and µ(fw) <

∞, that K[[x]]/Q(f̂) is a free K[[t]]-module of rank µ(fw) and hence torsion free and finitely

generated. We will base on this fact and prove µk(f) = µk(fw), whenever k ≤ mini{ord( ∂f
∂xi

)}
and µ(fw) < ∞.

Lemma 4.58. Suppose I = (g1, g2, ..., gm) ⊆ K[[x, t]] is an ideal such that K[[x, t]]/I is a

finitely generated K[[t]]-module. Then K[[x, t]]/mI is also finitely generated.

Proof. We may emphasize m is the maximal ideal of K[[x]]. Let e1, e2, ..., er ∈ K[[x, t]] whose

image in the quotient ring K[[x, t]]/I is a set of generators. Since
∑

gi ·K[[x, t]] +mI = I, we

have e1, e2, ..., er together with g1, g2, ..., gm generates K[[x, t]]/mI. □

As a corollary, K[[x, t]]/mkJ(f̂) is finitely generated as a K[[t]]-module if µ(fw) < ∞. We

have so far proved the “finitely generated” condition in Proposition 4.54. Hence we have a

simple corollary as below.

Corollary 4.59. Suppose f is SQH w.r.t. Q = Jk and w ∈ Nn
>0 is a weight such that µk(fw) < ∞

(equivalently, µ(fw) < ∞), then µk(f) ≤ µk(fw).

Remark 4.60. The same argument also holds for Q = Tk (i.e. Q(f) = (f) + mkJ(f) for all

f ∈ K[[x]]), since Tk(f̂) ⊇ Jk(f̂). Thus we have τk(f) ≤ τk(fw) for all k ∈ N if τ(fw) < ∞,

where τk is the k-th Tjurina number. But the equality does not generally hold.

Next, we are going to show that the equality holds for µk when k ≤ mini{ord( ∂f
∂xi

)}. By

Proposition 4.54, it is equivalent that K[[x, t]]/Q(f̂)K[[x, t]] is torsion-free. Before giving a

proof, we need to do some preparation for regular sequence.

Let A be a ring. We define A⟨⟨t⟩⟩ :=
∏

i∈ZA whose elements are written as
∑

i∈Z ait
i, ai ∈ A.

It is an A[t]-module but not an A[[t]]-module. For A = K[[x]] and L := K((t)), L[[x]] is

contained in A⟨⟨t⟩⟩ in set-theoretical sense. The following lemma tells us how elements of L[[x]]

are like in K[[x]]⟨⟨t⟩⟩.

Lemma 4.61.

L[[x]] = {
∑
i∈Z

ai(x)t
i | ai ∈ K[[x]] s.t. ai → 0, i → −∞} ⊆ K[[x]]⟨⟨t⟩⟩

Here the convergence is in m-adic topological sense.

Proof. Simply by swapping the order of summation. □

Lemma 4.62. Suppose (f1, f2, ..., fr) is a regular sequence in K[[x]], then it is also regular in

L[[x]] where L = K((t)).

Proof. Without a loss of generality, it suffices to prove fr is a non-zero divisor in the quo-

tient ring K[[x]]/(f1, f2, ..., fr−1)L[[x]]. Suppose afr ∈ (f1, f2, ..., fr−1)L[[x]], a =
∑

ai(x)t
i ∈

L[[x]] ⊂ K[[x]]⟨⟨t⟩⟩. Considering the grading w.r.t. t, we have ai ∈ I := (f1, f2, ..., fr−1) ⊆
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K[[x]]. Therefore ai =
∑r−1

j=1 a
j
ifj , a

j
i ∈ K[[x]]. We need to select suitable aji such that

aji → 0, i → −∞. Suppose ai ∈ mni , ni → ∞ when i → −∞. By Artin-Rees theorem (Theorem

2.5), there exists an N > 0 such that for all n ≥ N and k ≥ 0, mk+n ∩ I = mk(mn ∩ I). We may

assume ni > N for all i ≤ 0, then we can select aji ∈ mni−N , hence tending to 0. □

Theorem 4.63. Suppose f ∈ K[[x]] is SQH w.r.t. Q = Jk and w ∈ Nn
>0 i.e. µ(fw) < ∞. Then

for k ≤ mini{ord( ∂f
∂xi

)}, µk(fw) = µk(f).

Proof. By Lemma 4.58 and Proposition 4.54, it suffices to prove K[[x, t]]/Jk(f̂) is torsion

free. We prove it by induction. The case for k = 0 is proved in [BGM11]. SupposeK[[x, t]]/Jk(f̂)

is torsion-free.

Notations are as in Proposition 4.54. Since µ(f) < ∞, by theorem 2.8, ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

)

is a regular sequence in K[[x]]. By Lemma 4.62, ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

) is also regular in L[[x]].

φ : L[[x]] → L[[x]], with xi 7→ tw
i
xi, t 7→ t, is an automorphism of L[[x]]. Since ∂f̂

∂xi
= t−wi

φ( ∂f
∂xi

),

( ∂f̂
∂x1

, ..., ∂f̂
∂xn

) is also a regular sequence.

Suppose t · a(x) ∈ Jk+1(f̂) ⊆ Jk(f̂). On one hand, by the induction hypothesis a(x) ∈
Jk. We may assume a(x) =

∑
i

∑
|α|=k aiαx

α ∂f̂
∂xi

, aiα ∈ K[[t]]. On the other hand, since

ta(x) ∈ Jk+1(f̂) = mk+1 · ( ∂f̂
∂x1

, ..., ∂f̂
∂xn

), one can write ta(x) =
∑

i bi
∂f̂
∂xi

, where bi ∈ L[[x]] and

ord(bi) ≥ k + 1. Let ci :=
∑

|α|=k aiαx
α − bi, then

∑
i ci

∂f̂
∂xi

= 0 ∈ L[[x]].

Since ( ∂f̂
∂x1

, ∂f̂
∂x2

, ..., ∂f̂
∂xn

) is regular in L[[x]], we have cn ∈ ( ∂f̂
∂x1

, ∂f̂
∂x2

, ..., ∂f̂
∂xn−1

). However,

k < mini{ord( ∂f
∂xi

)} implies
∑

|α|=k anαx
α = 0. By Proposition 2.7, regularity is independent

of permutation, thus we have a = 0. So we are done. □

However, it seems that µk(fw) = µk(f) as well when k > mini{ord( ∂f
∂xi

)}. Here are some

examples.

Example 4.64. The following are computed by SINGULAR.

(1) f = x3 + y3 + z3 + λx2y2z2, λ ∈ C, w = (1, 1, 1).

µk \ k 0 1 2 3 4 5 6 7 8 9 10

x3 + y3 + z3 + λx2y2z2 8 11 20 35 56 84 120 165 220 286 364

x3 + y3 + z3 8 11 20 35 56 84 120 165 220 286 364

(2) f = x3 + y4 + z5 + λx3y4z5, λ ∈ C, w = (20, 15, 12).

µk \ k 0 1 2 3 4 5 6 7 8 9 10

x3 + y4 + z5 + λx3y4z5 24 27 36 52 75 105 143 190 247 315 395

x3 + y4 + z5 24 27 36 52 75 105 143 190 247 315 395

(3) f = x2y + y2z + z2x+ λ(x4 + y4 + z4), λ ∈ C, w = (1, 1, 1).

µk \ k 0 1 2 3 4 5 6 7 8 9 10

x2y + y2z + z2x+ λ(x4 + y4 + z4) 8 14 24 39 60 88 124 169 224 290 368

x2y + y2z + z2x 8 14 24 39 60 88 124 169 224 290 368

Hence we make a conjecture.

Conjecture 4.65. Suppose f ∈ K[[x]] is SQH w.r.t. Q = Jk and w ∈ Nn
>0. Equivalently,

µ(fw) < ∞. Then for all k ∈ N, µk(fw) = µk(f).
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4.5. T -fullness and T -dependence: a New Definition. In this and the next subsections,

we will determine whether an ideal of a local Noetherian algebra over an infinite field is a T -

principal ideal. We further assume A is a local ring and m is its maximal ideal. Remember that

Q is a fixed T -map and we omit the notion of “w.r.t. Q” when stating properties about T -maps.

Definition 4.66. An ideal I of A is called T -full if and only Q(∆(I)) = I.

With this definition, the following proposition is straightforward:

Proposition 4.67. Suppose I ◁ A is a T -principal ideal, then I is T -full.

However, as a typical example, a T -full ideal of (R,A,Q) = (C,C{x}, T0) is not necessarily a

Tjurina ideal, thus we need an additional condition. On some scale, T -full implies surjectivity,

showing an ideal is possibly generated by the image Q. The following condition essentially tests

whether it can be generated by one element.

Definition 4.68. Suppose J = (g1, g2, ..., gr) ◁ A is an ideal and consider the graded ring

S = A[y1, y2, ..., yr]. Let σ =
∑

giyi and Q(σ) := (Q1(σ), Q2(σ), ..., Qm(σ)), where each Qi

acts on the coefficient ring A and acts as identity on y1, y2, ..., yr. We call J T -dependent if

(Q(σ) : Q(J)S) ̸⊂ mS. Equivalently, there is a P ∈ Pr−1
A such that mS ⊆ P and (Q(J)S)(P ) =

(Q(σ))(P ).

Clearly, there is some trouble with “well-defined”: whether the condition is independent of

the choice of g1, g2, ..., gr.

Proposition 4.69. The definition of T -dependence is independent of the choice of generators

of J .

Before proving the proposition, we shall translate the definition into the language of algebraic

geometry. Basic notations are followed from [Har77]. First, identify Q(σ) with its homogeneous

sheafification, an ideal sheaf of Pr−1
A . Second, let π : Pr−1

A → SpecA be the canonical projection,

then π∗(Q(J)) is equal to (IS)∼, another ideal sheaf. It is clear that Q(σ) ↪→ π∗(Q(J)). Set

F = π∗(Q(J))/Q(σ), which is a coherent OPr−1
A

-module and thus SuppF is a closed subset of

Pr−1
A . Since (J : I)∼ = (J∼ : I∼) for finitely generated graded ideals I, J , we have P ̸∈ SuppF

if and only if (Q(J)S)(P ) = (Q(σ))(P ). Therefore, (Q(σ) : Q(J)S) ̸⊂ mS in Definition 4.68

can be restated as mS ̸∈ SuppF . Since mS is the minimal element of π−1(m) under the order

“containing”, it is also equivalent to say π−1(m) ̸⊂ SuppF . The following proof is basically

applying ([OR23], Lemma 3.8 ) to our notations.

Proof. Suppose h1, h2, ..., hl is another set of generators of J . Define σ′, S′, π′ and F ′ for it

correspondingly, where z1, z2, ..., zl are variables of S′. We may assume J ̸= 0. It suffices to

show π−1(m) ̸⊂ SuppF implies π′−1(m) ̸⊂ SuppF ′.

By definition, gi =
∑

j rijhj , for some rij ∈ A. Suppose all rij ∈ m, then J ⊂ mJ . By

Nakayama’s lemma, J = 0, contradictory. Therefore, at least one rij ̸∈ m. We construct

Φ : S′ → S by zj 7→
∑

i rijyi. It is a homomorphism of graded A-algebras and hence induces

φ : U → Pl−1
A for SpecA-schemes by ([Har77], Chapter II, Ex 2.14), where U is the open

subscheme given by U = {p ∈ ProjS | p ̸⊃ Φ(S′
+)}. One can find that π−1(m) ∩ U ̸= ∅, since

there is an rij ̸∈ m and then mS ̸⊃ Φ(S′
+). Consider the following commutative diagram:

U
φ //

π
""

Pl−1
A

π′
{{

SpecA

.
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By the construction of φ, we have σ|U = φ∗σ′ since Φ(σ′) = σ. Then π∗(Q(J)) =

φ∗π′∗(Q(J)) and Q(σ)|U = φ∗(Q(σ′)). Therefore F|U = φ∗F ′.

As above, mS ∈ U \ SuppF = φ−1(Pl−1
A \ SuppF ′). And hence we have φ(mS) ̸∈ SuppF ′.

Observing that mS′ ⊆ Φ−1(mS), we have φ(mS) ∈ π′−1(m). □

In the rest of the article, we only consider the case R is an infinite field, even though the

definition of T -full and T -dependence is valid for local Noetherian algebras over arbitrary rings.

4.6. Determination of a T -principal Ideal and Construction of a Generator. In this

subsection, we are going to generalize the main theorem of [OR23] up to the level of commutative

algebra. From now on, F is an infinite field and A is an Noetherian local F -algebra with maximal

ideal m. Let Q be a fixed T -map of A.

Definition 4.70. For λ ∈ Pr−1
F , define pλ as the prime ideal ({λiyj − λjyi | 1 ≤ i, j ≤ r}) ◁

F [y1, y2, ..., yr]. Note that the definition is reasonable, say it does not depend on the choice of

representative element of λ. Here and below Pr−1
F is always in set-theoretical sense, while Pr−1

A

is in scheme-theoretical sense.

Lemma 4.71. For F [y1, y2, ..., yr], pλ as above, then f ∈ pλ if and only if f(λ) = 0. (This

lemma also suits for F finite.)

Proof. The necessity is trivial, we only prove the sufficiency. Since pλ is a homogeneous ideal,

then it suffices to prove the following result:

For λ ∈ F r, mλ := (z1 − λ1, ..., zr − λr) ◁ F [z1, ..., zr], then a polynomial f ∈ mλ if and only if

f(λ) = 0.

If r = 1, it is trivial. Suppose it holds for r − 1. Since f(z1, ..., zr) − f(λ1, z2, ..., zr) is a

multiple of z1 − λ1 and f(λ1, z2, ..., zr) ∈ (z2 − λ2, ..., zr − λr) by induction hypothesis, we are

done. □

Lemma 4.72. For R = F [y1, y2, ..., yr], pλ as above, we have
⋂

λ∈Pr−1
F

pλ = 0.

Proof. First notice I =
⋂

λ∈Pr−1
F

pλ is a homogeneous ideal, so we only need to consider the

homogeneous polynomials. Suppose f ∈ I is a homogeneous polynomial. By Lemma 4.71

f ∈ pλ implies f(λ1, λ2, ..., λr) = 0. Since λ runs through the whole Pr−1
F , f must be 0. □

Lemma 4.73. Suppose A/m ≃ F . For ideal I ◁ A, if IS ̸⊂ mS, then I ̸⊂ pλS + mS, for some

λ ∈ Pr−1
F

Proof. Let π : A[y1, y2, ..., yr] ↠ F [y1, y2, ..., yr] be the projection of coefficients. Suppose

I ⊂ pλS +mS for all λ ∈ Pr−1
F , then I ⊂

⋂
λ∈Pr−1

F
(mS + pλS) := J . Since J contains the kernel

of π i.e. mS, J = π−1(π(J)). However, π(J) =
⋂
π(mS + pλS) =

⋂
pλ = 0 by Lemma 4.72, a

contradiction. □

Remark 4.74. The assumption that F is infinite is necessary. For if F is finite, then
⋂

pλ is

a finite intersection of finitely generated ideals. We may take the product of all the generators

throughout all the components, then it is in the intersection.

Lemma 4.75. Let B be a local ring and n be its maximal ideal. For ideals I, J ◁ B, P be a

prime ideal of C = B[y1, y2, ..., yr] containing nC. If IC(P ) = JC(P ), then I = J .

Proof. Symmetrically, it suffices to show I ⊆ J . For any h ∈ I, h = gG1
G2

, for some g ∈ J and

some homogeneous polynomials G1, G2 with the same degree and G2 ̸∈ P . Then there exists

a G3 ∈ C \ P homogeneous such that G3(hG2 − gG1) = 0 (∗). Noting that G2 and G3 both

have some coefficients in B \ n, and hence there is a term in G2G3 whose coefficient is in B∗.

Considering the coefficient of this term in (∗), we have h ∈ (g). Therefore, I ⊆ J . □
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Theorem 4.76. Suppose A/m ≃ F . For an ideal I ◁ A, it is a T -principal ideal if and only if

I is T -full and ∆(I) is T -dependent.

Proof. Notations are as in Definition 4.68. We first prove the necessity.

Suppose I = Q(f) is a T -principal ideal. As in Proposition 4.67, I is automatically T -

full. Suppose ∆(I) = (g1, g2, ..., gr) and without a loss of generality, we set g1 = f . Hence

f = g1+0 ·g2+ ...+0 ·gr. So we may assume f =
∑

λigi, where (λ1, ..., λr) ∈ F r \{0}. Consider
P = mS + pλS and assume P ∈ D+(yl), then λl ̸= 0. We have an estimation below:

IS(P ) = Q(f)S(P ) ⊆ Q(
∑
i

(
λi

λl
− yi

yl
)gi)S(P ) +Q(σ/yl)S(P )

⊆ IP(P ) + (Q(σ))(P ) ⊆ IS(P ).

By Nakayama’s lemma, and consider the S(P )-module IS(P ) and its submodule (Q(σ))(P ), we

have (IS)(P ) = (Q(σ))(P ).

Next, we prove the sufficiency.

Suppose I is T -full and ∆(I) is T -dependent, then (Q(σ) : IS) ̸⊂ mS. By Lemma 4.73, it

is even not contained in some P = mS + pλS ∈ Pr−1
A , say (Q(σ))(P ) = (IS)(P ). We may assume

P ∈ D+(yl) and hence λl ̸= 0. We have an estimation below:

IS(P ) = (Q(σ))(P ) = Q(σ/yl)S(P ) ⊆ Q(
∑
i

(
λi

λl
− yi

yl
)gi)S(P ) +Q(

∑
i

(
λi

λl
gi))S(P )

⊆ IP(P ) +Q(
∑
i

λigi)S(P ) ⊆ IS(P ).

Therefore, IP(P )+Q(
∑

i λigi)S(P ) = IS(P ). By Nakayama’s lemma, considering S(P )-modules

IS(P ) and Q(
∑

i λigi)S(P ), we have Q(
∑

i λigi)S(P ) = IS(P ). By Lemma 4.75, we have I =

Q(
∑

i λigi). □

Remark 4.77. Essentially, the proof shows that I = Q(
∑

i λigi) if and only if (Q(σ) : IS) ̸⊂
mS+pλS. And the sufficiency part shows that if ∆(I) is T -dependent and I is T -full, then such

pλ exists.

Remark 4.78. The theorem can be applied to all of the examples in Example 4.5

Although the theorem provides a criterion for local Noetherian F -algebra with infinite residue

field F , the behaviour when F is finite is note quite clear. We make a conjecture below:

Conjecture 4.79. Let F be an arbitrary field and A be a local Noetherian F -algebra with

maximal ideal m. Q is a fixed T -map. Suppose A/m ≃ F , then for an ideal I ◁ A, I is T -

principal if and only if I is T -full and ∆(I) is T -dependent.

In [OR23], Rodrigues proved the following result:

Corollary 4.80. ([OR23] Corollary 3.13) Suppose 0 ̸= I ◁C{x} is a Tjurina ideal and ∆(I) =

(g1, g2, ..., gr). Then I = T (
∑

k λkgk) for [λ1, ..., λr] in a non-empty open set of Pr−1
C .

But in fact, such an open set can be described in detail as in the following lemma.

Lemma 4.81. Notations are as in Theorem 4.76. Suppose 0 ̸= I = Q(f) ◁ A is a T -

principal ideal. Let J = (Q(σ) : IS), where ∆(I) = (g1, g2, ..., gr), S = A[y1, y2, ..., yr] and

σ =
∑

giyi. π : A[y1, y2, ..., yr] ↠ F [y1, y2, ..., yr] is the projection of coefficients. Then the set

U = {λ ∈ Pr−1
F | I = Q(

∑
k λkgk)} coincides with the open set Z(π(J))c, where Z(π(J)) refers

to the common zero locus of polynomials in π(J).
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Proof. By repeating the proof of Theorem 4.76, we have U = {λ | J ̸⊂ mS + pλS} = {λ |
π(J) ̸⊂ pλ}. By Lemma 4.71, U = {λ | λ ̸∈ Z(π(J))} = Z(π(J))c. □

The above lemma also provides an algorithm to compute a generator for a T -principal ideal

I. When Q = Tk or T k, we can compute the ideal of antiderivatives explicitly. We write the

algorithm as following.

Algorithm 4.82. Notations are as in Lemma 4.81. By the following steps, one can check an

ideal is T -principal with respect to Q and obtain a generator if the ideal is T -principal.

Step 1: Compute a set of generators g1, g2, ..., gr of ∆(I).

Step 2: Check if T (∆(I)) = I.

Step 3: If T (∆(I)) ̸= I, return false; Otherwise, compute the colon ideal J = (Q(σ) : IS).

Step 4: If J ⊆ mS, return false; Otherwise, find a λ ∈ F r such that λ ∈ Z(π(J))c, then
∑

i λigi
is a generator.

5. Appendix: Codes

Code 5.1. Computing ∆(I), ρk and σk. (SINGULAR)

LIB ”hnoether . l i b ” ;

r i ng r = 0 , (x , y ) , ds ;

int k = 20 ;

poly f = xˆ4∗y+x∗y ˆ5 ;
de f J = jacob ( f ) ;

i d e a l m = x , y ;

i d e a l Tt = f ,mˆk∗J ;
i d e a l Tk = std (Tt ) ;

int u = s i z e (Tk ) ;

matrix B [ 1 ] [ u ] = Tk ;

matrix C1 [ k+1] [u ] ;

matrix C2 [ k+1] [u ] ;

matrix temp [ 1 ] [ u ] ;

int i ;

int j ;

for ( i = 1 ; i <= u ; i ++){
temp = jacob (B[ 1 , i ] ) ;

for ( j = 0 ; j <= k ; j ++){
C1 [ j +1, i ] = xˆ j ∗yˆ(k−j )∗ temp [ 1 , 1 ] ;

C2 [ j +1, i ] = xˆ j ∗yˆ(k−j )∗ temp [ 1 , 2 ] ;

}
}
matrix ttp [ 1 ] [ u ] ;

de f r e s = modulo ( ttp , t tp ) ;

for ( j = 1 ; j <= k+1 ; j ++){
for ( i = 1 ; i <= u ; i ++){

t tp [ 1 , i ] = C1 [ j , i ] ;

}
de f r e c = modulo ( ttp ,B) ;
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de f r e c c = i n t e r s e c t ( res , r e c ) ;

r e s = recc ;

}

for ( j = 1 ; j <= k+1 ; j ++){
for ( i = 1 ; i <= u ; i ++){

t tp [ 1 , i ] = C2 [ j , i ] ;

}
de f r ec = modulo ( ttp ,B) ;

de f r e c c = i n t e r s e c t ( res , r e c ) ;

r e s = recc ;

}
matrix Res = re s ;

int uu = s i z e ( r e s ) ;

matrix D[ 1 ] [ uu ] ;

for ( i = 1 ; i <= uu ; i ++){
for ( j = 1 ; j <= u ; j ++){

D[1 , i ] = D[ 1 , i ]+Res [ j , i ]∗B[ 1 , j ] ;

}
}
i d e a l Delta = std (D) ;

i d e a l I = std (Tkˆ2 ) ;

i d e a l D1 = groebner ( Delta ) ;

int sigma = vdim( I )−vdim(D1 ) ;

sigma ;

int rho = −vdim(Tk)+vdim(D1 ) ;

rho ;
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commutative algebra. In Commutative algebra, pages 1–76. Springer, Cham, [2021] ©2021.

[BGM11] Yousra Boubakri, Gert-Martin Greuel, and Thomas Markwig. Normal forms of hypersurface singu-

larities in positive characteristic. Mosc. Math. J., 11(4):657–683, 821, 2011.

[CHYZ20] Bingyi Chen, Naveed Hussain, Stephen S.-T. Yau, and Huaiqing Zuo. Variation of complex struc-

tures and variation of Lie algebras. II: New Lie algebras arising from singularities. J. Differ. Geom.,

115(3):437–473, 2020.

[DGI20] Alexandru Dimca, Rodrigo Gondim, and Giovanna Ilardi. Higher order Jacobians, Hessians and

Milnor algebras. Collect. Math., 71(3):407–425, 2020.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1995. With a view toward algebraic geometry.

[ES22] Raul Epure and Mathias Schulze. Hypersurface singularities with monomial Jacobian ideal. Bull.

Lond. Math. Soc., 54(3):1067–1081, 2022.



ON T -MAPS AND IDEALS OF ANTIDERIVATIVES OF HYPERSURFACE SINGULARITIES 31

[GLS07] G.-M. Greuel, C. Lossen, and E. Shustin. Introduction to singularities and deformations. Springer

Monographs in Mathematics. Springer, Berlin, 2007.

[GLS23] G.-M. Greuel, C. Lossen, and E. Shustin. Corrections and additions to the book introduction to

singularities and deformations. 2023.

[Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag,

New York-Heidelberg, 1977.

[HLYZ23] Naveed Hussain, Zhiwen Liu, Stephen S.-T. Yau, and Huaiqing Zuo. k-th Milnor numbers and k-

th Tjurina numbers of weighted homogeneous singularities. Geom. Dedicata, 217(2):Paper No. 34,

2023.

[HMYZ23] Naveed Hussain, Guorui Ma, Stephen S.-T. Yau, and Huaiqing Zuo. Higher Nash blow-up local

algebras of singularities and its derivation Lie algebras. J. Algebra, 618:165–194, 2023.

[HYZ21] Naveed Hussain, Stephen S.-T. Yau, and Huaiqing Zuo. Inequality conjectures on derivations of local

k-th Hessain algebras associated to isolated hypersurface singularities. Math. Z., 298(3-4):1813–

1829, 2021.

[Igu00] Jun-ichi Igusa. An introduction to the theory of local zeta functions, volume 14 of AMS/IP Studies

in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press,

Cambridge, MA, 2000.

[Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Ben-

jamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

[MY82] John N. Mather and Stephen S. T. Yau. Classification of isolated hypersurface singularities by their

moduli algebras. Invent. Math., 69(2):243–251, 1982.

[MYZ23] Guorui Ma, Stephen S.-T. Yau, and Huaiqing Zuo. k-th singular locus moduli algebras of singular-

ities and its derivation lie algebras. J. Math. Phys., 64(3), 2023.
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