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On T-maps and ideals of antiderivatives
of hypersurface singularities

Quan Shi, Stephen S.-T. Yau, and Huaiqing Zuo

Abstract. Mather—Yau’s theorem leads to an extensive study about mod-
uli algebras of isolated hypersurface singularities. In this paper, the Tjurina
ideal is generalized as T-principal ideals of certain T-maps for Noetherian
algebras. Moreover, we introduce the ideal of antiderivatives of a T-map,
which creates many new invariants. Firstly, we compute two new invariants
associated with ideals of antiderivatives for ADE singularities and conjec-
ture a general pattern of polynomial growth of these invariants.

Secondly, the language of T-maps is applied to generalize the well-known
theorem that the Milnor number of a semi quasi-homogeneous singularity
is equal to that of its principal part. Finally, we use the T-fullness and
T-dependence conditions to determine whether an ideal is a T-principal
ideal and provide a constructive way of giving a generator of a T-princi-
pal ideal. As a result, the problem about reconstruction of a hypersurface
singularitiy from its generalized moduli algebras is solved. It generalizes
the results of Rodrigues in the cases of the Oth and 1st moduli algebra,
which inspired our solution.

Keywords: isolated singularities, local rings, Kéhler differential, semi
quasi-homogeneous singularities, Tjurina ideals.

§ 1. Introduction

The motivation of the present research is Mather—Yau’s theorem (see [17]).
Let C{z1,...,2,} (C{zx} for short) be the ring of complex convergent power series
of n variables at (C™,0). For an isolated hypersurface singularity (V,0) C (C™,0)
defined by the analytic germ f: (C",0) — C,0), one has the moduli algebra
A(V) :=0,/(f,0f]0x1,...,0f]0x,), which is finite dimensional. The well-known
Mather—Yau theorem is as follows. Let (V3,0) and (V2,0) be two isolated hyper-
surface singularities, A(V;) and A(V3) be their respective moduli algebras, then
(V1,0) = (V5,0) <= A(V}1) = A(V3). The biholomorphic classes of isolated hyper-
surface singularities correspond to isomorphism classes of commutative C-algebras.
The Mather—Yau theorem plays a very important role in the classification of iso-
lated hypersurface singularities.
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In the classification theory of isolated singularities, one always wants to find
invariants associated with the isolated singularities. Hopefully, with enough invari-
ants found, one can distinguish between isolated singularities. Mather—Yau’s the-
orem tells us that the moduli algebra A(V') is a complete invariant of an isolated
hypersurface singularity (V,0). All the information about singularities can be taken
from its moduli algebra. It is natural to ask if there are other C-analytic alge-
bras that play a similar role to the moduli algebra. In this paper, we call a local
algebra which satisfies Mather—Yau theorem a wvalid moduli algebra. Since a valid
moduli algebra is often a quotient ring of C{x} modulo an ideal, we call a map
Q: C{x} — {ideals of C{x}} a moduli ideal map if, for any f € C{x}, C{x}/Q(f)
is a local algebra invariant of singularity (V(f),0). For example, the kth Tjurina
ideal map Q = Ty: f +— (f) + (2)*J(f), J(f) = (0f/0x1,...,0f/0x,) is a moduli
ideal map. A map @ is called valid if each C{x}/Q(f) is a valid moduli alge-
bra if (V(f),0) is an isolated hypersurface singularity. In past years, Yau, Zuo
and their collaborators have introduced many new local algebras to singularities:
higher Nash Blow-up local algebra (see [13]), kth local Hessian algebra (see [14]),
kth moduli algebra (see [12]) and kth singular local moduli algebra (see [18]). These
local algebras are new invariants of singularities. They play important roles in the
classification theory of singularities. It is a natural question whether these new
algebras are valid moduli algebras. The answer is yes for kth moduli algebra (see
the generalized Mather—Yau’s theorem, [9]). Moreover, it is known that the kth
local Hessian algebra is also a valid moduli algebra for some k (see [5]).

For a hypersurface singularity (V(f),0), its Tjurina ideal is defined by T'(f) :=
(f)+J(f), whose corresponding moduli algebra C{x}/T'(f) is also called a Tjurina
algebra or a moduli algebra. In [19], Rodrigues proposed the problem of finding
a necessary and sufficient condition that an ideal I of C{x} is a Tjurina ideal.
By introduction of the concepts of T-fullness and T-dependence, the problem was
finally solved. If one can further find an f € C{x} such that I = T'(f), then the
problem of reconstructing a hypersurface singularity from its moduli algebra is also
solved, since an analytic algebra is given by C{x} modulo an ideal. Motivated from
his work, we propose a more general problem.

Question 1.1. Let Q: C{x} — {ideals of C{x}} be a valid moduli ideal map. For
an ideal I <C{x}, find a necessary and sufficient condition that I = Q(g) for some
g € C{z}.

Many well-known valid moduli ideal maps are of the form Q(f) = (Q1(f), ...,
Qm(f)), where m is a fixed integer and all Q;: C{x} — C{x} are C-linear maps.
For example, Tjurina ideal map is of this form. From this, the problem has an alge-
braic generalization stated as below.

Question 1.2. Let A be an algebra over a field F', Q: A — {ideals of A} is a map
of the form Q(f) = (Q1(f),...,Qm(f)), where m is a fixed integer and Q; €
Endp(A). Then for an ideal I < A, how to find a necessary and sufficient condition
that I = Q(g) for some g € A.

In our article, we solved Question 1.2 when @ is a T-map (see Definition 4.1) and
A is a Noetherian F-algebra, where F' is an infinite residue field. The introduction
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of T-map is of importance, since it includes many well-known moduli ideal maps:
higher order Tjurina ideal map (the sum of higher order Jacobian ideals (see [6]),
kth Tjurina ideal map (see [12]) and kth local Hessian ideal map (see [14]). Our
solution is motivated from [19], with necessary adjustments. We introduce the ideal
of antiderivatives, T-fullness and T-dependence with respect to (w.r.t., for short)
T-maps (see §4.5) and prove our main theorem.

Theorem A (Theorem 4.76 and Algorithm 4.82). Let F' be an infinite field and A
be a Noetherian local F-algebra with maximal ideal m. Suppose A/m ~ F'. Let () be
a fixed T-map of F-algebra A. An ideal I < A is a T-principal ideal if and only
if I is T-full and A(I) is T-dependent. Moreover, if I is a T-principal ideal, then
a generator of I can be explicitly calculated.

The notions “7T-full” and “T-dependent” are conditions on (). Besides, a T-princi-
pal ideal refers to an ideal of the form Q(f), f € A. For example, Tjurina ideals are
those T-principal ideals in the C-algebra C{x} if Q(f) = (f,0f/0z1,...,0f/0zy)
for all f € C{x}. We point out that the theorem holds for an arbitrary infinite
field, even with a positive characteristic. For example, A = F,((t))[x1,z2, ..., zy]
with F' = F,((t)) also satisfies the assumption. However, the correctness of the
theorem when F' is a finite field has not been verified, but we conjecture that it is
also true.

Furthermore, we give a constructive method to recover a hypersurface singularity
from its kth moduli ideal in Algorithm 4.82. This gives us an answer to well-known
reconstruction problem in [23| given by the second author: how can one construct
the singularity (V,0) explicitly from moduli algebra A(V'). The difficulty of this
problem is reduced to the computation of the ideal of antiderivatives. In §4.1, we
provide approaches to finding ideals of antiderivatives w.r.t. higher order Tjurina
ideal maps and kth Tjurina ideal maps.

Besides, we introduce various invariants associated with the ideal of antideriva-
tives (see §4.1). In §4.2, we introduce a series of invariants of singularities p,
or and T-threshold. Briefly, for f € C{x}, which defines an isolated singular-
ity at the origin, A(Tx(f)) is defined to be the ideal of antiderivatives of kth
Tjurina ideal Ty (f) w.r.t. Ty. As a result, o = dimc A(Tk(f))/Tk(f)* and
pr = dime Tx(f)/A(Tx(f)) are two new invariants of singularities. We prove
that pj decreases to 0 as k tends to infinity and define the T-threshold of f to be
the smallest number 7 such that 7,.(f) = A(T,.(f))-

We complete the computation of these invariants for ADE curve singularities.
As a result, we have verified the following conjecture for ADE curve singularities.

Conjecture 4.35. Let (X,0) = (V(f),0) C (C™,0) be an isolated hypersurface
singularity. Then T-threshold of f is the smallest integer N such that {oj}r>n is
a polynomial in k of degree n — 1.

Theorem B. Conjecture 4.35 holds for ADE curve singularities.

We are able to find the leading term of the polynomial in Conjecture 4.35 by
sandwiching o between two polynomials of k.
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Proposition 4.38. Suppose (X,0) = (V(f),0) C (C",0) is an isolated singularity.
Then
27~ Lord(f)

(n—1)!
Here, ord(f) denotes the minimal degree among all monomial terms appearing in f.
For two sequences {a,},{b,} C C, we denote a,, ~ b, if a,/b, =1 asn — oo.

kL,

Of ~~

Corollary 4.39. If Conjecture 4.35 holds, then the leading term of this polynomial
is (2" Lord(f)/(n — 1)k~ L,

In §4.4, the language of T-maps is applied to the ring of formal power series.
Despite contact equivalence, right equivalence is also an important relation in clas-
sification of singularities. Among all right invariants, the Milnor number is pos-
sibly the most widely known one. It is a well-known theorem that for a semi
quasi-homogeneous (SQH for short) series f € K|[[z]| := K[[z1,...,2y]], the Mil-
nor number of f coincides with that of the principal part f, of f (see [4]). In
this paper, we generalize this theorem to the kth Milnor number pux(f), which
is the dimension of the quotient ring of K[[x]] modulo the kth Jacobian ideal
Je(f) = m*J(f) (see [12]) and is also a right invariant. Using the machinery of
regular sequences, we finally prove the following.

Theorem C (Theorem 4.63). Suppose f € K|[x]] is an SQH series w.r.t.w € N2,
that is, (fu) < 00. Then i (fu) = () for k < ming{ord(9f /0z:)}

Moreover, we believe that the result is correct for all £ > 0. Hence we propose
the following conjecture.

Conjecture 4.65. Suppose f € K[[x]] is an SQH series w.r.t. w € NZ, that is,
p(fuw) < 0o. Then py(fu) = pr(f) for all k € N.

Apart from the three above theorems, we also give a geometric interpretation of
ideals of antiderivatives w.r.t. Tjurina ideal map Tj. For an ideal I<C{x}, the ideal
of antiderivatives of I w.r.t. Ty (namely, A([1)) is closely related to the well-known
second fundamental exact sequence for Kéhler differential (see Theorem 2.9). We
illustrate and prove this connection in §4.3. Briefly, A(I) coincides with the kernel
of the first homomorphism in the second fundamental exact sequence. We also call
the ideal of antiderivatives defined above a locally defined ideal of antiderivatives.
In fact, we can generalize the locally defined ideal of antiderivatives to a global
version. Consider the global objects complex space (X,Ox) and coherent ideal
sheaf 7 of Ox. In §4.3, we further define the (globally defined) ideal sheaf of
antiderivatives A(Z) for Z. Besides, we prove that if X is smooth, then, for each
p € X, the stalk A(Z), is equal to the locally defined ideal A(Z,) < Ox , = C{x}.

In the appendix, we give the code for computing ideals of antiderivatives for T}
and the invariants oy, pr,. We only provide the code for two variables and the code
for three variables is similar.

Remark 1.3. After completing the project, we found the paper [20]. We would
like to point out that our work overlaps merely a small part with this preprint.
Our Theorem A and the main theorem of [20] are both related to reconstruction
of a hypersurface singularity from its moduli algebra. We would like to emphasize
that our Theorem A can be applied to T-maps on local algebras over infinite field F’
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with residue field F', which includes Tjurina ideal map and 1st Tjurina ideal map
of C{x}. For example, it can be applied to all of the six maps in Examples 4.5.
Moreover, we do not even require the characteristic of F' to be zero.

§ 2. Preliminaries

2.1. Invariants of singularities. Let (X,0) C (C™,0) be the common zero locus
of some functions f1, fa, ..., f; which are analytic near 0. If m = 1, (X, 0) is called
a hypersurface singularity. The singular locus of (X,0), denoted as (Sing X, 0),
is the zero locus of f; and its partial derivatives. The singular locus is often called
the singularity of (X,0). Sometimes, if not confusing, we call (X,0) a singularity.
A singularity is called isolated if (Sing X,0) is a single point. A morphism of
two analytic space germs (X,0) C (C",0) and (Y,0) C (C™,0) is a restriction
of a holomorphic map germ f: (C" 0) — (C™,0) to (X,0) such that (f(X),0) C
(Y,0). (X,0) and (Y, 0) are called isomorphic if and only if there are two morphisms
between them which are inverse to each other. It is equivalent to saying that (X, 0)
and (Y,0) are biholomorphic.

The classification of singularities is based on such isomorphisms. A natural idea
of algebraic geometry is to consider the valid functions on spaces, that is, analytic
space germs. The function on (X, 0) are those analytic germs. By Hilbert—Riickert’s
theorem (see |9]), the ring of holomorphic function of (X,0) is C{z1,...,z,}/I,
where I is the ideal of analytic germs vanishing at (X,0). C{z1,...,z,} is a Hense-
lian, Noetherian UFD as corollaries of the Weierstrafi Preparation theorem (see [9]).
If not confusing, we abbreviate C{x1,...,z,} as C{x} and denote m as its maximal
ideal.

Two analytic germs f and g in C{x} are called right equivalent if there exists
a p € Aut(C{x}) such that p(f) = g, called contact equivalent if p(f) = ug, where
¢ € Aut(C{zx}) and u € C{x}* is a unit. Note that the two types of equivalence
induce an isomorphism of singularities since ¢ is always given by an isomorphism
of analytic space germs. It is not difficult to verify that two analytic space germs
are isomorphic if and only if their corresponding analytic algebras are isomorphic.
Another question is whether such an isomorphism can be determined by simpler
algebras. Mather and Yau (see [17]|) proved that two isolated hypersurface singu-
larities are isomorphic if and only if their moduli algebras are isomorphic. Mather
Yau’s theorem was slightly generalized in |9] as follows.

Theorem 2.1 (see [9], Theorem 2.26, and [10], Theorem 1). Let f,g € m C C{x}.
Then the following conditions are equivalent:

(1) f is contact equivalent to g;

(2) for all k > 1, Cz}/Ty(f) ~ C{a}/Tr(g):

(3) there is k > 1 such that C{zx}/Ty(f) ~ C{x}/Tr(g).

Here, Ty, is the kth Tjurina ideal Ty, (f) := (f) +m*J(f). In particular, To(f) =
T(f).

Moreover, if f has an isolated singularity, then f is contact equivalent to g if
and only if T(f) ~T(g).

Now Mather—Yau’s theorem leads to the massive study of moduli algebras, the
generalization of which is the main objects studied in this paper.
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For a hypersurface singularity, there are a series of invariants: Milnor number
(see [9]), Tjurina number (see [9]), higher Jacobian algebra (the quotient for higher
order Jacobian, [6]), spectrum number (see [22]), Igusa Zeta function (see [15]),
and Bernstein—Sato polynomial (see [3]). Besides, moduli ideal maps often generate
invariants, for examples, the Krull dimension or linear dimension over C of their
quotient rings. The following are three kinds of moduli ideal maps.

Higher order Tjurina ideal. For f € C{x}, T(f) = (f,0f/0x1,...,0f/0x,) is
the Tjurina ideal of f. For an ideal I < C{x}, we define the action of T over [ as
T() = T) T* is defined to be the compositions of T by k times, that is,
Tr(f) = T(T(---T(f))) is the ideal generated by f and all its partial derivatives
whose orders are not greater than k. It is well-known that, for any ¢ € Aut(C{x}),
o(T(f)) =T (e(f)) and T(uf) = T(f) for any unit u. By a simple induction, we
have (T*(f)) = T*(p(f)) for all ¢ € Aut(C{z}) and T*(uf) = T*(f) for any
unit u. Hence T% is a moduli ideal map.

kth Tjurina ideal. In [12], Ty, (f) := (f) +mFJ(f) is called the kth Tjurina ideal,
where m is the maximal ideal of C{x} and J(f) is the Jacobian ideal of f. One
can easily check T} is a moduli ideal map by noticing two facts:

(1) Tx(uf) = Ti(f) for any unit u;

(2) @(m) =m for any ¢ € Aut(C{zx}).

kth local Hessian ideal. The kth local Hessian ideal was first introduced in [14].
Let f € C{z}, J(f) be its Jacobian ideal and Hess(f) = (9*f/(dx; dx;));; be
its Hessian matrix. Let hg(f) denote the ideal generated by all (k x k)-minors in
Hess(f), then I7 (f) := (f)+ J(f) + hi(f) is called the kth local Hessian ideal of f
and Hy(f) := C{x}/IF(f) is called the kth Hessian algebra. As shown in [14],
1 ,ff is a moduli ideal map.

Let @ stand for anyone of the three above. It is a natural problem whether
an ideal of C{x} is of the form Q(f),f € C{x}. For Q = Ty and Q = T,
the Tjurina ideal map, Rodrigues ([19] and [20]) gave two conditions and solve
the problem. In this article, we will generalize his results, at least to ideal maps
including the three above.

A simple observation is that all of the three ideals can be written as a sum of
principal ideals associated with f, and, for all a,g € C{x}, Q(ag) C Q(g). This
observation will important for our generalization in §4.

For a hypersurface singularity (V(f),0),

p = dime C{z}/J(f) and 7 = dime C{a}/T(f)

are called the Milnor number and Tjurina number, respectively. They are two
important invariants.

Lemma 2.2 (see [9], Lemma 2.3). Let U C C" be an open neighborhood of 0, and
let f: U — C be holomorphic. Then the following are equivalent:

(a) 0 is an isolated critical point of f;

(b) u(f,0) < oo;

(c) 0 is an isolated singularity of f=1(f(0)) =V (f — f(0));

(d) 7(f = £(0),0) < oo.

The lemma can be slightly generalized.
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Lemma 2.3. Let f € C{z} be a holomorphic function with f(0) = 0. Then the
following are equivalent:

(a) dim C{x}/m*J(f) < oo for all k >0

(b) dim C{z}/mkJ(f) < oo for some k > 0;

(c) (V(f),0) is an isolated singularity;

(d) dim C{z}/(f) + m*J(f) < oo for all k > 0;

(e) dim C{zx}/(f) + m*J(f) < oo for some k > 0;

(f) there exists some r > 0 such that m” C J(f).

Proof. Since (f) +mkJ(f) C (f) + J(f) and m*J(f) C J(f), by Lemma 2.2, (a),
(b), (d), and (e) all imply (c). Moreover, it is clear that (f) implies (a), (b), (d),
and (e). So it suffices to prove that (c) implies (f). Suppose f defines an isolated
singularity. By Lemma 2.2, dim¢ C{x}/J(f) < oo and hence /J(f) D m. Since
C{x} is Noetherian, there exists some r > 0 such that m” C J(f). Lemma 2.3 is
proved.

Remark 2.4. The proof of (c¢) = (f) is also true for any ideal I other than J(f), as
long as dim C{x}/I < occ.

2.2. Commutative algebra. In this subsection, we survey some facts about com-
mutative algebra and Kéhler differential.

Theorem 2.5 (Artin—Rees, [2|, Corollary 10.10). Let A be a Noetherian ring, I be
an ideal, and M be a finitely generated A-module. If M’ is a submodule of M,
then there exists a k > 0 such that I"M N M' = I""k(I*M N M"), for all n > k.

The next is the basis theorem of finitely generated modules over a principal ideal
domain (PID, for short).

Theorem 2.6 (Basis Theorem, [21]|, Theorem 9.12). If R is a PID, then every
finitely generated R-module is a direct sum of cyclic modules in which each cyclic
summand 18 either primary or is isomorphic to R.

If R is a discrete valuation ring (DVR for short), with a uniformizer w, then
every finitely generated R-module is a direct sum of a free module and some cyclic
modules of the form R/w"R for some k. If M = R* ® (P,_, R/@" R), k; > 1,
then a + r is the minimal number of generators of M. We call a 4 r the rank of M.

Lastly, we recall some notions about regular sequence. Let A be a local ring and
M be a finitely generated A-module. (fi,..., f,) € M" is called a regular sequence
if, for all 1 < i < r, f; is not a zero-divisor in M/ 2;;11 Af;.

Proposition 2.7 (see [7|, Corollary 17.2). If R is a Noetherian local ring and
(x1,...,2) is a regular sequence in R, then any permutation of (xi,...,x,) is
again a reqular sequence.

Theorem 2.8 (see [16]|, Theorem 31). Let (A, m) be a Cohen-Macaulay ring. Then:
(i) for every proper ideal I of A,

ht/ + dim A/I = dim A;
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(ii) for every sequence ay,...,a, in m, the following are equivalent:
(1) the sequence aq,...,a, is A-regular;
(2) ht(ay,...,a,) =r.

The following is the second fundamental exact sequence for the Kdhler differen-
tial. We state it in a way more convenient for further uses.

Theorem 2.9 (second fundamental exact sequence for Kéhler differential). Let
m: B — C be a surjection of A-algebras with kernel I. Then the following exact
sequence holds:

I&QB/A®C—>QC/A—>0,

where d(a) = da® 1 for all a € I is a B-module homomorphism, and d: I — Qp /4
is the restriction of d: B — Clg,a. Furthermore, I? is contained in kerd.

We may refer to [11] and [9] for this theorem. Their statements are slightly
different, where the first map of the corresponding sequence in these books is

I/1? 40 B/A ® C, but in fact they are equivalent to ours.

For the complex space (X,Ox), we can also define the Kahler differential. If
X = D C C™ is an open subset, Qx is the free module @, Op - dz;, and d
is naturally defined. Locally, (X,0x) = (V(Z),(Op/I)|v (1)) is a complex model
space, Qx = Qp/(ZQp + OpdZ). The derivation is defined to be the pullback of
the quotient map d: Op/Z — Qp/(ZQp+OpdI) by the inclusion map V(Z) — D.

§ 3. T-fullness and T-dependence for Tjurina ideal

3.1. T-fullness and T-dependence. In [19]|, Rodrigues first developed the con-
ceptions of T-fullness and T-dependence. Those are two conditions characterizing
whether an ideal of C{x} is a Tjurina ideal. Let I < C{x} be an ideal and T
be the Tjurina ideal map, that is, T'(f) = (f,0f/0x1,...,0f/0x,). The action
of T' can be naturally extended to the set of ideals: T'(I) := > ,.;T(f). We
call A() = {f € C{z} | T(f) C I} the ideal of antiderivatives of I. Since
T(af) CT(f), a, f € Cl{x}, and T(f + g) CT(f) +T(g) for all f,g € C{z}, A(I)
is actually an ideal.

Definition 3.1. [ is called T-full if T(A(I)) = 1.

For an ideal J = (g1,...,9m) <C{x}, let S = C{x}|y1,...,ym] be a polynomial
ring over C{x} and 0 := ), g;y;. T(0) := (0,00/0x1,...,00/0x,) is the Tjurina
ideal of o and T'(J)S is a homogeneous ideal of S. The original definition of
T-dependence is stated in the language of algebraic geometry. Here, for simplicity,
we give an equivalent definition illustrated in commutative algebra.

Definition 3.2. J is called T-dependent if (T (o): T(J)S) ¢ mS.

A subtle thing is whether it is well-defined. In [19]|, Rodrigues proved that the
definition is independent of the choice of generators of J and hence well-defined.
The proof will also appear in §4.5, which is slightly adjusted to fit in more general
cases. Below is the main theorem of [19].

Theorem 3.3. An ideal I is a Tjurina ideal if and only if I is T-full and A(I) is
T-dependent.
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Roughly speaking, T-fullness guarantees that I can be generated by some ana-
lytic germs and their partial derivatives. It can be seen quite clearly in the monomial
case.

3.2. An example: monomial ideal case. It is also an interesting problem when
a monomial ideal of C{x} is a Tjurina ideal. In this subsection, we give a char-
acterization of a T-full monomial ideal and survey some recent results associated
with the problem. The notation, which follows that in [19], is also surveyed in § 3.1.
The following proposition shows the ideal of antiderivatives of a monomial ideal is
also a monomial ideal.

Proposition 3.4. If I <C{x} is a monomial ideal, then so is A(I). Moreover,
A(I) = N~ Qi, where Qy 1is the monomial ideal generated by xy - I and I N
Clz1, ..., Ty .., xyn). Here, Clzq,...,Zk,...,x,] refers to the polynomial ring of
n — 1 variables apart from xy,.

Remark 3.5. Throughout the article, we adopt the multi-index motation. That is,
o 1 n n : al a” s

% a=(a',...,a") € N" refers to the monomial z¢ ---z& in C[zy,...,x,]. For

a €N, |af:=>" o is called the length of a. We call a1 < g, if af < ab, for

all 1 <7 < n. If not confusing, we set e; = (53 )P, € N™ as the normal orthogonal

vectors. For a € N™, Supp a := {i | o; # 0} is called the support of a.

Proof of Proposition 3.4. It is obvious that f € A([) if and only if every monomial
term of f is A([I), since I is a monomial ideal. So, it suffices to work on the second
statement.

Let P, = {f € C{z} | f, 0f/0x) € I}, then A(I) = (,_, Px. We only need
to show that P, = Q. For a subset W C C{x}, we use 0(W)/Jzx) to stand for
{Ow/0xy, | we W}.

On one hand, since [ is a monomial ideal, we have 0(xy[)/0xy = I. Moreover,
oI NClzy,...,Tk,...,x,])/0xr = 0, and hence Qr C P;. On the other hand,
for £* € Py, if xp does not appear in %, then * € Clzy,...,Tk,..., x| N L.
Otherwise, we have x® € z I, or P, C Q. Proposition 3.4 is proved.

In the next theorem, we give a characterization of T-full monomial ideals.

Theorem 3.6. Let [ <« C{x} be a monomial ideal, then I is T-full if and only if
there exist o, ...,0u, € N such that [ = ({x®~% |1 <i<m,1<j <n,
O; — €5 2 0})

Proof. 1t is clear that the theorem is equivalent to saying that [ is 7T-full if and
only if, for any x* € I, there exists an 1 < i < n such that x®*€i~¢ ¢ [ for all
1 < j < nsatisfying o +e; —e; > 0.

So, it suffices to prove the above statement. The argument for “only if” is easy.
By the assumption, z**¢ € A(I) and hence ® € T(A(I)). For “if”, since A(I) is
a monomial ideal, there exists an @? such that P = z® or £#~¢ = x* for some i.
In both cases, we have x**¢ € A(I) for some i, so x*+t¢i~¢ € [. This proves the
theorem.

Remark 3.7. T-full monomial ideals can be easily distinguished through the Newton
diagrams. For n = 2, they correspond to the diagrams whose corners towards
left-down appear as twins different by (1, —1) as Fig. 1 shows.
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Figure 1

Combining Proposition 3.4 with Theorem 3.6, the ideal of antiderivatives of
a T-full monomial ideal can be calculated as below.

Corollary 3.8. Let I < C{x} be a T-full monomial ideal. By Theorem 3.6, we
may assume that I = ({x*~% |1 <i<m,1<j<n o —ej >0}). Then
A(I) = N5, Qk, where Q = x I + ({x® , a € A}) + ({zP~°, B € B, | #k})
and A={aeN" |e,-a=1}, B={BcN" | e, -3=0}.

Very recently, Epure and Schulze [8] answered the question when a Tjurina ideal
is a monomial ideal by introducing Jacobian semigroup ideals and applying the
machinery of matroids. Their main theorem is as follows.

Theorem 3.9 (see [8]). Let 0 # f € C{zx} and I := T'(f) beits Tjurina ideal. Then
I is a monomial ideal if and only if f is right equivalent to a Thom—Sebastiani
polynomial. Here, a Thom—Sebastiani polynomial refers to a polynomial of the form
S x® , where o' € N" and Supp o’ are disjoint subsets of {1,...,n}.

At last, we give two examples of monomial ideals. The first one is T-full but not
T-dependent and the second one is T-dependent but not T-full.

Example 3.10. n =3, [ = (xy%23, 22y23, 229222, 9", 295, 2/%).

By Theorem 3.6, I is T-full. But one may compute that the C-dimension of
I/(z,y,2)I is 6. By Nakayama’s lemma, the minimal number of generators of I
is 6 and hence I is not a Tjurina ideal. By Theorem 3.3, I not T-dependent.

Example 3.11. n =2, I = (zy).

We have A(I) = (2?y?), T(A(I)) = (2%y, 2y?), 0 = 2*y’a, T(0) = (zy*a, 2%ya).
Since aT'(A(I)) = T (o) and « ¢ m|a], A(]) is T-dependent. There is a single cor-
ner in the Newton diagram of I and hence I is not T-full.

§4. T-map

In this section, we will introduce the conception of T-map and some of its appli-
cations. In §4.1, we introduce the notions of T-map, T-principal ideal and ideal of
antiderivatives. In §4.2, we introduce two new invariants o = dimc A(I)/I? and
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pr. = dime I/A(I) associated with kth Tjurina ideal I and its ideal of antideriva-
tives A(I) w.r.t. kth Tjurina ideal map. We show that there exists a polyno-
mial P € Z[z] such that o, = P(k) for all k sufficiently large. In §4.3, we give
a geometric interpretation of ideals of antiderivatives w.r.t. Tjurina ideal map.
In §4.4, we first survey the well-known theorem that the Milnor number of a semi
quasi-homogeneous series f € K[[x]] coincides with the Milnor number of its princi-
pal part. Then we generalize the theorem to py, whenever k£ < min;{ord(9f/0x;)}.
In §§4.5 and 4.6, we generalize the main theorem of [19] to some types of Noethe-
rian local algebras so that many kinds of moduli ideal maps in § 2.1 can be included.
Furthermore, we give an approach to finding a generator for a T-principal ideal.

4.1. T-map and ideal of antiderivatives. From now on, R is a ring and A is
a Noetherian R-algebra. We will define abstract “Tjurina ideals” for A.

Definition 4.1. The set of all ideals of A is denoted as J. A map Q: A — J is
called a quasi-T-map if there is an integer m and R-linear maps Q1,...,Qn: A — A
such that Q(f) = (Q1(f),...,Qm(f)) for all f € A. A quasi-T-map @ is called
a T-map if it has the following property:

Qaf) € Q(f), forall a,fe A (+)

Remark 4.2. The following properties of a T-map () can be easily derived from the
definition.

() Q(f +9) € Q) + Q9);
(if) if (f) = (9), then Q(f) = Q(g)-

Remark 4.3. We note that R-linear maps ()1, ..., Q,, are also parts of the defini-
tion.

T-maps appear rather frequently in singularity theory. Here, we mention some
typical examples. (3), (4) and (5) in Example 4.5 are those moduli ideal maps
mentioned in §2.1.

Example 4.4 (quasi-T-maps).
(1) A=C{z}, R=C and Q(f) = Jx(f) = (x)*J(f) is the kth Jacobian ideal.
(2) A= C{x}, R =C and Q(f) is the Nash blow-up ideal of f in [13].

Example 4.5 (T-maps).
(1) A is an arbitrary R-algebra and Q(f) =
(2) A is an arbitrary R-algebra and Q(f)

Dergr(A) are R-derivations;

(3) A=C{z}, R=C,Q =Tk,

(4) A=C{x}, R=C, Q =Ty;

(5) A=Cfa}, R=C, Q= I};

(6) A= Fylall, R = Fp, QUf) = (£,07F/0a,..., 00/ 0uD).

Fix a T-map @, we call an ideal I <A a T -principal ideal if there exists an f € A
such that I = Q(f). Such an f is called a generator of I w.r.t. (). It is an interesting
problem when an ideal is a T-principal ideal. Before solving this problem, we will
develop some basic notions.

(f);
= (f,é’l(f),,é’k(f)), where 0; €
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Definition 4.6. With the same notation as in Definition 4.1, for an ideal I =

(91,---59n) <A, we have Q(I) := ({Q(f) | f € I}) = Q(g1) + --- + Q(gn). For
another T-map Q" = (Q},...,Q..), we define the composition of Q" and @ as

(Q'Q)(f) =Q(Q(f)) = {Qi(Q,(f)), 1 <i<r, 1< j<m}). Itis also a T-map.

One can check that the composition of T-maps satisfies the associative rule and
U(f) = (f) is the unit of this operation. We write this property as below.

Proposition 4.7. With the above notation. My := {T-maps of A} with the com-
position as the multiplication is a semigroup with unit element U(f) = (f).

From now on, we will always assume that @) is the fixed T-map of A. When
stating properties of T-maps, we will omit the notion “with respect to )”. Following
the step of [19], it is natural to introduce the ideal of antiderivatives.

Definition 4.8. Let I < A be an ideal. Then the ideal of antiderivatives A([I) is
defined to be the set of all the elements whose images under () are contained in I,
that is,

Al)={feAlQ(f) €I}
Remark 4.9. By property (x), one can easily check A(I) is an ideal.

Proposition 4.10. With the as above notation, let Q' be another T-map. To avoid
confusion, we denote Ag, Agr, and Ag g as the ideals of antiderivatives w.r.t. Q,
Q’, and Q'Q, respectively. Then Agq(I) = Ag(Ag (1)) for any ideal I < A.

Proof. Suppose f € Agg(I), then (Q'Q)(f) C I. Hence, forall g € Q(f), Q'(g) C I.
Therefore, Q(f) C Aq/(I), that is, f € Ag(Ag/(I)). Conversely, since f €

Ag(Ag/ (1)), we have Q(f) € Ag/(I) and hence Q'(Q(f)) C I. It is equivalent
to saying that f € Ag/ (). Proposition 4.10 is proved.

For convenience of applying the language of T-maps to singularity theory, we
may give some definitions as counterparts of right and contact equivalence.

Definition 4.11. For f,g € A, we call them right (respectively, contact) equivalent
if there exists a p € Autr(A) such that ¢(f) = g (respectively, ¢(f) = ug, for some
unit u € A*). Clearly, the definition coincides with the original one with R = C
and A = C{x}.

Definition 4.12. A T-map Q is called stable under contact equivalence if, for any
v € Autr(A), Q is compatible with ¢, that is, Q(p(f)) = ¢(Q(f)) for all f € A.

Proposition 4.13. If Q is stable under contact equivalence and I < A is an ideal,
then p(A(I)) = A(p(I)) for all ¢ € Autg(A).

Proof. On one hand, for any f € @(A(1)), there exists a g € A(I) such that f =
¢(g). Since Q(f) = Qp(9)) = »(Q(g)) C »(I), we have p(A(I)) € A(p(I)). On
the other hand, for any f € A(¢(I)), we have Q(f) C ¢(I). Hence Q(o~1(f)) C I,
then ¢~ 1(f) € A(I), or f € p(A(I)). Proposition 4.13 is proved.

Remark 4.14. The three kinds of T-maps in § 2.1 are all stable under contact equiv-
alence. A simple corollary of Proposition 4.13 is that T-maps stable under contact
equivalence induce moduli invariants.
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Corollary 4.15. Suppose @) is stable under contact equivalence. For all ¢ €

Autr(A) and an ideal J C A(I), the homomorphism A(I)/J LN A(p()/e(J)
nduced by @ 1s an isomorphism.

For A=C{z}, R = C and @ = T the Tjurina ideal map, [19]| gave an algorithm
to compute A(I). We give a brief description of it as below. The algorithm also
holds for Q) = Tj.

Algorithm 4.16. Let Q : g — (Q1(9), ..., @m(g)) be the T-map and I be an ideal
of A. Suppose fi,..., f- is a set of generators of the ideal I.

Step 1. Compute My, = {(a) € A™ | ¥, a;Qx(fi) € I}.
Step 2. Let I, = {3, a;f; | (a) € My}. Compute (), Ir = A(I).

Now let Q = T be the Tjurina ideal map. By a simple induction we have the
ideal of antiderivatives w.r.t. T% is A*, composing the A w.r.t. T by k times. This
gives a method to compute the ideal of antiderivatives for higher order Tjurina
ideal map.

In the next subsection, we will apply this algorithm to compute a series of new
invariants associated with kth Tjurina ideal and its ideal of antiderivatives for ADE
singularities.

4.2. Invariants associated with T} and its ideal of antiderivatives. Sup-
pose (X,0) = (V(f),0) is an isolated hypersurface singularity and I = Tj(f)<A =
C{zx}, then A/I is of finite dimension over C by Lemma 2.3. Since A is Noetherian,
I/I? is a finitely generated A/I-module and hence has finite dimension over C. For
Q = Ty, since I? C A(I) and A(I)/I? C I/I?, we have A(I)/I? is also of finite
dimension. By Corollary 4.15, dimg(A(I)/I?) is a contact invariant. The same
properties hold for I/A(TI) as well. Hence, for each k, we obtain two new invariants.
For I = Ty (f) and Q = T}, we denote oy, as dime A()/I? and py, as dime I/A(T).
Next, we will prove the stationary property of pi as k tends to infinity and calculate
ok, pr and T-threshold (defined later) for ADE curve singularities (for classification,
see [1]). The code for computing A(I), dim A(I)/I? and dim I/A(I) is Code 5.1
in §5.

Proposition 4.17. Suppose (X,0) = (V(f),0) is an isolated singularity, then
{pr}tr>0 is a decreasing sequence. Moreover, there exists an N such that py, = 0
for all k = N. We call the minimum of such N the T-threshold of f, denoted as

Tt(f)-

Proof. We first prove {py } is decreasing. To avoid confusion, let Ay and Ay4q be the
ideals of antiderivatives of (I,Q) = (Tx(f),Tr) and (Tk41(f), Tk+1), respectively.
Set Ik = Tk(f) and Ik—l—l = Tk—i—l(f)- Since IIH—I g Ik, 1: Ilf-f—l/(Ik-l—l ﬂAk> — Ik/Ak
is an inclusion. It suffices to show that I 11 N Ax C Agyq. For any g € I N Ag,
we have g € Iy11 C I and m*J(g) C (f) +mFJ(f), where m = (z) is the maximal
ideal of C{x}. Then m**1.J(g) C m(f) + mFT1J(f) C I} 41, hence g € Ajy1.

Now we prove pr = 0 for k sufficiently large. Let Q = Ty, I = Tr(f) and A(I)
be the ideal of antiderivatives of I w.r.t. Q). Since (X, 0) is an isolated singularity,
there is an integer | such that m' C J(f) and hence (f) + mk*! C I. Clearly,
f € A(I), so it suffices to show for any k large enough, o € N”, |a| = k, and
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u € J(f), then mFJ(x¥u) C mF*+!. Notice that J(x®u) C m*~LJ(f) + m*, then
mPJ(x*u) C m?*~1. Thus A(I) = I for all k > [ + 1. Proposition 4.17 is proved.

Lemma 4.18. For (R, A, Q) = (C,C{x},Ty), if I is a monomial ideal, then A(I)
s also monomial given by

—NQus» €N, |ilt=k 1<j<n

Here,

Qi.j) = Agj) + Bi)
Ay = ({z; ™ |2 ot € 1)),
Bij={z*el|a =0}).

Proof. The argument is the same as in Proposition 3.4. Let
i Of

Hence I = ﬂ P(, j)- It suffices to show Q; jy = F; ). On one hand, for a gen-
erator z; - of A jy, one finds z*0(z; - *)/0x; = (¢ 4+ 1)z*T* € I. Besides,
O(x*)/0x; = 0 for o/ = 0, and hence we have Qi,j) € P,j)- On the other hand,
since I is a monomial ideal and the operator - 9/dx; sends momomials to mono-
mials, P; ;) is also monomial. For a monomial x* € P(; j, if z; is not a factor,
then x> € B(; ;). Otherwise, ** € A(; ;). Therefore, P; jy = Q(; ). Lemma 4.18
is proved.

We will compute pr, o and T-threshold for ADE curve singularities A,,, Dy,
Fg, E7, Eg. To avoid repetition, we compute those invariants for D,, and only
provide results for other types. Besides, we will compute the ideal of antiderivatives
for ADE surface singularities.

Proposition 4.19. For D,, = V(2™ ! + 2y?), m > 4,

A(Tp(z™ ! + zy?))
(2™t 4+ xy?, 3(m — D)a™ 2y + %, 2™yt ay® 2%y? 2™, k=0,
_ (':Em ! :L'm 2y7$y27y3>7 k= ]-a
(wm ' wy 2) 4 (@R gk Pt R a2y 2 <k <m =3,
m, k::O, m7 k:07
pp=sm—3—k, 1<k<m-—4, o =< m-+ 7k + 4, 1<k<m—4,
0, k>m—3, 2m +6k+1, k>m — 3,

and Tt(x™ ! + zy?) =m — 3.
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Remark 4.20. For an ideal I < C{x}, we sometimes split I into a sum of finite
dimensional C-vector spaces and a monomial ideal as C-vector spaces. This will
simplify the computation of dimc C{x}/I. For example, in the proof, we use
I = (2™, 93, 2%y) + spanc{z™ ! + zy?}, which means the sum of monomial ideal
(x™,y3, 2%y) and C-vector space spanc{z™ ! + zy?}.

Proof of Proposition 4.19. We first compute oy by definition:
[=T@™ " +ay®) = ((m - D™+ zy) = ((m — Da™ 2+ 2™y, ay),

I* = ((m = 1)%2*" " 4y, (m = D)™y + 2y, 2275, 4% wy, 2™y, 2%y?).
Following Algorithm 4.16, we compute A([) as follows:

M, = {(a,b) € A% | a(m — 2)(m — 1)z™ 2 + by € I},
My = {(a,b) € A% | 2ay + bx € I}.

Hence

I = (2™, y%,2%y) + spanc{z™ ' + 2y°},
Iy = (™ 1yt 2y?) + spanc{3(m — 1)z %y + ¢*}.

So, we have A(I) = I} NIy = spanc{z™ ! + 2y?} + spanc{3(m — 1)z™ 2y +
3} + (vt xy?, 2%y, 2™ ). It can be checked that 2™, ..., 22" 4 zy3, 2™ 1 +
xy?, 2™ 2y + 93 is a basis of A(I)/I?. Therefore, oy = m.

Since I = spang{(m — 1)z™ 2 + 2} + (2™ 1,93, 29), we have pg = m.

For o1, one can compute I = Ty (2™ + ay?) = (2™ 1, 22y, 2y%, y3), which is
a monomial ideal. By Lemma 4.18, A(J) is a monomial ideal as well. One can
compute F(; jy in Lemma 4.18:

P, (8/0x) — I, P, (0/0y) — ($m_17 xm_an xyza y3)7
Pyooy =1, Pyoson =1
Hence
A(I) = (& 2™ 2y, ay?, y°),
12 = (222 gty gy 303 208 g5 6)

Since

R I e T TR L T T T TR VAN TN TN TR TR T
is a basis of A(I)/I?, we have oy = m + 11. Since 22y, ..., 2™ 3y is a basis of

I/A(I), we have p; = m — 4.
Next, we compute oy, k > 2. A simple observation shows that

I = Tk(.’lfm_l + aij) — (xm—l + ny) + (.Tm+k_2,$k+1y,$ky2, L ,xyk:—l—l,yk—l—Q).
Let
- s ~ s}
U =quel xlyk_l—uel and V,=<vel xlyk_l—vel .
ox 0y




16 Quan Shi, Stephen S.-T. Yau, and Huaiqing Zuo

Suppose a((m — 1)z ™2 + y2) + bx™ k=2 4 ciab Ty + .. 4 cpy0y¥ 2 € U;. Then
2y a((m — 1)z™ 2 +y?) + (m + k — 2)bx™H3

+(k+Dezfy+ -+ ey e L
Hence U; = I, for all 0 < 7 < k. Applying the same argument to V;, for
a((m—1Dz™ 2 +y?) +ba™ 2 Loz Tly + o 4 gy eV,

we have

'y T 2azy + 12T+ 4 (b 4+ 2)y" T € 1

Hence V; = I, for all 0 < i < k — 1. As for Vj,, the only restriction is c;z**! € I.
Thus ¢, € (y,xmax{m b3, 0}) and

A(I) _ (xm—l + xy2) + (l,m—l—k—Q’xkyQ’ o ,xyk+l7yk+2) + (xmax{m—2,k+1}y).
Hence Tt(z™ '+ xy?) = m — 3. Let J:= (2™ F=2 2F 1y . xyF+l 4*2). Conse-
quently, I = ((x™~ 1 + 2y?)?) + (2™ + 2y?)J + J2
Case 1: m—2>k+1.

AL = (@™ +ay?) + (2™ %y) + (@2 Ry Ly )

m—1 + l,y2) + (xm—2y’ Ilfy3) + (1’m+k_2,l'ky2, yk—|—2>

= spanc{z’ (@™ +ay®)} + (@2 22y, MR 2y, g )

Moreover, {z%(x™ 1 + 2y?)}o<i<k_2 is linearly independent in C{x}/L, that is,
A(l) = (@5;02 spanc{z’(z™ ! 4+ 2y?)}) @ L is a direct sum of C-linear spaces.

Since J? = (p2mt2h—4 gmA2h—ly g2k+2.2 p2k+193 . y?* 1) we can write I?
as below:
= (4) +(B) + K,
A =22"y? + 2Pyt — 2™yP,
B = x™Vhy 4 gFt2y3)
K = (a2mh=3 gm2hoty 2202 2kl 3 ket d kS 206 ket 2k

Moreover, A, ..., 2" 2A yA, ... 2" 3yA, B,..., 2" 2B is a basis of I?/K. Since
KCLyoy=dim(L/K)+k—-1—(k—1)—(k—2)—(k—1)=m+ Tk + 4.

A similar argument shows that p, =m — 3 — k.
Case 2: k> m — 2.

k+1

AI) = (@™ +ay®) + (22 My ahy? ey ) = 1
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One can obtain the following decomposition:

=(f)
= (0) + () (A1, Az,..., Apya) + K,

f=a""+ay?, C=f> DB=zgmtr2f
Az _ xlﬁ-m-l-l zyz + xk+3—iy2—|—i
J:( m+k— 2 —|—1y,“.’ y l,yk+2)
K = ( m+2k xm—i—Zk 12/7 2k—|—2y2 [172k+1y3, m2k‘—m—|—4y4, o ,xk—m+4yk+4,
.’Ek m—|—3yk+m—|—1, o ,y2k+4).

Moreover, the following are C-bases of I/J and I?/K, respectively:

k—2 k—3 k—2
f7 AR ] :I: f7 yf7 ) x y7 ) y f
and
k—2 k— 2 k— 2
Al, ey, X Al, AQ, ey, X mt AQ,...,Ak+1, ey, X mt Ak+1,
k— 2 k— 2 —4
Apgo, ooy @72 A0 L Ay, o, TR T AL,
-3 k—m-+1 -3
Y Ay e, YT A,
m—2 k—m,_, m—2 k—2
) Ak+2v ceey X ) Ak‘+27 ey Y Ak+27
B I'k_m+2_B
)

g ey

C, ..., 2%, yC, ..., " 3ye, .., YR

Since K C J, one can calculate oy by op = dim[/J + dim J/K — dim I?/K =
2m + 6k + 1. Proposition 4.19 is proved.

Applying the same argument, one can obtain the results for A,,, Fg, Es.

Proposition 4.21. For A, = V(2™ +4%), m > 2,

A(Tiu(z™ ! +y%))

(™t 2y, ), k=0,1,
= q (@™t 4+ y?) + (@mHF vy, Ry ) 2 <k <m -1,
(2™t 4 y?) + (aFy, 2 y2, Ly, k= m,
Y1 k=0 m—1, k=0,1,
m fry
’ ’ m + 6, k=1,
pr=sm—k 1<k<m-—1, o) = o
0 - m+5k+1, 2<k<m-—1,
) /m7
2m + 4k +1, k> m,
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Proposition 4.22. For Eg = V(23 + y%),

(2%, 2%y, y*), k=0,
A(Ti(2® +y")) = ¢ (@3, 22y, 2%, "), =1,
(22 +y*) + (22F, L 2%yF oyt k> 2,

5 k=0, 7, k=0,

=41 k=1  ox=418 k=1,

0, k>2 6k+13, k> 2,

and Tt(z3 + y*) = 2.
Proposition 4.23. For E; = V(23 + zy?),

A(Ty, x>+ a:y3))

(2 + zy3, 1522y? + 2y°, 2, y°), k=0,
= ¢ B2?y +y°, 2, 2%y, %y, 2y, y°), k=1,
(@3 + 2yP) + (3x2yF + yF 3, b2 aBykl g2yt g Rt Ry p > o

6, k=0, 8, k=0,

pe=12 k=1, o =119, k=1,

0, k>2 6k +15, k>2,

and Tt(z3 + zy3) = 2.
Proposition 4.24. For Es = V(2® + °),

(22, 22y, yP), k=0,
A(Tp(2® +9°)) = < (23,2293, 2y, y°), k=1,
6, k=0, 10, k=0,
2 k=1, 21, k=1,
= [0 —
PE=N1, k=2, T 98, k=2,
0, k>3, 17+ 6k, k>3,

and Tt(z3 4+ y°) = 3.

Next, we provide a lemma, which relates the ideal of antiderivatives of ADE
surface singularities to ADE curve singularities.

Lemma 4.25. Suppose f € C{x} = C{x1,...,x,} is an analytic germ with an iso-
lated singularity at the origin. Let u be a new variable and ]?: u? + f € C{u,z}
be another analytic germ with an isolated singularity. The notation is given in the
remark below.
For k=0, B
AT(F) = (u?) + (u- TE () + (A" (TE (),
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and for k > 1,

A(T(f)) = () + (W) + (Mg - u) + (05 u®) + -+ (mgu®) + (),

where (5),S C C{u,x} is the ideal generated by S. A and Yy are ideals in C{x}
given by Ap = (m - J(f) +mf~" - fmi) Nmf and Uy, = AT(T(f)) NmEJ(f).
Moreover, if f is quasi-homogeneous, then

A(Tr(f)) = (f) + (W5) + (Ag - w).

Remark 4.26. Let k be an positive integer. To avoid confusion, let T} denote the kth
Tjurina ideal map in C{x} and T} is the Tjurina ideal map in C{u,x}. Moreover,
m, refers to the maximal ideal of C{x} and J(f) the Jacobian ideal of f in C{x}.
Besides, for an ideal I in C{x}, A®(I) C C{x} is the ideal of antiderivatives
w.r.t. T, For ideal J in C{u,x}, A(J) is the ideal of antiderivatives w.r.t. T}.

In all, the notation attached with an * or , is the one associated with C{x},
while others are associated with C{u, x}.

Proof of Lemma 4.25. We will also follow Algorithm 4.16.

For k = 0, we have Ty(f) = (u, f,J(f)). Suppose au + Y . bi(0f/0x;) €

A(To(f)), where a,b; € C{u,x}. Then, by taking 0/0u and 0/0x;, we have a €
TE(f)+ (u) and >0, b;(0%f/(0x; Ox;)) € To(f). Since u € Ty(f), we may assume
b; € C{x}. Under this assumption, we obtain Y ;" , b;(9*f/(0z; 0x;)) € Ty (f) and
hence the assertion is proven. B

When k > 1, we have Ty (f) = (f) + (mz, w)*(u, J(f)). Suppose Y a;qu‘tlaz® +
S bjigu/xP(0f /0r;) € A(Tk(f)), where i, 7 >0, a, 3 € N" with i+|a| = j+|8| = k.
For s > 0, v € N" s+|v| = k, apply ©v*x7(9/0u). If s > 1, we obtain no restriction
to all @ and b. If s =0, we get one restriction

mg( > a()aa:o‘) C Tw(f).

|| =k

Since ux® € Ty (f) if |a| = k, we may assume apq € C{x}. Under these circum-
stances, by considering the degree of u, we have Z‘a‘ a0ax™ € Ag.

For general s, v as before, u*x¥(0/0z,) provides no restriction to a;q, since
ws it gBtr—eq is always in Ty (f). Hence we can focus only on S bjyguf@P (9 f /).
Also, if s > 1, then

e piye, O - o
J+s pBtr—eq J+s pB+Y
w T o, eTi(f) and v’z 921 0z, € Ti(f)-

So, these u*xY(0/0x,) give no restriction. For s = 0, we have
. of ‘ 82 f _
b. JpBty—eq J pB+y cT )
E : JE] {U x 91, tu'x 9, 0, k(f)
If j > 1, we also have

, . Of . 0% f
b. I pBtY—eq J B+ T )
Js <u ox; Y T axq) € Ti(f)
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So, it suffices to consider the condition

W = b B+y—eq of B+~ o f T (f
=>_ D bus(z o Dm0z, ) € k()
L |Bl=k

We may assume as before that by;g3 € C{x}. Considering again the degree of u, we
have W € (f) + (m,,u)*(u, J(f)) if and only if

W e (g ) (F) + (g ) (1, J(F)) = (may ) =1 (F) + (g w)*(u, I ().
Therefore,
> buga® 2L € A(1E()).

Concluding all the restrictions, we verify the first assertion.

For the second assertion, let I = (f) + (Vi) + (Ax - w). Since f € m,J(f),
we have m¥~1f C mFJ(f). Next, A*(TF(f)) is an ideal and f € A®(TZ(f)),
and so m¥~1f C Uy, For all z® € mF~ !, z%u? = :caf— x> f € I. This implies
mk=1y2 C I. To show that m* =243 C I, it suffices to verify that m*~2u- f € (Ag-u),
but this is clear by definition.

Next, we induct on r to show that m*~"u"*! C I. The case for k = 1,2 proceeds
as above. Suppose it is true for all » < k — 1. Since (m*~"+lu"~1) C I by the
induction hypothesis and m*~"u" =1 f C mk="+1y" =1 for all z*u™! € mE—ry L,
we have x®u"+! = wau’"_lf— x®u" "1 f € I. Lemma 4.25 is proved.

We have the following easy corollary to this lemma.

Corollary 4.27. Under the notation of Lemma 4.25, let py,(f) and Tt(f) be invari-
ants of f € C{x} and pi(f), and Tt(f). be those of f € C{u,x}. Then

po(f) = 1o(f) + po(f) and oo(f) = oo(f),

where 1o(f) is the Tjurina number of f. Furthermore, if f is quasi-homogeneous,
then

Tt(f) = max{Tt(f), mm(f)},

where mm(f) is the smallest integer r such that m2" C m=>J(f).

Proof. The first assertion follows from the isomorphism

To(f)/A(To(f)) = T () /A (T5 (f)) @ (C{z} /T (f))u

between vector spaces. The second assertion is a consequence of Ty (f N) =
(T5(f) - w) + (T (f))?, which implies A(To(f))/(To(f))? = ANTG () (T (
As for the third assertion, since (U -u) C (Ay, - u) and (A - u?) C (mk
we have A(T,(f)) N C{z} = (Uk) + (my k=1.f). Because mF~! f C mFJ(f) an
f e AY(TE(f)), we have A(Ty(f ))ﬁC{az} Wy Moreover, A(Ty(f))N(C{z}-u
Ay, - u. Hence A(Ty(f)) = Ti(f) if and only if ¥, = mkJ(f) and A, =
The smallest number k satisfying the respective conditions are Tt(f) and mm(f),
respectively. Corollary 4.27 is proved.
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Next, we compute the ideal of antiderivatives for ADE surface singularities. We
only give Ay and ¥y so that the reader can recover A(Ty(f)) by Lemma 4.25.
We point out that we have deliberately written A in the form (f) + (A NmkJ(f))
in the previous computation for curve singularities.

Proposition 4.28. For D,, = V(z™ ! + 2y + u?),m > 4,

Ak - (Cl?'y,il? 2) N mka
v (a,:m—l—k 2 kyZ’..‘71.yk:—|—1’yk:—|—27':L.Tn—Zy)7 1 <k<m_3’
k — (zm k= 2 aFy?, R R R L) k> — 2,
Proposition 4.29. For A, = V(2™ + 4% +u?),m > 2,
Ak - (l,m’y> ﬂmﬁa
v (zmth amy, a1y ), 2 <k <m -1,
k: pu—
(Fy, = 1y2, oyt k> m.
Proposition 4.30. For Eg = V(23 + y* +u?),
Ak - (xQ,xy27y3) ﬁ m.I;7 \:pk; = (aj2+k:7 AR 7$2yk7xyk:+2)'
Proposition 4.31. For E; = V(23 + 2y + u?),
Ao d By, k=1
k= 2 .3 .2 k
(@9, zy”) Nmg, k=2,
Wy = 322y 4 yF 3 ah 2 aByE L a2yl b2 iy

Proposition 4.32. For Eg = V(2® +3° + u?),
2 .3 4 k
Ak = (CE LY Y )mmm7
v S @2t eyt ), k=1,
(2% +9°) + (@2, aPyF oyt ) k> 2

Below are the invariants for Dg, Fg, F7 when 0 < k < 12.

Example 4.33. We distinguish invariants of f and fby adding a tilde over those
of f. N
1) f=a"+ay?, f=f+u

k 0 1 2 3 4 5 6 7 8 9 10 11 12
pr | 6 2 1 0 0 0 0 0 0 0 0 0 0
pr | 12| 6 3 1 0 0 0 0 0 0 0 0 0

o | 6 | 17 | 24| 31 | 37 43 49 55 67 73 79 85

Ok 6 28 | B5 | 89 | 130 | 178 | 234 | 298 | 370 | 450 | 538 | 634 | 738
One can find 7, = 4k> + 12k + 18, 4 < k < 12, and 0, = 6k + 13, k > 3

D
—_
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k 0 1 2 ) 6 7 8 9 10 11 12
Pr | 5 0 0 0 0 0 0 0 0 0 0 0
pr | 11 2 0 0 0 0 0 0 0 0 0 0

o | 7 | 18|25 | 31| 37 43 49 55 1 67 73 79 85
o | 7 |29 ] 56 |90 | 130 | 178 | 234 | 298 | 370 | 450 | 538 | 634 | 738

One can find oy, :ék2+12k+18,3<k<12, and o = 6k + 13, k > 2.
(B) f=a®+axy?, f=f+u>

(@)

k 0 1 2 3 4 ) 6 7 8 9 10 11 12
pr | 6 2 0 0 0 0 0 0 0 0 0 0 0
pr | 13| 7 3 1 0 0 0 0 0 0 0 0 0

o | 8 |19 27|33 | 39 45 o7 63 69 75 31 87
or | 8 | 30 | 58 | 92 | 133 | 181 | 237 | 301 | 373 | 453 | 541 | 637 | 741

One can find 7, = 4k> + 12k + 21, 4 < k < 12, and 0, = 6k + 15, k > 2.

Remark 4.34. Asin [1], germs f € C{x} and f = f+u? are called stable equivalent.
Moduli algebra itself can not tell the difference between stable equivalent singular-
ities if not given the dimension of ambient space. However, by Proposition 4.38,
we can read the dimension of the singularities from invariants {0y }r>0 and hence
stable equivalent singularities of different dimensions can be separated apart.

ot
[y

So far, some interesting things have happened:

(a) there is a polynomial P € Z[x] such that {0k }r>7e(r) = {P () brz1e(s)s

(b) T't is the smallest integer N such that {o}r>n fits a polynomial of k. We
state the findings in the following conjecture.

Conjecture 4.35. Let (X,0) = (V(f),0) C (C™,0) be an isolated hypersurface
singularity. Then T't(f) is the smallest integer N such that {o} } >N is a polynomial
of k of degree n — 1.

Remark 4.36. Our calculation shows that the conjecture holds for ADE curve sin-
gularities. Below, we give some examples other than ADE singularities that support
our conjecture.

Example 4.37. (1) f = 25 + zy".
k 0 1 2 3 4 5 6 7 8 9 10 11 12
pr | DT | 13 | 7 2 0 0 0
ok | 17 | 68 | 8 | 103 | 117 | 129 | 141 | 153 | 165 | 177 | 189 | 201 | 213
One can find o, = 12k + 69, 3 < k < 12.
(2) f =2y +ay™.
k 0 1 2 3 4 ) 6 7 8 9 10 11 12
pr | 44 40 34 26 18 10 6 2 0 0 0 0 0
o | 256 | 267 | 284 | 307 | 334 | 365 | 391 | 417 | 441 | 463 | 485 | 507 | 529

One can find o, = 22k 4+ 265, 8 < k < 12.

o
o
o
o
o
(]

(3) f==z(z+y)(x+2y)(z + 3y)(x + 4y)(z + 5y).
k 0 1 2 3 4 5 6 7 8 9 10 11 12
pr | 14 | 10 4 0 0 0 0 0 0 0 0 0 0
or | 36 | 47 | 64 | 81 | 93 | 105 | 117 | 129 | 141 | 153 | 165 | 177 | 189

One can find o = 12k + 45, 3 < k < 12.
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(4) f=a%+y° + 25

k 0 1 2 3 4 5 6 7 8 9 10 11 12
pr | 38 | 32 20 8 0 0 0 0 0 0 0 0 0
or | 82 | 109 | 172 | 252 | 339 | 430 | 533 | 648 | 775 | 914 | 1065 | 1228 | 1403
One can find o), = 6k% + 37k + 95, 4 < k < 12.

(5) f =2y +y°z+ 2%y

k 0 1 2 3 4 5 6 7 8 9 10 11 12

pe | 12| 6 0 0 0 0 0 0 0 0 0 0 0
o | 12 | 39 | 8 | 136 | 199 | 274 | 361 | 460 | 571 | 694 | 829 | 976 | 1135

One can find o), = 6k% + 21k + 19, 2 < k < 12.

Even though the correctness of the conjecture is not verified, we can prove the
following estimate.

Proposition 4.38. Suppose (X,0) = (V(f),0) C (C™,0) is an isolated singularity,
then
2"~ Lord(f)

n—1
(n—1)! L

O ™~

Here, ord(f) denotes the minimal degree among all monomial terms appearing in f.
Besides, for two sequences {an},{bn} < C, a, ~ b, means a,/b, — 1, when
n — o0.

Proof. For t € N, let I(t) = (”jt) be the cardinality of the set
{(z1,22,...,2) EN" | 21 + 20 + -+ + 2, < t}.

By Lemma 2.3, there exists an integer w such that m*C J(f). For a non-negative
integer ¢, we set L; = dim C{z}/((f?)+(f)m!+m?) and R; = dim C{z}/((f)+m?).
Since oy, = dim C{x}/T}(f)?> — dim C{x} /T}(f) for large k (Lemma 4.17), we have
the estimate

Ly — Riyw < 0k < Ligyy — Ry (~)

In fact, L; and R; can be explicitly calculated for ¢ > ord(f).

Ord(f) tn—l
(n—1)! ’
Ly =12t —1) — (I(2t =1 —ord(f)) = l(t = 1)) — I(t — 1 — ord(f))
N (27! + 1) ord(f) i1
(n—1)! '

R, =1(t—1)—I(t—ord(f)—1) ~

Applying the calculation to (~), we are done. Proposition 4.38 is proved.
With this proposition, we have a direct corollary.

Corollary 4.39. If Conjecture 4.35 holds, the leading term of this polynomial is
(2"~ tord(f)/(n — 1))k~ L.
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Remark 4.40. In Proposition 4.38, we have shown that
dime I/I? = Ry — Ly = 1(2t — 1) — (2t — 1 — ord(f)),

where I = (f)4+m! C C{x} is anideal. If f =" | 27 is a homogeneous Brieskorn
singularity, then m*.J(f) = m**" for large k. Consequently, for k >> 0,

or =12k+7r)—1)=12(k+7r)—1—ord(f)),
which is a polynomial in k. This also verifies Conjecture 4.35.

4.3. A geometric interpretation for the ideal of antiderivatives. In this
subsection, we are going to give a geometric interpretation of the ideal of antideriva-
tives w.r.t. Tjurina ideal map. Hence all As in this subsection refer to the ideals
of antiderivatives w.r.t. Tjurina ideal map. The motivation of the following con-
struction comes from the well-known exact sequence for Kéhler differential (Theo-
rem 2.9).

Lemma 4.41. Let I C m C C{x} be an ideal. Then the following exact sequence
holds:

0—>A()—1 i> Q(C{a:} @ Clx}/I — Q@{m}/[ — 0.
Proof. It suffices to check that A(I) = kerd. Since Qcyry = @, C{z} dx;,
Qcizy @C{x}/I ~ @ (C{x}/I) dx;. Therefore, f € kerd if and only if 8 f/0x; €
I for all 1 < i < n. By definition, kerd = A(I) = {f € I | J(f) C I}. This proves
the lemma.

Now we suppose that (X, Ox) is a complex space and Z is the complex subspace
given by coherent ideal sheaf Z. We have the natural morphism a: Z — Qx ®@Ox /T
given by f — df ® 1. It gives a global exact sequence for X/Z.

Theorem 4.42. With the above notation, we have the exact sequence
Igﬂx(X)OX/I—)i*Oz%O, (E)

where i: Z — X 1is the natural closed embedding.

Proof. For p ¢ Z, (Ox/I), = 0 and (i.Oz), = 0. For all p € Z, taking stalks
of (E), the sequences coincide with the (algebraic) sequences in Theorem 2.9. So,
we are done.

Definition 4.43. For a coherent ideal sheaf Z of Ox, the ideal sheaf of antideriva-
tives is defined by the kernel of « in the above exact sequence.

Remark 4.44. Since i is a closed embedding and hence finite, by Theorem 1.67 in [9],
i+Oyz is coherent. Since Z, Qx ® Ox /Z and i,Oy are all coherent, then so is A(Z).

The following theorem shows that, for each p € X, the stalk A(Z), coincides
with A(Z,)<Ox , in the local sense. Hence our global definition gives A a geometric
interpretation.

Theorem 4.45. Let X = D C C" be an open subset and I be a coherent ideal
sheaf of Ox. Then, for each p € X, A(Z), is the ideal of antiderivatives of the
ideal Z,, in the local ring Ox , = C{x — p}.
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Proof. Without loss of generality, we set p = 0. Under the above assumptions, we
have Ox , = C{x}. Applying Theorem 4.42 and taking stalk at p, we see that it is
the exact sequence in Lemma 4.41. The theorem is proved.

4.4. kth Milnor number of semi quasi-homogeneous singularity. In [4],
the notion of semi quasi-homogeneity (SQH for short) was provided. The authors
proved that the Milnor number of an SQH series is equal to the Milnor number of
its principal part. We will apply their method to prove an inequality associated
with some types of quasi-T-maps. Besides, we prove the equality between the kth
Milnor number of an SQH series and the Milnor number of its principal part.

In this section, K[[x1,...,z,]] always refers to the ring of formal power series
over a field K. For brevity, we write K[[z1,...,2,]] as K[[x]]. Let m be the
maximal ideal of K[[z]]. We will focus on some quasi-T-maps on the K-algebra
K|[[x]], where K is an arbitrary field. We first define the notions continuous and
efficient for a linear endomorphism of K|[x]].

Definition 4.46. A linear map P € Endg(K[[z]]) is called continuous if there
exists an integer d such that ord(P(f)) > ord(f) — d for all f € K[[x]].

Remark 4.47. There is a natural topology on K|[[x]], that is, the m-adic topology.
The open basis near 0 is given by the filtration m D m? D m? O ---. A sequence
{fi}s2, € K][z]] is called a Cauchy sequence if, for any integer k > 0, there exists
Ny, > 0 such that f; — fixq € m” for all i > Nj. It is not hard to check each Cauchy
sequence in K|[[x]] converges to a unique series. A continuous endomorphism is
automatically a continuous map from K{[x]] to itself when considering the m-adic
topology.

Lemma 4.48. Let P € Endg (K[[x]]) be continuous. Then P(f) = >, auP(x")
forall f =5 a,x? € K[[z]].

Proof. Let Cy: K|[z]] — K][[z]]/m**"1 — K]J[z]] be the canonical truncation.
Namely, it maps >, ayx” to -, < awx”. For all k € N, we have f = Ci(f) +
(f = Cr(f)), where ord(f — Ci(f)) = k + 1. Since P(Ck(f)) = Xy <i w0 P(x")
and ord(P(f — Ck(f))) = k+ 1 —d, P(Ck(f)) is a Cauchy sequence tending
to P(f) in m-adic topology. Therefore, we have 3, o\ auP(z”) — P(f), that
is, P(f) =>_, awP(x"), proving the lemma.

Remark 4.49. The lemma is not trivial since it works for infinite sums.

Definition 4.50. Given f € K[[x]] and a quasi-T-map ), we define

pq(f) == dimg K([2]]/Q(f).
If the dimension is infinite, we simply write pug(f) = oo.

As in [4], for w = (wh,...,w") € N%j and f = > a,x® € K[[z]], the prin-
cipal part of f w.r.t. w is defined to be fi, = D . 0 winimal GoZ’. [ is called
semi quasi-homogeneous (SQH for short) w.r.t. a continuous quasi-7-map @ and w
((Q,w) in short) if pug(f,) is finite.

The support of f = > a,x” € K[[x]] is defined by Supp(f):={veN" |
a, #0}.
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A quasi-T-map Q: K[[z]] — {Ideals of K[[x]|]} can be naturally extended to
K|[[z,t]] — {Ideals of K[[x,t]]} in a natural way. That is, assuming @ = (Q1, ...,

Q) for f =322 fi-t" € Kl[a, t]], we have Q;(f) := 327Z, Q;(fi) 1" and Q(f) :=
(Q1(f); -+ Qu(f))- Let d = minyegupp(py v -w and f =t~ f(t" @, " z,) =
fuw +tg, where g € K[[z,t]]. So, Qi(f) = Qi(fw) + tQi(g) for each i.

Definition 4.51. Let w € N2 and ¢,,: K[[z,t]] = K[[x,t]] be such that z; —

£ z;, t > t. A linear map P € Endg (K[[z]]) is called efficient w.r.t. w if P is
continuous and there is an integer e such that ¢,,(P(x?)) = t° P (@, (x?)) for each
monomial xv.

Example 4.52. Consider K|[z,y]] and w = (1,1). Then P = z%y3 9, is efficient
with e = 4, while P = 0, + 0, 0, is continuous yet not efficient.

Definition 4.53. A quasi-T-map Q = (Q1,...,Qn) (that is, Q(f) = (Q1(f),. -,
Qm(f)) for all f € K[[z]]) is called continuous (efficient, respectively) if all @; are
continuous (efficient, respectively).

Proposition 4.54. With the above notation, let Q) be an efficient quasi-T-map and

w € Nsg. Suppose f=>" apx? is SQH w.rt. (Q,w), and K[[a:,t]]/@(f)K[[m,t]] is
finitely generated as a K[[t]]-module, then pg(fw) = po(f). The equality holds if

and only if K[z, t)]/Q(f)K][[x,1]] is torsion-free as a K |[[t]]-module.

Proof. Let L be the fraction field of K[[t] and ¢y: z; — t*'z;, t — t, be an auto-
morphism of L[[z]]. By Lemma 4.48 and the definition of efficiency, we have

puw(Q(f)) Ll[z]] = Q(pw(f)) Ll[z] = Q(f)L[[w]] and the isomorphisms

Kz, )/Q()) K[, ] @k L = L{[=]]/Q(f) L{[]
~ Ll[z]]/o(Q(f)) L[] ~ H JI/QU)L{[]]-

The first isomorphism is due to Lemma 4.56 below. Am appeal to Lemma 4.57
below shows that dimy, L[[x]]/Q(f)L[[x]] = no(f).
Since K|[[t]] is a discrete valuation ring, it follows that the L-dimension of

K[z, t]/Q(f)K|[=, )] D) L is the free rank of K[[z,t]] /Q(f)K|[,t]] by The-
orem 2.6. Since K[[:IA:, t]/QUf K|z, t]] @k K ~ K[[x]]/Q(fw) and u(fy) is the
rank ofbK[[w, t]]/Q(f) K[|z, t]], we have ug(fuw) = po(f). The condition for equal-
ity is obvious.

Remark 4.55. (1) It is clear that Q: f — (f,0f/0x1,...,0f/0x,), the Tjurina
ideal map, satisfies all the conditions. And < holds for f ¢ (0f/0x1,...,0f/0xy).

(2) The “finitely generated” condition is necessary. Let K = C, f = 2% + 293 +
y* € Cl[[x,y]], and w = (1/2,1/4), then f,, = 2® + y3. Consider the quasi-T-maps
(1 and )2 defined by

Zawx Yy (Z a;;x’ o ) + arz(zy® — %) + ager?,

1,725

Zamx y (Z aijz'y ) +aoay®,

1,5 =5

Q = (Q1,Q2).
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We have Q(fw) = (2%,y") and Q(f) = (zy°,4%), and K[z, y,#]]/Q(f) K[z, y,t]] is
not finitely generated. Next, pu(fy) =3 < u(f) = co.

(3) We will soon later see that the kth Jacobian ideal map, Jx: g — m
(0g/0x1,...,09/0x,), satisfies all conditions.

ko

The following two lemmas may be well-known for experts. However, we did not
find suitable references. Hence we give complete proofs below.

Lemma 4.56. Let I C Kl[x,t]] be an ideal of K|[[x,t]] such that K|z, t]]/I is
a finitely generated K [[t]]-module. L := K((t)) is the field of Laurent series over K .
Then K[z,t]]/I @ L ~ L{[z]]/IL[[x]] as L-algebras.

Proof. Let A = K[z, ]|, then A/T @) L = A¢/IA; is the localization of A/I.
We claim that m” C ITA; for some r > 0. If not, there exists an x; such that
x¥ ¢ TA; for all k. Since A/I is a finitely generated K[[t]]-module, A;/IA; is
a finite L-linear space. Hence x;, 27, ... .2 is linearly dependent for some p, which
implies ¥ € T A, a contradiction.

Consequently, we have an isomorphism A;/TA; = A;/(IA; + m"A;)~B/I'B,
where B = A;/m" A= L[[x]]/m" L[[x]] = L[x]/((x)L[[z]])" and I’ is the image of I
in B. The same argument holds for L[[x]]/IL[[x]], for we only need to notice
m” C [L[[z]]. Lemma 4.56 is proved.

Lemma 4.57. Let I = (f1,..., fm) C K|[[x]] be an ideal, and let L := K((t)) be
the field of Laurent series over K. Then dimy, L[[x]]/IL[[x]] < oo if and only
if dimg K[[z]]/I < co. Moreover, if the finiteness holds, then those dimensions
coincide.

Proof. Suppose that K[[x]]/I is finite dimensional. Then m” C I for some r. Since
IL[[x]] © m"L[[z]], dimy, L[[x]]/IL[[x]] is finite. Conversely, let L[[x]]/IL[[x]] be
finite dimensional. Then m” C I L[[z]] for some r. Hence x® =3, f;g;,9; € L[[x]],
for all @ € N”, |a| = r. Considering the degree-zero part of all g; w.r.t. ¢, we have
x> € [ for all i. Therefore, I D m".

If both finiteness holds, it suffices to show that a finite set of monomials {x®i };c;
is linearly dependent in K|[x]]/I if and only if in L[[x]|]/IL][[x]]. The “only if” is
trivial. As for “if”, suppose ) h;x® = >, fjl; (+), hy € L, and I; € L[[z]]. We
may assume that the degree-zero part of hy w.r.t. ¢t is not 0. By considering the
degree-zero part of (+) w.r.t. ¢, we are done. Lemma 4.57 is proved.

Let Ji(f) := m*J(f) be the kth Jacobian ideal. The dimension of its quotient
algebra is called the kth Milnor number ui(f) := dimg K[[z]]/Jk(f). One can
prove that ) = Jj, is efficient w.r.t. any weight w € NZ,. To see this, it suffices
to check that g — x® - (0g/0z;) is efficient for all i and || = k. It is not hard to
check (%) - (D (xP)/0;) = t7" - (2™ - (2P /0x;)) for all B € NZ,.

Suppose w € NZ is a weight. In [4], the authors proved when Q = J = Jy

and pu(f,) < oo, that K[[]]/Q(f) is a free K[[t]]-module of rank u(f,) and hence
torsion free and finitely generated. We will base on this fact and prove py(f) =

pk(fw), whenever k < min;{ord(9f/0x;)} and u(f,) < oc.

Lemma 4.58. Suppose I = (g1,...,9m) C K[|z, t]] is an ideal such that K|[x,t]]/I
is a finitely generated K|[t|]-module. Then K|[[x,t]]/mI is also finitely generated.
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Proof. We may emphasize m is the maximal ideal of K[[x]]. Let e1,...,e, €
K[z, t]] be such that their image in the quotient ring K|[[x,t]]/I is a set of gener-
ators. Since > g; - K|[[x,t]] + mI = I, we have eq,..., e, together with g1,...,gm
generates K[[zx,t]]/ml, proving the lemma.

As a corollary, if pu(f,) < oo. then K[[z,t]]/m*J(f) is finitely generated as
a K[[t]]-module.

We have so far proved the “finitely generated” condition in Proposition 4.54.
Hence we have a simple corollary as below.

Corollary 4.59. Suppose fis SQH w.r.t. QQ = J, and w € NL is a weight such
that pg(fu) < oo (equivalently, u(fy) < 00). Then puk(f) < pr(fw)-

Remark 4.60. The same argument also holds for Q) = T}, (that is, Q(f) = (f) +

o~

mFJ(f) for all f € K|[z]]), since Tx(f) 2 Jp(f). Thus we have 74(f) < 7(fw) for
all k € Nif 7(f,) < oo, where 7y, is the kth Tjurina number. But the equality does
not, generally hold.

Let us next show that the equality holds for u when k& < min;{ord(0f/0x;)}. By
Proposition 4.54, it is equivalent that K[, #]]/Q(f)K][[x, ]] is torsion-free. Before
giving a proof, we need to do some preparation for regular sequence.

Let A be a ring. We define A((t)) := [];c, A whose elements are written as
>z ait’, a; € A. Tt is an Aft]-module but not an A[[¢]]-module. For A = K[[z]]
and L := K((t)), L[[x]] is contained in A((t)) in the set-theoretical sense. The
following lemma tells us how elements of L[[z]] look like.

Lemma 4.61.
L{[x]] = {Z ai(z)t" | a; € K[[x]] such that a; — 0, i — —oo} C K[[z]]((t)).
i€z

Here, the convergence is in m-adic topological sense.
The proof is to simply swap the order of summation.

Lemma 4.62. Suppose (f1,..., fr) is a reqular sequence in K|[x]]. Then it is also
reqular in L[[x]], where L = K((t)).

Proof. Without a loss of generality, it suffices to prove f, is a non-zero divisor in
the quotient ring K{[[z]]/(f1,..., fr—1)L[[x]]. Suppose af, € (fi,..., fr—1)L[[=]],
a = Y aj(x)t" € Ll[z]] C K[[x]]((t)). Considering the grading w.r.t. ¢, we have
a; € I == (f1,...,fr—1) C K|[[z]]. Therefore, a; = S, alfj, al € K[[z]]. We

j=1%
need to select suitable a‘g such that a{ — 0, ¢ — —o00. Suppose a; € m™i, n; — 00,
as i — —o00. By Artin—Rees’s theorem (Theorem 2.5), there exists an N > 0 such
that, for all n > N and k > 0, mFt7 NI = mF(m”NTI). We may assume n; > N for
all ¢ < 0, after which we can select a] € m™ N hence tending to 0. Lemma 4.62
is proved.

Theorem 4.63. Suppose f € K[[zx]] is SQH w.rt. Q = Ji, and w € N2, that is,
w(fw) < oo. Then uk(fuw) = pi(f) for k < min;{ord(0f/0x;)}.
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Proof. By Lemma 4.58 and Proposition 4.54, it will be sufficient to show that

~

K[z, t]]/Jk(f) is torsion free. We prove it by induction. The case k = 0 was
verified in [4|. Suppose that K[[z,t]]/ Jk(f) is torsion-free.

The notation is as in Proposition 4.54. Since u(f) < oo, Theorem 2.8 shows
that (0f/0x1,...,0f/0x,) is a regular sequence in K[[z|]. By Lemma 4.62, we
have (0f/0x1,...,0f/0x,) is also regular in L[[x]]. Next, ¢: L[[z]] — L[[x]], with
z; — t% z;, t > ¢, is an automorphism of L[[x]]. Since df/0z; =t~ (df/0x;),
(6’]?/ 0xq,. .. ,8?/ dx,,) is also a regular sequence.

Suppose t-a(x) € Jk+1(]?) - Jk(f) On the one hand, by the induction hypoth-
esis a(x) € Jp. We may assume a(x) = 32, > 4|k GiaT™ (8F0x;), aie € K[[t]].
On the other hand, since ta(z) € Jep1(f) = mF L. (8F/0z1,...,0f/0x,), one
can write ta(x) = > . b; (8]?/8352'), where b; € L[[z]|] and ord(b;) > k + 1. Let
ci = Z|a|:,\C Aiax™ — b;, then > . ¢; (8]?/3352) =0 € L[[z]].

Since (6?/8331,...,8f/8xn) is regular in L[[x]], we have ¢, € (6]?/8331,...,
8f/0xn_1). However, k < min;{ord(df/dz;)} implies > o=k Gna®® = 0. By
Proposition 2.7, regularity is independent of permutation. So, we have a = 0.
Theorem 4.63 is proved.

However, it seems that ux(f,) = px(f) as well for & > min;{ord(0f/0z;)}. Here
are some examples.

Example 4.64. The following are computed by SINGULAR.
(1) f=23+9y3+ 23+ A?y%22, A e C,w=(1,1,1).

wr \ k ol 112137475 6 7 8 9 10
2yt 25+ y?2? [ 8112035 | 56 | 84 | 120 | 165 | 220 | 286 | 364
4yt + 27 8 |11 20|35 |56 | 84 | 120 | 165 | 220 | 286 | 364
(2) f=a +yt + 25+ M3y’ A e C, w = (20,15,12).
e \ k ol 1]2]3]47] 5 6 7 8 9 10
4yt 25+ NSyt [ 24 12736 [ 52| 75| 105 | 143 | 190 | 247 | 315 | 395
24yt + 20 24 [ 27136 | 52| 75 | 105 | 143 | 190 | 247 | 315 | 395
(B) f=a?y+y* e+ 22z + Aat +yt +21), A e C,w=(1,1,1).
e\ k of1]2]314]5]6 ] 78] 9710
P2y+yiz+ 22+ Moty +27) 8] 1424396083124 | 169 | 224 | 290 | 368
2y +y 2z + 2%z 8114124139 |60[88 124|169 | 224|290 | 368

Hence we make a conjecture.

Conjecture 4.65. Suppose f € K[[z]] is SQH w.r.t. Q = Ji, and w € N2 ;. Equiv-
alently, p(fy) < oo. Then for all k € N, up(fuw) = pr(f).

4.5. T-fullness and T-dependence: a new definition. In this and the next
subsections, we will determine whether an ideal of a local Noetherian algebra over
an infinite field is a T-principal ideal. We further assume A is a local ring and m
is its maximal ideal. Recall that @) is a fixed T-map and we omit the notion of
“w.r.t. Q7 when stating properties about T-maps.

Definition 4.66. An ideal I of A is called T-full if and only Q(A(I)) = I.
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With this definition, the following proposition is straightforward.
Proposition 4.67. Suppose I < A is a T-principal ideal, then I is T-full.

However, as a typical example, a T-full ideal of (R, A, Q) = (C,C{x},T}) is not
necessarily a Tjurina ideal, thus we need an additional condition. On some scale,
T-full implies surjectivity, showing an ideal is possibly generated by the image Q).
The following condition essentially tests whether it can be generated by one element.

Definition 4.68. Suppose J = (¢1,...,9,) <A is an ideal and consider the graded
ring S = Aly1,...,yr]. Let 0 = > giy; and Q(o) = (Q1(0),...,Qm(c)), where
each (); acts on the coefficient ring A and acts as identity on y1,...,y,.. We call J
T-dependent if (Q(c): Q(J)S) ¢ mS. Equivalently, there is a P € P! such that
mS C P and (Q(J)S)(p) = (Q(0))(p)-

Clearly, there is some trouble with “well-defined”: whether the condition is inde-
pendent of the choice of g1,...,g,.

Proposition 4.69. The definition of T-dependence is independent of the choice
of generators of J.

Before proving the proposition, we shall translate the definition into the language
of algebraic geometry. The main notation is taken from [11]. First, we identify Q(o)
with its homogeneous sheafification, which is an ideal sheaf of }P’TA_l. Second, let
T ]P’;_l — Spec A be the canonical projection, then 7*(Q(J)) is equal to (1.5)~,
another ideal sheaf. It is clear that Q(o) < 7*(Q(J)). Set F = 7#*(Q(J))/Q(0),
which is a coherent O]szl—module and thus Supp F is a closed subset of IP’TA_l.

Since (J : I)~ = (J~ : I™) for finitely generated graded ideals I,.J, we have P ¢
Supp F if and only if (Q(J)S)p) = (2(0))(p). Therefore, (Q(o): Q(J)S) ¢ mS
in Definition 4.68 can be restated as mS ¢ SuppF. Since mS is the minimal
element of 7—!(m) under the order “containing”, it is also equivalent to saying that
7~ (m) ¢ Supp F. The method of following proof is based on that of Lemma 3.8
in [19].

Proof of Proposition 4.69. Suppose hi,...,h; is another set of generators of .J.
For it, we correspondingly define ¢’, S’, 7/, and F’, where z1,..., 2 are variables
of §'. We may assume J # 0. It suffices to show that 7=!(m) ¢ Supp F implies
7'~Y(m) ¢ Supp F'.

By definition, g; = Zj rijh; for some r;; € A. Suppose that all r;; € m. Then
J C mJ. By Nakayama’s lemma, J = 0, a contradiction. Therefore, at least
one r;; ¢ m. We construct ®: S” — S by z; — > . 7;;y;. It is a homomorphism
of graded A-algebras. Hence it induces ¢: U — Pi{l for Spec A-schemes by (see
Chap. II, Exercise 2.14 in [11]), where U is the open subscheme given by U = {p €
Proj S |p 7 ®(S,)}. One can find that 7= (m) NU # &, since there is an r;; ¢ m
and then mS 2 ®(S5’,). Consider the following commutative diagram:

® 1—
U Pt
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By the construction of ¢, we have o|y = ¢*o’ since ®(0’) = 0. Then 7*(Q(J)) =
e*r™*(Q(J)) and Q(o)|y = ¢*(Q(c”)). Therefore, F|y = @*F.

As above, mS € U \ Supp F = go_l(}P’il_l \ Supp F’). Hence p(mS) ¢ Supp F'.
Observing that mS” € ®~1(mS), we have p(mS) € 7«/~1(m). proving Proposi-
tion 4.69.

In what follows, we will consider only the case where R is an infinite field,
even though the definition of 7T-full and T-dependence is valid for local Noetherian
algebras over arbitrary rings.

4.6. Determination of a T-principal ideal and construction of a gener-
ator. In this subsection, we are going to generalize the main theorem of [19] up
to the level of commutative algebra. From now on, F' is an infinite field and A is
a Noetherian local F-algebra with maximal ideal m. Let ) be a fixed T-map of A.

Definition 4.70. For A € P!, define py as the prime ideal ({\;y; — \jy; | 1 <
i,j < 71})<QFy1,...,yr]. Note that the definition is reasonable, say it does not
depend on the choice of representative element of A\. Here and below, PTF_l is always
understood in the set-theoretical sense, while ]P’rA_l is in the scheme-theoretical
sense.

Lemma 4.71. For Flyi,...,yr], px as above, f € py if and only if f(\) = 0.
(This lemma also applies to finite F'.)

Proof. The necessity is trivial, we only prove the sufficiency. Since p, is a homoge-
neous ideal, it suffices to prove the following result.

Given A € F", my := (21 — A1,..., 2 — A\) < F[21,..., 2], a polynomial f lies
in my if and only if f(A) =0.

If » =1, it is trivial. Suppose that the required result holds for » — 1. Since

f(z1,.. . 20) — f(A1, 22, .., ) is a multiple of z; — A\; and since f(A1, 22,...,2,) €
(z2 — A2y...,2- — Ay) by the induction hypothesis, we are done. The lemma is
proved.

Lemma 4.72. For R= Fly1,...,yr], px as above, ﬂkepgl pa = 0.

Proof. We first notice that I = ﬂkepgl px is a homogeneous ideal, so we only
need to consider the homogeneous polynomials. Suppose f € [ is a homogeneous
polynomial. By Lemma 4.71, f € p, implies f(A1,...,A.) = 0. Since A runs
through the whole P}_l, f must be 0, proving the lemma.

Lemma 4.73. Suppose A/m ~ F. For an ideal I < A, if 1S ¢ mS, then I ¢
S +mS, for some X € IP”I}_l

Proof. Let 7: Aly1,...,y] = Fly1,...,yr] be the projection of coefficients. Sup-
pose I C pxS +mS for all A € P Then I C ﬂAGPTF_l(mS + paS) := J. Since
J contains the kernel of 7, that is, mS, J = 7 (n(J)). However, we have
w(J) = 7(mS + prS) =\pr = 0 by Lemma 4.72, a contradiction, which proves
the lemma.

Remark 4.74. The assumption that F' is infinite is necessary. For if I is finite, then
(\px is a finite intersection of finitely generated ideals. We may take the product
of all the generators throughout all the components, then it is in the intersection.
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Lemma 4.75. Let B be a local ring and n be its mazximal ideal. For ideals I, J<B,
let P be a prime ideal of C = Blyy,...,yr] containing nC. If ICpy = JC(py, then
I1=1J.

Proof. Symmetrically, it suffices to show I C J. For any h € I, h = g(G1/G>),
for some g € J and some homogeneous polynomials G1, G5 with the same degree
and Gy ¢ P. Hence there exists a Gz € C'\ P homogeneous such that G3(hGy —
9G1) = 0 (x). Noting that G and G3 both have some coefficients in B \ n, and
hence there is a term in G3G3 whose coefficient is in B*. Considering the coefficient
of this term in (%), we have h € (g). Therefore, I C J, proving the lemma.

Theorem 4.76. Suppose A/m ~ F. An ideal I < A is a T-principal ideal if and
only if I is T-full and A(I) is T-dependent.

Proof. We use the same notation as in Definition 4.68. Let us first prove the
necessity.

Suppose I = Q(f) is a T-principal ideal. As in Proposition 4.67, I is automat-
ically T-full. Suppose A(I) = (¢1,--.,9,) and without a loss of generality, we set
g1 =f. Hence f=¢g1+0-g2+---4+0-g,. So, we may assume f = > \;g;, where
(A1,...,Ar) € F7\ {0}. Consider P = mS + p,S and assume P € D, (y;). Hence
A1 # 0. We have the lower estimate

Ai Y
IS(py = Q(f)Sp) C Q<Z(>\_z - %)gz) Sy + Q(i)S(p)

C IPp) +(Q(0))(p) € IS(p).

Uisng Nakayama’s lemma, and considering the S(p)-module IS(py and its sub-
module (Q(0))(p), we have (IS)py = (2(0))p)-

Next, let us prove the sufficiency. Let I be T-full and A(I) is T-dependent.
Then (Q(o) : IS) ¢ mS. By Lemma 4.73, it is not even contained in some P =
mS+pyS € P/t say (Q(0))py = (IS)(p). We may assume P € D (y;) and hence
A1 # 0. We have the lower estimate

ISpy = (Q(0))(p) = Q(i>S(P)
C Q(Z:(A_z - %)%)S(P) + Q(;()\—lgiDS(P)

CIPp)+ Q(Z Aigi) Spy € IS(py.

Therefore, I P(p) —|—Q(Zi )\igi)S(P) = IS(py. By Nakayama’s lemma, considering
S(py-modules I.Spy and Q(>_, Aigi)S(py, we have Q(Zl )\igi)S(P) = ISp). By
Lemma 4.75, we have I = Q(>_, A\;g;). Theorem 4.76 is proved.

Remark 4.77. Essentially, the proof shows that I = Q(ZZ )\igi) if and only if
(Q(o) : IS) ¢ mS+py)S. And the sufficiency part shows that if A(7) is T-dependent
and [ is T-full, then such p) exists.

Remark 4.78. The theorem can be applied to all of the examples in Example 4.5.
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Although the theorem provides a criterion for local Noetherian F-algebra with
infinite residue field F', the behaviour for finite F' is note quite clear. We make the
following conjecture.

Conjecture 4.79. Let F' be an arbitrary field, let A be a local Noetherian F-alge-
bra with maximal ideal m, and let @ be a fixed T-map. Suppose A/m ~ F Then,
for an ideal I< A, I is T-principal if and only if [ is T-full and A(7) is T-dependent.

Rodrigues [19] proved the following result.

Corollary 4.80 (see [19], Corollary 3.13). Suppose 0 # I<C{x} is a Tjurina ideal
and A(I) = (g1,---,9r). Then I = T3, Agr) for [M,...,\] in a non-empty
open set of ]P’E_l.

The following lemma gives a detailed description of such an open set.

Lemma 4.81. Under the same notation as in Theorem 4.76, suppose 0 # I =
Q(f)<A is a T-principal ideal. Let J = (Q(o) : IS), where A(I) = (g1,...,9r), S =
Alyr, - yr], and 0 = > giyi. ©: Aly1, ..., yr] = Flyr, ..., yr] is the projection of
coefficients. Then the set U = {\ € P'71 | [ = Q(X, Megr)} coincides with the
open set Z(mw(J))¢, where Z(mw(J)) refers to the common zero locus of polynomials
inm(J).

Proof. Proceeding as in the proof of Theorem 4.76, we have U = {\ | J ¢ mS +
paS}t ={N| 7(J) € pr}. By Lemma 4.71, U = {\ | A\ & Z(n(J))} = Z(n(J))¢,
which proves the lemma.

The above lemma also provides an algorithm to compute a generator for a T-prin-
cipal ideal I. For Q = Tj or T*, we can compute the ideal of antiderivatives
explicitly. We write the algorithm as following.

Algorithm 4.82. The notation is as in Lemma 4.81. By the following steps, one
can check that an ideal is T-principal with respect to ) and obtain a generator if
the ideal is T-principal.

Step 1. Compute a set of generators g1, ..., g, of A([).

Step 2. Check if T(A(1)) = 1.

Step 3. If T(A(I)) # I, return false; otherwise, compute the colon ideal J =
(Q(o) : IS).

Step 4. If J C mS, return false; otherwise, find a A € F" such that A\ € Z(7(J))¢,
then ) . \;g; is a generator.

§ 5. Appendix: codes
Code 5.1. Computing A([), pr and 0. (SINGULAR)

LIB ’’hnoether.lib’?’;
ring r = 0, (x,y),ds;
int k = 20;

poly f = x"4*xy+x*y~b;
def J = jacob(f);
ideal m = x,y;
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ideal Tt = f,m"kx*xJ;
ideal Tk = std(Tt);
int u = size(Tk);
matrix B[1] [u]l = Tk;
matrix C1[k+1] [u];
matrix C2[k+1] [ul;
matrix temp[1] [u];

int i;
int j;
for(i=1; i<=u; i ++){
temp = jacob(B[1,i]);
for( j=0; j<=k; j+0i
Ci[j+1,i] = x~j*y~(k-j)*temp[1,1];
C2[j+1,i] = x~j*y~(k-j)*temp[1,2];

}
}
matrix ttp[1] [ul;
def res = modulo(ttp,ttp);
for(j =1 ; j <=%k+t1 ; j +5){
for(i =1 ; i<=u; i +){
ttpll,i] = C1[j,il;
+
def rec = modulo(ttp,B);
def recc = intersect(res, rec);
res = recc;

¥

for(j =1 ; j <=%k+t1 ; j +5){
for(i =1 ; i<=u; i +){
ttpl1,i] = C2[j,il;
+
def rec = modulo(ttp,B);
def recc = intersect(res, rec);
res = recc;

}

matrix Res = res;
int uu = size(res);
matrix D[1] [uul;
for(i =1 ; i<=uu ; i ++){
for (j 1; j<=u; j+o{
D[1,i] = D[1,i]+Res[j,i]1*B[1,j];

}
ideal Delta = std(D);
ideal I = std(Tk"2);
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ideal D1 = groebner(Delta);
int sigma = vdim(I)-vdim(D1);
sigma;

int rho = -vdim(Tk)+vdim(D1) ;
rho;
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